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1 Introduction

In the realm of string theory and its low-energy effective field theory (EFT) descriptions,
the values of all continuous parameters are determined by the vacuum expectation values
of scalar fields, referred to as moduli when they are massless. In this context, perturbative
regimes in the EFT correspond to infinite-distance limits in field space. Such limits have
been studied extensively in recent years, and many of their features are now well understood.



Meanwhile, relatively little is known about the global properties of scalar field spaces
in quantum gravity, largely due to the computational difficulties associated with strong
coupling outside of asymptotic regimes. However, asymptotic properties can sometimes
provide information about global features of moduli spaces. In this paper, we will show how
the microscopic nature of infinite-distance limits dictates how these different limits fit together
in moduli space, and we will show how this constrains the different possible perturbative
descriptions of a given theory, commonly known as duality frames.

Central to this analysis are scalar charge-to-mass ratios, or “(-vectors,” which are defined
locally on moduli spaces. These (-vectors encode how masses m(¢') of particles depend
on the moduli ¢!, and are defined as

- -~ m
¢ =—Vlog Mg’ (1.1)
where the gradient is taken with respect to the moduli and Mp) 4 is the Planck mass. We will
refer to (-vectors of particle towers as tower vectors. At each point in a moduli space, one
can consider the convex hull' of these tower vectors for all of the particle towers. A priori,
this convex hull could take any of a wide variety of shapes and sizes: an effective field theorist
could write down a set of particles whose masses depend on the moduli of the theory in any
way they choose, and thereby generate a convex hull of arbitrary shape. However, as we will
see, these convex hulls turn out to be highly constrained in the asymptotic, perturbative
regimes of the theory. In particular, they are generated by infinite towers of states that
emerge in these limits, and the microscopic nature of these towers fixes the value of E

The existence of these towers of states is dictated by the Distance Conjecture [7], one of
the most well-studied hypotheses of the swampland program [8-15]. The Distance Conjecture
proposes that whenever one travels a large geodesic distance A in the moduli space, measured
with respect to metric that can be read from the scalar field kinetic term £ D %Gij ()0, ")
(see section 2), one encounters a tower of light particles with exponentially-light characteristic
masses m ~ e “2 for some positive constant «, as A — oco. This conjecture has been
examined and verified in many string theory settings (see e.g. [16-35]), and it is linked to
the famous duality web of string/M-theory. For a given infinite-distance geodesic with unit
tangent vector ¢, the exponential decay of the mass of the tower is given by a = 5 -1, with
the dot product given by the metric G;;.

In this work, we will be interested in understanding how different infinite-distance limits,
and their associated towers, can be combined globally within a given moduli space. This
information is encoded in the aforementioned convex hull of the tower vectors, since the towers
generating the convex hull provide the lightest towers in each of the infinite-distance limits.
It has been observed that in some examples, including various 9d settings [36-39], the convex
hulls of these scalar charge-to-mass ratios for towers of particles are generated by rotations of
polytopes, which we call tower polytopes (see figure 2(a)). Such polytopes dictate how the
particle towers depend on the moduli and give information about the dualities of the theory.

!This is done in analogy to the Weak Gravity Conjecture [1], as for a scalar x with mass m(¢$) one can
expand £ D m($)*x? = (m3 + 2mopdsm(9))x> + ..., with u = dym measuring the scalar Yukawa charge
induced by the moduli ¢, thereby the name ‘scalar charge-to-mass ratio’ [2—6].



In this paper we show that these tower polytopes are tightly constrained by swampland
conjectures about the asymptotic limits of moduli space. Under certain assumptions outlined
in section 1.1, we obtain a set of rules governing the tower vectors of the light towers in
a generic infinite-distance limit, which enables us to derive a finite list of building blocks
for the tower polytopes. Each such building block takes the form of a simplex in the scalar
charge-to-mass space spanned by the tower vectors, and each such simplex is associated
with a particular duality frame of the theory. If further properties of the moduli space
are satisfied, we can glue these building blocks together across the different frames of the
theory to find a finite list of tower polytopes. Comparing this list with polytopes that are
known to arise from string theory compactifications, we reproduce many well-known cases
and also obtain some potentially new ones.

The key ingredient for obtaining our taxonomic rules is the Emergent String Conjec-
ture [40, 41], a refinement of the Distance Conjecture that specifies the microscopic nature of
the towers of states. In particular, the Emergent String Conjecture holds that infinite-distance
limits in the moduli space of a quantum gravity theory are either decompactification limits,
in which the infinite tower of states is furnished by Kaluza-Klein modes, or emergent string
limits, which feature a unique, emergent, critical and weakly coupled string with a tower of
string oscillation modes. While its underlying motivation remains mysterious (see [35, 42, 43]
for some bottom-up attempts in its motivation), the conjecture has been verified in many
different flat space string compactifications® [40, 47-52].

We will argue that in generic infinite-distance limits, the Emergent String Conjecture [41]
constrains not only the lengths |§ | of the vectors generating the tower polytope, but also
the angles between adjacent vectors. We illustrate this in figures 1(a) and 1(b), where the
dots correspond to different towers of states that become light asymptotically. The length of
each vector is fixed, and it depends on whether the vector corresponds to a KK tower or a
tower of string oscillator modes. Similarly, the angle between two neighboring gt'—vectors is
also fixed uniquely by the nature of the associated towers. These taxonomic rules allow us
to build and classify the allowed tower polytopes, as illustrated in figure 1(c).

These convex hulls are a useful tool in studying the Distance Conjecture in multi-
dimensional moduli spaces [53] (see also [36-39]). As explained in [53], the Distance Conjecture
generically translates to the statement that the convex hull of the tower vectors of the light
towers of states in each duality frame should lie outside a ball of radius auyin, where apmin ~ O(1)
is the minimum value of the exponential rate allowed by the Distance Conjecture.® We will
see that this condition is indeed satisfied whenever the taxonomic rules derived in this paper

hold, yielding amin, = where d is the number of spacetime dimensions, as expected

1
Vd=2’
by the Sharpened Distance Conjecture of [36] (see figure 1(a)-1(b)). However, as we will
discuss, this does not necessarily guarantee that the decay rate of the lightest tower along

1
Vd—2
Our analysis also produces restrictions on the asymptotic behavior of the moduli-

any geodesic satisfies o > unless additional assumptions are imposed.

dependent species scale Aqa, which is the quantum gravity cut-off at which the EFT breaks

2There is evidence, though, that the conjecture should be modified in the case of non-Einstein theories
with AdS background to allow also for non-critical strings [44-46].
3This was denoted in [53] as the Convex Hull Distance Conjecture.
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Figure 1. Sketches of the different taxonomy rules. Figure (a) shows the tower vectors of a KK tower
and a string tower, while figure (b) represents two different KK towers decompactifying either n or m
extra dimensions. Both the lengths and angles between the vectors are fixed by the nature of the
tower. Figure (c) depicts an example of a polytope that is consistent with the taxonomy rules. In the
three figures the lower bound of \/leQ for the exponential mass decay rate is depicted in gray.
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(a) Tower polytope example. (b) Species polytope example.

Figure 2. Example of a tower polytope and a species polytope. The tower polytope contains the disk

of radius \/dlfz, where d is the number of spacetime dimensions. The species polytope is enclosed by

. . 1 . . . 1 _ . .
the disk of radius T and contains the disk of radius Tavas For d =9 this matches precisely

with the polytopes obtained from Type IIB string theory compactified on a circle.




down [38, 51, 54-56]. The Emergent String Conjecture implies that in an asymptotic regime
of moduli space, this species scale can be identified with either a string scale or a (d 4 n)-
dimensional Planck scale associated with the decompactification of n dimensions, depending
on the duality frame. It is convenient to introduce a species vector [38] corresponding to
the gradient of the logarithm of the species scale in a given duality frame of the theory,

— — AQG

Z=—Vlog . (1.2)
Mpyq

This species vector parameterizes the variation of the species scale in moduli space, and it is

useful for understanding the infinite-distance limits of the theory. Notably, the species vector

Z plays a starring role in an intriguing “pattern,” observed first in [51, 56], namely

> = 1

(- Z2= 13 (1.3)
where 5 is the tower vector of the lightest tower in a given infinite-distance limit. As shown
in [51, 56] (see also [57]), this pattern holds in a vast array of string/M-theory compactifications.
In this work, we will see that it also follows from the Emergent String Conjecture under
the assumptions outlined in section 1.1. As such, it may be viewed as one of the taxonomic
rules governing the geometry of the tower and species vectors.

In situations where our taxonomic rules can be applied globally across a suitable flat
slice of the moduli space, one can further define a “species polytope” [38], which is the convex
hull of the set of species vectors in each of the infinite-distance limits of the theory. This
species polytope is (up to normalization) the dual of the tower polytope (see figure 2(b)).
As a result, our taxonomic rules for tower polytopes immediately lead to taxonomic rules
for species polytopes.

The structure of this paper is as follows. In section 1.1, we present a brief summary of
the rules governing the tower and species polytopes and the assumptions on which these
rules rely. The detailed derivation of these rules is presented in section 2. In section 3,
we discuss the scope of our analysis. In section 4.1, we classify all two-dimensional slices
of tower and species polytopes in dimensions 6-10, assuming that any decompactification
limit gives a theory in at most eleven dimensions and that there are no strings in 11d. In
section 4.2, we obtain all possible tower and species polytopes in dimensions 810 under
the same assumptions, and we compare the results with the polytopes that are known to
arise from certain string theory compactifications. We find that many of these polytopes
appear in maximal and half-maximal supergravity, while other polytopes do not have known
string theory realizations. We conclude in section 5 with some final remarks, followed by a
series of appendices. In appendix A, we present a top-down derivation of the polytopes from
string theory and detail the behavior of these polytopes under dimensional reduction. In
appendices B and C, we discuss the case where the tower are not constant but slide in moduli
space. In appendix C, we remark on the case of a geodesically-incomplete moduli space.

1.1 Summary of results and assumptions

We now summarize the main results of our paper. Our taxonomy program proceeds in two
steps. First, under one set of assumptions, we derive a set of “taxonomic rules”, which



locally characterize the possible behavior of the light towers in a given duality frame. Second,
under a more restrictive set of assumptions, we combine the results of different duality
frames to classify the tower and species polytopes, which describe the global structure of
the asymptotic regions of moduli space.

1.1.1 Taxonomic rules

We begin with step one. Our primary assumption is the Emergent String Conjecture, which
implies the following conditions:

1. The lightest tower in a given infinite-distance limit is either a KK tower or a tower of
weakly coupled string oscillator modes.

2. The species scale in a given infinite-distance limit is either a higher-dimensional Planck
scale or a string scale.

Consequently, we define a principal tower to be either (a) a tower of KK modes or (b) a
tower of string oscillator modes. We also impose the Emergent String Conjecture recursively to
the higher dimensional theory that emerges upon decompactification. This latter assumption
is stronger than it looks since it puts non-trivial constraints on the existence of bound states
of the towers in lower dimensions, as explained in section 3.

To derive our taxonomic rules, we further restrict our attention to regular infinite-
distance limits that satisfy the following assumptions, for simplicity:

3. In a decompactification limit, the endpoint of the decompactifying manifold is Ricci-flat
except in regions of measure zero, such that the warp factor and varying field profiles
dilute away in the limit.

4. The leading (i.e., lightest) principal tower is not degenerate, i.e., there are not multiple
leading principal towers decaying at the same exponential rate.

5. For any decompactification limit that corresponds, after decompactification, to another
infinite-distance limit in a higher-dimensional theory, the later should also be regular.

We will argue in section 3.2.1 that regular infinite-distance limits are generic in the moduli
space, in the sense that we expect irregular limits to occur only in regions of measure zero.
In special limits where the assumption of regularity is violated, the rules may (but do not
necessarily) break down, as we explain in section 3. Hence, the rules presented in this paper
should be understood as a first step towards a taxonomy of infinite-distance limits.

We then consider an infinite-distance limit satisfying Assumptions 1-5 above, where
some number k of principal towers are lighter than the species scale. Each principal tower is
associated with a scalar field, either a volume field in the case of a KK tower or a dilaton
in the case of a string oscillator tower, which span an k-dimensional slice of moduli space.
To each principal tower, we associate a tower vector

(1.4)



where Mp) 4 is the d-dimensional Planck scale. Thus, the k light principal towers give rise to &
tower k-vectors valued in the tangent bundle of this slice of moduli space. The convex hull of
these vectors form the vertices of a (k — 1)-simplex, which we call the frame simplex. In an
infinite-distance limit in this slice of moduli space that satisfies Assumptions 1-5 above, the
geometry of the frame simplex (and in particular, is vertices, edges, and faces) are constrained
to satisfy the following list of taxonomic rules.

Given any pair of tower vectors Ea, &,, their dot product in the asymptotic limit satisfies

> o 1 1
==+ —0buw- 1.5
Ca - Gb g2 5 Oa (1.5)
When considering the same tower (i.e., a = b), (1.5) fixes the lengths of the vertices, which
are constrained to take values within a discrete set [36]:

1

Cosel? = —— (1.6)

|2_n+d72
N d—2’

|CKK,, d=2)

where d is the spacetime dimension, Q?KKTL is associated with the KK modes for a decompacti-
fication to d + n dimensions, and C_(;SC is associated with a tower of string oscillation modes
(which formally can be recovered from setting n = oo in (1.5)).

The rule (1.5) also constrains the angles between the vertices of the frame simplex, when
considering different towers (i.e. a # b). Namely, the angle 6,, between a string oscillator
vertex and a KK,, vertex is given by

n
1.
cos@n—,/n PR (1.7)

while the angle between a KK,, vertex and a KK,, vertex is given by

Cosem’n:\/(n+d—2)(m+d—2)‘ (1.8)

Examples of these angles are shown in figure 1(c). Equivalently, the lengths of the edges

are constrained to be

’2 _m +n
mn

. . 1 . .
|Cose — Ckk, |” = o ICKK,, — CKK,, ; (1.9)
for an edge between (a) a string oscillator vertex and a KK,, vertex and (b) a KK,, vertex
and a KK,, vertex, respectively.

In a regular infinite-distance limit within the frame simplex satisfying Assumptions 1-5,

the value of the species scale Aqq is uniquely determined. Let Z=-V log ﬁgfd denote the

species vector as in [38]. Then, the scalar product of the species vector ZQG and the tower
vector (, of any of the vertices of the frame simplex satisfy asymptotically

Ca+ 2qG = (1.10)

d—2’

which is precisely the pattern first observed in [51, 56] relating the variation of the species
scale and the lightest tower of states.



Consequently, the length of the species vector is also fixed:

> 1 1
ZoalP=—5 - —— 1.11
Zacl” = 7=~ 55 (1.11)
where the species dimension D is either the spacetime dimension in which the species scale
equals the Planck scale (in a decompactification limit) or D = oo (in an emergent string limit).

For each face F of the frame simplex, spanned by tower-vectors C_; for KK-modes

decompactifying ni,...,n; dimensions, the quantum gravity scale Z}: of this face is
. 1 .
Zr = n 1.12
F D]: — 9 ; aCaa ( )

where Dr = d + ), ng is the species dimension, which is the dimension that the theory
decompactifies upon asymptotically traveling in the direction of the center of the face F.
For faces F1 and F> within the same duality frame, the quantum gravity scales associated
with each face satisfy the dot products

1 Drapr — Dy — Dpr 4+ 2

Zr-Zp = 1.1
A = Y T D=2 (D —2) (1.13)

where Dz, Dz and Dr~7 are the species dimensions of the frames F, F/, and F N F'.

1.1.2 Classification of tower and species polytopes

In progressing from step one to step two of the classification program, we make two further

assumptions:

6. There is an asymptotically flat slice X =Zasymp R* of the moduli space My, such that
for every asymptotically straight line in 3 there is a infinite-distance limit (geodesic
ray) within My that asymptotically approaches it.

7. For a generic choice of asymptotically straight line in Yj, a subspace of the plane
generated by the tower vectors of the frame simplex is asymptotically equal to the
tangent space of . Rules (1.5) and (1.10) still apply to the vertices of the frame
simplex and the species vector after projection to this subspace.

These are nontrivial assumptions and are not satisfied in many cases, as we will see
below. When these assumptions do hold, however, then the frame simplices can be glued
together globally to give a full tower polytope, which is necessarily generated by the towers
becoming light at the different infinite-distance limits. When this is possible, then the pattern
of (1.10) implies that the dual polytope P°

PO:{Z|Z-5<d12vEeP}, (1.14)
is equivalent to the species polytope, generated by the species vectors of the different duality
frames. As a result, the angles between species vectors (which correspond to vertices of
the species polytope) are also constrained.

The formula (1.13) describes dot products between pericenters of various facets of the
species polytope. But, it does not describe dot products between vertices of the species



polytopes. Suppose that two vertices 2, and Zg of the species polytope are joined by an edge
with pericenter Zx. Then the dot products between two vertices of the species polytope satisfy,

.. 1 1 (Do — Dap)(Dg — Dag)
Z . Z, = . 1 , 1.1
A d—2 DQBQ[ +\/ (Dafz)(Dﬂi2> ( 5)

where D,, Dg, and D,g are the species dimensions associated to Za, Zg, Z]:. This con-
strains the angles between adjacent vertices, which are uniquely determined in terms of
the vertex types.

In section 4 we will use the taxonomic rules (1.5) and (1.10) to build tower and species
polytopes that are consistent with the above assumptions.

2 Taxonomy rules

Consider the moduli space M of a d-dimensional quantum gravity theory (QGT), endowed
with a natural Riemannian metric G;;(¢) defined by the Planck-normalized kinetic terms
of the moduli:

1 , )
Skin D —27/{?[ / GZJ<¢)CZ¢1 VAN *d¢3. (2.1)

For simplicity, we use vector symbols such as E to denote tangent/cotangent vectors on this
Riemannian space, where we freely (and silently) convert between the two using the metric
G;j. In an abuse of notation, we also use the same vector symbols to denote tangent/cotangent
vectors on naturally defined subspaces of the moduli space that will arise during the discussion.
Whenever we write these vectors in components, we choose a convenient orthonormal frame
Gi; = ege?-éab to do so. V f will denote the moduli space gradient, the components of which

are partial derivatives (6 fi = g dJ; in a coordinate basis, but which involve the inverse

vielbein (Vf), = €l g q{l in an orthonormal basis. With these conventions in mind, we rarely

need to invoke either the metric G;; or the vielbein ef explicity.

2.1 The structure of a regular infinite-distance limit

Consider an infinite-distance limit in the moduli space M, of a d-dimensional QGT. To be
precise, by this we mean a semi-infinite path ¢‘(s), s > 0, through My such that the shortest
route between ¢*(0) and ¢‘(s) is along the path itself. This implies that (1) the path is a
geodesic traveling to infinite distance and (2) it does so “as quickly as possible” (without
meandering).? Such a path is known as a geodesic ray in the mathematical literature. We
declare geodesic rays that asymptotically approach each other to define equivalent limits so
that, e.g., the choice of starting point is not part of specifying the infinite-distance limit.
According to the Distance Conjecture, one or more particle towers become light in our
chosen infinite-distance limit. In general, this collection of towers may be quite complicated.
To simplify things, we develop a notion of a more tractable, “regular” infinite-distance limit
(definition 2.1.2 below). We then classify the possible towers in regular limits, and use our
understanding of these limits to better understand general infinite-distance limits.

“For example, if M is a flat cylinder then helical paths winding around the cylinder are not infinite-distance
limits — even though they are geodesics that go to infinite distance — because the “straight” paths that do
not wind are shorter.



