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Abstract

We computed the eigenvalues and eigenfunctions via the Cornell potential, approximately, using
Numerov approach. The experimental data for the quantum states °S; were utilized to fit the mass
spectra. Results were compared with observed data and the results obtained from other potential
functions in the existing literature for the heavy (cZ, bb and b¢) as well as heavy-light (B, Bs, D and Ds)
meson states. The yielded meson spectra based on this potential are matching well with the available
experimental data.

1. Introduction

Quarkonium systems provide a hot set for studying fundamental features of Quantum Chromodynamics
(QCD) and matter’s behavior under extreme conditions. The fruitful results of these studies help us to
understand both perturbative and non-perturbative processes in particle physics. Within the exciting field of
particle physics, quarkonium is a unique kind of bound states which build up of an antiquark plus heavy quark
(which can be either a charm or a bottom quark). The word ‘quarkonium’ refers to the bound state formed by an
electron and an anti-electron (positron), analogous to positronium. Quarkonium states featured with parity,
spin and angular momentum, in addition to the other quantum numbers. Higher energy states of quarkonium
are characterized by a series excited (¢/, 1", etc) states. Some certain states such as the unknown X (3872) particle
remains unverified and still being studied [, 2]. Strong force interactions between heavy quarks can be better
understood by looking at quarkonium states, which show how fundamental particles interact in a complex
dance in the quantum realm [3, 4].

In hadron physics, heavy quarkonium have been extensively studied because they involve the non-
perturbative part of QCD and have a large amount of experimental data [5-7]. Theoretically, tremendous
models have been used to study heavy quarkonium [8—18]. Among these, the non-relativistic potential models
stand out for their simplicity, as they simulate quark interaction using potential energy in the standard
Schrodinger equation. Within the framework of QCD, the concept of the Cornell potential [19, 20] arises in
particle physics. In 1970, researchers at Cornell University recommended the Cornell potential to describe the
masses of quarkonium states (such as mesons and baryons) and their correlation with the angular momentum.
Cornell potential is a good inception for one or more quark mass expansion in the framework of the non-
relativistic QCD (NRQCD) which can be used to justify this image for heavy quarkonium [21-24]. The potential
energy that exists between two quarks as a function of their separation distance is represented by Cornell
potential. The advantage of using Cornell potential is that the two naturally yielded Hamiltonian possibilities are
comparable [25]. Since the spin—orbit and tensor components of the potential are absent for the1 > 0 states, the
mass spectra degenerate, and the hyperfine splitting is only observed for the S-wave states.

The Cornell potential predicted linear confinement behavior, which was validated by lattice QCD
simulations (numerical computations utilizing a grid). Researchers have employed Numerical techniques to
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solve Schrodinger equation based on Cornell potential [26, 27]. The one-dimensional solution to Schrodinger
equation will be discussed. This problem is quite similar to calculating the radial wave function for spherically
symmetric potentials in two or three dimensions. This equation can be solved by using a fifth-order numerical
methodology called Numerov’s method [28—34]. The Numerov approach, commonly referred to as Cowell’s
method, is a numerical method for solving second-order ordinary differential equations (ODEs), which is useful
in case of the first-order term is missing.

Boris Vasil’evich Numerov, a famous Russian astronomer, produced and recommended this method. We
can convert this equation into one that is compatible with Numerov’s technique by introducing a suitable
replacement. The outcomes of this approach are very important for predicting the behavior of the quantum
systems. For a certain potential, the energy eigenvalues and eigenfunctions (stationary states) can be estimated.
We limited our investigation to S-wave states, however, the method presented in this paper can be generalized to
the radial and orbitally excited states as well. The main goal of this wirk is to find out an approximate solution
based on Cornell potential for the meson bound states, and hence, using the bound state solution to extract the
quarkonium system mass spectra.

This paper is organized as follows: section 2, is devoted to draw out the main elements of the potential model
used and the approximations of energies and wave functions for heavy quarkonium using Numerov technique.
Section 3, is devoted to discuss the resulted meson spectra based on Cornell potential. And finally, a concluding
remark are given in section 4.

