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Abstract
This paper presents the first study of Graphcore’s Intelligence Processing Unit (IPU) in the context of particle physics applica-
tions. The IPU is a new type of processor optimised for machine learning. Comparisons are made for neural-network-based 
event simulation, multiple-scattering correction, and flavour tagging, implemented on IPUs, GPUs and CPUs, using a variety 
of neural network architectures and hyperparameters. Additionally, a Kálmán filter for track reconstruction is implemented 
on IPUs and GPUs. The results indicate that IPUs hold considerable promise in addressing the rapidly increasing compute 
needs in particle physics.

Keywords  IPU · Hardware accelerators · Particle physics · Event generation · Tagging · Track reconstruction · Kálmán 
filter

Introduction

To perform high-precision measurements of rare processes, 
particle physics experiments require large data rates. At the 
Large Hadron Collider (LHC), for example, proton–proton 

bunch crossing rates of 40MHz result in a typical data rate of 
O(1) TB/s, which must be processed in near real time, and is 
expected to exceed O(10) TB/s at the high-luminosity LHC 
[1]. The future Deep Underground Neutrino Experiment is 
also expected to operate its data acquisition system with a 
throughput of O(1) TB/s [2]. Such applications currently 
require a large number of CPUs on site with considerable 
( O(1) PB) disk buffers. In cases where each of these events 
must be studied in some depth before deciding whether to 
save the event for offline processing, the overall signal rate is 
determined by the time taken to make this decision. Further-
more, these high-precision measurements require simulated 
data, produced ‘offline’, that mimic the real data as closely as 
possible, whilst also minimising the computational burden.

As a consequence of these constraints, many organisa-
tions within particle physics are investigating heterogeneous 
computing architectures as part of a strategy to cope with the 
vast data volumes expected in the next generation of experi-
ments. Such architectures replace CPU-only configurations 
with combinations of CPUs and graphics processing units 
(GPUs), and sometimes additionally field-programmable 
gate arrays (FPGAs); see, for example, studies by ATLAS, 
COMET and LHCb [3–6]. Most notably, the first level of the 
software trigger of the upgraded LHCb experiment will run 
on GPUs [7], and is scheduled to begin operation in 2021.
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Increasingly, GPUs are also used for offline data analy-
sis such as fitting complex theoretical distributions with 
many free parameters to large data samples, for example, 
using Nvidia’s CUDA API [8], or with TensorFlow-based 
frameworks [9, 10]. As dataset sizes in particle physics are 
expected to increase exponentially in the coming years, 
while CPU clock speeds plateau, hardware accelerators 
are expected become increasingly important in online and 
offline computing.

Over time, graphics processing units have been modi-
fied for general purpose computing workloads, and have 
become the dominant form of single instruction, multiple 
data (SIMD), accelerator hardware available to consumers. 
However, with the renewed interest in large-scale machine-
learning (ML) algorithms, numerous machine-learning spe-
cific hardware accelerators have been developed. Recently 
launched by Graphcore is the intelligence Processing Unit 
(IPU), a new type of hardware accelerator based on a bulk 
synchronous parallel multiple instruction, multiple data 
(MIMD) architecture, and designed for machine-learning 
applications.

This paper represents a first investigation of the suitability 
and performance of IPUs in typical high-energy physics ML 
applications, and an IPU implementation of a Kálmán filter. 
It includes benchmark tests relative to GPUs and CPUs. The 
hardware used for these studies is summarised in Table 1. 
The code used to produce the results presented here can be 
found in Ref. [11].

The paper is organised as follows: the next section pro-
vides a brief overview of relevant features of Graphcore’s 
IPUs. The subsequent sections present implementations 
of several particle-physics-related applications, and their 
performance on IPUs, GPUs and CPUs. Then a study of 
generative-adversarial neural networks (GANs) for particle 
physics event generation and reconstruction is presented, 
and in the following section, neural network implementa-
tions for online flavour tagging. The code in these first sec-
tions is implemented in TensorFlow or PyTorch, and can 
easily be executed on IPUs, GPUs and CPUs. Additionally, 
the differences in performance behaviour between IPUs and 

GPUs are investigated in some detail for different network 
types and parameters. The penultimate section explores the 
IPU beyond neural networks and ML, and presents a Poplar-
based implementation of a Kálmán filter, one of the most 
ubiquitous track reconstruction tools in particle physics. The 
final section concludes this paper.

Graphcore’s IPU

The IPU is a new type of processor designed specifically for 
ML applications. Its architecture is fundamentally different 
from that of either CPU or GPU. A detailed review of the 
architecture and performance of the first-generation IPUs 
used in this paper can be found in Ref [12].

The IPU processor is optimised to perform highly par-
allelised fine-grained operations. In contrast to the SIMD 
architecture of GPUs, which requires contiguous vectorised 
data for efficient operation, the IPU is highly efficient on 
applications that require irregular and sparse data access and 
can run individual processing threads on small data blocks 
while exploiting its MIMD architecture.

