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Abstract

In this thesis, we determine the Carroll z-scale invariance of Carroll(-invariant)
scalar and vector field theories where z is an anisotropy parameter of Lifschitz
type and z = 1 describes the isotropic (or “standard”) scale. We mainly focus
on Carroll swiftons, namely the bi-scalar, multi-scalar, electromagnetic and 2d
dilaton gravity swifton model, recently introduced in the preprint [1] where
we determine the scaling exponents for the scalar and vector fields, interaction
terms, possible potentials and coupling functions of the field theories. We see
that the bi-scalar, multi-scalar and electromagnetic model introduce the same
restriction on the scale z which makes it possible to combine different interaction
terms as well as spin-0 and spin-1 Carroll field theories. Furthermore, we show
that the Carroll swifton scalar field action cannot be extended to the Carroll
extremal surface if one wants Carrol z-scale invariance.
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1 Introduction

Until about a decade ago, Carrollian physics was the overlooked younger
sibling of Galilean physics. However, over the past ten years the omnipresence
of Carrollian structures was recognized and Carrollian physics became a rapidly
developing research topic in a multitude of fields. Originally published in French
in a journal quite far away from mainstream physics (see also the interesting
paper of Lévy-Leblond [2] on the fate of (his) scientific ideas), the paper of
Lévy-Leblond [3] as well as the paper by SenGupta [4], published nearly at the
same time, marked the beginning of Carroll physics .

Mathematically, Carroll symmetries are obtained formally by taking the
vanishing speed of light limit from Poincáre symmetries. The resulting group
of this limit was coined Carroll group by Lévy-Leblond due to its seemingly
paradoxical physical properties, one of them being that space is absolute but
time is relative and the lightcone collapses. It took the physics community
nearly half a century to realize that the consequences of this limit actually play
a vital role in many different contexts.

One of the most prominent realizations was that Minkowski spacetime,
crucial for quantum field theories, exhibits a Carroll structure at null infinity.
Furthermore, the asymptotic symmetries of asymptotically flat spacetimes
known as Bondi, van der Burgh, Metzner, and Sachs (BMS) symmetries [5], [6]
align precisely with conformal Carroll symmetries [7]–[9]. In addition, it was
realized that generic null hypersurfaces, ubiquitous in general relativity, have
a Carroll structure. Therefore, Carrollian symmetries emerge in both pillars
of theoretical physics, quantum field theories and general relativity, which
paved the way for one of the most prominent applications in both contexts: the
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1 Introduction

Carrollian approach to flat space holography in three and four dimensions.
For the remainder of the introduction note that it would be impossible to cite

every relevant paper in this rapidly developing field. We refer the interested
reader to the some of the newer articles and preprints like [1], [10]–[12] for
references and further resources.

Remarkably, flat space holography is not the only application of Carrol-
lian physics as there are many more works in quantum gravity, tachyon con-
densates, the fluid/gravity correspondence, tensionless strings, cosmology,
current-current deformations, Hall effects, fractons, flat bands, Bjorken flow,
supersymmetry and supergravity, and black holes. Moreover, it is natural to
gauge the Carroll algebra, and establish Carroll gravity theories, which may
exhibit Carroll black hole solutions.

As mentioned above, one important aspect of (conformal) Carrollian field
theories is that they might be dual to quantum gravity in asymptotically flat
spacetime. Therefore, to better undstand them it is necessary to construct
non-trivial examples of such field theories as was done in [1]. This preprint
serves as the main resource that we base our investigations of the Carroll z-
scale invariance on. We investigate for which scale z, where z is an anisotropy
parameter of Lifschitz type and z = 1 describes the isotropic (or “standard”)
scale, and which dimensions d the Carrollian scalar and vector field theories,
coined “swiftons” in [1], are invariant under the transformations of time and
space coordinates. The transformations are given as

t → λzt (1.1)

x → λx. (1.2)

Since we want this thesis to be as self-contained as possible we do not only
recall basics in Carrollian geometry but also recall the constructions of Carroll-
invariant theories made in [1] since they are the basis of our work. However,
this chapter can be skipped if one is only interested in the results obtained for
the Carroll z-scale invariance. The thesis is now organized as follows.
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1 Introduction

In chapter 2 we provide some motivation for why to study Carroll physics,
quickly introduce the mathematical framework and notation needed for working
in Carrollian physics and a rough derivation of the “electric” and “magnetic”
scalar field theories.

In chapter 3 we recall the construction of the Carroll-invariant theories with
fields propagating outside the Carroll lightcone (“Carroll swiftons”) and their
properties from [1]. Contrary to the “electric” and “magnetic” Carrollian scalar
field theories, the Carroll-invariant scalar/vector field theories constructed
by the authors allow propagation at a non-vanishing velocity in arbitrary
dimension, both with and without (Carroll) gravity, i.e. they do not remain at
the same spatial location.

In chapter 4 we present the main body of work of this thesis and show for
which scale z and dimension d the “electric” and “magnetic” Carroll scalar field
theories as well as the Carroll-invariant scalar/vector field theories of [1] are
Carroll z-scale invariant.

In Chapeer 5 we summarize our work in this thesis and give a short outlook
in what directions this work could be extended as well as open questions.
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2 Carrollian Geometry Basics

In this chapter we give some motivation on why to study Carrollian physics
and a quick introduction to the mathematics of it.

The main motivation for studying systems with Carroll symmetry comes
from the expectation that conformal Carroll field theories might be dual to
quantum gravity in asymptotically flat spacetime. As already mentioned in the
introduction, this is due to the fact that the asymptotic BMS symmetry group
[5], [6] of flat spacetimes aligns with the conformal Carroll structure living
on its null boundary [7]–[9]. There is also evidence that conformal Carrollian
field theories play a role in the celestial holography approach to flat space
holography, see e.g. [13]–[15].

