Computing and Software for Big Science (2021) 5:8

https://doi.org/10.1007/s41781-021-00057-z

ORIGINAL ARTICLE q

Check for
updates

Studying the Potential of Graphcore® IPUs for Applications in Particle
Physics

Samuel Maddrell-Mander' . Lakshan Ram Madhan Mohan' - Alexander Marshall' - Daniel O’Hanlon'
Konstantinos Petridis’ - Jonas Rademacker'® - Victoria Rege? - Alexander Titterton?

Received: 24 August 2020 / Accepted: 2 March 2021
© The Author(s) 2021

Abstract

This paper presents the first study of Graphcore’s Intelligence Processing Unit (IPU) in the context of particle physics applica-
tions. The IPU is a new type of processor optimised for machine learning. Comparisons are made for neural-network-based
event simulation, multiple-scattering correction, and flavour tagging, implemented on IPUs, GPUs and CPUs, using a variety
of neural network architectures and hyperparameters. Additionally, a Kalman filter for track reconstruction is implemented
on IPUs and GPUs. The results indicate that IPUs hold considerable promise in addressing the rapidly increasing compute

needs in particle physics.

Keywords IPU - Hardware accelerators - Particle physics - Event generation - Tagging - Track reconstruction - Kdlmén

filter

Introduction

To perform high-precision measurements of rare processes,
particle physics experiments require large data rates. At the
Large Hadron Collider (LHC), for example, proton—proton

< Daniel O’Hanlon
daniel.ohanlon @bristol.ac.uk

Samuel Maddrell-Mander
sam.maddrell-mander @bristol.ac.uk; samuelm @ graphcore.ai

Lakshan Ram Madhan Mohan
lakshan.madhan @bristol.ac.uk

Alexander Marshall
alex.marshall @bristol.ac.uk

Konstantinos Petridis
konstantinos.petridis @bristol.ac.uk

Jonas Rademacker
jonas.rademacker @bristol.ac.uk

Victoria Rege
victoriar @ graphcore.ai

Alexander Titterton

alexandert @ graphcore.ai

H H Wills Physics Laboratory, University of Bristol, Bristol,
UK

2 Graphcore, Bristol, UK

Published online: 17 March 2021

bunch crossing rates of 40MHz result in a typical data rate of
O(1) TB/s, which must be processed in near real time, and is
expected to exceed O(10) TB/s at the high-luminosity LHC
[1]. The future Deep Underground Neutrino Experiment is
also expected to operate its data acquisition system with a
throughput of O(1) TB/s [2]. Such applications currently
require a large number of CPUs on site with considerable
(O(1) PB) disk buffers. In cases where each of these events
must be studied in some depth before deciding whether to
save the event for offline processing, the overall signal rate is
determined by the time taken to make this decision. Further-
more, these high-precision measurements require simulated
data, produced ‘offline’, that mimic the real data as closely as
possible, whilst also minimising the computational burden.
As a consequence of these constraints, many organisa-
tions within particle physics are investigating heterogeneous
computing architectures as part of a strategy to cope with the
vast data volumes expected in the next generation of experi-
ments. Such architectures replace CPU-only configurations
with combinations of CPUs and graphics processing units
(GPUs), and sometimes additionally field-programmable
gate arrays (FPGAs); see, for example, studies by ATLAS,
COMET and LHCb [3-6]. Most notably, the first level of the
software trigger of the upgraded LHCb experiment will run
on GPUs [7], and is scheduled to begin operation in 2021.

@ Springer

http://orcid.org/0000-0002-3001-6690
http://orcid.org/0000-0003-2599-7209
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00057-z&domain=pdf

8 Page 2 of 16

Computing and Software for Big Science (2021) 5:8

Increasingly, GPUs are also used for offline data analy-
sis such as fitting complex theoretical distributions with
many free parameters to large data samples, for example,
using Nvidia’s CUDA API [8], or with TensorFlow-based
frameworks [9, 10]. As dataset sizes in particle physics are
expected to increase exponentially in the coming years,
while CPU clock speeds plateau, hardware accelerators
are expected become increasingly important in online and
offline computing.

Over time, graphics processing units have been modi-
fied for general purpose computing workloads, and have
become the dominant form of single instruction, multiple
data (SIMD), accelerator hardware available to consumers.
However, with the renewed interest in large-scale machine-
learning (ML) algorithms, numerous machine-learning spe-
cific hardware accelerators have been developed. Recently
launched by Graphcore is the intelligence Processing Unit
(IPU), a new type of hardware accelerator based on a bulk
synchronous parallel multiple instruction, multiple data
(MIMD) architecture, and designed for machine-learning
applications.

This paper represents a first investigation of the suitability
and performance of IPUs in typical high-energy physics ML
applications, and an IPU implementation of a Kalman filter.
It includes benchmark tests relative to GPUs and CPUs. The
hardware used for these studies is summarised in Table 1.
The code used to produce the results presented here can be
found in Ref. [11].

The paper is organised as follows: the next section pro-
vides a brief overview of relevant features of Graphcore’s
IPUs. The subsequent sections present implementations
of several particle-physics-related applications, and their
performance on IPUs, GPUs and CPUs. Then a study of
generative-adversarial neural networks (GANS) for particle
physics event generation and reconstruction is presented,
and in the following section, neural network implementa-
tions for online flavour tagging. The code in these first sec-
tions is implemented in TensorFlow or PyTorch, and can
easily be executed on IPUs, GPUs and CPUs. Additionally,
the differences in performance behaviour between IPUs and

Table 1 Key specifications of the processors used in this paper as
provided on manufacturer websites [13-16], and in [12, 17]. Many
features are not represented in this table; key differences in perfor-
mance arise from the very different memory architectures and tech-

GPUs are investigated in some detail for different network
types and parameters. The penultimate section explores the
IPU beyond neural networks and ML, and presents a Poplar-
based implementation of a Kalmén filter, one of the most
ubiquitous track reconstruction tools in particle physics. The
final section concludes this paper.

Graphcore’s IPU

The IPU is a new type of processor designed specifically for
ML applications. Its architecture is fundamentally different
from that of either CPU or GPU. A detailed review of the
architecture and performance of the first-generation IPUs
used in this paper can be found in Ref [12].

The IPU processor is optimised to perform highly par-
allelised fine-grained operations. In contrast to the SIMD
architecture of GPUs, which requires contiguous vectorised
data for efficient operation, the IPU is highly efficient on
applications that require irregular and sparse data access and
can run individual processing threads on small data blocks
while exploiting its MIMD architecture.

This study makes use of Graphcore’s first-generation
Colossus™ MK1 GC2 IPU (see Fig. 1). This IPU comprises
1216 processing elements, called tiles, each of which con-
sists of a computing core with 256 KiB of local memory.
In total 7296 threads can be executed in parallel in a sin-
gle IPU. The tiles are linked through an on-chip intercon-
nect, the IPU exchangem, allowing for a low-latency and
high-bandwidth communication up to 7.7 Tb/s. Each IPU
card consists of two such IPUs. The IPUs are connected to
each other via 80 IPU links"" reaching a total chip-to-chip
bandwidth of 2.5 Tb/s, and are connected to the host via 16
PClIe Gen4 links (8 per IPU).

The IPUs used here are integrated into a DELL
DSS8440 IPU server containing eight dual IPU cards. This
server includes two Xeon Platinum 8168 CPUs with 24%x
32 GB 2.4 GHz DDR4 DIMM Modules. Graphcore also
provides drivers along with its Poplar Software Develop-
ment Kit (SDK). Updates to both the drivers and SDK can

nologies. Performance in terms of floating point operations per sec-
ond (FLOPS) is given for 32 bit single-precision operations. Thermal
design power (TDP) is given for each processor, where for the IPU
this is half of the total board TDP.

