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We present our study of a set of solutions to the SU(N) Yang-Mills equations of motion with
fractional topological charge. The configurations are obtained numerically by minimizing the
action with gradient flow techniques on a torus of size l2×(Nl)2 with twisted boundary conditions.
We pay special attention to the large N limit, which is taken along a very peculiar sequence, with
the number of colors N and the magnetic flux m selected respectively as the n-th and n − 2 terms
of the Fibonacci sequence. We discuss the large N scaling of the solutions and analyze several
gauge invariant quantities as the Polyakov loops. We also discuss the so-called Hamiltonian limit,
with one of the large directions sent to infinity, where these instantons represent tunneling events
between inequivalent pure gauge configurations.
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1. Introduction

The search for solutions to the Yang-Mills (YM) equations of motion on the hypertorus has
had a long history starting with the seminal works of ’t Hooft in the early 80’s [1]. The freedom to
select boundary conditions, corresponding to gauge potentials periodic up to gauge transformations,
leads to the appearance of new topological classes, implying, in particular, the possibility of having
fractional topological charge. In this paper, we will consider so-called twisted boundary conditions
(TBC) whereby, under the shift by a torus period, the gauge potential transforms as:

Aµ(x + lν êν) = Ων(x)Aµ(x)Ω†
ν(x) + iΩν(x)∂µΩ†

ν(x), (1)

with Ων(x) taken as SU(N) matrices constrained by the consistency relation:

Ων(x + lµ êµ)Ωµ(x) = exp{i2πnνµ/N}Ωµ(x + lν êν)Ωµ(x), (2)

and nµν a non-trivial antisymmetric tensor of integers defined modulo N , known as twist tensor.
One interesting property that TBC introduces is that the topological charge Q is no longer

bounded to be an integer, but it is quantized in terms of the twist tensor as [2, 3]:

Q =
1

16π2

󳔾
d4xTr

󰀓
Fµν(x)󰁨Fµν(x)

󰀔
= ν −

󳑞k · 󳑞m
N
, (3)

where mi = 󰂃i jknjk/2 is the spatial part of the twist, the so-called magnetic flux, while ki = n0i is
dual to the electric flux characterizing the Hilbert space in a Hamiltonian set-up.

Following these considerations, we summarize in this work our search for SU(N) instanton
solutions with fractional topological charge Q = 1/N [4]. We are particularly interested in those
corresponding to a Hamiltonian set up: R × T3, with T3 a 3-dimensional torus endowed with
TBC. In this limit, the fractional instantons we will present have a well defined interpretation
as tunneling events interpolating between two different pure gauge configurations at x0 → ±∞.
Fractional charge solutions of this type were first obtained numerically for SU(2) [5, 6] and later
generalized to SU(N) [6, 7] for various choices of the twist tensor (vortex-like solutions have also
been obtained [8, 9]). In this proceedings, we focus on new SU(N) solutions that have been obtained
on asymmetrical tori with sizes l1 = l2 = l/N , l3 = l, and l0 = sl, with s a free parameter that
is taken to infinity in the Hamiltonian limit. The number of colors is taken along the Fibonacci
sequence as N = Fn, and the electric and magnetic fluxes are given respectively by: 󳑞k = (0, 0,−m̄),
and 󳑞m = (0, 0,m), with m = Fn−2 and m̄ = (−1)nFn−2; it is easy to check, using eq. (3), that this
choice leads to topological charge Q = 1/N , for ν = (−1)n+1Fn−4.

Let us explain the reasons behind these very particular choices. The logic behind our geometry
follows the idea of volume independence under TBC, see i.e. [10–12] and references therein. With
our choice of twist, the color and spatial degrees of freedom get entangled, and the torus periods in
the twisted directions become effectively enlarged by a factor of N . Hence, the effective dynamics
of our spatially asymmetric torus corresponds, in the large N limit, to a symmetric one with period l
in all three spatial directions. On the other hand, our selection of twist aims to avoid the appearance
of tachyonic instabilities and center symmetry breaking in the large N limit [13–17]. It has been
conjectured that in order to avoid these problems the flux m should be scaled with N [18] and this is
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Figure 1: Continuum extrapolation of 1 − NQ with a2 = 1/(N L)2 corrections.

optimally achieved by taking m and the number of colors as the n−2 and n-th terms of the Fibonacci
sequence [19, 20].

We have analyzed several gauge groups: N = 3, 5, 8, 13, 21. Using gradient flow minimization,
numerical solutions are obtained on lattices of size: sN L × L2 × N L. Fixing the lattice spacing
through: a = l/N L, our discretization corresponds to a continuum torus with periods sl× (l/N)2× l
with TBC implemented in the usual way.

