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Abstract

The quantum asymptotically universal multi-feature (QAUM) encoding architecture was recently introduced and showed
improved expressivity and performance in classifying pulsar stars. The circuit uses generalized trainable layers of parameter-
ized single-qubit rotation gates and single-qubit feature encoding gates. Although the improvement in classification accuracy
is promising, the single-qubit nature of this architecture, combined with the circuit depth required for accuracy, limits its
applications on NISQ devices due to their low coherence times. This work reports on the design, implementation, and eval-
uation of ensembles of single-qubit QAUM classifiers using classical bagging and boosting techniques. We demonstrate an
improvement in validation accuracy for pulsar star classification. We find that this improvement is not dataset specific as we
observe consistent improvements for the MNIST Digits and Wisconsin Cancer datasets. We also observe that the boosting
ensemble achieves an acceptable level of accuracy with only a small amount of training, while the bagging ensemble achieves
higher overall accuracy with ample training time. This shows that classical ensembles of single-qubit circuits present a new

approach for certain classification problems.
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1 Introduction

The potential to efficiently run classically intractable algo-
rithms on quantum devices has driven the development of
both quantum algorithms and quantum computers them-
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selves, with the goal of obtaining a fully fledged quan-
tum device with error-mitigation (Nielsen and Chuang
2002). Quantum computers utilize the principles of quantum
mechanics to operate on data and are built on the founda-
tional concept of the qubit, a quantum bit which, unlike the
classical bit, can also exist in a superposition of the states
0 and 1 (Nielsen and Chuang 2002). Additionally, quantum
entanglement allows the qubits in a quantum computer to
be correlated in a manner not possible in classical comput-
ing, resulting in a significant increase in computational power
due to the possibility of parallel operations on multiple qubits
(Nielsen and Chuang 2002).

The realization of full-scale quantum computers on which
it is possible to perform error-correction to deal with noise
is a significant engineering challenge (Schuld and Petruc-
cione 2018b). Implementing robust error-correction schemes
requires quantum devices possessing many orders of mag-
nitude more qubits than the quantum computers available
today (Schuld and Petruccione 2018b). As a result, noisy
intermediate-scale quantum (NISQ) devices present a viable
platform for the development of new quantum algorithms
and techniques for mitigating errors due to noise (Nielsen
and Chuang 2002). These NISQ devices have much lower
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numbers of qubits and cannot run error-correction routines
to combat noise; however, they are still capable of perform-
ing tasks that are difficult on classical computers, such as
the simulation of quantum systems (Schuld and Petruccione
2018b).

Many near-term algorithms have been developed to run
on these NISQ devices as a way to leverage the hard-
ware available today. One particular class of algorithms that
can efficiently utilize NISQ devices are hybrid quantum-
classical algorithms (Schuld and Petruccione 2018b). These
algorithms prepare and run parameterized quantum circuits
(PQCs) on quantum computers and use the output to optimize
the parameters of the PQC on classical computers (Nielsen
and Chuang 2002). Some examples are the quantum approx-
imate optimization algorithm (QAOA), which can be applied
to combinatorial optimization problems, and the variational
quantum eigensolver (VQE) algorithm for computing the
ground state energy of a given Hamiltonian, with applications
in nuclear physics and nuclear structure problems among oth-
ers (Nielsen and Chuang 2002).

The field of quantum machine learning (QML) resulted
from the application of quantum computers to solve machine
learning problems. QML involves the construction and train-
ing of mathematical models capable of learning patterns and
relationships in data and then applying these to new data
(Schuld and Petruccione 2018b). Many machine learning
algorithms obtain the best solution to a problem using opti-
mization, and quantum machine learning makes use of the
unique properties of quantum systems to speed-up this opti-
mization procedure (Schuld and Petruccione 2018b). Despite
the relatively recent emergence of this field, numerous quan-
tum machine learning algorithms have already been devised,
such as quantum neural networks (QNN) and quantum sup-
port vector machines (QSVM), and have shown promise in
various classical machine learning problems (Schuld and
Petruccione 2018b).