Additionally, if Carrollian field theories are dual to quantum gravity in flat
space, their thermal properties should say something about black holes (see [10]
for an investigation of Carroll black holes and their thermal properties). Since
black holes do not have well-defined partition functions at non-zero temperature
in flat space, it may well be the case that one can expect a similar problem
with defining partition functions of Carroll field theories. Therefore, the (at first
glance pathological) properties of Carroll quantum field theories may actually
be consequences of flat space holography.

A closely related aspect of Carollian physics is Carroll gravity which can be
obtained by considering ultra-local (the small speed of light) limit of General
Relativity. This was first first considered by Henneaux in [16]. Recently Hansen,
Obers, Oling and Søgaard [17] looked at this ultra-local expansion of General
Relativity by using a modern perspective of non-Lorentzian geometry, i.e. they
used the fact that Carroll geometry arises from Lorentzian geometry when
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2 Carrollian Geometry Basics

taking the limit c → 0.

2.1 Mathematical Aspects of Carrollian Physics

In contrast to Lorentzian spacetimes in n = d + 1 dimensions which are
equipped with indefinite metrics of signature (−,+, . . . ,+) with d pluses,
Carroll spacetimes in n = d + 1 dimensions are equipped with degenerate met-
rics of signature (0,+, . . . ,+) with d pluses with one-dimensional kernel. As a
simple example of such a spacetime we can consider the limit of the Minkowski
metric where the speed of light vanishes

lim
c→0

(−c2dt2 + δijdxidxj) = δijdxidxj. (2.1)

This example clearly shows that, geometrically, the Carrollian signature of the
metric collapses the lightcone and that Carrollian time is relative and Carrollian
space is absolute. This is in stark contrast to the case where the metric has
Lorentzian signature and Lorentzian time and Lorentzian space are relative.

In order to fully characterize a Carroll spacetime, we need a Carroll metric
hµν and a Carroll vector vµ that lies in the kernel of the metric, i.e. vµhµν = 0.
It was shown in [16] that this is equivalent to endowing the manifold with
a non-vanishing volume element Ω. In the above example of the limit of the
Minkowski metric the vector field is v = vµ∂µ = ∂t and the Carroll metric is
hµν = δijδ

i
µδ

j
ν which implies the unit volume Ω = 1.

It is important to note that the metric hµν = δijδ
i
µδ

j
ν is invariant under all

Carroll transformations. However, its “inverse metric” hµν ≡ δijδ
µ
i δν

j is not
invariant under Carroll boosts. Therefore, in contrast to Lorentzian case, one
cannot raise tensor indices in an invariant way. However, this difficulty can be
overcome by using “transverse” or “spacelice” co-vectors θµ which are defined
to be orthogonal to vµ, i.e. vµθµ = 0. In this way the norm squared θµθµ is
well-defined and positive and this construction holds true for general covariant
tensors θµ1µ2...µk transverse on all their indices.
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2 Carrollian Geometry Basics

We now take a quick look at Carroll symmetries which emerge as the c →
0 limit of Poincaré symmetries. We denote the temporal translations H =

∂t, spatial translations Pi = ∂i, and rotations Jij = xi∂j − xj∂i which are all
unaffected by this limit. The only generators changing are the boosts

Bi = −c2t∂i − xi∂t → Bi = −xi∂t. (2.2)

This also means that the only commutators that change compared to the ones
in the Poincaré algebra are those involving the Carroll boosts:

[Bi, H] = −xi∂t∂t + xi∂t∂t = 0 (2.3)

[Bi, Bj] = xixj∂t∂t − xixj∂t∂t = 0 (2.4)

[Bi, Pj] = −xi∂t∂j + ∂jxi∂t = δijH (2.5)

[Bk, Jij] = −xk∂t(xi∂j − xj∂i) + (xi∂j − xj∂i)xk∂t = δikBj − δjkBi. (2.6)

We see that the Hamiltonian H is a central element of the Carroll algebra, in
contrast to the Poincaré algebra since there the Hamiltonian does not commute
with Lorentzian boosts. Furthermore, there is no Carrollian analogue of Thomas
precession since two Carroll boosts always commute. The third commutator
and the fact that H commutes with the remaining Carroll generators show that
H and, therefore, the energy/mass is an important invariant. This is again in
contrast to the Poincaré energy.

Looking at the finite boosts, which are generated by some spatial co-vector bi,
we see that they leave invariant space but transform time like

t′ → t − bixi (2.7)

xi′ → xi. (2.8)

Therefore, there is an absolute notion of space in Carrollian spacetimes.

2.2 Carroll Algebras with scale invariance

The precursor of the Carroll algebra (presented in the previous section with
its commutator relations) is the Aristotelian algebra, which only consists of
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2 Carrollian Geometry Basics

translations H, Pi and spatial rotations Jij. The representation through differen-
tial operators is the same as for the Carroll algebra above and the commutator
relations are

[Pk, Jij] = δikPj − δjkPi = 2δk[iPj] (2.9)

[Jij, Jkl] = (xi∂j − xj∂i)(xk∂l − xl∂k) = 4J[i[kδj]l] (2.10)

[H, Pi] = [Pi, Pj] = [H, Jij] = 0. (2.11)

The extension of the Carroll algebra that we are interested in is the so-called
finite z-Carroll algebra. This algebra additionally contains (for z ̸= 1 anisotropic)
dilatations D and includes the special cases z = 1 and z = 0 where one of the
commutators vanishes. It is central for Carrollian theories that are scale but
not conformally invariant. The dilatation is denoted as the differential operator
D = zt∂t + xi∂i and the commutator relations are given by