Name Cores Memory Clock speed TDP
CPU 1 Intel Xeon Platinum 8168 24 732 GiB 2.7-3.7GHz 205 W
CPU 2 Intel Xeon E5-2680 v4 14 128 GiB 2.4-33GHz 120 W

Name Cores Memory 32 bit FLOPS TDP
GPU Nvidia TESLA P100 3584 16,000 MiB 9.3 TFLOPS 250 W
IPU Graphcore Colossus ™ GC2 1216 286 MiB 31.1 TFLOPS *120 W

@ Springer

Computing and Software for Big Science (2021) 5:8

Page3of16 8

IPU-Tiles™
1216 IPU-Tiles™ each with an independent |

IPU-Core™ and tightly coupled |
In-Processor-Memory™ L

IPU-Core™

1216 IPU-Cores™ with 7296 programs |
executing in parallel |

In-Processor-Memory™
300MB In-Processor-Memory™

45TB/s memory bandwidth
Whole model held on-chip

PCle

PCle Gen4 x16
64 GB/s bidirectional bandwidth to host

™

Fig.1 The Graphcore Colossus = MK1 GC2 IPU [13]

result in improvements to the IPU performance. This paper
relies on SDK version v1.2.0.

During the preparation of this paper, Graphcore released
its second-generation IPU, the Colossus™ MK2 C200 with
20% more tiles and triple the local memory per tile [13].

In this paper, the performance of a single first-gener-
ation IPU is tested against a Nvidia TESLA P100 GPU
and two types of CPUs, depending on the particular form
of the test. The power consumption of the single IPU is
approximately half that of the GPU. Key technical speci-
fications of the IPUs, GPUs and CPUs used are given in
Table 1.

IPUs out-perform GPUs in many machine-learning appli-
cations such as computer vision, natural language processing
and probabilistic modelling [18-20]. Machine learning has
been used in particle physics for decades, initially referred to
as ‘multivariate analysis’ and typically carried out with tools
developed by and for particle physicists, such as the widely
used TMVA package [21]. Increasingly, though, industry-
standard tools and environments are being used, such as
CUDA [22] TensorFlow [23] and PyTorch [24]. While ML
algorithms are most frequently applied in the final stage of
event selection, they are also used for particle identification
[25], flavour tagging [26] and triggering [27, 28]. Neural net-
works have been studied for use in track reconstruction [29],
motivated by their high performance on hardware accelera-
tors like GPUs and FPGAs.

IPU-Exchange™

8TB/s all to all IPU-Exchange™
Non-blocking, any communication pattern

- IPU-Links™

80 IPU-Links, 320GB/s chip to chip
bandwidth

The increased use of GPUs in particle physics offline
data analysis coincided with the advent of increasingly
user-friendly programming environments (such as CUDA
and TensorFlow) that allow programmers without special
training to easily exploit GPU resources. Such environments
exist for IPUs already, including TensorFlow, PyTorch, and
Graphcore’s C++-based API, Poplar. Ease of programming
is a substantial advantage over FPGAs, and is, apart from
performance, a key reason that motivates our study of poten-
tial use of IPUs in particle physics.

In the same way, as GPUs outperform CPUs not only in
the rendering applications they were originally designed for,
but also other applications such as ML, it is reasonable to
expect IPUs to excel in applications beyond ML. Particularly
promising are applications that benefit from the IPU’s flex-
ible MIMD architecture that contrasts with the GPUs SIMD
design, which may result in more optimal parallel software.

Event Generation and Tracking Corrections
Using GANs

Generative Adversarial Networks (GANS) are a class of flex-
ible neural network architectures characterised by a two-
player adversarial training environment where the response
of a classification discriminator network informs the updates
to a generator network [30]. The discriminator is trained to

@ Springer

8 Page 4 of 16

Computing and Software for Big Science (2021) 5:8

distinguish between generated samples and samples from a
training set. The generator network transforms a vector of
random noise into a fabricated sample. GANs are trained
with an iterative approach, this allows the generator and
discriminator networks to improve together in parallel. The
goal of GAN training is to create a generator that is able to
emulate the characteristics of a training data set with high
fidelity.

In the ML community, GANs have been shown to work
well across a spectrum of tasks. The most common task
is the generation of data in the form of images [31-34].
Increased functionality in the GAN comes with the intro-
duction of conditional inputs into the generator, where the
conditional arguments represent characteristics of the gener-
ated sample. The conditional input could be an input image
to which a style transfer can be applied [35], or the reso-
lution upscaled to reconstruct sub-pixel information [36].
The flexibility of neural networks enable the creation of a
wide range of architectures. These recent developments in
the ML community, catalysed by hardware improvements,
have improved generative neural networks to the point that
they can feature as viable tools within particle physics com-
putation. GANSs are capable of modelling high-dimensional
distributions or transformations and are able to generate
samples with high fidelity to training information. Condi-
tional architectures can be designed to enable the networks
to understand physical processes.

Applications of GANs within particle physics are con-
stantly appearing. GANs have been applied in both event
generation [37-43] and detector modelling [44-52]. In
this section the inference and training speeds of some of
these particle physics based GANs are assessed on the [PU
hardware and compared to results on the GPU and CPU
described in Table 1.

Event Generation

Accurate event generation is a crucial component of modern
particle physics experiments. Large samples of simulated
particle physics processes, including the detector response,
are required to optimise the design of the detectors, develop
reconstruction algorithms, understand the efficiency sub-
systems and model the impacts of various physics based
selection criteria. Experiments at the LHC simulate billions
of events every year, each event taking O(minutes) to simu-
late [37]. This results in simulation campaigns consuming up
to 70% of experiment computing resources [44, 53].

Newly proposed experiments will continue to demand
a rapid increase in the number simulated events [54, 55].
The ongoing optimisation and parallelisation of traditional
event generation software will at best result in an order of
magnitude reduction of resources [56, 57]. This reduction
is not sufficient to meet ever increasing simulation demand.

@ Springer

Estimates forecast a fourfold shortfall of computing power
within the next 10 years without significant new investment
[58, 59]. This has catalysed efforts to develop faster simula-
tion and event generation technologies of which GANs are
currently a front runner. GANs or other generative network
architectures are likely to become an integral part of a future
fast simulation tool kit.

GANSs are, of course, unable to completely replace tra-
ditional simulation methods as they rely on training data
produced with the slower full physics simulation, this fact
makes the optimisation of traditional methods no less valu-
able. GANSs learn by example and are largely limited to mod-
elling the exact process that they were trained on. In compar-
ing a GAN to the full simulation care needs to be taken to
assign a systematic uncertainty related to the residual mis-
modelling. The GAN event generation is particularly help-
ful when the systematic uncertainty due to its mismodelling
is smaller than other errors associated with other parts of
the analysis procedure [38]. A limitation of the GAN-based
event-generation stems from the fact that the range of the
feature space that the GAN can accurately model is defined
by that of the full-simulation training sample. However,
GAN:Ss are able to accurately interpolate between points in
the feature space of the training sample, acting as a powerful
data augmentation tool.

Using GPUs to generate events using a GAN-based
approach offers large increases in event-generation rate over
traditional simulation approaches [37, 38, 47]. However fur-
ther increases in the rate would be valuable. This section
investigates if [PUs can provide any additional increase in
the inference speed of a GAN for event generation.

Examples of GAN architectures are taken from the litera-
ture and event-generation rates are compared across a range
of batch sizes and different hardware options. Currently,
convolutional networks are the most commonly used in the
particle physics community. Two such networks are investi-
gated here, the small convolutional DijetGAN from Ref. [39]
and the larger locally connected LAGAN from Ref. [37].
Additionally, two fully connected networks are investigated.
These are the prompt and non-prompt muon kinematic gen-
erators developed for the SHiP experiment in Ref. [38].
Both fully connected networks are of similar architecture;
however, the prompt network is significantly smaller. As the
network weights are not publicly available for all the net-
work architectures under study, random values are assigned
to the network weights without affecting the speed of the
event generation.

