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Abstract: In previous works, entropic gravity and ungravity have been considered as possible solu-

tions to the dark energy and dark matter problems. To test the viability of these models, modifications

to planetary orbits are calculated for ungravity and different models of entropic gravity. Using the

gravitational sector of unparticles, an equation for the contribution to the effect of orbital precession is

obtained. We conclude that the estimated values for the ungravity parameters from planetary orbits

are inconsistent with the values needed for the cosmological constant. The same ideas are explored

for entropic gravity arising from a modified entropy–area relationship.

Keywords: ungravity; entropic gravity; RG classical tests

1. Introduction

General Relativity (GR) has been a successful theory since it was postulated by Einstein
in 1915. The first solution of the Einstein field equations by Schwarzschild and the first
experimental proof of the effects described by this theory, such as the light deflection obser-
vation by Eddington, came soon after it was published. Since then, GR has been successfully
tested in several phenomena in nature, from simple low-energy systems, such as the orbital
precession in the solar system, to more complex high-energy systems, such as neutron stars
or black holes. However, some effects remain unexplained, such as the case of dark matter
and dark energy [1,2], which we have concluded to be essential components of the universe,
but until now we have been unable to describe the mechanisms involved in observations
or find an appropriate frame to describe them. Also, the recent experimental confirmation
of the existence of black holes [3] forces us to understand the most fundamental aspects
of gravity. Moreover, black holes are gravitational systems in which quantum effects can
be important, and due to our ignorance of quantum gravity, alternative approaches must
be considered. For example, in the semiclassical approach, some macroscopic effects with
information about the hidden quantum degrees of freedom exist. Such proposals were
made by Bekenstein, Hawking and Unruh in the 1960s. Then, following the analogy be-
tween gravity and thermodynamics, Jacobson wrote Einstein’s equations as an equation
of state [4]. The consideration of gravity as an emergent phenomenon allows the use of
the statistical mechanics framework to study this interaction. This idea was revived in [5],
where it was proposed that Newtonian gravity is an entropic force, analogous to emergent
forces in the study of polymers. The motivation is based on the idea of holography and its
relation to black holes. In this formulation, one can propose modifications to Newtonian
gravity by analyzing modifications to the entropy–area relationship. This approach to grav-
ity has been used to study several gravitational phenomena in connection to anomalous
galactic rotation curves [6], late time acceleration of the universe and dark energy [7,8],
or black hole quasinormal modes [9]; different modifications to the Hawking–Bekenstein
entropy–area relationship are used to modify either the Newtonian equation for gravity or
the Friedmann equations and therefore study the effects and modifications to GR.
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In a completely different context from entropic gravity and using different physical
principles, one can derive another type of modified gravity. We can start by considering
higher-energy extensions to the Standard Model. That is the case of unparticles, a scale-
invariant hidden sector of the Standard Model proposed in [10]. The components of
this sector, called unparticles (unlike particles), have a continuous mass spectrum and a
characteristic energy for interactions with SM particles [11]. In the context of gravity, one
can understand ungravity as the result of ungraviton interactions. To introduce the effects
of unparticle physics on gravity, one adds an unparticle term to the Hilbert–Einstein action.
In [12], the authors studied the ungravity counterpart of the Schwarzschild black hole.
Moreover, using ungravity’s temperature and entropy, the ungravity sector effects have
been studied in cosmology, allowing to relate ungravity parameters with the cosmological
constant value [13]. In order to see if this result is consistent with other gravitational
scenarios, we can compare it to planetary motion. Therefore, the main goal of this paper is
to determine if ungravity and entropic gravity are consistent with observations.

The paper is arranged as follows: In Section 2, we obtain orbital precession from
a modified Schwarzschild ungravity metric. In Section 3, a brief review of Newtonian
entropic gravity is presented, and modifications to orbital precession are calculated. Cor-
rections are obtained from a generalized entropy–area relationship. As in the ungravity
case, the corrections are evaluated using solar system data. Finally, Section 4 is devoted to
discussion and final remarks.