2. Methodology

The effective potential models are utilized in an antiquated efficient method to determine the masses of
quarkonium states. According to this method, the quarks are stated in a static potential because their motion is
non-relativistic, which is similar to the non-relativistic version of hydrogen atom. In 1970, Godfrey and Isgur
[35] provided one of the most often used potential models, Cornell potential, and expressed as [36—40]

—4 oy

V) = +br+o @)
where 7 is the quarkonium state effective radius, the —4/3 is a colour factor, «, b, and c are parameters that will
be found later by fitting the states’ meson mass spectra with values that have been measured by the Particle Data
Group (PDG) [41, 42]. This potential is divided into three parts: The first part (—4 a5 /3r), represents the one-
gluon exchange potential between the quark and antiquark, which is also called the Coulombic potential because
of the 1/ r form is the same as the well-known Coulombic potential caused by the electromagnetic force. The
second part is the confinement potential, br, this part is used to parameterize the non-perturbative effects of
QCD, which are not well understood.

The third part, ¢, represents the relativistic correction and other effects, which can be incorporated into this
approach by adding additional terms to the potential, similar to the hydrogen atom behavior in the non-
relativistic quantum mechanics.

When employing this method, a convenient form for the quarks’ wave function is picked, and o, and b are
obtained by fitting the calculated results of the masses for the well-measured quarkonium states. Although there
is no strong theoretical basis for this approach, it is widely used because it makes accurate quarkonium
parameter predictions without requiring a complicated lattice computations and distinguishes between the
long- and short-range confinement effects, which are helpful in understanding the quark/anti-quark force
produced by QCD. The two-body system radial Schrédinger equation (RSE) in a spherical symmetric potential
is represented based on wave function R,;(r), energy eigenvalue (E,;), and centrifugal barrier term as

2 2
AR (V(n + WLj))anm — EuRu(n), @
2 dr 2ur
where 4 is meson’s reduced mass and [ is the orbital quantum number. Naturally, the non-relativistic
Hamiltonian provided by [43—47] is the left term.

p2
H=M+ — + V(n), 3)
2
M =M, + Mg, )
M, M;
p=—">—", )
M, + M;

M,/ Mj; denotes the quark /antiquark mass parameters. The symbol * P ¢ stands for the relative momentum
of each quark.
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By adopting natural units and substituting equation (1) into equation (2), we get

1 d?R,(r) —4 q I+ 1)
- + + b + Rn = En Rn 5 6
2 dr r e 1(r) 1R (r) (6)

In addition, we take ¢ = 0 in the potential (1) into consideration for the verification of quantum mechanical
expectation. Our approach is based on the numerical solution of equation (6) as a matrix eigenvalue problem.
The radial second derivative finite difference approximation can be simplified by converting it into tridiagonal
matrix form. Because of the presence of the Gaussian function, the analytical solution of equation (6) is not
possible using the potential from (1). So, we numerically solved this equation using the Numerov technique [33]
to derive the eigenvalue and eigenfunction equations for the ground state (/= 0 and S = 1) with the Cornell
potential, as well as the heavy quarkonium spectrum and wave functions.

The time-independent one-dimensional Schrodinger equation can be written as follows

fr) = %(Enz V@), sh=1 @)

With a distance d between each point on the lattice, x;, equally spaced, we can write the integration formula as

_ i (2 =AY ) — 24 5, +12)

Yiv1 = (®
., — 12
From the above equation
s = 12¢i1 — d*,_, Yio1 — 10d%f, b — 244
T d2fi+1 — 12 ’
Hence
A i1 — 1200 = 120y — d*fi_ | i —10d%f, apy — 244, 9

Applying equation (7), we obtain
—2md?/ [ (Epi—1=Vi-hi—1) + (10EY; — 10ViYh) + (Bir—Vierhip )] = 12051 — 24 + ¥y, (10)
where 1; = 1 (x;). After rearranging the equation above, we get:

Z1 @i = 20t i) | Vi tion + 10V 4 Viga Vi) _ p (Wi + 1005 + i)

, 11
2m d? 12 12 ()