This study makes use of Graphcore’s first-generation 
Colossus™ MK1 GC2 IPU (see Fig. 1). This IPU comprises 
1216 processing elements, called tiles, each of which con-
sists of a computing core with 256 KiB of local memory. 
In total 7296 threads can be executed in parallel in a sin-
gle IPU. The tiles are linked through an on-chip intercon-
nect, the IPU exchange™, allowing for a low-latency and 
high-bandwidth communication up to 7.7 Tb/s. Each IPU 
card consists of two such IPUs. The IPUs are connected to 
each other via 80 IPU links™ reaching a total chip-to-chip 
bandwidth of 2.5 Tb/s, and are connected to the host via 16 
PCIe Gen4 links (8 per IPU).

The IPUs used here are integrated into a DELL 
DSS8440 IPU server containing eight dual IPU cards. This 
server includes two Xeon Platinum 8168 CPUs with 24×
32 GB 2.4 GHz DDR4 DIMM Modules. Graphcore also 
provides drivers along with its Poplar Software Develop-
ment Kit (SDK). Updates to both the drivers and SDK can 

Table 1   Key specifications of the processors used in this paper as 
provided on manufacturer websites [13–16], and in [12, 17]. Many 
features are not represented in this table; key differences in perfor-
mance arise from the very different memory architectures and tech-

nologies. Performance in terms of floating point operations per sec-
ond (FLOPS) is given for 32 bit single-precision operations. Thermal 
design power (TDP) is given for each processor, where for the IPU 
this is half of the total board TDP.

Name Cores Memory Clock speed TDP

CPU 1 Intel Xeon Platinum 8168 24 732 GiB 2.7 – 3.7 GHz 205 W
CPU 2 Intel Xeon E5-2680 v4 14 128 GiB 2.4 – 3.3 GHz 120 W

Name Cores Memory 32 bit FLOPS TDP

GPU Nvidia TESLA P100 3584 16,000 MiB 9.3 TFLOPS 250 W
IPU Graphcore Colossus™ GC2 1216 286 MiB 31.1 TFLOPS *120 W
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result in improvements to the IPU performance. This paper 
relies on SDK version v1.2.0.

During the preparation of this paper, Graphcore released 
its second-generation IPU, the Colossus™ MK2 C200 with 
20% more tiles and triple the local memory per tile [13].

In this paper, the performance of a single first-gener-
ation IPU is tested against a Nvidia TESLA P100 GPU 
and two types of CPUs, depending on the particular form 
of the test. The power consumption of the single IPU is 
approximately half that of the GPU. Key technical speci-
fications of the IPUs, GPUs and CPUs used are given in 
Table 1.

IPUs out-perform GPUs in many machine-learning appli-
cations such as computer vision, natural language processing 
and probabilistic modelling [18–20]. Machine learning has 
been used in particle physics for decades, initially referred to 
as ‘multivariate analysis’ and typically carried out with tools 
developed by and for particle physicists, such as the widely 
used TMVA package [21]. Increasingly, though, industry-
standard tools and environments are being used, such as 
CUDA [22] TensorFlow [23] and PyTorch [24]. While ML 
algorithms are most frequently applied in the final stage of 
event selection, they are also used for particle identification 
[25], flavour tagging [26] and triggering [27, 28]. Neural net-
works have been studied for use in track reconstruction [29], 
motivated by their high performance on hardware accelera-
tors like GPUs and FPGAs.

The increased use of GPUs in particle physics offline 
data analysis coincided with the advent of increasingly 
user-friendly programming environments (such as CUDA 
and TensorFlow) that allow programmers without special 
training to easily exploit GPU resources. Such environments 
exist for IPUs already, including TensorFlow, PyTorch, and 
Graphcore’s C++-based API, Poplar. Ease of programming 
is a substantial advantage over FPGAs, and is, apart from 
performance, a key reason that motivates our study of poten-
tial use of IPUs in particle physics.

In the same way, as GPUs outperform CPUs not only in 
the rendering applications they were originally designed for, 
but also other applications such as ML, it is reasonable to 
expect IPUs to excel in applications beyond ML. Particularly 
promising are applications that benefit from the IPU’s flex-
ible MIMD architecture that contrasts with the GPUs SIMD 
design, which may result in more optimal parallel software.

Event Generation and Tracking Corrections 
Using GANs

Generative Adversarial Networks (GANs) are a class of flex-
ible neural network architectures characterised by a two-
player adversarial training environment where the response 
of a classification discriminator network informs the updates 
to a generator network [30]. The discriminator is trained to 

Fig. 1   The Graphcore Colossus™ MK1 GC2 IPU [13]
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distinguish between generated samples and samples from a 
training set. The generator network transforms a vector of 
random noise into a fabricated sample. GANs are trained 
with an iterative approach, this allows the generator and 
discriminator networks to improve together in parallel. The 
goal of GAN training is to create a generator that is able to 
emulate the characteristics of a training data set with high 
fidelity.

In the ML community, GANs have been shown to work 
well across a spectrum of tasks. The most common task 
is the generation of data in the form of images [31–34]. 
Increased functionality in the GAN comes with the intro-
duction of conditional inputs into the generator, where the 
conditional arguments represent characteristics of the gener-
ated sample. The conditional input could be an input image 
to which a style transfer can be applied [35], or the reso-
lution upscaled to reconstruct sub-pixel information [36]. 
The flexibility of neural networks enable the creation of a 
wide range of architectures. These recent developments in 
the ML community, catalysed by hardware improvements, 
have improved generative neural networks to the point that 
they can feature as viable tools within particle physics com-
putation. GANs are capable of modelling high-dimensional 
distributions or transformations and are able to generate 
samples with high fidelity to training information. Condi-
tional architectures can be designed to enable the networks 
to understand physical processes.