2. Ungravity Contributions to the Orbital Precession

In this section, we consider the unparticle generalization. This theory is known
as ungravity and is constructed by considering ungraviton interactions. The action is
constructed as the sum of the Einstein–Hilbert action, the matter action and the effective
action SU for the ungravitons. The ungravity action [14] is given by

SU =
1

2k2

∫

d4x
√

gR



1 +
AdU

(2dU − 1) sin πdU

κ2
∗

κ2

(

−D2

Λ2
U

)1−dU




−1

, (1)

where D2 is the D’Alemberteian, κ∗ is the ungravitational Newton constant, κ = 16πGN

and AdU
is a constant.1 The modified Einstein equations are

Gµν = κ2T
µ

ν + κ2
∗

AdU

sin πdU
. (2)

Solving for the Schwarzschild black hole, one obtains the ungravity Schwarzschild met-
ric [12]

g−1
rr = −g00 = 1 − 2MGN

r

[

1 + κ2
∗

AdU

sin(πdU)

M(r)

2MGN

]

(3)

where

M(r) =
22dU−2

4π1/2

Γ(dU − 1/2)

Γ(2 − dU)
MΛ

2−2dU
U

(

1

r

)2dU−2

. (4)

This leads to the following modified metric:

g−1
rr = −g00 = 1 − 2GN M

r

[

1 −
(

RG

r

)2du−2
]

, (5)

where RG is related to the ungravity parameters [10,12] as

RG =
1

πΛu

(

Mpl

2Mu

)1/(du−1)
(

1

2π

Γ(du +
1
2 )Γ(du − 1

2 )

Γ(2du)

)1/(2du−2)

. (6)
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This term can be understood as the length scale at which unparticle effects will be
relevant and is a free parameter of the model, together with Λu, the characteristic energy
of the model; Mu, the characteristic mass; du, the dimension of the extra operators in the
action; and Planck’s mass Mpl .

Let us now calculate the orbital precession using the ungravity Schwarzschild met-
ric. Considering a particle near a spherically symmetric gravitational field, the geodesic
equation is

2K =

(

1 − 2GM

r

[

1 −
(

RG

r

)2du−2
])

ṫ2

−
(

1 − 2GM

r

[

1 −
(

RG

r

)2du−2
])−1

ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2, (7)

where M is the gravitational mass, and the dots denote a derivative with respect to the
proper time (also, we set c = 1). The above equation is solved taking 2K = 1, as we
are considering time-like geodesics. The Euler–Lagrange equation leads to the following
conserved quantities:

q ≡
(

1 − 2GM

r

[

1 −
(

RG

r

)2du−2
])

ṫ, h ≡ r2 sin2 θϕ̇. (8)

When considering planar motion θ0 = π
2 , the conserved quantity h can be identified with

angular momentum per unit mass, in analogy with the usual Kepler problem. An equation
of motion is obtained in terms of the constant q, which is related to the conservation of
energy. Using the change of variable u = 1/r in this θ0 plane, we obtain

(

du

dϕ

)2

+ u2 =
q2 − 1

h2
+ 2GM

( u

h2
+ u3

)[

1 − (uRG)
2du−2

]

. (9)

Finally, differentiation with respect to ϕ together with µ ≡ GM gives rise to a modified
Binet equation,

d2u

dϕ2
+ u =

µ

h2

[

1 + 3u2h2 − (2du − 1)(uRG)
2du−2 − (2du + 1)h2R2du−2

G u2du

]

. (10)

Using the parameter ε ≡ 3µ2/h2 to solve perturbatively, we propose the solution2 u = u0

+ ε u1. The zeroth-order equation u′′
0 + u0 = µ/h2 has the usual conic section solution,

and the first-order differential equation is

u′′
1 + u1 =

µ

h2
(1 + e cos ϕ)2 − µ2du−3

3h4du−4
(2du − 1)R2du−2

G (1 + e cos ϕ)2du−2

− µ2du−1

3h4du−2
(2du + 1)R2du−2

G (1 + e cos ϕ)2du ,

(11)

where u′′
1 denotes derivatives with respect to ϕ, and e denotes the orbital eccentricity.