Now, using only the grid number d and matrix size N, we will convert the well-known Numerov approach
into a representation of matrix form on a discrete lattice. In order to accomplish that, ¢ will be defined as a
matrix and represented by a column vector (....10; 1, ¥;, ¥iyq -...)
Iy — 2+ 1) Iy + 10+ L)
— By~ =

d 12
where I, is a matrix of 1S along the pth diagonal. The matrix version of equation (11) could be created, and zeros
elsewhere, as follows

AN,N = > VN = diag(-“-:\/ifl > ‘/iy ‘/i+1)7

—1
EAN,Nwi + By, N Wi = EiBn, N, (12)
Multiplying by By 'y yields
—1 _
—An, N By + Wi = Eii, (13)
2m
For the 3D radial Schrédinger equation, equation (13) could be written as
—h? _ 11+ 1
ZAN,N By i + [VN(r) 4+ K = )]wi = Eit;, (14)

This numerical technique allows us to solve the eigenvalue issue for any possible hadron-hadron bound
states.

3. Results and discussion

The Numerov approach has been employed extensively to obtain the heavy mesons’ bound states. We applied
the Cornell potential to solve Schrédinger equation. The interpolated function representing the reduced wave
function and energy eigenvalue are the outputs that are automatically generated. In addition to the heavy-light

3
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Table 1. Optimal values of parameters used to get the best values of heavy and heavy -light mesons.

Parameters me; myp my; mgs o b
(GeV) (GeV) (GeV) (GeV) (GeV™h (GeV?)

Charmonium 1.44 — — — 0.48 0.149
Bottomonium — 4.58 — — 0.119 0.24
Bottom-charm 1.44 4.58 — — 0.126 0.168
Charmed/Charmed-strange 1.44 — 0.295 0.376 0.586 0.109
bottomonia — 4.58 0.295 0.376 0.87 0.18

Table 2. Charmonium mesons mass spectra. the units for all the masses

are MeV.

Charmonium
State
J =1 Our [49] [50] [48] Exp.[41,42]
1S 3.076 3.081 3.1404 3.096 3.097
2S 3.656 3.717 3.7017 3.685 3.686
3S 4.064 4.003 4.0502 4.039 4.039
48 4.408 4.156 4.4185 4.427 4421
5S 4.714 4.247 4.6591 4.837 4.63
6S 4.996 4.305 4.8801 5.167 —

Table 3. Bottomonium mesons mass spectra. the units for all the masses

are MeV.

Bottomonium
State
Je =1 our [51] [50] [49] Exp.[41,42]
1S 9.556 9.460 9.49081 9.465 9.460
2S 10.012 10.064 10.01257 10.003 10.023
3S 10.365 10.355 10.32775 10.354 10.355
4S 10.671 10.517 10.5461 10.635 10.579
5S 10.947 10.617 10.82628 10.878 10.885
6S 11.204 10.682 10.97061 11.102 11.000

mesons, the mass spectra for the charmonium, bottomonium and bottom-charm mesons were obtained for the
triplet (S= 1) states.

By employing the Mathematica package reduction strategy, we were able to extract the Cornell potential free
parameters o, and b numerically from the mass spectra equation provided by the relation.

Mnl = mq + mq + Enb (15)

Utilizing this approach, we formulate the equation (M; (as, b),—m;) in a way that matches the global
minimum equation.

3
(M;(mg, a5, b) — m;)> = 0. (16)
> g

i=0

where the meson triplet state constant fitting masses are represented by the ;. In order to conduct an acceptable
fit. we set additional constraints on o, b, m, and m;. A global minimum, also known as an absolute minimum,
is the smallest overall value of a set, function, etc, over its entire range. It is impossible to construct an algorithm
that will find a global minimum for an arbitrary function. Table 1 outlined the fitted potential parameters. For
the quantum states listed in tables 2—6, we utilized the fitted masses of the PDG. Several model predications of
mass spectra for heavy flavored mesons that are accessible in the literature are included in tables 2—6.