Applications of GANs within particle physics are con-
stantly appearing. GANs have been applied in both event 
generation [37–43] and detector modelling [44–52]. In 
this section the inference and training speeds of some of 
these particle physics based GANs are assessed on the IPU 
hardware and compared to results on the GPU and CPU 
described in Table 1.

Event Generation

Accurate event generation is a crucial component of modern 
particle physics experiments. Large samples of simulated 
particle physics processes, including the detector response, 
are required to optimise the design of the detectors, develop 
reconstruction algorithms, understand the efficiency sub-
systems and model the impacts of various physics based 
selection criteria. Experiments at the LHC simulate billions 
of events every year, each event taking O(minutes) to simu-
late [37]. This results in simulation campaigns consuming up 
to 70% of experiment computing resources [44, 53].

Newly proposed experiments will continue to demand 
a rapid increase in the number simulated events [54, 55]. 
The ongoing optimisation and parallelisation of traditional 
event generation software will at best result in an order of 
magnitude reduction of resources [56, 57]. This reduction 
is not sufficient to meet ever increasing simulation demand. 

Estimates forecast a fourfold shortfall of computing power 
within the next 10 years without significant new investment 
[58, 59]. This has catalysed efforts to develop faster simula-
tion and event generation technologies of which GANs are 
currently a front runner. GANs or other generative network 
architectures are likely to become an integral part of a future 
fast simulation tool kit.

GANs are, of course, unable to completely replace tra-
ditional simulation methods as they rely on training data 
produced with the slower full physics simulation, this fact 
makes the optimisation of traditional methods no less valu-
able. GANs learn by example and are largely limited to mod-
elling the exact process that they were trained on. In compar-
ing a GAN to the full simulation care needs to be taken to 
assign a systematic uncertainty related to the residual mis-
modelling. The GAN event generation is particularly help-
ful when the systematic uncertainty due to its mismodelling 
is smaller than other errors associated with other parts of 
the analysis procedure [38]. A limitation of the GAN-based 
event-generation stems from the fact that the range of the 
feature space that the GAN can accurately model is defined 
by that of the full-simulation training sample. However, 
GANs are able to accurately interpolate between points in 
the feature space of the training sample, acting as a powerful 
data augmentation tool.

Using GPUs to generate events using a GAN-based 
approach offers large increases in event-generation rate over 
traditional simulation approaches [37, 38, 47]. However fur-
ther increases in the rate would be valuable. This section 
investigates if IPUs can provide any additional increase in 
the inference speed of a GAN for event generation.

Examples of GAN architectures are taken from the litera-
ture and event-generation rates are compared across a range 
of batch sizes and different hardware options. Currently, 
convolutional networks are the most commonly used in the 
particle physics community. Two such networks are investi-
gated here, the small convolutional DijetGAN from Ref. [39] 
and the larger locally connected LAGAN from Ref. [37]. 
Additionally, two fully connected networks are investigated. 
These are the prompt and non-prompt muon kinematic gen-
erators developed for the SHiP experiment in Ref. [38]. 
Both fully connected networks are of similar architecture; 
however, the prompt network is significantly smaller. As the 
network weights are not publicly available for all the net-
work architectures under study, random values are assigned 
to the network weights without affecting the speed of the 
event generation.

Figure 2 presents the event-generation rate for CPU, GPU 
and IPU as a function of the batch size for each network 
studied. The relationship between rate and batch size is 
shown to be consistent across network and hardware con-
figurations, with larger batch sizes giving larger generation 
rates. However, there is a limit to the maximum batch size 
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accessible by each hardware option due to memory con-
straints. This limitation results in a plateau of the event-
generation rate.

For each network architecture and hardware option, the 
batch size that gives the largest event-generation rate is cho-
sen. The CPU and GPU results are obtained with Tensor-
Flow 2.1.0 and the IPU results are obtained using Tensor-
Flow 1.15.0 as Graphcore’s SDK version 1.2.0 offered a 
more comprehensive support for TensorFlow 1.x. For each 
benchmark run, warm up batches are passed before anything 
is timed. The TensorFlow profiler was used to ensure the 
GPU inference was indeed dominated by computation time 
and not an unforeseen bottleneck (Table 2).

Across all networks tested the IPU is faster than the GPU 
at generating events using small batch sizes. For the fully 

connected networks, both of which have two hidden lay-
ers, the GPU becomes more efficient at higher batch sizes 
which are not accessible by the IPU that was used due to 
memory constraints. As the batch size approaches the limit 
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Fig. 2   Benchmarking results of the event-generation rate as a function of the batch size of the network. Results are presented for IPU, GPU and 
CPU hardware options outlined in Table 1

Table 2   Benchmarking results calculated using optimal batch size for 
each hardware option.

Network name Number of 
parameters

IPU/CPU rate IPU/GPU rate

DijetGAN 3 × 104 36.3 6.0
LAGAN 4 × 106 86.5 8.0
SHiP non-prompt 5 × 106 3.4 0.6
SHiP prompt 6 × 105 6.7 0.7
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for a single IPU, the performance appears to degrade. This 
is most likely due to overheads in the computation associ-
ated with organising large tensors in memory. At the most 
efficient point, the fully connected networks were 1.4 and 
1.7 times faster using the GPU for the smaller and larger 
networks, respectively.

