
Automatic Resummation of
Logarithmic Enhanced Multiloop

Contributions to the lightest CP-even
Higgs Boson Mass in FlexibleSUSY

Masterarbeit
zur Erlangung des Hochschulgrades

Master of Science
im Master-Studiengang Physik

vorgelegt von

Tom Steudtner
geboren am 21.08.1991 in Löbau
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Abstract

In this thesis, the computation of the lightest CP-even Higgs mass in the FlexibleSUSY frame-
work was augmented by resumming large logarithmic contributions via an effective field theory
approach in arbitrary models. Several algorithms were developed, analyzed and discussed, es-
pecially in the MSSM. Comparisons to other codes have been performed, with focus on the
SUSYHD package, which was found to be in good agreement with our codes.

Kurzdarstellung

Die die Berechnung der leichtesten, CP-geraden Higgsmasse für allgemeine Modelle im Pro-
grammpacket FlexibleSUSY wurde durch die Resummation von logarithmisch verstärkten Ter-
men mittels eines effektiven Feldtheorieansatzes verfeinert. Mehrere Algorithmen wurden dazu
entwickelt, analysiert und diskutiert, zu meist im MSSM. Weiterhin wurden Vergleiche zu an-
deren Programmen durchgeführt, besonderes Augenmerk wurde dabei auf das Paket SUSYHD
gelegt, welches gute Übereinstimmung mit dem hier implementierten Code aufzeigt.
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Motivation

After the discovery of a Higgs boson at the LHC in 2012 [1, 2], its mass is a crucial ob-
servable to constrain physics beyond the Standard Model. Nevertheless, the search for new
physics continues, but so far without any findings comparable to the former in its notability
[3]. However, one possibility to reconcile these results with theories extending the Standard
Model is that additional particles need to have very large masses. Unfortunately, the precision
of ordinary fixed-order mass spectrum generators for the Higgs mass calculation is limited in
those scenarios, due to large logarithms contributions to the self-energies, which extenuates
the convergence of the perturbation series. Consequently, while the Higgs mass is measured
with 300 MeV accuracy [4], spectrum generators may differ by several GeV even with the same
input data [5]. This thesis is dedicated to the improvement of this calculation by resumming
large logarithmic contributions.

Driven by this motivation, the outline of this thesis will start with a brief introduction to
models and formalisms in chapter 1, followed by a short descriptive overview of the Flexible-
SUSY framework in chapter 2. In chapter 3, the theoretical background of the algorithms will
be discussed. The implementations and benchmarks are documented in the chapters 4, 5 and
6. Finally, conclusions will follow in the last chapter, 7.
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1 Introduction

This chapter is dedicated to introduce some formalisms used in this thesis. Since the algorithm
is based on the Standard Model (SM) as an effective field theory (EFT) of an extended theory,
there will be a short review of the SM gauge group, particle content as well as the Higgs
mechanism. The same will be done for the Minimal Supersymmetric Standard Model, since it
is used extensively for crosschecking the code. The Next-to-Minimal Supersymmetric Standard
Model is also briefly mentioned. Additionally, a general review of effective field theories will
follow.

1.1 The Standard Model

The Standard Model of particle physics was formulated by Weinberg, Salam and Glashow [6].
It is by design the minimal formulation compliant with both: the axioms of Quantum Field
Theory and the observed particle and interaction content.

symbol/generations spin 𝑄 𝑌 (𝑙, 𝑟) 𝐼3 (𝑙, 𝑟) 𝑆𝑈(3) multiplicity

up-type u(up), c(charm), t(top) 1
2

+2
3

(︀
+1

3
,+4

3

)︀ (︀
+1

2
, 0
)︀

3
quarks

down-type d(down), s(strange), 1
2

−1
3

(︀
+2

3
,−2

3

)︀ (︀
−1

2
, 0
)︀

3
quarks b(bottom)

charged e(electron), 𝜇 (muon) 1
2

−1 (−1,−2)
(︀
−1

2
, 0
)︀

1
leptons 𝜏 (tauon)

neutrinos 𝜈𝑒, 𝜈𝜇, 𝜈𝜏
1
2

0 (−1,−)
(︀
1
2
,−
)︀

1

gauge 𝛾 (photon) 1 0 0 0 1
bosons 𝑍0 1 0 0 0 1

𝑊∓ 1 ∓1 0 ∓1
2

1
𝑔 (gluon) 1 0 0 1 8

Higgs 𝐻 0 0 1 −1
2

1
boson

Table 1: Particle content of the Standard Model, 𝑄 is the electric, 𝑌 (𝑙, 𝑟) the hypercharge of
left- and right-chiral part, 𝐼3 is the 3-component of the weak isospin. Right-chiral
neutrinos are not included in the SM.

The bare Lagrangian looks as follows:

ℒ = ℒ𝐺𝑎𝑢𝑔𝑒 + ℒ𝐹𝑒𝑟𝑚𝑖𝑜𝑛 + ℒ𝑌 𝑢𝑘𝑎𝑤𝑎 + ℒ𝐻𝑖𝑔𝑔𝑠 + ℒ𝐺𝐹 + ℒ𝐺ℎ𝑜𝑠𝑡 (1.1.1)

Where the last two terms correspond to gauge fixing and ghost interactions and shall not be
of our concern here. The fermionic part ℒ𝐹𝑒𝑟𝑚𝑖𝑜𝑛 contains propagators as well as minimally
coupled interactions of the Dirac fermions, featuring the (gauge-)covariant derivative ∇𝜇.

ℒ𝐹𝑒𝑟𝑚𝑖𝑜𝑛 = 𝑖𝜓𝛾𝜇∇𝜇𝜓 (1.1.2)

∇𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝑎
𝜇 𝑇

𝑎 (1.1.3)
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Where 𝐴𝑎
𝜇 is a general Yang-Mills gauge field, 𝑔 its coupling constant and 𝑇 𝑎 the generator

corresponding to the representation of the 𝑆𝑈(𝑁) gauge group. 𝜓 are the spinor representation
for fermions. The local gauge symmetry transformation is defined as

𝜓 → e𝑖𝑔 𝜃
𝑎(𝑥)𝑇𝑎

𝜓 (1.1.4)

𝐴𝑎
𝜇 𝑇

𝑎 → e𝑖𝑔 𝜃
𝑏(𝑥)𝑇 𝑏 [︀

𝐴𝑎
𝜇 + 𝜕𝜇𝜃

𝑎 (𝑥)
]︀
𝑇 𝑎e−𝑖𝑔 𝜃𝑐(𝑥)𝑇 𝑐

(1.1.5)

which leaves the Lagrangian invariant. The kinetic part, featuring the propagators and self-
interactions of the gauge fields, is:

ℒ𝐺𝑎𝑢𝑔𝑒 = −1

4
𝐹 𝑎
𝜇𝜈𝐹

𝑎𝜇𝜈 (1.1.6)

𝐹𝜇𝜈 =
𝑖

𝑔
[∇𝜇,∇𝜈 ] = 𝜕𝜇𝐴

𝑎
𝜈𝑇

𝑎 − 𝜕𝜈𝐴
𝑎
𝜇𝑇

𝑎 − 𝑖𝑔𝐴𝑎
𝜇𝐴

𝑏
𝜈

[︀
𝑇 𝑎, 𝑇 𝑏

]︀
(1.1.7)

= 𝐹 𝑎
𝜇𝜈 𝑇

𝑎 =
(︀
𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇𝐴
𝑐
𝜈

)︀
𝑇 𝑎 (1.1.8)

The SM gauge group in this form is 𝑈(1) ⊗ 𝑆𝑈(2) ⊗ 𝑆𝑈(3), where the charges associated
with these gauge symmetries are called hypercharge, weak isospin and color. However, for
the Lagrange density to be invariant under gauge transformations, mass terms of gauge fields
are strictly forbidden, and since the 𝑆𝑈(2) gauge group affects only left chiral modes, also
for fermions. To resolve this issue, the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mecha-
nism, or shorter just Higgs mechanism, was introduced via an additional complex, colorless,
hypercharged scalar 𝑆𝑈(2) doublet [7–10].

Φ =
(︀
𝜑𝑢, 𝜑𝑑

)︀𝑇
(1.1.9)

∇𝜇Φ =

(︂
𝜕𝜇 −

𝑖

2
𝑔𝑌𝐵𝜇I− 𝑖𝑔2𝑊

𝑎
𝜇𝑇

𝑎

)︂
(1.1.10)

ℒ𝐻𝑖𝑔𝑔𝑠 = (∇𝜇Φ)
† (∇𝜇Φ) + 𝜇2 |Φ|2 − 𝜆

2
|Φ|4 (1.1.11)

ℒ𝑌 𝑢𝑘𝑎𝑤𝑎 = − 𝑦𝑑

(︁
𝜓

𝑢

𝐿𝜑
𝑢 + 𝜓

𝑑

𝐿𝜑
𝑑
)︁
𝜓𝑑
𝑅 − 𝑦*𝑑𝜓

𝑑

𝑅

(︀
𝜑𝑢𝜓𝑢

𝐿 + 𝜑𝑑𝜓𝑑
𝐿

)︀
− 𝑦𝑢

(︁
𝜓

𝑢

𝐿𝜑
𝑑 * − 𝜓

𝑑

𝐿𝜑
𝑢 *
)︁
𝜓𝑢
𝑅 − 𝑦*𝑢𝜓

𝑢

𝑅

(︀
𝜑𝑑 *𝜓𝑢

𝐿 − 𝜑𝑢 *𝜓𝑑
𝐿

)︀
(1.1.12)

Where 𝜓𝑢,𝑑 are general (up,down)-type fermions, and 𝑦𝑢,𝑑 their respective Yukawa couplings.
Due to the potential term in ℒ𝐻𝑖𝑔𝑔𝑠, the vacuum expectation value (VEV) of the Φ field is
non-zero if 𝜇2 is positive. Hence, the theory undergoes spontaneous symmetry breaking, in this
case dubbed electroweak symmetry breaking (EWSB). One possible expansion of 𝜑 around its
VEV may look like this:

Φ =
1√
2
(0, 𝑣 +𝐻(𝑥))𝑇 e𝑖𝜃

𝑎(𝑥)𝑇𝑎

(1.1.13)

𝑣2 =
2𝜇2

𝜆
+𝒪 (1 loop) (1.1.14)

Where the 𝜃𝑎 are called Nambu-Golstone bosons. However, these are unphysical, since they
vanish for a certain choice of gauge. More consistently, they may be interpreted as longitudinal
modes of new vector fields composed of the 𝑈(1) and 𝑆𝑈(2) gauge fields. By doing so,
these three new eigenstates gain mass terms by the VEV, while a massive scalar excitation
remains: the Higgs boson 𝐻. Since each massive field exhibits one additional degree of freedom
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compared to massless ones, all four real degrees of freedom of Φ are conserved.

ℒ𝐻𝑖𝑔𝑔𝑠 → −1

4
𝑔22 𝑣

2𝑊+
𝜇 𝑊

−𝜇 − 1

8

(︀
𝑔2𝑌 + 𝑔22

)︀
𝑣2 𝑍𝜇𝑍

𝜇 − 1

4
𝑔22
(︀
𝐻2 + 2𝑣𝐻

)︀
𝑊+

𝜇 𝑊
−𝜇

− 1

8

(︀
𝑔2𝑌 + 𝑔22

)︀ (︀
𝐻2 + 2𝑣𝐻

)︀
𝑍𝜇𝑍

𝜇

+
1

2
𝜕𝜇𝐻𝜕

𝜇𝐻 +
1

2

(︂
𝜇2 − 3

2
𝜆𝑣2
)︂
𝐻2 − 𝜆𝑣

2
𝐻3 − 𝜆

8
𝐻4 (1.1.15)

ℒ𝑌 𝑢𝑘𝑎𝑤𝑎 → − 𝑣√
2
𝜓

𝑢
𝑦𝑢𝜓

𝑢 − 𝑣√
2
𝜓

𝑑
𝑦𝑑𝜓

𝑑 − 1√
2
𝜓

𝑢
𝑦𝑢𝐻𝜓

𝑢 − 1√
2
𝜓

𝑑
𝑦𝑑𝐻𝜓

𝑑 (1.1.16)

𝑊±
𝜇 =

1√
2

(︀
𝑊 1

𝜇 ∓ 𝑖𝑊 2
𝜇

)︀
(1.1.17)

𝑍𝜇 = cos 𝜃𝑊 𝑊 3
𝜇 − sin 𝜃𝑊 𝐵𝜇 (1.1.18)

𝐴𝜇 = sin 𝜃𝑊 𝑊 3
𝜇 + cos 𝜃𝑊 𝐵𝜇 (1.1.19)

tan 𝜃𝑊 =
𝑔𝑌
𝑔2

(1.1.20)

Where the mass eigenstates 𝑊±
𝜇 , 𝑍𝜇, 𝐴𝜇 are interpreted as W, Z and photon fields. One may

see that the electric charge 𝑄 number is connected to the hypercharge 𝑌 as well as to some
component of the weak isospin 𝐼3:

1
2
𝑌 + 𝐼3 = 𝑄. By this mechanism, W and Z retain mass

terms while the photon stays massless, but the initial gauge group is broken in the electroweak
sector:
𝑈(1)𝑔𝑌 ⊗ 𝑆𝑈(2)𝑔2 ⊗ 𝑆𝑈(3)𝑔3 → 𝑈(1)𝑒 ⊗ 𝑆𝑈(3)𝑔3
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1.2 The Minimal Supersymmetric Standard Model

Supersymmetry transformations relate bosonic and fermionic fields in a theory with each other
[11, 12]. The Minimal Supersymmetric Standard Model (MSSM) contains, true to its name,
the SM gauge group and particle content. Furthermore, a new field - called superpartner -
is related by a supersymmetry transformation to each SM particle [13]. In the MSSM, these
superpartners are regarded as additional, fundamental fields, with a spin difference of 1

2
. Hence,

a new scalar is introduced for each left- and right-chiral fermion, called sfermions, and fermionic
fields corresponding to the gauge and Higgs bosons, called gauginos and higgsinos respectively.
These will mix in electrically neutral or charged mass eigenstates after elecroweak symmetry
breaking, called neutralinos and charginos. There has to be another Higgs doublet in order to
make the Yukawa terms supersymmetric. In order to explain why no fundamental superpartner
(sparticle) has been discovered yet, supersymmetry breaking is required to results in a mass
splitting of SM particles and their superpartners, which is only possible if supersymmetry is
softly broken by non-supersymmetric terms.
As before, the structure of the theory will be introduced using general fields, the Lagrange
density may be written as:

ℒ = ℒ𝐺𝑎𝑢𝑔𝑒 + ℒ𝐹𝑟𝑒𝑒 + ℒ𝑃𝑜𝑡 + ℒ𝑆𝑜𝑓𝑡 + ℒ𝐺𝐹 + ℒ𝐺ℎ𝑜𝑠𝑡 (1.2.1)

Disregarding the last two terms corresponding to gauge fixing and Fadeev-Popov ghosts, we
will start introducing free SM fermions in the second term altogether with their superpartners,
closely following the argumentation in [13], see there for a more elaborated introduction. Since
there are superpartner for each left- and right-chiral modes of every fermion respectively, we
will consider 𝜓 to be a general (left-) chiral fermion, and 𝜑 its superpartner.
The Supersymmetry transformation changes the theory by expanding each field in the La-
grangian by terms containing a global fermionic field 𝜖:

𝛿𝜑 = 𝜖𝜓 (1.2.2)

𝛿𝜓 = 𝑖𝜎𝜇𝜖†∇𝜇𝜑+ 𝜖𝐹 (1.2.3)

𝛿𝐹 = −𝑖𝜖𝜎𝜇∇𝜇𝜓 +
√
2𝑔𝜖†𝜆𝑎 †𝑇 𝑎𝜑 (1.2.4)

Where 𝐹 is an auxiliary field needed to close the supersymmetry algebra off-shell, and ∇𝜇

denotes the gauge covariant derivative:

∇𝜇𝜑 = 𝜕𝜇𝜑− 𝑖𝑔𝐴𝑎
𝜇𝑇

𝑎𝜑 (1.2.5)

∇𝜇𝜓 = 𝜕𝜇𝜑− 𝑖𝑔𝐴𝑎
𝜇𝑇

𝑎𝜓 (1.2.6)

∇𝜇𝜆
𝑎 = 𝜕𝜇𝜆

𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏
𝜇𝜆

𝑐 (1.2.7)

Where 𝜆𝑎 are the gauginos of 𝐴𝑎
𝜇. The identity matrix in C2 appears in 𝜎0 = 𝜎0 = 𝐼2 and the

spatial components 𝜎𝑎 = −𝜎𝑎 are the Pauli matrices. Obviously, the last term in 𝛿𝐹 emerges
due to the transformation of the gauge field in the covariant derivative, and may be dropped
when these are regarded as usual partial derivatives, which decouples the gauge sector. Then,
following these transformation rules, it can be shown that the free (s)fermionic Lagrangian is
invariant up to a total derivative.

ℒ𝐹𝑟𝑒𝑒 = (∇𝜇𝜑)
† (∇𝜇𝜑) + 𝑖𝜓†𝜎𝜇∇𝜇𝜓 + 𝐹 *𝐹 (1.2.8)

The inclusion of right-chiral fields is analogue. Without decoupling the gauge field 𝐴𝜇, the
superalgebra only closes under consideration of a gauge sector, containing, besides the prop-
agator and self-interaction terms of the gauge field and its superpartner, additional terms
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featuring another auxiliary field.

