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Abstract: Quantum Machine Learning (QML) opens up exciting possibilities for tackling
problems that are incredibly complex and consume a lot of time. The drive to make
QML a reality has sparked significant progress in material science, inspiring a growing
number of research publications in the field. In this study, we extracted articles from the
Scopus database to understand the contribution of material science in the advancement of
QML. This scientometric analysis accumulated 1926 extracted publications published over
11 years spanning from 2014 to 2024. A total of 55 countries contributed to this domain
of QML, among which the top 10 countries contributed 65.7% out of the total number
of publications; the USA is on top, with 19.47% of the publications globally. A total of
57 authors contributed to this research area from 55 different countries. From 2014 to 2024,
publications had an average citation impact of 32.12 citations per paper; the year 2015
received 16.7% of the total citations, which is the highest in the 11 years, and the year 2014
had the highest number of citations per paper, which is 61.4% of the total. The study also
identifies the most significant document in the year 2017, with the source title Journal of
Physics Condensed Matter, having a citation count of 2649 and a normalized citation impact
index (NCII) of 91.34.

Keywords: quantum computing; machine learning; scientometric; material science; Scopus
database

MSC: 81P45

1. Introduction

QML is a multi-disciplinary field that merges quantum computing principles with
machine learning techniques [1]. It uses features of quantum mechanics such as entan-
glement, superposition, and parallelism, which can provide an exponential speedup for
specific machine learning tasks like data processing, the factoring of large numbers, and
searching for an unsorted database. [2]. Quantum computation relies on quantum bits
(qubits). Qubits exploit the principles of linear algebra, whereas classical bits are based on
the principles of Boolean algebra [3]. In quantum mechanics, some state |ip) is known; this
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state enables us to obtain the superimposed state, |i) = |0) + |1). The vectors |0) and |1)
are the orthonormal basis of 2D Hilbert space; in quantum computing, these vectors are
known as the computational basis. Classical computers require classical gates to change
the states of the classical bits. Similarly, quantum computers use quantum gates to change
the state of the qubits [4]. Typically, we present all the gates as unitary matrices. Quantum
computing consists of several quantum gates; some commonly used quantum gates are
the RX gate, RY gate, and RZ gate (these all are called the rotation gates), as well as the
Hadamard gate (H). All of these are single-qubit gates, while the Controlled Not gate (CX)
and Controlled Z gate (CZ) are two-qubit gates [5]. By adding quantum gates and quantum
entanglement to machine learning methods, a lot of powerful tools have been created that
help with image classification and image recognition tasks and show impressive results on
a number of benchmark datasets [6].

Exploiting material science (MatSci) at the quantum level can generate various models,
and hence, QML can be applied to solve real-world problems. MatSci creates qubits with
a high coherence time (qubits that maintain states for a very long time) [7,8]. Materials
like aluminum and niobium are used to make superconducting qubits because they are
superconducting at very low temperatures, which means they can conduct electricity
with no resistance at low temperatures [9,10]. Josephson junction (J.J.) allows quantum
mechanical effects to control the superposition of states. Superposition is created and
maintained using microwaves that alter the phase difference across the junction [11].
Microwave pulses are electromagnetic pulses that carry specific frequencies and energies.
Carefully tuning the frequency, amplitude, and direction of these pulses influences the
quantum states of the qubits. When applied to a superconducting qubit, a microwave
pulse can introduce a transition between its energy levels, thereby altering the phase
difference across the J.J. (Krasnok, 2024) [12]. On the Bloch Sphere, the pulse rotates the
qubit states, letting them move between |0) and |1) or any point in between % |0)| + |1)
and %2|0> —[1) [13].

One of the primary challenges is qubit stability. The performance of QML systems
heavily relies on the ability of qubits to maintain coherence over extended periods. How-
ever, qubits are highly susceptible to decoherence due to environmental interactions, tem-
perature fluctuations, and electromagnetic noise. Developing robust quantum materials,
such as high-quality superconductors, is crucial to mitigating these effects. Another major
hurdle is material robustness and scalability. Many quantum materials, including topologi-
cal insulators and 2D materials like graphene, exhibit promising quantum properties but
often face fabrication difficulties, reproducibility issues, and instability under operational
conditions. Ensuring that these materials can be synthesized consistently and integrated
into scalable QML architectures remains a significant challenge. Integration with classical
computing devices is another critical issue. While QML promises superior performance
in certain tasks, it must often work alongside classical machine learning and computing
systems. The development of hybrid architectures that efficiently transfer data between
quantum and classical processors without introducing excessive latency or error remains
an ongoing research challenge. In addition, material compatibility with existing quantum
hardware is a limiting factor. Many quantum computing platforms, such as superconduct-
ing circuits and trapped-ion systems, require highly specialized materials with strict purity
and processing conditions. Identifying materials that enhance qubit performance while
maintaining compatibility with fabrication techniques is essential for the advancement
of QML.
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1.1. Objectives

MatSci has played a crucial role in building specific physical systems and devices,
which were further used to power the QML. In this research, the goal is to look for the
contribution of MatSci in the advancement of QML through the help of scientometric
analysis. By analyzing the literature of QML in the context of MatSci, the goal is to
understand the foundation of this interdisciplinary field better. Additionally, this study
aims also to uncover how research is growing in this area and the collaborations of various
nations in developing the QML by exploiting MatSci. Ultimately, this analysis will shed
light on promising opportunities for future exploration, offering valuable guidance to
technology leaders and R&D organizations as they invest in cutting-edge innovations.

1.2. Motivation and Contributions

Our study investigates the critical role of MatSci in accelerating advancements in
OML. QML has immense potential to revolutionize data processing exponentially by rely-
ing on quantum mechanics principles to accomplish supreme computational speed and
efficiency. However, the practical execution of QML depends on the evolution of MatSci
to create quantum modules such as memory units, quantum detectors, and processors.
Understanding the interplay of QML and MatSci is crucial to speeding up the success-
ful application of QML to real-world challenges. This research employs a scientometric
approach to analyze the landscape of QML-related material innovations, identifying key
research trends, influential works, and emerging technologies that are shaping the field.
We utilize document co-citation analysis, burst detection, and link walk-through analysis to
map the intellectual structure of QML-oriented material science research. Our study aims
to highlight the most promising quantum materials, such as superconducting materials,
topological insulators, and defect-engineered diamond systems, which play a pivotal role in
advancing QML hardware. By systematically exploring the evolution of research collabora-
tions, funding patterns, and technological breakthroughs, this scientometric study provides
valuable insights into the synergy between QML and material science. The findings serve
as a roadmap for future research directions and interdisciplinary collaborations that are
essential for the rapid development of quantum-enhanced computational frameworks. The
main key contributions of our study are as follows:

*  This study systematically examines the contributions of MatSci in the advancement of
QML, a pivotal area in quantum computing. Additionally, it provides a comprehensive
exploration of machine learning from a classical to quantum perspective, ensuring the
article’s relevance and accessibility to a broad audience.

¢ By thoroughly analyzing the publication trends, this study recognizes the leading
nations’ contributions to QML development through advancements in MatSci. More-
over, it shows the most impactful research papers through the citation analysis and
provides critical insights into the state of the field.

¢  The collaborative network provides a detailed view of how nations are collaborating
on QML research. This analysis uncovers the global research ecosystem and the
interconnected efforts in this evolving domain.

