
IAXO-the Future Axion Helioscope
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International Axion Observatory (IAXO) is a new generation axion helioscope aiming to
search for axions and axion-like particles with a sensitivity to the axion-photon coupling
that is 1 to 1.5 orders of magnitude beyond the one achieved by currently the most sensitive
axion helioscope, CAST. IAXO relies on large improvements in magnetic field volume, X-
ray focusing optics and detector backgrounds with respect to CAST. Additional IAXO
searches would include electron-coupled axions, relic axions, and other more generic axion-
like particles.

1 Introduction

Axions are neutral pseudoscalar particles that may solve the strong CP problem. They arise as
pseudo-Nambu-Goldstone bosons of the U(1) Peccei-Quinn symmetry [1] which is spontaneously
broken at a large energy scale. The spontaneous breaking of other global symmetries is predicted
in many extensions of the standard model (including string theory) and can give rise to light
axion-like scalar or pseudoscalar particles, called ALPs. Axions and ALPs are candidates for
the dark matter (DM) of the universe and can explain a variety of astrophysical observations.

Most of the axion experimental searches are based on the axion interaction with two photons.
As a consequence of this interaction, axions could transform into photons and vice versa in
external electric and magnetic fields. A promising experimental approach is based on the axion
helioscope technique [2] where a dipole magnet is oriented towards the Sun. Axions could be
produced in the solar plasma by converting thermal photons in the Coulomb fields of nuclei and
electrons - the Primakoff process, and back-converted into photons in a laboratory transverse
magnetic field.

Currently the most sensitive heliscope experiment CAST [3, 4, 5, 6] has been taking data
since 2003. No signal over background has been observed so far and CAST set the best exper-
imental limit on the axion-photon coupling constant gaγ over a broad range of axion masses.
IAXO (International AXion Observatory) is a new generation axion helioscope [7], currently at
the level of the Conceptual Design. IAXO relies on known technologies, there is no need for
development. It will also benefit from the expertise and knowledge gained from the successful
operation of CAST.
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2 Experimental setup

IAXO concept relies on a dedicated magnet capable to track the Sun for about 12 hours each
day, focusing X-ray optics to minimize detector area, and low background X-ray detectors
optimized for operation in 0.5 − 10 keV energy range.

The magnet, inspired by the toroidal ATLAS-like magnet geometry, is being designed at
CERN [8]. The new toroid will have eight, 60 cm diameter and 21 m long, magnet bores at
room temperature. It is designed to realize a peak magnetic field of 5.4 T. The magnet system
will be decoupled from the optical system, which greatly simplifies the system integration. The
magnet design opens the way for the sensitivity improvement, with respect to CAST, mainly
through a large cross-sectional area.

Each of the eight magnet bores will be equipped with X-ray optics. CAST has successfully
used optics, but only for one magnet bore of area ∼ 15 cm2. IAXO relies on focusing from
much larger bore areas of ∼ m2 down to spot of ∼ 0.2 cm2. The challenge is the availability of
cost-effective X-ray optics of the required size. For IAXO, the baseline fabrication approach is
segmented, slumped glass optics. This technology has been successfully used, most recently for
the NuSTAR satellite mission.

The baseline technology for the low background detectors are small gaseous detectors with
a pixelated Micromegas readout, manufactured with the microbulk technique. This kind of
detector has already been used in CAST. The latest generation of Micromegas detecors in
CAST are acheiving background levels of around 10−6 counts keV−1 cm−2 s−1, a factor of
more than 100 better than the levels at the beginning of CAST data taking. The goal for
IAXO is to reduce the background level down to 10−7 counts keV−1 cm−2 s−1 or even lower.

3 Expected sensitivity

The primary physics goal of IAXO will be to search for axions and ALPs produced in the solar
core via the Primakoff conversion of the solar plasma photons. The goal is to achieve 5 orders
of magnitude better sensitivity than CAST, which translates into a factor of about 20 in terms
of the axion-photon coupling constant gaγ . That is, IAXO will reach the few ×10−12 GeV−1

level for a wide range of axion masses up to about 0.25 eV. Since IAXO will cover a big part
of the unexplored parameter space, it has potential for the discovery of axions and ALPs. At
high masses, the experiment would explore a range of realistic axion models related to the
Peccei-Quinn solution to the strong CP problem. At low masses (below 10−7 eV), IAXO would
test the hypothesis in which ALPs explain the transparency of the universe to very high energy
photons [9]. Most of the region at reach by IAXO contains possible DM candidates. Figure 1
shows the expected IAXO sensitivity on gaγ as a function of the axion mass.

Another important physics goal for IAXO will be to search for solar axions produced in the
processes based on the axion-electron coupling gae. An astrophysical observation shows that
axions with gae of few ×10−13 could solve the anomalous cooling observed in white dwarfs [11].
IAXO is the first axion helioscope with sufficient sensitivity to gae to test this hypothesis.

Additional physics cases include searches for other proposed particles at the low energy
frontier, like hidden photons or chameleons [12]. Also, the IAXO magnet has been designed
to easily accomodate new equipment (e.g., microwave cavities or antennas). This provides an
intriguing possibility to search in parallel for solar axions and also for relic axions in the galactic
halo that could have been produced in the early universe.
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Figure 1: Expected IAXO sensitivity on gaγ as a function of ma, compared with current bounds
(solid) and future prospects (dashed) of other experiments (CAST, ADMX, ALPS-II). The
region below the red dashed line is viable ALP DM parameter space. The region at low ma

above the dashed grey line is the one invoked in the context of the transparency of the universe
while the solid brown region is excluded by H.E.S.S. data [10]. The yellow band represents the
range of realistic axion models where the green line refers to the benchmark KSVZ model.
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