ℒ𝐺𝑎𝑢𝑔𝑒 =− 1

4
𝐹 𝑎
𝜇𝜈𝐹

𝑎𝜇𝜈 + 𝑖𝜆𝑎†𝜎𝜇∇𝜇𝜆
𝑎 +

1

2
𝐷𝑎𝐷𝑎

−
√
2𝑔 𝜑*𝑇 𝑎𝜓𝜆𝑎 −

√
2𝑔 𝜆𝑎†𝜓†𝑇 𝑎𝜑+ 𝑔 𝜑*𝑇 𝑎𝜑𝐷𝑎 (1.2.9)

With transformation rules:
√
2 𝛿𝐴𝑎

𝜇 = −𝜖†𝜎𝜇𝜆
𝑎 − 𝜆𝑎†𝜎𝜇𝜖 (1.2.10)

√
2 𝛿𝜆𝑎 =

𝑖

2
𝜎𝜇𝜎𝜈𝜖𝐹 𝑎

𝜇𝜈 + 𝜖𝐷𝑎 (1.2.11)
√
2 𝛿𝐷𝑎 = −𝑖𝜖†𝜎𝜇∇𝜇𝜆

𝑎 + 𝑖∇𝜇𝜆
𝑎†𝜎𝜇𝜖 (1.2.12)

and infinitesimal gauge transformations:

𝐴𝑎
𝜇 → 𝐴𝑎

𝜇 + 𝜕𝜇Λ
𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇Λ
𝑐 (1.2.13)

𝜆𝑎 → 𝜆𝑎 + 𝑔𝑓𝑎𝑏𝑐𝜆𝑏Λ𝑐 (1.2.14)

Integrating out the auxiliary field 𝐷𝑎 by substituting it with its equation of motion generates
a scalar potential term from those terms containing 𝐷𝑎, called D-term:

ℒ𝐷−𝑡𝑒𝑟𝑚 =
1

2
𝐷𝑎𝐷𝑎 =

𝑔2

2
(𝜑*𝑇 𝑎𝜑)2 (1.2.15)

For including additional scalar potential terms, it was argued in [13] that, excluding tadpole
terms compliant with supersymmetry, these are bound to take the following structure:

ℒ𝑃𝑜𝑡 = −1

2

𝛿2𝑊

𝛿𝜑𝑖 𝛿𝜑𝑗
𝜓𝑖𝜓𝑗 +

𝛿𝑊

𝛿𝜑𝑖
𝐹 𝑖 + ℎ. 𝑐. (1.2.16)

𝑊 =
1

2
𝑀𝑖𝑗𝜑

𝑖𝜑𝑗 +
1

3!
𝑦𝑖𝑗𝑘𝜑

𝑖𝜑𝑗𝜑𝑘 (1.2.17)

Collecting terms containing auxiliary left- or right-chiral fields together with this potential and
integrating out the 𝐹 𝑖 fields, one obtains the F-term potential.

ℒ𝑃𝑜𝑡 + 𝐹 𝑖*𝐹 𝑖 =

(︂
−1

2
𝑀𝑖𝑗𝜓

𝑖𝜓𝑗 − 1

2
𝑦𝑖𝑗𝑘𝜑

𝑖𝜓𝑗𝜓𝑘 + ℎ. 𝑐.

)︂
−𝑀*

𝑖𝑘𝑀𝑘𝑗𝜑
𝑖*𝜑𝑗−

1

2

(︀
𝑀𝑖𝑙 𝑦

*
𝑗𝑘𝑙 𝜑

𝑖𝜑𝑗*𝜓𝑘* + ℎ. 𝑐.
)︀
− 1

4
𝑦𝑖𝑗ℎ𝑦

*
𝑘𝑙ℎ𝜑

𝑖𝜑𝑗𝜑𝑘*𝜑𝑙* (1.2.18)

Where 𝑦𝑖𝑗𝑘 and 𝑀𝑖𝑗 are considered total symmetric here. In the MSSM, the quantity 1.2.17 is
defined as:

𝑊 = 𝜇𝐻𝑢𝐻𝑑 + yu𝜑𝑢𝐻𝑢 𝜑𝑄 + yd𝜑𝑑𝐻𝑑 𝜑𝑄 + ye𝜑𝑒𝐻𝑑 𝜑𝐿 (1.2.19)

The matrices 𝑦𝑖𝑗𝑘 are considered as Yukawa couplings, and chosen in a way that the SM Yukawa
sector emerges:

ℒ𝑌 𝑢𝑘𝑎𝑤𝑎 = −
(︀
yu𝑢𝑅𝑄𝐻𝑢 + yd𝑑𝑅𝑄𝐻𝑑 + ye𝑒𝑅𝐿𝐻𝑑 + ℎ. 𝑐.

)︀
(1.2.20)

Where 𝑄,𝐿 are the 𝑆𝑈(2) doublets of quarks and leptons and 𝜑𝑄, 𝜑𝐿 their respective su-
perpartner doublets, while 𝐻𝑢, 𝐻𝑑 are up- and down-type Higgs doublets. Additionally, these
gain a mass by 𝑀𝑖𝑗 = 𝜇, 𝑖 ̸= 𝑗:

ℒ𝐻𝑖𝑔𝑔𝑠 = − |𝜇|2
(︀
|𝐻𝑢|2 + |𝐻𝑑|2

)︀
(1.2.21)
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Additionally possible terms violating lepton- or baryon number conservation are not consid-
ered, for these would e.g. contradict experimental bounds on proton decay [13]. Furthermore,
it can be inferred from the Lagrangian that particles and their respective superpartners share
the same mass, which is clearly ruled out by observation. Hence, supersymmetry must be
broken, which is done softly to guarantee renormalizability by including positive mass power
couplings [14]. The most general approach to this (see [13]) is:

ℒ𝑆𝑜𝑓𝑡 = −1

2

3∑︁
𝑖=1

(𝑀𝑖 𝜆
𝑎
𝑖 𝜆

𝑎
𝑖 + ℎ. 𝑐.)

−
(︁
Auyu

̃︀𝑢𝑅 ̃︀𝑄𝐻𝑢 +Adyd
̃︀𝑑𝑅 ̃︀𝑄𝐻𝑑 +Aeye

̃︀𝑒𝑅 ̃︀𝐿𝐻𝑑 + ℎ. 𝑐.
)︁

− ̃︀𝑄†m2
Q
̃︀𝑄− ̃︀𝐿†m2

L
̃︀𝐿− ̃︀𝑢𝑅 m2

u
̃︀𝑢†𝑅 − ̃︀𝑑𝑅m2

d
̃︀𝑑†𝑅 − ̃︀𝑒𝑅m2

e
̃︀𝑒†𝑅

−𝑚2
𝐻𝑢
𝐻*

𝑢𝐻𝑢 −𝑚2
𝐻𝑑
𝐻*

𝑑𝐻𝑑 −𝐵𝜇𝐻𝑢𝐻𝑑 −𝐵*
𝜇𝐻

*
𝑢𝐻

*
𝑑 (1.2.22)

The first line introduces gaugino mass terms, the second line adds trilinear couplings in
sfermions and Higgs scalars, mixing into different generations of each family. The third line
introduces independent masses for left- and right-chiral sfermions, and the last line individual
masses as well as mixing terms for both Higgs scalars. Both Higgs fields can be parametrized
and inserted into the Higgs potential:

𝐻𝑢 =
(︀
𝐻+

𝑢 , 𝐻
0
𝑢

)︀𝑇
(1.2.23)

𝐻𝑑 =
(︀
𝐻0

𝑑 , 𝐻
−
𝑑

)︀𝑇
(1.2.24)

ℒ𝐻𝑖𝑔𝑔𝑠 = −
(︀
|𝜇|2 +𝑚2

𝐻𝑢

)︀ (︁⃒⃒
𝐻0

𝑢

⃒⃒2
+
⃒⃒
𝐻+

𝑢

⃒⃒2)︁− (︀|𝜇|2 +𝑚2
𝐻𝑑

)︀ (︁⃒⃒
𝐻0

𝑑

⃒⃒2
+
⃒⃒
𝐻−

𝑑

⃒⃒2)︁
−
(︁
𝐵𝜇

(︀
𝐻+

𝑢 𝐻
−
𝑑 −𝐻0

𝑢𝐻
0
𝑑

)︀
+ ℎ. 𝑐.

)︁
− 𝑔22

2

⃒⃒
𝐻+

𝑢 𝐻
0*
𝑑 +𝐻0

𝑢𝐻
−*
𝑑

⃒⃒2
− 1

8

(︀
𝑔2𝑌 + 𝑔22

)︀ (︁⃒⃒
𝐻0

𝑢

⃒⃒2 − ⃒⃒𝐻0
𝑑

⃒⃒2
+
⃒⃒
𝐻+

𝑢

⃒⃒2 − ⃒⃒𝐻−
𝑑

⃒⃒2)︁2
(1.2.25)

The real parts of 𝐻0
𝑢,𝑑 can then be expanded around their respective VEVs 𝑣𝑢,𝑑/

√
2. The rela-

tion between those can be parametrized by tan𝛽 = 𝑣𝑢
𝑣𝑑
. After electroweak symmetry breaking,

these Higgs fields mix into 2 CP-even, 2 CP-odd neutral, and 2×2 electrically charged real
scalars. The lightest CP-odd and two lightest charged fields are then the Nambu-Goldstone
bosons corresponding to longitudinal modes of 𝑍 and 𝑊±, respectively. In the scenarios con-
sidered in this thesis, the lightest CP-even field is equivalent to the Higgs boson encountered
in the SM, while the rest are additional, heavier fields. Integrating out these fields as well as
all sparticles yields the SM as effective field theory, where at tree level the following identities
relate the parameters:

𝑔𝑆𝑀𝑖 = 𝑔𝑀𝑆𝑆𝑀
𝑖 (1.2.26)

𝑦𝑆𝑀𝑢 = 𝑦𝑀𝑆𝑆𝑀
𝑢 sin𝛽 (1.2.27)

𝑦𝑆𝑀𝑑,𝑒 = 𝑦𝑀𝑆𝑆𝑀
𝑑,𝑒 cos𝛽 (1.2.28)

𝑣2 = 𝑣2𝑢 + 𝑣2𝑑 (1.2.29)

𝜆 =
1

4

(︀
𝑔2𝑌 + 𝑔22

)︀
cos 2𝛽 (1.2.30)

It is remarkable that 𝜆 in the SM is at tree level related to gauge couplings and 𝛽 from D-term
contributions in the MSSM.
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1.3 Next-to-Minimal Supersymmetric Standard Model

In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [15], the MSSM has been
extended by introducing another gauge singlet, a scalar 𝑆 and its superpartner. Most com-
monly, an additional Z3 symmetry on the fields in the potential 1.2.17 is assumed, allowing
only dimensionless coupling terms therein. One reason for considering the NMSSM is moti-
vated by the hierarchy problem: instead of introducing a Higgs mass parameter 𝜇 and hence
the SUSY scale by hand, this term is generated dynamically from the VEV of the new scalar 𝑆.
Therefore, the SUSY scale is completely determined by the EWSB and hence the mechanism
of SUSY-breaking, see [15]. For the NMSSM, equation 1.2.17 is modified to:

𝑊 = yu𝐻𝑢 𝜑𝑢 𝜑𝑄 + yd𝐻𝑑 𝜑𝑑 𝜑𝑄 + ye𝐻𝑑 𝜑𝑒 𝜑𝐿 + 𝜆𝑆𝐻𝑢𝐻𝑑 +
𝜅

3
𝑆3 (1.3.1)

Indeed, only dimensionless couplings appear, and the MSSM parameter 𝜇 from 1.2.19 is then
determined by:

𝜇𝑒𝑓𝑓 =
𝑣𝑆√
2
𝜆 (1.3.2)

In the soft breaking sector, the MSSM Lagrangian is extended by terms including the new
scalar field. However, in order to comply with the mentioned Z3 symmetry, 𝐵𝜇 = 0 must be
applied.

ℒNMSSM
𝑠𝑜𝑓𝑡 = ℒMSSM

𝑠𝑜𝑓𝑡

⃒⃒⃒
𝐵𝜇=0

−𝑚2
𝑆 𝑆

*𝑆 −
(︂
𝐴𝜆 𝜆𝑆 𝐻𝑢𝐻𝑑 +

1

3
𝐴𝜅 𝜅𝑆

3 + ℎ.𝑐.

)︂
(1.3.3)

Since the NMSSM is only used briefly, this stub shall suffice as an introduction to its basic
parameters, see [15] for a more detailed review.
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1.4 Effective Field Theories

Effective field theories (EFTs) are a technique that allows the study of the low energy limit of
a theory, where the in- and outgoing four-momentum squares in the amplitudes are considered
to be small compared to the mass scale of some heavy particles included. Hence, such particles
cannot be produced on-shell, and do only appear as internal lines in each amplitude. For such
particles, the Appelquist-Carazzone theorem [16] states that their contribution is suppressed
by terms proportional to momenta over heavy masses. The heavy particles therefore decouple
from the theory if their masses approach infinity. In the path integral formulation, this can
be seen by integrating out heavy particles Φ𝑖 while keeping light modes 𝜑𝑖. Since no external
field Φ𝑖 is allowed, the heavy current 𝐽 can be set to zero in the partition function and the
expression partially solved.

𝑍 (𝑗) =

∫︁ ∏︁
𝑘,𝑙

𝒟Φ𝑘 𝒟𝜑𝑙 e
𝑖
∫︀
d4𝑥ℒ(𝜑𝑙,Φ𝑘)+𝐽𝑘Φ𝑘+𝑗𝑙𝜑𝑙

⃒⃒⃒
𝐽𝑘=0

=

∫︁ ∏︁
𝑙

𝒟𝜑𝑙 e
𝑖
∫︀
d4𝑥ℒ𝑒𝑓𝑓 (𝜑𝑙)+𝑗𝑙𝜑𝑙 (1.4.1)

ℒ𝑒𝑓𝑓 is the Lagrangian of the EFT. Diagrammatically, this corresponds to a theory containing
all one-particle-irreducible amplitudes of the full theory, where each heavy loop is contracted
into one spacetime point and vertices connected by heavy lines are joined. Consequently, each
heavy interaction is considered to be local in spacetime, which reflects that the momenta of
the heavy fields being far off-shell 𝑝2 ≪ 𝑀2 so their propagation can be neglected. While
external light fields are kept in each term, the heavy ones are replaced by some coefficient
adjusted to yield the same amplitude as the full theory. Since these one-particle irreducible
graphs include all loop orders, there is an infinite amount of terms to be considered for each
EFT. However, since each heavy propagator can be expanded around zero momentum in a

fashion like 1
𝑝2−𝑀2 ≈ − 1

𝑀2 + 𝑝2

𝑀4 + 𝒪
(︁

𝑝4

𝑀6

)︁
, the terms contained in ℒ𝑒𝑓𝑓 are local, and in-

deed suppressed by powers of the momenta over the heavy masses. Consequently, this means
that the effective field theory is not renormalizable by power counting, since terms with mass
dimension greater than 4 appear in this theory, with constant coefficients of negative mass
dimension. Nevertheless, this does not pose a problem, since higher order terms can always
be considered to renormalize the EFT to a fixed order of mass dimensions.
In this thesis, the Standard Model is regarded as an EFT in the low energy limit of various
models. These are defined in the DR or MS scheme, which do not include the decoupling
theorem by design, because the beta functions are not explicitly scale dependent [17]. Never-
theless, such a decoupling occurs, and an EFT can be constructed by matching amplitudes,
thus the theory parameters, to yield the same result. To reduce loop contributions, this is
done at the scale of magnitude of the heavy masses. However, the Standard Model is always
considered as effective theory, excluding non-renormalizable parts. Hence, calculations in this
model might differ by terms suppressed by inverse powers of heavy masses, which decouple
when these approach infinity.
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2 About FlexibleSUSY

FlexibleSUSY [18] is a spectrum generator generator written in C++, Wolfram Language
[19] and Bourne shell. This program package is able to calculate the mass spectrum and
additional observables for any arbitrary extension of the Standard Model (SM), provided that
such models can be defined in the external Mathematica based package SARAH [20]. This
creates, from specified symmetries, gauge groups and particle contents, symbolic expressions
for the vertices, beta functions, self-energies and tadpole diagrams. This raw input model is
converted to a C++ spectrum generator by the FlexibleSUSY meta code written in Wolfram
Language, including user specified constraints for all model parameters at different scales.
An important example of these constraints are the conditions imposed by the electro-weak
symmetry breaking (EWSB) at one-loop order. FlexibleSUSY calculates these automatically
and leaves the choice which parameters to adapt in order to fulfill these conditions to the user.
By default, two to three scales will be created automatically at the meta code level: a low

scale for constraints involving light particles, e.g. from the Standard Model, an intermediate
scale for constraints containing heavy particles where the EWSB conditions are solved at, and
optionally a very high scale to impose GUT constraints. While the low scale is fixed to be
at the Z boson pole mass, the other scales can be specified by the user. For the intermediate
scale, it is highly recommended to choose it at some mean between the heavy masses, to
make large logarithms from loop contributions in the constraints become small. Additionally,
FlexibleSUSY calculates the SM gauge couplings automatically, including thresholds at the
low scale, and is also able to do so with the Yukawa couplings. Anyway, the solver algorithms
for the constraints are able to handle an arbitrary number of scales registered for each model,
so the user has freedom to add as many constraint objects as he/she prefers, however, this
insertion is not automated yet and has to be performed at the C++ level. In the same manner,
one may also create matching classes for different FlexibleSUSY models in order to glue these
together as a tower of effective field theories. This work is indeed partially motivated as an
exercise for the automatization of this process.
The freedom of choice of the constraints, and hence the control over the degrees of freedom of

each theory is one of the greatest assets of FlexibleSUSY, together with its performance speed,
precision and modularity which allows easy modification of the code. These and additional
options, essential for the structure and functionality of the spectrum generator are specified
in a Mathematica meta code file for each model, which controls the creation of C++ code.
Input of softer options, not altering the structure of the code, like external input values for

observables referenced in the constraints, is possible by command line or in the SUSY Les
Houches Accord file format (SLHA [21, 22]). The same is also true for the output of the
calculation.
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FlexibleSUSY C++

Vertices
1-loop Self-energies

1-loop Tadpoles

Beta functions
Anomalous Dimensions

SARAH
(Mathematica)

Creating C++ Code

FlexibleSUSY 
Meta Code

(Mathematica)

Beta_function
(running, virtual)

Model class

External Parameters,
soft Options

(SLHA)

Constraint classes,
Initial Guesser,

Matching Classes

Convergence Tester,
Error Handling,

...