*  Through overlay network analysis and keyword co-occurrence, the study highlights
the cutting-edge research areas and the latest technological trends in QML.

2. Literature Survey

Scientometrics is a quantitative research methodology that focuses on analyzing and
measuring scientific literature and research outputs. It includes ways of measuring the
quality and impact of research . It helps in evaluating the influence of specific papers,
institutions, authors, or even entire research fields [14,15]. Scientometrics uses empirical
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data to analyze scientific activities such as publication trends, influential authors, citation
patterns, and their global distribution. To identify new and emerging trends in science and
technology, researchers have created advanced methods that analyze large collections of
published studies. These approaches analyze extensive databases of published research
using advanced computational tools. These techniques help uncover the latest techno-
logical developments and breakthroughs. Leydesdorff (2007) [16] demonstrated the use
of journal maps to reveal citation structure among selected groups of journals that met
specific citation thresholds. Savov et al. [17] proposed a citation-based method to iden-
tify groundbreaking papers driving progress in their respective fields. Klavans et al. [18]
highlighted the importance of evaluating relationships between bibliometric elements,
like keywords and journals, to better understand the structure and evolution of scientific
disciplines. These findings have practical applications, particularly in shaping research
and development (R&D) strategies and fostering innovation, which can help organizations
maintain a competitive edge in rapidly changing markets [19,20].

Scientometric analysis has been widely applied to explore a variety of research do-
mains. In this study, however, we focus specifically on areas closely associated with QML
that have been subjected to scientometric examination. If we look at the data, then, there is
very little research carried out on topics such as “QML’, ‘quantum technology (QT)’, and
‘ML In the year 2021, Dhawan, Gupta, and Mamdapur [21] examined 1374 publications
on QML during the period from 1999 to 2020 using the Scopus database. The research
identified the contribution of the top 15 most productive countries, the top 25 global orga-
nizations and authors, and 43 highly cited papers. In the area of QML, Sood and Agrewal
(2023) [22] analyzed the scientific literature spanning the years 2003 to 2023 using the Web
of Science (WOS) database. Their analysis reveals that in this time span, QSVM, QNN and
Q-learning are among the most widely used algorithms in this field. Ahmadikia, Shirzad,
and Saghiri (2024) [23] examined 918 publications on QML using the WOS database and
1171 publications from the ‘Scopus’ database spanning the years 2006 to 2022.

However, it falls short of detailing the specific contributions of materials science
or other fields to QML. R Walke [24] addressed a scientometric analysis, examining the
growth and publication trends in MatSci from 1993 to 2001. Schuhmacher (2022) [25] takes
quantum computing further by integrating materials science and leveraging machine
learning properties. The scientometric approach in the current research presents the
distribution of publication globally, growth analysis, the most significant documents, and
the collaboration analysis of authors and countries. To the best of the authors” knowledge,
no research has yet explored the full extent of MatSci’s contribution to QML. This article
aims to bridge that gap.

3. Preliminaries
3.1. Machine Learning and Its Brief History

Machine learning combines the fields of mathematics, statistics, and computer science.
It enables computers to make decisions and generate predictions based on datasets [26].
ML originated as the data-centric aspect of Al; ML aims to build machines with human-like
abilities [27] such as understanding language, recognizing images, and making decisions.
Teaching machines to do the same remains a complex challenge. This problem was solved
by enabling the computer to uncover patterns within the data [28]. Historically, ML has
made a big transition from simple statistical methods to advanced approaches like artificial
neural networks, becoming crucial in fields like image recognition, natural language
processing, and predictive analytics [29].

The evolving journey of ML has taken several decades; it started with theoretical
foundations in statistics and mathematics and evolved into a highly impactful technology.
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In the early 1950s, concepts like regression analysis and statistical decision theory were
employed in the development of ML [30]. In 1950, Alan Turing presented the idea of
the Turing Test, which states that machines could simulate human intelligence [31]. This
laid the foundation for artificial intelligence (AI) and ML [31]. In 1958, Frank Rosenblatt
introduced the computation model of a perceptron [32], a neural network algorithm that
could perform simple pattern recognition tasks [33]. It is one of the first true machine
learning algorithms. Then backpropagation was introduced by Geoffrey Hinton, David
Rumelhart, and Ronald Williams in their 1986 paper [34,35]. In the 1990s, Support Vector
Machines (SVMs), a supervised learning model, were developed, which introduced better
techniques for classification and regression problems [36]. Now, in the 2010s, a subset of
machine learning, deep learning, has become dominant [37,38], and it is based on deep
neural networks. Deep neural networks play a significant role in fields like computer vision
and recognition tasks. Further, the development of convolutional neural networks (CNNs)
makes the recognition of images and classification of image tasks possible [39].

3.2. QML and Its Evolution

QML is a relatively recent and fast-growing field that merges machine learning tech-
niques with quantum computing [1,40]. The idea of combining these two disciplines was
first proposed in the early days of quantum computing back in the 1980s [41,42]. In 1985,
Berthiaume, and Feynman exploited the concept of a universal quantum computer [43],
which laid the foundation for quantum computing [42]. In 1995, some quantum models
such as neural networks were proposed [44,45]; in 1994, Shor developed an algorithm [46]
that could factor large numbers exponentially faster than any classical algorithm and
proved that quantum computers could surpass classical ones for certain tasks. Then, in
1996, Grover’s algorithm was developed, according to which unsorted databases can be
searched quadratically faster than classical algorithms [47]. In the early 2000s, researchers
focused on understanding how these quantum algorithms could boost machine learning
techniques, such as pattern recognition and optimization [48]. In the 2000s, the topic of
applying statistical theory to a quantum framework was discussed but received modest
attention at that time. Many workshops on quantum computation and learning were
organized; in the third event of the proceeding, Bonner and Freivals observed that quantum
learning is an emerging theory [49], and its scientific production is rather fragmented.
The QBoost algorithm was given by Schuld, and Petruccione and co-workers in 2009 [45],
which was performed on the first commercial quantum annealer, ‘the D-Wave device’. The
intersection of quantum computing and machine learning was initiated in 2010 [45,50].
Now, researchers have started developing QML algorithms that can exploit the potential of
quantum computing for tasks like clustering, classification, and regression [48]. The QML
term came into use around 2013. Mohseni, Lloyd, and Rebentrost [51] mentioned the term
in their 2013 manuscript. In 2014, Peter Wittek [52] published a monograph with the title
‘OML—What quantum computing means to data mining’; it contains a summary of some
previous papers. In the same year, the idea of integrating quantum with machine learn-
ing techniques like Support Vector Machines (SVMs) [53] and quantum neural networks
(ONN ) [54] was proposed. The aim of these models was to harness quantum entangle-
ment and superposition to represent that in a way that classical neural networks cannot
represent. Quantum principal component analysis (QPCA) [55] is a machine learning
technique that expresses the potential of quantum algorithms to perform tasks like linear
algebra faster than classical algorithms. The present generation of quantum computers are
used to perform specific tasks like linear algebra, feature selection, and optimization [56].
The current trend in QML is to focus on the development of ‘hybrid quantum-classical
algorithms’ [6,57] so that the systems can combine the quantum and classical tactics. Firms



Mathematics 2025, 13, 958

6 of 20

like Google, IBM, and Rigetti are achieving noticeable performance in the development of
the quantum processors [58] that support much more complex QML algorithms.

