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There is a considerable attractiveness in any approximation
scheme for physical processes that while maintaining some hold on the
nature of the approximations, size of the corrections, and significance
to real physical phencomena also yields tractable, often analytic ex-
pressions for important measurable gquantities., The subject of these
lectures, the eikonal approximation in elastic scattering and produc-
tion processes, has precisely all these virtues and, despite its occa-
sional faults, offers a very useful framework in which to discuss high
energy phenomena. Indeed, the whole idea of an eikonal-~ or straight-
line-approximation is generic to high energy or shortwave length physics.
As we shall see quite explicitly hereinit is when a particle begins
moving with extremely large momentum that it makes a great deal of sense
to describe, in a first approximation, its path of motion by a straight

line. This reduction of a three dimensional motion to one dimensional

motion is at the heart of the tractability of the scheme we shall dis-

cuss.

The plan of these lectures is to first go back to potential
scattering and discuss in some detail the basic ideas of the eikonal
technique. (It is my purpose to be frankly pedagogical in these talks
and because of that the experts will find the start quite simpleminded,
but perhaps they too will find something useful eventually.) After
that I shall turn to the eikonal approximation in gquantum field theory
and discuss how the familiar two dimensional eikonal form emerges for
elastic scattering. Finally, we shall discuss a really most inter-
esting topic: inelastic processes and production of particles in an

eikonal framework.
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A short bibliographical note before we begin. There are in-
numerable references to the eikonal method in physics and we will re-
fer, without elaborate apology, to a selected subset of them. The
standard source cf ideas on the eikonal approximation in non-relativi-
stic quantum theory is the set of lectures by Glauber at the 1958 Boul-
der Summer Schooll. Further development of those ideas was given by
Blankenbecler and Sugar2 and their followers3 and in a more mcdern con-—
text by Bjorken and his collaborators4. For a review of these older
ideas I can recommend without hesitation the lectures I gave at the
1971 Boulder Summer School5 at which time a rather different set of to-
pics was emphasized. The subject of production processes in eikonal
approximation has been most attractively pursued by Sugar6 and his

collaborators and we shall follow his lead in our own discussion.

1. POTENTIAL SCATTERING

As for so many ildeas we have about modern physics, non-rela-
tivistic guantum mechanics provided the ground in which the eikonal
approximation was introduced into modern physicsl. There are at least
two ways to state the basic idea and since both are illuminating we

will consider both.

The basic problem that we want to address is the evaluation

of the scattering matrix element

"F(kfj Ez ) (1)

—y
for a particle of mass m to go from initial momentum ki to final
momentum E; in the presence of a potential V(X ) which we take, for
the present, to be energy independent. This matrix element is related

to the differential cross section into a solid angle {2 about/lzf7 by

> - 2
o{o&f;%c - H(k ‘k‘:>[ (2)

and is related to the usual T-matrix by

TG:’;,EL):‘%T{(k,E;) (3)
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This T-matrix element is given in terms of the full solution
Ik(+)(?') to the Schrddinger equation with incoming plane waves,
-
exp (i.f; . r), and outgoing spherical waves by the familiar

T(I(:Cll::; ):folgr e V(r) ’q)m(r) (4)
It satisfies the standard integral equation
S > ™~ e -
T(kplk«;)zv(’ﬂc k) + ()
Cl%i S 4 e
+/(zrr)3 V(kf7) CECL T(?J k),

1, and

where k = [ EZ’ = IEII , 9 = ]
A oy 2 —{Z' ~y
V(Z) = [oir & V&) . )

Our notation established, we are ready to consider large in-

H

cident momenta ki and think how we are to approximate (4) or (5). Of
course, we need some criterion of "large" ki to begin with. One will
certainly agree that if k is large compared to the primary fourier
components in the potentlal V(q) then the potential will not severely
disturb the mction of the projectile and we have the basis for an ap-
proximation which is not dependent on the details of V. The size of

a typical g in 'v(q) is the inverse of the range, a, of the potential.
So let us agree that kiaﬁ>l. Furthermore let us imagine that the
potential is "smooth" in momentum space (this essentially says kia:» 1
for then many particle wave lengths will fit into any variation of the
potential), and that its strength V is small compared to the initial
energy E =k /2m Then, turning to (4) we may imagine approximating
1y(+) by an incident plane wave modulated by some function which takes

into account the small disturbance due to V:

V@) = (e <E-7) BG). -

The Schrddinger equation provides an exact equation for B(?), of course,
but we wish to 1mag1ne that because V 1is "smooth" the major variation
in Yﬁ ) comes from the exponential and that spatial derivatives of B

are small. One arrives in this way at an approximate equation for B

2k - BE) .
jZZ V(F) B(F) =7, (8)
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whose solution is direct
B(b +1ky) = oxp 5= fozr V(p +tke) 5

-
choosing B(-% ) = O and decomposing E4 into a piece along ki and
a piece, b, orthogonal to it. When (7) and (9) are placed in (4) we

have an expression for T.