In contrast, the IPU outperforms the GPU for both of the 
convolutional networks tested. For optimal batch sizes, the 
IPU presents an increase in event-generation rate compared 
to the GPU by a factor of 6.0 and 8.0 for the small and large 
networks, respectively.

Training Models

The results of “Event Generation” show that IPUs outper-
form GPUs for networks with a small batch size. Trained 
GANs used for event generation are implemented using the 
optimal batch size, which generally corresponds to the larg-
est batch size accessible to the hardware. However, a small 
batch sizes contain a stochastic component originating from 
the random selection of training samples. This stochastic 
effect can help to move network configurations out of local 
minima. Larger batch sizes have advantages too, more effi-
cient computation per training sample and a more accurate 
assessment of the gradient at each step. So called mini-batch 
gradient descent aims to operate with a batch size that bal-
ances this stochastic effect with the accuracy of gradient 
updates computed with large batch sizes. Appropriate choice 
of the batch size during training of the network can provide a 
faster overall convergence to an optimal configuration. Com-
monly the batch size chosen for training a GAN is O(50).

This section investigates the performance of the IPU for 
training the GANs described in “Event Generation”. The 
smaller models of the dijetGAN and SHiP prompt GAN, 
are trained on a single IPU. The larger models cannot cur-
rently be trained on the IPU as the generator and discrimina-
tor networks must fit onto a single IPU. Graphcore do offer 
sharding, which allows networks to be split across multiple 
IPUs. Whilst the sharding approach works well for a single 
network, it is not yet possible for a GAN model. The GAN 
case is complicated by the continual interactions between 
models. This may be possible in the future.

The training time is defined as the time taken to run 
over 1000 batches using the batch sizes reported in their 
respective publications. As for the inference benchmarks, 
a warm-up phase containing all compilation overheads is 
discarded from the test. The batch sizes are 50 for the SHiP 
prompt GAN and 128 for the dijetGAN. The IPU training 
times are then compared to the same test completed on the 
GPU and CPU from Table 1. The results are presented in 
Fig. 3. Both networks train significantly faster on the IPU 
as expected from the inference performance discussed in 

“Event Generation”, where for lower batch sizes, the IPU 
consistently outperforms the GPU.

Track Corrections

As observed in previous sections the IPU significantly out-
performs the GPU at lower batch sizes. This section presents 
an example algorithm that would typically be executed with 
a batch size of 1. The algorithm presented has not yet been 
employed in a working particle physics environment but is 
used here as an example of where the IPU might thrive.

The use of GANs extends beyond event generation and 
can be employed in data processing. Charged particles tra-
versing a medium are deflected through multiple small-
angle scatters due to the Coulomb force acting between 
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Fig. 3   Comparison of the time to train the IPU relative to the CPU or 
GPU of Table 1
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the charged particle and the nucleus of the material. The 
resulting trajectory of the particle is therefore modified by 
this scattering and traditional tracking methods rely on tech-
niques such as the Kálmán filter, discussed in “Kálmán Filter 
Implementations Across SeveralArchitectures”, to account 
for this effect. Such methods can be computationally expen-
sive. Therefore, employing a fast pre-processing stage prior 
to the track-fit that corrects for the effects of multiple scat-
tering could be desirable.

Previous work on GANs has shown that in addition to 
conditional class information, a generator can be conditioned 
with an input state to be manipulated. This is typically an 
input image to which a style transfer can be applied [35], 
or the resolution upscaled to recover sub-pixel information 
[36]. This family of transformations is of particular interest 
in particle physics and other scientific domains, as it shows 
that using a GAN high-fidelity information can be correctly 
recovered. In the context of particle physics, this could mean 
correcting for the resolution of the detector, accounting for 
detector misalignment or upscaling the reconstructed hit 
information of charged particles to correct for effects such 
as multiple scattering prior to a track fitting algorithm.

To provide a simple concrete example, the algorithm 
presented in this paper aims to correct for the effect of 
multiple scattering from the trajectory of a charged par-
ticle in two dimensions. A simplified simulation is devel-
oped to model the multiple scattering of a charged particle 
traversing a series of active detection material made of 
silicon. The multiple scattering of the charged particle 
with each layer of silicon is modelled according to Ref. 
[60], where the particle’s path is deflected according to a 
Gaussian distribution whose width depends on the original 
particle’s momentum and velocity as well as the thickness 
of the scattering medium. The same initial conditions are 
used to generate a second, ‘true’, charged particle that does 

not undergo scattering. The GAN is trained to perform a 
style transform from the scattered track to true track.

The generator model used for this study is based closely 
on the pix2pix algorithm [35] as it has been shown 
to generalise over different applications without major 
changes to the network architecture. The generator model 
consists of a U-Net encoder–decoder structure [61] with 
“skip” layers between each of the layers. The skip connec-
tions allow to scale specific information to directly pass 
across the generator and bypass the bottle neck. The key 
difference to GANs used for image generation is an addi-
tional super resolution layer to upscale the output. The 
variation of this model used to model charged tracks is 
referred to as qSRGAN.

An example of how this algorithm performs on a pair 
of tracks is shown in Fig. 4.