Figure 2 presents the event-generation rate for CPU, GPU
and IPU as a function of the batch size for each network
studied. The relationship between rate and batch size is
shown to be consistent across network and hardware con-
figurations, with larger batch sizes giving larger generation
rates. However, there is a limit to the maximum batch size

Computing and Software for Big Science (2021) 5:8 Page50f16 8
107 107
CPU
GPU
6 | 6
10 10 IPU
Z 10°; Z10°3
o =]
g k)
£ 1011 £ 1011
g g
g 3]
©) @)
103 5 103 5
10*§ Convolutional - DijetGAN 107 ; Focally Connected - LAGAN
10° 10t 102 103 10 10° 10° 10t 102 10 10 10°
Batch Size Batch Size
107 107
106 4 106 5
g g
o 10° 5 o 10° 4
= =
£ 104 £ 10%;
g g
&) @)
103 5 103 4
10”4 Fully Connected - SHiP non-prompt 107 ; Fully Connected - SHiP prompt
10° 10t 102 10 10 10 10° 10t 102 103 10 10°
Batch Size Batch Size

Fig.2 Benchmarking results of the event-generation rate as a function of the batch size of the network. Results are presented for IPU, GPU and

CPU hardware options outlined in Table 1

accessible by each hardware option due to memory con-
straints. This limitation results in a plateau of the event-
generation rate.

For each network architecture and hardware option, the
batch size that gives the largest event-generation rate is cho-
sen. The CPU and GPU results are obtained with Tensor-
Flow 2.1 .0 and the IPU results are obtained using Tensor-
Flow 1.15. 0 as Graphcore’s SDK version 1.2.0 offered a
more comprehensive support for TensorFlow 1 . x. For each
benchmark run, warm up batches are passed before anything
is timed. The TensorFlow profiler was used to ensure the
GPU inference was indeed dominated by computation time
and not an unforeseen bottleneck (Table 2).

Across all networks tested the IPU is faster than the GPU
at generating events using small batch sizes. For the fully

Table 2 Benchmarking results calculated using optimal batch size for
each hardware option.

Network name Number of IPU/CPU rate IPU/GPU rate
parameters

DijetGAN 3 x 10* 36.3 6.0

LAGAN 4% 100 86.5 8.0

SHiP non-prompt 5 x 10° 3.4 0.6

SHiP prompt 6x 10° 6.7 0.7

connected networks, both of which have two hidden lay-
ers, the GPU becomes more efficient at higher batch sizes
which are not accessible by the IPU that was used due to
memory constraints. As the batch size approaches the limit

@ Springer

8 Page 6 of 16

Computing and Software for Big Science (2021) 5:8

for a single IPU, the performance appears to degrade. This
is most likely due to overheads in the computation associ-
ated with organising large tensors in memory. At the most
efficient point, the fully connected networks were 1.4 and
1.7 times faster using the GPU for the smaller and larger
networks, respectively.

In contrast, the IPU outperforms the GPU for both of the
convolutional networks tested. For optimal batch sizes, the
IPU presents an increase in event-generation rate compared
to the GPU by a factor of 6.0 and 8.0 for the small and large
networks, respectively.

Training Models

The results of “Event Generation” show that IPUs outper-
form GPUs for networks with a small batch size. Trained
GANSs used for event generation are implemented using the
optimal batch size, which generally corresponds to the larg-
est batch size accessible to the hardware. However, a small
batch sizes contain a stochastic component originating from
the random selection of training samples. This stochastic
effect can help to move network configurations out of local
minima. Larger batch sizes have advantages too, more effi-
cient computation per training sample and a more accurate
assessment of the gradient at each step. So called mini-batch
gradient descent aims to operate with a batch size that bal-
ances this stochastic effect with the accuracy of gradient
updates computed with large batch sizes. Appropriate choice
of the batch size during training of the network can provide a
faster overall convergence to an optimal configuration. Com-
monly the batch size chosen for training a GAN is O(50).

This section investigates the performance of the IPU for
training the GANs described in “Event Generation”. The
smaller models of the dijetGAN and SHiP prompt GAN,
are trained on a single IPU. The larger models cannot cur-
rently be trained on the IPU as the generator and discrimina-
tor networks must fit onto a single IPU. Graphcore do offer
sharding, which allows networks to be split across multiple
IPUs. Whilst the sharding approach works well for a single
network, it is not yet possible for a GAN model. The GAN
case is complicated by the continual interactions between
models. This may be possible in the future.

The training time is defined as the time taken to run
over 1000 batches using the batch sizes reported in their
respective publications. As for the inference benchmarks,
a warm-up phase containing all compilation overheads is
discarded from the test. The batch sizes are 50 for the SHiP
prompt GAN and 128 for the dijetGAN. The IPU training
times are then compared to the same test completed on the
GPU and CPU from Table 1. The results are presented in
Fig. 3. Both networks train significantly faster on the [PU
as expected from the inference performance discussed in

@ Springer

Convolutional - DijetGAN

102_

101-

Speed Up (training)

100_

1071_

IPU/CPU IPU/GPU

Fully Connected - SHiP prompt

102_

101_

Speed Up (training)

100_

10—1_
IPU/CPU

IPU/GPU

Fig.3 Comparison of the time to train the IPU relative to the CPU or
GPU of Table 1

“Event Generation”, where for lower batch sizes, the IPU
consistently outperforms the GPU.

Track Corrections

As observed in previous sections the IPU significantly out-
performs the GPU at lower batch sizes. This section presents
an example algorithm that would typically be executed with
a batch size of 1. The algorithm presented has not yet been
employed in a working particle physics environment but is
used here as an example of where the IPU might thrive.
The use of GANs extends beyond event generation and
can be employed in data processing. Charged particles tra-
versing a medium are deflected through multiple small-
angle scatters due to the Coulomb force acting between

Computing and Software for Big Science (2021) 5:8

Page7of16 8

the charged particle and the nucleus of the material. The
resulting trajectory of the particle is therefore modified by
this scattering and traditional tracking methods rely on tech-
niques such as the Kalman filter, discussed in “Kéalman Filter
Implementations Across Several Architectures”, to account
for this effect. Such methods can be computationally expen-
sive. Therefore, employing a fast pre-processing stage prior
to the track-fit that corrects for the effects of multiple scat-
tering could be desirable.

Previous work on GANs has shown that in addition to
conditional class information, a generator can be conditioned
with an input state to be manipulated. This is typically an
input image to which a style transfer can be applied [35],
or the resolution upscaled to recover sub-pixel information
[36]. This family of transformations is of particular interest
in particle physics and other scientific domains, as it shows
that using a GAN high-fidelity information can be correctly
recovered. In the context of particle physics, this could mean
correcting for the resolution of the detector, accounting for
detector misalignment or upscaling the reconstructed hit
information of charged particles to correct for effects such
as multiple scattering prior to a track fitting algorithm.

To provide a simple concrete example, the algorithm
presented in this paper aims to correct for the effect of
multiple scattering from the trajectory of a charged par-
ticle in two dimensions. A simplified simulation is devel-
oped to model the multiple scattering of a charged particle
traversing a series of active detection material made of
silicon. The multiple scattering of the charged particle
with each layer of silicon is modelled according to Ref.
[60], where the particle’s path is deflected according to a
Gaussian distribution whose width depends on the original
particle’s momentum and velocity as well as the thickness
of the scattering medium. The same initial conditions are
used to generate a second, ‘true’, charged particle that does

Input Image

Ground Truth

not undergo scattering. The GAN is trained to perform a
style transform from the scattered track to true track.

The generator model used for this study is based closely
on the pix2pix algorithm [35] as it has been shown
to generalise over different applications without major
changes to the network architecture. The generator model
consists of a U-Net encoder—decoder structure [61] with
“skip” layers between each of the layers. The skip connec-
tions allow to scale specific information to directly pass
across the generator and bypass the bottle neck. The key
difference to GANSs used for image generation is an addi-
tional super resolution layer to upscale the output. The
variation of this model used to model charged tracks is
referred to as gSRGAN.

An example of how this algorithm performs on a pair
of tracks is shown in Fig. 4.

In contrast to event generation methods described in
“Event Generation” where the maximal throughput is
obtained using larger batches, track corrections would
typically be done on an event-by-event basis. This allows
the performance of the IPU at low batch size to be utilised
efficiently. The performance of the gSRGAN algorithm
for inference is tested on the CPU, the GPU and the IPU
given in Table 1. Two key results are presented. Firstly the
throughput of the algorithm as a function of batch size,
and secondly the ratio of the rates of the CPU and GPU
to the IPU for a batch size of one image. The results are
shown in Fig. 5 where the rate of the image generation
using an IPU is larger by a factor of 22 relative to a CPU,
and 4.5 relative to the GPU. The increased generation rate
of the IPU compared to the GPU would allow either a
higher total throughput to better cope with higher event
rates, or a significantly more complex model for the same
total compute budget.