What is the key to our arriving at (9) ? Clearly once we
dropped higher derivatives of B(¥ ), because of smoothness in V and

thus in its spatial variation, we arrived at a one dimensional Schr&-

A
dinger equation along ki. This is saying guite directly that propa-
gation along the initial directions is essentially undisturbed by V,
only the amplitude of the wave is modulated. This in its simplest form

is the eikonal or straight-line or semi-classical approximation.

It is valid when the projectile indeed propagates in essentially a
straight line which will be true for large k and small scattering ang-
les, cos® = ?irﬁf' in the smooth potentials we have described.
Corrections to the basic approximation of a modulated plane wave are

elaborated upon in Ref.5.

Suppose, in fact, that the scattering angle is small so we

may write ? (E} —_fi) as

2. (R, %) z[b + Tk(k 2 ko) )] (6-E) oo
£+

»-,a’é)(l—;Jz) = b.A ) (11)

- - -
where A = kf - ki is the momentum transfer to V in the scattering.
One may now cast the expression for T into
7‘ A A-b
—L~'~
T(k,a) = /Azb/oll[V(b #ky) exp oQ‘V(éi-tk)]e
(12)

S Ly %Ab[xp Coviereh) -1 un

recognizing the total derivative in the brackets of (12). This last

form is what is generally referred to as the eikonal approximation, and
the phase X(k,b ) = %fdt V(g + %X ) is called the eikonal
~ —on ~

phase. It is the phase up by the projectile in traversing the straight
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line path along ﬁ during the scattering process8

This seems as good a time as later to remark on the result
of our modulated wave approximation. First, suppose we hold & fixed

and let k —» e , then the only term in (13) which survives is
AR -
/olzb dx e V(b +2k) (14)

which is the Born approximation. This is the correct result for poten-
tials like \«f’) which do not depend on k. However, there is a
value in (13) which is not possessed by the Born approximation, namely
the eikonal approximation satisfies unitarity in the direct (k) channel.

To see this, write
1 2 ’4éé'é
(ko) =~ 55 [ & #3[S(b k) - 1] s

and note that since § = exp>(i,K) , unitarity will follow in the high
energy limit. To be more precise, let the potential depend only on

[E?l , then X and S depend only on [b| = Db. We may do the angular
integration in (15) to find

T(ka)s=- é;?—'—“—ﬂ b J(Bb) [k, k) - 1] a6

The unitarity relation in the high energy limit becomes diagonal, to

order 1/k, when transformed with JO(bAA ), and reads

Tm T(b k) o« | T(g, k) |2+ 0(/k) -

which means
5(bk)S'(b k)= 1+ 0G/k), ae)

which is true for our solution.

This would seem to provide a very general framework for ap-
proximations to elastic scattering which satisfy direct channel uni-
tarity. 1Indeed, it does. Any choice of V(even energy dependent) leads
to a unitary S in the elastic scattering hilbert space. And there

is the rub. For a large variety of scattering processes: ﬂtp, Kip, PP,
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and pp, the ratio of G;lastic/ Gil:otal at even moderate laboratory mo-
menta is of the order of 1/7 or s0%. This means there is a lot of in-
elasticity and we do not want to satisfy unitarity in the elastic sec-

tor only. We shall suggest a solution to this later on.

Next suppose the potential V is proportional to the momentum

k. Then X is independent of Xk and

lim 7;1(kl£9 = (:k FY?Q

Kk oo
A fixeol (19)
from (13). That is amusing since o::otaloc %—Im T(k, ©) is then constant.
And what if vec k'€, £>6 2 Then the exponential in the eikonal

form (13) oscillates like crazy unless b A& log k, and one finds

, —_ 2
Lim Toare (k,8) ~ k (loghk)”
A fixe

which is not accidentally reminiscent of the Froissart boundlo. This

(20)

shows us how unitarity plays its important role.

Next let us turn to a more formal deduction of the eikonal
approximation (13) - one which stresses the straight line approxima-
tion. We begin with the Schrddinger integral equation (5) in operator

form
T=V+ VGO(E)T, (21)

-1 . . - K
where (;(E_) = E - 2%7— + g J ﬁ— "’CVr anol &E =,Zn7 .

The solution to this is
FT=V+VG6GY =V66 =G 6V, (22)
where

G :5-2%2 Vv +E . (23)

We want to approximate G, the full Green function, and evaluate T as
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best we can using(22).

We imagine, therefore, that the projectile is incident upon
the potential with large momentum ki' Under the smoothness assumptions
we made earlier it behoves us to guess that during the scattering pro-
cess the values of momentum encountered do not appreciably deviate from
ki‘ Thus we write G(E)_l in a form which emphasizes the closeness of

P (albeit an operator) to ki (a c-number)
-1 2 I I
GEY —E- P _ v Poled | -l (24)
2w 21w 2w
D - 2 25
CoRME R R )
2w 2 v
~1 (26)
< G LE)T -
= e
. (p-k)
takin - = = - (27)
? H. 2w
and for the moment staying off the energy shell ki2= k2. The idea

is to treat deviations from ki’ as embodied in Hi’ as perturbations,
although Hi is a fairly singular operator, and to perform a pertur-~

bation expansion of G beginning with

The first term is clearly Gi which upon examination of its structure

as given in (25) represents propagation of the particle in one dimension
along ki . This should be no surprise, since we constructed it to do
this, but the connection with the equation (8) for the amplitude
modulating functions should be noted.