In contrast to event generation methods described in 
“Event Generation” where the maximal throughput is 
obtained using larger batches, track corrections would 
typically be done on an event-by-event basis. This allows 
the performance of the IPU at low batch size to be utilised 
efficiently. The performance of the qSRGAN algorithm 
for inference is tested on the CPU, the GPU and the IPU 
given in Table 1. Two key results are presented. Firstly the 
throughput of the algorithm as a function of batch size, 
and secondly the ratio of the rates of the CPU and GPU 
to the IPU for a batch size of one image. The results are 
shown in Fig. 5 where the rate of the image generation 
using an IPU is larger by a factor of 22 relative to a CPU, 
and 4.5 relative to the GPU. The increased generation rate 
of the IPU compared to the GPU would allow either a 
higher total throughput to better cope with higher event 
rates, or a significantly more complex model for the same 
total compute budget.

Fig. 4   An example of correcting for the track multiple scattering using the qSRGAN. The left image is the input to the Generator, the middle 
image is the true image with no scattering, and the right image is the generated output
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Determining the Flavour of B Mesons

Neural networks are commonly used to combine lower-level 
detector-specific information to determine the identity or 
quark composition of a particle. Given the large number of 
particles produced in each collision event, inference speed is 
an important consideration, regardless of whether these are 
evaluated ‘online’ as part of the reconstruction and trigger 
framework, or ‘offline’ after the initial rate reduction from 
the trigger.

For some applications, such as the determination of the 
flavour of the B0

(s)
 meson at production time, significantly 

increased classification accuracy is achieved by applying a 
network over all particles in the event, rather than selecting 
particles thought to be of particular interest ahead of time. 
In this way, correlations between the features of different 
particle tracks can also inform the resulting flavour determi-
nation [62]. Two canonical neural network components that 
enable this multidimensional data to be taken into account 
are convolutional and recurrent neural networks. In general, 
gated recurrent networks are able to better exploit long-
distance dependencies between the input sequence, whereas 
convolutional networks tend to be faster to train and execute. 
However, the trade-offs between each in terms of the clas-
sification accuracy and execution speed are beyond the scope 
of this paper, which rather focuses on the performance of 
each network on different hardware.

In each case, the convolutional or recurrent layers oper-
ate over an input of shape [nbatch, ntracks, nfeatures] , where 
nbatch is the number of examples per training or inference 
batch, ntracks is the number of input tracks, each with nfeatures 

features. Here, the recurrent network implementation uses 
a ‘long short-term memory unit’ (LSTM) [63] followed by 
a number of fully connected layers operating on the output 
of the last element in the sequence. For the convolutional 
network, several one-dimensional convolution operations 
with learnable kernel parameters, are applied sequentially. 
These convolutional layers are followed by a downsampling 
‘max-pooling’ operation that propagates only the maximum 
of its inputs over a fixed range, and subsequently flattened to 
one dimension before entering a set of fully connected lay-
ers. The corresponding network configuration, and example 
parameters, can be seen in Table 3.

Both of these networks are constructed in PyTorch 
1.2.0 [64], and exported to the ONNX [65] interchange 
format. For execution on the IPU, the ONNX models are 
imported into the Graphcore PopART framework. For the 
CPU and GPU benchmarks however, the networks are exe-
cuted directly in PyTorch, which for GPU execution ensures 
that the optimised Nvidia CuDNN LSTM [66] implementa-
tion is used. The CPU is one single core of an Intel Xeon 
Platinum 8168 processor, the GPU is an Nvidia P100 (using 
CUDA toolkit 10.0 and CuDNN 10.1), and the IPU is a 
Graphcore C2 IPU (using Poplar 1.3.0). In general on the 
IPU, performance using ONNX and PopART is equivalent 
to using TensorFlow.

The networks are configured with hyperparameters that 
result in a modest total number of trainable parameters, 
whilst still permitting execution in reasonable time for par-
ticle physics applications. A critical parameter that affects 
inference time, particularly for SIMD processors such as 
GPUs, is the batch size (i.e., the number of inputs present 
on the device and executed over in a single inference step). 
The variation of inference time per event as a function of 
the total number of events per batch, can be seen in Fig. 6. 
Here, events of size of ntracks = 100 and nfeatures = 18 are used 
(in addition to the parameters given in Table 3), which are 
typical for tagging at LHCb.

In each case, the IPU dominates the execution perfor-
mance of the GPU and CPU at low batch sizes, and there-
fore has a lower single event latency (i.e., at batch size 1), 
which could be useful for some applications. Nevertheless, 
the GPU saturates to a higher overall throughput at higher 
batch sizes.

The batch size is expected to be the dominant factor con-
trolling performance for SIMD processors, all else being 
equal. However, it is instructive to explore how the variation 
of network parameters affects relative GPU and IPU perfor-
mance, particularly given that the IPU does not primarily 
gain its performance from SIMD processing, so whilst being 
used for similar purposes, GPUs and IPUs are architectur-
ally quite different. For the recurrent network architecture, 
scans are performed over the batch size, number of hidden 
units (common to each layer), the number of input features 
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Fig. 5   Benchmarking the qSRGAN algorithm on CPU, GPU, and 
IPU processors. The inference throughput for each processor is shown 
as a function of batch size
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per track, and the number of input tracks. Projections of the 
ratio of the time per input for the GPU and IPU versus each 
of these parameters can be seen in Figs. 7 and 8.