2.1.1 Deriving the rules: one tower scale

Let m(¢) be the mass scale of the lightest tower in an infinite-distance limit. The moduli
dependence the tower scale relative to the d-dimensional Planck scale Mp; 4 is characterized

by the tower vector g? = —ﬁlog . In general, there might be multiple leading towers

lel,d
becoming light at the same rate, each with different tower vectors f, 5’ , .... In this case,
we say that the leading towers are degenerate. To avoid this complication, let us assume
for the time being that the leading tower is non-degenerate.

Per the Emergent String Conjecture, this tower is either (1) a KK tower associated to
decompactification to a (D = d + n)-dimensional theory, or (2) a tower of oscillator modes
of a perturbative fundamental string.

Consider the case where the leading tower is a KK tower, and let us further assume
that the theory decompactifies along an “empty” Ricci-flat manifold X,,. The moduli of the
d-dimensional theory consist of those of the D-dimensional theory together with the overall
volume and shape moduli of the compact manifold X,, and the axions arising from the p-form
gauge fields of the D-dimensional theory reduced along p-cycles of X,,. Expressed in this
basis, the tower vector of the leading tower takes the form:

= _ vol) shape) axion +d—2 “(shape . —'
CKKn = (CKKny }((Kna EI((Kn ; CKKn ) ( o n(d—2) ; ) . (2.2)

Here we have temporarily left open the possibility that the KK scale depends on the shape

moduli. This is because X,, may become “long and narrow” in some limits of moduli space,

making some KK modes lighter than the overall-volume KK scale and others heavier. Thus,
if Ct’(shape C"(shape

However,
sha e) 25 .
5 P =07 ie.,

# 0 we would expect multiple towers with different values of

since by assumption the leading tower is non-degenerate, we conclude that

2 n+d-2 1 1
n(d —2) d—2+n (23)

EKKn:(ﬁ ; nErd% 0; 0) = ’5KK,L

Thus, the tower vector of the leading tower has a fixed length, determined by the spacetime
dimension d and the number of dimensions n that decompactify at the tower scale.

Before proceeding, we revisit the assumption that the theory decompactifies along an
empty, Ricci flat manifold X,,. More generally, the decompactification along X, may involve
branes, fluxes and moduli gradients with their associated warping and/or Ricci curvature [58].
In such cases, our conclusions still follow if the warped, Ricci-curved regions associated to
these sources grow parametrically more slowly than the overall volume of X,,, resulting in
an asymptotically empty geometry in the decompactification limit.

Note, however, that a new class of “brane moduli” can appear in such asymptotically
empty scenarios. These moduli control the positions of warped / Ricci-curved regions and/or
degrees of freedom that are localized in these regions. However, the KK modes are determined

by the bulk geometry of X,,, hence _E)Iiane) = (0 and the above argument is unmodified.

5For instance, in the case of a torus X, = T2, the KK modes indeed depend on the complex structure
modulus 7 as well as the overall volume. Then either (1) 7 is frozen, e.g., by a discrete quotient of the form
(T? X Ym)/Zi (k= 3,4,6), or else (2) in a regular infinite-distance limit one cycle of the torus decompactifies
before the other, hence there are two separate KK scales and only the S' KK modes appear in the leading
tower. Since S! has no shape moduli, this agrees with 5(5}‘ape) =0.

,10,



If there are no other light towers beyond the leading KK tower, the species scale Aqa(¢)
is reduced from the d-dimensional Planck scale Mpj4 down to the D-dimensional Planck
scale Mp; p < Mpy4. The moduli dependence of Aqg(¢) is characterized by the species

vector Z = —V log J\/>I§1Gd’ equal to
= - Mpp = D =&
Zp1, = —Vieg —= = (0; \/—=757757: 0; 0), 2.4
Plp %8 Mpra ( nFd—2)(d—2) ) (2.4)
in this case. Notice that
n 1 1 -

(2.5)

- - 1
2
| Zp1, | = (KK, * ZPlp = 55>

(n+d—2)(d—2) d—2 D-2
where the latter equality is an example of the tower-species pattern discovered in [51, 56].
We generalize our discussion later to allow for additional light towers between the KK scale
and Aqa(e).

Now consider the case where the leading tower consists of oscillator modes of a perturbative
fundamental string. The tension Ts(¢) of the fundamental string is controlled by a dilaton
¢s, which is a universal part of the string spectrum much like the graviton. The universal
dilaton coupling fixes the tower vector of the oscillator modes appearing at the string scale
ms ~ /Ts to be:

Coe = (s Q) = (55 0) = -

Thus, the tower vector of the leading tower again has a fixed length, this time determined

-
COSC

(2.6)

by the spacetime dimension d alone.

Because the density of oscillator modes grows exponentially, in this case the species
scale is parametrically the same as the string scale, Aqa ~ ms, up to corrections that are
subexponential in the moduli. The species vector is therefore:

2

Z = <Z¢S Z(Other)) - ( L § ) —Ce = ]z";tr

stry “’str d—2

1 - - 1
= T 4 Zsr' osC — 7 a9
i—z Zu6 d—2
(2.7)

again consistent with the tower-species pattern. Note that formally (2.6), (2.7) are special

cases of (2.3), (2.5) with n — o0, so that a string oscillator tower is formally analogous to KK
tower for n = oo decompactifying dimensions, and likewise for the associated species scales.
We make repeated use of this analogy for notational convenience throughout our paper.

Note that even when the leading tower is degenerate, if one of the degenerate towers
is a tower of string oscillator modes, then the above reasoning can still be applied to the
oscillator tower, and the rules (2.6), (2.7) are still satisfied. For now, we simply ignore
the tower vectors of the remaining, degenerate towers. (Note that these typically have
subexponential density — consisting, e.g., of KK and/or winding modes — and they lie
parametrically at the species scale.)

By contrast, when KK towers degenerate there is no single, dominant tower with a
fixed tower vector. Instead, there will be multiple towers with various values of Q? (shape) £ (,
all parametrically below the species scale. It is useful to keep this case separate from the
simpler, non-degenerate scenario considered above, and we defer further consideration of
it until section 3.2.2.
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2.1.2 Deriving the rules: multiple tower scales

In the case of a decompactification limit, we recover a higher-dimensional QGT parametrically
above the KK scale. Projecting onto the higher-dimensional moduli space Mp), the original
infinite-distance limit qb% d)(s) lifts to a path gb(l D)(s) through M p). This path cannot have
any shortcuts along it, because if it does then there will be corresponding shortcuts along the
path ¢’t d)(s) through the complete moduli space M|q), contradicting the assumption that we
are considering an infinite-distance limit. Therefore, either (1) (;5{ D)(s) = qb{ D) (0) is a single
point in Mp, or (2) {D)(s) is itself an infinite-distance limit of M py.

In the first case, there is (parametrically) only one tower scale, which is covered by
the discussion above. In the second case, we refocus our attention on the infinite-distance
limit qﬁ{ D)(s) in the D-dimensional theory. If this limit satisfies the same assumptions as
above, we can reason in a recursive manner. The required assumptions are encapsulated
in the following regularity conditions:

Definition. A regular infinite-distance limit is one with either
1. A leading string oscillator tower, or
2. A leading KK tower, such that

(a) The tower is non-degenerate (so that there are not several leading towers
decaying at the same rate, i.e., the limit is characterized by a single tower vector
I .

(=-Vlog MP1,d) and

(b) The decompactification manifold is asymptotically empty (Ricci flat with

vanishing background fields, except in regions of measure zero) and

(c) After decompactification, the lift of the infinite-distance limit to the higher dimen-
sional theory is also regular.

As discussed above, we impose non-degeneracy for KK towers (which occur parametrically
below the species scale), but not for string oscillator towers (which occur parametrically at
the species scale). The final condition is recursive: after each decompactification, the same
regularity conditions are applied in the new description.

Given a regular infinite-distance limit, we obtain a parametric hierarchy of tower scales
up to the species scale by applying the following steps recursively, starting at ¢ = 1 with
the original d; = d dimensional theory:

1. Let m, be the mass scale of the leading tower in a regular infinite-distance limit of a
dg-dimensional theory.

2. If this is a KK tower associated to the decompactification of n, dimensions then
we consider the lift of the infinite-distance limit to the dy,11 = d, + n, dimensional
decompactified theory.

(a) If the lift is an infinite-distance limit of the d,41-dimensional theory, then we return
to step 1 for this infinite distance limit in the decompactified theory, incrementing
a—a+1.

— 12 —



(b) If the lift is a single point in the moduli space of the d,;1-dimensional theory, then
Aqq is parametrically equal to the Planck scale Mpy 4, , of this theory, and there
are no other towers parametrically below this scale, so we stop here.%

3. If this is a string oscillator tower, then Aqqg is parametrically equal to m,, so we
stop here.

The end result is a parametric hierarchy of tower mass scales below the species scale,

my < my < - < my, S Aqa, (2.8)
where k is the rank of the limit in question and the first (k — 1) scales m, are KK scales
with n, < oo dimensions decompactifying, and the last scale my is either a KK scale (in

which case mj < Aqg) or a string scale (in which case mj ~ Aqga, up to subexponential
corrections). Associated to these scales, we have a collection of tower and species vectors:

> - mi > = my, = = Aqa
=-Vio , ceey =-Vlio , Zog = —Vlog ——. 2.9
1 g Mg Ck g M1y QG g Mrna (2.9)

One of the main results of this paper is that the geometry of these vectors is constrained
by the following tazxonomy rules:

o G = ﬁ + nlaaaba o Zqa = $7 1Zqal® = — - L (2.10)
where for notational compactness we formally set np = co when my, is a string scale and
D =d+ ) ,n, is the species dimension. Note that these rules once again include the
tower-species pattern of [51, 56]. This is not an extra input, but rather a consequence of
our starting assumptions.

The proof of (2.10) is inductive in the rank of the limit. We have already seen that it
holds for rank k£ =1 limits, see (2.3), (2.5), (2.6), (2.7). Now assume that the rules hold for
the rank (k — 1) -limit in the d2 = d 4+ n; dimensional theory obtained from decompactifying
ny dimensions at the leading KK scale mj(¢). Thus,

- - 1 1 - - 1 - 1 1
(d2) Fd2) _ (do) Z(d2) _ L (d2)j2 _ _+ 4
Ca C + 5abv Ca QG ’Z | d2—2 D_27

= 2.11
© T dy=2 ng dy—2’ QG (2.11)

for a,b > 1, where 5 (d2) Zédé) refer to the tower and species vectors in the do-dimensional
theory and D = d+),nq, = do+) ;-1 Ng is the same before and after compactification. Since

— - — M — —
Ad) — ¥ log 14— _Vlog — 1t log obhdz _ fda) 4 fora>1, (2.12
Ca, g MPl,d g MPl,dg MP],d C(z Plg, ) ( )

5There can be light towers between the KK scale and the higher-dimensional Planck scale but with
these assumptions their masses are fixed in Planck units, so they are not parametrically separated from the
Planck scale.
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and likewise Z(g(); = Z(dz) + ZP%, using (2.3), (2.4) we find:”

(O;\/%;(_)’;ﬁ)7 a=1,
,6>, a>1,

~(d

Cé - (Q:;(de)' ny

2(d) _ ( Z(d2), r—

25 =(26¢ s Jasa: 0: 0), (2.13)

(d2—2)(d=2) ’
in the same basis as before. Taking the dot products of these vectors, it is straightforward

Ol

to verify (2.10) assuming (2.11), completing the inductive proof.

2.1.3 The frame simplex

To understand the implications of the taxonomy rules (2.10), note that they fix the Gram
matrix (matrix of dot products) of the set of vectors 51, C_;g, ZQg. Up to an overall
O(k) transformation, a set of vectors is completely determined by its Gram matrix, so
the taxonomy rules completely fix the geometry of the vectors 51, g:;g, ZQg. We now
summarize this geometry.

One can show that the (k+ 1) x (k+ 1) Gram matrix specified by (2.10) is positive semi-
definite (as required for any Gram matrix), with rank k. Thus, the Gram matrix has a single
null eigenvector, corresponding to a single linear relation between the vectors 51, .. ,fk, fQGz

S nals = (D - 2)Zqc. (2.14)

In other words, the tower vectors are linearly independent, and together they determine
the species vector.

Therefore, the tower vectors 51, ceey fk span a k-plane in the moduli tangent space, which
we call the principal plane. This is just the radion-radion-...-radion or radion-...-radion-
dilaton plane that arose naturally from the overall volume moduli and/or the dilaton in our
derivation above, but the existence of this plane follows from the rules (2.10) 1ndependent of
the derivation. Within the principal plane, the convex hull of the tower vectors Cl, e Ck:
is a (k — 1)-simplex, which we call the frame simplex, A = {51, ce 5k}.8 The vertices of
the frame simplex are the tower vectors, and the species vector ZQG is orthogonal to the
simplex since (C, — () - Zqa = 0 from (2.10) as noticed in [51]. Some examples of frame
simplices are shown in figure 3.

The pericenter of the frame simplex, where it comes closest the origin, is a point of
special interest. Omne finds

. 1 .
Cpc = m %:nagz = Z T ZQG (2'15)

This is the definition of the effective tower given in [59, 60]. There are two cases to consider
(illustrated in figure 3):

"Note that 5‘1, a > 1 describes the moduli dependence of the KK scale at which the n, dimensions in
question decompactify, not the moduli dependence of the mass of an individual KK mode. The latter may be
more complicated, depending, e.g., on the axions, but this dependence is irrelevant to our argument.

8The frame simplex has not only a size and shape but also a specified location relative to the origin. One
can think of it as the base of the cone generated by the tower vectors.
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(a) Planckian phase. (b) Stringy phase.

Figure 3. The tower vectors {51, 52, @} (black arrows), frame simplex (red triangle), species vector
fQG (blue arrow) and direction vector t (purple arrow, see section 2.1.4) for two examples of regular
infinite-distance limits. Both limits are rank 3 (with 3 tower vectors spanning a 3d principal plane),
where (a) is a Planckian phase and (b) is a stringy phase. The directions over which several towers
degenerate are depicted in dashed lines.

1. When >, n, < 00, i.e., in a Planckian phase where Aqg ~ Mpy p is (parametrically)
a Planck scale in the species dimension D, the pericenter lies in the interior of the

- otd—
Icpclz\/z“n a2 (2.16)

frame simplex, with

(Za na) (d - 2) 7

just like a tower vector for the decompactification of ), n, dimensions.

2. When }°,ng = 0o (n = o0), i.e., in a stringy phase where Aqg ~ ms is (paramet-
rically) a string scale and the species dimension D = oo, the pericenter lies on the
boundary of the frame simplex,

gpc = 5k = |5pc| = (2-17)

1
Vd—2
which is the tower vector for the string oscillator modes.

In either case, |5pc| > \/ﬁ, suggesting a connection to the Sharpened Distance Conjecture [36].

This will be made more precise in section 2.2.

2.1.4 The direction of the infinite-distance limit

The above taxonomy rules hold asymptotically once a particular regular infinite-distance
limit is chosen. While it does not appear in the preceding rules (2.10), the direction vector
th = % of the infinite-distance limit with respect to the tower vectors is also constrained.
For instance, it must be the case that £ - C_:z > ( for each tower vector since the corresponding
tower becomes light in the infinite-distance limit in question. In fact, since all the towers
in question appear at or below the species scale by assumption, the stronger constraint
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t- 5@ >t ZQG must hold. To analyze this constraint, assume for now that ¢ lies entirely
within the principal plane. Then:

=3 NG, (2.18)
b

for some constants Ay, a = 1, ..., k. Applying this ansatz to the constraint ¢ - (C_;L — Z,;Qg) >0
and using the taxonomy rules, we obtain:

i)\a > 0. (2.19)
na
In a Planckian phase, all the towers lie strictly below the top-dimensional Planck scale and also
ne < oo for all a, hence the )\, are all positive, implying that £ is a positive linear combination
of the principal tower vectors, i.e., it lies in the interior of cone(A) = cone((1, .. ., k).

In a stringy phase, we likewise obtain A, > 0 for all a < k, but the above argument
does not constrain A since fk = Z,;Qg. However, there is another constraint: since the string
theory is weakly coupled by assumption, the string scale must lie below the Planck scale
in the top, dp-dimensional theory. The vector Zp) associated to the latter scale satisfies

the taxonomy rules:

L. 1 }
Zp1- (o = — 5 Zpl|* =
Pl Ga = o S et d— 200 | Zp1|

1 1
d—2 Y, pnatd—2

(2.20)

These rules can be proven inductively as before, starting with Zp1 = 0 in the case k = 1 (since
the Planck scale is fixed in Planck units). The requirement that the string is parametrically
weakly coupled is then £ - ZQG > { - Zpi. This works out to:

1

f-(ZQG—z”Pl):Z - i T R U P (2.21)
a<< a

so we conclude that f lies in the interior of cone(A), as before.
If £ does not lie in the principal plane then the above argument still applies to its
projection tAH onto this plane. Thus, we conclude that

Projected onto the principal plane, the direction (2.22)
vector £ = % lies in the interior of cone(A). '

This constrains the orientation of the frame simplex with respect to f||, completing the
taxonomy rules. Note that the component of ¢ perpendicular to the principal plane is not
fixed by the rules (in either magnitude or direction).

2.2 Connection with the Sharpened Distance Conjecture

We can now connect our results to the Sharpened Distance Conjecture [36]. The exponential
rate at which each tower becomes light is ag = (, - . If £ lies within the principal plane, then
since it is inside cone({(,}), simple geometric considerations lead to:

e = max({0}) > (o, (2:23)
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where the inequality is saturated when ¢ o C_;m. Since ]f;)c\ > \/% as noted above, this would
imply the Sharpened Distance Conjecture in any regular infinite-distance limit.

However, if ¢ does not lie within the principal plane then we obtain the weaker constraint:

cos 0
d—2’

(2.24)

Qmax 2

where 6 € [0,7/2) is the angle between t and the principal plane. This creates a danger of
violating the Sharpened Distance Conjecture, especially in a stringy phase where ](;C] = \/ﬁ;
then if 6 # 0 for £ C:,C, the Sharpened Distance Conjecture would be violated.

It is plausible that any infinite-distance limit in the landscape has 8 = 0, so that any
limit with 6 # 0 resides in the swampland. However, this is difficult to prove rigorously,
as we discuss in greater detail in section 3.4. If § # 0 occurs in the landscape, then the
Sharpened Distance Conjecture does not follow from the Emergent String Conjecture, even

in the regular limits we have been considering.’

2.3 The structure of a duality frame

So far we have focused on a single, fixed infinite-distance limit, imposing regularity conditions
to simplify the physics. We now allow the infinite distance limit to vary continuously. To be
precise, two infinite-distance limits ¢g, ¢1 are continuously connected if there is a continuous
family of paths ¢:(s),t € [0,1] such that ¢%(s) is an infinite-distance limit for each value of
t. As discussed in section 3.2.1, we expect that a generic infinite-distance limit is regular,
i.e., any irregular limit ¢g should sit inside some continuous family ¢, ¢ € [0, 1] such that
¢ is regular for ¢ > 0. In other words, we expect irregular limits to be of measure zero in
this continuous family of paths. If so, the space of continuously connected infinite distance
limits in a given theory can be understood by piecing together continuous families of regular
infinite-distance limits.

Thus, we consider what happens as a regular infinite-distance limit is continuously varied.
Each regular limit in the continuous family is characterized by a frame simplex A, species
vector ZQ(;, and direction vector # satisfying the taxonomy rules (2.10), (2.22). However, with
the exception of the direction vector, the taxonomy rules are rigid, not allowing for continuous
variations in, e.g., the shape of the frame simplex. Thus, as the limit varies continuously, the
frame simplex and species vector remain fixed as long as the identification of the set of light
towers remains the same,'? with only the direction vector ¢ continuously varying.