We could just as well have made our expansion about k_ since

£
the smoothness of the potential assures us that p will not signifi-

cantly deviate from it either. So we would write

-1 -1
GE) = jS /H§ (29)

where
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6; (K -l-ké‘-ZP .£l - V(7) (30)
m
and —

H{= %‘_k;ﬁi_ (31)
Of course,
G=G{+G{/-¢G=6F+6H#GF 5 (32)
which together with (28) yields
=%(GL+G#>+2LG_F(H;+H4)6’£ +G-FH{GH1:6L/ (33)

suggesting as a first approximation to G the eikonal Green function

6’ = é‘(Ci +'éi,>) (34)

Eikonal

and corresponding T-matrix

Tetkonal = 7 (2. +Tep )

and

= VvV +V G(¢ V (35)

JE(ior() or f) .

We will evaluate the incoming eikonal T-matrix, leaving
TEf for the diligent student. First write

T ! V
{ :V <r 'f‘ kz-f-kzi —ZF.?‘ ) (36)
.~ VA
L m

4 64, f—.Zm

(37)

We desire the matrix element

7;@(@4 E’c) = <—}:,c/ T;ul E: > (38)
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Fdme (BIVe Ry (BR)

(39)
_ L > < -é
”kj.Tk‘/O(%“ VA 6T, (,Zm ) o

which should be very familiar in its last form Indeed we expect that

2, 2 — - —a =4
1im (k ki) <?IGilki>= (expik ) B(r ), and we won't be
k2ex2 om
i
disappointed.

There are many ways to see this. Perhaps the most
straightforward is to note that the differential equation for

g kv d .
e I Gilki> is

z I - 47{?
Ktk ~ZF ko _V/,—n)]<r*’{@1. (K.Y = e
2

(41)
which has the solution o
> - =
(FlGlky > = exp v ko7 c/@“"
o
{ )ﬁ .t - -
x exp - xfo(*c V( -k, 7;;)} (42)
(o]

in convenient parametric form. The on energy shell T-matrix is

(k{( fd re ﬁA.rV[f") e)(P[-cﬁl'C V(’?~ E:, ’C/I"?)JJ (43)

which is just what we expect.

The eikonal T-matrix referring to k

£ is similarly found
to be

TEF(,;;‘,;:): o AT ) Up[ﬂ j;[t V7 e R /)|

As one can discover in a straight forward calculation, each of T

Ei

and TEf reduce to the expression (13) we have called the eikonal
-~ N\

form, when the scattering angle between

ki and kf is small.
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Having commented on some of the implications of the eikonal

approximations before, let me close this section with a few remarks.

(1) One can clearly perform the expansion of G in power of a per-
turbation H about any linear combination aki + bkf of directions
which are close to the initial or final path. The literature contains
several discussions of the virtues of various choices8 especially the

average momentum3
k = 2 (k,+ k) (45)

whose main claim a priori seem to be connected with being able to satis-~
fy time reversal invariance, but which appears (for reasons mysterious

to me) to possess some superiority on numerical and other grounds.

(2) Despite the fact that (13) satisfies unitarity in the elastic
sector it may prove useful in nuclear physics problems where the elastic
channel is important or the form may be appropriate for a few channel

problem by replacing the real potential by some sort of optical potential
V) =V, +0V
R 2

using the V2 term both to represent absorption out of the elastic

channel and to define . L e
inelastic
(3) The correction term indicated in (33) to the basic eikonal approxi-

mation may be evaluated term by term. The first term

16, (HorU) G, (46)

213,5 to the eikonal

leads to the so-called Saxon-Schiff correction
approximation. If the fourier transform of V{(r ) falls off as a
power in g momentum space, then simple estimates2 indicate that the
eikonal plus first correction is an excellent representation of

T (kf, ki) over all angles. This says physically that for such -
potentials the projectile chooses to make its momentum transfer A in
one or two steps (no H or one H) rather than multiple scattering.
For a gaussian potential; this is not the case. Then a separate

analysisll reveals that the basic eikonal is most important.
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2. FIELD THEORY

As we well know field theory is much richer than potential
scattering because of the ability to produce particles. 1In this section
we will concentrate on the extractionof the high energy elastic scat-
tering amplitude in a relativistic framework and in the next section

we will turn to consideration of how particle production may be treated.

The basic thing to realize is that the field theory may be
reduced to a discussion of potential scattering and that our experience
with the latter, now enhanced by our eikonal knowledge, will serve as
a guide to physical approximations.

So, in what way is field theory Jjust potential scattering?
The answer12 is that if we know the amplitude for a particle of momen-
tum Py [four momentum = (pt, Py py, pz)] to go to momentum pl’ in
the presence of a c-number external potential A(x), then we may answer
any question involving the interaction of those same particles and the
quanta associated with the potential. Essentially the amplitude
TA(Pi’pl) acts as a generating function13 for emission and absorption

of such gquanta.