RGFlow<Algorithm>
Solver class

Mass spectrum,
additional Output

(SLHA)

spectrum_generator
settings

spectrum_generator
interface

input_parameters
(SLHA)

Constraints,
hard Options

(Mathematica)

Lagrangian
(SARAH Model File)

Figure 1: Schematic functionality of FlexibleSUSY.

In spite of the name, FlexibleSUSY is capable of dealing with all kinds of theories, super-
symmetric or not, which include the gauge group and field content of the Standard Model.
However, the model parameters are bound to be defined in the MS or DR scheme. The gener-
ated source code can be compiled and run, predefined models exist in order to work without
a Mathematica license.
FlexibleSUSY will try to resolve all constraints to find numerical values for each model param-
eter, using beta functions for running between the scales. These are calculated automatically
for arbitrary models at two-loop order, while self-energies and tadpoles are available at one-
loop order, unless the user adds additional contributions to one of these quantities. After this
is finished, the pole mass spectrum is calculated.
Although higher order corrections are available for models of common interest, diagrammatic
exact and complete expressions for pole masses of a general theory are hence only available up
to one-loop order. For the lightest, CP-even Higgs boson, considered the SM Higgs, the pole
mass calculation will be enhanced by the algorithms considered in this thesis.

11



3 Theoretical considerations

3.1 Problem and task of the thesis

As mentioned before, FlexibleSUSY only uses one-loop self-energies to calculate pole masses in
arbitrary theories. However, since these are defined in the MS or DR renormalization schemes,
self-energies contain terms ∼ ln 𝜇

𝑚𝑖
, where 𝑚𝑖 denote running masses of the particles involved

in loop corrections and 𝜇 is the renormalization scale. In the following, it will be ideally as-
sumed that two coarse mass scales exist: a low Standard Model scale 𝑚 and a higher scale
𝑀 which is due to extensions of the SM with heavy particles. No matter how the renormal-
ization scale is then chosen between these scales, loop corrections will always include terms
logarithmically enhanced by ∼ ln𝑛

(︀
𝑚
𝑀

)︀
. This weakens the convergence of the perturbation

series for each loop correction, especially if the scale difference is large. However, including
additional contributions from higher loop orders in each calculation for compensation is dif-
ficult due to the increasing complexity of the diagrammatic expressions. Hence, an Effective
Field Theory algorithm will be deployed to include logarithmic enhanced terms from all loop
orders. It is task of the thesis to apply this to the pole mass calculation of the lightest CP-even
Higgs boson, and enhance the self-energy additionally to the full one-loop expression provided.

This is done by matching the arbitrary model at a heavy mass scale to an Effective Field
Theory, which is fixed to be the Standard Model, and running all SM parameters from the
high scale 𝑀 to the low scale 𝑚. The loop order 𝑙 of the beta function used for this de-
termines the contributions included in the calculation, since in each loop order 𝑛, all terms
∼ ln𝑛

(︀
𝑚
𝑀

)︀
, ..., ln𝑛−𝑙+1

(︀
𝑚
𝑀

)︀
are fully considered. At the low scale, the physical Higgs mass

is calculated in the EFT, containing logarithmic contributions resummed to all loop orders.
Tree-level and one-loop order of the self-energy expression can be substituted by the full di-
agrammatic terms provided by FlexibleSUSY via SARAH, which will be discussed in the
following sections.

This algorithm is applicable to arbitrary high scale models extending the SM, but only effective
when heavy masses are approximately degenerate and the scale difference is large (especially
relative to the heavy mass differences). All light fields are content of the SM, so that this is the
right Effective Field Theory. Otherwise, large logarithmic terms are not resummed properly,
which may destroy the precision of the algorithm.

3.2 EFT-based resummation

The Higgs pole mass at the low-energy scale 𝜇 = 𝑚 (e.g. 𝑀𝑍) in the Standard Model as an
Effective Field Theory can be calculated via:

𝑀2
𝑃𝑜𝑙𝑒 =

(︀
𝑀𝑆𝑀

𝑡𝑟𝑒𝑒

)︀2 − Σ𝑆𝑀(𝑝 =𝑀𝑃𝑜𝑙𝑒) (3.2.1)

This expression can be expanded in loop orders as a power series in the coupling constants
𝛼𝐸𝐹𝑇
𝑖 . Since the low energy scale is considered the mass scale of all Standard Model particles,

it does not contain large logarithms.

𝑀2
𝑃𝑜𝑙𝑒 = 𝛼𝐸𝐹𝑇

𝑖 (𝑚)𝑀𝑆𝑀
𝑖 + 𝛼𝐸𝐹𝑇

𝑖 (𝑚) 𝛼𝐸𝐹𝑇
𝑗 (𝑚) Σ𝑆𝑀,1𝐿

𝑖𝑗

+ 𝛼𝐸𝐹𝑇
𝑖 (𝑚) 𝛼𝐸𝐹𝑇

𝑗 (𝑚) 𝛼𝐸𝐹𝑇
𝑘 (𝑚) Σ𝑆𝑀,2𝐿

𝑖𝑗𝑘 + ... (3.2.2)
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Where the 𝑀𝑖 are expansion parameters for the tree-level Higgs mass, and Σ for the self-
energies. The latter one might be interpreted, with respect of the SM self-energy expression
at arbitrary scale, as the term not proportional to logarithmic contributions, since these are
small compared to logarithms containing low-energy and heavy scale. The running of the scale-
dependend coupling constants depends on the beta-functions, which might as well be expanded
in powers of coupling constants, yielding Renormalization Group Equations (RGEs).

𝛽𝑖 =
𝜕𝛼𝑖

𝜕ln(𝜇)
= 𝛼𝑗 𝛼𝑘 𝛽

1𝐿
𝑖𝑗𝑘 + 𝛼𝑗 𝛼𝑘 𝛼𝑙 𝛽

2𝐿
𝑖𝑗𝑘𝑙 + ... (3.2.3)

𝛼𝑖(𝑚) = exp

(︃
ln
(︁𝑚
𝑀

)︁∑︁
𝑗

𝛽𝑗
𝜕

𝜕𝛼𝑗(𝑀)

)︃
𝛼𝑖(𝑀) (3.2.4)

= 𝛼𝑖(𝑀) + 𝛼𝑗(𝑀) 𝛼𝑘(𝑀) 𝛽1𝐿
𝑖𝑗𝑘 ln

(︁𝑚
𝑀

)︁
+ 𝛼𝑗(𝑀)𝛼𝑘(𝑀)𝛼𝑙(𝑀)

(︁
𝛽2𝐿
𝑖𝑗𝑘𝑙 ln

(︁𝑚
𝑀

)︁
+ 𝛽1𝐿

𝑖𝑗𝑛 𝛽
1𝐿
𝑛𝑘𝑙 ln

2
(︁𝑚
𝑀

)︁)︁
+ ... (3.2.5)

Where 𝑀 is assumed to be a heavy scale that roughly fits all heavy masses. Hence the pole
mass can be expressed by the EFT coupling at this scale.

𝑀2
𝑃𝑜𝑙𝑒 = 𝛼𝐸𝐹𝑇

𝑖 (𝑀)𝑀𝑆𝑀
𝑖 + 𝛼𝐸𝐹𝑇

𝑖 (𝑀)𝛼𝐸𝐹𝑇
𝑗 (𝑀)

[︁
Σ𝑆𝑀,1𝐿

𝑖𝑗 + 𝛽𝑆𝑀,1𝐿
𝑘𝑖𝑗 𝑀𝑆𝑀

𝑘 ln
(︁𝑚
𝑀

)︁]︁
+ 𝛼𝐸𝐹𝑇

𝑖 (𝑀)𝛼𝐸𝐹𝑇
𝑗 (𝑀)𝛼𝐸𝐹𝑇

𝑘 (𝑀)
[︁
Σ𝑆𝑀,2𝐿

𝑖𝑗𝑘 +(︁
2Σ𝑆𝑀,1𝐿

𝑖𝑙 𝛽𝑆𝑀,1𝐿
𝑙𝑗𝑘 +𝑀𝑆𝑀

𝑙 𝛽𝑆𝑀,2𝐿
𝑙𝑖𝑗𝑘

)︁
ln
(︁𝑚
𝑀

)︁
+𝑀𝑆𝑀

𝑙 𝛽𝑆𝑀,1𝐿
𝑙𝑖𝑛 𝛽𝑆𝑀,1𝐿

𝑛𝑗𝑘 ln2
(︁𝑚
𝑀

)︁ ]︁
+ ... (3.2.6)

Finally, all the couplings in the Standard Model are defined by matching an extended theory
to it at the heavy mass scale 𝑀 .

𝛼𝐸𝐹𝑇
𝑖 (𝑀) = 𝛼𝐹𝑢𝑙𝑙

𝑖 (𝑀) + 𝑎𝑖𝑗𝑘 𝛼
𝐹𝑢𝑙𝑙
𝑗 (𝑀)𝛼𝐹𝑢𝑙𝑙

𝑘 (𝑀) + 𝑏𝑖𝑗𝑘𝑙 𝛼
𝐹𝑢𝑙𝑙
𝑗 (𝑀)𝛼𝐹𝑢𝑙𝑙

𝑘 (𝑀)𝛼𝐹𝑢𝑙𝑙
𝑙 (𝑀) + ...

(3.2.7)

While parameter redefinitions by tree-level matching might be absorbed into other variables,
the loop corrections proportional to 𝑎𝑖𝑗𝑘, 𝑏𝑖𝑗𝑘𝑙 arise from integrating out heavy fields at one-
and two-loop order, i.e. sparticles in supersymmetric theories. These conditions might now be
plugged into the pole mass formula.

𝑀2
𝑃𝑜𝑙𝑒 = 𝛼𝐹𝑢𝑙𝑙

𝑖 (𝑀)𝑀𝑆𝑀
𝑖

+ 𝛼𝐹𝑢𝑙𝑙
𝑖 (𝑀)𝛼𝐹𝑢𝑙𝑙

𝑗 (𝑀)
[︁
Σ𝑆𝑀,1𝐿

𝑖𝑗 + 𝛽𝑆𝑀,1𝐿
𝑘𝑖𝑗 𝑀𝑆𝑀

𝑘 ln
(︁𝑚
𝑀

)︁
+𝑀𝑆𝑀

𝑘 𝑎𝑘𝑖𝑗

]︁
+ 𝛼𝐹𝑢𝑙𝑙

𝑖 (𝑀)𝛼𝐹𝑢𝑙𝑙
𝑗 (𝑀)𝛼𝐹𝑢𝑙𝑙

𝑘 (𝑀)
[︁
𝑀𝑆𝑀

𝑙 𝑏𝑙𝑖𝑗𝑘 + 2Σ𝑆𝑀,1𝐿
𝑖𝑙 𝑎𝑙𝑗𝑘 + Σ𝑆𝑀,2𝐿

𝑖𝑗𝑘

+
(︁
2Σ𝑆𝑀,1𝐿

𝑖𝑙 𝛽𝑆𝑀,1𝐿
𝑙𝑗𝑘 +𝑀𝑆𝑀

𝑙 𝛽𝑆𝑀,2𝐿
𝑙𝑖𝑗𝑘 + 2𝑀𝑆𝑀

𝑘 𝛽𝑆𝑀,1𝐿
𝑘𝑛𝑖 𝑎𝑛𝑗𝑘

)︁
ln
(︁𝑚
𝑀

)︁
+𝑀𝑆𝑀

𝑙 𝛽𝑆𝑀,1𝐿
𝑙𝑖𝑛 𝛽𝑆𝑀,1𝐿

𝑛𝑗𝑘 ln2
(︁𝑚
𝑀

)︁ ]︁
+ ... (3.2.8)

This result resembles the pole mass formula in the full theory at the scale 𝑀 : The terms
proportional to Σ𝑆𝑀 are, as argued above, roughly the non-logarithmic terms from the SM
self-energy, while the terms proportional to 𝛽𝑆𝑀 are accurate contributions from SM particles
proportional to large logarithms, if the loop orders of the beta functions used for running are at
least as large as the order of the self-energy. All terms proportional to 𝑎, 𝑏 are non-logarithmic
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contributions from heavy particle loops. Applying the same argument as above, there are no
(large) logarithmic contributions from heavy particles, since their masses resemble the scale
𝑀 . Mixed terms at two-loop level or higher result from combining heavy and soft loops in
the self-energy. With large differences between the scales 𝑚 and 𝑀 , the logarithmic terms are
the major contributions, and high order-observables of the full theory can be approximated
conveniently with knowledge of the beta functions in the Effective Field Theory. To obtain
further accuracy, one may wish to integrate e.g. the known one-loop self-energy into this
result, and therefore needs to filter out tree-level and one-loop terms, which is non-trivial in
a pure numerical calculation. This can be achieved by subtracting the pole mass corrections
according to the same formula, but with cuts at one-loop level introduced for running and
matching, defining the functions ℳ2

1, ℳ2
2 and ℳ2

3 as follows:

ℳ2
1 will undergo running and matching only at tree level, but the one-loop pole mass formula

is used.

ℳ2
1 : 𝛼𝐸𝐹𝑇

𝑖 (𝑚)𝑀𝑆𝑀
𝑖 + 𝛼𝐸𝐹𝑇

𝑖 (𝑚) 𝛼𝐸𝐹𝑇
𝑗 (𝑚) Σ𝑆𝑀,1𝐿

𝑖𝑗

⇒ 𝛼𝐸𝐹𝑇
𝑖 (𝑀)𝑀𝑆𝑀

𝑖 + 𝛼𝐸𝐹𝑇
𝑖 (𝑀) 𝛼𝐸𝐹𝑇

𝑗 (𝑀) Σ𝑆𝑀,1𝐿
𝑖𝑗

⇒ 𝛼𝐹𝑢𝑙𝑙
𝑖 (𝑀)𝑀𝑆𝑀

𝑖 + 𝛼𝐹𝑢𝑙𝑙
𝑖 (𝑀) 𝛼𝐹𝑢𝑙𝑙

𝑗 (𝑀) Σ𝑆𝑀,1𝐿
𝑖𝑗 (3.2.9)

ℳ2
2 runs with one-loop part only, which is easily implemented when the beta function is

known. Matching and pole mass only contribute at tree level:

ℳ2
2 : 𝛼𝐸𝐹𝑇

𝑖 (𝑚)𝑀𝑆𝑀
𝑖 ⇒ 𝛼𝐸𝐹𝑇

𝑖 (𝑀)𝛼𝐸𝐹𝑇
𝑗 (𝑀)𝑀𝑆𝑀

𝑘 𝛽𝑆𝑀,1𝐿
𝑘𝑖𝑗 ln

(︁𝑚
𝑀

)︁
⇒ 𝛼𝐹𝑢𝑙𝑙

𝑖 (𝑀)𝛼𝐹𝑢𝑙𝑙
𝑗 (𝑀)𝑀𝑆𝑀

𝑘 𝛽𝑆𝑀,1𝐿
𝑘𝑖𝑗 ln

(︁𝑚
𝑀

)︁
(3.2.10)

Finally there is ℳ2
3, where only one-loop matching is taken into account and the other con-

tributions are kept at tree level only.

ℳ2
3 : 𝛼𝐸𝐹𝑇

𝑖 (𝑚)𝑀𝑆𝑀
𝑖 ⇒ 𝛼𝐸𝐹𝑇

𝑖 (𝑀)𝑀𝑆𝑀
𝑖 ⇒ 𝛼𝐹𝑢𝑙𝑙

𝑖 (𝑀)𝛼𝐹𝑢𝑙𝑙
𝑗 (𝑀)𝑀𝑆𝑀

𝑘 𝑎𝑘𝑖𝑗 (3.2.11)

The sum of these contributions is exactly tree level and one-loop order of the result obtained
above.