These quantum machine learning algorithms are mostly of
a hybrid quantum-classical nature and make extensive use of
PQCs (Schuld and Petruccione 2018b). The choice of circuit
structure used in these algorithms is very important as it deter-
mines both the expressivity of the model (Schuld et al. 2021)
and its trainability (McClean et al. 2018). As a result, the cre-
ation of PQCs with novel architectures capable of achieving
high levels of generalization is an ongoing area of develop-
ment (Schuld et al. 2015).

One such novel architecture is the quantum asymptoti-
cally universal multi-feature (QAUM) encoding single-qubit
circuit explored in Kordzanganeh et al. (2021). This circuit
design was inspired by Schuld et al. (2021), which showed
that a quantum model can be expressed as a partial Fourier
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series in the data, and that as more Fourier coefficients are
made accessible through repetition of data encoding gates,
the expressivity of the quantum model increases. The QAUM
circuit makes use of generalized trainable layers of param-
eterized single-qubit rotation gates and single-qubit feature
encoding gates and was used for the classification of pulsar
stars (Kordzanganeh et al. 2021). When compared with the
QAOA, the model built with the QAUM single-qubit circuit
demonstrated the ability to obtain higher accuracy in its clas-
sification of the HTRU 2 Pulsar dataset (Kordzanganeh et al.
2021; Lyonetal. 2016). Although this improvement in classi-
fication accuracy is promising, the single-qubit nature of this
architecture and the circuit depth required for accuracy limit
its applications on NISQ devices due to their low coherence
times (Kordzanganeh et al. 2021).

In this work, we explore the application of classical
ensemble techniques with the QAUM classifier as means
to scale up the QAUM architecture. We do this by utiliz-
ing multiple single-qubit QAUM circuits combined in an
ensemble, rather than expanding the design of the QAUM
circuit to multiple qubits. Though the concept of using quan-
tum ensembles is not new, with Schuld and Petruccione
(2018a); Macaluso et al. (2020) detailing techniques for cre-
ating ensembles of quantum states, the creation of classical
ensembles of variational quantum classifiers is relatively
unexplored. Ensembles of variational quantum classifiers
that use classical voting strategies are explored in Qin et al.
(2022) and were shown to produce valuable improvements
in classification accuracy over comparable quantum classi-
fiers on IBM’s NISQ devices. Classical bagging and boosting
ensembles of quantum variational classifiers have also been
explored in Li et al. (2023), which showed that higher accu-
racies and increased robustness are attainable using these
ensemble techniques. Compared to wholly classical ensem-
bles, quantum ensembles of quantum classifiers have been
shown to have favorable scaling with regards to both ensem-
ble size and training time. However, the number of qubits
required to implement these quantum ensembles is currently
out of reach of current-era quantum devices (Schuld and
Petruccione 2018a; Macaluso et al. 2020).

The ensembles explored in this work utilize single-qubit
circuits which can be executed on NISQ devices. Unlike Qin
et al. (2022), which uses plurality voting that is susceptible
to classification errors on outlying datapoints, and Li et al.
(2023), which uses majority voting, we utilize a metalearner
to obtain the optimal weighted voting strategy. Although both
works (Qin et al. 2022; Li et al. 2023) also investigate the
use of classical ensemble techniques, they utilize generalized
multi-qubit circuits, whereas we have specifically chosen the
QAUM single-qubit circuit from Kordzanganeh et al. (2021).
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This was done as our goal is to investigate the scaling of
single-qubit architectures using ensemble techniques, rather
than the more general use of ensemble techniques in Qin et al.
(2022); Li et al. (2023). To the best of our knowledge, our
work is the first to explore this particular relationship.