Let us illuminate these remarks by considering the quantum
electrodynamics of a dirac particle moving in an external c-number
electromagnetic potential A (x). Suppose we have calculated
TA(pi,pl) to second order in A. This is given by

Z(a’)ey‘;\-(ﬁ) m-d’-gp’*“?') eX-,Zl\'(‘p) cw(pd)

or in configuration space

INCR =[ofqz oz“‘j cZCp{)e'tvp‘l‘zef.A(z)S,rCz-y) x
ey Aly) et Pry w (P,

where u and u are the standard dirac spinors, d; the usual 4x4

(48)

matrices, X(q) the fourier transform of A(x), and S+(z) the standard

causal propagator for a dirac particle.

Now knowing this suppose we ask: what is the probability
amplitude for the particle to scatter in the potential A°<(x), to first
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order, and in the same act radiate a photon of momentum k with spin

wave function éa(k)? The answer, as we well know,

‘[;(P1-—>P:+.k) = elé:(k)/dqg o{q}/[ a@;)ét‘((a@lc)icflk

x9S (z—y)yA(y)e Py oc/p) + <c(pe -

(49)

o Al)SGE- e )7ucp }

representing emission after and before the scattering on A, It is the
relation between these two answers that we seek. If we replace in (48)
A (z) by E(k) e K. 2 ye obviously arrive at the first term of (49),
and 51mllarly the second term comes from replacing A(y) by é (k)e ik-y'
Both of these things can be done at a stroke by taking a
derivative of (48) with respect to A (x) and in each of the two terms
inserting the appropriate photon wave functlon CZ (k,x) = é%ék) —ike X,
then integrating over all possible space-time points x where the inser-

tion might have occurred. That is

/ Cr-T‘ a7 4I> ¥
“IZ(P4-—»P4+I<) =/o£q>t —}Affa—ﬁz——— a_ol(k,x*) )

(50)

which it is easy enough to see is generally true. The funny Aﬁ means

literally: replace Ay(z) under an integral by 54(x—z); that is

FALE) JEAC) = 9,88 (0. -

Another guestion one may ask of (48) is what is the amplitude,
to second order in e, for the particle to emit a photon and then reab-
sorb it? We must open up the potential at Ax(z), say, propagate a
photon from 2z to y via the causal propagator D+(z—y) and then allow
the particle to reabsorb the photon at y. This yields

( ) I O(, (52)
No PaP) = ’“Jﬂ; o{q -9 . - T(p=p"
Etission g JAd(‘w) D—{— (’M} Z-) Ao((z? A (ﬁl P4 )J
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the 1/2 comes from the possibility of the photon's beginning at either
y or =z in TA(pl-> pi). The general answer for T(ple>pi) no emission
is gotten by some simple counting

T, Sow)

Em1551

exp -7l ¥z ol —2— J ]_‘ —p'
[ Pz SA LD D(z- >JA() (e P*)/ 53)
and after taking all derivatives, set ﬁ% = 0,

Interaction between particles which is mediated by the quanta
of A, , namely photons, comes from two particles moving in two potentials
A1 and A2 and from evaluating the probability amplitude to open up an
Al spot and propagate a photon, via D+,
Thus the amplitude for electron scattering T(pl +p2—9p1 +p5) in the

over to an opened A, spot.

absence of corrections to the photon propagator D+ coming from inter-
nal electrons is

T, +p, = P +R ) =

- ¢ «
[exP ol WO[ZJAH[ 5 D(u} Z>J'/42d() ]X (54)

T N T / T -
v - ) (._ - ( ‘ ‘
[T (e~ B) Tlamp) =T, () T (o) | |
A 2. _
A4= 2
As promised we now see that a large variety of field theoretic
phenomena follow from potential scattering probability amplitudes.
Indeed, if one takes (54) and performs exactly the same kind of eikonal
approximation on T and TA as we have done in the previous section,
then it follows>’5 !

that exactly the form (13) emerges. The "potential” is Jjust that of

after some straightforward computation

the photon exchange which yields the Born approximation. Rather than
present this derivation here, we will follow a somewhat different route
which will lead more smoothly into the discussion of production. All

the principles of the direct calculation from (54)5

are illuminated.
Since we are interested in the scattering of a particle in

an external potential let us consider some particle currents J,(x)

interacting with the c-number potential A, (x). The interaction Lagran-

gian
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Lo () = LA ()

(55)

leads via the standard rules of field theory to the S-matrix element

to go from some state i to another £
Ses =CF | Tlexp <[t T, (DAL ) |4 (56)

We want to evaluate Sfi when the states [i> and If>
are moving very fast in, say, the three direction 14. So we take a
standard state, say a rest state for a single particle, and boost it

along the 3-axis very fast, so
I'L>:—6XP"»{,K36) l(‘o>/

where O is a boost angle and K the generator of 3-boosts. A

3’
particle at rest is taken by this operation from Py = (m, 0,0,0) to

LK 0
€ |2A =(l‘ncosh9/0{ o’/—nsl'néé)‘ (57)

Under such a transformation it is convenient not to consider separately

Py and P,/ but the combinations

for

- k50 +0

since p, gets large and p_ small when 6 is large. How does Jpe (%)
transform? Of course, its components in the X or 1 direction are un-
touched but

K38 -k 6 +06 -¢ e
e ST T, X)e 2 PO T (€T e k) (o)
— — ~ /
where J, _ = Je £ Ja and x, = x° + x3 while x 1is the two vector
1 . 2,- -
(x™,x7).