For each value of N (and for different lattice spacings) we have computed the total action, the
electric and magnetic parts of the action (computed to test self-duality), and the topological charge.
Selecting different values of the lattice spacing, we were able to extrapolate these quantities to the
continuum. As an illustration, figure 1 shows the extrapolation of 1 − NQ that agrees with the
continuum result up to one part in 104.

In what follows, section 2 discusses the action density of the solutions, comparing them with
the constant curvature fractional instantons that are know to exist for certain values of the torus
aspect ratios [2, 21]; section 3 analyzes Polyakov loops and we conclude with a brief summary of
results.

2. Action density

We have determined the density profiles (in units of 8π2) obtained by integrating the 4-
dimensional action density along two or three spatial directions:

sµν(xµ, xν) ≡
󰀣 󳕘
ρ󲧰µ,ν

󳔾 lρ

0
dxρ

󰀤
s(x), (4)

sµ(xµ) ≡
󰀣󳕘
ρ󲧰µ

󳔾 lρ

0
dxρ

󰀤
s(x). (5)

In the analysis of the large N scaling of these profiles, an inspiring guide has been the case of
constant curvature fractional charge solutions that are known to exist for certain values of the torus
periods. Following the general construction presented in ref. [21], it is easy to obtain solutions
of this type with gauge group and twist parameters taken in the Fibonacci sequence – a complete
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Figure 2: Profile l2s12(x1, x2)/N as a function of x1/l and x2/l. In order to make the structure more visible,
the quantity displayed is log(1 + l2s12(x1, x2)/(3N). Gauge groups are, from left to right: SU(3), SU(13),
and SU(21).

deduction can be found in ref. [4]. The important result is that taking m = Fn−2 and N = Fn,
solutions to the Yang-Mills self-duality equations exist for any value of l0 satisfying:

l0/l =
Fn−m+1Fn−m

F2
nFmFm−1

(6)

where we have scaled l1 = l2 = l/Fn, and set l3 = l. For these solutions the profiles are flat and
satisfy: l2s12(x1, x2)/N = 1; l2Ns03(x0, x3) = l/l0; and lNs0(x0) = l/l0. In the limit n → ∞, the
maximal value of the time extent is attained for l0/l = ϕ−3 ∼ 0.236, with ϕ the Golden Ratio. We
will see below how our solutions compare with these estimates.

Let us start with the analysis of 2-dimensional profiles. Fig. 2 shows l2s12(x1, x2)/N as a
function of the coordinates in the twisted plane for several values of N; each configuration has been
replicated N times in each direction for the display. Profiles are practically flat in this plane, with
the level of flatness increased as the value of N grows, becoming almost independent of the two
short directions. In addition, the hight of the profiles matches very well the one expected for the
constant curvature solution which for the quantity displayed in the plot is log(1+ 1/3) = 0.287682.

Figure 3 shows the profiles of Nl2s03(x0, x3), for l0 = l3 = l (s = 1). In this case, the solutions
are localized, developing a maximum and decaying fast far away from the center. Notice that the
hight of the peak is not far from the value expected for the constant curvature solution with maximal
value of l0/l, i.e. l/l0 ∼ 4.427; we will come back to this point later on.

We can obtain a more quantitative comparison if we look at the 1-dimensional energy profiles,
obtained by integrating over the 3 spatial coordinates. Figs. 4a and 4b show the value of Nls0(x0)
as a function of x0/l for various values of N and s = 1 and s = 2 respectively. It is clear that,
once the overall factor N is set, the remaining N dependence is rather small, and all curves tend to
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Figure 3: Profile Nl2s03(x0, x3) as a function of x0/l and x3/l. Gauge groups are, from left to right: SU(3),
SU(13), and SU(21). We have taken l = 1 to set the scale.

(a) s = 1 (b) s = 2

Figure 4: Time dependence of the energy density profile for various gauge groups N and time extents l0 = sl,
with s = 1 and 2. The inset in the right plot is in logarithmic (y−) scale to show that the decay in the tails is
exponential in time.

a universal behavior. Moreover, enlarging the time direction with a factor s = 2 does not change
drastically the shape of the profile, except at the tails where it decays exponentially.

To compare our solution with the constant curvature one, we have generated several minimum-
action configurations starting at l0 = 0.25l (close to the Fibonacci case), and growing up to l0 = l.
The resulting energy density profiles are shown in figure 5. The solutions change rapidly at the
beginning, but beyond l0 ∼ 0.5l they remain unchanged except at the tails where, in the large l0/l
limit, they decay exponentially. We believe this exercise is very clarifying, going in the line of
interpreting these solutions as deformations of the constant curvature ones [21, 22].