The single-qubit nature of the classifiers in our work
makes the use of distributed quantum computing resources a
possibility, as well as lower the requirements needed to run
the ensembles on NISQ hardware. The ensembles use the
QAUM classifier as their base learners, and we test their clas-
sification performance on the HTRU 2 Pulsar dataset (Lyon
etal. 2016). We find that the boosting and bagging ensembles
outperform the single QAUM classifier from Kordzanganeh
et al. (2021) when the amount of training permitted is both
severely restricted and virtually unrestricted, respectively.
We performed further testing on the MNIST Digits (LeCun
and Cortes 2010) and Wisconsin Breast Cancer (Dua and
Graff 2017) datasets and verified that these improvements
in performance were not limited to the pulsar classification
problem.

Additionally, although many algorithms involving the
variational training of parameterized quantum circuits suffer
from exponentially vanishing gradients, known as the barren
plateau problem (McClean et al. 2018), this is very unlikely
for our methods. The high-dimensional parameter space of
the quantum circuits and high levels of entanglement are
some of the main causes of the barren plateau phenomenon
(Ortiz Marrero et al. 2021), and as we use only single-qubit
parameterized circuits, both of these qualities are minimized.
This can form a trade-off as single-qubit circuits are not as
powerful as higher-dimensional circuits with large levels of
entanglement, but avoid barren plateaus and can be used to
create ensembles that are more powerful than the individual
single-qubit classifiers.

The rest of this paper is organized as follows: in Section 2,
we briefly introduce the formalism of classification problems
as well as the foundational work we build upon; in Section 3,
we detail the methodology used for the construction and test-
ing of the ensembles; in Section 4, we present the results
obtained from the testing of the ensembles; and in Section 5,
we give our conclusions and notes for areas of future work.
Additionally, the graphs containing the results of each run of
the cross-validation may be found in Appendices A and B.

2 Background information
In machine learning, an n-dimensional binary classification

problem can be described as a search for a model f with i
parameters which maps n-dimensional data to one of two

classes, as shown below:

Jo(x) =y, (1)

where @ = [0y, 0>, ..., 6;] are the parameters of the model,
x € R" is the input data, and y € {0, 1} is the class label
assigned by the model, with O and 1 being the binary class
options.

By encoding the data and parameters of a classifica-
tion problem into quantum states and using quantum gates
to operate on these states, we are able to create quantum
classification models (Schuld and Petruccione 2018b). The
classification of the input can be obtained by measuring the
output of these PQCs, often referred to as quantum neural
networks.

2.1 Quantum asymptotically universal multi-feature
(QAUM) architecture

The QAUM single-qubit model comprises two circuit blocks:
trainable layers made of parameterized single-qubit gates and
the multi-feature encoding gates (Kordzanganeh et al. 2021).
For the encoding of the features of the dataset, each feature
is scaled to lie in the range (0, ) and used as a parameter
for a Z-rotation. Given an n-dimensional feature vector, a
single layer of the QAUM circuit contains n encoding gates
and n +1 trainable layers which are situated in an alternating
fashion.

The expressivity of this architecture, by which we mean
the classes of functions that it can learn, is a result of its capa-
bility to express the first degree multi-dimensional Fourier
series of the dataset used (Kordzanganeh et al. 2021). All
of the equations and derivations below have been taken from
Kordzanganeh et al. (2021) and show that a truncated Fourier
series of higher frequency can be obtained by increasing the
number of repetitions in the circuit:

A circuit with a single encoding can be expressed in tensor
notation as

¥) = WOs@w10) » w9 wi] 2)

where S(x) is the encoding used and W are the weights of
the trainable layers. In this case, we specify S(x) = e'Yiix
with G being the Pauli-Z matrix. Additionally, |0) — [1,0]”
is absorbed into the second index of W!, and the Einstein
summation convention is used.