The matrix element S 5 becomes

f
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5;- =< £ 64'@[(3 T (exp —ofd”*d"* oA*x [ LA~ *‘J-A+ J/,])x

(61)
- K; G .
x € 3 / 1, >

= ({01 —{_(ex[? [~ ffo/)go/x_o(zx“ ](e X, e x‘ ’(“)/4 @hy' YLJ)/ )

6 (62)
+ 0(e?) )
or on changing integration variables to ;L = e+6;_
| T(exp-§ [oieet olex T,(0, %, 2)A 6,20 %)) [w>
(63)

+ O(e %)

which if we define
}(A’C) = /a/’( 0, X, X (64)

and

a(&)=zi,fc/& A (6,9, %) (65)

takes on the two dimensional form
= (| T (o< [ JE) @ G [y w0 o0

however, the time ordering which remains must be discussed before we

are so excited about(66).

To get rid of the time ordering, which we must do in order
for Sfi to have the true exponential form exhibited by the eikonal
approximation, it is necessary to make some ansatz about the component
J+ of the particle source operator. The only "time" left to be ordered
is the dependence of J+ on x_, so if we make J+a c-number with respect
to its dependence on x_ wWe may remove the T operation and have essen-
tionally an eikonal or more precisely an exponential form for Sfi'

This requires that J+(x+, X_+ X ) and J+(y+, Y_r Y ) commute at x_ = y_
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[‘74—(&'%”’!—)) ]+(7+.y-¢5£)1 / = 0. (67)
X =Y
Now J, (x) commutes with JB(y) for (x—y)2<:0 , already if it is a local

operator. So since

(x-y¥ = (ey) (¢=y)_ — (x-2) , (68)

we see that automatically (67) is satisfied if (513)2 is not zero. The
additional assumption15 is that if x-y is lightlike [J (x), J,(y)d =0,

If this is true, then
5{4 = { lexF - o(ZX‘él(£>a (x) [<> (69)

which is essentially the eikonal answer.

It is not obvious that all currents qx(x) are such that their
plus components commute on the light cone. Indeed, as Weinberg15 has
shown, this places strong dynamical constraints on the matrix elements
of J which are tantamount to generalized sum rules of the Drell-Hearn-
Gerasimov variety. One implication of this is that if we return to our
problem of a dirac particle scattering in an external potential and do
not add radiative corrections of a self-energy or vertex correction
variety, then the particle must have no anomalous magnetic moment and
the eikonal technique "works" only if g = 2. This is consistent with

more direct approaches to this question.

In the early work on eikonal approximations the c-number
nature of J, was arranged in a very simple fashion: it was taken to
be a c-number. The physical meaning of this is straightforward. If
the particle which is being scattered neither produces other particles
nor any quanta of A, (that is, there are no radiative corrections on
the particle line) nor does it change its co-ordinates such as a spin,
helicity or, if it is taken composite, its internal wave function,
then the transition operator causing the scattering is acting in a one
dimensional space of particle variables and it is essentially a c-num-
ber. The assumption that all these conditions be met is generic to
older treatments of the eikonal approximation. Our exercise above

shows us that a more general class of scattering processes may take the
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exponential form of the eikonal. Clearly if Jx (x) is an operator still,
the particle scattering in the potential can make many intermediate
states of varying character before it emerges in state |f > .

The appearance of the commutator of the particle source, J,
on the light~cone might at first seem strange. However, just this kind
of quantity is to be expected in relativistic theories on the following
heuristic grounds. When we deal with very fast particles, say py~>o2,
on the mass shell, p2 = m2, then we are specifying two out of four

components of p; namely p, and p, = p, + (p2 + m2) / 2p, (to leading
3 t 3 £ 3

order), where p = (px, py). In co-ordinate space we are thus provi-
ding information on the wvariables conjugate to j and Pyi namely t and
X5.

Indeed, we are constraining Xy & ft for forward or backward
going particles respectively. This places us very near the light cone
in a space time diagram and tells us that for py oo, the dynamics of
scattering is gathering information from the whole light cone and not
just the canonical space-like surface of equal t. To put it another
way, the "natural" variables for P, >0 processes would appear to be
Xy + X4 and x, not separately Xy and Xq. 0f course, any description
must be equivalent; it is just that one's good sense suggests it will

be simpler in these light cone variables.

One more word before going on to production. This same heu-
ristic argument tells us why we keep finding two dimensional integrals.
It's simple; we have given Ps and Py thus the dynamics lies in the two

dimensional subspace we have said nothing about.

