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There is a considerable attractiveness in any approximation 

scheme for physical processes that while maintaining some hold on the 

nature of the approximations, size of the corrections, and significance 

to real physical phenomena also yields tractable, often analytic ex- 

pressions for important measurable quantities. The subject of these 

lectures, the eikonal approximatio~ in elastic scattering and produc- 

tion processes, has precisely all these virtues and, despite its occa- 

sional faults, offers a very useful framework in which to discuss high 

energy phenomena. Indeed, the whole idea of an eikonal- or straight- 

line-approximation is generic to high energy or shortwave length physics. 

As we shall see quite explicitly herein it is when a particle begins 

moving with extremely large momentum that it makes a great deal of sense 

to describe, in a first approximation, its path of motion by a straight 

line. This reduction of a three dimensional motion to one dimensional 

motion is at the heart of the tractability of the scheme we shall dis- 

cuss. 

The plan of these lectures is to first go back to potential 

scattering and discuss in some detail the basic ideas of the eikonal 

technique. (It is my purpose to be frankly pedagogical in these talks 

and because of that the experts will find the start quite simpleminded, 

but perhaps they too will find something useful eventually.) After 

that I shall turn to the eikonal approximation in quantum field theory 

and discuss how the familiar two dimensional eikonal form emerges for 

elastic scattering. Finally, we shall discuss a really most inter- 

esting topic: inelastic processes and production of particles in an 

eikonal framework. 
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A short bibliographical note before we begin. There are in- 

numerable references to the eikonal method in physics and we will re- 

fer, without elaborate apology, to a selected subset of them. The 

standard source of ideas on the eikonal approximation in non-relativi- 

stic quantum theory is the set of lectures by Glauber at the 1958 Boul- 

der Summer School I. Further development of those ideas was given by 

Blankenbecler and Sugar 2 and their followers 3 and in a more modern con- 

text by Bjorken and his collaborators 4. For a review of these older 

ideas I can recommend without hesitation the lectures I gave at the 

1971 Boulder Summer School 5 at which time a rather different set of to- 

pics was emphasized. The subject of production processes in eikonal 
6 

approximation has been most attractively pursued by Sugar and his 

collaborators and we shall follow his lead in our own discussion. 

1. POTENTIAL SCATTERING 

As for so many ideas we have about modern physics, non-rela- 

tivistic quantum mechanics provide~ the ground in which the eikonal 
1 

approximation was introduced into modern physics There are at least 

two ways to state the basic idea and since both are illuminating we 

will consider both. 

The basic problem that we want to address is the evaluation 

of the scattering matrix element 

( l )  

for a particle of mass m to go from initial momentum k i to final 

momentum ~f in the presence of a potential V(~ ) which we take, for 

the present, to be energy independent. This matrix element is related 

to the differential cross section into a solid angle ~ about ~f7 by 

and is related to the usual T-matrix by 
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This T-matrix element is given in terms of the full solution 

~+) (~) to Schr6dinger equation incoming plane waves, the with 
i 

r]) and outgoing spherical waves by the familiar exp ( i k i . 

.7 

where 

It satisfies the standard integral equation 

2 t-,..t " -k- -.d ~ 

= /  I , q =  q / ,  and 

(5) 

Our notation established, we are ready to consider large in- 

cident momenta k i and think how we are to approximate (4) or (5). Of 

course, we need some criterion of "large" k to begin with. One will 
1 

certainly agree that if k. is large compared to the primary fourier 
1 

components in the potential V(q) , then the potential will not severely 

disturb the motion of the projectile and we have the basis for an ap- 

proximation which is not dependent on the details of V. The size of 

a typical q in V(q) is the inverse of the range, a, of the potential. 

So let us agree that kia>>l. Furthermore let us imagine that the 

potential is "smooth" in momentum space (this essentially says kia >> 1 

for then many particle wave lengths will fit into any variation of the 

potential), and that its strength V ° is small compared to the initial 

energy E = k2/2m. Then, turning to (4) we may imagine approximating 

y(+) by an plane wave modulated by some takes incident function which 

into account the small disturbance due to V: 

The Schr~dinger equation provides an exact equation for B(~), of course, 

but we wish to imagine that because V is "smooth" the major variation 

in ~(+) comes from the exponential and that spatial derivatives of B 
l 

are small. One arrives in this way at an approximate equation for B 

+ = (8) 
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whose solution is direct 

c h o o s i n g  B ( -  ~ ) = 0 a n d  d e c o m p o s i n g  ~ i n t o  a p i e c e  a l o n g  k .  a n d  
1 

a p i e c e ,  b ,  o r t h o g o n a l  t o  i t .  When (7) a n d  (9) a r e  p l a c e d  i n  (4) we 

h a v e  a n  e x p r e s s i o n  f o r  T.  