The charmonium mesons mass spectra are found in table 2 and compared with the findings of some previous
studies published in the literature [48—50] and the experimental data that are accessible on the PDG [41, 42]. The
computed mesons masses for S-wave states with quantum number J° = 1 ~are consistent with the measured data
and some other published results.
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Figure 1. Potential energy curves for S-wave state with spin one of heavy and heavy-light mesons.

The bottomonium and bottom-charm meson masses are shown in tables 3 and 4, respectively. The
bottomonium meson results matched well with experimental data [41, 42] and previously published works
[49-51]. The masses of bottom-charm mesons matched also well with the previous theoretically-obtained
masses [49, 50, 52].

The heavy-light mesons masses are shown in tables 5 and 6, respectively. The heavy-light meson results
matched well with the measured data[41, 42] and previously research works [53, 54]. This research work
produces a comparable result for the heavy and heavy-light meson masses spectra in comparison to the available
experimental data and some other published values as mentioned in the literatures [48—54].

Using the potential parameters obtained in table 1, the potential energy curves were plotted for heavy
mesons, as well as heavy-light mesons (See figure 1). In figure 1, (A) corresponds to ¢z, (B) corresponds to bb, (C)
corresponds to b¢, (D) corresponds to charmed meson, and (e) corresponds to bottomonia meson.
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Table 4. Bottom-charm mesons mass spectra. the units for all the masses

are MeV.
Bottom-charm
State
Je=1" Our [49] [50] [52] Exp.[41,42]
1S 6.462 6.2808 6.6225 6.321 6.375
28 6.906 6.8523 6.9169 6.900 —
3S 7.256 7.1179 7.1858 7.338 —
48 7.561 7.2626 7.431 7.714 —
58 7.838 7.3500 7.654 8.054 —
6S 8.095 7.4068 7.858 8.368 —

Table 5. Charmed and charmed-strange mesons mass spectra. the units for all the masses are MeV.

D Ds
State
=1 our [53] [54] Exp. Our [53] [54] Exp.[41,42]
1S 2.135 2.225 1.973 2.006 2.149 2.253 2.075 2.112
28 2.738 2.724 2.732 — 2.730 2.726 2.781 2.708
38 3.190 3.104 3.325 — 3.159 3.072 3.326 —
4S 3.589 — — — 3.528 — — —
58 4.015 — — — 3.889 — — —
6S 4.532 — — — 4.308 — — —

Table 6. Bottomonia mesons mass spectra. the units for all the masses are MeV.

B Bs
State
JE=1 our [53] [54] Exp. Our [53] [54] Exp.[41,42]
1S 5.251 5.330 5.313 5.324 5.194 5.429 5.403 5.415
2S 6.126 5911 6.064 — 6.04 1 5.957 6.088 —
3S 6.752 — 6.640 — 6.623 — 6.612 —
48 7.283 — — — 7.106 — — —
5S 7.762 — — — 7.539 — — —
6S 8.23 — — — 7.937 — — —

Figure 1 depicts the effect of Cornell potential on the different bound states. It is clear that the bound states
exhibit mathematically similar behavior with slight variations.

4, Conclusion

This work focuses on the ground state (I =0 and S = 1) quantum number J PC€— 1~ for heavy (cZ, bb,and b¢),as
well as heavy-light (D, D, B, B;) meson spectra. However, ¢¢ and bb have several excited states for different
values of /and S. The Cornell potential works well for highly heavy quarks moving in a non-relativistic
framework (static quarks). Our calculated meson spectra were used successfully to analyze the recent observed
values on the PDG by embracing the global minimization approach in Mathematica software to deduce the free
the potential parameters.

The potential shape and nominated method are affecting the accuracy of the mass spectra. Resulted behavior
of the meson mass spectra based on Cornell potential is matched well with the measured energy levels. The
validity of our method is verified with the calculated results by implying the outlined approximation technique.
Due to the approximated method in solving Schrédinger equation, the considered potential is effective in case of
lower states whereas, it lacks some additional mathematical treatments to exhibit reasonable values in case of
higher states. Although, the success of our technique in determining the mass spectra with high accuracy for the
heavy mesons, newly measured data for meson spectra are recommended on the near future to verify the
reliability of that technique in determining the heavy-light meson mass spectra.
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