Generalizing to the case with N features and L encoding
repetitions, and using the eigenvalues of G, » € {—1, 1}, we
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can rewrite (2) as

eiA.LNXN W((L_I)N)
N -l

w 3)

ilN]'

@Y i, 1x1 gy LD (@vy
W)k = Wy e w s W

The expectation value of a measurement operator, M , in
the |1/) basis is obtained through a measurement of this qubit
in the basis defined by M and is

A 0 Ll Ll
Wibtl) = w0 W) M)

Ljjn
(0) iZlN:I X1 (Zrﬁ:l Ai g *25:1 Aj 1)
WO e I 4y
We can rewrite the exponent in Eq.4 as
N L L
B=> u| i~ Z)‘jpl
=1 m=1 p=1
—[1,1,...,1] ([A,-ml] - [Ajpl]) [xr, xo, . xnlT 5)
Through further simplification, we obtain
/3:2V[x17X2,---7xn]Ts (6)

Sample Data with .
Replacement Train Learner N

Fig.1 Here, we describe the procedure used to train the bagging ensem-
ble. The original training dataset is sampled N times, with replacement,
to create a unique training dataset for each of the N learners in the
ensemble. These learners are then all trained, a process which can be

@ Springer
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where y = [y1,y2,...,vn], with y, € {-L,—(L —
n,...,—-1,0,1,...,L—1,L}.

This shows that through an increase in the number of
encoding repetitions in the QAUM circuit, it is possible
to approximate the classification problem with a truncated
Fourier series of higher frequency (Kordzanganeh et al.
2021).

2.2 Classical ensemble techniques

Ensemble methods were developed as a way to combine the
predictions of multiple machine learning models in a way that
improves the overall performance of the system. It works by
utilizing the diversity of the models in the ensemble to create a
final prediction that is more robust and accurate than any one
model in the ensemble (Dietterich 2000). The two types of
ensemble methods that are explored in this work are bagging
and boosting (Dietterich 2000).

A bagging ensemble utilizes multiple high accuracy learn-
ers and combines their classification outputs using weighted
voting to build a powerful ensemble with higher accuracy
than any of the constituent classifiers. The training method-
ology of the ensemble is shown in Fig. 1, where each learner
is assigned its own dataset, sampled with replacement from
the original training dataset, thereby introducing diversity
into the ensemble. Each dataset may contain duplicate data
points due to the replacement in the sampling process, and
there may also be overlap between the different datasets. This

—> m:‘m; :i‘::;"" Train Metalearner

parallelized due to the mutual independence of the learners. All of the
trained learners are then used to classify the training data, and their out-
puts are combined to create the training data for the metalearner, which
is then trained



Quantum Machine Intelligence (2024) 6:81

Page50f14 81

process helps prevent the ensemble from overfitting the origi-
nal dataset and is called bootstrap-aggregating (aka bagging).
It also allows the learners to be trained in parallel as they are
mutually independent.

A boosting ensemble utilizes multiple weak individual
learners (with validation accuracies slightly better than 50%)
and combines them using weighted voting to build a pow-
erful ensemble. The strength of the ensemble comes from
the mechanism through which the datasets each learner is
trained on are generated, and is illustrated in Fig.2. The ini-
tial learner is trained on the specified dataset and is used to
classify the points in the dataset. Each data point is assigned
an equal weight at the start of the training, and thereafter,
the weights of the correctly and incorrectly classified data
points are decreased and increased, respectively. The dataset
is then resampled using the new weights, thereby emphasiz-

Original Training
EIE]

Train Learner 1

Update Weights and
Resample Data

Train Learner 2

Update Weights and
Resample Data

Train Learner 3

Update Weights and
Resample Data

Train Learner N

Fig. 2 Here, we describe the procedure used to train the boosting
ensemble. The initial learner in the ensemble is trained on the original
training data and is used to perform the classification. The weights of
the datapoints that are correctly and incorrectly classified are decreased
and increased, respectively. This allows the misclassified datapoints to
appear more frequently in the subsequent samples of the training data.

ing the datapoints that are difficult to classify correctly. This
new dataset is given to the next learner, and this process is
repeated until a classifier which is entirely correct or entirely
incorrect is obtained.