One final test that can be done concerns self-duality. To test this, we have computed the energy
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Figure 5: Several solutions for different values of time extent l0 compared to the constant curvature one with
l0/l = ϕ−3 = 0.236.

profiles in one direction, but separating the computation of the electric and magnetic contributions
as Tr(F2

µν), with µ and ν fixed. The result for several values of N and various lattice spacings is
shown in fig. 6. The degree of self-duality is very high in all configurations and tends to increase
as the continuum limit a = l/(LN) → 0 is approached.

3. Polyakov loops

In this section we will analyze the Polyakov loops, and, based on the Hamiltonian limit discussed
in the introduction, we will check the interpretation of the fractional instantons as tunneling events
interpolating between two pure gauge configurations.

Let us start the discussion by defining Pµ(x) as (1/N times) the trace of the Polyakov loop
winding the torus once in direction µ:

Pµ(x) =
1
N

Tr
󰀓
P exp

󰁱
− i

󳔾 lµ

0
dxµAµ(x)

󰁲
Ωµ(x)

󰀔
≡ |Pµ(x)| eiφµ (x). (7)

Notice that this definition is slightly different from the case with periodic boundary conditions,
needing the insertion of a Ωµ(x) matrix to preserve gauge invariance. The periodicity properties of
the loop derived from this definition amount to:

Pµ(x + lν êν) = ei
2πnµν

N Pµ(x). (8)

Once the twist is fixed, we can use gauge invariance to bring the three spatial Ωi(x) matrices
to a constant form, the so-called twist eaters, that satisfy the consistency relation:

Γ1Γ2 = ei
2πm
N Γ2Γ1, (9)

Γ3Γi = ΓiΓ3, for i = 1, 2. (10)

It is trivial to check that Ai = 0 is consistent with these boundary conditions and leads to Polyakov
loops given by:

P(γ,w1,w2,w3) =
1
N

Tr
󰀓
Γw1(γ)

1 Γw2(γ)
2 Γw3(γ)

3

󰀔
, (11)
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(a) SU(3) with L = 6 and s = 1 (b) SU(8) with L = 2 and s = 1

(c) SU(3) with L = 10 and s = 1 (d) SU(8) with L = 4 and s = 1

Figure 6: Electric and magnetic components of the energy density as a function of x0, obtained by integrating
Tr(F2

µν) for different values of N and lattice spacings.

where γ is a closed curve and wi(γ) is the winding in the ith direction, defined modulo N . In our
particular case, this implies P(γ, 0, 0, 1) = z3 and P(γ,w1,w2, 0) = 0, unless w1 and w2 are both
equal to zero (mod N), meaning that flat connections can be characterized with the value of the
non-trivial Polyakov loop in the third direction.

Starting from a pure gauge configuration at x0 = −∞, our choice of space-time twist combined
with the periodicity condition of the Polyakov loop, leads to another pure gauge configuration at
x0 = +∞ that differs from the former in the value of the holonomy in the x3 direction by a a factor
exp{2πin30/N}. In what follows we will compare these expectations to our numerical results.

The two holonomies in the short torus directions remain all the time very small and tend to
zero as we go in the time direction far from the instanton center (details are given in ref. [4]). At all
values of t, the modulus of the two loops tends to decrease as the value of N grows.

On the other hand, fig. 7 displays from top to bottom: the change of phase in P3 (multiplied by
N/n30) and the modulus |P3 |, all of them for tori with l0 = 2l3. The results converge to universal
curves for all values of N that match well the expectations. First, far from the instanton center,
P3 approaches an element of the center group, with modulus 1 and phase equal to 2π/N times an

7
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Figure 7: We display as a function of time, for l0 = 2l3 = 2l, and from top to bottom: the change of phase
of P3 multiplied by N/n30 and its modulus, both evaluated at x1 = x2 = 0.

integer. Moreover, the jump from x0 = −∞ to x0 = +∞ is as expected for our choice of space-time
twist, with phases at both ends differing by a factor 2πn30/N .

4. Summary

In this work, we have obtained a new type of SU(N) instanton configuration on the hypertorus
with the special property of having fractional topological charge Q = 1/N , which is a direct
consequence of the choice of twisted boundary conditions. We have analyzed several quantities,
such as the action-density profile, or some gauge invariant observables such as the Polyakov loop.
After an appropriate reescaling taking into account the leading N dependence, the solutions show
a universal pattern with a small remnant dependence on N that goes away in the large N limit.
We have discussed how these new solutions relate to the constant curvature ones, that exist only
for particlular values of the torus aspect ratios, suggesting that they could be obtained as smooth
deformations of those along the lines presented in refs. [21, 22]. Finally, let us mention that we
have payed particular attention to the Hamiltonian limit: R × T3, where these solutions represent
tunneling events between two pure gauge configurations, essential to push the analytical perturbative
domain beyond the small volume regime – see i.e. [23–26] and references therein.
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