𝑀2
𝑃𝑜𝑙𝑒

⃒⃒⃒
𝑇𝐿+1𝐿

= ℳ2
1 +ℳ2

2 +ℳ2
3 (3.2.12)

3.3 Pole mass matching

In the EFT framework, matching of theory parameters is properly defined by identifying
Greens functions in both theories. However, additional ambiguities exist since the matching
scale might not be definite in general theories, and there is a momentum dependence of these
parameters. In the FlexibleSUSY framework, gauge couplings are matched at 𝑝 = 0, but all
other parameters are fixed by identifying pole masses of both theories as matching condition,
with a strict cut at each loop order.

𝑀𝑝𝑜𝑙𝑒
1 =𝑀𝑝𝑜𝑙𝑒

2

𝑀 𝑡𝑟𝑒𝑒
1 =𝑀 𝑡𝑟𝑒𝑒

2(︀
𝑀 𝑡𝑟𝑒𝑒

1

)︀2 − Σ1𝐿
1

(︀
𝑀 𝑡𝑟𝑒𝑒

1

)︀
=
(︀
𝑀1𝐿𝑚

2

)︀2 − Σ1𝐿
2

(︀
𝑀 𝑡𝑟𝑒𝑒

1

)︀
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Where the index 1𝐿𝑚 denotes one-loop matching. The matching condition for the tree-level
masses can be determined by the self-energy difference at the momentum of the pole mass,
without the necessity to subtract some field-renormalization matching:

𝛿Σ(𝑝) = −𝛿𝑚2 +
(︀
𝑝2 −𝑚2

)︀
𝛿𝑍 (3.3.1)

When plugging in 𝑝2 =𝑀2
𝑃𝑜𝑙𝑒|𝑇𝐿 = 𝑚2 one obtains:

𝛿Σ(𝑝) = −𝛿𝑚2 (3.3.2)

The parameters matched with this method are tree-level masses, and arbitrary theory pa-
rameters can be retrieved by using tree-level relation to these masses in the matched theory.
Thus, when neglecting two-loop matching corrections, both self-energies contain only tree-level
matched parameters, so the matching can be done loop order by loop order, without an iter-
ation.
Additionally, it has been observed that by using this matching condition, the Higgs pole mass
will contain the same expression at tree-level and one-loop order in the full and effective theory.
Thus, the substitution of the terms ℳ2

1...3, as defined in the previous section, with the tree-
level and one-loop expression from the full theory is redundant, which will be proven below.
Since each (physical) pole mass cannot be affected by (unphysical) running of the tree-level
mass parameter, which is merely a change in the renormalization scale, the corresponding
gamma function at one-loop level must contain the scale dependent part of the one-loop self-
energy:

𝜕

𝜕𝜇

(︀
−ReΣ1𝐿

𝑖 (𝑀𝑖, 𝜇) + 𝛾1𝐿𝑀𝑖
ln𝜇
)︀
= 0 (3.3.3)

At one-loop order, this Gamma function can be derived with ease from the tree-level mass and
the one-loop beta function of the model parameters, as done in our example for the SM Higgs
boson: (︁

𝑀𝑆𝑀, 𝑇𝐿
𝐻

)︁2
= −𝜇2 +

3

2
𝜆𝑣2 ⇒ 𝛾𝑀2

𝐻
= −𝛽𝜇2 +

3

2
𝛽𝜆𝑣

2 + 3𝜆𝑣𝛽𝑣 (3.3.4)

Thus, the one-loop term from of the tree level compensates the explicit renormalization scale
dependence in the one-loop self-energy. This does indeed resemble the contribution from
equation 3.2.10, and one obtains:

ℳ2
2 := 𝛾1𝐿𝑀2

𝐻
ln
(︁𝑚
𝑀

)︁
(3.3.5)

Using the relation to the self-energy (3.3.3), one obtains:

−ReΣ𝑆𝑀, 1𝐿
𝐻

(︁
𝑀𝑆𝑀, 𝑇𝐿

𝐻 ,𝑚
)︁
+ℳ2

2 = −ReΣ𝑆𝑀, 1𝐿
𝐻

(︁
𝑀𝑆𝑀, 𝑇𝐿

𝐻 ,𝑀
)︁

(3.3.6)

By demanding pole mass matching at tree level and one-loop order for the Higgs mass, ℳ3

from equation (3.2.11) reads:

ℳ2
3 = −Re

[︁
Σ𝐹𝑢𝑙𝑙, 1𝐿

𝐻

(︁
𝑀𝐹𝑢𝑙𝑙, 𝑇𝐿

𝐻 (𝑀),𝑀
)︁
− Σ𝐸𝐹𝑇, 1𝐿

𝐻

(︁
𝑀𝐹𝑢𝑙𝑙, 𝑇𝐿

𝐻 ,𝑀
)︁]︁

(3.3.7)

Finally, ℳ1 from (3.2.9) was matched and run by tree-level relation, where the later is equiv-
alent to only change the explicit scale dependence in the self energy, but not in any model
parameter:

ℳ2
1 =

(︀
𝑀2

𝐻(𝑀)
)︀𝐹𝑢𝑙𝑙, 𝑇𝐿 − Re

[︁
Σ1𝐿, 𝐸𝐹𝑇

𝐻

(︁
𝑀𝐹𝑢𝑙𝑙, 𝑇𝐿

𝐻 (𝑀),𝑚
)︁]︁

(3.3.8)
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Plugging the definition of ℳ1...3 in numerical order into our resummation and substitution
formula yields the promised relation:(︀

𝑀2
𝐻

)︀𝐹𝑢𝑙𝑙+𝐸𝐹𝑇
= Re

[︁ (︀
𝑀2

𝐻

)︀𝐸𝐹𝑇, 𝑝𝑜𝑙𝑒 −ℳ2
1 −ℳ2

2 −ℳ2
3 +

(︀
𝑀2

𝐻

)︀𝐹𝑢𝑙𝑙, 𝑇𝐿+1𝐿
]︁

= Re
[︁ (︀
𝑀2

𝐻

)︀𝐸𝐹𝑇, 𝑝𝑜𝑙𝑒 −
(︀
𝑀2

𝐻(𝑀)
)︀𝐹𝑢𝑙𝑙, 𝑇𝐿

+ Σ1𝐿, 𝐸𝐹𝑇
𝐻

(︁
𝑀𝐹𝑢𝑙𝑙, 𝑇𝐿

𝐻 (𝑀),𝑚
)︁

−ℳ2
2 −ℳ2

3 +
(︀
𝑀2

𝐻

)︀𝐹𝑢𝑙𝑙, 𝑇𝐿+1𝐿
]︁

= Re
[︁ (︀
𝑀2

𝐻

)︀𝐸𝐹𝑇, 𝑝𝑜𝑙𝑒 −
(︀
𝑀2

𝐻(𝑀)
)︀𝐹𝑢𝑙𝑙, 𝑇𝐿

+ Σ1𝐿, 𝐸𝐹𝑇
𝐻

(︁
𝑀𝐹𝑢𝑙𝑙, 𝑇𝐿

𝐻 (𝑀),𝑀
)︁

−ℳ2
3 +

(︀
𝑀2

𝐻

)︀𝐹𝑢𝑙𝑙, 𝑇𝐿+1𝐿
]︁

= Re
[︁ (︀
𝑀2

𝐻

)︀𝐸𝐹𝑇, 𝑝𝑜𝑙𝑒
+ Σ1𝐿, 𝐸𝐹𝑇

𝐻

(︁
𝑀𝐹𝑢𝑙𝑙, 𝑇𝐿

𝐻 (𝑀),𝑀
)︁

−ℳ2
3 − Σ𝐹𝑢𝑙𝑙, 1𝐿

𝐻

(︁
𝑀𝐹𝑢𝑙𝑙, 𝑇𝐿

𝐻 (𝑀),𝑀
)︁ ]︁

=
(︀
𝑀2

𝐻

)︀𝐸𝐹𝑇, 𝑝𝑜𝑙𝑒
(3.3.9)

Hence, this approach has the advantage not to differ from the full theory up to one-loop or-
der, which may be the case for other matching algorithms. In the following, an algorithm is
developed which uses pole mass matching by default, and still substitutes the terms

∑︀
𝑖 ℳ2

𝑖

with the one-loop pole mass from the full theory, which could have been omitted, but was
nevertheless included to enable the user to modify the matching conditions at will.

In a more general aspect, this proof can be extended to arbitrary pole mass loop orders
𝑁 in the effective theory, including exact 𝑛-loop terms from the full theory and looks like the
following, presuming 𝑛 ≤ 𝑁 :(︁

𝑀𝑛,𝑁
𝐹𝑢𝑙𝑙+𝐸𝐹𝑇

)︁2
=
(︁
𝑀𝑁 loop

𝐸𝐹𝑇

)︁2
+
(︁
𝑀𝑛 loop

𝐹𝑢𝑙𝑙

)︁2
−
(︁
𝑀𝑁 loop

𝐸𝐹𝑇

)︁2 ⃒⃒⃒
𝑛 loop

(3.3.10)

Regarding all terms as pole masses, which are scale independent. Choosing the scale to be of
order of the heavy fields included in the full - but not the effective - field theory, and assuming
the matching of pole masses at the same loop level for the full theory at this scale:(︁

𝑀𝑝𝑜𝑙𝑒
𝐸𝐹𝑇

)︁2 ⃒⃒⃒
𝑛 loop

!
=
(︁
𝑀𝑝𝑜𝑙𝑒

𝐹𝑢𝑙𝑙

)︁2 ⃒⃒⃒
𝑛 loop

=
(︁
𝑀𝑛 loop

𝐹𝑢𝑙𝑙

)︁2
(3.3.11)

⇒
(︁
𝑀𝑁 loop

𝐸𝐹𝑇

)︁2 ⃒⃒⃒
𝑛 loop

=
(︁
𝑀𝑝𝑜𝑙𝑒

𝐸𝐹𝑇

)︁2 ⃒⃒⃒
𝑛 loop

=
(︁
𝑀𝑛 loop

𝐹𝑢𝑙𝑙

)︁2
(3.3.12)

Which gives: (︁
𝑀𝑛,𝑁

𝐹𝑢𝑙𝑙+𝐸𝐹𝑇

)︁2
=
(︁
𝑀𝑁 loop

𝐸𝐹𝑇

)︁2
(3.3.13)

If running is now applied to all scale dependent parameters by solving the renormalization
group equations at 𝑖-loop level, assuming 𝑖 ≥ 𝑁 ≥ 𝑛, and this pole mass is recalculated at the
scale matching the masses of the EFT fields, loop corrections will have a minimal contribution
to the physical mass. Not only are all full theory diagrams up to 𝑛-loop order then still
included due to the invariance of the fixed order part of the pole mass to scale redefinition,
but also large logarithms at 𝑁 (𝑖−1)𝐿𝐿 order are resummed.
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4 Algorithm matching all SM parameters

In this chapter, the implementation of an algorithm in FlexibleSUSY is discussed, which
enhances the one-loop Higgs self-energy by terms including large logarithms, resummed into all
loop orders. The summarized procedure in this feature is matching an arbitrary FlexibleSUSY
model at the scale of the heavy masses to the Standard Model by matching all SM gauge
couplings and SM particle pole masses. These SM parameters are run to the low energy
scale, internally fixed at 𝑀𝑝𝑜𝑙𝑒

𝑍 . The Higgs mass is calculated in the SM while replacing terms
corresponding to tree level and one-loop order in the full theory at the matching scale with
terms obtained from the exact diagrammatic calculation previously done by FlexibleSUSY. To
do so, more than one SM model class is defined in this algorithm to serve as helper functions
in filtering out the mentioned terms. Therefore the matching is done both at tree level and
one-loop level, discussed in the next two sections, and defines all SM parameters by the full
theory at the matching scale. The rest of the algorithm will be discussed in a third section.
Additionally, some comparisons and consistency tests are included. Note that the algorithm
is designed to work flawlessly with any kind of model properly implemented in FlexibleSUSY,
but has to be manually adapted, if the SM class is modified.

4.1 Tree-level matching procedure

Since there are no momentum dependencies or MS-DR-conversion terms at tree level, the
matching procedure is trivially done identifying tree-level parameters shared by both models.
In the following notation, the index 𝑇𝐿 will be used to emphasize that a parameter is used at
tree-level order in the corresponding theory.

1. Identifying scale parameters

𝜇𝑆𝑀 := 𝜇𝑓𝑢𝑙𝑙 (4.1.1)

2. Identifying gauge couplings from 𝑈(1)×𝑆𝑈(2)×𝑆𝑈(3) group, taking possibly differing
GUT-normalizations in both models into account:

𝑔𝑆𝑀, 𝑇𝐿
𝑖 := 𝑁𝑖 𝑔

𝑓𝑢𝑙𝑙, 𝑇𝐿
𝑖 (4.1.2)

3. Matching VEV by using the tree-level relation:

𝑣𝑆𝑀, 𝑇𝐿 := 2𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿
𝑊 /𝑔𝑆𝑀, 𝑇𝐿

2 (4.1.3)

4. Defining Yukawa couplings from tree-level relation with VEV (using correct sign conven-
tion):

𝑦𝑆𝑀, 𝑇𝐿
𝑓 := ±

√
2𝑚𝑓𝑢𝑙𝑙, 𝑇𝐿

𝑓 /𝑣𝑆𝑀, 𝑇𝐿 (4.1.4)

5. Defining quartic Higgs coupling by the tree-level relation:

𝜆𝑆𝑀, 𝑇𝐿 :=
(︁
𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿

𝐻 /𝑣𝑆𝑀, 𝑇𝐿
)︁2

(4.1.5)

6. Defining bilinear Higgs coupling at tree level using the definition of Higgs mass in the
SM at tree level: (︀

𝜇2
)︀𝑆𝑀, 𝑇𝐿

:=
3

2
𝜆𝑆𝑀, 𝑇𝐿

(︀
𝑣𝑆𝑀, 𝑇𝐿

)︀2 − (︀𝑀2
𝐻

)︀𝑓𝑢𝑙𝑙, 𝑇𝐿
(4.1.6)
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7. Calculate all MS parameter masses in the SM-object via calculate DRbar masses()

Any physical meaning assigned to the the parameters in the SM-class is inherited from the
parameters in the model class. An important example is the VEV, which is, as any other
VEV in FlexibleSUSY, defined by minimization of the effective potential at loop level, here
at one-loop order. Contrary to this fact, the VEV is treated like a tree-level parameter by
FlexibleSUSY, while 𝜇2 is expressed in terms of it and 𝜆 at tree level. Further discussion
concerning tadpole contributions at one-loop order are attached in the next section.

4.2 One-loop matching procedure

The idea behind this routine is to match the gauge couplings in a fashion similar to the method
used in FlexibleSUSY’s threshold corrections [18, 23], from the renormalization scheme used
in the full theory to the MS-scheme used in the EFT model at momentum 𝑝 = 0. The other
parameters are gained from tree-level relations between these gauge couplings and MS-masses
regarded as tree level as well in the EFT, but obtained from integrating out heavy fields at
one-loop order in the full theory. The matching condition is:

𝑀𝑆𝑀
𝑃𝑜𝑙𝑒 =𝑀 𝑓𝑢𝑙𝑙

𝑃𝑜𝑙𝑒 (4.2.1)

Evaluated strictly at one-loop order in the full theory, which is identical to the matching at
𝑝 = 𝑀𝑇𝐿

𝑓𝑢𝑙𝑙. Another subtlety is that the self-energies generated by SARAH do not contain
tadpole contributions, which is no problem since the VEV is defined to minimize the effective
potential at loop level, thus absorbing the tadpoles.
Anyway, when VEV and tree-level Higgs mass are known, 𝜆 and 𝜇2 can be fixed by the Higgs
mass definition and the one-loop effective potential minimization constraint, but 𝜇2 in this
case is then defined by a one-loop relation containing the VEV, 𝜆 and tadpoles. The tree-level
matching routine cuts the one-loop term, which will be restored in this procedure.
In spite of containing loop corrections by definition, the VEV is regarded as a tree-level param-
eter by FlexibleSUSY, while 𝜇2 is adapted to the EWSB-condition at the desired loop level.
Hence, what is denoted as tree or loop level in FlexibleSUSY, is rather a notion of powers in
a polynomial of model parameters, which is identical to a diagrammatic loop order for the
gauge- and Yukawa couplings as well as 𝜆, but not for the VEV and 𝜇2. Nevertheless, we will
cling to this notation in the following. Some parameters will now be tagged with 𝑇𝐿(1) in
reference to be a product of one-loop matching. The algorithm looks like this:

1. Invoke one-loop matching routine to obtain tree-level parameters

2. Calculate 𝑒𝑓𝑢𝑙𝑙 from model definition

3. Calculate one-loop corrections 𝛿𝑒2, 𝛿𝑔23:

(︀
𝛿𝑔23
)︀1𝐿

= −(𝑔43)
𝑓𝑢𝑙𝑙

8𝜋2

∑︁
𝑖

(︂
𝐹𝑖 𝑇𝑖 ln

𝑚𝑖

𝜇

)︂ [︂
+

(𝑔43)
𝑓𝑢𝑙𝑙

16𝜋2

]︂
(4.2.2)

(︀
𝛿𝑒2
)︀1𝐿

= −(𝑒4)
𝑓𝑢𝑙𝑙

8𝜋2

∑︁
𝑖

(︂
𝐹𝑖 𝑇𝑖 ln

𝑚𝑖

𝜇

)︂ [︃
+

(𝑒4)
𝑓𝑢𝑙𝑙

24𝜋2

]︃
(4.2.3)

Where 𝑖 runs over all heavy particles, with Dynkin-indices 𝑇𝑖 for the respective gauge

group and the variables 𝐹𝑖 which is
1

3
for each real scalar degree of freedom [18]. The

last term is only added if the full theory is defined in the DR scheme; 𝜇 denotes the
matching scale.
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4. Obtain one-loop matched SM particle masses:(︀
𝑀2

𝑖

)︀𝑆𝑀, 𝑇𝐿(1)
:=
(︀
𝑀2

𝑖

)︀𝑓𝑢𝑙𝑙, 𝑇𝐿−

Re
[︁
Σ𝑓𝑢𝑙𝑙, 1𝐿

𝑖

(︁
𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿

𝑖

)︁
− Σ𝑆𝑀, 1𝐿

𝑖

(︁
𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿

𝑖

)︁]︁
(4.2.4)

where tree-level matched parameters are used in the SM self-energy.