The variation §f in the direction vector can be decomposed into components both (1)
parallel and (2) perpendicular to the principal plane. Note that, while we expect the direction
vector t to lie wholly within the principal plane, see section 3.4, this does not imply that 6t

9Even if  # 0 occurs in the landscape, the Sharpened Distance Conjecture may still be satisfied, depending
on the details. However, in this case the connection between the Sharpened Distance Conjecture and
the ESC becomes more tenuous, even in the absence of other complications such as non-asymptotically
empty decompactifications.

10Tn principle, the tower /species vectors can rotate within the principal plane (and the principal plane can
rotate within the full tangent space) while still respecting the taxonomy rules. However, such a rotation can
be removed (up to possible monodromies, if the continuous family of infinite-distance limits is not simply
connected) by a convenient choice of frame on the tangent space.
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lies within the principal plane. This is possible because the top-dimensional theory in the
chain of decompactifications may have moduli that can be turned on (such as NSNS moduli
in a stringy phase), generating a new tower scale in the hierarchy, and adding a dimension to
the principal plane (increasing the rank by one). Thus, regular limits with different ranks
can be continuously connected. However, because the moduli space is finite dimensional,
there is some mazimum size for the principal plane after which no additional infinite-distance
limits remain in the top-dimensional theory, and the rank cannot increase further upon small
variations in the direction of the limit. In other words, there is a maximum size for the
principal plane for which the identification of the set of light towers remains fixed. Such full
rank limits are (locally) generic in the space of regular limits and are described by the same
duality frame, since they have the same microscopic identification of the species scale ZQ(;.

Starting with a full-rank limit, we can vary # within the principal plane. Since the
moduli space metric is (asymptotically) flat in this plane, geodesics are straight lines, and
we can vary t in an arbitrary direction within the plane. This continues until one of the
following failure modes occurs:

1. One of the decompactification limits is no longer asymptotically empty, i.e., the warped
/ Ricci-curved regions begin to grow at the same rate as the overall volume of the
manifold.

2. Two or more towers that are parametrically lighter than Aqqg degenerate.
3. t reaches the edge of cone(A).

The first two of these indicate a breakdown in regularity, which is largely beyond the scope
of the present paper. Nonetheless, when multiple KK towers degenerate it is sometimes
possible to continue past the degenerate locus to reach another continuous family of regular
infinite-distance limits. When this preserves the frame simplex, up to the natural reordering
of the hierarchy of tower scales due to the change in the direction vector, we say that the
degeneration is ignorable. For instance, this occurs for compactifications on empty, direct
product manifolds X,, x Y,, when the hierarchy between the sizes of the two manifolds
reverses. (Note that even ignorable degenerations come with interesting additional physics,
as discussed in section 3.2.2.)

What happens when £ reaches the edge of cone(A)? In this case, one or more of the
tower (corresponding to the tower vectors that do not lie on the edge in question) will get
heavier than the species scale.!’ Then (up to ignorable degenerations) we obtain another
regular infinite-distance limit, but with a lower-dimensional frame simplex/principal plane.
This is precisely the reverse of the process, discussed above, by which the principal plane
can grow in dimension.

2.3.1 The species star

We now suppose that no irregular infinite-distance limits (besides ignorable degenerations)
appear as we scan the direction vector ¢ across the interior of the frame simplex A. As noted

111 the case of a tower of string oscillator modes, this means that the string coupling will go to 1, i.e., the
string scale will disappear into the higher-dimensional Planck scale.
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above, all of these limits share the same underlying species-scale physics and can be thought of
as residing in a single duality frame. Approaching a boundary of A, one or more of the tower
scales merges with the species scale, reducing the frame simplex to one of its faces F C A,?
which is itself a lower-rank simplex generated by the vectors of the towers that remain
parametrically below the species scale. In particular, F is the face of A in whose interior the
boundary point that we are approaching lies. On this boundary, the species vector changes to

Zr = D;1—2 3" n4Ca, (2.25)
acF
where Dy = d+ ) yc 7 np is the corresponding species dimension, which is either the spacetime
dimension in which the corresponding Planck scale occurs or Dy = oo if the species scale
is a perturbative string scale. Note that Zr = ZQG if F includes a string oscillator tower,
whereas otherwise it is easy to see that ij: is distinct for each distinct face 7 C A of the
frame simplex due to the linear independence of the tower vectors.

Because the species vector changes there, one can think of each boundary of the frame
simplex A as representing a new duality frame, or perhaps more accurately, the onset of a new
duality frame. For instance, in the Planckian phase associated to M-theory on a rectangular
two-torus, the boundaries of the frame simplex correspond to infinite-distance limits in which
the nine-dimensional theory decompactifies to M-theory on a circle of fixed radius. While
one might call this the “same” duality frame, depending on the radius of the circle this might
better be thought of as decompactifying to type IIA string theory at fixed string coupling.
From either viewpoint, these boundary limits are Planckian'? with species dimension Dz = 10,
reduced from species dimension D = 11 for generic limits in the interior of A.

The structure of these duality “onsets” is described by the set of species vectors 23:
corresponding to the faces F C A of the frame simplex, including as a special case the
original species vector ZQG = ZA These vectors are the vertices of a geometric object,
which we will refer to as the species star . We now state the properties of this object,
later sketching the proofs of these statements.

In a Planckian phase, the species star'® consists of k facets meeting at their common
vertex ZQG and ending on the boundaries of cone(A). In a stringy phase, the species
star consists of k — 1 facets meeting along their common edge joining fQG = (_;sc with

Zp = % (see (2.20)). Both cases are illustrated in figure 4.

The geometry of the species star is such that its faces intersect the boundaries of cone(A)
perpendicuarly, hence the pericenter of each face (besides Zqq) is also a vertex of ¥ lying

1211 what follows, a p-simplex A is represented as the set of its p + 1 linearly independent vertices, hence a
g-face F C A is a subset consisting of ¢+ 1 of these vertices, where by convention we exclude the “(—1)-simplex”
F = from consideration. For convenience, we use the notations C_; € F and a € F interchangeably when the
meaning is clear from the context.

13This is true even in the type ITA description because the string coupling is fixed in this limit, not going
parametrically to zero.

141 a simplicial complex, the star of a vertex consists of every simplex sharing that vertex. The faces of
the species star are not simplicial, but it admits a natural triangulation with a simplex {?:" Flyees Z 7, ) for
each inclusion sequence Fi C Fa C --- C F, of faces of A such that F,_; does not include a string oscillator
tower. With this triangulation, the species star is indeed the star of the vertex Zqa (or, more correctly in a
stringy phase, the star of the edge joining Z,?QG with fpl).
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(a) Plankian phase. (b) Stringy phase.

Figure 4. The species stars (in light blue) for the rank-3 Planckian and stringy phases whose frame
simplices are depicted in figure 3. The species vectors Z 7 associated to the 0-, 1- and 2-facets of the
frame simplex are depicted in orange, green, and blue, respectively. Note that in the stringy phase,
Zp1 is the green arrow (associated to the facet of A omitting the string oscillator tower). The dashed
lines illustrate the polar duality between the frame simplex and the species star.

on the boundary of cone(A). These vertices are the species vectors Z;, where for a p-face
F C A of the frame simplex not containing a string oscillator tower, Zf is the pericenter
of a (k —p — 1)-face of ¥. (When F contains a string oscillator tower then Zr = fQG
as noted previously.)

This gives ¥ a structure that is combinatorically dual to A: each p-face of F of A (not
containing a string oscillator tower) corresponds to the (k — p — 1)-face of ¥ with pericenter
Z7. Indeed, geometrically this is just a standard (polar) duality in disguise. In particular,
consider the polar set of the frame simplex:

—

polar(A) = {Z

- 1
Z.0< a=1,... kb 2.2
G< gha ) (2.26)

This region is bounded by k semi-infinite facets meeting at their common vertex gQg. The
species star ¥ is precisely the portion of this boundary that lies within cone(A):

¥ = 0(polar(A)) N cone(A). (2.27)

Note that the reason ¥ has only k£ — 1 facets in a stringy phase is because in this case one
of the facets of d(polar(A)) lies wholly outside cone(A).

The aforementioned properties of the species star can be proven using the following
taxonomy rules:

- 1 1
Zr- (o= b} 2.28
7 Ca d—_9 Dr —2 agF>s ( )
— - 1 D I — 2
Zr Zp = - FOF (2.29)
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which follow by direct calculation from (2.25) and the taxonomy rules (2.10). Here F U F’
denotes the face of A whose vertex set is the union of those of F and F’ (such a face always
exists because A is a simplex) and Dryz = d+ e 77 M is the associated species dimension.

We now sketch a few details of the proof, as they naturally introduce the subject of
recursion, to be discussed in section 2.3.2. Define the species star as X[A] = Jd(polar(A)) N
cone(A). To show that its vertices are indeed the species vectors {Zx|F C A}, consider
the related object 3X[A] = polar(A) N cone(A), a portion of whose boundary is [A]. One
can show by induction on the rank k of A that the vertices of $[A] are {0} U {Zx|F C A},
where the base case k = 1 is easy to check and the inductive step proceeds by noting that
each vertex lies on one or more facets, then considering each of the facets in turn. The
facets of B[A] are of two types:

1. “Inner” facets, which are facets of cone(A), intersected with polar(A), and

2. “Outer” facets, which are facets of polar(A), intersected with cone(A).

In the first (inner) case, there is a facet for each vertex fa € A, defined by the equations:

R [ 1
Z € cone(Ag) and Z-Gp < FEDY

Vb, (2.30)
where Az = A\ {(,} is the rank-(k — 1) frame simplex obtained by omitting the tower vector
Qa One can check that the condition Z - Ca < diQ is a consequence of the other conditions, at
which point these equations reduce to the equations defining »[Az]. Thus, by the inductive
assumption, the vertices of this facet are {0} U {Z#|F C A\ {{}).

In the second (outer) case, there is a facet for each vertex C_; € A that is not a string

15 now defined by the equations:

— —» - 1 —" - 1
Z € cone(A) and Z-(o= T3 and Z-(p < Y

oscillator tower,
Vb # a. (2.31)

Let Za = d+ QCa = Z{C } be the species vector associated to the vertex Ca € A, with
associated species dimension D, = d + n,. Non-trivially, applying (2.28), (2.29) one can
rewrite the conditions (2.31) as

Z — Z, € cone(A) and (Z—2) (& — Z4) < Vb # a, (2.32)

D, -2
where Al = {G, — Z,|b # a} is a particular (k — 2)-simplex and again one of the original
conditions (part of the set Z € cone(A)) turns out to be redundant and has been dropped.
Applymg (2.28), (2. 29) once again, we see that the shifted tower and species vectors Q_;’, =
Cb Z, for b # a and ZQG ZQG — Z, satisfy the taxonomy rules (2.10) associated to the
simplex Al = {§b|b # a} in spacetime dimension D,:
5 1
D,—2

- 1 1
1ZhalP = . (2.33)

"/.2‘/ _
G- Zqc D,—2 D-2

Do—2’

15 Although polar(A) does have a facet associated to a string oscillator tower 5:1 = Ct)sc, this facet intersects
cone(A) at a single point. This can be shown by following the same steps as below, resulting in a frame simplex
A, that is formally in infinite spacetime dimension D, = co. As a result, i[A;] is simply the intersection
between cone(A) and its polar cone, which is a single point, [A4] = {0}, implying that the facet of polar(A)
in question intersects cone(A) at the single point Z, = ZQg.
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Moreover, (2.32) is equivalent to
ZeSIAl + Z,. (2.34)

By the inductive assumption, the vertices of S[A/] are {0}U{ 2%, |F' C A’}. Examining (2.25),
one finds that:

2+ 2, = ZF, (2.35)

where F is the face of A with vertices C; plus 51, = C_Z + Z, for each vertex (:’) € F'. Likewise,
0+ Z, = Zr where F = {(,}. Thus, the vertices of the facet of S[A] in question are
{Z7{C} € F € A} ) )

Combining the inner and outer cases, we conclude that the vertices of ¥[A] are {0} U
{Z7|F C A}. Since the species star $[A] = d(polar(A)) N cone(A) consists of the outer
facets of $[A], its vertices are {Z£|F C A} as claimed.

Other properties of the species star follow more immediately from the rules (2.28), (2.29).
For instance, let F be a p-face of ¥ not containing a string oscillator tower. As a special
case of (2.29) we obtain:

1 1

Zr Zp = —
P T a2 Dr-2

when FCF. (2.36)

Equivalently, Zr- (f = Z 7) = 0 when F' D F, which implies that the species vectors Zr
with 7’ D F all lie in the plane with pericenter Z 7. Indeed, retracing the above inductive
argument, these are the remaining vertices of a (k — p — 1)-face of ¥. Since the entire face
lies in the Z. r-pericenter plane, the pericenter of this face is Z]—‘, as claimed.

2.3.2 Partial decompactification and recursion

The modified frame simplex A!, = {G, — Z4|b # a} that appeared in the above inductive
argument has a simple physical interpretation: it is the frame simplex after partial decompact-
ification, where we send the corresponding KK scale m, to zero in (D, = d + n,)-dimensional
Planck units.

To be precise, choose a direction vector that is nearly parallel to fa, t x CAa + et’ for
i CAa = 0. Then the rate at which each tower becomes light in d-dimensional Planck units is

— ~

~ 1 1 1 > 4 - 1 A

pt=—— (+5ab) +5Cb‘t/+0(52)7 Zqat= 7ﬂ+€ZQG'tI+O(€2). (2.37)
[Cal \d=2 " 1a (d—=2)|Cal

Thus the towers and the species scale all become light in this limit, but the KK tower

4:; becomes light more quickly than the others. We now rewrite this in (D, = d + ng,)-

dimensional Planck units. Since

R VLU B vPLDa _ = 2 d Zhe = Zoc — 2, 2.38
% Mpy,p, Mpyq * Mpyq © @ Q@ Qi @ )
we find
o 1 o . R . .
pot=—="bw+el T'+0(?), Zhg t=eZqa T +0(). (2.39)
Na|Ca
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Thus, in (D, = d + ng)-dimensional Planck units only the tower , becomes light quickly,
whereas the other towers and the species scale become light much more slowly when ¢ < 1
(or not at all, depending on the choice of ).

This allows us to separate scales, partially decompactifying to D, = d + n, dimensions
while keeping track of a further, “slow” infinite-distance limit in the resulting theory. This
“slow” limit will be regular if the full infinite-distance limit we started with is regular, with
tower vectors ¢ = Cy — Zq, b # a and species vector Z%G = 206 — Z4. Thus, A, = {{|b # a}
is the resulting tower simplex. Referring to (2.33), we see that

1
—2

D, -2’ QG T p.—2 D-2

G-C= 5b07 & Zha = (2.40)

so Al satisfies the taxonomy rules (2.10) in D, spacetime dimensions.'¢

More generally, one can consider a direction vector that is infinitesimally close to a point
in the interior of a face 7 C A of the full frame simplex A. As above, such a limit has both
“fast” and “slow” components. The fast component is described by the frame simplex F with
tower vectors Ca, a € F and species vector zZ =, as measured in d-dimensional Planck units.
This limit describes the decompactification to Dr = d + }_,c 7 n, dimensions. Following this
decompactification, the slow component remains, which is described by the frame simplex A’z
with tower vectors Cb Cb Z;, b ¢ F and species vector ZQG = ZQG Z + as measured in
D r-dimensional Planck units. As in the above special case, one can verify that A’z satisfies
the taxonomy rules (2.10) in Dz spacetime dimensions. Indeed, such recursion 7"elatz'0ns17
are built into the derivation of the taxonomy rules, and were already found in [38]. We

revisit these recursion relations in section 2.5.3.

2.4 Connection with the tower-species pattern

The taxonomic rule (1.10) corresponds to the tower species pattern between the light tower
of states and the species scale observed in [56]. Evidence from plethora of string theory
compactifications was provided in [51]. Here, we have re-derived it from bottom-up under
the assumptions'® outlined in section 2.1. However, it could be that this pattern applies
more generally (for instance, some of the examples in [51] included irregular limits for which
several KK towers degenerate due to non-trivial dependence on the complex structure moduli
of the compactification). Interestingly, this pattern is not completely independent from the
taxonomic rule of the towers as we explain in the following.
A special case of (2.28) is
1

Z]—' . CT;L = m, When a < f (241)

5One can also check that ' € cone(A%) as a result of £ € cone(A).

1"These relations have a physical origin, but correspond to interesting geometric facts. For instance, A can
be assembled from its “fast” and “slow” components F and A’z by orienting the two simplices in orthogonal
planes and then translating the origin of plane containing A’z to the point Z7 in the plane containing F.

8The assumptions used in this paper to derive the pattern from bottom-up are analogous to the bottom-up
conditions already given in [51]. The relation between the condition on the existence of bound states [51] and
the Emergent String Conjecture is explained in section 3.1, while the other two conditions [51] are analogous
to the definition of a regular limit in this paper.
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This extends the tower-species pattern [51, 56] to every face of the frame simplex. Re-
call (2.25) as well:

1

Zr =
7T Dr—2

3" 1. (2.42)
acF
Physically, this can be understood as dictating how the species scale is controlled by the
relevant tower scales.

Interestingly, (2.41), (2.42) together imply the taxonomy rules (2.10). To see this, first
consider the case where F is a single vertex a. Then,
1 d+ng —2 1 1

EA S 2 _ 2 (24
Fla=gs T =Ty T g T 249)

7 _ nafa
T d4ng =2

Next, let F be the edge between vertices a and b, in which case:

- na@z+nb& - - 1 - o 1
2= R A = 2.44
DT A, Ly —2 ble=gTy T 8= g (2.44)

Finally, letting F be the entire frame simplex, we find that ZQG = 2,?]: satisfies:

ZQG = ﬁ Ea:naal = ZQG . C_:z = ﬁ7 |§Qg|2 = I ) (2.45)
which completes the rederivation of the taxonomy rules (2.10).
More intuitively, we can explain the above derivation as follows. The definition of the
species scale in terms of the light towers of states implies that the tower vector C_;) with
b € F projects into the individual species Z F when moving along the direction of a tower
in a € F (see dotted black lines in figure 4). This is because the states from the tower C_;)
must enter the EFT and become lighter than the species scale Z, as we move away from
the facet F, such that its contribution lowers the species scale to yield ZQg. One therefore
gets that Ea-é, = C_(;Z_']: = ﬁ.

Thus, the tower-species pattern combined with the definition of the species scale in
terms of the towers, as encoded in (2.25), implies the rest of the taxonomy rules. Note,
however, that this presupposes the ability to explore infinite-distance limits directed along
every boundary of the frame simplex, so this reasoning does not go through if we cannot reach
every boundary due, e.g., to the appearance of irregular infinite-distance limits (other than
ignorable degenerations). Our taxonomy rules, however, apply to any regular infinite-distance
limit regardless of whether irregular limits appear for other directions within the frame
simplex, so in this sense they contain more information than the pattern.

2.5 Combining duality frames

We now consider what happens when the direction vector £ moves outside of the original
frame simplex. This corresponds in many examples to the familiar concept of a duality,
since this will bring us to consider a new frame simplex associated to a different duality

Dualities may also occur when moving through a locus where the infinite-distance limit becomes irregular,
see section 3.2.2 for further discussion.
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(a) Two duality frames with the same Zqq. (b) Two duality frames with different Zqq.