What is the key to our arriving at (9) ? Clearly once we 

dropped higher derivatives of B(~ ) , because of smoothness in V and 

thus in its spatial variation, we arrived at a one dimensional Schr~- 
/% 

dinner equation alon~ k i. This is saying quite directly that propa- 

gation along the initial directions is essentially undisturbed by V, 

only the amplitude of the wave is modulated. This in its simplest form 

is the eikonal or straight-line or semi-classical approximation. 

It is valid when the projectile indeed propagates in essentially a 

straight line which will be true for large k and small scattering ang- 

les, cosO = ~i.~f, in the smooth potentials we have described. 

Corrections to the basic approximation of a modulated plane wave are 

elaborated upon in Ref.5. 

Suppose, in fact, that the scattering angle is small so we 

may write ~ " (~f - ~i ) as 

w h e r e  = k f  - k i i s  t h e  m o m e n t u m  t r a n s f e r  t o  V i n  t h e  s c a t t e r i n g .  

One may now c a s t  t h e  e x p r e s s i o n  f o r  T i n t o  

recognizing the total derivative in the brackets of (12). This last 

form is what is generally referred to as the eikonal approximatior~ and m£ 
the phase X(k,b ) = g d q5 V(b + ~ ) is called the eikonal 

phase. It is the phase up by the projectile in traversing the straight 
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line path along ~ during the scattering process 8 

This seems as good a time as later to remark on the result 

of our modulated wave approximation. First, suppose we hold Z~ fixed 

and let k -~ , then the only term in (13) which survives is 

which is the Born approximation. This is the correct result for poten- 

tials like V(~ ) which do not depend on k. However, there is a 

value in (13) which is not possessed by the Born approximation, namely 

the eikonal approximation satisfies unitarity in the direct (k) channel. 

To see this, write 

t I~  t 

a n d  n o t e  t h a t  s i n c e  S : e x p  ( i ~ )  , u n ± t a r i t y  w i l l  f o l l o w  i n  t h e  high 

e n e r g y  l i m i t .  To b e  m o r e  p r e c i s e ,  l e t  t h e  p o t e n t i a l  d e p e n d  o n l y  o n  

I~I , then X and S depend only on = b. We may do the angular 

integration in (15) to find 

o 

The unitarity relation in the high energy limit becomes diagonal, to 

order i/k, when transformed with Jo(b~ ) , and reads 

T(bk) l - o0/ ) 

which means 

- - -  4 + o0/k) ; (18) 

which is true for our solution. 

This would seem to provide a very general framework for ap- 

proximations to elastic scattering which satisfy direct channel uni- 

tarity. Indeed, it does. Any choice of V(even energy dependent) leads 

to a unitary S in the elastic scattering hilbert space. And there 

is the rub. For a large variety of scattering processes: ~p, K±p, pp, 
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and pp, the ratio of ~elastic / ~total at even moderate laboratory mo- 

menta is of the order of 1/7 or so 9. This means there is a lot of in- 

elasticity and we do not want to satisfy unitarity in the elastic sec- 

tor only. We shall suggest a solution to this later on. 

Next suppose the potential V is proportional to the momentum 

k. Then ~ is independent of k and 

L,~ 

A ,q'~ed (19) 

1 
from (13). That is amusing since ~otal ~ ~Im T(k, o) is then constant. 

And what if V oc k I+~, ~ >o ? Then the exponential in the eikonal 

form (13) oscillates like crazy unless b ~ log k, and one finds 

which is not acc identa l ly  reminiscent of the Fro issar t  bound 10. 
shows us how u n i t a r i t y  plays i t s  important ro le .  