3.3. Material Science’s Contributions to Quantum Machine Learning

Material science enhances the performance, scalability, and reliability of quantum
computing hardware, which is essential for QML. The efficiency of quantum processors
heavily depends on advances in material science, influencing error correction, coherence
time, and computational accuracy.

1.  Superconducting Qubits

*  Superconducting materials like niobium (Nb) and aluminum (Al) exhibit
zero electrical resistance at cryogenic temperatures, allowing for efficient quan-
tum state preservation.

*  These materials facilitate the creation of high-quality Josephson junctions (J.].’s),
which are critical for stabilizing quantum superposition and entanglement, and
they also provide key benefits such as:

(@) Minimal energy dissipation, reducing quantum errors.

(b)  Enhanced qubit performance, leading to improved computational efficiency.

(¢)  Increased coherence time, enabling longer and more stable quantum com-
putations.

2.  Topological Qubits

* Topological insulators and superconductors contribute to the development of
topological qubits, which are highly resistant to errors.

*  Quantum information in topological qubits is stored in a non-local state, meaning
it is distributed across multiple locations.

¢ This property makes them highly resistant to local noise and decoherence, leading
to improved fault tolerance.

3. Two-dimensional Materials for Quantum Hardware

¢  Graphene and other 2D materials improve qubit connectivity and quantum gate
operations by enabling better electron mobility and minimizing decoherence.

*  These materials assist in creating low-loss transmission lines, enhancing quantum
circuit performance.

4. Quantum Memory and Storage

¢  Rare-earth-doped crystals serve as excellent quantum memory materials, im-
proving quantum state storage and retrieval efficiency.

*  These materials help in maintaining quantum coherence for longer periods,
supporting error correction in QML algorithms.

5. Quantum Sensors for QML Applications

*  Advanced materials used in superconducting quantum circuits significantly
improve QML applications by enabling higher precision, faster data acquisition,
and enhanced sensitivity.

*  These circuits enhance large-scale optimization in QML by boosting computa-
tional speed and reducing errors in learning algorithms.

By integrating these advancements in material science, QML systems become more
robust and capable of handling complex data-driven problems with greater efficiency.
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3.4. Material Science Has Advanced Quantum Machine Learning

Research in materials science has directly enabled key advancements in QML, improv-
ing speed, accuracy, and scalability. Materials science is shaping the future of real-world
quantum applications.

1.  Superconducting Materials for Faster Quantum Computing: Google’s Sycamore quan-
tum processor uses superconducting qubits (made from niobium and aluminum) to
achieve ‘quantum supremacy’, solving a complex problem faster than the best classical
supercomputers. These superconducting circuits enable high-speed computations for
QML models in fields like drug discovery, optimization, and cryptography.

2. Topological Materials for Error-Resistant Quantum Systems: By cutting down on
errors, topological materials make machine learning models much more depend-
able. This increased reliability makes Quantum Machine Learning more feasible for
everyday tasks, like predicting financial risks and optimizing logistics with Al

3. Quantum Sensors in Biomedicine: Diamonds with nitrogen-vacancy (NV) centers are
being used to create highly sensitive quantum sensors that can map brain activity
down to the cellular level. These sensors capture incredibly precise biological data,
which are then used in Quantum Machine Learning (QML) algorithms to help with
early disease detection, drug discovery, and personalized treatments. This could
lead to faster diagnoses, more effective medications, and tailored healthcare solutions
for individuals.

4. Cryogenic Materials: NASA and Google rely on liquid-helium-based cryogenic sys-
tems to keep quantum computers stable, allowing them to run complex simulations.
This technology helps improve aerospace engineering designs and optimize satellite
trajectories, making space missions more precise and efficient.

QML is revolutionizing industries by harnessing breakthroughs in materials science
to boost computing power and accuracy. In healthcare and pharmaceuticals, cutting-edge
quantum sensors made from advanced materials help detect biomolecules, paving the
way for new drug discoveries and a better understanding of protein structures. The fi-
nance sector benefits from superconducting materials, which make quantum computing
faster and more efficient, helping banks and analysts with fraud detection, risk assessment,
and smarter investment strategies. In aerospace and defense, cryogenic materials keep
quantum systems stable, ensuring secure communication and precise satellite navigation.
Meanwhile, in energy and environmental science, nanomaterials improve quantum simula-
tions, accelerating the development of better batteries and more accurate climate models.
These breakthroughs show how materials science is playing a key role in making QML a
real-world game-changer across multiple fields.

4. Research Methodology

The science mapping method is implemented [59] in this research to examine and
envision the contributions of MatSci in advancing QML. Science mapping is about creating
visual representations and analyzing how scientific knowledge is structured, how ideas and
disciplines are connected, and how they evolve over time. It often uses tools and methods
like scientometrics and bibliometrics to explore these relationships [60]. Bibliometrics
performs literature analysis, while scientometrics helps in evaluating the influence of
specific papers, authors, institutions, or even entire research fields. It enables the exploration
of research areas in a way that is not attainable through other methodologies [59]. The
framework for this research is defined in Figure 1, which is divided into four steps. Step 1
is to define the research objectives. Step 2 contains a selection of suitable databases for
this research followed by identifying relevant keywords, conducting query searches, and
finally manually reviewing the retrieved data. Step 3 is the scientometric analysis, which
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includes publication and citation analysis, collaboration networks at a country level and
organization level, and keyword analysis. Step 4 is the visualization of the data using
selected visualization tools. And lastly is the interpretation of the results, which goes with
the discussion of the analysis and ends with future directions or recommendations.

Step 1 Step 3
Define objective Scientometric Analysis
l » Publication and citation
analysis
Step 2 > Collaboration network

* Country Level
¢ Organization Level
> Keyword Analysis

Database selection

Select keywords l
Step 4
Define search Data visualization

query

Manually review
the data

il

Figure 1. Framework for the methodology of scientometric study.

5. Database Selection and Data Search

Scopus, maintained by Elsevier, is a widely used multidisciplinary database that
indexes journals, conference proceedings, and patents across diverse fields such as science,
technology, and medicine. It provides citation metrics, including h-index tracking and
author impact analysis, which are crucial for evaluating research’s influence. The Web
of Science (WoS), managed by Clarivate Analytics, is another authoritative database that
focuses on high-impact journals and conference proceedings, offering advanced citation
tracking and impact factor analysis. In contrast, arXiv, hosted by Cornell University, is an
open-access preprint repository that primarily serves disciplines like physics, mathematics,
and computer science, allowing researchers to share early-stage findings before formal
peer review.

Each database has distinct strengths and limitations that can influence scientometric
analysis. The WoS follows a stringent selection process, indexing only high-impact journals,
which ensures quality but may limit dataset size. arXiv, as an open-access repository,
provides early access to emerging research but lacks formal peer review, which may
impact data reliability. Scopus, on the other hand, is known for its broad coverage and
frequent updates, making it an effective tool for capturing emerging trends across multiple
disciplines [61-63].