Predicted Image

Fig.4 An example of correcting for the track multiple scattering using the gSSRGAN. The left image is the input to the Generator, the middle
image is the true image with no scattering, and the right image is the generated output

@ Springer

8 Page 8 of 16

Computing and Software for Big Science (2021) 5:8

—
fe=)

Tracks Processing Rate

—

[e=}
©
L

CPU

GPU
qSRGAN IPU
109 10! 102 103

Batch Size

Fig.5 Benchmarking the qSRGAN algorithm on CPU, GPU, and
IPU processors. The inference throughput for each processor is shown
as a function of batch size

Determining the Flavour of B Mesons

Neural networks are commonly used to combine lower-level
detector-specific information to determine the identity or
quark composition of a particle. Given the large number of
particles produced in each collision event, inference speed is
an important consideration, regardless of whether these are
evaluated ‘online’ as part of the reconstruction and trigger
framework, or ‘offline’ after the initial rate reduction from
the trigger.

For some applications, such as the determination of the
flavour of the B?S) meson at production time, significantly
increased classification accuracy is achieved by applying a
network over all particles in the event, rather than selecting
particles thought to be of particular interest ahead of time.
In this way, correlations between the features of different
particle tracks can also inform the resulting flavour determi-
nation [62]. Two canonical neural network components that
enable this multidimensional data to be taken into account
are convolutional and recurrent neural networks. In general,
gated recurrent networks are able to better exploit long-
distance dependencies between the input sequence, whereas
convolutional networks tend to be faster to train and execute.
However, the trade-offs between each in terms of the clas-
sification accuracy and execution speed are beyond the scope
of this paper, which rather focuses on the performance of
each network on different hardware.

In each case, the convolutional or recurrent layers oper-
ate over an input of shape [1ycn Mirackss Pteatures)s Where
Npaen 18 the number of examples per training or inference
batch, n,,, 4 1s the number of input tracks, each with ng ..

@ Springer

features. Here, the recurrent network implementation uses
a ‘long short-term memory unit’ (LSTM) [63] followed by
a number of fully connected layers operating on the output
of the last element in the sequence. For the convolutional
network, several one-dimensional convolution operations
with learnable kernel parameters, are applied sequentially.
These convolutional layers are followed by a downsampling
‘max-pooling’ operation that propagates only the maximum
of its inputs over a fixed range, and subsequently flattened to
one dimension before entering a set of fully connected lay-
ers. The corresponding network configuration, and example
parameters, can be seen in Table 3.

Both of these networks are constructed in PyTorch
1.2.0 [64], and exported to the ONNX [65] interchange
format. For execution on the IPU, the ONNX models are
imported into the Graphcore PopART framework. For the
CPU and GPU benchmarks however, the networks are exe-
cuted directly in PyTorch, which for GPU execution ensures
that the optimised Nvidia CaDNN LSTM [66] implementa-
tion is used. The CPU is one single core of an Intel Xeon
Platinum 8168 processor, the GPU is an Nvidia P100 (using
CUDA toolkit 10.0 and CuDNN 10. 1), and the IPU is a
Graphcore C2 IPU (using Poplar 1. 3. 0). In general on the
IPU, performance using ONNX and PopART is equivalent
to using TensorFlow.

The networks are configured with hyperparameters that
result in a modest total number of trainable parameters,
whilst still permitting execution in reasonable time for par-
ticle physics applications. A critical parameter that affects
inference time, particularly for SIMD processors such as
GPUs, is the batch size (i.e., the number of inputs present
on the device and executed over in a single inference step).
The variation of inference time per event as a function of
the total number of events per batch, can be seen in Fig. 6.
Here, events of size of n,, ., = 100 and n,.. = 18 are used
(in addition to the parameters given in Table 3), which are
typical for tagging at LHCb.

In each case, the IPU dominates the execution perfor-
mance of the GPU and CPU at low batch sizes, and there-
fore has a lower single event latency (i.e., at batch size 1),
which could be useful for some applications. Nevertheless,
the GPU saturates to a higher overall throughput at higher
batch sizes.

The batch size is expected to be the dominant factor con-
trolling performance for SIMD processors, all else being
equal. However, it is instructive to explore how the variation
of network parameters affects relative GPU and IPU perfor-
mance, particularly given that the IPU does not primarily
gain its performance from SIMD processing, so whilst being
used for similar purposes, GPUs and IPUs are architectur-
ally quite different. For the recurrent network architecture,
scans are performed over the batch size, number of hidden
units (common to each layer), the number of input features

Page9of16 8

Computing and Software for Big Science (2021) 5:8
10'F
_ t cpPu
£ oh IPU
= t GPU
2
10
@
Q
2 107}
=
10-3 E ! ! ! I
0 2000 4000 6000 8000
Batch size
t CPU
2 .ol IPU
E t GPU
()
>
o -1
g " P
o
= |
= 107F
0 5(50 1 O‘OO 1 5‘00 20‘00
Batch size

Fig.6 Recurrent (top) and convolutional (bottom) neural network
execution time per event as a function of the batch size

Table 3 Convolutional and recurrent neural networks used in the fla-
vour tagging example

Convolutional network

Recurrent network

Conv1D(hidden = 8, k = 20)
Conv1D(hidden = 8, k = 10)

LSTM(hidden = 8)
Linear(hidden = 8)

MaxPool1D(pool = 2)
Flatten()
Linear(hidden = 8)
Linear(hidden = 8)

Parameters correspond specifically to plots in Fig. 6, and inputs are
processed sequentially from the upper to the lower layers, with an
implicit sigmg’hd activation at the end to express the probability of
being a B or B

per track, and the number of input tracks. Projections of the
ratio of the time per input for the GPU and IPU versus each
of these parameters can be seen in Figs. 7 and 8.

In each plot, the black curve is the average across all other
parameters, holding the x-axis parameter constant, and the
coloured band spans the minimum and maximum variation
of the ratio of execution times. Therefore, it is expected that
if the dependence on relative performance is due to a single

of these parameters, then the extent of the coloured band in
the plot of this parameter will be small, indicating no or little
variation due to the other parameters; at the same time, the
black curves in the plots of the other parameters will have
little variation as a function of that parameter.

For the RNN in these configurations, we observe a weak
dependence on the input length and hidden size, however
moderate dependence is seen on the batch size and the
number of input features. That no parameter is sufficient
to entirely describe the behaviour indicates that the relative
performance of the GPU and IPU is a complicated func-
tion of all neural network parameters. However, it is clear
from these plots that the IPU is better performing for smaller
batch sizes, and a smaller number of input features, com-
pared to the GPU.

For the CNN, a more mixed picture is observed, where
no single parameter significantly represents the difference
between the IPU and GPU performance; however, the larg-
est dependence is on the batch size and number of input
features. In this case, it is clear that the kernel size has a sig-
nificant impact on the difference in execution time between
the IPU and GPU, where the IPU tends to perform better in
some cases with large values, and in some cases with small
values.

Kalman Filter Implementations Across
Several Architectures

Kalman filters are a ubiquitous technique for state-space
estimation from multiple noisy measurements, and are
used in fields as diverse as robotics, signal processing, and
econometrics. In particle physics they are most commonly
used as a method to incorporate kinematical constraints and
detector-material interactions when estimating the particle
track state from clustered hits in tracking stations. As such,
Kalmén filters often form the basis of event reconstruction
algorithms.

Recent emphasis on complete online processing of full
events motivates the need for more efficient reconstruction
algorithms. In particular, from Run 3 of the LHC, the LHCb
experiment intends to perform full event reconstruction at
30MHz in the high-level trigger, to exploit the efficiency
gain from performing analysis-level selections earlier in the
pipeline. As such, the execution speed of this reconstruction,
of which the Kalman filter is a dominant contributor [67], is
strictly limited from a cost-performance perspective.