In each plot, the black curve is the average across all other 
parameters, holding the x-axis parameter constant, and the 
coloured band spans the minimum and maximum variation 
of the ratio of execution times. Therefore, it is expected that 
if the dependence on relative performance is due to a single 

of these parameters, then the extent of the coloured band in 
the plot of this parameter will be small, indicating no or little 
variation due to the other parameters; at the same time, the 
black curves in the plots of the other parameters will have 
little variation as a function of that parameter.

For the RNN in these configurations, we observe a weak 
dependence on the input length and hidden size, however 
moderate dependence is seen on the batch size and the 
number of input features. That no parameter is sufficient 
to entirely describe the behaviour indicates that the relative 
performance of the GPU and IPU is a complicated func-
tion of all neural network parameters. However, it is clear 
from these plots that the IPU is better performing for smaller 
batch sizes, and a smaller number of input features, com-
pared to the GPU.

For the CNN, a more mixed picture is observed, where 
no single parameter significantly represents the difference 
between the IPU and GPU performance; however, the larg-
est dependence is on the batch size and number of input 
features. In this case, it is clear that the kernel size has a sig-
nificant impact on the difference in execution time between 
the IPU and GPU, where the IPU tends to perform better in 
some cases with large values, and in some cases with small 
values.

Kálmán Filter Implementations Across 
Several Architectures

Kálmán filters are a ubiquitous technique for state-space 
estimation from multiple noisy measurements, and are 
used in fields as diverse as robotics, signal processing, and 
econometrics. In particle physics they are most commonly 
used as a method to incorporate kinematical constraints and 
detector-material interactions when estimating the particle 
track state from clustered hits in tracking stations. As such, 
Kálmán filters often form the basis of event reconstruction 
algorithms.

Recent emphasis on complete online processing of full 
events motivates the need for more efficient reconstruction 
algorithms. In particular, from Run 3 of the LHC, the LHCb 
experiment intends to perform full event reconstruction at 
30MHz in the high-level trigger, to exploit the efficiency 
gain from performing analysis-level selections earlier in the 
pipeline. As such, the execution speed of this reconstruction, 
of which the Kálmán filter is a dominant contributor [67], is 
strictly limited from a cost-performance perspective.

As many of these operations are inherently parallelisable, 
implementation of the reconstruction and track filtering on 
graphics processing units (GPUs) shows good promise, and 
is potentially a more cost effective alternative to CPUs. Nev-
ertheless, as GPUs are generally designed as single-instruc-
tion multiple-data processors, they lack many features that 

Fig. 6   Recurrent (top) and convolutional (bottom) neural network 
execution time per event as a function of the batch size

Table 3   Convolutional and recurrent neural networks used in the fla-
vour tagging example

Parameters correspond specifically to plots in Fig. 6, and inputs are 
processed sequentially from the upper to the lower layers, with an 
implicit sigmoid activation at the end to express the probability of 
being a B0 or B

0

Convolutional network Recurrent network

Conv1D(hidden = 8, k = 20) LSTM(hidden = 8)
Conv1D( hidden = 8, k = 10) Linear(hidden = 8)
MaxPool1D(pool = 2)
Flatten()
Linear(hidden = 8)
Linear(hidden = 8)
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are found in CPUs, such as support for conditional program 
flow, large caches, and fast interconnects between the com-
pute cores.

Kálmán Filter Formalism

Kálmán filters recursively compute closed-form least-
squares estimates for the state and its covariance matrix, 
under the assumption that all uncertainties can be well 
described by multidimensional normal distributions; and 
that only linear relations exist between the state at step t 
and the state at step t + 1 , and the state and the measure-
ment process. The application of a Kálmán filter can be 
broken down into three stages: a prediction (or projection) 
stage where the state at step t is projected linearly to a state 
at step t + 1 ; a filtering stage where the state at step t + 1 
is corrected using the measurement and covariance matrix 
of the measurement at step t + 1 ; and a smoothing stage 
after all filtering steps, where state and covariance matrix 

updates are propagated backwards through the states to 
achieve a globally optimal configuration. The formulation 
here follows that of Refs. [68, 69] (Fig. 9).

The first projection step is described by a set of recur-
rence relations that extrapolate the state described by a 
vector � at step t to the values at step t + 1 , given by

with the covariance matrix of � given by � , where

These relations are expressed in terms of the transfer matrix 
�t , and the random error matrix �t . The expression in Eq. 1 
uses the underlying modelling assumptions (in the case of 
this particular track reconstruction, simple kinematics) that 
generate pt+1 from pt via the application of the linear opera-
tor �t . The error matrix � contains the process noise that 
involves terms that describe additive errors to the estimated 
state, such as those that are picked up after each propagation 
step from material interactions.

(1)�t+1,proj = �t�t,

(2)�t+1,proj = �t�t�
⊤
t
+�t.