In this study, Scopus was selected as the primary database for bibliographic analysis
due to its extensive multidisciplinary coverage and frequent updates, ensuring access to the
latest research. Scopus also offers a user-friendly search interface, facilitating efficient data
retrieval and analysis. Many scientometric studies have relied on Scopus as their primary
data source, reinforcing its credibility in bibliometric research [64,65]. Using Scopus,
we extracted bibliographic data on the ‘Contribution of QML in MatSci’, resulting in
1926 publications from 2014 to 2024 after applying specific filters on subject area, document
type, and keywords.
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6. Selection of Visualization Tools

To conduct our scientometric analysis, we utilized a systematic approach to bibliomet-
ric data collection, processing, and visualization. Researchers have access to a range of data
visualization tools, including VOSviewer [66], ScIMAT [67], CiteSpace [68], Gephi [69], and
UClnet- 6.421, each offering distinct capabilities. In this study, we selected VOSviewer to
construct, analyze, and visualize bibliometric networks due to its advanced functionalities
in clustering, co-authorship analysis, and citation mapping.

6.1. Selection of Keywords and Data Processing

The selection of keywords plays a crucial role in ensuring the accuracy and relevance
of the retrieved literature. Our methodology for keyword selection follows these steps:

1. Defining the Research Scope:

*  We identified key concepts at the intersection of QML and MatSci based on a
preliminary literature review and expert consultations.

¢  The primary search terms included ‘Quantum Machine Learning’, ‘Materials for
Quantum Computing’, ‘Quantum Materials’, ‘Quantum Computing in Material
Science’, and their variations.

2. Database Selection and Query Formulation:

*  We sourced bibliographic data from the Web of Science (WoS) and Scopus, as these
databases provide comprehensive and structured metadata on scientific publications.

*  Boolean operators and wildcard searches were employed to refine results, ensur-
ing the inclusion of relevant studies while minimizing noise.

3. Data Collection and Cleaning:

*  Retrieved data were exported in RIS, CSV, and BibTeX formats for compatibility
with VOSviewer.

*  Duplicate records were removed, and irrelevant entries were manually filtered
based on title, abstract, and keyword relevance.

6.2. Co-Authorship Analysis and Network Construction

To analyze the collaborative relationships among individual researchers, we conducted
a co-authorship analysis based on joint publications:

1. Setting the Author Threshold:

¢ A total of 8299 authors contributed to the field, but to ensure meaningful vi-
sualization, only 57 authors meeting a predefined threshold (a minimum of
five publications) were included in the network.

e The Total Link Strength (TLS) metric was used to quantify the strength of collab-
orations, representing the frequency and intensity of co-authorship connections.

2. Network Visualization Using VOSviewer:

* VOSviewer was employed to generate a co-authorship network map, where
nodes represent individual researchers, and edges denote collaborative links.

*  The size of the nodes reflects the number of publications by each author, while
the thickness of the edges represents the strength of co-authorship ties.

*  (Clustering algorithms within VOSviewer were used to detect research communi-
ties, identifying dominant collaboration groups.

6.3. Justification for Using VOSviewer

VOSviewer was chosen over other bibliometric tools due to its advanced text-mining
capabilities, which facilitate the identification of noun phrase combinations for mapping



Mathematics 2025, 13, 958

10 of 20

tasks. Unlike other tools, which primarily rely on similarity matrices and textual unit
processing, VOSviewer incorporates merged clustering techniques to analyze co-citation
and co-occurrence data. Additionally, its interactive visualization features allow users to
navigate networks dynamically, enhancing the interpretability of relationships between
researchers, keywords, and cited references. The visualizations generated by VOSviewer
streamline information processing, assess the performance of bibliographic data, and pre-
dict publishing trends. By revealing empirical patterns in citation networks, it contributes
to a deeper theoretical understanding of the evolving landscape in quantum machine
learning and material science.

7. Analysis and Results
7.1. Publication and Citation Analysis

This scientometric study in QML for the subject category of MatSci accumulated
1926 extracted publications from 2014 to 2024, an average of 175.09 publications per year.
In 2014, there were just two publications, and it grew to 73 in 2019. In 2024, there were a
total of 653 publications, and in just 4 years, there was a 794.52% increase in the research
output in the field of QML. This shows that there is a rapid growth in research activity in
the domain of the ‘contribution of QML in MatSci’ during the study period from 2019 to
2024. Within the years 2014 to 2024, QML research received an average citation impact of
32.12 citations per paper (CPP), and it was the highest in 2014, with 4636 citations. From
2014 to 2019, the average number of citations was 271, and it slipped to 11.09 CPP from
2020 to 2024. Data are given in Table 1. Of the results, 83.12% of the publications appeared
as articles, 14.67% as review papers and 2.17% as conference papers. More than 50% of the
publications resulted from research funded by more than 100 national and international
funding agencies.

Table 1. Publication and citation data (2014-2024).

Publication Period Total Publications  Citation per Paper Total Citation
2014 2 4100 8201
2015 7 1477 10,339
2016 12 494.5 5394
2017 21 288.143 6051
2018 41 144.32 5917
2019 73 79.92 5834
2020 134 47.44 6358
2021 240 26.66 6400
2022 297 13.12 3915
2023 446 5.405 2411
2024 653 0.77 505

7.2. Global Distribution of Publications

To obtain the most intense insights into contributions, we further look for the publica-
tions by per nation in QML within the subject category of MatSci. A total of 55 countries
participated in the global research. In all 55 countries, the top 16 most productive nations
account for over 100.0% of the global share of both citations and publications. The anal-
ysis, as illustrated in Figure 2, demonstrates that in the field of productivity, USA has
dominated, with 29.64% of total publications, followed by the China (15.85%), Germany
(7.2%), UK (5.15%), India (3.78%), France (3.1%), Japan (2.97%), Canada (2.7%), Switzerland
(2.5%), South Korea, Italy, Australia, etc. during the period from 2014 to 2024 (Table 2).
Furthermore, examining the global distribution of publications offers valuable insights into
a nation’s industrial progress in a particular research area. For instance, the United States’
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leading role in material science productivity suggests that American companies may have
a competitive edge in accessing cutting-edge research and talent for implementing QML.

Table 2. Distribution of documents globally.

Country Documents
USA 608
China 495
Germany 225
UK. 161
India 118
France 97
Japan 93
Canada 87
Switzerland 80

29.64%

30 A

251

20 4

15.85%
151

10 1

Percentage of Total Publications

3.78%

3.1% 2.97% 2.7% 2.5%

China Germany India France Japan Canada  Switzerland

Countries

Figure 2. Countries contributing to MatSci research in the advancement of QML.

One of the key factors contributing to the increase in publication trends is technolog-
ical advancements in quantum computing and material science. Over the past decade,
significant breakthroughs-such as the development of high-coherence superconducting
qubits, advances in topological materials, and improvements in quantum algorithms-have
fueled research interest in applying material science to QML. The emergence of quantum
hardware prototypes and cloud-accessible quantum processors has also encouraged more
interdisciplinary research, leading to a surge in publications. Another crucial driver is
government and private-sector research funding. Countries with a high number of QML-
related MatSci publications, such as the United States and China, have heavily invested in
national quantum initiatives. Programs like the U.S.’s National Quantum Initiative and
China’s Quantum Science and Technology Plan have led to a significant increase in research
output. Similarly, the European Union’s Quantum Flagship program has encouraged
collaboration across multiple nations, further boosting publication numbers.

Industrial engagement and commercialization efforts have also played a role. Lead-
ing technology companies, including IBM, Google, and Microsoft, are investing in QML
research, often in collaboration with academic institutions. This has resulted in an increase
in high-impact publications focusing on material innovations for quantum computing
applications. On the other hand, fluctuations in publication growth can be attributed to
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several challenges. One factor is the complexity and cost of quantum research. Unlike
classical Al and ML, which can be developed with accessible computing resources, QML
requires specialized quantum hardware and materials, making it more challenging for
many research institutions to contribute consistently. Additionally, shifting research priori-
ties due to funding policies and economic conditions can lead to variations in publication
trends. For example, some countries may redirect resources to alternative Al advancements,
leading to temporary declines in QML research output.