As many of these operations are inherently parallelisable,
implementation of the reconstruction and track filtering on
graphics processing units (GPUs) shows good promise, and
is potentially a more cost effective alternative to CPUs. Nev-
ertheless, as GPUs are generally designed as single-instruc-
tion multiple-data processors, they lack many features that

@ Springer

8 Page 10 of 16 Computing and Software for Big Science (2021) 5:8
15l 1.5F
L 2 1.0t
g 1.0 o
-~ = 05+
S o5t \ >
o
O oo © oo
= 5
g -1.0f g-1.0r
(0]
_g -1.5f §_1'5’
S-20} 8-20
-2.5¢ -2.5
100 200 300 400 500 0 20 40 60 80 100 120
Batch size Input features
1.5f 1.5F
> 1.0f 2 1.0f
a o
Sosp | o——-— 0 |305
o o
O 0.0f O o.0f
E 3
g— -0.5¢ g -0.5
S -1.0f g -1.0
(] (0]
E-15¢ E-15¢
(2] [2]
©-2.0 ©-20
-2.5 -25
0 20 40 60 80 100 120 100 200 300 400 500
Hidden size Input length

Fig. 7 Variation of the logarithm of the ratio between the time taken
for each input event as a function of batch size, number of input fea-
tures, hidden layer size, and input length, for the recurrent neural net-
work. In each case, the black curve indicates the average time ratio

are found in CPUs, such as support for conditional program
flow, large caches, and fast interconnects between the com-
pute cores.

Kalman Filter Formalism

Kéalmén filters recursively compute closed-form least-
squares estimates for the state and its covariance matrix,
under the assumption that all uncertainties can be well
described by multidimensional normal distributions; and
that only linear relations exist between the state at step ¢
and the state at step # + 1, and the state and the measure-
ment process. The application of a Kdlman filter can be
broken down into three stages: a prediction (or projection)
stage where the state at step ¢ is projected linearly to a state
at step ¢ + 1; a filtering stage where the state at step ¢ + 1
is corrected using the measurement and covariance matrix
of the measurement at step # 4+ 1; and a smoothing stage
after all filtering steps, where state and covariance matrix

@ Springer

when holding the x-axis value constant, and the coloured band spans
the spans the range of possible ratios with constant x-axis value. A
value of 0 indicates identical execution time for the GPU and IPU

updates are propagated backwards through the states to
achieve a globally optimal configuration. The formulation
here follows that of Refs. [68, 69] (Fig. 9).

The first projection step is described by a set of recur-
rence relations that extrapolate the state described by a
vector p at step ¢ to the values at step ¢ + 1, given by

Pri1proj = F.p, (D
with the covariance matrix of p given by C, where

Ct+1,proj = FthF;r +Q,. 2
These relations are expressed in terms of the transfer matrix
F,, and the random error matrix Q,. The expression in Eq. 1
uses the underlying modelling assumptions (in the case of
this particular track reconstruction, simple kinematics) that
generate p,,, from p, via the application of the linear opera-
tor F,. The error matrix Q contains the process noise that
involves terms that describe additive errors to the estimated
state, such as those that are picked up after each propagation
step from material interactions.

Computing and Software for Big Science (2021) 5:8

Page110of16 8

log time per input, GPU / IPU
o

log time per input, GPU / IPU
o

50 100 150 200 250

Batch size

5 10 15 20 25 30
Input features

log time per input, GPU / IPU

log time per input, GPU / IPU
o

\

_2. _2_
20 40 60 30 100 120 50 100 150 200 250
Hidden size Input length
o 2 o 2
o o
T 1 T 1
o o
=] e
g9 g0
o 9]
o o
o -1t o -1f
£ £
(@] (@)
O ot O ot
0 10 20 30 40 50 0 10 20 30 40 50
k ks

Fig.8 Variation of the logarithm of the ratio between the time taken
for each input event as a function of batch size, number of input fea-
tures, hidden layer size, input length, and the size of the two convo-
lutional kernels, for the convolutional neural network. In each case,

Atstep 7 + 1, the prediction from step £ t0 7 + 1, P, o 18
updated using the measurements at ¢ + 1, m, ;. The relation
between the measurement m and the state p is given by H
(which in general is independent of #), and the updated filtered
expectation of p,, ; becomes

_ -1 T
Priifie = Cr+1,ﬁlt [C,H,projprﬂ,proj +H Gt+lmt+l]’ (3)

the black curve indicates the average time ratio when holding the
x-axis value constant, and the coloured band spans the range of pos-
sible ratios with constant x-axis value. A value of 0 indicates identical
execution time for the GPU and IPU

where
_ T
Ct+l,ﬁlt - [Cz+l,proj + H Gt+1H] (4)

is the corresponding covariance matrix. Here, G, is the
matrix that describes weights corresponding measurement
noise, such as the detector resolution, at step .

@ Springer

8 Page 12 of 16

Computing and Software for Big Science (2021) 5:8

Qt Qt+1 Qt+2

Fig.9 Schematic of the Kélméan filter application with active detec-
tor planes (dark grey) with hits (crosses), and inactive medium (light
grey). The Kalman filter first calculates the extrapolation of the track
state and uncertainty to the next detector plane (blue regions), and
corrects this using the true hits and their uncertainties to form an esti-
mate of the track state at the plane (red curve). Lastly, the most likely
values of the track states and uncertainties at the planes are obtained
in a backwards pass (green curve)

Up until this point, all information is updated in the forward
direction, however information downstream can also be used
to update upstream state estimates, to obtain a globally opti-
mal set of states. To do this propagation, a backward transport
operator is defined as

A, =CF/ C] ()

t+1,proj’

which is used to perform the smoothing step in the backward
direction and updating the state

P:smooth = Prfile + Az‘(pt+1,sm00th - pt+l,proj)’ 6)

and covariance matrix
— T
Ct,smooth - Ct,ﬁlt + At(Ct+1,smooth - Ct+1,proj)At ’ @)

at ¢t using the now smoothed state and covariance matrix at
t+1

The covariance matrix can also be used to form a y? test
statistic to determine the consistency of a hit with the fitted
track,

2 _ T -1
It = rt Glrl + (pt,ﬁlt - pt,proj)ct,pmj(pt,ﬁlt - pt,proj)a (8)
where r, is the residual,

r, =m-—Hp,g,.)

@ Springer

Kalman Filter Configuration

To investigate the performance characteristics of a Kdlman
filter implemented in Poplar on the IPU, a tracker with 2D
active planes of Im X Im in X — J is considered, separated
by a homogeneous inactive medium that induces multi-
ple scattering. Five of these planes are used, separated
in Z by d = 1m of the inactive medium, and indexed by *.
Each of these detector planes record measured track hits,
m = {m,,m}, discretised according to the physical resolu-
tion of the detector planes, o.

No magnetic field is considered, however its inclusion
would only result in a minor modification of the track state
(to infer momentum) and inclusion of the magnetic field
description in F. It is assumed initially that each track regis-
ters a hit on each of the five planes, and the matching of hits
to tracks is perfect. In reality, dummy hits can be introduced
to the tracking algorithms, and tracks are often post-pro-
cessed to find the most likely set, so neither of these effects
compromise the generality of this proof of principle.

A state vector, p, = {x,,tan#é,,y,, tan ¢, }, corresponding to
the most likely values of the track x-position, x,; y-position,
t,; tangent of the track slope in X — 2, tan 6; and tangent of
the track slope in § — Z, tan ¢; is estimated at each plane, ¢.
It follows that the model parameters for such a system are

1d00] 1/620 0 0
0100 0 0 0 0
F=loo1a4l ©=| 0 017020 (10)
000 1] 00 0 0
100 0] z59§ zogg zg(9§ z(,(zg
0000 2002 02 7,02 0
H= Q=23 % 59 %] (1D
0010 209% Zogo 209% Zogo
0000] 202 62 0. 0

where the parameterisation for Q is obtained from Ref. [70]
disregarding higher order terms in the track slopes; z; is the
material depth; and 03 is the variance of the multiple scat-
tering angle.