Figure 5. A duality between two different duality frames can be represented by “gluing” the frame
simplices for these frames together. The two frame simplices can feature (a) the same species vector
or (b) two different species vectors. The former only occurs in stringy phases and corresponds to
a T-duality of the perturbative string in question. The latter can be thought of as a generalized
S-duality; in particular, one of the towers reaches the Planck scale on the boundary between the two
phases, suggesting the onset of strong coupling on general emergence grounds.

frame where the nature of the species scale may change. In what follows, we describe how in
certain cases these frame simplices can be glued together so that the moduli space is divided
into subregions corresponding to different perturbative descriptions of the theory. At the
interface, the different descriptions are related to each other by duality transformations.

As we have seen, when £ reaches a boundary of the frame simplex A, the principal plane
reduces in dimension, where the new frame simplex is the face F C A of the original frame
simplex in whose interior the boundary point in question lies. Physically, this corresponds
to “turning off” the portion of the infinite-distance limit that lies in the moduli space
My, of a higher-dimensional theory in the chain of decompactifications, so that on the
boundary of the frame simplex we decompactify to a fixed point in the moduli space of
this higher-dimensional theory.?°

To proceed “through” the boundary of the original frame simplex, we simply turn on a
different infinite-distance limit in the moduli space M ,. Assuming that the resulting infinite-
distance limit is regular (as expected for a generic infinite-distance limit, see section 3.2.1), we
obtain another frame simplex A’ of which F is also a face. One can then imagine embedding
both A and A’ in the same principal plane, such that they are correctly oriented relative
to one another to join along F, forming a geometric simplicial complex. Assuming that F
is a facet of both A and A/, this rigidly locks the two simplices together. In this way, we
can start to piece duality frames together for form a larger frame complex that encodes
multiple duality frames and the dualities relating them. This is depicted in figures 5(b)
and 5(a) for two frame simplices, respectively featuring the same and different asymptotic
species scales. Interestingly, the former corresponds to a T-duality while the latter can be
thought of as a generalized S-duality.

2ONote that this “switching off” process is indeed continuous in the space of infinite-distance limits of the
lower-dimensional theory. It amounts to reducing the speed at which the limit is taken in the moduli space
of the higher-dimensional theory relative to the speed at which the intervening dimensions decompactify
until this speed reaches 0, at which point the limit goes to a fixed point in the moduli space of the higher-
dimensional theory.
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Ideally, one would like to continue this process until every frame simplex is glued to
another frame simplex along each one of its facets, such that the frame complex encodes every
possible duality, presenting a global picture of the infinite-distance limits, duality frames, and
dualities of a given QGT. Unfortunately, this is not generally possible, for several reasons.
(1) We gave no prescription for how to choose another infinite-distance limit in My, ; there
might be multiple options, or no options at all. (2) Even after specifying a choice of dualities
to trace, one can encounter monodromies in the complex of frame simplices. For instance,
if the principal plane is two-dimesional then locally the frame simplices glue together like
the faces of a polygon, but upon passing 360° around the origin, the candidate polygon
may not close. Likewise, if the principal plane is three-dimensional then locally the frame
simplices glue together like the faces of a polyhedron, but upon circling one of the vertices
by 360°, the faces of the candidate polyhedron may not mesh. Similar issues can occur for
a principal plane of any dimension k& > 1.

2.5.1 The tower polytope

To circumvent these complications, we impose some global structure on the moduli space
that will allow us to glue the different frame simplices into a global polytope. Although
this procedure cannot be directly applied to any moduli space, it will serve as a proof of
principle of how the taxonomy rules can be used to constrain how different infinite-distance
limits can globally fit together in the moduli space.

First, let us assume that the moduli space has an asymptotically flat slice, where
“asymptotically flat” means that the asymptotic boundary is globally isometric to R* (i.e., the
moduli space curvature on the slice goes asymptotically to zero and any asymptotically-visible
global differences from R¥ such as a deficit angle are absent). We would like to asymptotically
identify generic straight lines on this slice with regular infinite-distance limits whose principal
plane is the tangent space to the slice. However, this may fail for several reasons. (1) Straight
lines within the slice may not be geodesic rays within the entire moduli space, and thus
fail to meet our criteria for an infinite-distance limit (which can lead to a violation of the
taxonomy rules). For example, within the flat slice Cy = (const) in the type IIB moduli
space, the path g; — oo is not a geodesic ray when the fixed value of Cj is not rational.
(2) Even if generic lines within our slice are geodesic rays, the principal plane for such a
limit may include directions outside the slice.

It is not necessarily fatal if the principal plane has directions outside our chosen slice,
provided that some “effective” version of it reduces to the tangent space of the slice. To be

precise, consider grouping the k tower vectors, Q_";, a=1,...,k into ko faces Fi,..., F,, such
that every vertex belongs to exactly one face. Now consider the pericenters of these faces:
- 1 -
Cr, = — Z NaCa, nr, = Z Ng. (2.46)
N Fa a€Fq a€EFqo
One finds that:
LR Cr. B = — (2.47)
Fa 6Fy = g g T, O Fa 2QC T o :

which reproduces the taxonomy rules with the “effective” tower vectors 5 7, This good
projection of the frame simplex physically corresponds to artificially freezing some of
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5f2 5}"1 - 51

ZQG

Figure 6. A “good” projection of a rank 3 frame simplex down to a rank 2 “effective” frame simplex
To perform the projection, the tower vectors {Cl, Cg, Cg} are partitioned into disjoint faces F; = {{1},
.7-'2 = {C27 43} and the frame simplex is projected onto the plane generated by the face pericenters C Fi
C F,, which are the tower vectors of the effective frame simplex. Note that the intersection of the frame
simplex with this plane is equal to its projection onto the plane, which is an equivalent way to define
a “good” projection.

the moduli, resulting in a lower-dimensional effective principal plane, see figure 6 for an
illustration, so that we only move along directions perpendicular to the “frozen” one.

Thus, to succeed in defining a global notion of the principal plane, we require the
following assumptions.

1. There is an asymptotically flat slice 3 =asymp R” of the moduli space M.

2. For every asymptotically straight line in Xy, there is a infinite-distance limit (geodesic
ray) within M, that asymptotically approaches it.

3. For a generic choice of asymptotically straight line in ¥, the frame simplex of the associ-
ated infinite-distance limit admits a good projection with principal plane asymptotically
equal to the tangent space of .

As discussed in [37, 39], there are several good rules of thumb for obtaining such a slice in
a specific QGT. For now let us assume that we have done so.

With the slice ¥y, in hand, (1) we unambiguously fix which new infinite distance limit of
My, to explore when passing through the facets of the frame simplex and (2) we eliminate
the possibility of monodromy, since the principal plane is globally defined, and returning to
the same direction vector ¢ brings us back to the same infinite-distance limit.2!

Thus, after choosing such a slice we can complete our program of gluing frame simplices
together, resulting in a closed frame complex enclosing the origin, the tower polytope for
the slice ¥ in the QGT in question, as showed in figure 7 for two specific examples. Since
the taxonomy rules for the tower vectors are rigid, there is a discrete set of allowed tower

21To be precise, this is true up to the impact parameter of the asymptotically straight line. However, this
impact parameter has no effect on the frame simplex in a regular infinite-distance limit.
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(a) Rank-2 tower polytope in d = 7. (b) Rank-3 tower polytope in d = 4.

Figure 7. Examples of tower polytope with different number of moduli and d. For (b) the triangulation
into simplices is shown in dashed blue lines. The depicted polytopes are realized as a rank 2 and 3
slices of the full polytope resulting from compactifying M-theory on 7% and T, respectively.

Zp1,11
(a) Rank-2 species polytope in d = 7. (b) Rank-3 species polytope in d = 4.

Figure 8. Example of species polytope (dual to the tower polytopes from figures 7(a) and 7(b)) with
two and three moduli in d = 7 and 4. Also pictured is the triangulation into simplices for (b). These
species polytopes appear as a rank-2 and 3 slices of the full species polytopes of M-theory on and 7%
and T7.

polytopes. With some extra input — such as an upper bound on the spacetime dimension
after decompactification — this set becomes finite, allowing for a classification program.
Note that while the surface of the tower polytope is triangulated by the frame complex,
the geometric facets, vertices, etc., of the tower polytope are not identical to those of the
complex. In particular, every tower vector is a geometric vertex of the tower polytope except
for string oscillator towers, which are the pericenters of geometric facets. Thus, the stringy
faces of the tower polytope are in general nonsimplicial (specifically, they are cross-polytopes)
and are triangulated by multiple frame simplices, whereas the Planckian faces are simplicial.
Let us remark that the above procedure of gluing the different frame simplices to build the
tower polytope does not allow for having two string towers connected to each other without
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having a KK vertex in between. This is consistent with the fact that the Emergent String
Conjecture requires a unique string becoming light in the emergent string limits. We did not
need to impose this as an input, but rather it emerged as an output of the taxonomic rules.

2.5.2 The species polytope

Just as dualities glue frame simplices together into a complex, which form a closed polytope
given a suitable slice X C My, likewise species stars naturally glue together into a larger
geometric object. In particular, since the pericenter zZ r of every face of a species star lies on
its boundary, where it matches the pericenter of faces of adjoining species stars, the faces of
neighboring species stars combine into larger faces that span multiple duality frames. This is
unlike the frame complex, where each geometric facet represents a distinct duality frame (in
a Planckian phase) or at most a collection of T-dual frames (in a stringy phase).

Given a suitable slice ¥ C My satisfying the above assumptions and gluing together the
“projected” species stars (constructed in the obvious way from the projected frame simplices),
one obtains the species polytope, the vertices of which are the species vectors ZQG for each
duality frame.?? See figure 8 for the species polytopes associated to the examples from figure 7.

Due to the relationship ZQG . C_; = dle for each frame simplex (the tower-species
pattern [51, 56]), the species polytope is precisely the polar dual of the tower polytope, where
the polar dual of a set P C R* is defined as:

S e .1
PO:{Z‘VCGP,Z-ngQ}, (2.48)

with the ﬁ normalization chosen in accordance with the tower-species pattern. Thus, for
instance, each KK tower vector (geometric vertex) in the tower polytope is dual to a facet of
the species polytope, and likewise each geometric facet of the tower polytope is dual to a
vertex in the species polytope, etc. Just as the geometry of the tower polytope vertices are
rigidly fixed by the taxonomy rules (2.10), it is interesting to ask whether analogous rules
directly fix the geometry of the vertices of the species polytope. The rule (2.29) applies only
within a single duality frame, so it does not directly address this question. However, consider
two vertices Za, ZB of the species polytope that are joined by an edge. The pericenter of
the edge is Z 7, where 7 C A, N Ag is a common facet of the corresponding frame simplices
Aq, Ag. We can then compute the dot product between the two vertices by decomposing
each into components parallel and perpendicular to the pericenter—ff plane. We find:

FloZh-Z, -2 - H-% 2 (2.49)
hence

Zo-Z5=2+ Zk+ 2] 2} = |25 - 12))12)), (2.50)

where we use the fact that chl is antiparallel to gg since Z = lies on the line between them.
Thus, using (2.36) we find

.. 1 1 1 1 1 1
2o 2= - - - - 2.51
T 42 Dap -2 \J(Dag—Q Da—2> (Da5—2 D5—2>’ (251)

22Note that in the case of stringy phases, multiple duality frames (related by, e.g., T-duality) share the

same species vector ZQG = C:SQ controlled by the common string scale.
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where D, Dg and D,g are the species dimensions associated to Za, Zﬂ and ?:;:. Simplifying,
we find:

s oz 1 1 (Do — Dag)(Dg — Dag)
Z“'Zﬂ_d2_Da52[1+\/ D205 ~2) | (2.52)

This rule applies to any two vertices of the species polytope that are joined by an edge. More
generally, it applies to the pericenters Za, Zg of any pair of faces of the species polytope,
provided that the pericenter Zag of the line between them is the pericenter of face of the
polytope. For example, in the special case where 2,?5 lies in the ga—pericenter plane, we
have D,g = D,, so that

> o - 1 1
==
«

when ZB lies in the Z,-pericenter plane, (2.53)

which is a restatement of (2.36).
The rule (2.52) rigidly fixes the geometry of the species polytope in an analogous fashion
to the taxonomy rules (2.10) applied to the tower polytope.

2.5.3 Recursion of polytopes

Just as with the frame simplex and the species star, the tower and species polytopes can be
built up recursively in the rank. The nature of this recursion is somewhat easier to explain
in the case of the species polytope, which we discuss first.

Consider a facet of the species polytope, with pericenter Z,. Then for any two species
vectors Z,, ’55 on this facet, (2.52) implies that

(Do — Dop)(Dg — Dag)
1+\/ (Do —2)(Ds —2) , (2.54)

- - - - 1 1
20— Z) (E5—Z)) = -

where we use the special case (2.53) to compute Z, - Z; = ZB . Z1 = |Z1|2. The rule (2.54)
has the same form as (2.52) with d — D;. Thus, each facet of the species polytope is itself a
species polytope in spacetime dimension equal to the species dimension D of the pericenter of
the facet. More generally, this applies to any p-face of the species polytope, not just to its
facets. Again, we refer to [38] for a previous instance in the literature of relations between
the species vectors in different dimensions.

The physical interpretation of this is the same as in section 2.3: the pericenter of the
facet correponds to a KK tower vector 51 Taking the limit where this KK tower becomes
exponentially light in D; = d + n; dimensional Planck units, we recover a D;-dimensional
theory with an inherited asymptotically flat slice X;_1, etc., such that the species polytope
of this theory is the facet of the original species polytope that we began with.

We now study the same limit in the tower polytope. Per the taxonomy rules (2.10)
and (2.41), we have:

1 - > 1 =

C:Sad” ’ 51 = d_2 Z1-G = d_9 = (C_(Eadj) —Z1)- 51 = 67 (2.55)

for any tower vector C_;(Ladj) joined to 51 by an edge in the frame complex. Recall that
(ngadJ) — Z)) is equivalent to the tower vector with the mass written in the higher dimensional
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Planck units. By comparison (C_i — 21) . 51 = n—ll > 0, whereas it is not hard to see that,

since the frame complex is convex, for any other tower vector éar in the frame complex,
Q:;(Lfar) G < ﬁ and hence (C_Sfar) — Z1)-{ < 0. Thus, in the limit  « ¢, the KK tower
corresponding to 51 becomes exponentially light (as expected), whereas the towers joined
to 51 by an edge in the frame complex remain at a fixed scale in D;-dimensional Planck
units and all other towers become heavy.

As already shown in (2.33), the tower vectors Q_“;(Ladj) — Z; indeed satisfy the taxonomy
rules in D; spacetime dimensions. These vectors are precisely the vertices of the link of the
tower vector 51 within the frame complex. Thus, the link of each geometric vertex in the
tower polytope is itself a tower polytope, again in spacetime dimension D1 = d+ ni. Note that
in this case it is important that the link is computed in the frame complex, which includes
the string oscillator towers as vertices. Geometrically, the link can also be thought of as
the vertexr figure of the vertex in question. Concrete examples illustrating these recursion
relations of polytopes are shown in section 4.3 (see figures 17 to 19).

3 Scope of the taxonomy rules

The taxonomic rules derived in the previous section hold under certain assumptions, as
outlined there and in section 1.1. Some of these assumptions are believed to be universal
features of quantum gravity (for instance, some can be motivated by the Emergent String
Conjecture) while others are assumptions about the geometry of the moduli space that do
not hold universally. As a result, we emphasize that our rules are not universal: they do not
apply at all points in quantum gravity moduli spaces (not even in all the asymptotic limits).
In this section, we investigate these assumptions in more detail, exploring the conditions
under which they are satisfied and explaining how the taxonomic rules can break down
when they are violated.

3.1 Emergent String Conjecture and bound states

The derivation of the taxonomic rules in section 2 relied on the assumption that the Emergent
String Conjecture (ESC) holds in any effective field theory consistent with a UV quantum
gravity completion (Assumptions 1 and 2 in section 1.1). Moreover, we assumed that
the ESC can be applied recursively to the higher-dimensional theory that emerges upon
decompactification. In this subsection, we emphasize that this a stronger condition than
merely imposing the ESC in the original lower dimensional theory, and we highlight the
crucial implication of this assumption: the existence of bound states of neighboring principal
towers. Such bound states are necessary to avoid pathologies that would otherwise violate
the taxonomy rules.

For purposes of illustration, consider a 2-dimensional moduli space with a frame simplex
generated by the tower vectors of two KK principal towers, associated with the decompactifi-
cation of n dimensions and m dimensions, respectively. Then, following the arguments of
the previous section, a generic infinite-distance limit in this duality frame should correspond
to a decompactification of m + n dimensions, with a species scale given by the (d + m + n)-
dimensional Planck scale. However, if the KK modes of the two towers do not form bound
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Figure 9. Tower polytope for Type IIB string theory compactified on S' to d = 9, with the different
KK (in blue) and string oscillator towers depicted, as well as the different duality frame descriptions.

The moduli correspond to the canonically normalized 10d dilaton and the S* radius. The sphere of
radius \/lez = % is shown in gray and the Type IIB self-dual line in red. See [37] for more details

on the limits of the duality frames and the expression of the different towers tower vectors.

states, then the total number of states contributing to the species scale will be given simply by
the sum of the light modes of the two towers, N ~ Ny + Na, which is too small. As a result,
the species scale will be too large, resulting in a violation of the pattern, 5 Z #* ﬁ [51, 60].
In contrast, if the KK modes do form bound states that populate a (sub-)lattice of their
KK charges, then the total number of light species is multiplicative, N ~ Nj Ny, which leads
to the expected scaling of the species and the orthogonality of the species vector with the
convex hull of the tower vectors, in concordance with our taxonomic rules.

From this, we conclude that any two principal KK towers that are connected by an edge
of the tower polytope (so that there is one direction along which both decay at the same rate)
must form bound states and, therefore, can be described microscopically as KK towers from
the perspective of the same duality frame. This means that if two KK vertices of the tower
polytope are connected by an edge and their KK modes do not form bound states (which
occurs if they are interpreted as KK towers in different duality frames, e.g. KK and winding
modes), then the interior of this edge must also contain a string oscillator vertex. This string
oscillator vertex separates the two KK towers into distinct duality frames.

An example of this occurs in the tower polytope of Type IIB string theory on S! (see
figure 9), where the edge connecting the KK mode vertex and the F-string winding mode
vertex is separated into two distinct frame simplices by the F-string oscillator vertex. As a
result, the KK and winding modes are never simultaneously lighter than the species scale.
Moreover, in this case the neighboring vertices (i.e. the KK and string vertices) again form
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bound states comprising the Kaluza-Klein replicas of the string modes, since the KK tower
can be described as perturbative states from the string worldsheet perspective. Without such
bound states, the taxonomy rules of the previous section could be violated.

In [51] it was noted that this condition on the formation bound states was essential for
the tower-species pattern to hold. Here we point out that this condition follows from imposing
the ESC recursively in the higher dimensional theory that emerges upon decompactification,
so that all the light towers below the species scale can be described as perturbative states
under the same duality frame.

3.2 Regular vs. irregular infinite-distance limits

In section 2, we focused on deriving the taxonomy rules for regular infinite-distance limits (see
the definition at the beginning of section 2.1.2). Unlike the assumption of the Emergent String
Conjecture, however, this regularity assumption is violated in known examples of infinite-
distance limits, and in such cases the taxonomy rules can be violated. In what follows, we will
argue that generic infinite-distance limits are regular, and we will briefly discuss what happens
when a limit becomes irregular, although a more systematic analysis is left for future work.

3.2.1 Generic infinite-distance limits are regular

Let us start by arguing that — provided that the ESC holds — infinite distance limits
should be generically regular. For instance, if there are degenerate towers in some particular
infinite-distance limit, a slight variation in the direction of the limit (as measured, e.g., within
the tangent space of some fixed reference point) will produce parametric splittings between
these towers. While this argument assumes that a continuous family of infinite-distance
limits with a suitably varying direction exists, this is true in every example we know of
involving degenerate towers.