One of the most influential aspects of ensemble methods
is the manner in which the predictions of all of the individual
models in the ensemble are combined to produce a single out-
put. One of the most common methods is a weighted voting
scheme whereby the outputs of each of the ensemble’s con-
stituent models are considered and the degree to which they
contribute is decided by the weight assigned to the model
(Dietterich 2000). As this choice of weights for each of the
models in the ensemble is extremely important, we utilized a
metalearner that learns the optimal weights to maximize the
performance of the ensemble. We create the labeled train-
ing data for the metalearner using both the predictions of the

—» Co?rb;(r’\iec‘li.::;ner Train Metalearner

After resampling with the new weights, the next learner is trained on this
new dataset. This process is repeated until either the limit on ensemble
size is reached or until a learner is either entirely correct or incorrect.
Next, all of the learners in the ensemble are used to classify the training
data, and their outputs are combined to create the training data for the
metalearner, which is then trained

@ Springer
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individual models on the original training data and the true
class labels of the data points. Once trained, the metalearner
is capable of combining the predictions of all of the models to
produce the most accurate ensemble possible from the data.
In this work, we select a logistic regression model to use as
our metalearner.

Despite ensemble methods offering a host of advantages,
such as improved robustness, accuracy, and generalization
capabilities, they are not without faults (Goodfellow et al.
2016). The use of multiple learners in the ensemble increases
the complexity and computational cost of training the ensem-
ble (Goodfellow et al. 2016). Additionally, there are a myriad
of base learners to choose from, each with their own benefits
and drawbacks, so choosing the makeup of the ensemble or
the hyper-parameters of the learners in the ensemble is no
simple matter (Goodfellow et al. 2016).

3 Methodology

3.1 Quantum dlassifier

The selection of the individual classifiers that make up the
ensemble has a strong effect on the overall success of the

ensemble techniques (Dietterich 2000). In this work, the
ensembles consist of QAUM circuits, whose design was pro-

posed in Kordzanganeh et al. (2021). QAUM circuits, seen
in Fig.3, utilize only a single qubit and are composed of
layers of parameterized Z, X, and Y-rotation gates. These
rotations make up the trainable blocks and are interlaced with
Z-rotation gates to encode the data features (Kordzanganeh
et al. 2021). This choice of gates allows efficient access to
both the group and Fourier spaces, and the first degree multi-
dimensional Fourier series of the dataset can be expressed by
this architecture (Kordzanganeh et al. 2021).

In Schuld et al. (2021), it was shown that quantum models
can naturally be expressed as a partial Fourier series in the
data and that the accessible spectrum of frequencies is dic-
tated by the nature of the data encoding gates utilized in the
circuit. Once a quantum model has access to a sufficiently
large spectrum of frequencies, it becomes a universal func-
tion approximator for periodic functions (Schuld et al. 2021).

The choice of rotation gates in the trainable layers used in
this work was modified so that the optimizer can more easily
train the parameters for these gates. The original structure of
Z, X, and Y-rotations in Fig. 4a was changed to the Z, X, and
Z-rotations shown in Fig. 4b. As the Y-rotation in the original
circuit is composed of both an X and Z-rotation, changing
it to a Z-rotation allows the optimizer to more easily train
the parameters of this gate to minimize the loss function as
it reduces the complexity of cost function that the optimize
is minimizing. This can facilitate a more effective search for

R. (6,

)

R.(0;,,)

R-’l (()iu )

......

__________

(b) A layer in the QAUM circuit consists of alternating R encoding gates and trainable

blocks.
i —
—|H A Lo i Lo i L2 -:—"'—:Ld-:—'/?’l
CooL) W W i

(c) A full QAUM circuit of depth = d. The depth is variable and can be selected to

suit the application.
Fig.3 The QAUM circuit from Kordzanganeh et al. (2021) utilizes an

alternating structure of single-qubit data encoding gates and trainable
layers of parameterized single-qubit gates. This structure facilitates an

@ Springer

increase in model expressivity by increasing the number of layers in the
circuit. The structure of the trainable blocks, circuit layers, and complete
QAUM circuit can be seen in a, b, and ¢, respectively
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(a) The original gate selection for the trainable layers devised in Kordzanganeh et al

(2021).