The first term in the right-hand side can be identified as the usual GR contribution to the
Kepler problem. After setting3 du = 3

2 , we solve the equation above by considering only
linear contributions in ϕ. Then, the solution to the first-order differential equation is

u1 =

(

µ

h2
− RG

3h2
− 2RGµ2

h4
− RGµ2

2h4
e2

)

eϕ sin ϕ. (12)
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Finally, the complete solution u = u0 + εu1 is

u =
µ

h2
{1 + e cos[ϕ(1 − δ)]}, (13)

where

δ ≡ 3µ2

h2
− RGµ

h2
− 6RGµ3

h4
− 3RGµ3e2

2h4
≪ 1. (14)

The orbital precession is calculated by taking a complete period ϕT(1 − δ) = 2π
such that the extra contribution represents the precessed angle. In this case, the ungravity
contribution to the precession on each revolution is

|∆ϕu| = 2π

(

RGµ

h2
+

6RGµ3

h4
+

3RGµ3e2

2h4

)

, (15)

which can be rewritten in terms of astronomical variables h2 = GMa(1 − e2)

|∆ϕu| =2π

[

RG

a(1 − e2)
+

6GMRG

a2(1 − e2)2

(

1 +
e2

4

)]

, (16)

where a denotes the orbital semi major axis. This new contribution must be less than
the difference between the precession predicted by general relativity and the observed
value so that RG can be inferred using planetary data. Using Mercury’s data [16], we
obtain an estimated value |RG| ≲ 0.005 m. It is important to emphasize that the values
calculated are not constraints of a new theory since we are contrasting our results with
derived quantities [17,18], calculated from other measured parameters in a particular GR
framework. Real constraints should come from calculating all the solar system parameters
in the appropriate framework of that theory.

For other classical GR tests, we derive the ungravity contributions using Equation (5).
For light deflection, we take 2K = 0 in Equation (7), as well as the conserved quantity h in
Equation (8), and in terms of u = R−1, we obtain

u′′ + u = 3GMu2 − (2dU + 1)2GMR
2dU−2
G u2dU . (17)

The above equation is solved for dU = 3/2 (as it is our case of interest) using a perturbation
method in terms of GMu/c2 ≪ 1. We obtain the deviation from the straight line solution
u = sin ϕ/D, where D is the closest distance from the light ray trajectory to the gravitational
source. In the limit for large R, the asymptotic trajectory and the apparent trajectory form
the deflection angle. Considering that RG ≪ D2, the deflection angle is

δU ≈ 4GM

D

[

1 − 3πRG

4D

]

. (18)

We can constrain the parameter RG by using the deflection caused by the Sun [19]; this
gives the bound |RG| ≲ 1.035 × 107 m.

The ungravity correction for the gravitational redshift is calculated with the modified
g00 term of the metric and the weak field approximation g00 ≈ 1 + 2Φ/c2, where Φ is the
classical potential such that

∆ν

ν
= GM

[

1

r1
− 1

r2
− RG

(

1

r2
1

− 1

r2
2

)]

, (19)

where r1 is the radius of the emitter, and r2 is the radius of the detector of a shifted photon.
Experimental data from [20] lead to the relation |RG| ≲ 3.32 × 102 m.
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For completeness, the ungravity contribution to the Shapiro time delay is calculated

dtU = ±
(

2GMRG

r
√

r2 − D2
− D2GMRG

r3
√

r2 − D2

)

dr, (20)

and using data from [21], the free parameter is constrained as |RG| ≲ 1.1 × 105 m.