3. PRODUCTION PROCESSES

In view of some of the fairly drastic approximations which
are going to be made in this section, I feel it may be worthwhile to
recount a few of the salient features of data on production processes
which, thanks to the wide attention directed in that direction for the
past several years, is now available in useful form. First, as we have
noted before, the study of production or inelastic reactions is bound
to be important for high energy physics because experimentally even
at AGS or CERN - PS or Serpukhov energies, Piap 2~ 30-70 GeV/c, the

total cross section is on the order of 7 to 10 times
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o;lastic‘ It is unlikely that we will understand the latter or quasi-
two body processes taken alone. Second, O, appears to be extra-

total
ordinarily constant over enormous ranges of incident energy. Strictly

speaking, this is known for pp scattering from pla5825 GeV/c to

Piap = 1590 GeV/c as measured at the CERN-ISR. For Kp and Xp scat-
terings the detailed situation is more fluid. Third, the average trans-
verse momentum, which we have called'R , seems to be gquite small even

at the highest available energies. The distribution in IE | = pp of

T
detected particles tends to be

iiNL ~ ex (-CI.?> or
GIRE P P (70)

~ exp (~bPT) , 1)

2 1

with a3 or 4 (GeV/c)_ or b &6 (GeV/c)_ . So most hadron physics

is within 0 £ P £ 0.5 GeV/c. Fourth, and this is most important for
what follows, the distribution in momentum of particles detected at

high energies is quite different for particles which are definitely
produced (e.g., X or K or p in pp collisions) from the distribution
of particles which can "come through", e.g. protons in pp collisions.
The effect seen is that for "through going" particles there is a pro-
nounced maximum for very large or very small longitudinal momenta when
measured in the center of mass. That is, the beam or the target par-
ticles go through. The distribution of produced particles, on the other
hand, is largest at small center of mass plong' This phenomenon, which
is very distinct in the ISR data at Piab ~ 1500 GeV/c is popularly known
as the leading particle effect.

The rest of this section will be devoted to a model which is
eikonalistic and attempts to incorporate many of the features just

describele.

The particular type of process which I have in mind will
be Nucleon + Nucleon -» Nucleon + Nucleon + some produced things (X or
K or what you like). Taking a strong hint from the data we treat the
nucleons as leading particles and treat their co-ordinates as c-numbers.
That is, the nucleons are treated as through going objects whose vari-
ables, if they are altered at all, are not altered appreciably. This
c~number nature of the nucleons is, of course, precisely the trick that

allows us to eikonalize this process.
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Since there are always 2 nucleons in both the initial and
final states let us label the amplitude for n pions + 2N > m pions +
2N as Tmn’ and let us agree to call all produced particles pionsl7.

We know from earlier work the T,, (elastic scattering) takes the form

{Q B
T, (st) = csf[atB e 7 T, (5 8),

(72)

where

_ POEEN:D
lps (5( B) = e -1 (73)

and s is the usual square of the incoming c.m. energy, and t = —/ég[ 2
is the four momentum transferred. This suggests that we operate in a

space where the nucleon co-ordinates s and B are specified, for there
we will have a good chance to construct a set of Ton which are unitary.

(Recall that unitarity was a nice feature of eikonal approximations.)

The nucleons, then, will be treated as a source, a c-number
source, for pions which will be parameterized by the co-ordinates s and
B. The leading particles carry off a large fraction of the initial
energy, and we will imagine that the pions can move freely in phase
space with no special constraints on them due to energy momentum conser=-
vation. That is to say, since the pions come out with small plong’ in
the c¢.m., and if their number is not large, as we will shortly impose,
then energy momentum constraints are essentially negligible on them.

Our problem then is to find the S-matrix which comes from a c-number

source f(s,g;x) which can emit and absorb pions.

A digression on convenient notation before we solve this
problem. It is useful to use instead of s and plong' the dimensionless

variable rapidity, commonly called y. The rapidity of a particle of

mass m, momentum (pT, plong) is defined to be
E +
E - ang )

and is essentially

tanl—,y = ULong /C ) (75)
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or the angle of "rotation" in the time~z plane to produce a particle

of momentum plong'

The incident nucleons have center of mass rapidity tzg
for the beam and target respectively, where Yo = log s to an
excellent approximation. The values of Yo in the real world are not
overwhelming: y & 4 at the AGS, Yo = 6 at NAL, Y, &= 8 at the ISR, and
at the "planned" ISABELLE 200 GeV/c colliding beam facility Yo ~ 11.5.
The real advantage of rapidity is that invariant phase space is simple

3
2
dp =04yolpr . (76)
E
Usually, energy momentum conservation is complicated in terms of vy,

but we have just agreed not to worry about this, so we are spared that

misery.

Now we are ready to calculate Tmn‘ We want to determine the

pion field ¢(x) in the presence of the c-number source j%yo,g;x)ls.

To do this we must solve the eguation
[mz+ézqu(>f) = f(]o( B, x). (77)

The solution, of course, is

¢(>¢) =/o‘qy D(e-y) f(j’)/ (78)

where
¢
2
(m? + (9»> D(x) = (5‘ (x) , (79)
and we have temporarily dropped the Yoo B parameters.

Which function D(x} we want is dictated as usual by the

boundary conditions of the problem.

We wish to express the out field (x) for departing pions

(x)

out

in terms of A
in

(Pow(X“) = qSian») +/ot“g 3()&‘— z) fCZ), (80)
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(P 4m?) ¢, 0¢) = (0% +m?) CPW* (x) =0,

(81)

so

-~
(?+m?)D =0, (82)
Since
— ¢

¢lx) = ¢ (x) +/o(£ DR(w~z)5(z)/ (83)

and
¢(’*) = (fow‘(w) +/Clq£ DA("“Z) fCZ>/ (84)
where DR and DA are the retarded and advanced Green functions satis-

fying (79), we have
B(Z) =DR(£) —DA(Z) . (85)

The integral representation of this difference Green function is
A 4 “q-2
= .04_7___@/‘7 z_ .2z (86)
D(z) /Z(M)g J(C] m?)