(b) The modified gate selection used for the trainable layers in this work.

Fig.4 Inthis work, we modify the gate selection in the trainable layers
of the QAUM circuit from Kordzanganeh et al. (2021). By utilizing the
ZXZ-rotations in b, rather than the ZXY -rotations in a, the optimizer is
able to more easily converge on the optimal solution thanks to a sim-

the optimal parameters for the classifiers (Goodfellow et al.
2016). Additionally, this modification has no effect on the
accessibility of the group and Fourier spaces as the rotation
ZXZ can still convert any initial state |/) into any final state
|¢) (Nielsen and Chuang 2002).

3.2 Datasets

The main dataset used in this work is the HTRU 2 Pulsar
dataset (Lyon et al. 2016). This is the binary classification
of 8-dimensional input as either radio frequency interference
(RFI) or a pulsar star, an important problem for the analysis
of gravitational waves and other applications (Kordzanganeh
etal. 2021).

To test whether the performance trends for the classifiers
are consistent across different problems, we also utilized a
subset of MNIST Digits (LeCun and Cortes 2010) containing

100

pler gate composition. The trainable layer shown in b is still capable
of efficiently accessing the Fourier space as it can turn any initial state
into any final state (Nielsen and Chuang 2002)

the digits 8 and 9, and the Wisconsin Breast Cancer dataset
(Dua and Graff 2017). In all cases, we tested using only 8-
dimensional input, so principal component analysis was used
to perform dimensionality reduction where needed.

For the purposes of result validation, we conducted a
paired #-test to compare the classification models. We per-
formed 5x2 cross-validation on the datasets, whereby 5
different samples of the dataset are taken, shuffled, and then
split for use in training and validation for each of the models.

3.3 Optimization and implementation

The training of the quantum models which make up the
ensembles was performed using the constrained optimiza-
tion by linear approximation (COBYLA) optimizer (Powell
1998), a gradient-free optimizer which serves our purposes
well as the quantum circuits are executed on a noise-free clas-

Validation Accuracy
B o)) [e4]
o o o

N
o

MNIST Digits

Fig.5 The mean validation accuracies of the boosting ensemble (blue)
and original QAUM classifier (orange) are shown, with error bars indi-
cating the standard deviation of the accuracies. Testing was performed
using 5x2 cross-validation for each dataset. We find that the boosting

Wisconsin Breast Cancer
Dataset

BN Boosting Ensemble
W Single QAUM

HTRU 2 Pulsar

ensemble outperforms the original QAUM classifier for the HTRU 2
Pulsar dataset (Lyon et al. 2016), as well as the MNIST Digits and Wis-
consin Breast Cancer datasets (LeCun and Cortes 2010; Dua and Graff
2017)
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sical simulator. In all testing cases, the termination criteria
for the optimizer was specified to be a maximum number of
function evaluations, which will be referred to as the total
number of training iterations in the next section.

The implementation of all of the ensembles, as well
as the original QAUM classifier from Kordzanganeh et al.
(2021), can be found at McFarthing (2022). This was accom-
plished using the Julia programming language (Bezanson
et al. 2017), and the Yao (Luo et al. 2020) library was used
for the creation and execution of the quantum variational
circuits making up the ensembles’ constituent models.

3.4 Testing

Due to the differences between the bagging and boosting
ensembles implemented, specific hyper-parameters, includ-
ing the number of training iterations per learner and the
number of learners in the ensemble, were selected for each.
The bagging algorithm works best with accurate base learn-
ers, so we trained the learners for a large number of iterations
and used only a few learners in the ensemble to keep training
overhead down. We tested a bagging ensemble of 7 QAUM
classifiers, each with 2 embedding layers, and each learner
was trained for 1714 iterations. This ensemble was then com-
pared to a single QAUM classifier, also with 2 embedding
layers, trained for 12, 000 iterations. The number of itera-
tions per learner was selected by first choosing the amount
of training for the single QAUM classifier and then splitting
the number of iterations evenly among the learners in the
ensemble.