5. Calculate gauge couplings at one-loop order:

𝑔
𝑆𝑀, 𝑇𝐿(1)
1 = 𝑒𝑓𝑢𝑙𝑙

𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿
𝑍

𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿
𝑊

⎯⎸⎸⎷1 +
(𝛿𝑒2)1𝐿

(𝑒2)𝑓𝑢𝑙𝑙
+

(𝑀2
𝑍)

𝑆𝑀, 𝑇𝐿(1)

(𝑀2
𝑍)

𝑓𝑢𝑙𝑙, 𝑇𝐿
− (𝑀2

𝑊 )
𝑆𝑀, 𝑇𝐿(1)

(𝑀2
𝑊 )

𝑓𝑢𝑙𝑙, 𝑇𝐿
(4.2.5)

𝑔
𝑆𝑀, 𝑇𝐿(1)
2 =

𝑒𝑓𝑢𝑙𝑙√︂
1−

(︁
𝑀𝑓𝑢𝑙𝑙, 𝑇𝐿

𝑊

𝑀𝑓𝑢𝑙𝑙, 𝑇𝐿
𝑍

)︁2
⎯⎸⎸⎸⎸⎸⎷1 +

(𝛿𝑒2)1𝐿

(𝑒2)𝑓𝑢𝑙𝑙
+

(𝑀2
𝑍)

𝑆𝑀, 𝑇𝐿(1)

(𝑀2
𝑍)

𝑓𝑢𝑙𝑙, 𝑇𝐿 − (𝑀2
𝑊 )

𝑆𝑀, 𝑇𝐿(1)

(𝑀2
𝑊 )

𝑓𝑢𝑙𝑙, 𝑇𝐿√︂
1−

(︁
𝑀𝑓𝑢𝑙𝑙, 𝑇𝐿

𝑊

𝑀𝑓𝑢𝑙𝑙, 𝑇𝐿
𝑍

)︁2 (4.2.6)

𝑔
𝑆𝑀, 𝑇𝐿(1)
3 =

√︁
(𝑔23)

𝑓𝑢𝑙𝑙
+ (𝛿𝑔23)

1𝐿
(4.2.7)

6. Matching VEV by using tree-level relation:

𝑣𝑆𝑀, 𝑇𝐿 :=
2𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿

𝑊

𝑔𝑓𝑢𝑙𝑙2

(4.2.8)

𝑣𝑆𝑀, 𝑇𝐿(1) := 𝑣𝑆𝑀, 𝑇𝐿

⎯⎸⎸⎷1 +
(𝑀2

𝑊 )
𝑆𝑀, 𝑇𝐿(1)

(𝑀2
𝑊 )

𝑓𝑢𝑙𝑙, 𝑇𝐿
− (𝑔22)

𝑆𝑀, 𝑇𝐿(1)

(𝑔22)
𝑓𝑢𝑙𝑙

(4.2.9)

7. Defining Yukawa couplings from tree-level relation with VEV (using right sign conven-
tion):

𝑦
𝑆𝑀, 𝑇𝐿(1)
𝑓 := ±

√
2
𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿

𝑓

𝑣𝑆𝑀, 𝑇𝐿

⎯⎸⎸⎷1 +

(︃
𝑀

𝑆𝑀, 𝑇𝐿(1)
𝑓

𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿
𝑓

)︃2

−
(︂
𝑣𝑆𝑀, 𝑇𝐿(1)

𝑣𝑆𝑀, 𝑇𝐿

)︂2

(4.2.10)

8. Defining quartic Higgs coupling by tree-level relation:

𝜆𝑆𝑀, 𝑇𝐿 :=

(︃
𝑀 𝑓𝑢𝑙𝑙, 𝑇𝐿

𝐻

𝑣𝑓𝑢𝑙𝑙, 𝑇𝐿

)︃2

(4.2.11)

𝜆𝑆𝑀, 𝑇𝐿(1) := 𝜆𝑆𝑀, 𝑇𝐿

⎯⎸⎸⎷1 +
(𝑀2

𝐻)
𝑆𝑀, 𝑇𝐿(1)

(𝑀2
𝐻)

𝑓𝑢𝑙𝑙, 𝑇𝐿
−
(︂
𝑣𝑆𝑀, 𝑇𝐿(1)

𝑣𝑆𝑀, 𝑇𝐿

)︂2

(4.2.12)

9. Defining bilinear Higgs coupling at tree level using the definition of Higgs mass in the
SM at tree level:(︀
𝜇2
)︀𝑆𝑀, 𝑇𝐿(1)

:=
3

2
𝜆𝑆𝑀, 𝑇𝐿

(︀
𝑣𝑆𝑀, 𝑇𝐿

)︀2(︃𝜆𝑆𝑀, 𝑇𝐿(1)

𝜆𝑆𝑀, 𝑇𝐿
+

(︂
𝑣𝑆𝑀, 𝑇𝐿(1)

𝑣𝑆𝑀, 𝑇𝐿

)︂2

− 1

)︃
−
(︀
𝑀2

𝐻

)︀𝑆𝑀, 𝑇𝐿(1)

(4.2.13)

10. Calculate all MS-parameter masses in the SM-object via calculate DRbar masses()

As in the tree-level matching procedure, the parameter 𝜇2 is now defined by the tree-level
EWSB relation from the VEV and 𝜆.
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4.3 Higgs mass calculation

The actual computation is invoked right after the spectrum is calculated at the EWSB scale.
Four SM-class objects are defined in order to calculate the EFT contribution to the Higgs
mass, without tree-level and one-loop terms:

SM1: This class contributes the full EFT Higgs mass and self-energy, by undergoing matching
at one-loop and running at two-loop level, while the EWSB equations are solved to be
valid at one-loop order as well at the low scale. The other objects do only subtract
one-loop and tree-level terms (with respect to the full theory at matching scale) from
the pole mass expression of this class.

SM2: This class undergoes matching and running only at tree level, but the EWSB equations
are solved at one-loop order. Tree-level mass and one-loop self-energy expressions are
used to subtract the entire tree level and those one-loop terms from tree-level matching
and running of the self-energy in the full theory at matching scale.

SM3: This class undergoes matching at tree level, and only the one-loop term is retained from
running. The EWSB-equations are fulfilled at tree level. Variables contained in the tree-
level expression of the Higgs pole mass are used to subtract contributions from one-loop
running in the full theory at matching scale.

SM4: This class undergoes matching at one-loop order (of the full theory at matching scale),
but running at tree level, while the EWSB-equations are valid at tree level. Since only
the tree-level part of the Higgs mass is required to subtract one-loop terms from the pole
mass in the full theory at matching scale, and tree-level running means adjusting the scale
variable (which is not contained in tree-level expressions) while leaving the parameters
untouched. Hence, this contribution can be calculated after matching, without any
running.

Special attention is given to the parameter 𝜇2 and the corresponding EWSB parameters in
the full model: Since the VEVs in FlexibleSUSY are minimizing the effective potential at loop
level, there are parameters, like 𝜆 in the SM, regarded as fundamental, and others, like 𝜇2

adapted to the EWSB-equations at a loop order depending on the needed order in the other
parameters, including VEVs. Therefore the index 𝑇𝐿+ 𝑇𝑎𝑑 is introduced to denote that the
tree-level expression with respect to all parameters is used, but some parameters are defined
by a one-loop expression of others (tadpoles). This is how the algorithm works:

1. Matching: SM1 and SM4 are matched at one-loop order, SM2 and SM3 at tree level from
the full theory.

2. Solving EWSB-constraint for 𝜇2 at one-loop order for SM2 and tree level for SM3.

3. Running from matching to 𝑀𝑍 scale: SM1 runs with full two-loop beta functions (three-
loop parts may be included by the user), SM2 runs at tree level, meaning only the scale
parameter is changed, SM3 runs in a way that the parameters are redefined as their
one-loop part from this running with respect to the EFT at the matching scale:

𝛿𝛼𝑆𝑀3, 1𝐿
𝑖 (𝑀𝑍) := ln

(︂
𝑀𝑍

𝜇

)︂
𝛽𝑆𝑀3, 1𝐿
𝑖 (𝜇) (4.3.1)

4. The tree-level masses in SM1 and SM2 are recalculated at the new scale.

5. Solving EWSB constraint for 𝜇2 at one-loop order for SM1.
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6. The Higgs mass contribution from SM3 is calculated via:(︀
𝛿𝑀2

𝐻

)︀𝑆𝑀3, 𝑇𝐿(1)
:= −

(︀
𝛿
(︀
𝜇2
)︀)︀𝑆𝑀3, 1𝐿

+
3

2
𝛿𝜆𝑆𝑀3, 1𝐿

(︀
𝑣𝑆𝑀2, 𝑇𝐿

)︀2
+ 3𝜆𝑆𝑀2, 𝑇𝐿𝑣𝑆𝑀2, 𝑇𝐿

(︀
𝛿𝑣𝑆𝑀3, 1𝐿

)︀
(4.3.2)

Where the tree-level parameter 𝛼𝑆𝑀2, 𝑇𝐿, run at tree level as well, are taken from SM2.

7. The pure tree-level part of the Higgs mass from SM2, with respect to the EFT at matching
scale is subtracted from the contribution of SM4:(︀

𝛿𝑀2
𝐻

)︀𝑆𝑀4, 𝑇𝐿(1)
:=
(︀
𝑀2

𝐻

)︀𝑆𝑀4, 𝑇𝐿(1) −
(︀
𝑀2

𝐻

)︀𝑆𝑀2, 𝑇𝐿
(4.3.3)

8. Read 𝑝 from the physical structure of the full model, containing the previously calcu-
lated Higgs pole mass.

9. If this is not the first iteration, recalculate the Higgs pole mass in the full theory by the
heavy model at momentum 𝑝, otherwise this is already done. Note that the Index 𝑇𝐿+
𝑇𝑎𝑑 states that a parameter is defined at tree level, but EWSB-parameters are defined
by minimizing the one-loop effective potential, hence containing one-loop contributions
of the model parameter.(︀

𝑀2
𝐻

)︀𝑓𝑢𝑙𝑙, 𝑇𝐿+1𝐿
:=
(︀
𝑀2

𝐻

)︀𝑓𝑢𝑙𝑙, 𝑇𝐿+𝑇𝑎𝑑 − ReΣ𝑓𝑢𝑙𝑙, 1𝐿
𝐻 (𝑝) (4.3.4)

10. After diagonalizing the last result and selecting the lowest eigenvalue, the EFT correc-
tions are added:(︀

𝑀2
𝐻

)︀𝐸𝐹𝑇,𝑃𝑜𝑙𝑒
:= Re

[︁ (︀
𝑀2

𝐻

)︀𝑓𝑢𝑙𝑙, 𝑇𝐿+1𝐿
+
(︀
𝑀2

𝐻

)︀𝑆𝑀1, 𝑇𝐿+𝑇𝑎𝑑 − Σ𝑆𝑀1, 1𝐿
𝐻 (𝑝)

−
(︀
𝑀2

𝐻

)︀𝑆𝑀2, 𝑇𝐿+𝑇𝑎𝑑
+ Σ𝑆𝑀2, 1𝐿

𝐻 (𝑝)−
(︀
𝛿𝑀2

𝐻

)︀𝑆𝑀3, 𝑇𝐿(1)

−
(︀
𝛿𝑀2

𝐻

)︀𝑆𝑀4, 𝑇𝐿(1)
]︁

(4.3.5)

11. This is written into the physical structure, and compared to the momentum 𝑝. If this
is greater than the precision of the full model, and the iteration number does not exceed
the variable number of mass iterations of the full model, go back to the beginning of
the momentum loop (8.).

After this algorithm is finished, the corrected pole mass is stored in the physical structure as
intended for every pole mass. Special attention must be paid to choosing the scale to adapt
𝜇2 to the EWSB-conditions: Since the full theory contains heavy as well as light particles
contributing to tadpole diagrams in the Higgs sector, there is no trivial proper choice of scale
to minimize loop corrections for the effective potential. For the matching procedure at the high
scale, large logarithms in the tadpole contributions of the full theory arise from SM particles
in loop diagrams. However, none of these terms enter the one-loop matched parameters, since
the one-loop tadpoles from the SM are subtracted from the pole mass of the full theory as part
of the matching procedure. For the matched SM instances, a proper choice of scale to fulfill
EWSB relations is some light, electroweak scale, instead of the heavy scale. Since SM2 is bound
to subtract some one-loop contribution from SM1, the EWSB relation must be fulfilled at the
high scale, otherwise double counting of the one-loop terms from SM3 occurs. Nevertheless,
regarding SM1 it is essential for the accuracy of this algorithms, if loop corrections to the
tadpoles are minimized, and thus, the EWSB is solved at the low scale. It shall be denoted
that the fixing of 𝜇2 in FlexibleSUSY is quite convenient since no beta function other than
its own depends on this parameter. Hence, no iteration between the scales of fixing 𝜇2 and
matching of other parameters is necessary.
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4.4 Benchmark: Matching SM to SM

In order to check the functionality of the previously described algorithm, it is useful to examine
the running and substitution of the tree-level and one-loop part from the effective field theory
apart from the matching. To do so, the Standard Model class in FlexibleSUSY was matched
to itself, without integrating out any fields. In this scenario, 𝜆 was given as input parameter
at the high scale 𝜇ℎ𝑖𝑔ℎ = 𝑣

√
𝜆, thus controlling the scale difference between high and low scale,

the latter one to be chosen as the Z boson pole mass. Since the high scale happens to be the
tree-level Higgs mass, the plot also shows the contribution of loop corrections to the physical
mass as deviation from the symmetric diagonal line.

Figure 2: Standard Model Higgs pole masses, with the Standard Model as effective field theory

The solid green line depicts the Higgs pole mass calculated via one-loop self-energy at the
high scale, while the green +-shaped points mark the pole mass calculated from a matched
theory at the same scale, proving that the SM-SM matching at one-loop order does indeed
yield the same results. The solid blue line shows the pole mass calculated from the initial
SM class run to the low scale, while the blue markers were calculated using the replacement
algorithm to extract tree-level and one-loop self-energy from the effective theory and replace
it with the exact terms. The equality of both graphs suggests that the replacement is working
properly, at least in cases where the matching is trivial. Another observation is the convergence
of all depicted curves in the limit of low 𝜆, as the high scale approximates the low scale. This
behavior is expected since both matching and running have no effect in this limit; a non-
vanishing difference of the blue crosses from any other of the graphs would have been an
indicator for bugs in the implementation.
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4.5 Benchmark: Comparison to SUSYHD

For the sake of further comparison, the algorithm was applied to the Minimal Supersymmet-
ric Standard Model (MSSM). To achieve quasi-degeneracy of all heavy particle masses, soft
sfermion and gaugino masses, the CP-odd Higgs 𝐴0 tree-level mass and the parameter 𝜇 are
chosen to be and at some heavy SUSY scale 𝑀𝑆𝑈𝑆𝑌 . Furthermore, the sfermion mixing pa-
rameters 𝑋𝑡,𝑏,𝜏 have been set to zero by adjusting the trilinear couplings. Two scenarios have
been considered: tan𝛽 = 2 and tan𝛽 = 20, both renormalized at the SUSY scale.
For cross checking, SUSYHD [24], another EFT-based package specialized to the MSSM was
taken into account. Since SUSYHD v1.0.1 uses hard coded Yukawa- and gauge couplings at
the low scale chosen to be the top pole mass, these parameters were constrained in the MSSM
in FlexibleSUSY such that the effective theory would yield the same values at the top pole
mass. SUSYHD also makes use of an approximated Higgs pole mass formula taken from [25]:

𝑀𝑃𝑜𝑙𝑒
ℎ =

1

21/4
√
𝐺𝐹

√︀
1.0075 𝜆+ 𝛿𝜆2𝐿 (4.5.1)

including two-loop contributions from QCD and QED, taken from [26], while FlexibleSUSY
uses the complete one-loop expression for the self-energy, which complicates the comparability
between the two codes.
Additionally, SUSYHD implements a direct one-loop matching formula for 𝜆, supplemented

by two-loop terms ∼ 𝒪 (𝛼2
𝑡 , 𝛼𝑠𝛼𝑡) and resummed contributions ∼ 𝑦𝑏,𝜏 tan 𝛽, both taken from

[27] and based on their own work [24], neglecting all Yukawa couplings of the first two gen-
erations and terms proportional to inverse orders of the SUSY masses. FlexibleSUSY on the
other hand matches by the condition that the Higgs pole masses are equal at one-loop order,
using the full one-loop self-energy.