[H, D] = ∂t(zt∂t + xi∂i)− (zt∂t + xi∂i)∂t = zH (2.12)

[Pi, D] = ∂i(zt∂t + xi∂i)− (zt∂t + xi∂i)∂i = Pi (2.13)

[Bi, D] = −xi∂t(zt∂t + xi∂i) + (zt∂t + xi∂i) = (z − 1)Bi (2.14)

[Jij, D] = (xi∂j − xj∂i)(zt∂t + xi∂i)− (zt∂t + xi∂i)(xi∂j − xj∂i) = 0. (2.15)

This algebra can be further extended to contain temporal special transfor-
mations (SCTs) K, and spatial special transformations (SCTs) Ki. We only state
them for completeness for the interested reader and as a motivation for further
investigations. The temporal special transformation is denoted by K = xixi∂t

and yields the extension of the finite z-Carroll algebra by temporal SCTs. For
z = 2 we see that the commutator of the z-dilatation and the temporal SCTs
vanishes.

[D, K] = (zt∂t + xi∂i)xixi∂t − xixi∂t(zt∂t + xi∂i) = (2 − z)K (2.16)

[Pi, K] = ∂i(xixi∂t)− xixi∂t∂i = −2Bi (2.17)

[H, K] = [Bi, K] = [Jij, K] = 0. (2.18)
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2 Carrollian Geometry Basics

The spatial special transformation is denoted by Ki = xjxj∂i − 2xi(zt∂t + xj∂j)

and yields the extension to the finite conformal Carroll algebra by spatial SCTs.

[H, Ki] = 2zBi (2.19)

[D, Ki] = Ki (2.20)

[Pi, Kj] = 2Jij − 2δijD (2.21)

[Kk, Jij] = 2δk[iKj]. (2.22)

If we set z = 1, we also have

[K, Ki] = [Ki, Kj] = 0 (2.23)

[Bi, Kj] = δijK. (2.24)

2.3 The “electric” and “magnetic” scalar field model

Since we are looking at Carrollian scalar field theories, we include a short intro-
duction and derivation of the “electric” and “magnetic” model for completeness
sake. We follow the exposition [12] for a 2d massless Carrollian scalar field ϕ

with conformal coupling very closely. Note that all results in this section are
background independent.

We start from the Lorentzian action on a manifold M given by

I = −1
2

�
M

d2x
�−ggµν(∂µϕ)(∂νϕ) (2.25)

and introduce the pre-ultralocal variables as in [17] by

VµTµ = −1 (2.26)

TµEµ = 0 (2.27)

VµEµ = 0 (2.28)

EµEν = δ
µ
ν + VµTν (2.29)

such that the metric is given by

gµν = −c2TµTν + EµEν (2.30)

8



2 Carrollian Geometry Basics

and the Lorentzian volume form is cT ∧ E.
If we expand the frame fields in powers of c2 we get

Vµ = vµ +O(c2) (2.31)

Tµ = τµ +O(c2) (2.32)

Eµ = eµ +O(c2). (2.33)

Furthermore, we have the local Carroll boosts parametrized by λ(x) acting as

δλeµ = 0 δλτµ = −λeµ δλvµ = 0 δλeµ = −λvµ. (2.34)

as well as the Weyl rescalings [18] parametrized by ρ(x) acting on the frame
fields as

δρeµ = ρeµ δρτµ = ρτµ δρvµ = −ρvµ δρeµ = −ρeµ. (2.35)

If we switch to a Hamiltonian formulation by defining the pre-ultralocal
momentum

Π =
c√−c

δL
δ(Vµ∂µϕ)

= π +O(c2) (2.36)

and insert the pre-ultralocal variables into the Lorentzian action above, we get

I =
�

M
T ∧ E

	
ΠVµ∂µϕ − 1

2
Π2 − c2

2
(Eµ∂µϕ)2



. (2.37)

Now we are ready to obtain the two possible actions for a Carroll invariant
scalar field [19].

First, we look at the timelike (electric) scalar field which is obtained by
directly sending c → 0, replacing all fields by their leading order expressions,
and integrating out the leading order momentum π,

Ie =
1
2

�
M

τ ∧ e(vµ∂µϕ)2. (2.38)

Second, we look at the spacelike (magnetic) scalar field. In contrast to the
direct limit c → 0, there is a second possibility to contract the Hamiltonian action

9



2 Carrollian Geometry Basics

where the fields are rescaled as Π → cΠ, ϕ → 1
c ϕ. This rescaling preserves the

symplectic form δΠ ∧ δϕ on field space and the leading order action

IM =
�

M
t ∧ e

	
πvµ∂µϕ − 1

2
(eµ∂µϕ)2



(2.39)

does not permit integrating out the momentum π since its quadratic term
cancels in the contraction. Instead, π acts as a Lagrange multiplier enforcing
time-independence of the scalar field.

10



3 Carroll-invariant scalar and vector
field theories (“Carroll swiftons”)

Carroll-invariant scalar and vector field theories with fields propagating outside
the Carroll lightcone were introduced in [1]. The authors construct and discuss
examples of Carroll-invariant actions for (interacting) fields allowing propaga-
tion at a non-vanishing velocity in arbitrary dimensions, both with and without
(Carroll) gravity but they restrict themselves to scalar and electromagnetic fields.

The term “Carroll swiftons” was chosen to distinguish the tachyon-like
particles from the Lorentz tachyons, which usually come with pathologies
associated with the unboundedness of their lower energy. In the preprint,
they explicitly show for their theories that the energy is bounded from below
which suggests that these models are free from the standard Lorentz tachyonic
instabilities.

The goal of this chapter is to offer the reader a way to get familiar with the
Carroll-invariant scalar and vector field theories studied in chapter 4. However,
it is included to make the thesis as self contained as possible and only recalls
important results from the preprint [1] but does not expand on it. Therefore,
this chapter can be safely skipped if one wants to jump directly to the results
and derivations of chapter 4.