The initial state for the first projection step is set to be
equal to the hits on the first plane, p; ,.o; = {my, 0,mg, 0},
and the covariance matrix set to equal the full uncertainty
on the track state,

(4x)* (Atan6)* 0 0
c |0 0 0 0 "
0.proj 0 0 (4y)?* (Atang)*|’ (12)
0 0 0 0

where Ax = Ay = Im, and 40 = A¢ = 1.
In this study, simulated particles are produced at (0, 0, 0)
and travel in the positive Z direction towards the detector

Computing and Software for Big Science (2021) 5:8

Page130of16 8

planes. At each plane, the particle interacts with the active
detector material according to its projection on the x — y
plane of the detector, with a location that is subject to a
random fluctuation in each direction depending on the total
path length to simulate the effect of multiple scattering. Sub-
sequently the location of the hit is discretised according to
the granularity of the active detector area. These two effects
determine the Kalman-filter process and covariance matrices
of the measurement uncertainty. An example of the simu-
lated detector configuration can be seen in Fig. 10, with the
corresponding hits and reconstructed track states.

Benchmarks

The Kéalmaén filter described in “Kalméan Filter Configura-
tion” is implemented for the IPU hardware using the Pop-
lar C++ SDK. To exploit the independence of the particle
tracks, each track is assigned to a single IPU tile, where all
operations in “Kalman Filter Formalism” are performed.
In principle, this results in 1, 216 Kalman filter operations
proceeding in parallel, however, optimal throughput is
only achieved when several batches of tracks are copied to
each tile initially, and then operated on sequentially. From
Fig. 11, it can be seen that for batches of size greater than
~ 10 tracks, almost perfect parallelism is achieved, with a
peak throughput of around 2.2 x 10° tracks per second for
this configuration.

It is interesting to study the behaviour of the IPU imple-
mentation of the Kalman filter with a workload that relies on
program branch statements and random memory accesses.
To this end, a modification of the above Kalman filter con-
figuration is implemented, where a proportion of hits are
forced to be inconsistent with tracks they have been assigned
to. This results in a large value of the y? expression in Eq. 8.
At each step the y? value is evaluated, and if it is above a
certain threshold, the state is not updated and the previous
state is propagated to the next state under the assumption
that no hit was observed at this stage.

On the IPU, this is implemented by a branch statement in
the vertex code, which is executed on each tile separately.
By way of comparison, an equivalent Kalman filter con-
figuration is also implemented in TensorFlow (v2.1.0)
for execution on the GPU. In TensorFlow the subsequent
filtering step is modified using a conditional gather-scatter
update to the state and state propagation parameters. Despite
the sub-optimal TensorFlow-based GPU implementation,
it is instructive to compare the relative throughput in the
case where the states are conditionally modified, and the
case where no conditional execution is performed. On the
IPU, the reduction in peak throughput is approximately
half that of the GPU—where it operates at 91% of peak
throughput in this case, compared to 80% for the GPU. This
is likely because the conditional execution results in an

1.0 X
L X
X
05 X
X X X
X
X X
S 0.0 X— X
X T X
X
-0.5F X
%
X
-1.0F
! I 1 I I I
0 1 2 3 4 5
V4
1.0 X
Yy
X
0.5 X
X
X
X X X X X
X X
8 00 X
X
X
\2(X
X
-0.5F X
X
_10 -
| 1 I I I
0 3 4 5
z
1.0
4
05
& 00f
_05 -
-1.0F
| | | | |
-1.0 -0.5 0.0 0.5 1.0
Yy

Fig. 10 Projections of the tracks (coloured lines) reconstructed from hits
(crosses) using the detector and Kélmén filter configuration given in the
text

@ Springer

8 Page 14 of 16

Computing and Software for Big Science (2021) 5:8

25F
—— Batch size = 1

Batch size =5
| —— Batch size = 10
Perfect scaling

= = »
=) o0 =)
T T

Throughput [10° tracks/s]

o
2
T

| | | | |
200 400 600 800 1000
Input length

Fig. 11 Tracks per second processed by the Kélman filter, as a func-
tion of the number of tracks processed in parallel on the tiles (‘input
length’). This is given for the cases where multiple ‘batches’ of this
size are copied to the tiles before execution. The theoretical maxi-
mum throughput evolution as a function of input size is also indicated

inefficiency caused by divergence of parallel threads on the
GPU (‘warp divergence’), whereas on the IPU these execute
independently.

Summary and Conclusions

This paper represents the first study of IPUs, a new processor
type optimised for ML applications, in the context of particle
physics. TensorFlow and PyTorch-based ML applications
were used to compare the performance of a 1st generation
IPU to that of a GPU of comparable price, but with twice the
power consumption, and two high-end CPUs (see Table 1).
Both GPU and IPU outperform the CPUs. The performance
of the IPU and GPU is studied for a variety of neural net-
work architectures and parameters. The batch size is identi-
fied as a key variable. For batch sizes accessible to both
processors, the IPU out-performs the GPU, in some cases by
orders of magnitude. For GAN event generation, large batch
sizes are usually optimal. Here, the larger memory capacity
of the GPU, allowing larger batch sizes, can be a decisive
advantage. This is the case for the fully connected GAN
architectures studied; for the convolutional- and locally
connected GANSs, the IPU generates events faster than the
GPU despite using a smaller batch size. It is worth noting
in this context that the second-generation IPU has triple the
memory per tile compared to the first-generation IPU used
here. In all cases, GANSs train faster on the IPU. For applica-
tions with small batch size < O(100), such as neural network
training or the track-correction algorithm studied, the [PU
nearly always outperforms the GPU significantly.

This paper also presents the first implementation of a
Kalman filter on an IPU. The algorithm is implemented
using Graphcore’s Poplar SDK, and also on a GPU using

@ Springer

TensorFlow. While the IPU implementation is much faster,
the two implementations are too different for a fair compari-
son. Comparing the processing speeds on each processor with
and without the final clean-up step indicates that the IPU’s
MIMD architecture is a significant advantage when executing
conditional control-flow programs.

An important factor in considering the usefulness of IPUs
in particle physics, alongside their performance, is the ease
with which they can be programmed. The IPU software for
the studies presented here [11] was written within less than
6 months of the group’s first access to Graphcore’s IPUs, by
a small team of particle physics postdocs and Ph.D. students
with no prior experience of IPU programming.

This first investigation of IPUs in a particle physics context
suggests that [PUs, due to a combination of performance, flex-
ibility and ease of programming, have the potential to play a
central role in meeting the fast-increasing compute needs of
particle physics. As promising as these results are, they can
only be a starting point that motivates further, detailed study
using realistic particle physics workflows.

Acknowledgements We are grateful to Graphcore for providing
cloud access to their IPUs and for technical support. We also benefited
from using the computational facilities of the Advanced Computing
Research Centre, University of Bristol—http://www.bris.ac.uk/acrc.
We would like to thank Dr Conor Fitzpatrick (University of Manches-
ter) and Dr Mika Vesterinen (University of Warwick) for their careful
reading of an earlier draft of this manuscript, and their helpful com-
ments. This research was supported by the Science and Technology
Facilities Research Council, UK.

Funding This research was funded by the Science and Technology
Facilities Research Council, UK, and supported through in-kind contri-
butions by Graphcore, and the Advanced Computing Research Centre,
University of Bristol - http://www.bris.ac.uk/acrc.

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment:No associated data except for code.
The associated code to replicate the studies in this paper can be found
at: https://doi.org/10.5281/zenodo0.3993387.]

Declarations

Conflict of interest Some authors of this publication are members of
Graphcore, the manufacturer of the IPU evaluated in this paper. Graph-
core supported the University of Bristol team by providing free access
to its hardware and technical/software support. One member of the
University of Bristol team became Graphcore employee in the course
of this project.

Availability of data and material N/A.