It is useful, then, to decompose ¢out and ?&n into creation

and annihilation operators in momentum space

Ci)m(%’) :/—dlfi——- J(mz ‘71)[6&““(71 /?‘-,-> 64’?')(‘.*_ ajh (y, %_) é“‘?y](j”

20am)3

and

CPou* (x«) :fgjlr)_f(f(mz_?z—)[aom(y‘%‘) ew?. + CL;_P(‘)’,%)Q_A‘?*]/ o8

where we remember that

At 2og?) = -@_.__ °
27:%? I (=) 2q 3(2r)? .
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:/T;‘%'O)‘(ZL : (90)

To guarantee the proper equal time commutation relations for q%n(x)

and out(x) we take

[2,19,), af 2,k )] = ¢ G dy-2)d (g - k)

and

2
[am+(y,%)/aai+ @, ET)] < ¢ (2n)* O{\(y "Z‘)f)‘ (%r“ ’Sr> . (92)
From the solution to our problem, Eq.(85), we now learn

a°u+(j,%_) =a£h(y,%_) + % §(],%ﬂ> (93)
where
¢(y,8) =/oz“x« ) < 17 »
with

(95)

112
C(:(%(%l%) ) 7 = +[‘%}Z4‘?j +mi] ]

log[fﬁLtiil- (96)
T ~9=

~o|

and »j =

as before.

The S matrix is defined to be the operatcr which takes &ip

to a sSo we hav
out €

San(34) 5" = au(y.g)

or

[5.anlyg)]=4e0.9)5. (s
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This form suggests we seek a solution of (98) as

S5=C exp [HLETr Cmg FAQ, g0al (%)
) e_xpr (ar)3 X((yl%) QA (Y19

(99)

where C is a c-number normalization constant. Then using the operator

identity
A
LCA, 8] =[AaBle (100)

which is true when [A,BJ cormutes with A and B, we find

[s.2n(y.g,)] =2(v.9.) = 2¢(5.%) (101)

which sclves our problem. The normalization C is found by requirincg
55= 1 (102)
J

that is, unitarity. This makes C take the value

el 5 2
C = exp- ?ﬂ%g?/f(y,%)/ , 1o

using (10l1). So we have constructec an explicity unitary S-matrix
operator which acts in pion space (the nuclecns are always present sc
the "vacuum" is the two nucleon state). Of course if we want Tmn
we must evaluate

—_—

lem =<s'n,m/5“1[in,h> (104)

=<in,m{5)l}7‘n> “d’mn (105)

4

where the n pion state |n,in> is
4 + +
—ﬁ——’: a«'n(y“ %‘4 ) - ai"(yn )%'n> [0y (106)
in a standard manner.

It is amusing to ask for the elastic scattering matrix which

is the vacuumr to vacuum transition; i.e., nc pions in, nc pions out:



169

Too (Yo, B) = <o0lSloy - 1 (107)

7 (108)

and reference to (103) shows that indeed we nc longer have a unitary
S matrix in the elastic sub-space. In fact, since C = exp-(real number),
the eikonal phase is pure imaginary and thus the "potential" has be-

come completely absorbing!

How are we to regard this solution of the eikonal production
proklem? Since the source function g(yo, B; ¥, gT) is unspecified
there is an enormous freedom in pcssible unitary answers. One must
think of this as a class of solutions which for any § yields a unitary
S-matrix and thereby provides an attractive framework into which one
may put his best guess or theory for f . There are certain constraints
on f which come from experimental knowledge on cross sections, multi-

plicity, etc., and we shall now look at some of these gquantities.
The total cross section is given by the optical theorem as
1 —_—
o (s) = SInT, (y%o) (109)

for s large, and in the present solution is

0;.(S>=fdaB[C()o,§)*l ] (110)

J

1
2
dependent of Yo in order to reproduce the constant total cross sections

and this only suggests that for large s or Yo = log s, C(yo,g) is in-

that are obkserved.

The distribution of produced pions, that is, the single

particle inclusive spectrum, is defined to be
olO"[NN —> NN + one pion +anything |
dyet'q, /(ul2w]?) (111)

<@ ol ‘O(Z‘Tﬂ "'dyndzrn . 4
fdzge anz y[‘é(lzr)’l“ : {<'”'”/a«'~(5'%351">/.
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'<l'n,n fa‘-n(\},%_)S[ a> lz =

Now (112)

<f0l [Cﬁ% (55+_]l h,m:><f’51'7{ [61&1,£;J,/C)§>

and summing on n in (111) we have

do _ 2 (2B y - 2
dyot'g, /[ecar) 'fd e £ee Byt (113)

Sc¢ knowledge about the inclusive distribution is direct knowledge on

the source function s

Another interesting quantity is the n pion cross section

O;(yo) which is

6 (¥e) _ (A Bolyeolpyee-indarn | . »
o (Ys) —f a3 T PEHA [ Linn (S e ] (114)

[4 (221"

=folZB CCjO‘@)L[ldgmjn/nf ) (115)

and shows that in %’—xo space one has a Poisson distribution in n with

mean

<:!1(yo[ §§> :> =

(116)

log —2
J C(Yo, B2

_—_Lf_‘z’JiZZL Cy o an
% J¢lard Is 6 B Y, %01,

which should really come as very little surprise. That is to say, once
we ignored the constraint of energy momentum conservation on pion pro-
duction in Yor B space, the pions were emitted independently and this

is precisely the condition under which a Poisson distribution follows.