The first key result of the preprint is the bi-scalar model which couples two
scalar fields ϕ, χ with canonically normalized kinematic terms and coupling
constant g to any Carroll background. The action is given by

IM =
1
2

�
dnxΩ

��
vµ∂µϕ

�2
+ (vµ∂mχ) + gBµBµ



(3.1)

11



3 Carroll-invariant scalar and vector field theories (“Carroll swiftons”)

where
Bν = vµ

�
∂µϕ∂νχ − ∂µχ∂nuϕ

�
= 2vµ∂[µϕ∂ν]χ (3.2)

is a manifestly transverse covariant vector.
The Hamiltonian for this model can be derived by rewriting the Lagrangian

density as

L =

√
h

2N
HABϕ̊Aϕ̊B (3.3)

with

HAB =

�
1 + g(∂χ)2 −g∂ϕ · ∂χ

−g∂ϕ · ∂χ 1 + g(∂ϕ)2

�
(3.4)

where ϕA ≡ (ϕ, χ), N the Carroll lapse, h the determinant of the spatial metric
hmn with inverse hmn, ∂ϕA · ∂ϕB ≡ hmn∂mϕA∂nϕB and ϕ̊ ≡ ϕ̇A − Nk∂kϕA with
Nk the Carroll shift.

The inverse matrix is given by

HAB =
1
D

�
δAB + g∂ϕA · ∂ϕB



(3.5)

where
D = 1 + g(∂ϕ)2 + g(∂χ)2 + g2

�
(∂ϕ)2(∂χ)2 − (∂ϕ · ∂χ)2



. (3.6)

Note that if g ≥ 0, then D ≥ 1 which implies that the field space metric HAB

has Euclidean signature.
The Hamiltonian is given as

NH+ NkHk (3.7)

where the momentum density is given by

Hk = πA∂kϕA (3.8)

and the energy density

H =
1

2
√

h
HABπAπB (3.9)

12



3 Carroll-invariant scalar and vector field theories (“Carroll swiftons”)

is bilinear in the conjugate momenta πA. Since the quadratic form HABπAπB is
positive definite, the energy density is bounded from below by zero.

Furthermore, the Poisson brackets of the energy densities at different spacelike
points vanish, i.e. {H(x),H(x′)} = 0 which agrees with the general argument
made in [19] and ensures that the constraints HT ≈ 0,HT

k ≈ 0 of the dynamical
gravity and matter system

I =
�

dnx
�

πijḣij + πAϕ̇A − NHT − NkHT
k



(3.10)

are first class.
In the above action, the πij are the conjugate momenta to the spatial metric

and HT = HG +H and HT
k = HG

k +Hk are the sums of the Carroll gravity and
matter contributions to the Hamiltonian and momentum constraints.

By a perturbation method where one of the scalar fields

χ = χBG +O(ϵ2) (3.11)

is a background field in addition to the static geometric background and the
other scalar field

ϕ = ϵϕ, ϵ ≪ 1 (3.12)

is a small fluctuation on top, the authors showed that even for a negative
coupling constant g, the energy density remains positive as long as

g >
−1

(∂ϕ)2 + (∂χ)2 . (3.13)

Since both (∂ϕ)2 and (∂χ)2 are small in this perturbative context, this is only a
very weak bound.

The authors also proposed a generalization to a multi-scalar theory which
can be written as (here in the case of three scalar fields ϕ, χ, ψ

IM3 =
1
2

�
dnxΩ

�
3

∑
A=1

�
vµ∂µϕA


2
+ gBµνBµν

�
(3.14)
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3 Carroll-invariant scalar and vector field theories (“Carroll swiftons”)

where the transverse tensor Bµν is given in the familiar form

Bµν = vρBµνρ, Bµνρ = ∂[µϕ∂νχ∂ρ]ψ. (3.15)

Another result in [1] is their construction of a non-trivially interacting electro-
magnetic model.

IEM =
1
2

�
dnxΩ

��
vµFµnu

�2
+ gCµνρCµνρ



(3.16)

where they consider the transverse three-form

Cµνρ = vσCµνρσ, Cµνρσ = F[µνFρσ] (3.17)

with the electromagnetic field

Fµν = (∂µ Aν − ∂ν Aµ). (3.18)

In this case the energy density is given by the expression

H =
1

2
√

h
Hijπ

iπ j (3.19)

where Hij is the inverse of

Hij = hij +
2g
3

	
hilhmkhnj +

1
2

hijhlkhmn



FlmFkn. (3.20)

In four dimensions the determinant of Hij is given by

D = h−1
	

1 +
2gB2

3



, B2 =

hikhjl Fkl Fij

2
. (3.21)

Therefore, H is again positive definite if

g > − 3
2B2 (3.22)

which allows again negative values for g in a perturbative context.
The last Carroll-invariant scalar field model constructed in [1] is the Carroll

swifton coupled to gravity in 2d since all known Carroll black hole solutions

14



3 Carroll-invariant scalar and vector field theories (“Carroll swiftons”)

are described by 2d models. The Carroll dilaton gravity in 2d was introduced in
[20], [21] and is given by

ICDG ∼
�
(Xdω + XH(dτ + ω ∧ e) + XP de + τ ∧ eV(X, XH)). (3.23)

where the action depends on the temporal einbein τ, the spatial einbein e, the
Carroll boost connection ω, the dilaton X, the Lagrange multiplier XH for the
torsion constraint, and the Lagrange multiplier XP for the intrinsic torsion
constraint.