3. Entropic Contributions to the Orbital Precession

Based on Verlinde’s derivation of classical gravity as an entropic force by employing a
holographic surface [5] and considering the thermodynamics relation F∆x = T∆S, one can
calculate modifications to Newtonian gravity by adding corrections to the entropy–area
relationship. The modified Newtonian force is given by

F = − GMm

R2

[

1 + 4l2
P

∂S
∂A

]∣

∣

∣

∣

A=4πR2

R̂, (21)

where S is a modified Bekenstein–Hawking entropy as a function of A, the area of a
holographic closed surface between a system formed by a rest mass M and a test particle
m. If a volumetric correction4 to the entropy is considered

S[A]

kB
=

A

4l2
P

+ ϵ

(

A

2l2
P

)
3
2

, (22)

using Equation (21), the modified Newtonian force is

FM = −GMm

R2

(

1 +
3
√

2π

lP
ϵR

)

R̂. (23)

As in the usual Kepler problem, the angular momentum is conserved, and the orbits are
restricted to a plane, so we identify R2ϕ̇ = h with the magnitude of the angular momentum.
Taking the radial equation with the change of variable u = R−1 and after defining µ ≡ GM,
we obtain

d2u

dϕ2
+ u =

µ

h2

(

1 +
3
√

2π

lP
ϵu−1

)

. (24)

Solving perturbatively, we can calculate the perihelion shift. In terms of the constant free
parameter ϵ, the orbital precession contribution is [22]

∆ϕ ≈ −3π
√

2πa(1 − e2)

lP
ϵ. (25)

This extra contribution to the orbital precession must be less than the difference between
the observed precession and the one predicted by GR. The bound is calculated using the
data for Mercury, resulting in |ϵ| ≤ 2.8 × 10−58.

Other modifications to the entropy–area relationship can be considered. One inter-
esting option is the general entropy presented in [23,24]. This entropy reproduces several
generalizations to Shannon’s entropy for particular values of the parameters. It has been
studied in the context of cosmology, more precisely, to understand the dark energy sector.
The generalized entropy is given by

Sg =
1

γ

[

(

1 +
α+
β

SBH

)β

−
(

1 +
α−
β

SBH

)−β
]

, (26)
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where SBH is the Bekenstein–Hawking entropy. This reduces to various known entropies
(see Table 1) by fixing the free parameters α+, α−, β and γ, which are constrained to
be positive.

Table 1. Different entropies can be derived by fixing the positive free parameters in Equation (26).

These are written as a function of the Bekenstein–Hawking entropy SBH .

Entropy Parameters Entropy–Area Relationship

Tsallis–Barrow α+ → ∞, α− = 0, γ = (α+/β)β S = S
β
BH

Rényi α− = 0, α+ = γ, β → 0, α = α+
β → finite S = 1

α ln(1 + αSBH)

Sharma–Mittal α− = 0, γ = k = α+, β = k/δ S = (1 + δSBH)k/δ − 1
Kaniadakis β → ∞, α+ = α− = γ/2 = K S = sinh(KSBH)

LQG α− = 0, β → ∞, γ = α+ = (1 − q) S = e(1−q)SBH − 1

Following [5], the modified Newtonian force is

F = −GMm

R2

1

γ



α+

(

1 +
α+π

βl2
p

R2

)β−1

+ α−

(

1 +
α−πR2

βl2
p

)−β−1


R̂. (27)

For planetary orbits, the modified Binet equation is obtained from the generalized entropy
in analogy with the procedure shown in [22]. Using the conservation of angular momentum
and the change in variable u = R−1, we obtain

u′′ + u =
µ

h2





α+
γ

(

1 +
α+π

βlp2u2

)β−1

+
α−
γ

(

1 +
α−π

βl2
pu2

)−β−1


, (28)

which can be compared with experimental data by fixing the free parameters.5 It is noticed
from Table 1 that Tsallis–Barrow and Sharma–Mittal entropies only recover a Newtonian
force term if β = 1, which is the case for the Bekenstein–Hawking entropy. For Kaniadakis
and LQG entropy, the limit β → ∞ is used, inconsistently with the values of β, which
lead to an asymptotically null force; the resulting forces only converge if K = 0 and q = 1,
respectively, and in this case, the force is reduced to Newton’s law. For Rényi entropy,
the contribution to the orbital precession is

∆ = 2π

(

1 −
µ2l2

p

απh4

)

, (29)

and the parameter α is bounded as α ≤ 2.7 × 10−92, comparing with data for Mercury.
Notice that fixing the parameters as α− = 0, β = 3

