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Abstract
Wecomputed the eigenvalues and eigenfunctions via theCornell potential, approximately, using
Numerov approach. The experimental data for the quantum states 3S1 were utilized tofit themass
spectra. Results were comparedwith observed data and the results obtained fromother potential
functions in the existing literature for the heavy (cc,¯ bb̄ and bc̄ ) as well as heavy-light (B,Bs,D andDs)
meson states. The yieldedmeson spectra based on this potential arematchingwell with the available
experimental data.

1. Introduction

Quarkonium systems provide a hot set for studying fundamental features of QuantumChromodynamics
(QCD) andmatter’s behavior under extreme conditions. The fruitful results of these studies help us to
understand both perturbative and non-perturbative processes in particle physics.Within the exciting field of
particle physics, quarkonium is a unique kind of bound states which build up of an antiquark plus heavy quark
(which can be either a charmor a bottomquark). Theword ‘quarkonium’ refers to the bound state formed by an
electron and an anti-electron (positron), analogous to positronium.Quarkonium states featuredwith parity,
spin and angularmomentum, in addition to the other quantumnumbers. Higher energy states of quarkonium
are characterized by a series excited (j′,ψ″, etc) states. Some certain states such as the unknownX (3872) particle
remains unverified and still being studied [1, 2]. Strong force interactions between heavy quarks can be better
understood by looking at quarkonium states, which showhow fundamental particles interact in a complex
dance in the quantum realm [3, 4].

In hadron physics, heavy quarkoniumhave been extensively studied because they involve the non-
perturbative part ofQCDand have a large amount of experimental data [5–7]. Theoretically, tremendous
models have been used to study heavy quarkonium [8–18]. Among these, the non-relativistic potentialmodels
stand out for their simplicity, as they simulate quark interaction using potential energy in the standard
Schrödinger equation.Within the framework ofQCD, the concept of the Cornell potential [19, 20] arises in
particle physics. In 1970, researchers at Cornell University recommended theCornell potential to describe the
masses of quarkonium states (such asmesons and baryons) and their correlationwith the angularmomentum.
Cornell potential is a good inception for one ormore quarkmass expansion in the framework of the non-
relativistic QCD (NRQCD)which can be used to justify this image for heavy quarkonium [21–24]. The potential
energy that exists between two quarks as a function of their separation distance is represented byCornell
potential. The advantage of usingCornell potential is that the two naturally yieldedHamiltonian possibilities are
comparable [25]. Since the spin–orbit and tensor components of the potential are absent for the l> 0 states, the
mass spectra degenerate, and the hyperfine splitting is only observed for the S-wave states.

TheCornell potential predicted linear confinement behavior, whichwas validated by latticeQCD
simulations (numerical computations utilizing a grid). Researchers have employedNumerical techniques to
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solve Schrödinger equation based onCornell potential [26, 27]. The one-dimensional solution to Schrödinger
equationwill be discussed. This problem is quite similar to calculating the radial wave function for spherically
symmetric potentials in two or three dimensions. This equation can be solved by using afifth-order numerical
methodology calledNumerov’smethod [28–34]. TheNumerov approach, commonly referred to as Cowell’s
method, is a numericalmethod for solving second-order ordinary differential equations (ODEs), which is useful
in case of thefirst-order term ismissing.

Boris Vasil’evichNumerov, a famous Russian astronomer, produced and recommended thismethod.We
can convert this equation into one that is compatible withNumerov’s technique by introducing a suitable
replacement. The outcomes of this approach are very important for predicting the behavior of the quantum
systems. For a certain potential, the energy eigenvalues and eigenfunctions (stationary states) can be estimated.
We limited our investigation to S-wave states, however, themethod presented in this paper can be generalized to
the radial and orbitally excited states as well. Themain goal of this wirk is tofind out an approximate solution
based onCornell potential for themeson bound states, and hence, using the bound state solution to extract the
quarkonium systemmass spectra.