(20) 

This 

Next let us turn to a more formal deduction of the eikonal 

approximation (13) - one which stresses the straight line approxima- 

We begin with the Schr6dinger integral equation (5) in operator tion. 

form 

-7 -=v+  v ] - ,  

where % ( ~  ) -4  ~ 

(21) 

k ~ 
a n W  E :~ 

The solution to this is 

T =  V+ VGV 
-4 ~4 

-- V'6G , = G,, (22) 

where 

GCe) -~ = E-~ - V +~E (23) 

We want to approximate G, the full Green function, and evaluate T as 
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best we can using(22). 

We imagine, therefore, that the projectile is incident upon 

the potential with large momentum k i. Under the smoothness assumptions 

we made earlier it behoves us to guess that during the scattering pro- 

cess the values of momentum encountered do not appreciably deviate from 

k i. Thus we write G(E) -I in a form which emphasizes the closeness of 

p (albeit an operator) to k. (a c-number) 
1 

p 
-- E -  -- - V + - (24) 

- CrY- f -  (25) 

9..'~'~_ 2.:v~- 

= G d L E ) - I  _ hi c (26) 

taking PIE ~ (~.,~ ~._')./z_ (27) 

and for the moment staying off the energy shell ki 2= k 2. The idea 

is to treat deviations from ki, as embodied in H i , as perturbations, 

although H i is a fairly singular operator, and to perform a pertur- 

bation expansion of G beginning with 

C:;- -- c- d ~ @ ~ . 1 4  dC-& = G d + G-M, .G- ,~  (28) 

The first term is clearly G i which upon examination of its structure 

as given in (25) represents propagation of the particle in one dimension 

along k i . This should be no surprise, since we constructed it to do 

this, but the connection with the equation (8) for the amplitude 

modulating functions should be noted. 

We could just as well have made our expansion about kf since 

the smoothness of the potential assures us that p will not signifi- 

cantly deviate from it either. So we would write 

-I -I 
G (jE) ~ C-- T ~ ~# (29) 

where 
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~; ,_  (k" ~ 4 -.~F"~)) _ v?.> 
and 

.2  i - - )  

Of course, 

which together with (28) yields 

suggesting as a first approximation to 

6~..,.°,.,,, ~ .:-(G.~ +-q~),  
and corresponding T-matrix 

Isiko.~/ ~ -  

and 

(30) 

(31) 

(32) 

+ @n.rGU~G.,., ~.> 

G the eikonal Green function 

(34) 

(35) 

TEf 

We will evaluate the incoming eikonal T-matrix, leaving 

for the diligent student. First write 

d 
= V + , ' + k ~  - z F ~ .  _ V+.-z~ 

. Zm 

= v a 4 . - , - ~ - ~ F  '.~'.-. 
,(.. ,Z ~'r). 

<) (36) 

(37) 

We desire the matrix element 

(38) 
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L I'r~ 
= #. - >  k ~ 

4., 

a z 

-- i s  /. t - ] e,~ ,, _zg.¢- VCT)<Y l G~I-g< >~. .z~ i , 

(39) 

(40) 

which should be very familiar in its last form. Indeed we expect that 

lira (k2-ki 2) <r --~ I Gil q > = (exp i k>. "~) B(~) , and we won't be 
k 2 ~k 2 2m 1 
1 

disappointed. There are many ways to see this. Perhaps the most 

straightforward is to note that the differential equation for 

17 I ~ i l ~ i >  is 

,~,~ +k ~ - z  F-k-.- - v ( ~ J  ~-~1 G.<. f k,. > - -  .~ 
2t~ ) (41) 

which has the solution 

o (42) 

in convenient parametric form. The on energy shell T-matrix is 

(43) 

which is just what we expect. 

The eikonal T-matrix referring to kf is similarly found 

to be 

m )  -" 

#, 
As one can discover in a straight forward calculation, each of TEl 

and TEf  r e d u c e  t o  t h e  e x p r e s s i o n  (13) we h a v e  c a l l e d  t h e  e i k o n a l  

f o r m ,  when t h e  s c a t t e r i n g  a n g l e  b e t w e e n  ~ i  and  k f  i s  s m a l l .  
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Having commented on some of the implications of the eikonal 

approximations before, let me close this section with a few remarks. 

(i) One can clearly perform the expansion of G in power of a per- 

turbation H about any linear combination ak i + bkf of directions 

which are close to the initial or final path. The literature contains 

several discussions of the virtues of various choices 8 especially the 

average momentum 3 

whose main claim a priori seem to be connected with being able to satis- 

fy time reversal invariance, but which appears (for reasons mysterious 

to me) to possess some superiority on numerical and other grounds. 