Infinite-distance limits involving decompactifications that are not asymptotically empty
are subtler. Let us temporarily turn the problem around and consider what happens as
the direction of the asymptotic limit is varied for an asymptotically empty (but not strictly
empty) decompactification. As this direction is varied, the exponential rates controlling both
the growth of the overall volume as well as the size of the warped / Ricci-curved regions will
vary. In special directions, these rates will coincide and the warped / Ricci-curved regions
will grow at the same rate as the overall volume in the decompactification limit. The relative
size of these regions compared to that of X, can still be adjusted by adjusting the limit,
but typically this does not change the direction of the limit (which controls the exponential
rates), only its impact parameter. Adjusting this impact parameter towards one extreme,
the strongly warped / Ricci-curved regions grow to fill all of X,.

Continuing beyond such a special direction, the warping / Ricci-curvature will naively
blow up, and it is no longer possible to view the theory as decompactifying along X,,. The
Emergent String Conjecture then demands that there is a “dual” description of this limit
which is again either a decompactification limit along some new manifold Y;, or an emergent
string limit. Either way, we conclude that a non-asymptotically-empty decompactification can
only occur in specific directions in which various exponential rates coincide, hence varying the
direction of the infinite distance limit should generically produce a regular infinite-distance
limit. This agrees with the examples studied in [37], as explained in section 3.2.3.
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Figure 10. Example of a direction ¢ over which several towers (in this case those associated to 51
and (2) become degenerate in a way that we can “ignore”. The rank 3 Planckian phase is the same as
depicted in figure 3(a).

Thus, we expect that regularity is generic amongst infinite-distance limits. If so, we
can understand the collection of all infinite-distance limits by starting with regular limits
and allowing them to vary continuously.

3.2.2 Irregular limits: degenerate towers

We now briefly consider what happens when a regular infinite-distance limit becomes irregular
as the direction vector is varied. This can happen in one of two ways, either because
some of the tower scales parametrically below Aqg degenerate, or because we reach a
decompactification limit that is not asymptotically empty. Let us first focus on the first
case, which is potentially more benign.

The case of degenerate towers correspond to having several leading towers parametrically
below Aqe that decay at the same rate, see figure 10. If this occurs, these towers are necessarily
KK scales, and their degeneration corresponds to a previously hierarchical decompactification
on X,, followed by Y, with vol(X,,) > vol(Y;,) morphing into the decompactification of
some manifold Z,,, without hierarchical KK scales. In some cases, we can take another
limit of this manifold where we again obtain a hierarchical decompactification, but now
on Y, followed by X,, (so that vol(Y,) > vol(X,,)). When this occurs we can continue
through the degenerate locus and reach another regular infinite-distance limit. Although the
sequence of the number of decompactifying dimensions is now altered (by exchanging n with
m), this only affects the taxonomy rules (2.10) by permuting the tower vectors, so with an
appropriate choice of conventions we can again consider the frame simplex to be the same
as before the degeneration, with only # having changed. This is what we have termed an
“ignorable degeneration” in section 2.3. Two important comments are in order. Firstly, it
is not necessarily the case that Z,,1, = X,, x Y, (for instance, there may be a fibration).
When this is not true, the reversed limit discussed above may not exist, so it is not always
possible to continue through a degenerate locus in the manner described above. In that case,
we might only get a portion of the frame simplex, as in the M-theory on K3 example of
appendix A.4. Secondly, there may be other (previously undetected) hierarchical limits of
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Zm+n that open up in the degeneration limit. Thus, the principal plane may connect to the
principal plane of another family of regular infinite-distance limits at points of degeneration,
even if the degeneration is ignorable. A simple example of this is in the moduli space of 9d
maximal SUGRA, where the limit in which M-theory decompactifies along a T? of fixed
shape is such a degenerate limit. This limit admits continuous deformations where the 72
shape modulus goes off to any of the various infinite-distance limits of Teichmiiller space.
(These are of course related by dualities, but they correspond to different principal planes
in the tangent space of moduli space at this point).

3.2.3 Irregular limits: sliding vertices and warped geometries

The other regularity condition we assumed in our derivation of the taxonomy rules in
section 2 was asymptotic emptiness; namely, we assumed that the decompactification manifold
approaches a Ricci-flat manifold with background fields that vanish outside of regions of
measure zero. This assumption may be violated, however, in decompactification limits that
involve a significant amount of warping. If so, the physics of the decompactification becomes
very complicated (even in the simplest examples [37, 61]). Analyzing such cases systematically
is beyond the scope of our paper. However, in this subsection, we explain one example in
which such warping occurs. We will see that (a) vertices of the frame simplex may vary as
a function of the position in moduli space, resulting in a violation of our taxonomy rules
in special, irregular limits of moduli space, but (b) generic limits of the moduli space are
regular and satisfy our taxonomy rules. As a result, we can still use the polytopes satisfying
the taxonomy rules for regular limits as building blocks to determine the global geometry
of the tower vectors.

With this, let us consider SO(32) heterotic string theory compactified on S'. As shown
in [37], this theory features a collection of principal towers whose tower vectors vary as a
function of position in moduli space, as shown in figure 11. Within the upper Type I’ phase
(ie., when ¢/V/7 < p < —¢/V/7), the vector labeled KK, I’ lies below the line ¢, = (s//7.
Conversely, upon crossing the self-duality line p = ¢/+/7 into the lower Type I’ phase (i.e.,
when %ﬁd) < p < ¢//7), this vector continuously slides above the line ¢, = (4/V/7.

As a result of this sliding, the taxonomy rules of section 2 break down along an infinite-
distance geodesic parallel to the self-duality line (shown in red). For example, for the
infinite-distance limit on the self-duality line with p/¢ = 1//7, p — —oo, the leading
tower (labeled KK, I'"P) in figure 11) has length \5KK piwarp) | = \/%?

0 = arccos (%) with C_;)SCJ, which violates the taxonomy rules for the tower vectors (2.10).23

and has an angle

Such a violation occurs because the Type I’ decompactification limit does not lead to a
10-dimensional vacuum, but rather a running solution in which the string coupling varies,
with the string oscillator tower not becoming light when moving in such direction. This
violates the assumption of asymptotic emptiness, as the effects of warping cannot be neglected
in this limit. As a result, our derivation of the taxonomy rules is no longer valid for the
family of infinite-distance limits parallel to the self-duality line.

Nonetheless, as discussed at length in [37], the effects of warping vanish asymptotically far
from the self-duality line, and a result the taxonomic rules are restored in any infinite-distance

23Whether the pattern relating the tower and species vectors holds in this case is still an open question [51]
It could happen that the rule (1.5) for the light towers needs to be modified in this case while the pattern with
the species scale (1.10) still holds if sustained in a deeper quantum gravity constraint on the density of states.
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Type 1 Het-SO(32)

KK,h

¢
Het-SO(32)

50(32)

Figure 11. Frame simplices in different asymptotic limits of the Ié0(32) regions in SO(32) heterotic
string theory compactified on S*. In Type I’ infinite-distance limits parallel to the self-duality line
(red), the taxonomy rules are violated, as the tower vector for the Type I’ KK modes takes values
along a segment (green arrows) orthogonal to this line. Such limits are irregular due to the effects
of warping. In all other Type I’ infinite-distance limits, however, the KK, I'("a') vector approaches
either KK, I’ or KK, I'(?2D) | Such limits are regular, as the effects of warping become negligible in
the asymptotic limit, so the frame simplices of these limits satisfy the taxonomy rules. Note that the
heterotic towers (along the thin black segment) remain fixed in any limit.

limit that is not parallel to this line. To be more precise, consider an inﬁnite distance limit

dp 1
in one of the Type I regions of moduli space, ¢ — —oo w1th fixed slope 32 \f < < \ﬁ'

If this limit lies above the self-duality line, i.e., if — 7 < d < f’ then the frame simplex is
generated by the tower vectors labeled “osc”, I and KK, I’ in figure 11. These vectors do satlsfy
our taxonomic rules in (2.10). Similarly, below the self-duality line, i.e. for 2= < d < \f

32\f

the frame simplex is generated by the tower vectors labeled “osc”, [(dual) 5 KK, 1/(dual)
in figure 11: this frame simplex also satisfies the taxonomic rules. Likewise, the rules are
satisfied in all infinite-distance limits in the Type I and heterotic phases.

In other words, whereas the tower vector of the Type I’ KK modes slides continuously as a
function of position in the interior of moduli space, it jumps discontinuously in the asymptotic
regime of moduli space as a function of the angle ¥ = tan=!(dp/d¢), satisfying the taxonomic
rules on either side of the self-duality line p = ¢/v/7.2* The assumption of asymptotic

24This discontinuous behavior in the asymptotic regime is indicative of an order-of-limits issue; continuous
sliding gives way to discontinuous jumping in the same way that a family of continuous Gaussian functions
may approach a discontinuous Dirac delta function in the asymptotic limit. While the exponential rate of
the towers is defined for the infinite-distance points, the masses of the towers (and the associated scalar
charge-to-mass ratio vectors) are local functions of the moduli space, their asymptotic expression needs not to
be continuous in the space of infinite-distance limits.
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emptiness is satisfied in these limits because, although there is nonzero warping of the
decompactification manifold, the effects of this warping tend to zero in the asymptotic limit.

We see, therefore, that the taxonomy rules may be violated when the regularity assump-
tions are violated. However, we also see that in the case at hand, generic infinite-distance
limits are regular, so violations occurs only in special directions of moduli space. We also
note that in this example, the tower vector slides along a line segment orthogonal to the
family of irregular geodesics. In appendix B, we show that this phenomenon is much more
general: tower vector sliding always occurs orthogonal to the direction of an irregular geodesic
in the asymptotic limits of the moduli space. As a result, for the purposes of computing
the scaling coefficient « of the leading tower, the sliding is irrelevant: the three KK, I’
tower vectors of figure 11 all yield the same scaling coefficient « for the family of geodesics
parallel to the self-duality line.

Finally, note that the directions £ where leading towers become degenerate are fixed
by the geometry of the frame simplex, but this is not the case for directions where non-
asymptotically-empty decompactifications occur. Predicting where the latter can happen
is non-trivial and is beyond the scope of our paper.

3.3 Flat moduli spaces and axions

In section 2.5.1, we studied the conditions under which frame simplices can be glued together
to form a tower polytope. We found that a sufficient condition for such gluing is the existence
of an asymptotically flat slice of moduli space, such that a frame simplex of an infinite-distance
limit in this slice admits a “good” projection onto the tangent space of the flat slice. For
instance, in 10d Type ITA, heterotic, and Type I string theories, there is just one modulus, the
dilaton. The entire moduli space is flat, and we may construct a tower polytope for this theory.

In 10d IIB string theory, there are two moduli: the axion and the dilaton. The moduli
space is no longer flat, and the tower/species vectors of the (p,q) string scales vary with
position in moduli space. To avoid this complication, we consider a slice of the moduli space,
such as Cy = 0. This slice is a (flat) line, parameterized by the dilaton, and in the weak
coupling limit the tower vector for the fundamental string lies tangent to the geodesic. Thus,
our taxonomy rules can be applied globally along this slice to construct a tower polytope.

In general, in order to find a flat slice satisfying the assumptions of section 2.5.1, a good
rule of thumb to set all the axions to zero. For instance, compactifying M-theory on a k-torus
T*, axions arise both from the off-diagonal components of the T metric as well as from Cj
reduced on various three cycles of the torus.?® Setting all these axions to zero restricts us
to a flat slice of moduli space consisting of M-theory compactified on a rectangular torus
without Wilson lines, parameterized by k radion moduli. One can check that the tower
vectors of the KK modes of each of the 1-cycles of the torus admit a good projection onto
the tangent space of this slice, as do the tower vectors for the other duality frames that
appear as we move in this slice of the moduli space. As a result, our taxonomic rules can
be applied throughout this slice of the moduli space.

2In d < 5, there are also axions coming from the magnetically dual Cs potential reduced on six cycles of
the torus.
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Typically, the existence of a flat slice of moduli space that satisfies the assumptions of
section 2.5.1 is related to a discrete symmetry that is preserved along the slice and broken
(partially or completely) away from it. This symmetry forces the tower and species vectors of
each duality frame along the slice to lie tangent to it. For instance, in the case of M-theory
on a rectangular k-torus, there are k Zo symmetries reflecting each of the k circles (combined
with spacetime parity in the external directions), under which the metric and C5 axions for
the corresponding directions are charged. There is also an 11d Zs CP symmetry combining
C3 — —C3 with spacetime parity, under which all of the C3 axions are charged. Only when
all of the axions vanish are all of these discrete symmetries unbroken.

More generally, setting all of the axions to fixed, non-zero values typically also leads to
flat (or, at least, asymptotically flat) slices. However, the tower and species vectors for the
various dual descriptions will not always admit good projections onto the tangent space. For
instance, in the case of M-theory on a torus, setting the metric axions to fixed, non-zero
values generates a globally flat slice, and the frame simplex generated by the KK modes
admits a good projection. In general, however, the tower and species vectors of the other
duality frames in this slice do not admit good projections.?%

However, when there is a discrete symmetry enhancement along the chosen axion slice,
then we can once again safely fix the axions to these values. For instance, the Cy = 1/2 slice of
type IIB moduli space, fixed by ((1) j) € GL(2,2), is just as suitable for our taxonomy as the
Cy = 0 slice. For the same reason, we can also consider compactification on non-rectangular
tori with suitable discrete isometries, such as T2 with complex structure 7 = e27%/3,

Let us emphasize, however, that even when there is not an asymptotically flat slice of the
moduli space, our rules can still be applied in a particular asymptotic region associated to a
given set of light principal towers. In such cases, while we cannot construct the full tower
polytope, we can still construct the frame simplex. This situation can occur, for instance,
when compactifying on a manifold with a non-trivial fibration. In the limit where the base
grows large in comparison to the fiber, the manifold looks locally like a product, and there is
an approximately-flat radion-radion moduli space. However, the opposite limit in which the
fiber grows relative to the base is more non-trivial, and it may even be obstructed.

Our work does not rule out the possibility of constructing and classifying tower polytopes
in the absence of globally asymptotically-flat slices of the moduli space, though this may
require some revision of the rules described above. As a first step in this direction, in
appendix A.4 we derive the convex hull of the leading principal towers for M-theory on K3,
which corresponds to half of one of the tower polytopes of section 4.1.27 Similar phenomena
occur in Calabi-Yau threefold compactifications, see appendix C and [51] for some examples.

3.4 The direction vector and the principal plane

As mentioned briefly in section 2.2, the taxonomy rules (2.10), (2.22) do not constrain the

component of the direction vector ' = ‘% perpendicular to the principal plane. This is

26In fact, when the axions are fixed at irrational values, some of the “asymptotic” directions in such a slice
will turn out to wind endlessly around the moduli space without traveling to infinite distance, leading to more
drastic violations of the assumptions of section 2.

27Since M-theory on K3 is dual to heterotic string theory on T2, we expect that globally flat slices of moduli
space do exist in this example, but they are not obvious from the M-theory perspective.
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not relevant for the derivation of the taxonomy rules, but it is essential if one wants to
bound the rates at which the various towers become light asymptotically. Having  not lying
within the principal plane would result in 6 # 0 in (2.24), which could result in a violation
of the Sharpened Distance Conjecture. In this section, we will explain in greater detail the
difficulties involved with proving that ¢ must lie parallel to the principal plane.

To begin, consider the decompactification along a manifold X,, associated to the leading
KK tower in some regular infinite-distance limit. At large volume, vacua in the moduli
space are semiclassical backgrounds of the D = d + n dimensional theory with d-dimensional
Lorentz invariance, with the metric on moduli space determined by fluctuations about these
backgrounds. Because X, is asymptotically empty, the geometric (size and shape) moduli of
X, are independent of the other moduli, as are the D-dimensional moduli. Thus, ignoring
the axion and brane moduli, the moduli space projects down to a direct product:

Mbase = IRrad X Mshape X M(D) (31)

For each point in Mpase, there is a moduli space Myion/brane Of axion and brane moduli,
where the size and shape of this space depends on the choice of point in Mp,se. (For instance,
the axions inherit an M p)-dependent metric from the D-dimensional gauge kinetic terms).2®

Thus, in the large volume limit the d-dimensional moduli space Mg is a fibration:
Maxion/brane — M(d) — (Rrad X Mshape X M(D)) (32)

Note that M yion/brane Tefers only to the axions and brane moduli associated to X,. Other
“axions,” etc., with a different, higher-dimensional origin are included in M p).

With this, the statement that the direction vector ¢ lies within the principal plane is
tantamount to the condition that its components in the axion/brane directions Mayion /brane
and shape directions Mgpape vanish, and its components in the higher-dimensional moduli
space M py are either radial directions of a further compactification, or else dilatonic
directions associated with a fundamental string.

From our regularity assumptions in the previous section, we may safely conclude that the
components of the direction vector in the shape directions fshape must vanish, since nonzero
fshape would imply a splitting of the Kaluza-Klein scale into multiple parametrically different
scales, violating the assumption of non-degeneracy. However, it is more difficult to show
that the components of £ vanish in the M, on /brane directions of moduli space, particularly
in cases where there is nontrivial mixing between the brane moduli and axions. Similarly,
while an inductive argument could be used in principle to argue f points only in the radial
directions of Mpy for a Planckian phase, the case of a stringy phase is more challenging.
We leave a thorough investigation of this issue for future work.

4 Applications

In this section, we provide a classification of tower and species polytopes in various dimensions
when the following conditions hold: (1) we have a globally flat slice of moduli space where

ZNote that there is no clean separation between the axion (Wilson lines) and brane moduli spaces. The
branes can source fluxes that alter the Wilson lines as they are moved around, and the Wilson lines can create
monodromies in the brane moduli space.
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the tower-vectors are constant functions of the moduli space,?” (2) quantum gravity theories
do not exist in more than eleven dimensions, and that (3) string theories do not exist in
more than ten dimensions. We find that only a finite list of tower (or species) polytopes are
consistent with our taxonomic rules. Many of the allowed polytopes are realized in maximal
supergravity in higher dimensions, and they satisfy the recursive relations of section 2.1.
However, some of polytopes allowed by our classification have not yet been observed in
the string landscape. This raises the question of whether additional constraints should be
imposed to eliminate these possibilities, or instead whether these polytopes describe new,
undiscovered regions of the quantum gravity landscape.

4.1 Classification of polygons in diverse dimensions

We begin by considering 2d moduli spaces in various dimensions. These 2d moduli spaces
may viewed as slices of higher-dimensional moduli spaces, and if these higher-dimensional
moduli spaces are flat, then the polygons we find in the 2d moduli spaces are simultaneously
slices and good projections of higher-rank polytopes. This will be illustrated in examples
when we deal with higher-rank polytopes in section 4.2.

Following our taxonomy rules above, the vertices of the full tower polytope must come
from KK modes, since string-oscillator modes have tower vectors of length \/ﬁ, and thus
lie in the interior of a facet of the tower polytope (see figure 1). This convex hull must be
generated by at least three KK tower vectors.

A tower polygon may be specified by a tuple of extended natural numbers
= ny,...,nk), (4.1)

where n; > 0 represents the KK modes of n; compact dimensions, n; = oo represents string
oscillation modes, and k > 3 is the number of vertices. This n; = oo notation for string
oscillation modes follows from the fact that \QT;SC\ = lim,_ o |EKK nl, see (1.6). Moreover,
two string oscillator vertices cannot be connected to each other by an edge in the polytope,
so n; and n;41 cannot both be infinite for any i.