7.3. Collaboration Analysis of Nations

The top 16 most productive nations involved in QML within the subject category of
material science exhibited a range of one-to-many collaborative connections, varying from
83 to 568, and one-to-one connections, ranging from 1 to 81. Among these partnerships, the
United States and China led the way at the country level, recording the highest number of
collaborative connections (81), followed closely by the USA and Germany (53), the USA
and the UK (50), and the UK and Germany (53), among others. Notable collaborations
also included partnerships like the USA and France (37), China and Hong Kong (23),
the USA and South Korea (22), the USA and Japan (22), and India and the USA (19). A
collaborative network chart showcasing the top 15 countries can be found in Figure 3.
Countries within the same color form a single cluster, with China leading the way with six
clusters, followed by Germany, Japan, and the USA each with five clusters and the UK with
four. The thickness of the lines and the distance between the nodes indicate the strength
of research collaboration. A larger network node diameter and font size suggest greater
significance in research collaboration. The USA remains the dominant force in collaborative
research, followed by China, Germany, the UK, India, and others. We have structured the
visualization as follows:

e  (lusters and Colors: Countries with the same color form a distinct research cluster,
highlighting regional and strategic collaborations.

*  Node Representation: The diameter of each node and its font size correspond to the
significance of a country’s involvement in research collaborations.

¢  Connection Strength: The thickness of the connecting lines and the proximity of the
nodes reflect the intensity of research collaboration between countries.

nethéglands

germany southykorea
swegden

australia
switzZgrland

unitedkingdom india
saudii@rabia

fragce
unitediStates

japan

canada
fg VOSviewer

Figure 3. International collaboration in the domain of contribution of material science in Quantum
Machine Learning.
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7.4. Most Significant Documents

By looking at the top influential documents, both learners and new arrivals can quickly
grasp the essential elements of the area, including its current state, historical context, and
future possibilities. This approach helps us to grasp major advancements and notable
innovations without having to go through all the literature in the domain. In this section,
we explore the contributions of the most cited documents (see Table 3) in MatSci related
to QML. The documents are ranked according to their citation count and the Normalized
Citation Impact Index (NCII) [70], which reflects the average number of citations each
document acquires annually.

Total citation received per document

NCII = —
longetivity of document

(1)

Table 3. Most significant documents.

Year Source Title Cited by NCII
2020 Information Fusion 4636 79.93
2021 Journal of Big Data 3565 74.27
2017 Journal of Physics Condensed Matter 2649 91.34
2020 Journal of Chemical Physics 1769 11.63
2020 Mechanical Systems and Signal Processing 1755 12.71
2018 Physical Review Letters 1425 11.87
2020 Chemical Reviews 1185 9.87
2017 Journal of Materiomics 893 68.69
2021 Journal of Chemical Physics 663 4.27
2019 Optica 608 38.00

7.5. Co-Authorship Analysis of Authors

To perform a co-authorship analysis of authors, we analyzed the collaborative rela-
tionships among individual researchers based on their joint publications. In the field of
QML within the scope of material science, a total of 8299 authors contributed, out of which
only 57 meet the threshold for co-authorship analysis. For some leading authors, the total
strength (TLS) of the co-authorship links with other researchers is summarized in Table 4.
Figure 4 visually represents the global contributions of different authors, highlighting key
collaboration networks. The size of the nodes corresponds to the number of publications,
while the thickness of the connecting lines represents the strength of co-authorship links.
Larger nodes indicate authors with more publications, and thicker lines represent stronger
collaborative relationships.

Table 4. Collaboration analysis of different authors.

S. No Author Documents Citations TLS
1 Green, William H. 14 948 14
2 Kulik, Heather J. 12 464 16
3 Csanyi, Gabor 12 1088 6
4 Dornheim, Tobais 11 202 17
5 Darwish, Ahmad S. 10 236 33
6 Vorberger, Jan 10 184 17
7 Margraf, Johannes T. 10 187 12
8 Reuter, Karsten 10 185 12
9 Coley, Connor W. 10 1113 7
10 Lemaoui, Tarek 9 215 33
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Figure 4. Contributions of different authors globally.

7.6. Keyword Analysis

Analyzing the significance and frequency of keywords helps uncover key themes
and trends in various approaches and techniques within a research area over the span of
time [71]. Keywords were used to highlight the main subjects and focus areas of scien-
tific studies. Here, we used VOSviewer, setting a minimum threshold of 20 occurrences
for each keyword. As a result, we obtained the result that only 258 keywords fulfilled
the criteria out of 1587 keywords. Before constructing the network, keywords must go
through an initial screening procedure, where similar and duplicate terms were com-
bined into one, increasing their frequency count. Among all of the keywords, 65 were
assumed to be significant. The frequency of occurrence of keyword in QML literature for
the SC of MatSci 2014-2024 was the maximum (1173) for machine learning, followed by
article (752), controlled study (314), density functional theory (308) and forecasting (308),
molecular dynamics (286), human (216), quantum chemistry (211), learning systems (187),
molecules (179), quantum computing (137), QML models (178), simulation (158), quan-
tum theory (146), quantum theory (146), chemistry (142), artificial intelligence (138), deep
learning (137), learning algorithm (118), neural network (117), etc. The top 65 keywords co-
occurrence relationship chart is shown in Figure 5, where each node is linked to a keyword
and its size corresponds to the number of documents where the keyword arises. Machine
learning has the largest node in diameter, and its font size in the keyword co-occurrence
network. The nodes with the same color belong to a single cluster. Article and controlled
study are the second- and third-ranked keywords, but both have the same color in the
cluster. The top 65 keywords were further divided into four clusters. Cluster 1 with red
color has 22 keywords, followed by cluster 2, with a green color, which has 16 keywords;
cluster 3, with a blue color, which has 16 keywords; and the fourth cluster, with a yellow
color, which has 11 keywords.
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Figure 5. Keyword co-occurrence network visualization.

7.6.1. Cluster 1

Every article consists of multiple keywords, where some of them signify a broader
research area and some focus on specific elements of the work. For the first cluster, repre-
sented in red, most of the keywords highlight the specific elements used in MatSci such as
carbon, catalyst, chemical structure, crystal structure, hydrogen, hydrogen bond molecular
dynamics, and water. Very few of the keywords in this cluster do ot directly relate to the
MatSci field (keywords are given in Table 5).

Table 5. Keywords in cluster 1.

S. No Keywords Occurence
1 ab initio calculation 79
2 Adsorption 57
3 Article 752
4 Calculation 91
5 Carbon 52
6 Catalyst 41
7 Catalysis 64
8 Chemical Structure 95
9 Controlled Study 314
10 Crystal Structure 64
11 Electron 68
12 Energy 89
13 Geometry 69
14 Hydrogen 56
15 Hydrogen Bond 57
16 Molecular Dynamics 286
17 Quantum Mechanics 44
18 Simulation 158
19 Statical Electricity 57
20 Temperature 78
21 Unclassified Drug 55

22 Water 70
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7.6.2. Cluster 2

Cluster 2 is indicated with a green color, and it comprises 16 keywords (as shown
in Table 6). This cluster has keywords with a variety of perspectives; from a material
perspective, the keywords are drug development, molecular model, and quantitative
structure. And from a computational perspective, the keywords are algorithm, artificial
intelligence, computer model, software, Support Vector Machine, etc.