This paper is organized as follows: section 2, is devoted to drawout themain elements of the potentialmodel
used and the approximations of energies andwave functions for heavy quarkoniumusingNumerov technique.
Section 3, is devoted to discuss the resultedmeson spectra based onCornell potential. Andfinally, a concluding
remark are given in section 4.

2.Methodology

The effective potentialmodels are utilized in an antiquated efficientmethod to determine themasses of
quarkonium states. According to thismethod, the quarks are stated in a static potential because theirmotion is
non-relativistic, which is similar to the non-relativistic version of hydrogen atom. In 1970, Godfrey and Isgur
[35] provided one of themost often used potentialmodels, Cornell potential, and expressed as [36–40]

V r
r

br c
4

3
, 1s( ) ( )a

=
-

+ +

where r is the quarkonium state effective radius, the−4/3 is a colour factor, ,sa b, and c are parameters that will
be found later by fitting the states’mesonmass spectra with values that have beenmeasured by the Particle Data
Group (PDG) [41, 42]. This potential is divided into three parts: Thefirst part (−4 sa /3r), represents the one-
gluon exchange potential between the quark and antiquark, which is also called theCoulombic potential because
of the 1/ r form is the same as thewell-knownCoulombic potential caused by the electromagnetic force. The
second part is the confinement potential, br, this part is used to parameterize the non-perturbative effects of
QCD,which are notwell understood.

The third part, c, represents the relativistic correction and other effects, which can be incorporated into this
approach by adding additional terms to the potential, similar to the hydrogen atombehavior in the non-
relativistic quantummechanics.

When employing thismethod, a convenient form for the quarks’wave function is picked, and sa and b are
obtained by fitting the calculated results of themasses for thewell-measured quarkonium states. Although there
is no strong theoretical basis for this approach, it is widely used because itmakes accurate quarkonium
parameter predictionswithout requiring a complicated lattice computations and distinguishes between the
long- and short-range confinement effects, which are helpful in understanding the quark/anti-quark force
produced byQCD.The two-body system radial Schrödinger equation (RSE) in a spherical symmetric potential
is represented based onwave function R r ,nl ( ) energy eigenvalue E ,nl( ) and centrifugal barrier term as
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where m ismeson’s reducedmass and l is the orbital quantumnumber. Naturally, the non-relativistic
Hamiltonian provided by [43–47] is the left term.
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M Mq q̄/ denotes the quark/antiquarkmass parameters. The symbol ‘ P ‘ stands for the relativemomentum
of each quark.
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By adopting natural units and substituting equation (1) into equation (2), we get
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In addition, we take c= 0 in the potential (1) into consideration for the verification of quantummechanical
expectation.Our approach is based on the numerical solution of equation (6) as amatrix eigenvalue problem.
The radial second derivative finite difference approximation can be simplified by converting it into tridiagonal
matrix form. Because of the presence of theGaussian function, the analytical solution of equation (6) is not
possible using the potential from (1). So, we numerically solved this equation using theNumerov technique [33]
to derive the eigenvalue and eigenfunction equations for the ground state (l= 0 and S= 1)with theCornell
potential, as well as the heavy quarkonium spectrum andwave functions.

The time-independent one-dimensional Schrödinger equation can bewritten as follows

f r
m
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With a distance d between each point on the lattice, xi, equally spaced, we canwrite the integration formula as
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From the above equation

d f d f

d f

12 10 24

12
,i

i i i i i i

i

1
1

2
1 1

2

2
1

y
y y y y

=
- - -

-
+

- - -

+

Hence

d f d f d f12 12 10 24 , 9i i i i i i i i i
2

1 1 1 1
2

1 1
2– ( )y y y y y y- = - -+ + + - - -

Applying equation (7), we obtain
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where x .i i( )y y= After rearranging the equation above, we get:
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Now, using only the grid number d andmatrix sizeN, wewill convert thewell-knownNumerov approach
into a representation ofmatrix formon a discrete lattice. In order to accomplish that, y will be defined as a
matrix and represented by a column vector . , , .i i i1 1( )y y y¼ ¼- +
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where Ip is amatrix of 1S along the pth diagonal. Thematrix version of equation (11) could be created, and zeros
elsewhere, as follows
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For the 3D radial Schrödinger equation, equation (13) could bewritten as
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This numerical technique allows us to solve the eigenvalue issue for any possible hadron-hadron bound
states.