Following (2.10), the angle between consecutive vertices C_; and C_;'H is given by

niNi4+1
¢ (s d =21 +d—2) 2

With this, for a given 7i-tuple, we can define the angle summation function 3y (7) as

n k
NiMi+1
(1) = ) 0; = ) arccos Uias , 43
o) ; Z ; \/(ni+d—2)(ni+1+d—2) (4.3)
where ng11 = n;. For 7 to give a consistent polygon, the interior angles must sum up to 27, so
Yo() =27. (4.4)

In the remainder of this subsection, we derive the allowed 7i-tuples, up to permutation,
for d =9, 8, 7, 6, respectively. As stated above, we assume that we can decompactify our

29Note that this is not a new assumption but rather a quick summary of Assumptions 1 to 7 from section 1.1.
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theory to no more than eleven dimensions, and we assume that any eleven-dimensional theory
has no strings. The former assumption implies that neighboring KK-vertices with n; = p,
nj+1 = q must satisfy p + ¢ < 11. The latter requirement prohibits a string vertex from
neighboring a vertex with n; = 11 — d. These assumptions are well motivated by the known
string landscape, though it may prove interesting to explore the additional possibilities that
arise when these assumptions are relaxed.

The results of our analysis-namely, the full list of 2d polygons II4 ) allowed by our rules
and assumptions in dimensions 9, 8, 7, and 6-are depicted in table 1. The associated species

o

polygons H( 4,) are analogously depicted in table 2. We now present a derivation of the results
shown in these tables, beginning in dimension 9.

9d. Our approach to classifying the allowed tower polygons begins by finding the maximum
number of vertices allowed for an 7i-tuple. This is achieved by noting that the angles between
the respective vertices cannot sum to greater than 2w. For each dimension d, there exists a
critical number of vertices kmax such that all n-tuples with length & > kpax have Xg(77) > 2.
This leaves a finite list of polygons to check. We exhaust this list, and thus produce all
the tower polygons allowed by our taxonomy.

For nine-dimensional theories, there cannot be an 7i-tuple with six or more vertices. To
see this, note that the six-component 7i-tuple with the shortest angle summation function
g 530 (2, 00,2,00,2,00), but

9(2,00,2,00,2,00) =~ 1.03124 x 27 > 27. (4.5)

Since the angle summation function for 7fi-tuples of seven or more components are strictly
larger than this one, we conclude that the 7i-tuple must have five or fewer vertices.

This leaves a finite list of possible 7i-tuples to check, and there is only one 7i-tuple (up
to cyclic permutation) allowed, given by

n=(1,1,00,1,00), (4.6)

corresponding to Pgy = Il (g 1) in table 1, which is precisely the example depicted in figure 2(a)
from Type IIB string theory on a circle (or M-theory on a 2-torus)! As described in
section 3.2.3 and depicted in figure 11, this is also the convex hull of SO(32) heterotic string
theory compactified on S! for asymptotic limits far away from the self-dual line.

The polygon P9y = Il (g 1) describes multiple different decompactification limits, which
lead to different theories. The limits that correspond to motion in the direction of any of the
KK-vertices describe decompactification to type IIA or IIB string theories, whose polytopes
are depicted in figures 12(a) and 12(b). The decompactification in the direction of the shortest
facet corresponds to T2 decompactification to 11d M-theory.

As explained in section 2.1, the shape of the tower polygon uniquely fixes the shape of
the species polygon P°, which controls the asymptotic behavior of the species scale. The
species polygon associated to the 9d tower polytope is given by 73(09) = H?g,l) in table 2.

30Recall that n; = co corresponds to a string oscillator vertex. Recall also that no more than two dimensions
may be decompactified in any limit, since we assume that eleven is the maximum number of dimensions
after decompactification.
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8d. We next consider the allowed tower polygons for an 8d theory. First, 7i-tuples for this
theory cannot have more than six components. To see this, note that the seven-component
fi-tuple with the shortest angle summation function ¥y is given by (3, 00, 3, 00, 3, 00, 3), but

Y9(3,00,3,00,3,00,3) &~ 1.10817 x 27 > 27. (4.7)

This leaves a finite list of possible 7i-tuples to check. Ultimately, we find only two options
for 7i-tuples up to cyclic permutation, which are given by

1 € {(2,00,2,00,2,00), (1,1,2,00,2)}. (4.8)

These correspond respectively to polygons (g 1) and Ilgy) in table 1. Both of these polygons
are realized as a planar slice of the tower polytope of maximal SUGRA in 8d, as depicted in
figure 25, and indeed they correspond to the two inequivalent fixed planes of the symmetry
group Gg = S5 x S3. The associated species polytopes HE’S’I) and H‘(’&H) appear in table 2.

7d. In 7d, there are no 7i-tuples allowed with more than seven components. The eight-
component 7i-tuple with the shortest angle summation function Yy is (4, 00,4, 00,4, 00,
4,00), but

Y9(4,00,4,00,4,00,4,00) =~ 1.07088 x 27 > 27. (4.9)

This means that the 7-tuple must have at most seven components, which leaves a finite
list of possible 7i-tuples to investigate. In the end, there are only two possible 7i-tuples up
to cyclic permutation, which are given by

it e {(1,3,00,3,00,3),(1,2,2,1,00)} . (4.10)

These correspond respectively to II(7 1) and 17 11y in table 1. The associated species polytopes
can be found in table 2.

As discussed in more depth in appendix A.3, Il(7 1) and Il 1) can be recovered from
the 4d polytope associated with M-theory on T% (introduced in section 4.2, see figure 20(a)),
representing the 2-dimensional loci that are invariant under the S5 symmetry group. Fur-
thermore, II(71y) also appears in a two-dimensional slice of the moduli space of M-theory
on K3, as shown in appendix A.4.

6d. We finally turn our attention to tower polygons in d = 6 dimensions. In this case, by an
analogous argument to the ones above, 7i-tuples can have at most eight components. This
leaves a finite list of possible 7i-tuples to check.

This time, we find eleven options of 7i-tuples, up to cyclic permutation. These are given by

ﬁ E {(17 w? 17 47 007 4)7 (27 37 17 17 3)7 (47 w? 47 w? 47 007 47 w)? (27 w? 27 27 007 2)7
(27 27 Oo? 2’ oo? 2)7 (4’ oo? 17 47 Oo? 4’ oo)? (4’ oo? 47 Oo? 27 2’ OO)? (1’ OO, 47 17 47 00)7
(4,00,1,4,00,1)(2,00,1,4,00,2),(4,1,00,4,00,1)}. (4.11)
These options correspond respectively to polygons Il 1) through II(g xy) in table 1. Of these

possibilities, only the first four (polygons Il 1) through Il (g 1vy) can be recovered from slices
of the polytope describing M-theory on T° with all axions set to zero.
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The list of polygons in 6d features several novelties that were not observed in the
higher-dimensional cases above. To begin, whereas all of the 7d-9d polygons feature string
oscillator vertices, in 6d it is possible to have consistent 7i-tuples with no string oscillator
vertices (namely, polygon Il ).

Furthermore, whereas any string oscillator vertex in 7d-9d lies on an edge connecting
KK modes of the same number of decompactifying dimensions, in 6d six of the possibilities
(namely, IIgvr) to Il xr)) allow string oscillator vertices to be located along edges spanned
by KK vertices of different n. None of these six polygons are realized as slices in the M-theory
compactifications studied in this work or other polygons found in the literature. On the
other hand, our current rules do not exclude them. It may be possible to rule out these
polygons, perhaps using sigma-model / worldsheet CFT methods. We leave a more thorough
investigation of this possibility to future work.

This leaves 15 as the most mysterious possibility remaining. It does not appear as a
slice of the polytope for M-theory on T° with axions turned off, but it also does not feature
two KK vertices with different n separated by a string oscillator vertex. One possible reason
for excluding this polytope is the fact that it does not reduce nicely to a 3-dimensional
polytope in 5d, but rather to one in 4d that only allows for decompactification of an even
number of dimensions, as we explain further in section 4.4. A more optimistic scenario is
that IIy) may arise in a more exotic context, such that the classification results here do
not apply to the resulting 5d theory after dimensional reduction. More work is needed to
determine which of these possibilities is the correct one.

Lower dimensions. While we do not classify the possible polytopes in d < 6 in this work,
we note in passing the following interesting fact: our rules for angles of the polytope (4.2)
are invariant under a uniform rescaling (n,d — 2) — (An, A(d — 2)) for each vertex. This
means that, up to an overall rescaling of the polytope by a factor of /2, the polytopes in d
dimensions whose KK vertices are all labeled by even n will reappear in % + 2 dimensions,
with n replaced by n/2. For example, since every KK vertex of Ilg ) is labeled by an even
number 7, this polytope will reoccur in 5d, rescaled by an overall factor of v/2. Since every
vertex of Il(g 1r), Il(6,1v), IL(6,v) and Il vir) is labeled by an even number n, these polytopes
will reoccur in 4d, rescaled by a factor of v/2. Furthermore, since every KK vertex of 6,1
has n = 4, we can rescale (n,d — 2) by yet another factor of A\ = 1/2, concluding that the
same polytope will also appear in 3d, rescaled by an overall factor of 2.

Of course, not all polygons in d < 6 dimensions descend from polygons in higher
dimensions in this fashion. We defer further study of these lower-dimensional cases to
future work.

4.2 Classification of maximal tower and species polytopes

If eleven is the maximum number of dimensions allowed after decompactification, then a
theory in d dimensions can have at most 11 — d radion moduli. This means that the tower
and species polytopes associated with the slice of moduli space parameterized by these
radion moduli can be at most (11 — d)-dimensional. We will thus use the term maximal to
describe rank-(11 — d) polytopes that obey our taxonomy rules in (11 — d)-dimensional, flat,
geodesically complete slices in d spacetime dimensions.
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Figure 12. Allowed configurations of scalar charge-to-mass ratio vectors 5 for leading towers in
d = 10. In gray the radius \/leQ = % 1-ball is depicted.

In this section, we once again assume that eleven is the maximum number of dimensions,
there are no strings in the eleven-dimensional theory, and the frame simplices from the various
limits of the moduli space can be combined globally into a single tower polytope, where
our taxonomy rules apply. We then fully classify the allowed tower and species polytopes
of rank 11 — d for dimensions d € {10,9, 8}, and we show examples satisfying the taxonomy
rules for d = 7 and 6. In dimension 10, our classification reproduces the Type IIA and
Type IIB polytopes, as well as a polytope not yet known to exist in the string landscape.
In dimensions 8 and 9, our classification reproduces all of the tower and species polytopes
for the radion moduli of M-theory on orthogonal tori.

The radion-tower vectors from M-theory on orthogonal tori are computed in appendix A.
In this section, we perform the computation in dimensions 10 through 6.

10d. We begin in ten dimensions. Here, we have only a one dimensional moduli space, and
the tower polytope is merely a line segment, with edges corresponding to either KK modes or
string oscillator modes. There are three possible tower polytopes shown in figure 12:

_ / — one emergent string and one

Po.4) { vd 2’ - } decompactification limit,

Po) = 77(10 B) = { } two emergent string limits, (4.12)
Paoc) { } two decompactification limits.

The case where there is one emergent string limit and one decompactification limit, P19, 4),
occurs in Type ITA string theory. There, the emergent string limit is the weak-coupling limit
of the theory, and the decompactification limit in the decompactification into M-theory.
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Our classification also fixes the species polytope as the dual of the tower polytope. These
are given respectively by

one emergent string and one

o _ ) __1 1
P(10,A) o { Vd—2’ \/(d—l)(d—2)} ’ decompactification limit,

Plio) = Plio,p) = iﬁ} , two emergent string limits, (4.13)
o _ 1 . . e .
77(10’0) = ii( @D [ two decompactification limits.

These three species polytopes are depicted in figure 13.

The case of two emergent string limits, P p) occurs in Type IIB string theory (where
the two strings are the fundamental strings and D1-branes), and also in Type I and heterotic
string theories. In these cases, the slice of moduli space considered here is parameterized
by the dilaton.

The remaining case, P(19,c), features two decompactification limits. No theory with this
polytope is known in the landscape.?! As will be shown in section 4.4, this polytope can be
recovered from the decompactification of the polygon Il x1) in d = 6 from table 1, which
itself also has no identified occurrence in the string landscape.

9d. In 9d, the relevant slice of moduli space is now two-dimensional. Thus, our above
classification of tower polygons in 9d has already described this case. As depicted in figure 14,

31Of course, it would be extremely exciting if such a theory does exist, but we leave this possibility to
future research.
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Figure 14. Maximal tower polytope for 9d theories. Red and blue points respectively correspond to
string oscillators and KK towers associated with decompactifying 1 dimension. The edge colored in
green, with its closest point highlighted, is associated to decompactification of 2 dimensions.

the tower polytope is now generated by the following tower vectors,

Poy = {(0, \@) ; <i%,—\/%)} (4.14)

This tower polytope describes the radion-radion components of M-theory on an orthogonal
2-torus, or Type II string theory on a circle. From an M-theory perspective, the three KK
vertices correspond to % BPS states, with the top vertex from M2 branes wrapped on T2
and the other two from KK modes of either 1-cycle of the 2-torus.

Unlike in the 10d case, both the tower and species polytopes are unique. The latter
is given by

7 ={(0v) (£3-73) o

as previously depicted in figure 2 (also P, (9) in table 2). This agrees with previous results
in the literature, [38].

8d. In 8d, the only 3-dimensional tower polytope allowed is generated by six vertices:

P“):{(Oif \Q (57 }>} (410)

where the + signs are uncorrelated. This is depicted in figure 15, and it matches previous
results in the literature [36, 51].
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Figure 15. Maximal tower polytope of the 8d theory, P(s). The string and 5}(1{1 towers are depicted
in red .] and blue .] The edges and facets associated to decompactification of two and three
internal dimensions are depicted in green . and yellow D, with their closest point to the origin
highlighted. The ball of radius \/;72 = L is presented in gray and the triangulation of the polytope

- V6
into frame simplices is depicted with blue lines.

The species polytope is also generated by six vertices:

. 1 (2 1,1 1
P(s)_{<0,im,\/;>,<im,im, \ﬂE)} (4.17)

where again the + signs are uncorrelated. This is depicted in figure 15, and also agree

with previous results [38].

4.3 Illustration of recursion relations

In this subsection, we show how the tower and species polytopes of higher-dimensional theories
are encoded in the tower and species polytopes of lower-dimensional theories.

We begin with the maximal tower polytope P g for the 9d theory. _’I his is depicted in
figure 17. Consider first the two tower vectors that are adjacent to the (kxxk, in the bottom
right of the figure; these are labeled by EKKl (lower left) and &)SC (right). As shown in that
figure, the components of these two adjacent tower vectors that are perpendicular to 5KK1
form the tower polytope Pig a. Alternatively, consider the two tower vectors that are adjacent
to the fKKl at the top of the triangle; these are each labeled by C_;SC. The components of
these two adjacent tower vectors that are perpendicular to 5KK1 at the top of the triangle
form the tower polytope PigB.
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Figure 16. Maximal species polytope for 8d theories. Points associated to the string scale ., while
9, 10 and 11 dimensional Planck mass appear in blue -, green - and yellow I:l, respectively. The
sphere of radius N IR is depicted in red and the triangulation of the species polytope in
blue lines.

EKKl | 5KK1

Figure 17. Shaded in black, the P10 _4) (lower) and P10, gy (upper) tower polytopes are obtained from
P9y after decompactifying along the two inequivalent fKKl vertices. The disk of radius —= L

Vid=2) V7

is depicted in gray.
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(a) P9y embedded in P(g). (b) Pfy) embedded in Pf,.

Figure 18. In (a) the P9 tower polytope is obtained from P(g after decompactifying along any

(kk, vertex, as all of them are equivalent. The sphere of radius \/(;TQ) = \/Lé is depicted in gray,

while the \/ﬁ = \Lﬁ circle in the 9-dimensional theory is in a darker shade. Analogously, in (b) the
species polytope PE’Q), associated to the species scale, is recovered as a facet from 73(08)7 perpendicular
to the direction we are moving.

Let us next consider the tower polytope Pg), depicted in figure 18. Consider any of the KK
vertices (kk,. Consider the tower vectors that are adjacent to this vertex. The components
of these adjacent tower vectors that are perpendicular to fKKl form the triangular tower
polytope P(g) of the 9d theory.

Note that, because the 9d polytope can be recovered by the 8d polytope, and the 10d
polytopes P19, 4) and P19 py can be recovered from the 9d polytope, these can also be
obtained from the 8d polytopes (see figures 17 and 19). A similar analysis was also present
in [38], as well as a relation and microscopic origin of the different towers.

One can check that analogous procedures can be carried on also for Py and P(g), as
depicted in figures 20(a) and 20(b) (see appendix A.2 for the generating vertices of Py
and Pg))-

We can also apply this approach to study the recursive relations to species polytopes.
For instance, in figure 18(b), the faces of the maximal species polytope in the 8d theory
is the species polytope of the 9d theory.

4.4 Mysterious polytopes and dimensional reduction

Many of the polytopes we have encountered in the above subsections have known realizations
in the string landscape, but others do not. It remains an open problem whether these new
possibilities are part of some uncharted region of the landscape, or if instead they violate
some presently unknown swampland constraint.
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(a) P(10,4) embedded in Pg). (b) P(10,3) embedded in Pg.

Figure 19. P 4) and P,y tower polytopes (depicted in thick black lines) obtained from P(g)
after homogeneous decompactification of two dimensions, in a direction given by the pericenter of the
edge (thick green line) spanned by two 5KK1 vectors. Not all these edges/limits are equivalent, and
the two different possibilities, depicted in (a) and (b), result in the aforementioned 10d polytopes.
Note that (1) these polytopes are given by the intersection of the 9d polytopes P(gy (in blue) that
would be obtained from decompactifying only one of the two 5}(}(1 directions and (2) lay at the height
of the resulting species scale, given by fplm (in green).

(a) Psy embedded in Pry. (b) P(7) embedded in P).

Figure 20. An illustration depicting the Ckk, vectors (highlighted in green) corresponding to the
higher dimensional polytope resulting from decompactifying in a given 5KK1 direction (highlighted
in red) for P(7) (a) and Py (b). Notice that the tower sub-polytope generated by these vertices
corresponds to P(gy and P(r), respectively. The resulting tower polytope is located on a plane

perpendicular to the red vector 5KK1 at a distance of Zpl 41 from the origin.
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For instance, our classification allows for a 10d theory with a moduli space of R featuring
two decompactification limits, which is not currently known to exist in the string landscape.
Additionally, in our classification in 6d, we found several more polytopes that do not occur
in maximal supergravity compactifications on tori (see those labeled in red tables 1 and 2).
In most of these examples, namely I yy) to (g x1), there exist KK vectors on either side
of string oscillator vectors that are no symmetric (i.e., they come from decompactifications
of different numbers of dimensions). It is possible that some worldsheet argument forbids
asymmetric arrangement of KK vertices around oscillator ones, and thus all these polytopes
belong in the swampland, but this remains an open problem for future work.

Even if one could develop an argument against such an asymmetric arrangement, however,
this would not address every indeterminate example in table 1. In particular, the polytope
g,y is allowed by our taxonomic rules and features symmetric towers on each side of every
string oscillator vector, yet it is not realized as a slice of the tower polytope of M-theory on 7.

In what follows, we consider what happens to this example under dimensional reduction.
We will see that the theory cannot be viewed as the decompactification of a five-dimensional
theory that satisfies our assumptions (including the assumption of symmetry about string
oscillator vectors), but it can be viewed as the decompactification of a four-dimensional
theory that satisfies our assumptions.

We begin by embedding the tower polytope Il v in R3 at a plane located at a distance

of ﬁ from the origin (i.e., the length of §p16, which gives the species scale in that limit).