Table 6. Keywords in cluster 2.

S. No Keyword Occurence
1 Algorithm 122
2 Artificial Intelligence 138
3 Cheminformatics 52
4 Chemistry 142
5 Computer Model 49
6 Drug Development 64
7 Human 216
8 Humans 74
9 Molecular Model 49
10 Non Human 105
11 Prediction 201
12 Procedure 66
13 Quantitative Structure Activity Relation 53
14 Review 73
15 Software 48
16 Support Vector Machine 44

7.6.3. Cluster 3

Cluster 3 is blue in color and comprises 16 keywords (shown in Table 7; most of the
words in this cluster are directly related to ML techniques). Keywords such as artificial
neural networks, deep learning, learning algorithms, machine learning, and neural network
computers have a direct link with machine learning techniques.

Table 7. Keywords in cluster 3.

S.No Keyword Occurence
1 Machine Learning 1173
2 Artificial Neural Network 94
3 Atoms 87
4 Deep Learning 137
5 Descriptions 78
6 Forecasting 430
7 Iconic Liquid 73
8 Learning Algorithm 118
9 Learning Systems 187
10 Machine-Learning 627
11 Machine Learning Models 178
12 Molecules 179
13 Neural Networks 117
14 Neural Networks, Computer 47
15 Property 109

16 Thermal Conductivity 74
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7.6.4. Cluster 4

This cluster, yellow in color, comprises 11 keywords (shown in Table 8, which ad-
dresses the theoretical perspective of the cluster). Therefore, the keywords are computa-
tional theory, density functional theory, and density-functional theory. Interestingly, this
cluster is also concerned with materials; keywords like electronic structure, free energy,
quantum chemistry, solvent, solvents, and thermodynamics are contained in this cluster.

Table 8. Keywords in cluster 4.

S.No Keyword Occurence
1 Computational Theory 102
2 Computational Chemistry 87
3 Density Functional Theory 85
4 Density-Functional-Theory 308
5 Electronic Structure 93
6 Free Energy 67
7 Quantum Chemistry 11
8 Quantum Theory 146
9 Solvent 57
10 Solvents 55
11 Thermodynamics 91

Figure 6 illustrates the progression of various techniques in QML over time, as deter-
mined by the average number of publications in the year. In this visualization, the research
area highlighted in yellow depicts the emerging research area. Light green indicates earlier
topics. This analysis also reveals that areas such as semiconductor, heavy metal, solid,
and pharmacokinetics have an average publication year centered around 2024. Sampling,
drug metabolism, priority journal, and flash point have an average publication around the
year 2020.
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T surface property [ adsorption
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Figure 6. Visual network based on average publication year of each keyword.

8. Conclusions

This paper explores the contribution of material science in the advancement of QML
using ‘Scopus’ as a database. This research shows the qualitative and quantitative analysis
of QML research nationwide. The contribution of material science in QML research com-
prises 1926 articles over 11 years from 2014 to 2024; among these 1926 publications, there
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are 83.12% articles, 14.7% review papers, and 2.18% conference papers. From 2014 to 2018,
there were only 4.3% publication generated out of the total number of publications, but
between 2021 and 2024, there was a significant increase in publications; these four years
received 84.9% publications out of the total number of publications. The year 2015 garnered
the highest total citations, with 10,339 citations, while 2014 recorded the highest number of
citations per paper (CPP), with a CPP of 4100. In 2024, there were 653 publications, marking
the highest number of publications in a single year. The top 10 countries that dominate the
QML area are the USA, China, Germany, the UK, India, France, Japan, Canada, Switzerland,
and South Korea with 86% of the worldwide publications. A total of 57 authors contributed
to this research area from different institutions and from 55 countries in 11 years, giving
only 1926 publications. The growth rate in publications seems to be quite slow, which could
be due to many factors like limited engagement of the authors in this research area and
small contributions from different countries. Among the top 10 countries, the USA single-
handedly contributes 29.64% documents of the total publications, followed by significant
contributions from China and Germany. India has only contributed 3.78% documents in
this research area globally, which is relatively small in comparison. The keyword analysis
carried out in this study identifies the most extensive research topics studied in the material
science field. From the perspective of MatSci, significant work is performed in the field of
making materials that contribute to advancing QML, like semiconductors qubits, optical
fibers, quantum dots, and also the Josephson junction effect, which allows one to control
the superposition of the qubits. However, there is still a long way to go before QML can
effectively address real-world problems. Scientometric analysis offers a cost-efficient way
to highlight these advancements and showcase the potential of QML, helping to raise
awareness about its value and future applications.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Nielsen, M.A,; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.

2. Chen, L; Li, T.; Chen, Y.; Chen, X.; Wozniak, M.; Xiong, N.; Liang, W. Design and analysis of Quantum Machine Learning: A
survey. Connect. Sci. 2024, 36, 2312121. [CrossRef]

3. Vedral, V.; Plenio, M.B. Basics of quantum computation. Prog. Quantum Electron. 1998, 22, 1-39. [CrossRef]

4. Berman, G.P. Introduction to Quantum Computers; World Scientific: Singapore, 1998.

5. Crooks, G.E. Gates, States, and Circuits; Berkeley Institute for Theoretical Sciences (BITS): Berkeley, CA, USA, 2020.

6. Senokosov, A.; Sedykh, A.; Sagingalieva, A.; Kyriacou, B.; Melnikov, A. Quantum Machine Learning for image classification.
Mach. Learn. Sci. Technol. 2024, 5, 015040. [CrossRef]

7. De Leon, N.P; Itoh, KM.; Kim, D.; Mehta, K K.; Northup, T.E; Paik, H.; Palmer, B.; Samarth, N.; Sangtawesin, S.; Steuerman, D.W.
Materials challenges and opportunities for quantum computing hardware. Science 2021, 372, eabb2823. [CrossRef]

8. Wang, P; Luan, C.Y,; Qiao, M.; Um, M.; Zhang, ].; Wang, Y.; Yuan, X.; Gu, M.; Zhang, J.; Kim, K. Single ion qubit with estimated
coherence time exceeding one hour. Nat. Commun. 2021, 12, 233. [CrossRef]

9.  Murray, C.E. Material matters in superconducting qubits. Mater. Sci. Eng. R Rep. 2021, 146, 100646. [CrossRef]

10. Mercer, W.J.; Pashkin, Y.A. Superconductivity: The path of least resistance to the future. Contemp. Phys. 2023, 64, 19-46. [CrossRef]

11.  Citro, R.; Guarcello, C.; Pagano, S. Josephson junctions, superconducting circuits, and qubit for quantum technologies. In New
Trends and Platforms for Quantum Technologies; Springer: Cham, Switzerland, 2024; pp. 1-59.

12.  Krasnok, A.; Dhakal, P; Fedorov, A.; Frigola, P.; Kelly, M.; Kutsaev, S. Superconducting microwave cavities and qubits for
quantum information systems. Appl. Phys. Rev. 2024, 11, 011302. [CrossRef]

13.  Kockum, A.F;; Nori, F. Quantum bits with Josephson junctions. In Fundamentals and Frontiers of the Josephson Effect; Springer:
Cham, Switzerland, 2019; pp. 703-741.