Code availability The code used for this research can be accessed at
the doi given in [11].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,

http://www.bris.ac.uk/acrc
http://www.bris.ac.uk/acrc
https://doi.org/10.5281/zenodo.3993387

Computing and Software for Big Science

(2021) 5:8

Page150f16 8

provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

Aaij R et al (2018) Physics case for an LHCb Upgrade II—oppor-
tunities in flavour physics, and beyond, in the HL-LHC era

Abi B et al (2020) Deep Underground Neutrino Experiment
(DUNE), far detector technical design report, volume III DUNE
far detector technical coordination

Leggett C, Shapoval I (2018) Simulating HEP workflows on het-
erogeneous architectures. In: 14th International Conference on
e-Science, p 343. https://doi.org/10.1109/eScience.2018.00087
Yeo B, Lee M, Kuno Y (2019) GPU-accelerated event recon-
struction for the COMET phase-I experiment

Cenci R, Di Luca A, Lazzari F, Morello MJ, Punzi G (2020)
Real-time reconstruction of long-lived particles at LHCb using
FPGAs. J Phys 1525(1):012101. https://doi.org/10.1088/1742-
6596/1525/1/012101

Lazzari F, Bassi G, Cenci R, Morello MJ, Punzi G (2020) Real-
time cluster finding for LHCb silicon pixel VELO detector using
FPGA. J Phys 1525(1):012044. https://doi.org/10.1088/1742-
6596/1525/1/012044

Aaij R et al (2020) Allen: a high level trigger on GPUs for
LHCb. Comput Softw Big Sci 4(1):7. https://doi.org/10.1007/
s41781-020-00039-7

Andreassen R, Meadows B, de Silva M, Sokoloff M, Tomko K
(2014) GooFit: a library for massively parallelising maximum-
likelihood fits. J Phys 513:052003. https://doi.org/10.1088/
1742-6596/513/5/052003

Morris A, Poluektov A, Mauri A, Merli A, Mathad A, Martinelli
M (2018) Using TensorFlow for amplitude fits. In: PyHEP
workshop. Sofia, Bulgaria. https://doi.org/10.5281/zenodo.
1415413

Eschle J, Puig Navarro A, Silva Coutinho R, Serra N (2019) zfit:
scalable pythonic fitting. https://doi.org/10.1016/j.so0ftx.2020.
100508

Mohan LRM, Marshall A, O’Hanlon D, Maddrell-Mander S
(2020) dpohanlon/IPU4HEP. https://doi.org/10.5281/zenodo.
3993387

Jia Z, Tillman B, Maggioni M, Scarpazza DP (2019) Dissecting
the graphcore ipu architecture via microbenchmarking
Graphcore: Graphcore.ai (2020 (accessed 24 July, 2020)). https://
www.graphcore.ai/

Intel: Intel Xeon Platinum 8168 specifications (2020 (accessed 18
Aug, 2020)). https://ark.intel.com/content/www/us/en/ark/produ
cts/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-
ghz.html

Intel: Intel Xeon Processor E5-2680 v4 specifications (2020
(accessed 18 Aug, 2020)). https://ark.intel.com/content/www/us/
en/ark/products/91754/intel-xeon-processor-e5-2680-v4-35m-
cache-2-40-ghz.html

Nvidia: NVIDIA TESLA P100 specifications (2020 (accessed
18 Aug, 2020)). https://www.nvidia.com/en-gb/data-center/
tesla-p100/

Graphcore: private communication

Graphcore (2020) Performance Benchmarks of the Graphcore
IPU. https://www.graphcore.ai/benchmarks

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Mathew G, Graphcore (2020) Accelerating Text to Speech
Models with the IPU. https://www.graphcore.ai/posts/accelerati
ng-text-to-speech-models-with-the-ipu

Masters D, Graphcore (2020) Delving deep into modern computer
vision models. https://www.graphcore.ai/posts/introducing-sec-
ond-generation-ipu-systems-for-ai-at-scale

Therhaag J (2012) TMVA: Toolkit for multivariate data analysis.
AIP Conf Proc 1504(1):1013-1016. https://doi.org/10.1063/1.
4771869

Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable paral-
lel programming with cuda. Queue 6:2. https://doi.org/10.1145/
1365490.1365500

Abadi M et al (2015) TensorFlow: Large-scale machine learning
on heterogeneous systems. http://tensorflow.org/. Software avail-
able from tensorflow.org

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin
Z,Desmaison A, Antiga L, Lerer A (2017) Automatic differentia-
tion in pytorch

Aaij R et al (2015) LHCb detector performance. Int J Mod Phys
A 30(07):1530022. https://doi.org/10.1142/S0217751X15300227
Aaij R et al (2016) A new algorithm for identifying the flavour
of B? mesons at LHCb. JINST 11(05):P05010. https://doi.org/10.
1088/1748-0221/11/05/P05010

Aaij R et al (2013) The LHCb trigger and its performance in 2011.
JINST 8:P04022. https://doi.org/10.1088/1748-0221/8/04/P04022
Gligorov V, Williams M (2013) Efficient, reliable and fast high-
level triggering using a bonsai boosted decision tree. JINST
8:P02013. https://doi.org/10.1088/1748-0221/8/02/P02013
Rinnert K, Cristoforetti M (2019) Deep learning approach to track
reconstruction in the upgraded VELO. EPJ Web Conf 214:06038.
https://doi.org/10.1051/epjconf/201921406038

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial
nets. In: Advances in neural information processing systems, pp
2672-2680

Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing
of gans for improved quality, stability, and variation. arXiv:1710.
10196

YuJ, Lin Z, Yang J, Shen X, Lu X, Huang TS (2018) Generative
image inpainting with contextual attention. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
5505-5514

Zhang H, Goodfellow I, Metaxas D, Odena A (2019) Self-atten-
tion generative adversarial networks. In: International Conference
on Machine Learning, pp 7354-7363

Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas
DN (2017) Stackgan: Text to photo-realistic image synthesis with
stacked generative adversarial networks. In: Proceedings of the
IEEE international conference on computer vision, pp 5907-5915
Isola P, Zhu JY, Zhou T, Efros AA (2016) Image-to-image transla-
tion with conditional adversarial networks. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp
5967-5976

Ledig C, Theis L, Huszar F, Caballero JA, Aitken A, Tejani A,
Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-
resolution using a generative adversarial network. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp 105-114

de Oliveira L, Paganini M, Nachman B (2017) Learning particle
physics by example: location-aware generative adversarial net-
works for physics synthesis. Comput Softw Big Sci 1(1):4
Ahdida C, Albanese R, Alexandrov A, Anokhina A, Aoki S,
Arduini G, Atkin E, Azorskiy N, Back J, Bagulya A et al (2019)
Fast simulation of muons produced at the ship experiment using
generative adversarial networks. J Instrum 14(11):P11028

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/eScience.2018.00087
https://doi.org/10.1088/1742-6596/1525/1/012101
https://doi.org/10.1088/1742-6596/1525/1/012101
https://doi.org/10.1088/1742-6596/1525/1/012044
https://doi.org/10.1088/1742-6596/1525/1/012044
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1088/1742-6596/513/5/052003
https://doi.org/10.1088/1742-6596/513/5/052003
https://doi.org/10.5281/zenodo.1415413
https://doi.org/10.5281/zenodo.1415413
https://doi.org/10.1016/j.softx.2020.100508
https://doi.org/10.1016/j.softx.2020.100508
https://doi.org/10.5281/zenodo.3993387
https://doi.org/10.5281/zenodo.3993387
https://www.graphcore.ai/
https://www.graphcore.ai/
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91754/intel-xeon-processor-e5-2680-v4-35m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91754/intel-xeon-processor-e5-2680-v4-35m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91754/intel-xeon-processor-e5-2680-v4-35m-cache-2-40-ghz.html
https://www.nvidia.com/en-gb/data-center/tesla-p100/
https://www.nvidia.com/en-gb/data-center/tesla-p100/
https://www.graphcore.ai/benchmarks
https://www.graphcore.ai/posts/accelerating-text-to-speech-models-with-the-ipu
https://www.graphcore.ai/posts/accelerating-text-to-speech-models-with-the-ipu
https://www.graphcore.ai/posts/introducing-second-generation-ipu-systems-for-ai-at-scale
https://www.graphcore.ai/posts/introducing-second-generation-ipu-systems-for-ai-at-scale
https://doi.org/10.1063/1.4771869
https://doi.org/10.1063/1.4771869
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
http://tensorflow.org/
https://doi.org/10.1142/S0217751X15300227
https://doi.org/10.1088/1748-0221/11/05/P05010
https://doi.org/10.1088/1748-0221/11/05/P05010
https://doi.org/10.1088/1748-0221/8/04/P04022
https://doi.org/10.1088/1748-0221/8/02/P02013
https://doi.org/10.1051/epjconf/201921406038
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196