In order to investigate a Hawking-like effect (see [12]) one needs to couple
matter to Carroll black holes since otherwise, the theory has no local propagating
degrees of freedom. This adds to the list of motivations on why to study these
models in the first place. The second key result of [1] is the 2d Carroll swifton
scalar field action given by

I2d =
1
2

�
d2xΩF

�
ϕ̇2 + g(∂̂ϕ)2 + hϕ̇∂̂ϕ



(3.24)

where the coupling function F, g, h may depend on the dilatation X and the
Carroll boost-invariant scalar XH. The volume form in this case is given by
d2Ω = t ∧ e and the Carroll boost-invariant derivative is introduced as

∂̂ = eµ∂µ +
XP

XH
vµ∂µ. (3.25)

The first two terms in the above equation generalize to higher dimensions
but the last one does not. In [1] they stress that they added a term in ∂̂ that
transforms like a Stückelberg field [22], but using only fields that were there
already in the gravity action.

Furthermore, the definition of the Carroll-boost invariant derivative intro-
duces the restriction XH ̸= 0. This shows that one is not allowed to sit on a
Carroll extremal surface, which was introduced in [10]. Therefore, if one needs
to extend the 2d Carroll swifton scalar field action onto a Carroll extremal
surface XH = 0, the coupling function g needs to be chosen appropriately, e.g.
g ∝ X2

H.
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4 Carroll z-scale invariance

We have already seen that in Carrollian geometry the lightcone collapses and
space is absolute. This suggests fractonic behavior, i.e., “nothing can move”.
Therefore, it is not surprising that the two versions of a Carrollian scalar field
theory looked at in the past exert this behavior. In the “electric” version, the
variation of the action

Ie =
1
2

�
dnxΩ

�
vµ∂µϕ

�2
=

1
2

�
dnx (∂tϕ)

2 (4.1)

yields the ultra-local equation of motion ∂2
t ϕ = 0. Therefore, the scalar field may

depend on time but has no spatial derivatives. In the other “magnetic” version,
the variation of the action

Im =
�

dnx
	

π∂tϕ − 1
2

δij∂iϕ∂jϕ



(4.2)

yields the time-independence constraint ∂tϕ = 0 together with a Laplace equa-
tion of motion, δij∂i∂jϕ = 0. Neither of those leads to a scalar field propagating
with finite, non-vanishing velocity.

Since Carroll causality forces information to stay within the lightcone, i.e.
to stay at the same spatial location, propagation at a non-vanishing velocity
v > 0 = cCarrol would define a tachyonic-like behavior.

As we have seen in the last section, the authors of [1] constructed and dis-
cussed examples of Carroll-invariant actions for interacting (scalar) fields which
allow propagation at a non-vanishing velocity in arbitrary dimensions, both
and without (Carroll) gravity. We will recall important results and equations in
this chapter as necessary.
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4 Carroll z-scale invariance

This chapter includes the main work of this thesis where we investigate
the Carroll z-scale invariance of the Carroll-invariant actions for interacting
scalar and vector fields presented in [1]. The calculations are performed rather
explicitly so that the calculations are easy to follow and understand. The
interested reader can skip to the last section of this chapter for a concise
summary of all the results obtained.

Throughout this chapter, the scale parameter z defines an anisotropy pa-
rameter of Lifschitz type where z = 1 is the isotropic (or “standard”) scale
invariance.

4.1 Electric Model

Before we actually start our investigation of the Carroll-invariant actions for
interacting scalar and vector fields from [1] we determine how a scalar field
needs to transform to be Carroll z-scale invariant. The easiest Carrollian scalar
field theory to look at in this case is the “electric” model given by

Ie =
1
2

�
dnx (∂tϕ)

2 . (4.3)

Generally there are two ways to determine the Carroll z-scale invariance
by either looking at the transformations of the coordinates t, x or the vielbein
τ, e, ω. We opted to use the transformations of the coordinates for all but the
2d Carroll dilaton gravity and 2d Carroll swifton scalar field model in the last
section of this chapter.

The transformations are given as

t → tλz (4.4)

x → xλ (4.5)

and automatically determine the transformations of the partial derivatives as

∂t → λ−z∂t (4.6)

∂i → λ−1∂i. (4.7)

17



4 Carroll z-scale invariance

We now want to know how a scalar field needs to transform to be Carroll
z-scale invariant and set

ϕ → ϕλα. (4.8)

where we need to determine the scaling exponent α. Substituting everything
into the “electric” model we get

Ie =
1
2

�
dtdx1 · · · dxd(∂tϕ)

2 → 1
2

�
d(tλz)d(x1λ) · · · d(xdλ)(λ−z∂tλ

αϕ)2 (4.9)

=
1
2

λz+d−2z+2α
�

dtdx1 · · · dxd(∂tϕ)
2. (4.10)

We specifically expanded dnx = dtdx1 · · · dxd to show the general transforma-
tion of the term

dnx → dnxλz+d (4.11)

where d is the number of spatial coordinates. Equation (4.10) gives us the
necessary condition for the whole term to be Carroll z-scale invariant and a way
to determine α

z + d − 2z + 2α = 0 ⇔ α =
z − d

2
. (4.12)

Therefore, a scalar field needs to transform like

ϕ → ϕλα = ϕλ
z−d

2 (4.13)

in order to be Carroll z-scale invariant. If we impose the restriction z = 1, i.e.
isotropic scale invariance, we see that the scalar field would need to transform
as

ϕ → ϕλα = ϕλ
1−d

2 (4.14)

which can never be a positive integer for positive dimension d.
It is interesting to see if one could add a potential term depending on the

scalar field ϕ and get a Carroll z-scale invariant expression. As in standard
quantum field theory this should yield a specific integer exponent for the scalar
field for different dimensions. We look at the full equation

Ie =
1
2

�
dnx

�
(∂tϕ)