The figures 3 and 4 depict the values of 𝜆 obtained with each code. For both choices of
tan𝛽, every 𝜆 at the low scale is numerically very close to each other, even adding two-
loop contributions provided by SUSYHD does not make any difference. As a measure for
relativization, 𝜆 at the low scale was also plotted for mere tree-level matching at the high scale.
At the SUSY scale, the relative difference between all curves is much larger, the value at the
low scale is mainly determined by additive running corrections from parts of the beta functions
not proportional to 𝜆 itself. This diminishes the influence of different matching methods on
the Higgs mass calculation. The one-loop SUSYHD output exhibits good agreement with
matching using expressions from [27] implemented in FlexibleSUSY, as expected since both
matching algorithms are equal. Nevertheless, this proves the equivalence of the running in
both packages. The pole mass matching in FlexibleSUSY exhibits differences to the matching
in SUSYHD especially for smaller SUSY scales, but this difference diminishes for increasing
scales to a small remaining limit. That might be due to terms suppressed by inverse powers
of the SUSY masses included in the pole mass matching but not in SUSYHD. To introduce a
notion of loop order effects, additional matching contributions included in SUSYHD have been
plotted, but tree-level matching is not, since it would be situated outside the scale. Overall,
both packages show satisfactory agreement in the matching and running of 𝜆, which motivates
further discussions on the pole mass itself, in spite of the mentioned difficulties regarding
comparability.
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Figure 3: 𝜆 matched from MSSM with tan𝛽 = 2, 𝑋𝑡,𝑏,𝜏 = 0, 𝜇 = 𝑀𝑆𝑈𝑆𝑌 , blue line: 𝜆 from
matching one-loop Higgs pole masses in FlexibleSUSY (default algorithm), green
line: tree-level matching for 𝜆 in FlexibleSUSY, black marker: one-loop match-
ing for 𝜆 using formula provided by [27], red line: one-loop matching implemented
in SUSYHD, purple line: one-loop matching + 2-loop 𝒪 (𝛼2

𝑡 , 𝛼𝑠𝛼𝑡) + resummed
𝒪 (𝛼𝑏,𝜏 tan𝛽) contributions implemented in SUSYHD
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Figure 4: 𝜆 matched from MSSM with tan𝛽 = 20, 𝑋𝑡,𝑏,𝜏 = 0, 𝜇 = 𝑀𝑆𝑈𝑆𝑌 , blue line: 𝜆 from
matching one-loop Higgs pole masses in FlexibleSUSY (default algorithm), green
line: tree-level matching for 𝜆 in FlexibleSUSY, black marker: one-loop match-
ing for 𝜆 using formula provided by [27], red line: one-loop matching implemented
in SUSYHD, purple line: one-loop matching + 2-loop 𝒪 (𝛼2

𝑡 , 𝛼𝑠𝛼𝑡) + resummed
𝒪 (𝛼𝑏,𝜏 tan𝛽) contributions implemented in SUSYHD
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Higgs pole masses are depicted in figures 5 and 6 over the SUSY scale. Comparison between
the one- and two-loop fixed order calculations in FlexibleSUSY and the resummed one exhibits
significant differences between these two computations within the same package, especially for
large SUSY masses. However, comparing the RGE enhanced computations between Flexible-
SUSY and SUSYHD, the discrepancy is < 1GeV for the SUSY mass spectrum 0.5 ... 26 TeV
in the investigated cases of tan𝛽 = 2, 20. Plotting the pole mass obtained by FlexibleSUSY
using the same matching algorithm as SUSYHD does, shows excellent agreement with the
default algorithm matching pole masses. Since it has been shown earlier that this reproduces
the model parameters in accord to SUSYHD, we deduce that the discrepancy between the
latter and FlexibleSUSY is mainly caused by the method to calculate the Higgs pole mass
at the low scale. Additionally, the substitution of tree-level and one-loop term in the Higgs
pole mass calculated using the EFT approach in FlexibleSUSY with the exact terms from the
MSSM tree level and self-energy has been plotted to ensure again that this procedure does not
alter the result. It might be difficult to resolve from the graph, but this is indeed the case up
to small numerical uncertainties, and it still holds for smaller SUSY scale regions, where this
equivalence is not shadowed by the 𝜆 matching curve.
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Figure 5: Higgs pole masses in the MSSM with tan𝛽 = 2, 𝑋𝑡,𝑏,𝜏 = 0, 𝜇 = 𝑀𝑆𝑈𝑆𝑌 , green line:
complete one-loop MSSM Higgs pole mass calculated by FlexibleSUSY, red line: like
green line, but with two-loop contributions 𝒪

(︀
𝛼2
𝑡,𝑏,𝜏 , 𝛼𝑡𝛼𝑏, 𝛼𝑡,𝑏𝛼𝑠

)︀
, blue line: pole

mass in effective field theory with default pole mass matching in FlexibleSUSY, black
′+′-marker: pole mass in effective field theory with 𝜆 matching in FlexibleSUSY,
black ′×′-marker: full one-loop order in MSSM and resummed contributions from
(default) EFT matching in FlexibleSUSY, purple line: pole mass in effective theory
in SUSYHD
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Figure 6: Higgs pole masses in the MSSM with tan𝛽 = 20, 𝑋𝑡,𝑏,𝜏 = 0, 𝜇 =𝑀𝑆𝑈𝑆𝑌 , green line:
complete one-loop MSSM Higgs pole mass calculated by FlexibleSUSY, red line: like
green line, but with two-loop contributions 𝒪

(︀
𝛼2
𝑡,𝑏,𝜏 , 𝛼𝑡𝛼𝑏, 𝛼𝑡,𝑏𝛼𝑠

)︀
, blue line: pole

mass in effective field theory with default pole mass matching in FlexibleSUSY, black
′+′-marker: pole mass in effective field theory with 𝜆 matching in FlexibleSUSY,
black ′×′-marker: full one-loop order in MSSM and resummed contributions from
(default) EFT matching in FlexibleSUSY, purple line: pole mass in effective theory
in SUSYHD
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Summarizing this chapter, the algorithm described, including the matching, running and
substitution of the one-loop order and tree level with terms from the effective theory seems
to work flawlessly, and results from SUSYHD are reproducible. However, the last point was
achieved by adapting gauge and Yukawa couplings in the MSSM, that after matching to the
SM, would reproduce the hard-coded SUSYHD input. But this is a quite artificial scenario,
since it bypasses the functionality of FlexibleSUSY to constraint these parameters, and also
circumvents a critical issue discussed in the next chapter, which spoils the precision observed
in this section and suggests to design another algorithm to cope.
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5 Algorithm matching 𝜆 only

5.1 Motivation: Dependence on input parameters and threshold
corrections

In this section, the implementation of another algorithm, matching only 𝜆 to the effective
model, and fixing VEV, gauge and Yukawa couplings at the low scale will be motivated, which
abandons the goal to retain the tree-level and one-loop terms from the full theory in the ef-
fective Higgs pole mass for precision, since the full theory parameters are not calculated with
optimal precision in the first place. The necessity of this is due to a design flaw of Flexible-
SUSY: the automated computation of threshold corrections for Yukawa- and gauge couplings
in FlexibleSUSY are done in two steps: considering top corrections to gain Standard Model
values from the effective 5-flavor input-values, and adding contributions from beyond the Stan-
dard Model. The second ones are one-loop contributions from fields that are, in a scenario
assumed ideally for our purpose of using an effective field theory approach, heavy compared to
all SM particles. However, both kinds of thresholds are calculated at the lowest scale, fixed to
be the Z boson pole mass. Unfortunately, if the heavy mass scale is large, so are their one-loop
thresholds, due to the appearance of large logarithms. These contributions could be resummed
by implementing a running between the low scale, where the top contributions are calculated,
and another scale where the heavy particles are integrated out from the full theory, but this
is not implemented. The procedure is equivalent to constraining the effective theory by data
obtained from electroweak observables in the SM at the low scale, instead by matching from
the full theory. A consequence of this omission is that couplings in the full theory, taken for
matching to an effective one, are missing thresholds containing large logarithms resummed in
all loop orders. The matched theory, although consisting of the Standard Model gauge group
and particle content, then differs in numerical values for model parameters and consequently
also observables compared to those taken as input, since thresholds are calculated from the SM
to the full theory at the low scale first, but the matching back is done at the heavy mass scale.
Consequently, the resummed Higgs mass will differ by resummed large logarithms leading at
two-loop order and higher in the effective theory at the low scale.

Moreover, this imprecision is persistent and does not vanish by increasing the heavy mass
scale, on the contrary, it becomes more severe, since this is an resummation error. SUSYHD
for instance does only match 𝜆 from the full to the effective theory, since all other SM parame-
ters are fixed by electroweak observables. Since this is done at a convenient scale, no precision
issues due to thresholds arise in this code. Indeed, the discrepancy to the algorithm from the
last chapter might be, depending on the scenario, several percents in the Higgs pole mass. It
will be shown that this is mainly due to inaccuracies of the top Yukawa coupling, which, as
discussed before, dominates the running of 𝜆 in non-multiplicative RGE terms. Caused by
this mechanism, the impact of inaccuracies of the matched 𝜆 at the SUSY scale diminishes
with increasing matching scale, as discussed in the previous chapter. Thus the idea to amend
the algorithm is only to match 𝜆 from the full theory, taking threshold induced inaccuracies
into account, but fixing VEV, gauge and Yukawa coupling in the effective field theory at the
low scale, not to produce inaccuracies in these quantities enhanced by large logarithms.
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5.2 Implementation

As stated before, 𝜆 is the only parameter input from the full theory, but also options like
loop orders for considered thresholds and beta functions as well as numerical values for Z, W
and top pole masses are passed from the FlexibleSUSY SLHA input to this algorithm, but
low scale constraints imposed have no effects. The algorithm commences after the solver in
FlexibleSUSY has finished.
The gauge and top coupling is fixed in this algorithm at the top pole mass scale by the
conditions taken from [26], the VEV is determined at the same scale by [28]:

𝑔𝑌 (𝑀𝑡) := 0.35830 + 0.00011

(︂
𝑀𝑡

GeV
− 173.34

)︂
− 0.00020

(︂
𝑀𝑊

GeV
− 80.384

)︂
/0.014 (5.2.1)

𝑔2 (𝑀𝑡) := 0.64779 + 0.00004

(︂
𝑀𝑡
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𝑔3 (𝑀𝑡) := 1.1666− 0.00046
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|𝑦𝑡 (𝑀𝑡)| := 0.93690− 0.00556
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Other Yukawa couplings are calculated using this VEV and the 𝑀𝑆 masses defined by the
QedQcd object provided by the low scale constraint, calculating those from SLHA input. The
top Yukawa definition includes 3-loop QCD contributions, which accounts for a constant dif-
ference

𝑦2𝐿𝑡 − 𝑦
2𝐿+3𝐿𝑄𝐶𝐷

𝑡 = 0.00328

that are included for comparison in this chapter, but can in general be controlled by the
threshold loop order of the full theory, same is true for the running. It shall be denoted that
the definitions of the gauge and top coupling are those also used in SUSYHD, when adjusting
the SLHA input parameter:

𝑀𝑡 := 173.34GeV 𝑀ℎ := 125.09GeV 𝛼5 fl
3 (𝑀𝑍) := 0.1184

𝑀𝑊 := 80.384GeV 𝑀𝑍 := 91.1876GeV 𝐺𝜇 := 1.1663787× 10−5GeV−2

The running in the SM includes full two-loop beta functions with 𝑔3, 𝑦𝑡 three-loop terms for
and with gauge and top couplings, the Higgs mass calculation at the low scale is done at one-
loop order, but can be adjusted in general. Thus, only 𝜆 remains a free parameter, while all
others are fixed at the top mass scale. At the heavy scale, 𝜆 is calculated using the following
expression, which is equivalent to the 𝜆 matching in the algorithm described earlier:

𝜆𝐸𝐹𝑇 :=

(︃
𝑒(1𝐿)𝑀

(1𝐿)
ℎ 𝑀

(1𝐿)
𝑍

2𝑀
(1𝐿)
𝑊

)︃2
1(︁

𝑀
(1𝐿)
𝑍

)︁2
−
(︁
𝑀

(1𝐿)
𝑊

)︁2 (5.2.6)

Where the masses are matched from the full theory by pole mass matching, as described before.
Since 𝜆𝐸𝐹𝑇 (𝑀𝑆𝑈𝑆𝑌 ) merely depends on parameters from the full model, it is only calculated
once. The iterative running between both scales continues until 𝜆 at the light scale and the
VEV at the heavy scale have converged, or a maximum number of iterations has been reached.
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5.3 Comparison to SUSYHD

In the scenario considered in the previous chapter, the MSSM, regarded as the full theory, was
constrained in the SUSY parameters to yield sparticle masses degenerate around the SUSY
scale, as well as gauge and Yukawa couplings in the effective theory matched by the algorithm
described previously, that are compliant with SM input data. Hence, the thresholds have
automatically been resummed in the full theory.
This was, for the sake of comparison, replotted in Fig. 7 as blue crossed markers. Anyway,
implementation of such an algorithm, readapting parameters of the full model, invoked after
the solver in FlexibleSUSY has finished is neither feasible for general theories nor reasonable,
since convergence and compliance of all model parameters with the constraints are violated.
The new algorithm, matching only 𝜆 is marked as a solid black line. The previously imple-
mented algorithm (solid blue line), was matching all SM parameters from the full theory, is
also depicted in a scenario where the MSSM is not adapted to yield fixed parameters after
matching, but are determined by using the default FlexibleSUSY SLHA input via observables.
This is a more convenient example of out-of-the-box usage of FlexibleSUSY, but there is no
proper resummation of thresholds using the old algorithm. It may be denoted that the dif-
ference between both algorithms in the pole masses calculated by FlexibleSUSY in this plot
is even around 10GeV, and therefore the SUSYHD result is now rather overestimated than
underestimated by the calculation using two-loop contributions, since the fixed order calcula-
tion do also shift because the MSSM parameters are now determined by default FlexibleSUSY
procedures, see [18]. In spite of that, the output produced by SUSYHD does not shift due to
the input consisting of non-SM parameters only, fixed at the SUSY scale by definition.

The comparison between the computations considering the MSSM with resummed thresh-
olds at the heavy scale and the new algorithm merely using properly resummed thresholds in
the effective theory exhibits only very small deviations. This raises both: hope to have found
a viable solution for dealing with the inaccuracies occurring due to threshold issues, and the
question why this discrepancy is so tiny compared to the deviation to the algorithm without
resummed heavy thresholds. This will be the topic of further investigations.
Additionally, the remaining difference between SUSYHD and the calculations including re-
summed thresholds is once more < 1GeV and probably due to the differences in the pole mass
calculation, following the argumentation from the previous chapter.
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Figure 7: Lightest Higgs pole mass in the MSSM, tan𝛽 = 5, soft squark and gaugino masses
at the SUSY scale, no squark mixing. Green line: one-loop FlexibleSUSY result
with heavy thresholds at the low scale; red line: like the green one, but with leading
two-loop corrections; blue line: heavy thresholds at the low scale and matching to
the effective field theory; black line: effective field theory with gauge and Yukawa
couplings from electro-weak input, but 𝜆 from pole mass matching; blue marker:
heavy thresholds at the SUSY scale and matching to the effective field theory; purple
lines: SUSYHD output using one- and two-loop threshold corrections for matching
of 𝜆

For additional examinations, 𝜆 parameters matched from the MSSM were plotted at the
SUSY scale as well as the top pole mass scale in Fig. 8. Once more, SUSYHD output was
plotted (red and purple lines) as well as FlexibleSUSY computations with heavy thresholds at
the low scale (solid blue line), the effective theory with only using 𝜆 as input and all other SM
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parameters fixed (solid black line), and properly resummed heavy thresholds in the MSSM,
displayed as blue dots.

For 𝜆 at the SUSY scale, both algorithms in FlexibleSUSY computing heavy thresholds at
the low scale yield the same curve, since the matching algorithm is identical. Furthermore, the
one-loop matched SUSYHD output and the FlexibleSUSY calculation involving the MSSM
with resummed SUSY thresholds at the heavy scale yield equal results, which was already an
outcome in the last chapter. Interesting is the relative difference between both pairs of lines,
which is < 1% in the plotted SUSY scale region, and hence cannot account for the 10GeV dif-
ference in the previous plot. Beholding 𝜆 (𝑀𝑡), it becomes obvious that the primary reason of
this discrepancy is rather caused by the running: on the one hand, the deviation of SUSYHD
from the new algorithm with fixed gauge and Yukawa couplings in the effective theory has
diminished, but on the other hand, in spite of still being equal to the new algorithm at the
SUSY scale, the full matching of all parameters from the MSSM with heavy thresholds at the
low scale gains a large deviation from all other 𝜆‘s, increasing with the SUSY scale. Since the
running routines have been checked and this is the only deviating curve at the low scale while
there is none at the high scale, it is most likely caused by other parameters than 𝜆 itself at
the latter scale.