8

Page 16 of 16

Computing and Software for Big Science (2021) 5:8

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Di Sipio R, Giannelli MF, Haghighat SK, Palazzo S (2019) Dijet-
gan: a generative-adversarial network approach for the simulation
of qcd dijet events at the lhc. J High Energy Phys 2019(8):110
Butter A, Plehn T, Winterhalder R (2019) How to GAN event
subtraction

Arjona Martinez J, Nguyen TQ, Pierini M, Spiropulu M, Vlimant
JR (2020) Particle Generative Adversarial Networks for full-event
simulation at the LHC and their application to pileup descrip-
tion. J Phys 1525(1):012081. https://doi.org/10.1088/1742-6596/
1525/1/012081

Carrazza S, Dreyer FA (2019) Lund jet images from genera-
tive and cycle-consistent adversarial networks. Eur Phys J C
79(11):979. https://doi.org/10.1140/epjc/s10052-019-7501-1
Butter A, Plehn T, Winterhalder R (2019) How to GAN LHC
events. SciPost Phys. 7(6):075. https://doi.org/10.21468/SciPo
stPhys.7.6.075

Paganini M, de Oliveira L, Nachman B (2018) Calogan: Simulat-
ing 3d high energy particle showers in multilayer electromagnetic
calorimeters with generative adversarial networks. Phys Rev D
97(1):014021

Paganini M, de Oliveira L, Nachman B (2018) Accelerating
science with generative adversarial networks: an application to
3d particle showers in multilayer calorimeters. Phys Rev Lett
120(4):042003

Maevskiy A, Derkach D, Kazeev N, Ustyuzhanin A, Artemev
M, Anderlini L (2019) Fast data-driven simulation of Cherenkov
detectors using Generative Adversarial Networks. In: 19th Inter-
national Workshop on Advanced Computing and Analysis Tech-
niques in Physics Research: Empowering the revolution: Bringing
Machine Learning to High Performance Computing

Erdmann M, Glombitza J, Quast T (2019) Precise simulation of
electromagnetic calorimeter showers using a Wasserstein Genera-
tive Adversarial Network. Comput Softw Big Sci 3(1):4. https://
doi.org/10.1007/s41781-018-0019-7

Buhmann E, Diefenbacher S, Eren E, Gaede F, Kasieczka G,
Korol A, Kriiger K (2020) Getting High: high fidelity simulation
of high granularity calorimeters with high speed

Bellagente M, Butter A, Kasieczka G, Plehn T, Winterhalder R
(2020) How to GAN away detector effects. SciPost Phys 8(4):070.
https://doi.org/10.21468/SciPostPhys.8.4.070

Ghosh A (2020) Deep generative models for fast shower simula-
tion in ATLAS. J Phys 1525(1):012077. https://doi.org/10.1088/
1742-6596/1525/1/012077

Carminati F, Khattak G, Loncar V, Nguyen TQ, Pierini M, Da
Rocha RB, Samaras-Tsakiris K, Vallecorsa S, Vlimant JR (2020)
Generative Adversarial Networks for fast simulation. J Phys Conf
Ser 1525(1):012064. https://doi.org/10.1088/1742-6596/1525/1/
012064

Belayneh D et al (2020) Calorimetry with deep learning: particle
simulation and reconstruction for collider physics. Eur Phys J C
80(7):688. https://doi.org/10.1140/epjc/s10052-020-8251-9
Karavakis E et al (2014) Common accounting system for moni-
toring the atlas distributed computing resources. J Phys Conf Ser
513:062024

Apollinari G, Béjar Alonso I, Briining O, Fessia P, Lamont M,
Rossi L, Tavian L (2017) High-luminosity large hadron collider

@ Springer

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

(hl-lhc): technical design report v. 0.1. cern yellow reports: Mono-
graphs. cern, geneva

Anelli M, Aoki S, Arduini G, Back J, Bagulya A, Baldini W,
Baranov A, Barker G, Barsuk S, Battistin M et al (2015) A facility
to search for hidden particles (ship) at the cern sps. arXiv preprint
arXiv:1504.04956

Canal P et al (2016) GeantV: from CPU to accelerators. PoS
ICHEP2016. https://doi.org/10.22323/1.282.0177

Amadio G et al (2020) GeantV: Results from the prototype of
concurrent vector particle transport simulation in HEP

Albrecht J, Alves AA, Amadio G, Andronico G, Anh-Ky N,
Aphecetche L, Apostolakis J, Asai M, Atzori L, Babik M et al
(2019) A roadmap for hep software and computing r&d for the
2020s. Comput Softw Big Sci 3(1):7

Musella P, Pandolfi F (2018) Fast and accurate simulation of
particle detectors using generative adversarial networks. Comput
Softw Big Sci 2(1):8

Tanabashi M et al. (2018) Review of particle physics. Phys Rev
D98:030001. https://doi.org/10.1103/PhysRevD.98.030001
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional
networks for biomedical image segmentation. arXiv:1505.04597
Identification of Jets Containing h-Hadrons with Recurrent Neural
Networks at the ATLAS Experiment. Tech. Rep. ATL-PHYS-
PUB-2017-003, CERN, Geneva (2017). https://cds.cern.ch/record/
2255226

Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735-1780

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch:
an imperative style, high-performance deep learning library.
In: Advances in neural information processing systems, pp
8026-8037

Bai J, Lu F, Zhang K et al (2019) Onnx: Open neural network
exchange. https://github.com/onnx/onnx

Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catan-
zaro B, Shelhamer E (2014) cudnn: Efficient primitives for deep
learning. arXiv preprint arXiv:1410.0759

Campora Perez DH (2017) LHCb Kalman iniAlter cross architec-
ture studies. J Phys 898(LHCb-PROC-2017-041. CERN-LHCb-
PROC-2017-041. 3):032052. 8. https://doi.org/10.1088/1742-
6596/898/3/032052. https://cds.cern.ch/record/2292435
Fruhwirth R (1987) Application of Kalman filtering to track and
vertex fitting. Nucl Instrum Meth A 262:444-450. https://doi.org/
10.1016/0168-9002(87)90887-4

Hernando JA The Kalman filter technique applied to track fitting
in GLAST http://citeseerx.ist.psu.edu/viewdoc/summary ?doi=
10.1.1.48.1880

Wolin E, Ho L (1993) Covariance matrices for track fitting with
the Kalman filter. Nucl Instrum Meth A 329:493-500. https://doi.
org/10.1016/0168-9002(93)91285-U

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1742-6596/1525/1/012081
https://doi.org/10.1088/1742-6596/1525/1/012081
https://doi.org/10.1140/epjc/s10052-019-7501-1
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.21468/SciPostPhys.8.4.070
https://doi.org/10.1088/1742-6596/1525/1/012077
https://doi.org/10.1088/1742-6596/1525/1/012077
https://doi.org/10.1088/1742-6596/1525/1/012064
https://doi.org/10.1088/1742-6596/1525/1/012064
https://doi.org/10.1140/epjc/s10052-020-8251-9
http://arxiv.org/abs/1504.04956
https://doi.org/10.22323/1.282.0177
http://pdg.lbl.gov/
https://doi.org/10.1103/PhysRevD.98.030001
http://arxiv.org/abs/1505.04597
https://cds.cern.ch/record/2255226
https://cds.cern.ch/record/2255226
https://github.com/onnx/onnx
http://arxiv.org/abs/1410.0759
https://doi.org/10.1088/1742-6596/898/3/032052
https://doi.org/10.1088/1742-6596/898/3/032052
https://cds.cern.ch/record/2292435
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.1880
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.1880
https://doi.org/10.1016/0168-9002(93)91285-U
https://doi.org/10.1016/0168-9002(93)91285-U

	Studying the Potential of Graphcore® IPUs for Applications in Particle Physics
	Abstract
	Introduction
	Graphcore’s IPU
	Event Generation and Tracking Corrections Using GANs
	Event Generation
	Training Models
	Track Corrections

	Determining the Flavour of B Mesons
	Kálmán Filter Implementations Across Several Architectures
	Kálmán Filter Formalism
	Kálmán Filter Configuration
	Benchmarks

	Summary and Conclusions
	Acknowledgements
	References