Along this plane, the circle of radius \/61T2 appears as a section of the 2-sphere of radius \/5%

From this, one can apply the taxonomy rules to obtain the KK vector 5KK1 corresponding to
the decompactification limit of the 5d theory to 6d that would result in the 2d slice of interest,
as depicted in figure 21(a). Assuming a reflection symmetry about each string oscillator, there
are two additional points 5KK1 obtained from reflecting the 5KK1 vertex towards which we are
decompactifying. If one tries to add an extra 5KK1 vertex by reflecting the vertex associated
with the decompactification across the 5KK2 vertex between the two C_:)SC, its norm would be
larger than the required length \5KK1| = \/% , 5o this possibility is excluded. As depicted in
figure 21(b), two facets of the prospective tower polytope are thus determined. As can be seen
in figure 21(c), the next natural step would be to attempt to join these additional 5KK1 vectors
through an edge. However, this edge would not have the proper length, as can be seen by

noting that the midpoint of the edge (marked in that figure) has a length of g%{g = ]EKKJ l,

which is inconsistent with the construction. This marked point could represent the closest
point of a face generated by three 5KK1 vectors, but this would require an additional 5}(}(1
vertex, as shown in figure 21(d). However, fulfilling (2.15) implies that the norm of this vertex
is too large. Having exhausted all the possibilities, we conclude that one cannot obtain I v,
from a three-dimensional tower polytope in d = 5 that satisfies our taxonomy rules.

This is not the case for the first four 2d slices in d = 6, I 1)-IL 1v), which preserve
our assumptions under dimensional reduction on a circle and thus can be obtained from
decompactification of higher rank and lower d polytopes. For each 6d case, there is a 5d case
following our assumptions that decompactifies into that 6d case. For example, one possibility
for the polygon Iy is depicted in figure 22.
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Figure 21. Tentative steps in trying to consistently compactify the polygon Il vy from table 1
(in dashed gray lines) from d = 6 to 5 dimensions. The depicted sphere has radius \/%, while

the black circumference has radius \/61_72. The string towers are depicted in .7 whilst KK towers

associated to decompactification of one, two, three and four dimensions are in colors l, ., D and
.], respectively.

Figure 22. Consistent 3d convex hull in d = 5 from which the d = 6 polygon Il 1) depicted in table 1
(in dashed gray lines) can be recovered from decompactifying one dimension. The depicted sphere has

radius \/5;72, while the black circumference has radius \/G;Tz' The string towers are depicted in red

.], while KK towers and edges/facets (in these cases with the points closest to the origin highlighted)
associated to decompactification of one, two, three, four, five and six dimensions appear in blue .,

green .7 yellow D, orange ”, pink ” and brown ., respectively.
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Figure 23. Consistent 3d convex hull in d = 4 from which the d = 6 polygon Il v depicted in table 1
(in dashed gray lines) can be recovered from decompactifying two dimensions. The depicted sphere has
\/%7 while the black circumference has radius 6172. The string towers are depicted in red .I,
whilst KK towers and edges/facets (for these the closest point to the origin is highlighted) associated
to decompactification of two, four and six dimensions appear in green !, orange u and brown !,

respectively. Note that in this slice of the moduli space there would not be decompactification limits

radius

to an odd number of dimensions.

This does not necessarily imply that II(g vy cannot be observed in a consistent theory of
quantum gravity. Indeed, as illustrated in figure 23, one can find a 4d theory that follows our
assumptions and decompactifies to this 6d theory. Note that, for the example depicted in
figure 23, all the decompactification limits in this latter polytope lead to an even number of
dimensions — 6, 8 or 10. One can check that, depending on which of the two inequivalent
Q?KKQ vertices we decompactify, either IL 1y or Iy are recovered in d = 6.

Another, maybe simpler possibility, is that perhaps there is nothing fundamentally wrong
with having 5KK vertices decompactifying a different number of dimensions at opposite sides
of Q_:)SC. The argument above relied in assuming only symmetric vertices, so it is possible
that relaxing this allows for reduction to d = 5. For the sake of brevity we will not engage
in the construction of such rank 3 polytope.

As a final comment, we note that a similar story applies to the mysterious 1-dimensional
polytope P19y, which involves two decompactification limits from 10d to 11d and no
emergent string limits (see figure 12(c)). Figure 24 shows how this polytope can be recovered
by decompactifying four internal dimensions in the d = 6 polygon Il x1) from table 1. While
this does not by itself shed light on the existence of the exotic, undiscovered polytopes P(o,c)
or s xy), it does at least suggest that the two are related. It would be very interesting if
these examples are ultimately realized in some undiscovered corner of the string landscape.

5 Conclusions

Using the Emergent String Conjecture, we have developed constraints on the behavior of
the species scale and the towers of light states in generic infinite-distance limits of moduli
space. These constraints are encoded in a set of taxonomic rules for the scalar products
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Figure 24. Recovery of the tower and species polytopes P(19,c) and 77(010 o) of the 10d theory from
decompactification of a 4d theory with tower and species polygons Il x1) (in solid lines) and H?67XI)

(dashed), see tables 1 and 2. These are located at the same height as the species scale gpllo.

of tower vectors, which describe the couplings of light towers of particles to the moduli
of the theory. From this, we have reproduced several well-known constraints on the light
towers and the species scale.

Under certain additional assumptions, we have applied these rules globally to produce a
finite list of tower polytopes satisfying our taxonomic rules. This list includes many polytopes
known to exist in the quantum gravity landscape, as well as some polytopes that have not yet
been discovered in the quantum gravity landscape. We have also seen that the resulting tower
and species polytopes satisfy recursive relations, whereby polytopes of higher-dimensional
theories can be used to construct polytopes of lower-dimensional theories by KK reduction.
Additionally, polytopes of lower-dimensional theories can be used to recover polytopes of
higher-dimensional theories after decompactification.

Our work provides a new avenue to uncover the structure of dualities of the moduli space
by defining the frame simplex generated by the light towers of states in each duality frame
and exploring the ways to glue them together across different duality frames. These frame
simplices can therefore be viewed as geometric building blocks for the tower polytope, and they
provide a first crucial step towards a taxonomy of infinite-distance limits of the moduli space.

However, our work is based on certain assumptions, which must be either justified or
relaxed in order to attain a complete classification. First of all, we have focused on regular
limits, as defined in section 2.1.2. Although we have argued that irregular limits are of
measure zero in the space of infinite-distance limits, the rules for gluing individual frame
simplices can change when crossing an irregular limit. It would be interesting to explore
these cases in more detail.

Secondly, the particular classification of polytopes in section 4 applies to asymptotically
flat slices of moduli spaces. It would be interesting to investigate to what extent a classification
of tower polytopes is possible in spaces that are not asymptotically flat. In particular, it
would be interesting to study the effects of axions, which typically lead to curvature of

the moduli space.??

32Natural objects of study for non-flat moduli spaces are geodesics and towers of scalar charge-to-mass
ratios that align with these geodesics (see [39, 62]).
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Moreover, our classification of polytopes in section 4 deals with polytopes of rank 1, 2,
and 11 — d. It would be natural to extend this classification to polytopes of more general
rank. It would be also interesting to relax some of the assumptions that went into these
classifications, such as the limit on the maximal number of dimensions of spacetime or the
assumption that decompactification limits necessarily lead to higher-dimensional vacua.

On the other hand, it may be possible to justify further assumptions, leading to tighter
constraints on our classification of tower polytopes. For instance, in section 4.1, our clas-
sification of 2d polytopes uncovered examples with KK-mode vertices associated with the
decompactification of different numbers of dimensions on either side of a string oscillator
vertex. It would be worthwhile to either find an argument that rules out these polytopes
or else find an example in string theory in which these polytopes arise.

The present work has focused on towers of light particles. Using dimensional reduction
and the duality web, however, these light particles are often related to branes. As a result, the
constraints on particles discussed here also lead to constraints on the scalar charge-to-tension
ratio vectors (—§log T) for extended objects [1, 28, 30, 62-64]. These constraints will be
further explored in forthcoming work [65, 66].

We saw in section 2.2 that the Sharpened Distance Conjecture only follows from our
taxonomic rules if we further assume that the tangent vector of the infinite-distance geodesic
lies in the subspace of the tangent space generated by the light tower vectors (referred to as
the principal plane above). We further saw in section 3.4 that this assumption is difficult
to prove in full generality. It would be worthwhile to either prove this assumption or else
find an example in which it is violated.

Our work has relied crucially on the Emergent String Conjecture. At present, the
evidence for this conjecture comes primarily from known examples in string/M-theory. A
bottom-up argument for the Emergent String Conjecture would be most desirable, and it
would significantly strengthen the foundation on which our work rests.

Our understanding of infinite-distance limits in quantum gravity has grown immensely
since the pioneering work of Ooguri and Vafa [7]. One of main insights of the present work>?
is that continuous families of infinite-distance limits can be sorted into a discrete set of
duality frames that share a common perturbative limit, and this process in turn produces
additional constraints on the individual limits and how they can fit together in the moduli
space. These constraints are very powerful, yet they still leave some room for new theories
outside the known landscape. Time will tell whether this gap can be narrowed further, or if yet
undiscovered theories may inhabit the uncharted territory between landscape and swampland.
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A M-theory on tori and K3

In this appendix, we calculate the radion components of tower vectors for non-sliding theories
on orthogonal tori. We consider the tower vectors of KK modes and also wrapped branes.
Many of these calculations have not been performed elsewhere in the literature. The resulting
polytopes can be compared with our taxonomy. We discuss symmetries of the polytopes, and
we also consider a slice of the polytope from M-theory on K3. See [15, 36, 38, 51, 69, 70]
for an (incomplete) list of instances in the literature where similar computations of masses
and tensions upon dimensional reduction have been performed.

A.1 Moduli, tensions, and masses
A.1.1 Diagonal tori moduli
Let us compactify a D-dimensional theory on a diagonal n-torus with the following ansatz,
ds? = ]gij|_ﬁds?l + gi;d0"de?, gij = 0ij exp(—2p"). (A.1)
With this, the D-dimensional Einstein-Hilbert action,

/deFRD, (A.2)

2K,D
reduces to
1
Sq = ?/ddx —9d (Rd - Z(ap Zaup 8p]> (A.3)
d 7

From this, we can read off the metric and inverse metric for the radions pf,

Gij = 5@‘ + 7d — 211'1]'. (A4)

The inverse metric is given by

g g 1 o
GY =69 — ——1'1V A5
Sl (4.5)
since this satisfies
1 . 1
ik k k

G, G = (% b > <5ﬂ L ) s (A.6)

Here 1; refers to the vector where each entry is 1.
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A.1.2 Brane tensions and KK mode masses

Consider a (P — 1) brane in the D-dimensional theory with tension TI(JD). In toroidally

reducing to the d-dimensional theory, this brane can wrap multiple cycles of the tori. Suppose
this brane wraps the ith cycle k; times, where k; is either 0 or 1. Then the tension of the
resulting (p — 1)-brane in the d-dimensional theory is

p i D
T ~ eXp{(d_ 21i - kz> p }Té' ), (A7)
where P = p+k = p+ >, k;.
For example, when n =1 and £k =0, G,, = 1 + Tiz = d%%
7@ {p }Tw) — expd — e 5 TP A.
(N 1S R B/ vy [ L (A5

where p is canonically normalized. Another example is when n = 1 and k = 1, in which case

@ p—d+2 }T(D)— _ —d+p+2 | (D) A
T, exp{d_2 peTp exp (d—l)(d—2)p Tp". (A.9)

Meanwhile, KK modes have mass in d-dimensional Planck units
1 ; 2 . )
m2 = |glj‘ d_29”mnj = ZQXP (2/)1 + m Zﬂ) (n’)Q. (A]_O)
i J

A.1.3 Canonically normalized moduli

Currently, the radions p’ have a complicated metric:
o 1
Gijp'p’ = p* + m(ﬂ 1(p-1) (A.11)

(where dots refer to product with respect to d;;)
The metric on moduli space for the p’ is not the identity matrix, and thus the moduli
p' are not canonically normalized. To canonically normalize, we define the new moduli p*

in terms of the radions p':

Ai: Z

1
s Ja—am=g "V

With these new radions R’, the moduli space’s metric is the identity matrix,

1’ (A.12)

1 . )
Sa=— /ddx,ﬁ—g (R~ 650,07 . (A.13)
d

There is a + in the relation between 5’ and p’. Let us choose the 4 choice (the — choice
also works just as fine, but the details are different). Thus,

A (]

1
e B WAy 10y B A

1° (A.14)
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We can express p* in terms of p°,

. op1 d—2\ .
U B Y e R A A15
p (p+ - ( + D_2) ) (A.15)

So, we can express the tension in terms of these canonically-normalized diagonalized

k d—2 p
(D—d(l_\/D—Z) + (d—2)(D—2)>1i ki

Also, KK modes have masses in d-dimensional Planck units of

m —Zexp ( ( 1+ ZJ)__Z) 1i)
—d_2;<p]—|—'5( 1+ Idj__Z) 1]‘)}(1#)2. (A.17)

A.2 Polytopes from M-theory on T' through T°

radions p’,

. y
Ty ~ exp {—p’

} TP (A.16)

We are interested in computing the tower polytopes from M-theory on a k torus. Suppose
that £ < 5, so that the only relevant towers are KK modes, fully-wrapped branes, and
string oscillators. Dealing with & > 6 requires an analysis with KK-monopoles, and we
postpone that case to future work.

The only way to get particles in these theories is from KK modes, wrapped branes, and
string oscillators. However, with the exception of 10d, the string oscillators are unimportant
in obtaining the full tower polytopes. Thus, for d < 9 we need to consider only fully wrapped
branes and KK modes.

The KK modes have a general formula, and all of these can be classified by considering all
of the different ways in which they can vibrate through the compact dimensions. Meanwhile,
for a (p — 1)-brane to produce a non-oscillation particle, we must have it wrap p — 1 of
the 1-cycles.

In general, there are finitely many different ways for (p — 1)-branes to wrap p — 1 of the
1-cycles on the k-torus, and there can be many different cycles of the torus for the KK modes
to have momentum in. The algorithm we take is to collect all of the different (p — 1)-branes
can wrap p— 1 of the cycles on the k-torus, and all of the different KK modes with momentum
in precisely one, to k, different cycles of the torus. This way, we find a sufficient collection
of tower vectors that generate the tower polytope P(g).

In this section we use the above algorithm to collect the tower vectors for the maximal
supergravity tower polytopes P with d € {10,9,8,7,6}.

For dimension 10, 9, and 8, we state all of the tower vectors for P(g). For dimensions 7
and 6, we write only the tower vectors for decompactifications of 1-dimension, as all of the
tower vectors follow from these, and there are too many to write in this paper.
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10d. As explained in section 4.2, there are two possibilities for the 10d maximal SUGRA
tower polytope The 10d ITA tower polytope has a string oscillator and single KK mode,
<osc = - \f and CKKl = f The IIB tower polytope has two oscillator modes, COSC = i\lf

9d. The tower polytope P(q) is spanned by three 5KK1 vectors,

(08)- ) (o)

; ; A 11 _
There are also two string oscillators towers, (osc = <i2 733 f) and a KK vector corre

0, _f> See figure 14.

sponding to decompactification to 11d dimensions, EKKQ =

/N

8d. In d = 8, P(g) is generated by six 5KK1 vectors,

(07%7\/57 (7 \/i?\/j
4 11 1 1 4 11
(2 =v %) (U2 iz \/a’( V5 Ve ve) |

This tower polytope also contains nine CKKQ vectors,

w

(00D Gut—5)- (40 —4) (g ). G
e v i) (Cave v ave) (0 ) (0T )

two (kK;,

o). (- 50).

as well as three string oscillator modes C_:)SC
1 1 1 1 1
<0707 _> ) <707 ) y (_707 ) 3
V6 \2v/27 7 2V/6 22" 7 2V/6
see figure 15.

7d. Here P(7) is generated by ten 5KK11
0. 2v10-5 2V10-5 2v10+10
15 0 15 0 15
0. 2V10+10 2\5075 2v/10-5
bl 15 I b 15

0 2v/10—-5 +/10+10 2v10-5
) 15 15 15

3 1 1 1
) (2\/5’ 24107 24/10° 2v/10)
2 11

11 11 12 1 (_L 11 2 1 1 1
f 3 3/10°3 3f’ 3 310/ V2’3 3/100 3 3@’3 3v10/ "’
1 2 1 11 1_ 1 1 2 7 _1_ _7 _1 7
xf 3 3v10’ 3 3f 3 3V10 ’22\&’3 6v107 3 6v10’ 3 -~ 6V10)”
1 v 2_ _7 _1_ _7 1 17 _1__7 2_ _7
(2\f’ 37 6/10°3  6/10° 3 6V/10/)° \2v2? 3 6/10° 3 6/10°3 6410/’

From these, we have thirty fKKz’s, thirty 5KK3 ’s, five 5KK4’S, and five string oscillators C_;SC
vectors. For this case, as well as the 6d case, we do not state the 2d and higher KK modes,
as well as string oscillator modes, because there are many of them and they also follow from
the positions of the 1d KK modes. Because a four-dimensional polytope cannot be properly
embedded in R? or even in R3, in figure 20(a) we depict the adjacency relations of the 5KK1
vertices, with the other 5KK” and g::)sc being obtained as described in section 2.1. It can also

be shown that the ball of radius dl_2 = % is contained inside P(7).
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6d. P is generated by sixteen 5}(}(178
0. Y2-1 v2-1 v2-1 V243
s 4 o 4 0 4 0 4
0. Y2-1 V243 v2-1 V2-1
T4 0T 4 T 4 07 4

0f1f1f+3f1
0f+3f1f1\f1

(LLLLL _ 1 111 _3
2\[ 4\[ 4\[ 4\[ 4\[ ) \/57474:47 1)
1 11 _ 31 _1 1311
\/574747 474 ) \/5747 4740 4 )
1 3111 <_1_3_3_3_3
V2! 44 4d)o 2V2) 420 4V2' 42 44/2)°
1 4-vV2 4-v2 _4+V2 _4+V2 1 4=vV2 _4+V2 4—V2 _4+V2
2\/57 8 8 8 8 ’ Qﬂ’ 8 8 8 8 ’
I _4+4vV2 4-V2 4-V2 442 1 _4+vV2 4-V2 _44V2 4-V2
2\/57 8 8 8 8 ’ 2\/57 8 8 8 8 ’
1 _4+V2 _4+4vV2 4-V2 42 1 4—V2 _4+V2 _4+V2 42
2\/>7 8 ) 8 M 8 9 8 ] 2\/>7 8 ) 8 ) 8 M 8 )

There are also 80 5KK2 ’s, 160 EKKS’S, 107 EKK4’S, 16 EKK5 ’s, and 10 string oscillators g:;sc. For
this case we do not state the 2d and higher KK modes, as well as string oscillator modes, as
there are many of them and they follow from the positions of the 1d KK modes.

The edges between these 5KK1 vertices are depicted in figure 20(b). The radius \/dlj = %

ball fits inside Pg).

A.3 Symmetries

The different maximal supergravity P(4) tower polytopes described in section 4.2 are in-
variant under the action of specific finite symmetry groups Gg4. As it will be shown in this
appendix, these symmetries are associated with U-duality groups of lower dimensional gauged
supergravity obtained from toroidal compactifications of M-theory.

Consider for this some general EFT in d dimensions such that its k-dimensional moduli
space M is parameterized by some moduli {* } " . Its U-duality group G maps these moduli
into each other. Some of these transformations act only on the non-compact directions of
M (parameterized by radions), while others do so on the compact ones (azions). In analogy
with the mazimal torus defined for compact Lie groups, for our non-compact G we consider
Tg ) ~ R™ as the subgroup of diagonal matrices, acting only on the radions, by rescaling them.
In general this will not affect the structure of the infinite-distance limits, so the polytopes
obtained by using taxonomy rules should not be affected by these transformations.