Indeed, low scale values of parameters like the top Yukawa coupling have critical influence
on the precision, since the beta function (obtained using [20]) for 𝜆 contains terms not multi-
plicative to itself:
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These terms not proportional to 𝜆, but to couplings larger that itself, like the top Yukawa, are
dominating in the beta function and therefore influence the running. These are contributions
enhanced by large logarithms at the low scale, especially if the SUSY scale is high. Tree level
and logarithmic enhanced part of the one-loop Higgs self-energy does, besides depending on
the quartic coupling 𝜆̃ at the heavy scale 𝜇̃, also gain larger contributions from top and gauge
couplings at the low scale 𝜇, enhanced by a large logarithm:
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Figure 8: 𝜆 matched from MSSM, tan𝛽 = 5, soft squark and gaugino masses at the SUSY
scale, no squark mixing. Blue line: pole mass matching from MSSM with heavy
thresholds at the low scale in FlexibleSUSY; black line: pole mass matching for 𝜆,
other couplings fixed by electroweak input; red and purple lines/markers: matching
in SUSYHD, using leading one- and two-loop thresholds; blue markers: 𝜆 matched
from an MSSM with gauge and Yukawa couplings fixed to yield the low energy values
used in SUSYHD after full pole mass matching in FlexibleSUSY

Concerning this specific test, it shall be denoted that comparing the SM parameters in
e.g. SUSYHD and those from the full matching of all parameters from the MSSM without
resummed heavy thresholds at the SUSY scale, the discrepancies for the gauge couplings are
indeed one order of magnitude smaller than those of the Yukawas, where the top coupling, due
to its largeness, has the most influence. Main causes of this deviation can be traced back to
a difference of roughly 5% of the Yukawa couplings in the effective theory, plotted in Fig. 9.
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Running back to the top pole mass scale, the algorithms considering fixed couplings at the low
scale exhibit equivalence as expected, while the one using matching for all effective parameters
deviates with logarithmically increasing magnitude.
Fig. 10 shows the heavy one-loop top Yukawa threshold (including sparticles but also top

Figure 9: Top Yukawa coupling in the SM, matched from MSSM: tan𝛽 = 5, soft squark and
gaugino masses at the SUSY scale, no squark mixing. Blue line: pole mass matched
coupling from MSSM using FlexibleSUSY input parameter and one-loop thresholds
at the low scale; black line: same as blue, but only 𝜆 is matched and other parameters
are fixed by electroweak observables; blue marker: full matching of all parameters,
but MSSM was modified to yield fixed gauge and Yukawa coupling values after
matching

contributions) assumed by FlexibleSUSY, calculated at different scales from the top pole mass
and the one-loop self-energy. Obviously, the correction determined at the 𝑀𝑍 scale (on the
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very left side) as it is default in the framework, is twice as large as calculated at the SUSY
scale. This difference is of the same magnitude as the deviation discussed before, and hence
may indeed explain the different top couplings and consequently Higgs pole masses.

Figure 10: Top Yukawa coupling in the MSSM: tan𝛽 = 5, 𝑀𝑆𝑈𝑆𝑌 = 30 TeV, soft squark
and gaugino masses at the SUSY scale, no squark mixing. Shown is the one-loop
threshold for the top Yukawa coupling calculated by FlexibleSUSY as a function of
the scale the threshold is defined over the SUSY scale. Default is on the very left
side.

Conclusively, precision in the low energy values for Yukawas, gauge coupling and the VEV
in the SM as effective field theory are as essential for the overall accuracy of the Higgs pole
mass as the quartic coupling itself. In the next section, examinations of the choice of the low
scale will follow.
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5.4 Dependence on low energy scale

In this section, the stability of the algorithm when modifying the low scale in the effective field
theory is examined. Again, the MSSM with soft squark and gaugino masses as well as 𝜇 and
the 𝐴0 DR mass at the SUSY scale is considered, with vanishing squark mixings 𝑋𝑡,𝑏,𝜏 .

Figure 11: Higgs pole mass in effective field theory matched from MSSM: tan𝛽 = 5, soft
squark and gaugino masses at the SUSY scale, no squark mixing. The pole mass
calculation was done at different scales in the EFT: 𝑀𝑊 , 𝑀𝑍 and 𝑀𝑡. Purple line:
SUSYHD pole mass; blue lines: FlexibleSUSY pole masses after full matching of all
parameters; black lines: FlexibleSUSY pole mass after matching of 𝜆 and assuming
fixed values for gauge and Yukawa couplings in the EFT

Varying the scale of the Higgs mass calculation in the effective SM cannot alter its value at
one-loop order since the full one-loop self-energy is used in the calculation, differences occur
at two-loop order and higher. These can be approximated by collecting all terms proportional
to only 𝑔3 and/or 𝑦𝑡 at two-loop order, which are the largest contributions. The following beta
functions, provided by SARAH [20], determine the running, using the convention 𝛽𝑋 = 𝜕𝑋
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The relevant part of the one-loop self-energy looks like this:

𝛿Σ1𝐿
ℎ = − 3 𝑣2

(4𝜋)2
𝑦2𝑡
(︀
2 𝑦2𝑡 − 𝜆

)︀
𝐵0 (𝑚ℎ,𝑚𝑡,𝑚𝑡)−

6 𝑦2𝑡
(4𝜋)2

𝐴0 (𝑚𝑡) (5.4.5)

38



Where 𝐴0 and 𝐵0 are Passarino-Veltman integrals. The EWSB condition at one-loop order
must be fulfilled by the Higgs potential parameter 𝑚2 in order to avoid the necessity to include
tadpole terms in the self-energy:

0 = −𝑚2 +
1

2
𝜆 𝑣2 − 𝛿𝑇 1𝐿

ℎ (5.4.6)

𝛿𝑇 1𝐿
ℎ =

6 𝑦2𝑡
(4𝜋)2

𝐴0 (𝑚𝑡) (5.4.7)

The Passarino-Veltman functions are defined by:

𝐴0 (𝑀) :=𝑀2

(︂
Δ+ 1− ln

𝑀2

𝜇2
+𝒪 (𝜖)

)︂
(5.4.8)

𝐵0 (𝑀,𝑚,𝑚) :=

(︂
Δ+ 2− ln

𝑚2

𝜇2
+𝒪

(︂
𝑚2

𝑀2
, 𝜖

)︂)︂
(5.4.9)

Combining everything to one expression:(︁
𝑀𝑝𝑜𝑙𝑒

ℎ

)︁2
= 𝑣2𝜆+ 𝛿𝑇 1𝐿

ℎ − 𝛿Σ1𝐿
ℎ (5.4.10)

And running this from one low scale 𝜇 to another one 𝜇‘, one extracts the difference:(︁
𝑀𝑝𝑜𝑙𝑒

ℎ

)︁2 ⃒⃒⃒
𝜇‘
−
(︁
𝑀𝑝𝑜𝑙𝑒

ℎ

)︁2 ⃒⃒⃒
𝜇
=

𝑣2

(4𝜋)4

[︂
ln
𝜇‘

𝜇

(︀
312 𝑦6𝑡 − 448 𝑦4𝑡 𝑔

2
3

)︀
+ ln2 𝜇‘

𝜇

(︀
432 𝑦6𝑡 − 384 𝑦4𝑡 𝑔

2
3

)︀]︂
(5.4.11)

Figure 11 displays the uncertainty to be considered beholding Fig. 7, imposed by the ambiguity
of choice of the scale of Higgs mass calculation. It is shown that especially the difference
between pole masses calculated at the 𝑀𝑊,𝑍 and the 𝑀𝑡 scale are of order of several GeV,
although both scale choices seem appropriate compared to the SUSY scales considered in this
scenario. However, this effect is of smaller magnitude than the influences discussed in the
previous section.
Figure 12 is plotted for a fixed choice of the SUSY scale, but a variable low energy scale. It
can be observed that a maximum exists for the low scale near the top pole mass, with steep
slopes on both sides which causes the rather large pole mass differences in Fig. 11.
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Figure 12: Higgs pole mass in effective field theory matched from MSSM: tan𝛽 = 5, 𝑀𝑆𝑈𝑆𝑌 =
30 TeV, soft squark and gaugino masses at the SUSY scale, no squark mixing.
The pole mass calculation was done at different scales 𝜇𝑙𝑜𝑤 in the EFT. Blue lines:
FlexibleSUSY pole masses after full matching of all parameters at the SUSY scale;
black lines: FlexibleSUSY pole mass after matching of 𝜆 at the SUSY scale and
assuming fixed values for gauge and Yukawa couplings in the EFT

As a consequence of this behavior, leading two-loop contributions in the effective field theory
will be considered in future calculations to reduce the impact of the low scale choice. Conclu-
sively for the entire chapter, it has been shown that the 𝜆 matching algorithm reproduces the
SUSYHD results in this scenario, while the full SM-parameter matching suffers from heavy
inaccuracies, and is, although working as desired, in practice unusable. However, the greatest
asset of the new algorithm is also its greatest flaw - at least from a paradigmatic point of
view - the ignorance to the low scale constraint in FlexibleSUSY. Although this is a necessary
evil, the gained precision does only effect the lightest CP-even Higgs pole mass - the model
parameters in the full theory nevertheless suffer from improperly resummed heavy thresholds,
and there is still an error in the matched 𝜆. An alternative ansatz will be implemented in the
next chapter, which may resolve these issues altogether: the construction of a model tower in
FlexibleSUSY.
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6 Tower of models in FlexibleSUSY

6.1 Overview

As mentioned earlier, it is possible in FlexibleSUSY to stack different models together into a
tower of effective field theories, and implement matching conditions for all parameters man-
ually at the C++ level. Such a setup is especially useful for the scenario considered in the
previous chapters, where a Standard Model class can be stacked below some extended model,
providing beta functions and self-energies for the running and matching in the effective field
theory, respectively. Therefore, heavy threshold corrections for gauge and Yukawa couplings,
which have been observed to be the cause of inaccuracies, will automatically be calculated at
the heavy scale by matching from the SM to the full theory, avoiding the inclusions of large
logarithms in these fixed order calculations.
As part of this thesis, the setup of such an aforementioned tower was implemented on Math-
ematica level, featuring SM and an arbitrary high scale theory, including full SM parameter
matching to the effective theory, and matching of gauge and Yukawa couplings to the full one.

6.2 Comparison to SUSYHD

For the sake of a final comparison to SUSYHD, systematical differences have been switched
off and analyzed gradually, which is depicted in Fig. 14 and 13:

∙ The SUSYHD result in full precision, including QCD-contributions up to to three-
loop level for 𝑦𝑡 at the top scale and two-loop matching conditions for 𝜆 at the SUSY
scale, have been plotted as black pluses. These results have been reproduced success-
fully by adapting boundary conditions and pole mass calculation from SUSYHD in the
FlexibleSUSY-tower, and are depicted as solid red line.

∙ Substituting the two-loop 𝜆 matching condition taken from [27] with one-loop pole mass
matching (yellow line), does only produce seizable effects for non-vanishing stop mixing.
However, Higgs masses now differ not only by two-loop, but also one-loop matching
terms in 𝜆, suppressed by higher orders of electroweak over SUSY-scale. Since these
effects are small for degenerate SUSY spectra in the TeV range, the Higgs masses are in
accord with one-loop 𝜆 matching performed by SUSYHD (black ’x’).

∙ Same is true if three-loop QCD thresholds to 𝑦𝑡 are switched off in both frameworks
(solid purple line and black three-armed crossed), although this causes a mass shift of
roughly 0.5 GeV for degenerate sfermion masses.

∙ The next step is to replace the SUSY-like low scale conditions with constraints native to
the FlexibleSUSY SM class (blue line), described in the appendix 8. The shift induced
is rather small (≈ 100 MeV), and mostly due to non-leading two-loop differences in the
determination of 𝑦𝑡.

∙ By now switching the Higgs mass calculation to the FlexibleSUSY formula, the last re-
maining piece of SUSYHD code has been removed from the tower for the price of another
0.6 GeV shift (green line). Since SUSYHD v1.0.2 has been used, which expands the ap-
proximate Higgs one-loop self-energy (4.5.1) to the full expression, see e.g. equation
(90) in [26], the deviation occur at two-loop order. FlexibleSUSY merely uses contri-
butions ∼ 𝑔23 𝑦

2
𝑡 , 𝑦

4
𝑡 from equation (20) in [28], while SUSYHD takes into account the

approximated equations (34) and (35) from [26], not only including additional terms in
the gaugeless limit, but also electroweak contributions. Moreover, SUSYHD considers
the VEV as scale-independend input by the Fermi constant, but SUSYHD calculates
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the running VEV from the Z mass at one-loop order, which renders a direct comparison
more difficult.

Figure 13: Lightest Higgs pole mass in a model tower of MSSM and SM, tan𝛽 = 5, soft squark
and gaugino masses at the SUSY scale, except for stop mixing.
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Figure 14: Lightest Higgs pole mass in a model tower of MSSM and SM, tan𝛽 = 5, soft squark
and gaugino masses at the SUSY scale, no squark mixing.
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6.3 Benchmark within FlexibleSUSY framework

In this section, the tower will be discussed in the context of fixed order calculations in Flexi-
bleSUSY and the algorithms developed in the previous chapters. This has been done in Fig.
15 and 16.

Figure 15: Lightest Higgs pole mass in the MSSM, tan𝛽 = 5, soft squark and gaugino masses
at the SUSY scale, no squark mixing.

∙ The MSSM-SM-tower (red line) and SUSYHD with full precision (black ’x’s) have been
plotted for reference.

∙ The MSSM-SM-tower has also been plotted using the explicit 𝜆 matching formula from
[27] at one-loop level (black ’+’). For small stop mixing, this is equivalent to 𝜆 matching
via identification of pole masses, which is the default. As discussed before, this approach
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Figure 16: Lightest Higgs pole mass in a model tower of MSSM and SM, tan𝛽 = 5, soft squark
and gaugino masses at the SUSY scale, except for stop mixing.

is neither viable in arbitrary theories, nor avoiding double-counting with respect to the
MSSM.

∙ The default MSSM class in FlexibleSUSY has been used to calculate the Higgs pole
mass at one-loop order (green) and with two-loop contribution ∼ 𝛼𝑠𝛼𝑡,𝑏 , 𝛼𝑡,𝑏𝛼𝑡,𝑏 , 𝛼

2
𝜏

(purple), both suffering from large logarithmic contributions not resummed in the pole
mass calculation as well as thresholds considered for gauge and Yukawa couplings.

∙ The algorithm extending the one-loop fixed-order calculation by resumming logarithmic
contributions in all loop orders by matching all SM parameters via identification of pole
masses is depicted (blue). However, due to matching gauge and Yukawa couplings at
the low scale, this algorithm deviates by a logarithmic enhanced two-loop term from the
tower.

∙ The algorithm matching 𝜆 only to the effective theory via identification of pole masses
is also plotted (cyan). As discussed thoroughly, the effect of large logarithms in the
thresholds is extenuated by the non-multiplicative running of 𝜆. Hence, this algorithm
is, in spite of bearing systematical errors, in good agreement with the tower. For large
scales, the accord with SUSYHD gets even better, since both are using the same input
data for gauge- and top coupling, which dominate the running.