2 and R −→ ∞ in Equation (27) leads to

F = −GMmα+
γlpR

√

2

3
πα+. (30)

This equation can be used to describe stars far from the galaxy center, then used to
analyze galaxy rotation curves, with the orbital velocity

v2 =
GMα+

γlp

√

2

3
πα+. (31)

Comparing with MOND, for (α+)3/2/γ ≃ 10−56, the model is consistent with galactic
rotation curves. Unfortunately, for small R, it is inconsistent with Newton’s gravita-
tional law.
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We can also consider that the generalized entropy is a correction of the form S =
SBH + Sg, then the modified Newtonian gravitational force is

F = −GMm

R2



1 +
α+
γ

(

1 +
α+π

βl2
p

R2

)β−1

+
α−
γ

(

1 +
α−πR2

βl2
p

)−β−1


. (32)

Of particular interest is the behavior for large R and β = 3
2 . In this case,

F = −GMm

R2

[

1 +
α+

γ

√

2πα+
3

R

lp
+

√

2πα+
3

3lp

4γπR

]

+O
(

1

R5

)

. (33)

Taking the first correction term in the brackets (which is R−1) and with the considerations
that lead to Equation (28), the differential equation for u(ϕ) is

u′′ + u =
µ

h2

[

1 +
α+

γ

√

2πα+
3

1

lpu

]

. (34)

In analogy with the procedure described before, this modified Binet equation is solved and
the shift of the perihelion, constrained by the GR contribution and experimental data, is

|∆| = 2π

∣

∣

∣

∣

∣

h2

µ

α+
γ

√

2πα+
3

1

2lp

∣

∣

∣

∣

∣

≤ 2π × 10−12 rad

rev
, (35)

and the entropy free parameters are bounded by
(α+)3/2

γ
≤ 4.026 × 10−58.

If we consider the circular motion of a star far from the galactic center, the velocity
obtained in our model is a constant; this is the same behavior one obtains from MOND.
After comparing with MOND, we obtain

α3/2
+

γ
=

√

3h̄a0

2πc3M
, (36)

where lp =
√

h̄G/c3 and a0 = 1.2 × 10−10 m/s2. For our galaxy, we obtain (α+)3/2/γ =
1.12 × 10−56. Comparing with the bounds from the perihelion shift, this model is discarded
as an explanation of the anomalous galactic rotation curve.

4. Discussion and Final Remarks

In this paper, we considered the effects of ungravity and entropic gravity on planetary
orbits, with the goal of establishing the bounds to the parameters of these theories

Ungravity corrections were previously studied in the cosmological context [13], pro-
viding an ungravity origin to the cosmological constant. In this model, the effective
cosmological constant

Λe f f ∼ Λ
2
u

(

Mu

Mpl

)
2

du−1

, (37)

is given in terms of the ungravity scale Λu, the ungravity coupling constant Mu and the
scaling parameter6 du. For du = 3

2 , the effective cosmological constant [13] can be written
in terms of RG using Equation (6) as

Λe f f ∼
1

R2
G

. (38)

Using the bounds for RG obtained from different ungravity and unparticle effects, the value
of the effective cosmological constant can be calculated.
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If we assume that the free parameters of ungravity and unparticles are the same
(although this is not necessarily true), particle observations can also be considered to bound
ungravity parameters. Assuming that ungravity and unparticle parameters (Mu, Λu, du)
have the same values, we can make predictions using both gravity and particle experiments.
Using the unparticle contributions to the hydrogen atom’s ground state, we can fix the
remaining parameters and calculate the perihelion shift. From [25], the parameters are
related as follows