Fig. 7   Variation of the logarithm of the ratio between the time taken 
for each input event as a function of batch size, number of input fea-
tures, hidden layer size, and input length, for the recurrent neural net-
work. In each case, the black curve indicates the average time ratio 

when holding the x-axis value constant, and the coloured band spans 
the spans the range of possible ratios with constant x-axis value. A 
value of 0 indicates identical execution time for the GPU and IPU
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At step t + 1 , the prediction from step t to t + 1 , �t+1,proj is 
updated using the measurements at t + 1 , �t+1 . The relation 
between the measurement � and the state � is given by � 
(which in general is independent of t), and the updated filtered 
expectation of �t+1 becomes

(3)�t+1,filt = �t+1,filt

[
�−1

t+1,proj
�t+1,proj +�⊤�t+1�t+1

]
,

where

is the corresponding covariance matrix. Here, �t is the 
matrix that describes weights corresponding measurement 
noise, such as the detector resolution, at step t.

(4)�t+1,filt =
[
�t+1,proj +�⊤�t+1�

]

Fig. 8   Variation of the logarithm of the ratio between the time taken 
for each input event as a function of batch size, number of input fea-
tures, hidden layer size, input length, and the size of the two convo-
lutional kernels, for the convolutional neural network. In each case, 

the black curve indicates the average time ratio when holding the 
x-axis value constant, and the coloured band spans the range of pos-
sible ratios with constant x-axis value. A value of 0 indicates identical 
execution time for the GPU and IPU
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Up until this point, all information is updated in the forward 
direction, however information downstream can also be used 
to update upstream state estimates, to obtain a globally opti-
mal set of states. To do this propagation, a backward transport 
operator is defined as

which is used to perform the smoothing step in the backward 
direction and updating the state

and covariance matrix

at t using the now smoothed state and covariance matrix at 
t + 1.

The covariance matrix can also be used to form a �2 test 
statistic to determine the consistency of a hit with the fitted 
track,

where rk is the residual,

(5)�t = �t,filt�
⊤
t
�−1

t+1,proj
,

(6)�t,smooth = �t,filt + �t(�t+1,smooth − �t+1,proj),

(7)�t,smooth = �t,filt + �t(�t+1,smooth − �t+1,proj)�
⊤
t
,

(8)�2
t
= �T

t
�t�t + (�t,filt − pt,proj)�

−1
t,proj

(�t,filt − pt,proj),

(9)�k = � −��t,filt.

Kálmán Filter Configuration

To investigate the performance characteristics of a Kálmán 
filter implemented in Poplar on the IPU, a tracker with 2D 
active planes of 1m × 1m in x̂ − ŷ is considered, separated 
by a homogeneous inactive medium that induces multi-
ple scattering. Five of these planes are used, separated 
in ẑ by d = 1 m of the inactive medium, and indexed by t. 
Each of these detector planes record measured track hits, 
� = {mx,my} , discretised according to the physical resolu-
tion of the detector planes, �.

No magnetic field is considered, however its inclusion 
would only result in a minor modification of the track state 
(to infer momentum) and inclusion of the magnetic field 
description in �. It is assumed initially that each track regis-
ters a hit on each of the five planes, and the matching of hits 
to tracks is perfect. In reality, dummy hits can be introduced 
to the tracking algorithms, and tracks are often post-pro-
cessed to find the most likely set, so neither of these effects 
compromise the generality of this proof of principle.

A state vector, �t = {xt, tan �t, yt, tan�t} , corresponding to 
the most likely values of the track x-position, xt ; y-position, 
tt ; tangent of the track slope in x̂ − ẑ , tan � ; and tangent of 
the track slope in ŷ − ẑ , tan� ; is estimated at each plane, t. 
It follows that the model parameters for such a system are

where the parameterisation for � is obtained from Ref. [70] 
disregarding higher order terms in the track slopes; z0 is the 
material depth; and �2

0
 is the variance of the multiple scat-

tering angle.
The initial state for the first projection step is set to be 

equal to the hits on the first plane, �0,proj = {m0,x, 0,m0,y, 0} , 
and the covariance matrix set to equal the full uncertainty 
on the track state,

where �x = �y = 1 m, and �� = �� = 1.
In this study, simulated particles are produced at (0, 0, 0) 

and travel in the positive ẑ direction towards the detector 

(10)� =

⎡⎢⎢⎢⎣

1 d 0 0

0 1 0 0

0 0 1 d

0 0 0 1

⎤⎥⎥⎥⎦
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1∕�2 0 0 0

0 0 0 0

0 0 1∕�2 0

0 0 0 0

⎤⎥⎥⎥⎦
,

(11)� =

⎡⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎦
, � =

⎡⎢⎢⎢⎣

z2
0
�2
0
z0�

2
0
z2
0
�2
0
z0�

2
0

z0�
2
0

�2
0

z0�
2
0

�2
0

z2
0
�2
0
z0�

2
0
z2
0
�2
0
z0�

2
0

z0�
2
0

�2
0

z0�
2
0

�2
0

⎤⎥⎥⎥⎦
,

(12)�0,proj =

⎡⎢⎢⎢⎣

(�x)2 (� tan �)2 0 0

0 0 0 0

0 0 (�y)2 (� tan�)2

0 0 0 0

⎤⎥⎥⎥⎦
,

Fig. 9   Schematic of the Kálmán filter application with active detec-
tor planes (dark grey) with hits (crosses), and inactive medium (light 
grey). The Kálmán filter first calculates the extrapolation of the track 
state and uncertainty to the next detector plane (blue regions), and 
corrects this using the true hits and their uncertainties to form an esti-
mate of the track state at the plane (red curve). Lastly, the most likely 
values of the track states and uncertainties at the planes are obtained 
in a backwards pass (green curve)
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planes. At each plane, the particle interacts with the active 
detector material according to its projection on the x̂ − ŷ 
plane of the detector, with a location that is subject to a 
random fluctuation in each direction depending on the total 
path length to simulate the effect of multiple scattering. Sub-
sequently the location of the hit is discretised according to 
the granularity of the active detector area. These two effects 
determine the Kálmán-filter process and covariance matrices 
of the measurement uncertainty. An example of the simu-
lated detector configuration can be seen in Fig. 10, with the 
corresponding hits and reconstructed track states.