2 − V(ϕ)



(4.15)
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4 Carroll z-scale invariance

to see that

dnxV(ϕ)n → dnxλz+dV(ϕ)nλnα = λz+d+nαdnxV(ϕ)n. (4.16)

Therefore, we can get the exponent of the potential by

z + d + nα = z + d + n
z − d

2
=

2z + 2d + n(z − d)
2

!
= 0 ⇔ n =

2(z + d)
d − z

. (4.17)

Let us first assume the isotropic case z = 1, i.e.

n =
2(d + 1)

d − 1
⇒

������������������������������

d = 1 : does not exist

d = 2 : n = 6

d = 3 : n = 4

d = 4 : non-integer

d = 5 : n = 3

6 ≤ d < ∞ : non-integer

d → ∞ : n = 2

(4.18)

This shows that only certain positive dimensions can have integer exponents
in the potential terms. The same analysis for z = 0 yields

n =
2d
d

= 2 ∀d ∈ N. (4.19)

This case is interesting because of its relation to near horizon soft hair [23] and
shows that any potential is compatible with z = 0 scale invariance.
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4 Carroll z-scale invariance

Furthermore, if we let z = 2 we see that

n =
2(d + 2)

d − 2
⇒

������������������������������������������

d = 1 : negative integer

d = 2 : does not exist

d = 3 : n = 10

d = 4 : n = 6

d = 5 : non-integer

d = 6 : n = 4

7 ≤ d ≤ 9 : non-integer

d = 10 : n = 3

d ≥ 11 : non-integer

(4.20)

Of course, these special cases, which were motivated by the algebras and
commutation relations presented in section 2.2, are not exhaustive since we can
assume d = z + 1 and get

n =
2(2z + 1)

1
= 4z + 2 (4.21)

which yields even more examples with integer values for n. Furthermore, it
would be possible for z to be a rational number, i.e. z = p

q . It turns out that this
is a special case of the integer solution since

2(d + p
q )

d − p
q

=
2(dq + p)

dq − p
=

2(d̃ + z̃)
d̃ − z̃

(4.22)

where d̃ = dq and z̃ = p.

4.2 Bi-Scalar Model

The bi-scalar Model introduced in [1] couples two scalar field ϕ, χ with canoni-
cally normalized kinetic terms and a coupling constant g. This is a generalized
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4 Carroll z-scale invariance

mode of the one introduced in [24] to any Carroll background. The action in
covariant form is given as

IM =
1
2

�
dnxΩ

��
vµ∂µϕ

�2
+ (vµ∂mχ) + gBµBµ



(4.23)

where
Bν = vµ

�
∂µϕ∂νχ − ∂µχ∂νϕ

�
= 2vµ∂[µϕ∂ν]χ (4.24)

is a manifestly transverse covariant vector. Since Bν involves simultaneously
time and spatial derivatives, the model allows propagation off the Carroll
lightcone (see [1]). The antisymmetry of the coefficient of vµ is crucial for this
transversality, which would not hold if ϕ = χ since then Bν would be identically
zero.

We have already seen how the scalar fields ϕ, χ need to transform to be
Carroll z-scale invariant so we only need to check the transformation exponent
of BµBµ. It is instructive to go through the whole calculation once. Afterwards
we will obtain the same result by arguing with the properties of Bµ being
“transverse” or “spacelike” as introduced in chapter 2. Let us first expand the
whole expression

BµBµ = vµvµ
��

∂µϕ
�2

(∂νχ)2 − 2∂µϕ∂µχ∂νϕ∂νχ +
�
∂µχ

�2
(∂νϕ)2



(4.25)

= (∂tϕ)
2 (∂νχ)2 − 2∂tϕ∂tχ∂νϕ∂νχ + (∂tχ)

2 (∂νϕ)2 (4.26)

We need to unravel the remaining gradients ∂νϕ = (∂tϕ, ∂iϕ) and ∂νχ =

(∂tχ, ∂iχ) and see that

(∂νϕ)2 = (∂tϕ)
2 + (∂iϕ)

2 (4.27)

(∂νχ)2 = (∂tχ)
2 + (∂iχ)

2 (4.28)

∂νϕ∂νχ = ∂tϕ∂tχ + ∂iϕ∂iχ. (4.29)
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4 Carroll z-scale invariance

Substituting this back into equation (4.26) we get

BµBµ = (∂tϕ)
2
�
(∂tχ)

2 + (∂iχ)
2


− 2∂tϕ∂tχ (∂tϕ∂tχ + ∂iϕ∂iχ) (4.30)

+ (∂tχ)
2
�
(∂tϕ)

2 + (∂iϕ)
2



(4.31)

= (∂tϕ)
2 (∂iχ)

2 − 2∂tϕ∂tχ∂iϕ∂iχ + (∂tχ)
2 (∂tϕ)

2 (4.32)

It is now straightforward to write down the transformation of each term

(∂tϕ)
2 (∂iχ)

2 → λ−2z+2α−2+2α (∂tϕ)
2 (∂iχ)

2 (4.33)

(∂tχ)
2 (∂iϕ)

2 → λ−2z+2α−2+2α (∂tχ)
2 (∂iϕ)

2 (4.34)

∂tϕ∂tχ∂iϕ∂iχ → λ−2z+2α−2+2α∂tϕ∂tχ∂iϕ∂iχ (4.35)

The exponents of all terms are consistent and it is now possible to determine
the transformation of the interaction term BµBµ by looking at the

dnxgBµBµ → dnxλz+dgBµBµλ−2z+2α−2+2α (4.36)

which yields

z + d − 2z + 4α − 2 = −z + d + 4
z − d

2
− 2 = z − d − 2 = 0 ⇔ z = d + 2. (4.37)