(2) Despite the fact that (13) satisfies unitarity in the elastic 

sector it may prove useful in nuclear physics problems where the elastic 

channel is important or the form may be appropriate for a few channel 

problem by replacing the real potential by some sort of optical potential 

V(?) = % + ' - E  

using the V 2 term both to represent absorption out of the elastic 

channel and to define inelastic" 

(3) The correction term indicated in (33) to the basic eikonal approxi- 

mation may be evaluated term by term. The first term 

leads to the so-called Saxon-Schiff correction 2'3'5 to the eikonal 

approximation. If the fourier transform of V(r ) falls off as a 

power in q momentum space, then simple estimates 2 indicate that the 

eikonal plus first correction is an excellent representation of 

T (kf, ki) over all angles. This says physically that for such 

potentials the projectile chooses to make its momentum transfer ~ in 

one or two steps (no H or one H) rather than multiple scattering. 

For a gaussian potential; this is not the case. Then a separate 

analysis II reveals that the basic eikonal is most important. 
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2. FIELD THEORY 

As we well know field theory is much richer than potential 

scattering because of the ability to produce particles. In this section 

we will concentrate on the extraction of the high energy elastic scat- 

tering amplitude in a relativistic framework and in the next section 

we will turn to consideration of how particle production may be treated. 

The basic thing to realize is that the field theory may be 

reduced to a discussion of potential scattering and that our experience 

with the latter, now enhanced by our eikonal knowledge, will serve as 

a guide to physical approximations. 

So, in what way is field theory just potential scattering? 

The answer 12 is that if we know the amplitude for a particle of momen- 

tum Pl [ four momentum = (Pt' Px' Py' Pz ) ] to go to momentum Pl in 

the presence of a c-number external potential A(x), then we may answer 

any question involving the interaction of those same particles and the 

quanta associated with the potential. Essentially the amplitude 

TA(pl,p I) acts as a generating function 13 for emission and absorption 

of such quanta. 

Let us illuminate these remarks by considering the quantum 

electrodynamics of a dirac particle moving in an external c-number 

electromagnetic potential A~ (x). Suppose we have calculated 

TA(Pi,p I) to second order in A. This is given by 

or in configuration space 

' (48) 

where u and ~ are the standard dirac spinors, ~ the usual 4x4 

matrices, ~(q) the fourier transform of A(x), and S+(z) the standard 

causal propagator for a dirac particle. 

Now knowing this suppose we ask: what is the probability 

amplitude for the particle to scatter in the potential A~ (x), to first 
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order, and in the same act radiate a photon of momentum 

wave function 6~(k)? The answer, as we well know, 

• I 

+ 

k with spin 

I 

x 
(49) 

representing emission after and before the scattering on A. It is the 

relation between these two answers that we seek. If we replace in (48) 

A M (z) by  ~ (k )  e - i k .  z ,  we o b v i o u s l y  a r r i v e  a t  t h e  f i r s t  t e r m  o f  (49) , 

and s i m i l a r l y  t h e  s e c o n d  t e r m  comes  f r o m  r e p l a c i n g  A(y)  by  ~ x ( k ) e  - i k ' y .  

Both of these things can be done at a stroke by taking a 

derivative of (48) with respect to A~ (x) and in each of the two terms 
~: ~ -ik.x 

inserting the appropriate photon wave function (k,x) = ~k)e , 

then integrating over all possible space-time points x where the inser- 

tion might have occurred. That is 

(5o) 

which it is easy enough to see is generally true. The funny ~ means 

literally: replace A0<(z) under an integral by ~4 (x-z); that is 

(51) 

Another question one may ask of (48) is what is the amplitude, 

to second order in e, for the particle to emit a photon and then reab- 

sorb it? We must open up the potential at A~(z), say, propagate a 

photon from z to y via the causal propagator D+(z-y) and then allow 

the particle to reabsorb the photon at y. This yields 

2_2___ 
(sz ) 
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the 1/2 comes from the possibility of the photon's beginning at either 

y or z in TA(PI-- > pi ) . The general answer for T(Pl-~pl) no emission 

is gotten by some simple counting 

and after taking all derivatives, set A~ = O. 