Benchmarks

The Kálmán filter described in “Kálmán Filter Configura-
tion” is implemented for the IPU hardware using the Pop-
lar C++ SDK. To exploit the independence of the particle 
tracks, each track is assigned to a single IPU tile, where all 
operations in “Kálmán Filter Formalism” are performed. 
In principle, this results in 1, 216 Kálmán filter operations 
proceeding in parallel, however, optimal throughput is 
only achieved when several batches of tracks are copied to 
each tile initially, and then operated on sequentially. From 
Fig. 11, it can be seen that for batches of size greater than 
∼ 10 tracks, almost perfect parallelism is achieved, with a 
peak throughput of around 2.2 × 106 tracks per second for 
this configuration.

It is interesting to study the behaviour of the IPU imple-
mentation of the Kálmán filter with a workload that relies on 
program branch statements and random memory accesses. 
To this end, a modification of the above Kálmán filter con-
figuration is implemented, where a proportion of hits are 
forced to be inconsistent with tracks they have been assigned 
to. This results in a large value of the �2 expression in Eq. 8. 
At each step the �2 value is evaluated, and if it is above a 
certain threshold, the state is not updated and the previous 
state is propagated to the next state under the assumption 
that no hit was observed at this stage.

On the IPU, this is implemented by a branch statement in 
the vertex code, which is executed on each tile separately. 
By way of comparison, an equivalent Kálmán filter con-
figuration is also implemented in TensorFlow (v2.1.0) 
for execution on the GPU. In TensorFlow the subsequent 
filtering step is modified using a conditional gather-scatter 
update to the state and state propagation parameters. Despite 
the sub-optimal TensorFlow-based GPU implementation, 
it is instructive to compare the relative throughput in the 
case where the states are conditionally modified, and the 
case where no conditional execution is performed. On the 
IPU, the reduction in peak throughput is approximately 
half that of the GPU—where it operates at 91% of peak 
throughput in this case, compared to 80% for the GPU. This 
is likely because the conditional execution results in an 

Fig. 10   Projections of the tracks (coloured lines) reconstructed from hits 
(crosses) using the detector and Kálmán filter configuration given in the 
text
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inefficiency caused by divergence of parallel threads on the 
GPU (‘warp divergence’), whereas on the IPU these execute 
independently.

Summary and Conclusions

This paper represents the first study of IPUs, a new processor 
type optimised for ML applications, in the context of particle 
physics. TensorFlow and PyTorch-based ML applications 
were used to compare the performance of a 1st generation 
IPU to that of a GPU of comparable price, but with twice the 
power consumption, and two high-end CPUs (see Table 1). 
Both GPU and IPU outperform the CPUs. The performance 
of the IPU and GPU is studied for a variety of neural net-
work architectures and parameters. The batch size is identi-
fied as a key variable. For batch sizes accessible to both 
processors, the IPU out-performs the GPU, in some cases by 
orders of magnitude. For GAN event generation, large batch 
sizes are usually optimal. Here, the larger memory capacity 
of the GPU, allowing larger batch sizes, can be a decisive 
advantage. This is the case for the fully connected GAN 
architectures studied; for the convolutional- and locally 
connected GANs, the IPU generates events faster than the 
GPU despite using a smaller batch size. It is worth noting 
in this context that the second-generation IPU has triple the 
memory per tile compared to the first-generation IPU used 
here. In all cases, GANs train faster on the IPU. For applica-
tions with small batch size ≲ O(100) , such as neural network 
training or the track-correction algorithm studied, the IPU 
nearly always outperforms the GPU significantly.

This paper also presents the first implementation of a 
Kálmán filter on an IPU. The algorithm is implemented 
using Graphcore’s Poplar SDK, and also on a GPU using 

TensorFlow. While the IPU implementation is much faster, 
the two implementations are too different for a fair compari-
son. Comparing the processing speeds on each processor with 
and without the final clean-up step indicates that the IPU’s 
MIMD architecture is a significant advantage when executing 
conditional control-flow programs.

An important factor in considering the usefulness of IPUs 
in particle physics, alongside their performance, is the ease 
with which they can be programmed. The IPU software for 
the studies presented here [11] was written within less than 
6 months of the group’s first access to Graphcore’s IPUs, by 
a small team of particle physics postdocs and Ph.D. students 
with no prior experience of IPU programming.

This first investigation of IPUs in a particle physics context 
suggests that IPUs, due to a combination of performance, flex-
ibility and ease of programming, have the potential to play a 
central role in meeting the fast-increasing compute needs of 
particle physics. As promising as these results are, they can 
only be a starting point that motivates further, detailed study 
using realistic particle physics workflows.
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