Finally, we get
BµBµ → BµBµλz−d−2 (4.38)

Another, easier and quicker, way to the same result is by using the fact
that Bµ needs to be a “transverse” or “spacelike” co-vector defined as being
orthonormal to vµ, vµBµ = 0. If we look at the definition of Bν = vµBµν we see
that

vνBν = vνvµBµν = vνB0ν = B00. (4.39)

Therefore, the only surviving term is

B0i = (∂tϕ∂iχ − ∂iϕ∂tχ) →
�

∂tλ
−zϕλα∂iλ

−1χλα − ∂tλ
−zχλα∂iλ

−1ϕλα



.
(4.40)
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Collecting the terms we see that they are once again consistent (both terms have
the same exponents) and yield the same expression as above

B0i → B0iλ
−z+2α−1 ⇒ B0iB0i → B0iB0iλ−2z+4α−2. (4.41)

The full transformation can then be calculated again by looking at the full
expression

dnxB0iB0i → dnxλz+dB0iB0iλ−2z+4α−2. (4.42)

This is the exact same expression as above and again yields the restriction

z − d − 2 = 0. (4.43)

This simplifies the transformation exponents of the scalar fields to

ϕ → ϕλ
z−d

2 = ϕλ
d+2−d

2 = ϕλ1. (4.44)

We can again try to add a homogeneous polynomial as a potential term
depending on the scalar fields. The full action is given as

IM =
1
2

�
dnxΩ

��
vµ∂µϕ

�2
+

�
vµ∂µχ

�2
+ gBµBµ + V(ϕχ)n



(4.45)

We want to see if there are any choices of exponents for positive integer di-
mension d. In contrast to the simple “electric” model, which does not lead to a
scalar field propagating with finite, non-vanishing velocity, this is impossible.
The transformation yields

dnxV(ϕχ)n → λz+ddnxλnαV(ϕχ)n = λz+d+nαdnxV(ϕχ)n (4.46)

which results in

z + d + nα = z + d + n
z − d

2
= 0 ⇔ n =

−2(z + d)
z − d

(4.47)

This is the same expression as in the “electric” model but this time the parameter
z is already determined by the interaction term as z = d + 2. Therefore, we see
that

n = −2d − 2 (4.48)

which is never positive for positive integer dimensions d.
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4 Carroll z-scale invariance

4.3 Multi-Scalar Model

The bi-scalar model can easily be generalized to a multi-scalar model. The action
with three scalar fields ϕA = (ϕ, χ, ψ) presented in [1] given by

IM3 =
1
2

�
dnxΩ

�
3

∑
A=1

�
vµ∂µϕA


2
+ gBµνBµν

�
(4.49)

is the starting point of our investigations. Again, the transverse tensor Bµν is
given in the familiar form

Bµν = vρBµνρ, Bµνρ = ∂[µϕ∂νχ∂ρ]ψ. (4.50)

In the following it will be clear why the use of the transverse property of the
interaction term is essential since the interaction term is already of order six in
the derivatives.

For the multi-scalar model we start, again, from the definition of Bν

Bν = vµBµν = B0ν (4.51)

and then move forward in an iterative process. Since Bν is a transverse form we
get

vνBν = vνvµBµν = vνB0ν = B00 = 0 (4.52)

as before with the only term surviving

B0i = (∂tϕ∂iχ − ∂iϕ∂tχ) (4.53)

Similarly, for a three scalar model we look again at the transverse term to see

vνBµν = vνvρBµνρ = vνBµν0 = Bµ00 = 0 (4.54)

and see that the only surviving term is

B0ij = (∂tϕ∂iχ∂jψ − ∂tϕ∂jχ∂iψ + ∂iϕ∂jχ∂tψ (4.55)

− ∂iϕ∂tχ∂jψ + ∂jϕ∂tχ∂iψ − ∂jϕ∂iχ∂tψ) (4.56)
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4 Carroll z-scale invariance

Each term consists of one time derivative and two spatial derivatives they all
have the same transformation given by

∂tϕ∂iχ∂jψ → λ−z∂tλ
αϕλ−1∂iλ

αχλ−1∂iλ
αψ = λ−z+3α−2 (4.57)

Substituting this into the full interaction term we get

dnxB0ijB0ij → dnxλz+dB0ijλ
−z+3α−2B0ijλ−z+3α−2λz+d−2z+6α−4dnxB0ijB0ij (4.58)

and we see that BµνBµν is Carroll z-scale invariant if

z + d − 2z + 6α − 4 = −z + d + 6
z − d

2
− 4 (4.59)

= −z + d + 3z − 3d − 4 (4.60)

= 2z − 2d − 4 !
= 0 ⇔ z − d − 2 = 0 (4.61)

This is the exact same result as for the bi-scalar model which is not surprising
since the interaction term always follows the same pattern. Due to the transverse
property of the interaction term only one term survives with any number of
scalar fields. As we have seen before, this term only has one time derivative
and m − 1 spatial derivatives where m is the number of scalar fields in the
multi-scalar model. Concretely, for

Bµ1...µm−1 = vµm Bµ1...µm (4.62)

and due to the transverse property of Bµ1...µm−1

vµm−1 Bµ1...µm−1 = vµm−1vµm Bµ1...µm = Bµ1...µm−200 = 0 (4.63)

the only surviving term is B0i2...im .
We define

m = number of scalar fields (4.64)

l = number of spatial derivatives (4.65)
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4 Carroll z-scale invariance

which are related by l = m − 1. Therefore, we can write down the most general
transformation for a multi-scalar model with m scalar fields as

dnxB0i1...im B0i2...im → dnxλz+dB0i2...im λ−z+mα−lB0i2...im λ−z+mα−l (4.66)

= λz+d−2z+2mα−2ldnxB0i2...im B0i2...im (4.67)