The mean multiplicity of particles is given by

dn(¥.)y = ZﬁO; /O} (118)
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:deB {n(yo( B> (119)

i 2
fda Z((;;(-) ;J?(you@i\/fg-,—)} (120)

This guantity is known to be approximately log s = Yor from
both cosmic ray and CERN-ISR experiments. By the way, this fact of
"small" average multiplicity (relative to the /s which could occur
if all the incoming energy went into particle production) provides
justification for the input of the present model that a only small
number of particles with low center of mass momentum are produced, and
SO one may approximately ignore the conservation of energy momentum for

produced particles, once the leading particles are accounted for.

This really completes our discussion of eikonalized production
processes. One might proceed further in two directions; one formal, one
phenomenological. The first would consist of generalizing the c-number
source approximation to some kind of light cone commutator statement,
as was done for elastic processes. The other would be to find attrac-
tive phenomenoclogical forms for §(yo,§; Y, gT) and predict the results
of correlation phenomena to be seen at NAL in, say, two particle in-
clusive processes. At this time I shall refrain from answering these
interesting questions both to give the student something to work on and
to give the lecturers at the next summer school something to talk about.

ACKNOWLEDGEMENTS

I am very grateful to the high energy theory group of the A.
F. Ioffe Physico-Technical Institute, Leningrad for their hospitality
while these lectures were constructed. Also I wish to thank Bob Sugar
and Dick Blankenbecler for many useful hours of discussion on eikonal-

istic questions.



172

REFERENCES AND FOOTNOTES

R.J. Glauber in Lectures in Theoretical Physics, ed. by

W.E. Brittin and L.G. Dunham [Interscience Publishers, Inc.
New York, (1959)] , Volume I, page 315.

R. Blankenbecler and R.L. Sugar, Phys. Rev. 183, 1387 (1969).

H.D.I. Abarbanel and C. Itzykson, Phys. Rev. Letters 23,
53 (1959).

J.D. Bjorken, J.B. Kogut, and D.E. Soper, Phys. Rev. D3,
1382 (1971).

H.D.I. Abarbanel, Lectures at the Summer School in Theoretical
Physics, University of Colorado, 1971, to be published.

R.L. Sugar, Lectures at the Summer School in Theoretical
Physics, University of Colorado, 1971, to be published.

R. Aviv, R.B. Blankenbecler, and R.L. Sugar, UCSB preprint
1972, to be published.

Essentially an identical construction has been made by

R. Jengo, C. Calluci, and C. Rebbi in various contributions
to be published in Nuovo Cimento during 1972 and 1972.

H. Leutwyler also informed me that much work along these
lines has been carried out by H. Kastrup during the past

five years.

Three vectors are denoted g and a unit vector in the
direction of ¥ by x.

Because ﬁi ~ ﬁf when © is small we havgﬂceased distinguish-
ing between them and set either equal to k. The actual choice
of ¥ may make some difference in actual uses of the result
(13) . This has been considered in the recent literature by
S.J. Wallace, Phys. Rev. Letters 27, 622 (1971) and

E. Kujawski, Phys. Rev. D4, 2573 (1971).

I would like to thank A. Gal for a valuable discussion on

this matter.



10.

11.

12.

13.

14,

15.

16.

17.

18.

173

Compare the elastic total cross sections oélastic taken from
G. Giacomelli, CERN-HERA 69-3 (December 1969) to a;otal as

reported by G. Fox and C. Quigg in their compilation of
Elastic Scattering Data, UCRL-20001 (January 1970).

In fact this "derivation" was essentially given by Froissart
in his original paper, M. Froissart, Phys. Rev., 123,
1053 (1961).

R.L. Sugar, private communication.
See the reprints of R.P. Feynman and J.Schwinger in

Quantum Electrodynamics (Dover Publications Inc., N, Y.,
(1958) , J. Schwinger, editor.

Actually a generation functional since it depends on a

function: A (x).
We are more or less following the development in Ref.4

This observation seems to have been made first by
B.W. Lee, Phys. Rev. D1, 2361 (1970) and S.J. Chang,
Phys. Rev. D2, 2886 (1970).

It was made more explicit by S. Weinberg, MIT-CTP preprint
# 231, September, 1971 and by E. Eichten, MIT~CTP preprint
# 237, October, 1971.

Although the presentation I will give is rather different
from Ref. 6, the ideas are the same. Indeed, it was the
work of Sugar and his collaborators which suggested the

present chapter.

This is also not such a dumb idea. At the CERN-ISR the ratio
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