3. Results and discussion

TheNumerov approach has been employed extensively to obtain the heavymesons’ bound states.We applied
theCornell potential to solve Schrödinger equation. The interpolated function representing the reducedwave
function and energy eigenvalue are the outputs that are automatically generated. In addition to the heavy-light
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mesons, themass spectra for the charmonium, bottomonium and bottom-charmmesonswere obtained for the
triplet (S= 1) states.

By employing theMathematica package reduction strategy, wewere able to extract the Cornell potential free
parameters sa and b numerically from themass spectra equation provided by the relation.

M m m E , 15nl q q nl ( )¯= + +

Utilizing this approach, we formulate the equation (Mi b, ,s( )a —mi) in away thatmatches the global
minimumequation.

M m b m, , 0. 16
i

i q s i
0

3
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where themeson triplet state constant fittingmasses are represented by the m .i In order to conduct an acceptable
fit. we set additional constraints on ,sa b, m mand .q q̄ Aglobalminimum, also known as an absoluteminimum,
is the smallest overall value of a set, function, etc, over its entire range. It is impossible to construct an algorithm
thatwillfind a globalminimum for an arbitrary function. Table 1 outlined thefitted potential parameters. For
the quantum states listed in tables 2–6, we utilized the fittedmasses of the PDG. Severalmodel predications of
mass spectra for heavyflavoredmesons that are accessible in the literature are included in tables 2–6.

The charmoniummesonsmass spectra are found in table 2 and comparedwith thefindings of someprevious
studies published in the literature [48–50] and the experimental data that are accessible on the PDG [41, 42]. The
computedmesonsmasses for S-wave stateswith quantumnumber J PC= 1—are consistentwith themeasureddata
and someother published results.

Table 1.Optimal values of parameters used to get the best values of heavy andheavy -lightmesons.

Parameters mc c̄/ mb b̄/ mu ū/ ms s̄/ sa b

(GeV) (GeV) (GeV) (GeV) (GeV−1) (GeV2)

Charmonium 1.44 — — — 0.48 0.149

Bottomonium — 4.58 — — 0.119 0.24

Bottom-charm 1.44 4.58 — — 0.126 0.168

Charmed/Charmed-strange 1.44 — 0.295 0.376 0.586 0.109

bottomonia — 4.58 0.295 0.376 0.87 0.18

Table 2.Charmoniummesonsmass spectra. the units for all themasses
areMeV.

State
Charmonium

J pc= 1 Our [49] [50] [48] Exp.[41,42]

1S 3.076 3.081 3.1404 3.096 3.097

2S 3.656 3.717 3.7017 3.685 3.686

3S 4.064 4.003 4.0502 4.039 4.039

4S 4.408 4.156 4.4185 4.427 4.421

5S 4.714 4.247 4.6591 4.837 4.63

6S 4.996 4.305 4.8801 5.167 —

Table 3.Bottomoniummesonsmass spectra. the units for all themasses
areMeV.

State
Bottomonium

J pc= 1– our [51] [50] [49] Exp.[41,42]

1S 9.556 9.460 9.49081 9.465 9.460

2S 10.012 10.064 10.01257 10.003 10.023

3S 10.365 10.355 10.32775 10.354 10.355

4S 10.671 10.517 10.5461 10.635 10.579

5S 10.947 10.617 10.82628 10.878 10.885

6S 11.204 10.682 10.97061 11.102 11.000
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The bottomonium and bottom-charmmesonmasses are shown in tables 3 and 4, respectively. The
bottomoniummeson resultsmatchedwell with experimental data [41, 42] and previously publishedworks
[49–51]. Themasses of bottom-charmmesonsmatched alsowell with the previous theoretically-obtained
masses [49, 50, 52].