(53) 

Interaction between particles which is mediated by the quanta 

of A m , namely photons, comes from two particles moving in two potentials 

A 1 and A 2 and from evaluating the probability amplitude to open up an 

A 1 spot and propagate a photon, via D+, over to an opened A 2 spot. 

Thus the amplitude for electron scattering T(PI +p2~Pi +p~) in the 

absence of corrections to the photon propagator D+ coming from inter- 

nal electrons is 

J'tl__ (a) 
(54) 

As promised we now see that a large variety of field theoretic 

phenomena follow from potential scattering probability amplitudes. 

Indeed, if one takes (54) and performs exactly the same kind of eikonal 

approximation on T. and TA2 as we have done in the previous section, 

then it follows 3'5~I after some straightforward computation 

that exactly the form (13) emerges. The "potential" is just that of 

the photon exchange which yields the Born approximation. Rather than 

present this derivation here, we will follow a somewhat different route 

which will lead more smoothly into the discussion of production. All 

the principles of the direct calculation from (54) 5 are illuminated. 

Since we are interested in the scattering of a particle in 

an external potential let us consider some particle currents J~(x) 

interacting with the c-number potential A~(x). The interaction Lagran- 

gian 
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(55) 

leads via the standard rules of field theory to the S-matrix element 

to go from some state i to another f 

We want to evaluate Sfi when the states li> and i f >  
14 

are moving very fast in, say, the three direction So we take a 

standard state, say a rest state for a single particle, and boost it 

along the 3-axis very fast, so 

where (9 is a boost angle and K3, the generator of 3-boosts. A 

particle at rest is taken by this operation from Po = (m, 0,0,0) to 

e g = ~ o ~ k o , o ,  o , ~,~0). (57) 

Under such a transformation it is convenient not to consider separately 

Pt and Pz' but the combinations 

h = P~ +- h (58) 

for 

-~ 
e p~ = e -~° p~ (59) 

since p+ gets large and p_ small when 

transform? Of course, its components in the O< or 

touched but 

z~30 -*'¢3 ° ±o  o 

where J+ = Jt ~ J3 
(xl,x2) - 

is large. How does J~(x) 

1 direction are un- 

(60) 
2 / 

and x+ = x ° ~ x 3 while ~ is the two vector 

The matrix element Sfi becomes 
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zeus 

_ z ~ ' ~  8 . 

= . e  I , , , , 5  

(61) 

(62) 

+ O& 
] 

+@ 
or on changing integration variables to ~ = e x , 

+ o&_O) 
which if we define 

&)_ 

and 

takes on the two dimensional form 

however, the time ordering which remains must be discussed before we 

are so excited about(66). 

To get rid of the time ordering, which we must do in order 

for Sfi to have the true exponential form exhibited by the eikonal 

approximation, it is necessary to make some ansatz about the component 

J+ of the particle source operator. The only "time" left to be ordered 

is the dependence of J+ on x_, so if we make J+a c-number with respect 

to its dependence on x_ we may remove the T operation and have essen- 

tionally an eikonal or more precisely an exponential form for Sfi. 

This requires that J+(x+, x_, ~x ) and J+(y+, y_, ~Y ) commute at x_ = y_ 
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2 
NOW Jo< (x) commutes with JB (y) for (x-y) E O , already if it is a local 

operator. So since 

2 
we see that automatically (67) is satisfied if (x-~) is not zero. The 

additional assumption 15 is that if x-~ is lightlike [J4 (x), J4 (~/)3 =0. 

If this is true, then 

which is essentially the eikonal answer. 

J (69) 

It is not obvious that all currents J~(x) are such that their 
15 

plus components commute on the light cone. Indeed, as Weinberg has 

shown, this places strong dynamical constraints on the matrix elements 

of J which are tantamount to generalized sum rules of the Drell-Hearn- 

Gerasimov variety. One implication of this is that if we return to our 

problem of a dirac particle scattering in an external potential and do 

not add radiative corrections of a self-energy or vertex correction 

variety, then the particle must have no anomalous magnetic moment and 

the eikonal technique "works" only if g = 2. This is consistent with 

more direct approaches to this question. 