14. Lewis, B.R.; Templeton, G.E; Luo, X. A scientometric investigation into the validity of IS journal quality measures. J. Assoc. Inf.

Syst. 2007, 8, 35. [CrossRef]


http://doi.org/10.1080/09540091.2024.2312121
http://dx.doi.org/10.1016/S0079-6727(98)00004-4
http://dx.doi.org/10.1088/2632-2153/ad2aef
http://dx.doi.org/10.1126/science.abb2823
http://dx.doi.org/10.1038/s41467-020-20330-w
http://dx.doi.org/10.1016/j.mser.2021.100646
http://dx.doi.org/10.1080/00107514.2023.2259654
http://dx.doi.org/10.1063/5.0155213
http://dx.doi.org/10.17705/1jais.00145

Mathematics 2025, 13, 958 19 of 20

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

Serenko, A.; Bontis, N. Meta-review of knowledge management and intellectual capital literature: Citation impact and research
productivity rankings. Knowl. Process. Manag. 2004, 11, 185-198. [CrossRef]

Leydesdorff, L. Mapping interdisciplinarity at the interfaces between the Science Citation Index and the Social Science Citation
Index. Scientometrics 2007, 71, 391-405. [CrossRef]

Savov, P; Jatowt, A.; Nielek, R. Identifying breakthrough scientific papers. Inf. Process. Manag. 2020, 57, 102168. [CrossRef]
Klavans, R.; Boyack, K.W. Identifying a better measure of relatedness for mapping science. J. Am. Soc. Inf. Sci. Technol. 2006,
57,251-263. [CrossRef]

Yalcin, H.; Daim, T. A scientometric review of technology capability research. J. Eng. Technol. Manag. 2021, 62, 101658. [CrossRef]
Zamani, M.; Yalcin, H.; Naeini, A.B.; Zeba, G.; Daim, T.U. Developing metrics for emerging technologies: Identification and
assessment. Technol. Forecast. Soc. Chang. 2022, 176, 121456. [CrossRef]

Dhawan, S.M.; Gupta, B.M.; Mamdapur, G.M.N. Quantum Machine Learning: A scientometric assessment of global publications
during 1999-2020. Int. ]. Knowl. Content Dev. Technol. 2021, 11, 65-80.

Sood, S.K.; Agrewal, M. Quantum Machine Learning for computational methods in engineering: A systematic review. Arch.
Comput. Methods Eng. 2023, 31, 1555-1577. [CrossRef]

Ahmadikia, A.A.; Shirzad, A.; Saghiri, A.M. A Bibliometric Analysis of Quantum Machine Learning Research. Sci. Technol. Libr.
2024, 43, 202-223. [CrossRef]

Walke, R.; Dhawan, S. Materials science research in India: A scientometric analysis. DESIDOC Bull. Inf. Technol. 2007, 27, 69-76.
[CrossRef]

Schuhmacher, J.; Mazzola, G.; Tacchino, F.; Dmitriyeva, O.; Bui, T.; Huang, S.; Tavernelli, I. Extending the reach of quantum
computing for materials science with machine learning potentials. AIP Adv. 2022, 12, 115321. [CrossRef]

Badillo, S.; Banfai, B.; Birzele, F.; Davydov, LI; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, ].D.
An introduction to machine learning. Clin. Pharmacol. Ther. 2020, 107, 871-885. [CrossRef] [PubMed]

Shandilya, S.K.; Datta, A.; Kartik, Y.; Nagar, A. Role of Artificial Intelligence and Machine Learning. In Digital Resilience:
Navigating Disruption and Safeguarding Data Privacy; Springer: Cham, Switzerland, 2024; pp. 313-399.

Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum Machine Learning. Nature 2017, 549, 195-202.
[CrossRef] [PubMed]

Poddar, H. Unravelling the secrets of artificial neural networks and perceptrons. In Deep Learning in Engineering, Energy and
Finance: Principals and Applications; CRC Press: Boca Raton, FL, USA, 2024; Volume 1, p. 25.

Celik, O. A research on machine learning methods and its applications. J. Educ. Technol. Online Learn. 2018, 1, 25-40. [CrossRef]
Muggleton, S. Alan Turing and the development of Artificial Intelligence. AI Commun. 2014, 27, 3-10. [CrossRef]

Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958,
65, 386. [CrossRef]

Basu, ].K.; Bhattacharyya, D.; Kim, T.H. Use of artificial neural network in pattern recognition. Int. J. Softw. Eng. Its Appl. 2010,
4,23-33.

Rumelhart, D.E. Foundations; The MIT Press: Cambridge, UK, 1989; Volume 1.

Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
[CrossRef]

Valkenborg, D.; Rousseau, A.].; Geubbelmans, M.; Burzykowski, T. Support Vector Machines. Am. J. Orthod. Dentofac. Orthop.
2023, 164, 754-757. [CrossRef]

Miraftabzadeh, S.M.; Di Martino, A.; Longo, M.; Zaninelli, D. Deep Learning in Power Systems: A Bibliometric Analysis and
Future Trends. IEEE Access 2024, 12, 163172-163196. [CrossRef]

Rhee, J.; Veloso, P; Krishnamurti, R. Three decades of machine learning with neural networks in computer-aided architectural
design (1990-2021). Des. Sci. 2023, 9, €25. [CrossRef]

Wang, W.; Yang, Y.; Wang, X.; Wang, W.; Li, ]. Development of convolutional neural network and its application in image
classification: A survey. Opt. Eng. 2019, 58, 040901. [CrossRef]

Khurana, S.; Nene, M. Quantum Machine Learning: Unraveling a New Paradigm in Computational Intelligence. Quantum 2024,
74,1-24.

Tychola, K.A.; Kalampokas, T.; Papakostas, G.A. Quantum Machine Learning—An overview. Electronics 2023,12,2379. [CrossRef]
Preskill, J. Quantum computing 40 years later. In Feynman Lectures on Computation; CRC Press: Boca Raton, FL, USA, 2023;
pp. 193-244.

Berthiaume, A.; Feynman, R.P. Quantum computation. In Complexity Theory: Retrospective II; Springer: Cham, Switzerland, 1997;
Volume 2, p. 23.

Jeswal, S.; Chakraverty, S. Recent developments and applications in quantum neural network: A review. Arch. Comput. Methods
Eng. 2019, 26, 793-807. [CrossRef]

Schuld, M.; Petruccione, F. Machine Learning with Quantum Computers; Springer: Cham, Switzerland, 2021; Volume 676.


http://dx.doi.org/10.1002/kpm.203
http://dx.doi.org/10.1007/s11192-007-1694-z
http://dx.doi.org/10.1016/j.ipm.2019.102168
http://dx.doi.org/10.1002/asi.20274
http://dx.doi.org/10.1016/j.jengtecman.2021.101658
http://dx.doi.org/10.1016/j.techfore.2021.121456
http://dx.doi.org/10.1007/s11831-023-10027-w
http://dx.doi.org/10.1080/0194262X.2023.2292049
http://dx.doi.org/10.14429/djlit.28.7.124
http://dx.doi.org/10.1063/5.0099469
http://dx.doi.org/10.1002/cpt.1796
http://www.ncbi.nlm.nih.gov/pubmed/32128792
http://dx.doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
http://dx.doi.org/10.31681/jetol.457046
http://dx.doi.org/10.3233/AIC-130579
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/j.ajodo.2023.08.003
http://dx.doi.org/10.1109/ACCESS.2024.3491914
http://dx.doi.org/10.1017/dsj.2023.21
http://dx.doi.org/10.1117/1.OE.58.4.040901
http://dx.doi.org/10.3390/electronics12112379
http://dx.doi.org/10.1007/s11831-018-9269-0

Mathematics 2025, 13, 958 20 of 20

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

Monz, T.; Nigg, D.; Martinez, E.A.; Brandl, M.E; Schindler, P; Rines, R.; Wang, S.X.; Chuang, I.L.; Blatt, R. Realization of a scalable
Shor algorithm. Science 2016, 351, 1068-1070. [CrossRef]

Fluhrer, S. Reassessing Grover’s Algorithm. Cryptology ePrint Archive. 2017. Available online: https:/ /eprint.iacr.org/2017/811
(accessed on 11 March 2025).