On the other hand, the boosting algorithm relies on learn-
ers which do not have high accuracies individually, so the
number of embedding layers in the quantum circuit was set

to 1 and each learner was only trained for 1 iteration. This
ensemble was then compared to a single QAUM classifier,
with 2 embedding layers, trained for 100 iterations. Though
it is not known how many learners the boosting ensemble
will need to reach convergence prior to executing the algo-
rithm, the maximum number of learners was limited to 100
and the number of iterations per learner was set to 1. Thus,
the ensemble would not go through more training iterations
than the single QAUM classifier, even if it did not reach con-
vergence.

4 Results

To verify the significance of the results obtained from our
testing, a paired #-test with a threshold of 0.05 was utilized
in conjunction with 5x2 cross-validation. In all tests, the
p-value was significantly lower than the threshold, thereby
confirming the legitimacy of the results.

Figure 5 and Table 1 show that the boosting ensemble out-
performed the single QAUM classifier for each of the datasets
used. The boosting ensemble had validation accuracies that
were 2%, 5.1%, and 3.1% higher than those of the single
QAUM classifier for the Pulsar, Digits, and Cancer datasets,
respectively. Additionally, the time taken to train the boost-
ing ensemble was less than half that of the single QAUM
classifier. The validation accuracies for each of the samples
in the 5x 2 cross-validation can be found in Appendix A.

Figure 6 and Table 2 show that the bagging ensemble out-
performed the single QAUM classifier for each of the datasets
used. The bagging ensemble had validation accuracies that
were 1.6%, 3.1%, and 0.6% higher than those of the single
QAUM classifier for the Pulsar, Digits, and Cancer datasets,

=
H [=)) © (=]
o o o o

Validation Accuracy

N
o

MNIST Digits

Fig.6 The mean validation accuracies of the bagging ensemble (blue)
and original QAUM classifier (orange) are shown, with error bars indi-
cating the standard deviation of the accuracies. Testing was performed
using 5x2 cross-validation for each dataset. We find that the bagging

Wisconsin Breast Cancer

Dataset

B Bagging Ensemble
- Single QAUM

HTRU 2 Pulsar

ensemble outperforms the original QAUM classifier for the HTRU 2
Pulsar dataset (Lyon et al. 2016), as well as the MNIST Digits and Wis-
consin Breast Cancer datasets (LeCun and Cortes 2010; Dua and Graff
2017)
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Fig.7 Validation accuracy of the bagging and boosting ensembles on the HTRU 2 Pulsar (Lyon et al. 2016) dataset with 100 samples. The trade-off
between training time requirements and overall accuracy for the two types of ensembles can be seen

respectively. The validation accuracies for each of the sam-
ples in the 5x2 cross-validation can be found in Appendix
B.

Tables 1 and 2 both show that in most cases, the accuracies
from the ensemble classifiers have a lower standard deviation
than those from the single QAUM classifier. This appears to
show that in general, the bagging and boosting ensembles
have more consistent performance over the samples of data
from each dataset. This is desirable as it indicates that the
ensembles may be less sensitive to variations in the input
data.

Itis noticeable that the accuracies achieved by the boosting
ensemble in Table 1 are lower than those of the bagging
ensemble in Table 2. Additionally, the duration of training
was far lower for the boosting ensemble than for the bagging
ensemble, thus raising the question of the use case for each
of these ensembles.

InFig.7, the validation accuracies for both types of ensem-
bles are shown in relation to training length per learner, and it
is clear that the boosting ensemble is able to achieve a decent
level of accuracy with almost no training at all. However,
as the number of training epochs is increased, the bagging
ensemble overtakes the boosting ensemble for higher overall
accuracy. Our analysis involves the training of both types of
ensembles to 200 iterations per learner, as it can be seen that
after about 150 iterations, the accuracies of the ensembles
begin to degrade. This appears to signify that they start to
overfit the training data, resulting in poorer generalization
capabilities for both ensembles.