λ = cu
Λu

Mu

k

, (39)

where λ is the coupling constant, and Cu together with k are dimensionless constants
related to unparticle operators. A modification term Vu to the potential is added and, using
first-order Rayleigh–Schrodinger perturbation theory, the contribution to the ground state

is ∆
(1)
100 = ⟨1000|Vu|1000⟩, and it is related to the parameters as

∆
(1)
100 = −2

λ2α2µ2

2Λ
2du−2
u

, (40)

where µ is the reduced mass, and α is the square of the electron charge. This new
contribution to the energy can be bounded by experimental and theoretical errors as

|∆(1)
100| = δEth + δEexp with the maximum error δmax = (δEth + δEexp)/|Es

th| ≈ 1.1 × 10−5.
We can write the relation between parameters as

∣

∣

∣

∣

∣

∆
(1)
100

Es
th

∣

∣

∣

∣

∣

=
λ2µ

Λu
< δmax, (41)

and write the orbital precession contribution by introducing RG in terms of these parame-
ters. The perihelion shift is

|∆ϕu| =
2M2

pl

πΛ
3
u

(

λ

cu

)2/k[ 1

a(1 − e2)
+

6GM

a2(1 − e2)2

(

1 +
e2

4

)]

. (42)

We can see that the bounds for λ and cu derived from atomic physics will give insignificant
orbital precession contributions, emphasizing that unparticle parameters are not necessarily
the same as the ungravity ones.

From the gravitational classical tests, we obtain the following bounds for RG: for light
bending |RG| ≲ 1.035 × 107 m, for the Shapiro time delay RG ≤ 1.1 × 105 m, for gravita-
tional redshift RG ≲ 3.32 × 102 m and for precession |RG| ≲ 0.005 m. As stated before,
these are not constraints but estimated values for the parameters of the theory. In the
non-gravitational sector and assuming that the parameters of ungravity and unparticles are
the same, Λu and Mu can be calculated from bounds in [25]. From these results, the value
derived for the cosmological constant is incompatible with the cosmological observations.

Another modification to gravity that we have considered is derived from modified
entropy–area relationships. In particular, we use a general expression for the entropy that
in particular limits the reproduction of several non-additive entropies. This general entropy
has been used in the context of cosmology, more precisely in connection to the dark energy
sector. As in the case of ungravity, we use the perihelion shift in order to verify the validity
of the resulting entropic gravitational force. We find that the contribution to the perihelion
shift is negligible. We also study an entropy–area relationship constructed as the sum
of the Hawking–Bekenstein entropy and this general entropy. In particular, for β = 3/2
and large R, flat rotation curves are predicted. Furthermore, we can fix the value of the
remaining parameters by comparing with MOND and obtain (α+)3/2/γ = 1.12 × 10−56.
Unfortunately, this value is inconsistent with the bounds obtained from the perihelion shift.

In summary, using the perihelion shift and the solar system data, we can obtain
maximal values for the parameters of ungravity as well as for different models of entropic
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gravity. In the case of ungravity, we conclude that, with this methodology, the bounds
on the ungravity parameters are incompatible with the cosmological observations for Λ,
discarding ungravity as an origin for the cosmological constant. For entropic gravity, one
can have a modified entropy–area relationship that is consistent with the bounds of dark
energy and planetary motion, but when also considering galactic rotation curves, the solar
system bound on the parameters favors an interpretation where the volumetric contribution
is relevant at the cosmological scale but not at the galactic scale.

Finally, we would like to emphasize that combining solar system and galaxy rotation
curve data is a useful tool to discard modifications to gravity [26–30].
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Notes

1 This constant depends on the ungravity parameter dU and gamma functions AdU
= 16π5/2

(2π)2dU

Γ(dU+1/2)
Γ(dU−1)Γ(2dU)

.

2 The assumption is that the ungravity contribution is of the same order as for GR, for the purpose of comparing with experimental

data. This is consistent with 1 < dU < 2 [15], which are usually the stated values for this parameter.
3 This value for β is phenomenologically relevant. It gives an entropy proportional to a volumetric contribution, and in the

cosmological scenario gives an effective cosmological constant [12,13].
4 In [6], the authors study a volumetric correction to the entropy and show that it is the most relevant contribution for galactic

rotation curves.
5 We will restrict to 0 > β > 2, as for other values of β we have positive powers of R.
6 In particular, for du = 3/2 the resulting theory is consistent with an entropy that has a volumetric correction.
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