The heavy-lightmesonsmasses are shown in tables 5 and 6, respectively. The heavy-lightmeson results
matchedwell with themeasured data [41, 42] and previously researchworks [53, 54]. This researchwork
produces a comparable result for the heavy and heavy-lightmesonmasses spectra in comparison to the available
experimental data and some other published values asmentioned in the literatures [48–54].

Using the potential parameters obtained in table 1, the potential energy curves were plotted for heavy
mesons, as well as heavy-lightmesons (See figure 1). Infigure 1, (A) corresponds to cc ,¯ (B) corresponds to bb,¯ (C)
corresponds to bc ,¯ (D) corresponds to charmedmeson, and (e) corresponds to bottomoniameson.

Figure 1.Potential energy curves for S-wave state with spin one of heavy andheavy-lightmesons.
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Figure 1 depicts the effect of Cornell potential on the different bound states. It is clear that the bound states
exhibitmathematically similar behaviorwith slight variations.

4. Conclusion

Thiswork focuses on the ground state (l= 0 and S= 1) quantumnumber J PC= 1—for heavy (cc bb, ,¯ ¯ and bc̄ ), as
well as heavy-light (D,Ds, B, Bs)meson spectra.However, cc̄ and bb̄ have several excited states for different
values of l and S. TheCornell potential workswell for highly heavy quarksmoving in a non-relativistic
framework (static quarks). Our calculatedmeson spectrawere used successfully to analyze the recent observed
values on the PDGby embracing the globalminimization approach inMathematica software to deduce the free
the potential parameters.

The potential shape and nominatedmethod are affecting the accuracy of themass spectra. Resulted behavior
of themesonmass spectra based onCornell potential ismatchedwell with themeasured energy levels. The
validity of ourmethod is verifiedwith the calculated results by implying the outlined approximation technique.
Due to the approximatedmethod in solving Schrödinger equation, the considered potential is effective in case of
lower states whereas, it lacks some additionalmathematical treatments to exhibit reasonable values in case of
higher states. Although, the success of our technique in determining themass spectrawith high accuracy for the
heavymesons, newlymeasured data formeson spectra are recommended on the near future to verify the
reliability of that technique in determining the heavy-lightmesonmass spectra.

Table 4.Bottom-charmmesonsmass spectra. the units for all themasses
areMeV.

State
Bottom-charm

J pc= 1– Our [49] [50] [52] Exp.[41,42]

1S 6.462 6.2808 6.6225 6.321 6.375

2S 6.906 6.8523 6.9169 6.900 —

3S 7.256 7.1179 7.1858 7.338 —

4S 7.561 7.2626 7.431 7.714 —

5S 7.838 7.3500 7.654 8.054 —

6S 8.095 7.4068 7.858 8.368 —

Table 5.Charmed and charmed-strangemesonsmass spectra. the units for all themasses areMeV.

State
D Ds

J pc= 1– our [53] [54] Exp. Our [53] [54] Exp.[41,42]

1S 2.135 2.225 1.973 2.006 2.149 2.253 2.075 2.112

2S 2.738 2.724 2.732 — 2.730 2.726 2.781 2.708

3S 3.190 3.104 3.325 — 3.159 3.072 3.326 —

4S 3.589 — — — 3.528 — — —

5S 4.015 — — — 3.889 — — —

6S 4.532 — — — 4.308 — — —

Table 6.Bottomoniamesonsmass spectra. the units for all themasses areMeV.

State
B Bs

J pc= 1– our [53] [54] Exp. Our [53] [54] Exp.[41,42]

1S 5.251 5.330 5.313 5.324 5.194 5.429 5.403 5.415

2S 6.126 5.911 6.064 — 6.04 1 5.957 6.088 —

3S 6.752 — 6.640 — 6.623 — 6.612 —

4S 7.283 — — — 7.106 — — —

5S 7.762 — — — 7.539 — — —

6S 8.23 — — — 7.937 — — —
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