Abbas, H. Quantum Machine Learning-Models and Algorithms: Studying quantum machine learning models and algorithms for
leveraging quantum computing advantages in data analysis, pattern recognition, and optimization. Aust. . Mach. Learn. Res.
Appl. 2024, 4,221-232.

Bonner, R.; Freivalds, R. A survey of quantum learning. In Quantum Computation and Learning; Arkitektkopia: Vésteras, Sweden,
2003; Volume 106.

Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog.
Phys. 2018, 81, 074001.

Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv 2013,
arXiv:1307.0411.

Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Academic Press: San Diego, CA, USA,
2014.

Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum Support Vector Machine for big data classification. Phys. Rev. Lett. 2014,
113, 130503. [CrossRef]

Schuld, M.; Sinayskiy, I.; Petruccione, F. The quest for a quantum neural network. Quantum Inf. Process. 2014, 13, 2567-2586.
[CrossRef]

Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum principal component analysis. Nat. Phys. 2014, 10, 631-633. [CrossRef]

Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Cham, Switzerland, 2018; Volume 17.
Rosmanis, A. Hybrid quantum-classical search algorithms. ACM Trans. Quantum Comput. 2024, 5, 1-18. [CrossRef]

Alabi, M. A Revolution in Processing Capabilities and Its Possible Uses: Quantum Computing. 2024. Available online:
https:/ /www.researchgate.net/profile/Moses- Alabi/publication /386049161_A_Revolution_in_Processing_Capabilities_and_
Its_Possible_Uses_Quantum_Computing/links/6740d985868c966b93228ba2 / A-Revolution-in-Processing-Capabilities-and-
Its-Possible-Uses-Quantum-Computing.pdf (accessed on 11 March 2025).

Chen, C. Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2017, 2, 1-40. [CrossRef]

Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction
research: A Scientometric analysis. Autom. Constr. 2018, 87, 235-247. [CrossRef]

Zhao, X.; Zuo, J.; Wu, G.; Huang, C. A bibliometric review of green building research 2000-2016. Archit. Sci. Rev. 2019, 62, 74-88.
[CrossRef]

Shi, ].; Zhao, R.X.; Wang, W.; Zhang, S.; Li, X. QSAN: A near-term achievable quantum self-attention network. IEEE Trans. Neural
Netw. Learn. Syst. 2024, 1-14. . [CrossRef]

Li, G.; Zhao, X.; Wang, X. Quantum self-attention neural networks for text classification. Sci. China Inf. Sci. 2024, 67, 142501.
[CrossRef]

Zhao, R.X;; Shi, J.; Li, X. Qksan: A quantum kernel self-attention network. IEEE Trans. Pattern Anal. Mach. Intell. 2024,
46,10184-10195. [CrossRef]

Sharma, P.; Gupta, V.; Sood, S.K. Analyzing the contribution of material science in quantum cryptography: A scientometric study.
Int. J. Quantum Chem. 2024, 124, €27280. [CrossRef]

Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010,
84, 523-538. [CrossRef]

Cobo, M.J.; Lépez-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new science mapping analysis software tool. ]. Am.
Soc. Inf. Sci. Technol. 2012, 63, 1609-1630. [CrossRef]

Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2020, 24, 8173-8186. [CrossRef]
Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software. PLoS ONE 2014, 9, €98679. [CrossRef] [PubMed]

Kaur, A.; Sood, S.K. Ten years of disaster management and use of ICT: A scientometric analysis. Earth Sci. Inform. 2020, 13, 1-27.
[CrossRef]

Liu, Z,; Lu, Y.; Peh, L.C. A review and scientometric analysis of global building information modeling (BIM) research in the
architecture, engineering and construction (AEC) industry. Buildings 2019, 9, 210. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1126/science.aad9480
https://eprint.iacr.org/2017/811
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1145/3648573
https://www.researchgate.net/profile/Moses-Alabi/publication/386049161_A_Revolution_in_Processing_Capabilities_and_Its_Possible_Uses_Quantum_Computing/links/6740d985868c966b93228ba2/A-Revolution-in-Processing-Capabilities-and-Its-Possible-Uses-Quantum-Computing.pdf
https://www.researchgate.net/profile/Moses-Alabi/publication/386049161_A_Revolution_in_Processing_Capabilities_and_Its_Possible_Uses_Quantum_Computing/links/6740d985868c966b93228ba2/A-Revolution-in-Processing-Capabilities-and-Its-Possible-Uses-Quantum-Computing.pdf
https://www.researchgate.net/profile/Moses-Alabi/publication/386049161_A_Revolution_in_Processing_Capabilities_and_Its_Possible_Uses_Quantum_Computing/links/6740d985868c966b93228ba2/A-Revolution-in-Processing-Capabilities-and-Its-Possible-Uses-Quantum-Computing.pdf
http://dx.doi.org/10.1515/jdis-2017-0006
http://dx.doi.org/10.1016/j.autcon.2017.12.002
http://dx.doi.org/10.1080/00038628.2018.1485548
http://dx.doi.org/10.1109/TNNLS.2024.3504828
http://dx.doi.org/10.1007/s11432-023-3879-7
http://dx.doi.org/10.1109/TPAMI.2024.3434974
http://dx.doi.org/10.1002/qua.27280
http://dx.doi.org/10.1007/s11192-009-0146-3
http://dx.doi.org/10.1002/asi.22688
http://dx.doi.org/10.1007/s00500-019-04384-7
http://dx.doi.org/10.1371/journal.pone.0098679
http://www.ncbi.nlm.nih.gov/pubmed/24914678
http://dx.doi.org/10.1007/s12145-019-00408-w
http://dx.doi.org/10.3390/buildings9100210

	Introduction
	Objectives
	Motivation and Contributions

	Literature Survey
	Preliminaries
	Machine Learning and Its Brief History
	QML and Its Evolution
	Material Science's Contributions to Quantum Machine Learning
	Material Science Has Advanced Quantum Machine Learning

	Research Methodology
	Database Selection and Data Search
	Selection of Visualization Tools
	Selection of Keywords and Data Processing
	Co-Authorship Analysis and Network Construction
	Justification for Using VOSviewer

	Analysis and Results
	Publication and Citation Analysis
	Global Distribution of Publications
	Collaboration Analysis of Nations
	Most Significant Documents
	Co-Authorship Analysis of Authors
	Keyword Analysis
	Cluster 1
	Cluster 2
	Cluster 3
	Cluster 4


	Conclusions
	References 