In the early work on eikonal approximations the c-number 

nature of J+ was arranged in a very simple fashion: it was taken to 

be a c-number. The physical meaning of this is straightforward. If 

the particle which is being scattered neither produces other particles 

nor any quanta of A~ (that is, there are no radiative corrections on 

the particle line) nor does it change its co-ordinates such as a spin, 

helicity or, if it is taken composite, its internal wave function, 

then the transition operator causing the scattering is acting in a one 

dimensional space of particle variables and it is essentially a c-num- 

ber. The assumption that all these conditions be met is generic to 

older treatments of the eikonal approximation. Our exercise above 

shows us that a more general class of scattering processes may take the 
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exponential form of the eikonal. Clearly if J~ (x) is an operator still, 

the particle scattering in the potential can make many intermediate 

states of varying character before it emerges in state If > . 

The appearance of the commutator of the particle source, J, 

on the light-cone might at first seem strange. However, just this kind 

of quantity is to be expected in relativistic theories on the following 

heuristic grounds. When we deal with very fast particles, say P3~°~ , 
2 2 

on the mass shell, p = m , then we are specifying two out of four 

components of p; namely P3 and Pt = P3 + ( 2 + m 2) / 2P3 (to leading 

order), where ~ = (Px' Py)" In co-ordinate space we are thus provi- 

ding information on the variables conjugate to Pt and P3; namely t and 

x 3 • 

Indeed, we are constraining x 3 ~ ~t for forward or backward 

going particles respectively. This places us very near the light cone 

in a space time diagram and tells us that for P3 ~ ' the dynamics of 

scattering is gathering information from the whole light cone and not 

just the canonical space-like surface of equal t. To put it another 

way, the "natural" variables for P3 ~ processes would appear to be 

x t ~ x 3 and ~, not separately x t and x 3. Of course, any description 

must be equivalent; it is just that one's good sense suggests it will 

be simpler in these light cone variables. 

One more word before going on to production. This same heu- 

ristic argument tells us why we keep finding two dimensional integrals. 

It's simple; we have given P3 and Pt' thus the dynamics lies in the two 

dimensional subspace we have said nothing about. 

3. PRODUCTION PROCESSES 

In view of some of the fairly drastic approximations which 

are going to be made in this section, I feel it may be worthwhile to 

recount a few of the salient features of data on production processes 

which, thanks to the wide attention directed in that direction for the 

past several years, is now available in useful form. First, as we have 

noted before, the study of production or inelastic reactions is bound 

to be important for high energy physics because experimentally even 

at AGS or CERN - PS or Serpukhov energies, Plab-~ 30-70 GeV/c, the 

total cross section is on the order of 7 to i0 times 
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O'elasti c. It is unlikely that we will understand the latter or quasi- 

two body processes taken alone. Second, ~total appears to be extra- 

ordinarily constant over enormous ranges of incident energy. Strictly 

speaking, this is known for pp scattering from Plab~25 GeV/c to 

Plab ~ 15"o0 GeV/c as measured at the CERN-ISR. For Kp and )Up scat- 

terings the detailed situation is more fluid. Third, the average trans- 

verse momentum, which we have called ~ , seems to be quite small even 

at the highest available energies. The distribution in I~ I = PT of 

detected particles tends to be 

. . .  , , .  d ~  (70) 

with a ~3 or 4 (GeV/c) -2 or b ~ 6 (GeV/c) -I. So most hadron physics 

is within O~ PT ~ 0.5 GeV/c. Fourth, and this is most important for 

what follows, the distribution in momentum of particles detected at 

high energies is quite different for particles which are definitely 

produced (e.g., 7C or K or p in pp collisions) from the distribution 

of particles which can "come through", e.g. protons in pp collisions. 

The effect seen is that for "through going" particles there is a pro- 

nounced maximum for very large or very small longitudinal momenta when 

measured in the center of mass. That is, the beam or the target par- 

ticles go through. The distribution of produced particles, on the other 

hand, is largest at small center of mass Plong" This phenomenon, which 

is very distinct in the ISR data at Plab ~15OO GeV/c is popularly known 

as the leading particle effect. 

The rest of this section will be devoted to a model which is 

eikonalistic and attempts to incorporate many of the features just 

described 16. The particular type of process which I have in mind will 

be Nucleon + Nucleon--~ Nucleon + Nucleon + some produced things (~ or 

K or what you like). Taking a strong hint from the data we treat the 

nucleons as leading particles and treat their co-ordinates as c-numbers. 