In general T, g) is not a normal subgroup of G, so one cannot simply quotient out these
transformations, for this operation is generically ill-defined. In order to properly quotient
G by Tg), we must introduce the normalizer Nng) ={geqG: ng) = Tg)g}, i.e., the
largest subgroup of G such that T, C(;r ) is a normal subgroup. The Weyl group of G is then
defined as W(G) := N¢gT, g )/ T 34 and now corresponds with the symmetries of the tower
polytope, G4 ~ W (@), as exchanging vertices is equivalent to mapping asymptotic directions
among themselves. The Weyl group is finite (there are only finitely many distinct ways of
exchanging vertices of a tower polytope) and a subgroup of GL(R"), where n = k — a is
the number of unbounded moduli/radions.

While G; ~ W(G) is not the full U-duality group (it lacks information about the
symmetries of compact scalars and rescaling of the radions), it greatly constrains G, as W(GQ)

34 Analogously as for the compact case, the Weyl group is unique up to isomorphism.
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Figure 25. Tower polytope P and the action on it by the group Gg = S3 x S =
<y, a:y?=ad=e, yay = a_1> X <m cx? = e>. The fixed loci correspond to those invariant under z
(I(g,y in table 1) and y (TI(s 1))

is the group generated by the reflections over hyperplanes perpendicular to the roots of the Lie
algebra g of G. In the case of toroidal compactifications of M-theory to d = 11 —n dimensions
the moduli space is given by the homogeneous space E,,,)/ Ky, where E,,, are the split real
forms of the compact exceptional Lie groups F,,, and K, is the maximal compact subgroup
of Eyn). This way E,,) acts a global symmetry on the moduli. For the UV completion of
maximal supergravity by string theory compactifications, this symmetry is broken to a discrete
subgroup E,,)(Z), though the Weyl group stays the same [71]. This way, the symmetry
group of the maximal supergravity tower polytopes P(4) can be computed, as in table 3.

To obtain the symmetry group directly from P(g), we use the fact that G4 < GL(R,n)
(with n = 11 — d for toroidal compactifications), and each element g € G4 is determined
by its action on n linearly independent vertices out of the N; different EKKl vertices that
generate P(q). There are Nn—‘f! possibilities, represented by M, € GL(R, n) matrices, which can
be used to check if the tower polytope is left invariant, and thus g € G4. This determines
Gg, as the matrices M, give a representation of its elements. By this method one recovers
the Weyl groups from table 3, at least for d € {10,9,8,7,6}.

One can see whether an /-dimensional tower polytope with ¢ < 11 — d built using the
d-dimensional taxonomy rules is embedded in P4 as part of an ¢-hyperplane containing the
origin. One way to obtain such a polytope is by studying the invariant loci of P(4) under the
different elements of G(4). Here, we will consider tower polytopes of rank £ > 2.

+ We begin with d = 8, with P(g) being 3-dimensional and Gg = S3 X S having |S3 x Sa| =
3!- 21 = 12 elements. As depicted in figure 25, there are two classes of 2-dimensional
fixed loci, respectively being the fixed points of the order 2 elements of Ss and Sjs.
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d Enn) K, Ga~W(Eym) | 1Gal | Na
10A Rt 1 1 1 1*
10B SL(2,R) SO(2) Zy 2 2

9 | SL(2,R)xSO(1,1) SO(2) Sy~ 7y 2 3

8 | SL(3,R)xSL(2,R) SO(3) x SO(2) Ss % Sy 12 6

7 SL(5,R) SO(5) S5 120 | 10

6 Spin(5, 5) (Spin(5) x Spin(5))/Zs SG(5) 1920 | 16

) EG(()‘) USp(8)/Z2 VV(E@(@)) 51840 27

4 Eqr) SU(8)/Zs W(E7ry) | 2903040 | 56

Table 3. Global symmetry groups F,,(,) of the d-dimensional supergravities and associated maximal
compact subgroups and Weyl groups, for 10 > d > 4 (for completeness we also depict d = 5 and
4, even if their associated P4 have not been computed). Notice the two possibilities for d = 10,
corresponding to Type ITA and Type IIB 10d supergravities. Following [71], W(SL(n)) ~ S,
and W(Spin(n,n)) ~ SG(n), the group of even permutations o of {—n,...,—1,1,...,n} such that
o(—xz) = —o(x). The order of these groups and the number N, of 5KK1 vertices generating P is
also given. Note that Nijga = 1 as P(jpa) is generated by a 5KK1 and a 5056 vertices.

These are the polygons depicted as II(g 1) and IIg ) in table 1, precisely the two only
rank 2 polytopes given by taxonomy in d = 8.

o For d =7, the four-dimensional polytope P(7) is spanned by ten Q?KKl, and G7 = S5 has
5! = 120 elements. In this case we obtain two possible rank 2 polytopes as fixed loci,
precisely the unique two polygons Il(7 ) and Il(7 ) depicted in table 1, as well as a
single three-dimensional polytope, depicted in figure 26.

o For d = 6, the five-dimensional polytope P (with 5KK1 depicted in figure 20(b)) has
symmetry group Gg = W(Spin(5,5)), of order 1920. When obtaining the fixed loci,
those of dimension 2 correspond to the 2-polygons g1y, g 1), g and g vy

1.35

from table There are no pairs of (osc and (kk, vectors with an arccos% angle

between them (preventing the 6 v, ex) and Tl xy)), no pairs of 5KK4 and 5KK5

vectors separated a distance 1/% (polygons IL (g vr), II(6,1x) and II(g x7)) and no pairs of

5KK2 and 5KK4 vectors separated a distance % + % (H(G,VH) and H(67X)). As for the

3-dimensional fixed loci, three of them are found, depicted in figure 28. Finally, a single
type of fixed locus of dimension 4, depicted in figure 29, is recovered.

On principle one could consider the possibility that the II(4 ) polygons in question do not
belong to an invariant plane, but still can be embedded on P(g). A careful study (computing
the distances between the different vertices and trying to connect them with the lengths in
H(d,.)) shows that this is not the case, i.e. all the Il .y polygons embedded in P(4) appear
in fixed planes.

35Note that II(6,vy from table 1 does not appear as an invariant locus of P, though seemingly it is allowed
by the rules. However, as shown in section 4.4, the polygon is consistent, simply not appearing for toroidal
compactifications of maximal SUGRA, but rather some other (unidentified) compactification without cycles of
odd dimensionality.
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Figure 26. Unique three-dimensional polytope obtained by applying the taxonomy rules for d = 7.
The string, (xx, and (kk, towers are depicted in red .], blue .I and green . Edges and facets
associated to decompactifications of two, three and four dimensions appear in green j, yellow D
and orange l:l, with their closest point to origin highlighted. Note the sphere with radius \/% = %
is contained inside it.

From the recursive behavior of P4 when decompactifying, the following relation is
recovered. As shown earlier in this appendix and in [36], for d < 9 all N, different (kk,
vertices generating P(4) are KK modes of one dimension reduction, allowing recovery of P(q1)-
As these tower polytopes have symmetry groups G4 and Gg41, from the orbit-stabilizer group
it is straightforward that

’Gd| == Nd|Gd+1| for d < 8, (A18)
as noted in table 3.

A.4 M-theory on K3

Our rules not only apply to toroidal compactifications of M-theory, but also to more involved
internal manifolds, such as a K3-surface. In this subsection, we consider a particular 2d slice
of M-theory compactified on a K3 surface to produce a seven-dimensional theory with 16
supercharges. We show that this example is captured by our polygon classification for 7d
theories with 11d as the maximum decompactification dimension.3®

For simplicity we consider attractive K3s (i.e. with maximal rank 20 = h%!(K3) for
the Picard group Pic(K3) = HY1(K3) N H%(K3,Z)), such that the complex structure is
completely fixed [72], and the 7d action and the masses depend on only the Kéhler moduli

{t2}20,. The relevant part of the 7d action is

S7qa D 712 / d"zv/—g [R - %(8log Vi3)? — Ga0i® - 91 | (A.19)
K7

36For an in-depth discussion of the physics behind this example, see [40, 51, 56].
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Figure 27. Species polytope in d = 7 dual to that pictured in figure 26. The Z-vectors associated
to the string scale are depicted in red . while those to the 8, 9, 10 and 11-dimensional Planck
mass appear in blue - green - yellow I:l and orange . respectively. The sphere with radius
W T is depicted. The facets recovered from rank 2 species polytopes for (D =7+ n)-

dimensional theories are outlined in blue (n = 1, corresponding to H(s 0 and H(s my in table 2)
and green (n = 2, P(Og) = (9 I)) The facets not outlined are congruent to those that are. The n
associated to each facet must be subtracted from each vertex to recover the appropriate one in the
D-dimensional theory.

(b) ()

Figure 28. Representation of the three rank 3 tower polytopes in d = 6 obtained as slices of the
maximal Pg) tower polytope. The string, fKKl, 5KK2 and fKKS towers are depicted in red -, blue
., green i and yellow l:’ Edges and facets associated to decompactifications of two, three, four
and five dimensions appear in green -, yellow \:|, orange - and pink . with their closest point to
origin highlighted. In gray the sphere with radius 2 is depicted. Note that the cube depicted
in figure 28(a) is nothing but that from figure 7(b) under the rescaling described before section 4.2.
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Figure 29. An illustration of the unique four-dimensional tower polytope in d = 6 obtained as a slice
of the maximal tower polytope P of M-theory compactified on T 5 (note that other rank 4 tower
polytopes following the taxonomy rules could exist, associated to non-toroidal compactifications).
For simplicity, the only depicted towers are those corresponding to vertices generating the polytope,
associated to decompactifications of either one or two dimensions, respectively in blue . or green .I

where Vi3 = %nabt“tb is the K3 volume in Planck units, 7, = w, - wp are the intersection
numbers in a basis {w,} of H%!(K3,Z), such that the Kéhler form is expressed as J = t%w,,
and {{* =t/ VII(/; 20 | are rescaled moduli with £7,,t%t* = 1. The (classically exact) moduli
space is given by Mgz = 0(3,19; Z)\O(3,19; R)/O(19) x R;. The coset piece, parameterized
by {t%}2%,, admits the natural metric

G = / Wa N\ *Wwp = it — Nab » (A.20)
K3

9
202,
in [40] the attractive K3 admits an elliptic fibration Cy over a P!-base, such that the associated

while the R is parameterized by the global volume, with metric Gy, vy, = . As shown

2-form wyp has intersection 79p = wp - wp = 0. One can then work in the (flat) 2d-slice of M3
spanned by the canonically normalized moduli {Vg, = % log Vks € R, ty = logty > 0}.%7
There are five possible leading towers becoming light in the different infinite-distance limits

(see section 4.2 from [51] and references therein for more details):

e In the large volume limit, Vi3 — oo, with the Kéhler saxions fixed, we decompactify to
11d M-theory, with

MKK, K —9/20 g
TRE K3 K3/ — CKS = ( (A.Ql)

3 0)
Mpy 7 25 )

¢ In the small volume limit, V3 — 0, an emergent, heterotic-like, string appears as a
result of Mb5-branes wrapped over the whole K3 surface becoming light, with

MM5 3/10 = ( 1 )
— ~ == =|——=,0]. A.22
T~ Vi = G = (2 (A:22)

3"Do not confuse the canonically normalized modulus o with the unit tangent vector £ given some trajectory.
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« Associated to the P'-base, in the ¥ — oo limit we have that its volume grows asymp-
totically, resulting in a KK tower

- 3 1
~ (0)2VU0 G = <> , A.23
T~ O = G = (575 (423
which decompactifies to 9d Type IIA string theory.

o Additionally there exits %—BPS states obtained from wrapped M2-branes on the genus-

one fiber Cy shrinking in that limit, with

M2 20\ —14,3/10 > ( 1 )
~ (t V, — =(—-———,1), A.24

amounting to decompactification to an 8d theory given by F-theory on K3.

o There is an extra tower charged both under the P! KK and the M2 winding modes,
equivalent to decompactifying three internal dimensions to 10d Type IIB string theory,

MKKs _ 1,~1/570\—-2/3 o (2 2) A2
Vies' (1) = (KK; 375°3) (A.25)

The species scales for each of the different limits can be computed as the Planck masses of
the theories we are decompactifying to, or the string scale in the case of the wrapped M5
limit. In figure 30 the different vectors are plotted, both for the towers and species scales.
The resulting convex hull corresponds tg half of tPe polygon II(7 1) represented in table 1,
divided by the symmetry axis given by (kk, and (us. Even if the asymptotic region of the
moduli space (in our flat frame) subtends only an angle of 7 (rather than 27), one can still
apply the taxonomy rules to fill the regions between the above limiting vectors, which are
known to be there beforehand from the Vs — 4oo limits.

This example demonstrates that our taxonomy rules apply to examples beyond toroidal
compactifications, but also to more complicated ones — even cases in which the moduli
spaces are not geodesically complete (for more on this see appendix C). On principle, one
can try to find a 3-dimensional flat slice on Mg, obtaining additional towers, in a such a
way that part the tower polytope depicted in figure 26 is recovered.

B Orthogonality of sliding

In this section, we discuss orthogonality of sliding for flat moduli spaces.

Consider first a flat 2d moduli space with coordinates {z,y}, and let m = m(z,y) be
the characteristic mass of an infinite tower as a function of the moduli. Defining f(z,y) =
—logm(z,y), we have

(=V7. (B.1)

Geodesics are straight lines in the plane, with all of them going to infinite-distance limits.
Let us assume that asymptotically far out along any geodesic,  goes to a constant, finite
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Figure 30. Scalar charge-to-mass ratio vectors for the different towers (outer polygon) and cut-offs
(inner polygon), for M-theory compactified on K3, in the moduli space slice spanned by the canonically
normalized Vs € R and f, > 0, [51, 56]. Note that they correspond to half of the polygon II(7
depicted in table 1 and its dual polygon (H‘(’UI) in table 2). The different theories resulting from each
limit are also depicted.

vector. This implies, for instance, that if the geodesic points in the ¢ = (*,¥) = (1,0)
direction (with any fixed value of y), then we must have

02z — 0 and O0zCy — 0 as x — oo, fixed y. (B.2)

But then, since (; = 0.f, (, = 0yf, and assuming partial derivatives commute, this
implies that

OyCs — 0 as x — oo, fixed y. (B.3)

That means that, although the asymptotic values of E can change as we move to a different,
parallel geodesic, the change can only occur in a direction that is perpendicular to the original
geodesic. The generalization to an n-dimensional flat moduli spaces involves replacing y
with a vector i € R"~1,

The above covers the case where the impact parameter of the geodesic is varied while its
direction is held fixed (i.e., we take different geodesics going to the same infinite-distance
point). Suppose, instead, that we vary the direction of the geodesic, and let the new and
old geodesics intersect at some point, which we take to be the origin. Then it is convenient
to write f = f(r,0) in polar coordinates. Now we have

_of _Los

G=2 %= 3 (B.4)

Thus, in order for E to approach a 6-dependent constant as r — oo at fixed #, we must have

fr0) =rfi(0) +---, (B.5)
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up to terms that grow more slowly that O(r). Now we compute

(= f(0)7 + f1(0)8. (B.6)

Using Op7 = 0 and 895 = —7, we find:
06 = F1(0)7 + F1(0)0 + f1(0)0 — f1(0)7 = [f1(0) + f1 (0)]9, (B.7)

so indeed the change in 5 is always perpendicular to the direction of the geodesic 7

In fact, this 2d analysis implies the sliding behaves in the same way in the higher-
dimensional case. One could replace 2d polar coordinates with higher-dimensional spherical
angular coordinates. A detailed analysis of a higher-dimensional spherical example reduces
to a generalization of the 2d one.

C Geodesically-incomplete examples

In this appendix, we discuss the applicability of our taxonomy rules in general geodesically
incomplete moduli spaces, where not every direction leads to an infinite-distance singularity.
Another example of our taxonomy rules in such spaces can be found in appendix A.4.

As a broad class of geodesically incomplete moduli spaces, consider compactifications
on Calabi-Yau threefolds X ,*® with the Kihler form J = s?[D,] expanded in an integral
basis [D,] Poincaré-dual to a set of divisors D,. In terms of the triple intersection numbers
Kabe = Dq + Dy - D, the volume of X in string units is given by Vx = %/{abcs“sbsc, and the
saxionic components of the moduli space metric are given by

1

Gab = —ic‘)a@blog Vx. (Cl)
The Kéhler cone IC(X) C RZ is the set over which J takes values, parameterized by {sayhli=n.
In general the inclusion is strict, as these saxions measure the volume of the effective curves
generating the dual Mori cone Eff;(X), whose relationship with D? is nontrivial. From the
definition of KC(X), it follows that the (saxionic) moduli space®’ might be asymptotically
flat*® but is never geodesically complete. One can compute that, for flat K(X), the subtended
angle is given by

4
Qerxy = — lim 7 VGds'...ds", (C.2)

n r—oo »/IC(X)QB(SO,T)

where B(sg,7) = {s: ||s,so|| < 7} and sq is some arbitrary fixed point. In general Qx(x) <
27xn/2
I'(3)

As described in [24], K(X) can be divided in several growth sectors R;, i, = {s"" 2 ... >

~

, but as we will argue now, we expect these angles to be quantized by the taxonomy rules.

5"} as we move to infinite-distance limits. Each growth sector is associated to a specific

38Gee [50, 73, 74] for more details on these concepts in Kahler geometry and the associated cones.

39This is at least true parameterizing this patch, there could be flops to other Kihler cones.

4%While it is easy to check that, up to o’ and instanton corrections, which can be safely ignored in the
asymptotic regime, the saxionic moduli space is Riemann flat for n = 2, this is not generally the case for
n > 2, see [75] for more on the asymptotic curvature of CY moduli spaces.
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X P(1,1,1,6,9)[18] ]P>(1,1,1,276)[12]
VX %(81)34- %(81)2824- %82(32)2 %(81)3+2(81)282
Q,C(X) %0171 = arccoty/2 61 = arctan /2
Limiting points CKK;» CKKs CKKy» Gosc

Table 4. Volume of the different CY5 manifolds from section 5 from [51], as well as subtended angles
of the two-saxion Kéhler cones and limiting towers.

singularity type,*' with an associated fibration structure in X and dominant leading tower
becoming light. As limiting interfaces of the Kahler cone will correspond to the “deepest”
regions of some growth sectors, the scalar charge-to-mass ratio vectors of the leading towers
in these limits are expected to point along these directions. This way, even if the moduli
space is not geodesically complete (so that the polytope following the taxonomy rules closes),
it still needs to “fill up” the solid angle Qi (x) enclosed by these tower vectors.

The nuance here comes when realizing that these tower vectors can correspond to points
that in the “complete” vectors appear in edges/facets/etc closest points to the origin, such
as fpc = 5KK2 along an edge spanned by 5KK1 vertices, see (2.15).

To illustrate this, we refer to the two 2-moduli d = 4 examples appearing in section 5
from [51], corresponding to Type ITA string theory on P(LL169)[18] and P1:11.26)[12]. There
is no sliding for any of these tower vectors (although there is for some of the subleading
towers). This allows us to compute the subtended angles, either using (4.2), or directly
from (C.2), as in both cases the explicit flat coordinates are known [51] and the integral
can be computed. The different results appear in table 4.

The procedure could, in principle, be generalized for n > 2 and performing flops to
adjacent Kéhler cones, but will not be further developed in this paper, and will be left
for a future work [76].
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