5 Conclusions

In this work, we explored the use of classical ensemble tech-
niques, specifically bagging and boosting, as a means to
expand the classification power of the QAUM classifier from
Kordzanganeh et al. (2021).

Through testing on multiple datasets (Lyon et al. 2016;
LeCun and Cortes 2010; Dua and Graff2017), we have shown

that both boosting and bagging ensembles outperform the
original QAUM circuit. This is shown in Figs. 5 and 6. Addi-
tionally, we analyzed the differences between the results of
the boosting and bagging ensemble, shown in Fig.7, and
propose that the boosting ensemble of QAUM classifiers is
applicable to problems where training time is prioritized over
accuracy. This is due to its ability to achieve areasonable level
of performance very quickly. Furthermore, we propose that
the bagging ensemble be used when accuracy is of the utmost
performance as it is capable of generalizing better than the
boosting ensemble with sufficient training.

The application of these classical ensemble techniques
to the QAUM single-qubit circuits was investigated as
an alternative to other multi-qubit approaches, and the
results obtained in this work show that this is promising
as improvements in classification accuracy can be achieved
with relatively shallow circuits. The original QAUM circuit
(Kordzanganeh et al. 2021) was designed to achieve higher
accuracy with increasing circuit depth. However, due to the
low coherence time of current devices, this would not be
practical. Through the use of the techniques in this work, a
powerful ensemble can be built from shallow single-qubit
circuits which can be run on existing quantum hardware.

The testing of this approach on real quantum hardware can
be done in future research, as well as investigations regarding
the noise resilience of these shallow ensembles compared to
the original QAUM classifier.

A. Cross-validation results for boosting
ensemble vs. single QAUM classifier

The validation accuracies for each of the dataset samples
used in the cross-validation are shown in Figs.8, 9, and 10.
As mentioned previously, the 3 datasets used in testing were
HTRU 2 Pulsar, MNIST Digits, and Wisconsin Breast Cancer
(Lyon et al. 2016; LeCun and Cortes 2010; Dua and Graff
2017).
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Fig.8 Validation accuracies of the boosting ensemble (blue) and single QAUM classifier (orange) on the HTRU 2 Pulsar (Lyon et al. 2016) dataset
for each of the samples used in the 5x2 cross-validation
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Fig.9 Validation accuracies of the boosting ensemble (blue) and single QAUM classifier (orange) on the MNIST Digits (LeCun and Cortes 2010)
dataset for each of the samples used in the 5x2 cross-validation
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Fig. 10 Validation accuracies of the boosting ensemble (blue) and single QAUM classifier (orange) on the Wisconsin Breast Cancer (Dua and
Graff 2017) dataset for each of the samples used in the 5x2 cross-validation

B. Cross-validation graphs for bagging 13. As mentioned previously, the 3 datasets used in testing

ensemble vs. single QAUM classifier were HTRU 2 Pulsar, MNIST Digits, and Wisconsin Breast
Cancer (Lyon et al. 2016; LeCun and Cortes 2010; Dua and

The validation accuracies for each of the dataset samples  Graff 2017).

used in the cross-validation are shown in Figs. 11, 12, and
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Fig. 11 Validation accuracies of the bagging ensemble (blue) and single QAUM classifier (orange) on the HTRU 2 Pulsar (Lyon et al. 2016) dataset
for each of the samples used in the 5x2 cross-validation
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Fig. 12 Validation accuracies of the bagging ensemble (blue) and single QAUM classifier (orange) on the MNIST Digits (LeCun and Cortes 2010)
dataset for each of the samples used in the 5x2 cross-validation
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Fig. 13 Validation accuracies of the bagging ensemble (blue) and single QAUM classifier (orange) on the Wisconsin Breast Cancer (Dua and Graff
2017) dataset for each of the samples used in the 5x 2 cross-validation
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