That is, the nucleons are treated as through going objects whose vari- 

ables, if they are altered at all, are not altered appreciably. This 

c-number nature of the nucleons is, of course, precisely the trick that 

allows us to eikonalize this process. 
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Since there are always 2 nucleons in both the initial and 

final states let us label the amplitude for n pions + 2N-m m pions + 
17 

2N as Tmn , and let us agree to call all produced particles pions 

We know from earlier work the Too (elastic scattering) takes the form 

"62"/3 

(72) 

whe re 

and s is the usual square of the incoming c.m. energy, and t = -/62 i~ 2 

is the four momentum transferred. This suggests that we operate in a 

space where the nucleon co-ordinates s and ~ are specified, for there 

we will have a good chance to construct a set of Tmn which are unitary. 

(Recall that unitarity was a nice feature of eikonal approximations.) 

The nucleons, then, will be treated as a source, a c-number 

source, for pions which will be parameterized by the co-ordinates s and 

B. The leading particles carry off a large fraction of the initial 

energy, and we will imagine that the pions can move freely in phase 

space with no special constraints on them due to energy momentum conser- 

vation. That is to say, since the pions come out with small Plong' in 

the c.m., and if their number is not large, as we will shortly impose, 

then energy momentum constraints are essentially negligible on them. 

Our problem then is to find the S-matrix which comes from a c-number 

source ~(s,~;x) which can emit and absorb pions. 

A digression on convenient notation before we solve this 

problem. It is useful to use instead of s and Plong' the dimensionless 

variable rapidity, commonly called y. The rapidity of a particle of 

mass m, momentum (~T' Plong ) is defined to be 

I ~ +~(°n~J (74) 

and is essentially 

 oo9 /c , (75) 
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or the angle of "rotation" in the time-z plane to produce a particle 

of momentum Plong" 

Yo 
The incident nucleons have center of mass rapidity !-- 

2 
for the beam and target respectively, where Yo = log s to an 

excellent approximation. The values of Yo in the real world are not 

overwhelming: y ~ 4 at the AGS, Yo ~ 6 at NAL, Yo ~ 8 at the ISR, and 

at the "planned" ISABELLE 200 GeV/c colliding beam facility Yo ~ 11.5. 

The real advantage of rapidity is that invariant phase space is simple 

E 

Usually, energy momentum conservation is complicated in terms of y, 

but we have just agreed not to worry about this, so we are spared that 

misery. 

Now we are ready to calculate Tmn. We want to determine the 

field ~(x) in the presence of the c-number source_ ~(Yo,B;x) 18 pion 

To do this we must solve the equation 

The solution, of course, is 

where 

sL 
I 

(78) 

(79) 

and we have temporarily dropped the Yo' ~ parameters. 

Which function D(x) we want is dictated as usual by the 

boundary conditions of the problem. 

We wish to express the out field ~out(X) for departing pions 

in terms of ¢in(X) 

(80) 
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SO 

=O 

(81) 

(82) 

Since 

and 

w h e r e  D R and  D A 

f y i n g  (79) , we h a v e  

(83) 

(84) 

are the retarded and advanced Green functions satis- 

The integral representation of this difference Green function is 

(86) 

is useful, then, to decompose . _~out and "__~in into creation It 

and annihilation operators in momentum space 

_.j//• W 4[~- ~" + 

and 

J J6~tr,) -- ~x+ ) 
(88) 

where we remember that 

rc)x 
q 

?o 
(89) 
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] Y (2rr) ~ (9o) 

TO guarantee the proper equal time commutation relations for ~in(X) 

and ~out (x) we take 

a n d  

<,=, 

From the solution to our problem, Eq. (85), we now learn 

ao.~O,~ - -Q( j ,~ )  + ~ ~0,~ T) ~ 

where 

with 

r ~ = Ig 

as before. 

to aou t 

o r  

[_ s ,  ~,,~ (~,%) ] : 

(94) 

(95) 

(96) 

The S matrix is defined to be the operator which takes a. 
in 

so we h a v e  

~¢<J,%)5 (98) 
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This form suggests we seek a solution of (98) as 

f dy ,4~qr s - c , xu j  ~ . ~ , x c j ,  l:.)e}-, 0,$,- ) ~ 

,, <.>~p ( ' ~  ;C~(;, J<< (.~.j= t )  a,,~ G 9v~-) 
(99) 

where C is a c-number normalization constant. 