Furthermore, using the tower and two-loop contributions for the Higgs mass in the effective
theory, scale dependence of the calculation has been improved, featured in figure 17.
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Figure 17: Lightest Higgs pole mass in a model tower of MSSM and SM, tan𝛽 = 5, soft squark
and gaugino masses at the SUSY scale, no squark mixing. Calculated at different
scales: 173.34 GeV (solid lines), 91.1876 GeV (dashed) and 80.384 GeV (dotted).
Blue lines mark full SM parameter matching in FlexibleSUSY, using default one-
loop + two-loop QCD top coupling thresholds, green lines denote 𝜆 matching only,
using two-loop 𝑦𝑡 thresholds. All self-energies consist of a full one-loop part and
leading two-loop terms.
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6.4 Comparison to external codes

In this section, besides FlexibleSUSY 1.2.2 and SUSYHD 1.0.2, FeynHiggs 2.11.2 (see [29–33]),
and SPheno 3.3.7 (see [34, 35]), generated by SARAH 4.5.8 [36] have been used to compute
Higgs masses. Additionally, the HSSUSY model in FlexibleSUSY is depicted, which imple-
ments a Standard Model class with matching conditions for 𝜆 from [27]. Hence, the result is
quite close to SUSYHD, small deviations arise with large SUSY scales from small numerical
differences in the low scale constraints. The latter one was modified to enable the calculation
for SUSY-scales smaller than top mass. In spite of discrepancies discussed in the previous
sections, the tower produces results similar to these codes, even if not as similar as they are
for SUSYHD and HSSUSY.
SPheno uses diagrammatic two-loop terms in the gaugeless limit provided by SARAH to do
a fixed order calculation of the Higgs mass. The MSSM-SM-tower is used to determine tan𝛽
at 𝑀𝑍 scale as input, since SPheno does not implement RGE running for VEVs. FeynHiggs
calculates mainly in the on-shell scheme, but resums logarithmic contributions. The MSSM-
SM-tower is used to input tan𝛽 in the DR scheme at 𝑀𝑡, as well as the lightest, CP-odd Higgs
mass. For small SUSY-scales, FeynHiggs, SPheno and the pure MSSM in FlexibleSUSY agree
well on the Higgs mass, while the tower is off by roughly 2 GeV. Since this effect remains while
the heavy approaches the light scale, it must be a two-loop effect due to the one-loop match-
ing conditions between effective and full theory. For HSSUSY and SUSYHD, this deviation is
even more fatal, since one-loop terms in the 𝜆 matching not considered due to suppression by
powers of heavy masses cannot be neglected in this limit.
The FlexibleSUSY-MSSM deviates sooner with increasing SUSY masses from FeynHiggs than
SPheno, and predicts masses right between latter ones and the other codes. FeynHiggs dis-
agrees with any other code when considering large stop mixing, especially regarding the 𝑋𝑡

value maximizing the Higgs mass. SPheno and the MSSM in FlexibleSUSY are plotted only
in a region where the MSSM Higgs mass is not tachyonic at tree level.
SPheno and MSSM in FlexibleSUSY are deviating for large Higgs masses by logarithmic en-
hanced terms, this is due to a difference in the top Yukawa coupling, which is calculated
from the DR mass. In both cases, this is acquired from the physical mass and self-energy
expressions at one-loop order with two-loop QCD contributions from the SM sector, however,
SPheno calculates the running mass iteratively:

𝑚DR
𝑡 (𝑀𝑍) =𝑀𝑡 +Re

[︁̃︀Σ1𝐿
𝑡 +𝑚DR

𝑡

(︀
Σ1𝐿

𝑡,𝑄𝐶𝐷 + Σ2𝐿
𝑡,𝑄𝐶𝐷

)︀]︁
(6.4.1)

While FlexibleSUSY uses the pole mass directly:

𝑚DR
𝑡 (𝑀𝑍) =𝑀𝑡 +Re

[︁̃︀Σ1𝐿
𝑡 +𝑀𝑡

(︁
Σ1𝐿

𝑡,𝑄𝐶𝐷 + Σ2𝐿
𝑡,𝑄𝐶𝐷 +

(︀
Σ1𝐿

𝑡,𝑄𝐶𝐷

)︀2)︁]︁
(6.4.2)

Where ̃︀Σ1𝐿
𝑡 denotes the one-loop self-energy without contributions ∼ 𝛼𝑠 from the Standard

Model, which are included as 𝑚DR
𝑡 Σ1𝐿

𝑡,𝑄𝐶𝐷. Moreover, 𝑚DR
𝑡 Σ2𝐿

𝑡,𝑄𝐶𝐷 is a pure QCD contribution

as well. Hence, double counting is avoided, but the algorithms differ by a term𝑚DR
𝑡 Σ1𝐿

𝑡,𝑄𝐶𝐷
̃︀Σ1𝐿
𝑡

at two-loop order.
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Figure 18: MSSM lightest CP-even Higgs mass: soft masses degenerate at SUSY scale, no stop
mixing, tan𝛽 = 5. Comparison between different codes.
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Figure 19: MSSM lightest CP-even Higgs mass: soft masses degenerate at 2 TeV. Comparison
between different codes.
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6.5 NMSSM test points

In this section, the tower will be tested once more using non-ideal scenarios in the NMSSM.
These points are chosen according to the paper [5], where different public NMSSM spectrum
generators have been compared, including FlexibleSUSY [18], SPheno via SARAH [34–36],
SOFTSUSY [37–39], NMSSMCALC [40–43] and NMSSMTools [44–48].

𝑄 tan 𝛽 𝜆 𝜅 𝐴𝜆 𝐴𝜅 𝜇𝑒𝑓𝑓 𝑀1 𝑀2 𝑀3 𝐴𝑡 𝐴𝑏 𝑚̃︀𝑡𝐿 𝑚̃︀𝑡𝑅
1 1.5 10 0.1 0.1 -0.01 -0.01 0.9 0.5 1 3 3 0 1.5 1.5
2 1.5 10 0.05 0.1 -0.2 -0.2 1.5 1 2 2.5 -2.9 0 2.5 0.5
3 1 3 0.67 0.1 0.65 -0.01 0.2 0.2 0.4 2 1 1 1 1
4 0.75 2 0.67 0.2 0.405 0 0.2 0.12 0.2 1.5 1 1 0.75 0.75
5 1.5 3 0.67 0.2 0.57 -0.025 0.2 0.135 0.2 1.4 0 0 1.5 1.5
6 1.5 3 1.6 1.61 0.375 -1.605 0.614 0.2 0.4 2 0 0 1.5 1.5

Table 2: Input parameter for NMSSM test points. Dimensionful couplings are given in TeV.
For each point, 𝐴𝜏 = 0 and, with exception of stop, the soft sfermion masses were
considered 𝑚 ̃︀𝑓 = 1.5TeV. Other parameters are defined at the scale 𝑄, while tan 𝛽

is defined at 𝑀𝑍 .

point 1 point 2 point 3 point 4 point 5 point 6
FlexibleSUSY 123.55 122.84 91.11 127.62 120.86 126.46
NMSSMCALC 120.34 118.57 90.88 126.37 120.32 123.45
NMSSMTools 123.52 121.83 90.78 127.30 119.31 126.63
SOFTSUSY 123.84 123.08 90.99 127.52 120.81 126.67
SPheno 124.84 124.74 89.54 126.62 119.11 131.29
FS tower at 𝑀𝑆𝑈𝑆𝑌 122.00 120.44 90.90 126.58 120.57 124.16
FS tower at 𝑀𝑍 121.38 119.97 - 125.24 - 127.43

Table 3: Lightest CP-even Higgs masses for the test points in table 2. First five lines are
taken from [5]. Remaining results are obtained by using an NMSSM-SM tower in
FlexibleSUSY, where pole masses have been calculated in the NMSSM at𝑀𝑆𝑈𝑆𝑌 and
the effective SM at 𝑀𝑍 . Since the SM Higgs is not the lightest scalar in point 3 and
5, the SM is not the correct EFT, and the Higgs mass calculation there is omitted.
All values are displayed in GeV.

Results for the tower are given in two different versions: calculated at the SUSY scale in the
full theory, using leading two-loop contributions from the MSSM, and in the effective theory at
𝑀𝑍 . The former one deviates from the pure NMSSM version of FlexibleSUSY by the fact that
SUSY thresholds are calculated at the SUSY scale. This renders the Higgs masses computed
for these six points slightly smaller. However, except for point 4, the NMSSMCALC result is
still smaller, suffering from one-loop differences in the top-thresholds.
Points 1 and 2 are MSSM-like, while the latter one features large stop mixing. As already
experienced in the former section, the tower yields smaller masses than the fixed-order Flexi-
bleSUSY code, but not smaller than the NMSSMCALC result. For point 2, the tower suffers
a bit from the large stop splitting. Points 3 and 5 exhibit a light scalar singlet not regarded
as SM Higgs. Hence, the SM is not a suitable low-energy limit of this theory which renders
results from the tower questionable. Hence, the computation via matching to the Standard
Model is omitted. Nevertheless, the MSSM calculation in the tower does only shift the scale
of SUSY thresholds, and exhibits good agreement to the pure MSSM in FlexibleSUSY. In
point 4, the RGE improved computation suffers from a quite light second Higgs. For point 6,
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SPheno excels by using NMSSM two-loop corrections not implemented in any other package,
but the result from the tower is the closest to it.
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7 Conclusions

Conclusively, it has shown that the algorithm expanding the full one-loop self-energy of ar-
bitrary models by logarithmic enhanced contributions is working, but for gauge and Yukawa
couplings fixed at the low scale, a loss of accuracy occurs due to a systematic resummation
error. However, this code can still be useful when considering GUT scenarios.

A second algorithm matching only 𝜆 resolves these issues and does reproduce SUSYHD quite
well when deployed in the MSSM. But furthermore, this code is also applicable to arbitrary
extensions of the SM. However, systematical inaccuracies are still present in the matched scalar
quartic coupling, as well as every parameter in the full theory. In fact, no observable except
for the Higgs mass does actually benefit from this algorithm.

By constructing a tower of models in FlexibleSUSY, the aforementioned algorithm is ren-
dered obsolete by taking over its assets while resolving the disadvantages. Large logarithmic
contributions in the threshold corrections for all gauge and Yukawa couplings are by design re-
summed without systematical errors, and every SM quantity benefits from the EFT approach.
Furthermore, due to the implementation of Higgs pole mass matching, the goals to extend
the exact one-loop self-energy of arbitrary models by RGE enhanced terms without double-
counting and to constrain this high-energy theory by low-scale observables properly, have been
reconciled in this approach.
However, this does not mean that all large logarithms are avoided by design - there are still a
number of parameters in the full theory adapted to fulfill the EWSB conditions at loop order.
These calculations involve tadpole diagrams of both, heavy and light particles involved, and
hence large logarithms. To avoid this, one would have to match these parameters as well at
the SUSY scale, which is technically difficult for general theories and parameter choices. In
spite of that, if one is interested in the mass spectrum, these large logarithms drop out in the
matching procedure and are not present any more in the mass calculation of Standard model
particles. For the mass computation of non-SM particles, such logarithms are still present in
the EWSB-adapted parameters, but of course also in the tadpole free self-energy contributions
from light loops, thus the accuracy is not spoiled by the neglect of matching of the EWSB-
adapted parameters alone.

For the MSSM, SUSYHD has been reproduced with acceptable accuracy in the tower, and
all sources of deviation have been broken down. The accordance is especially good for high
SUSY masses. However, it became obvious that in this limit all codes yield a vast range of
Higgs masses, caused by small numerical deviations of mainly the top Yukawa coupling deter-
mined at the electroweak scale, since this dominates the running of the scalar quartic coupling.
To reconcile these computations, a systematic consideration of two-loop contributions would
be required.
For smaller heavy masses and less ideal scenarios with e.g. an non-degenerate spectrum, the
extension of the matching algorithm to two-loop order should be considered, which could aid
to resolve discrepancies between fixed-order and RGE-codes in this limit.
However, last points remain a prospect to future work.
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8 Appendix: SM low scale constraint in FlexibleSUSY

In this appendix, the matching of MS parameters of the Standard Model class from electroweak
observables is documented. This resembles the algorithm from [18], except that no heavy
thresholds are included, since these are calculated at the matching scale.
The following parameters are input from the SLHA file:

𝐺𝐹 , 𝛼
5 fl,MS
𝑒

(︁
𝑀𝑝𝑜𝑙𝑒

𝑍

)︁
, 𝛼5 fl,MS

𝑠

(︁
𝑀𝑝𝑜𝑙𝑒

𝑍

)︁
, 𝑀𝑝𝑜𝑙𝑒

𝑍 , 𝑀𝑝𝑜𝑙𝑒
𝑊 , 𝑀𝑝𝑜𝑙𝑒

𝑡 , 𝑀𝑝𝑜𝑙𝑒
𝜏, 𝜇, 𝑒, 𝑀

𝑝𝑜𝑙𝑒
𝜈1...3

,

𝑚MS
𝑏

(︁
𝑚MS

𝑏

)︁
, 𝑚MS

𝑐

(︁
𝑚MS

𝑐

)︁
, 𝑚MS

𝑢, 𝑑, 𝑠 (2GeV)

The remaining MS parameters are calculated iteratively at the Z pole mass scale 𝑀𝑍 [5, 18,
23, 49]:

𝛼MS
𝑒 (𝑀𝑍) =

𝛼5 fl,MS
𝑒 (𝑀𝑍)

1 + 8
9𝜋
𝛼5 fl,MS
𝑒 ln

𝑚MS
𝑡

𝑀𝑍

(8.0.1)

𝛼MS
𝑠 (𝑀𝑍) =

𝛼5 fl,MS
𝑠 (𝑀𝑍)

1 + 1
3𝜋
𝛼5 fl,MS
𝑠 ln

𝑚MS
𝑡

𝑀𝑍

(8.0.2)

𝑔MS
1 (𝑀𝑍) =

√︂
5

3

√︁
4𝜋𝛼MS

𝑒

cos 𝜃MS
𝑊

(8.0.3)

𝑔MS
2 (𝑀𝑍) =

√︁
4𝜋𝛼MS

𝑒

sin 𝜃MS
𝑊

(8.0.4)

𝑔MS
3 (𝑀𝑍) =

√︁
4𝜋𝛼MS

𝑠 (8.0.5)(︁
𝑚MS

𝑍 (𝑀𝑍)
)︁2

= (𝑀𝑍)
2 +ReΣ1𝐿,MS

𝑍 (𝑀𝑍) (8.0.6)(︁
𝑚MS

𝑊 (𝑀𝑍)
)︁2

= (𝑀𝑊 )2 +ReΣ1𝐿,MS
𝑊 (𝑀𝑊 ) (8.0.7)

𝑚MS
𝑡, ℎ𝑒𝑎𝑣𝑦 (𝑀𝑍) =𝑀𝑡 +Re

[︁
Σ1𝐿,MS

𝑡, 𝑆 (𝑀𝑡) + 𝑀𝑡

(︁
Σ1𝐿,MS

𝑡, 𝐿 (𝑀𝑡) + Σ1𝐿,MS
𝑡, 𝑅 (𝑀𝑡)

)︁]︁
+ (8.0.8)

𝑀𝑡

[︃
− 𝛼MS

𝑠

6𝜋

(︃
2− 3 ln

𝑚MS
𝑡

𝑀𝑍

)︃
+

(︃
𝛼MS
𝑠

24𝜋

)︃2(︃
315 ln

(︃
𝑚MS

𝑡

𝑀𝑍

)︃

− 54 ln2

(︃
𝑚MS

𝑡

𝑀𝑍

)︃
− 4618 + 96𝜁 (3)− 32𝜋2 (1 + ln 4)

)︃]︃
(8.0.9)

𝑚MS
𝑏, ℎ𝑒𝑎𝑣𝑦 (𝑀𝑍) =

𝑚MS
𝑏 (𝑀𝑍)

1− Re
[︁
Σ1𝐿, ℎ𝑒𝑎𝑣𝑦

𝑏, 𝑆

(︁
𝑚MS

𝑏

)︁
/𝑚MS

𝑏 + Σ1𝐿, ℎ𝑒𝑎𝑣𝑦
𝑏, 𝐿

(︁
𝑚MS

𝑏

)︁
+ Σ1𝐿, ℎ𝑒𝑎𝑣𝑦

𝑏,𝑅

(︁
𝑚MS

𝑏

)︁]︁
(8.0.10)

𝑚MS
𝑙, ℎ𝑒𝑎𝑣𝑦 (𝑀𝑍) = 𝑚MS

𝑙 +Re
[︁
Σ1𝐿, ℎ𝑒𝑎𝑣𝑦

𝑙, 𝑆

(︁
𝑚MS

𝑙

)︁
+𝑚MS

𝑙

(︁
Σ1𝐿, ℎ𝑒𝑎𝑣𝑦

𝑓, 𝐿

(︁
𝑚MS

𝑙

)︁
+ Σ1𝐿, ℎ𝑒𝑎𝑣𝑦

𝑙, 𝑅

(︁
𝑚MS

𝑙

)︁)︁]︁
(8.0.11)

𝑣MS (𝑀𝑍) =
2𝑚MS

𝑍 (𝑀𝑍)√︂
3
5

(︁
𝑔MS
1

)︁2
+
(︁
𝑔MS
2

)︁2 (8.0.12)

⃒⃒⃒
𝑦MS
𝑓 (𝑀𝑍)

⃒⃒⃒
=

√
2
𝑚MS

𝑓, ℎ𝑒𝑎𝑣𝑦 (𝑀𝑍)

𝑣MS (𝑀𝑍)
(8.0.13)
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Where the self-energies for fermions are divided into non-polarized, left- and right chiral
part, indicated by 𝑆, 𝐿 and 𝑅. For the top quark, QCD contributions are included non-
diagrammatically at loop level. For leptons and the bottom quark, Σ1𝐿, ℎ𝑒𝑎𝑣𝑦 denote contri-
butions including top and heavy gauge boson loops, matching the running masses from the
low-energy sector to the full SM. This is done at tree level for the quarks of the first two
generations. Below the 𝑀𝑍 scale, MS masses and gauge couplings are run with beta functions
containing one-loop QED and 3-loop QCD contributions, gradually adapting to include each
particle from its mass scale on. The electroweak mixing angle 𝜃MS

𝑊 is determined iteratively:

(︁
sin 𝜃MS

𝑊 cos 𝜃MS
𝑊

)︁2
=

𝜋𝛼MS
𝑒 (𝑀𝑍)√

2𝐺𝐹𝑀2
𝑍 (1− 𝛿𝑟)

(8.0.14)

𝛿𝑟 = 𝜌
Σ1𝐿

𝑊 (0)

𝑀2
𝑊

− Re
Σ1𝐿

𝑍 (𝑀𝑍)

𝑀2
𝑍

+ 𝛿𝑉 𝐵 + 𝛿2𝐿𝑟 (8.0.15)

𝜌 =

[︂
1− ReΣ1𝐿

𝑍 (𝑀𝑍)

𝜌𝑀2
𝑍

+
ReΣ1𝐿

𝑊 (𝑀𝑊 )

𝑀2
𝑊

+Δ𝜌(2𝐿)
]︂−1

(8.0.16)

Where 𝛿𝑉 𝐵, 𝛿
2𝐿
𝑟 and Δ𝜌(2𝐿) are calculated according to [50, 51].
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