identity 

A [ . 4 , 8 1  - / A ,  rs; e 

Then using the operator 

(lOO) 

which is true when [A,B3 commutes with A and B, we find 

Is, < ~ : ° O , t ) ]  = x ( j , I . ) - -  ~s-Cj ,~ ,_)  , ( i o i )  

which solves our problem. The normalization C is found by requirinq 

= (102) 
55 + Z j 

that is, unitarity. This makes C take the value 

, f ~y~7~ / ~ (103) 

using (iO1). So we have constructed an explicity unitary S-matrix 

operator which acts in pion space (the nucleons are always present so 

the "vacuum" is the two nucleon state). Of course if we want Tmn 

we must evaluate 

= < ~ = = / s  ) ,~ ,~  > - G,-,.,,.,, (lO5) 

where the n pion state In,in ~ is 

(106) 

in a standard manner. 

It is amusing to ask for the elastic scattering matrix which 

is the vacuu~ to vacuum transition; i.e., no pions in, no pions out: 
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I-loC7o~S) = 6o151o> - i I~o7) 

= C - i , (los) 

and reference to (103) shows that indeed we nc longer have a unitary 

S matrix in the elastic sub-space. In fact, since C = exp-(real number), 

the eikonal phase is pure imaginary and thus the "potential" has be- 

come completely absorbing! 

How are we to regard this solution of the eikonal production 

problem? Since the source function ~(Yo' ~; y' ~T ) is unspecified 

there is an enormous freedom in possible unitary answers. One must 

think of this as a class of solutions which for any ~ yields a unitary 

S-matrix and thereby provides an attractive framework into which one 

may put his best guess or theory for ~ There are certain constraints 

on ~ which come from experimental knowledge on cross sections, multi- 

plicity, etc., and we shall now look at some of these quantities. 

The total cross section is given by the optical theorem as 

%E) o 

for s large, and in the present solution is 

11o) 

1 
and this only suggests that for large s or Yo = ~log s, C(Yo, ~) is in- 

dependent of Yo in order to reproduce the constant total cross sections 

that are observed. 

The distribution of produced pions, that is, the single 

particle inclusive spectrum, is defined to be 

d0-" [NN --~ NN + o~ p,or, + ~ g J  = 

(111) 
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I<.~,~ l o . .0 ( 'J ,%)s l  0 ) I  ~ - 
NOW (112) 

<ol t~.  ,s+ J l ~.;,> <,,,~I £ % , S ]  l o 

and summing on n in (iii) we have 

d~ - / J %  ~ ~  ~ (:Io, ~ )  I ~ dY~'~T/<~n') o e TI f • i y, (i~3) 

So knowledge about the inclusive distribution is direct knowledge on 

the source function 

Another interesting quantity is the n pion cross section 

O~n (yo) which is 

(ii4) 

( i i 5 )  

and shows that in B, y ° space one has a Poisson distribution in 

mean 

4 
d nCJo, S_) > = loq --~-~jo, & ) z  

n with 

(ii6) 

which should really come as very little surprise. That is to say, once 

we ignored the constraint of energy momentum conservation on pion pro- 

duction in Yo' B space, the pions were emitted independently and this 

is precisely the condition under which a Poisson distribution follows. 

The mean multiplicity of particles is given by 

(118) 
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--/~z8 d y o/z% 

(119) 

(120) 

This quantity is known to be approximately log s = Yo' from 

both cosmic ray and CERN-ISR experiments. By the way, this fact of 

"small" average multiplicity (relative to the ~which could occur 

if all the incoming energy went into particle production) provides 

justification for the input of the present model that a only small 

number of particles with low center of mass momentum are produced, and 

so one may approximately ignore the conservation of energy momentum for 

produced particles, once the leading particles are accounted for. 

This really completes our discussion of eikonalized production 

processes. One might proceed further in two directions; one formal, one 

phenomenological. The first would consist of generalizing the c-number 

source approximation to some kind of light cone commutator statement, 

as was done for elastic processes. The other would be to find attrac- 

tive phenomenological forms for ~(Yo'~; y' ~T ) and predict the results 

of correlation phenomena to be seen at NAL in, say, two particle in- 

clusive processes. At this time I shall refrain from answering these 

interesting questions both to give the student something to work on and 

to give the lecturers at the next summer school something to talk about. 
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