Therefore, for Bµ1...µm−1 to be Carroll z-scale invariant it needs to transform as
follows

z + d − 2z + 2mα − 2l = −z + d + m(z − d)− 2l (4.68)

= −z + d + mz − md − 2(m − 1) (4.69)

= z(m − 1)− d(m − 1)− 2(m − 1) (4.70)

= zm − dm − 2m !
= 0 ⇔

m = 1

z − d − 2 = 0
(4.71)

Since m = 1 means that there is only one scalar field we cannot have any
interaction term at all so this case in not interesting. However, the other case
z − d − 2 = 0 is the same as for the bi-/tri-scalar model which shows that one
can couple different interaction terms together to yield a new action. Again,
this simplifies the transformation exponent of the scalar fields to

ϕ → ϕλ
z−d

2 = ϕλ
d+2−d

2 = ϕλ1. (4.72)

If we try to add a homogeneous polynomial as a potential term depending
on multiple scalar fields again we get the same result as for the bi-scalar model
due to the parameter z which is determined by the interaction term. Therefore,
it is also not possible to add a potential term to this swifton action since

n = −2d − 2. (4.73)

is never positive for positive integer dimensions d.
However, since the restriction z = d+ 2 is the same for all multi-scalar models

it is now possible to combine the interaction terms of an arbitrary amount of
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scalar fields in the action, i.e. actions of the form

IM3 =
1
2

�
dnxΩ

�
3

∑
A=1

�
vµ∂µϕA


2
+ g(BµBµ + BνBν + BρBρ + . . . )

�
(4.74)

where

Bµ = 2vν∂[µϕ∂ν]χ (4.75)

Bν = 2vρ∂[νχ∂ρ]ψ (4.76)

Bρ = 2vµ∂[ρψ∂µ]ϕ (4.77)

. . . (4.78)

are the interaction terms with the scalar fields switched. We will see that the
Carroll multi-scalar swifton actions can even be combined with the spin 1
Carroll swifton theories in the next section.

4.4 Electromagnetic Model

The same ideas as before apply to a non-trivially interaction electromagnetic
model which is constructed as

IEM =
1
2

�
dnxΩ

��
vµFµν

�2
+ gCµνρCµνρ



(4.79)

where we consider the transverse three-form

Cµνρ = vσCµνρσ, Cµνρσ = F[µνFρσ] (4.80)

with the electromagnetic field

Fµν = (∂µ Aν − ∂ν Aµ). (4.81)

A priori the vector Aµ transforms with the unknown exponents a, b as

At → Atλ
a (4.82)

Ai → Aiλ
b (4.83)
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We first look at the transformation restriction for the electromagnetic field
given in the first term

vµFµν = F0i (4.84)

to get

F0i = (∂t Ai − ∂i At) → (λ−z∂tλ
b Ai − λ−1∂iλ

a At) = (λ−z+b∂t Ai − λ−1+a∂i At).
(4.85)

This time the individual terms do not transform consistently so when we
square the whole expression we get three different exponents

−2z + 2b, −2 + 2a, −z + a + b − 1 (4.86)

and in the full term

dnx
�
vµFµν

�2
= dnx(F0i)

2 (4.87)

we then get

z + d − 2z + 2b = −z + d + 2b !
= 0 (4.88)

z + d − 2 + 2a = z + d + 2a − 2 !
= 0 (4.89)

z + d − z + a + b − 1 = d + a + b − 1 !
= 0 (4.90)

In order for the electromagnetic field to be Carroll z-scale invariant all three
equations have to be fulfilled. The first equation yields

b =
z − d

2
(4.91)

The second equation yields

a =
2 − z − d

2
(4.92)

Finally, the third equation is consistent with the solutions for the exponents a, b

d +
2 − z − d

2
+

z − d
2

− 1 =
2d + 2 − z − d + z − d − 2

2
= 0 (4.93)

28



4 Carroll z-scale invariance

Therefore, for the vector Aµ to be Carroll z-scale invariant it needs to transform
as

At → Atλ
2−z−d

2 (4.94)

Ai → Aiλ
z−d

2 (4.95)

Since the interaction term is a transverse three-form we can use the ideas
from the previous sections again to see that

Cµνρvρ = Cµνρσvσvρ = Cµν00 = 0 (4.96)

Therefore, the only term surviving is C0ijk given by

C0ijk = F0iFjk (4.97)

= (∂t Ai − ∂i At)(∂j Ak − ∂k Aj) (4.98)

= ∂t Ai∂j Ak − ∂t Ai∂k Aj − ∂i At∂j Ak − ∂i At∂k Aj (4.99)

Similarly to the case of the electromagnetic field the terms do not transform
consistently but yield two different exponents

∂t Ai∂j Ak → λ−z∂tλ
b Aiλ

−1∂iλ
b Ak = λ−z+2b−1∂t Ai∂j Ak (4.100)

∂i At∂j Ak → λ−1∂tλ
a Aiλ

−1∂iλ
b Ak = λa+b−2∂i At∂j Ak (4.101)

So when we square the expression we get three different terms again

−2z + 4b − 2 = 0, 2a + 2b − 4 = 0, −z + a + 3b − 3 = 0 (4.102)

For the full interaction term to be Carroll z-scale invariant we then get

z + d − 2z + 4b − 2 = −z + d + 4z − 2 !
= 0 (4.103)

z + d + 2a + 2b − 4 !
= 0. (4.104)

z + d − z + a + 3b − 3 = d + a + 3b !
= 0 (4.105)

Since we already know the values of a, b a short calculation shows that all three
equations are fulfilled if

z = d + 2. (4.106)
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This simplifies the transformation exponents of the components of Aµ to

At → Atλ
2−z−d

2 = Atλ
2−d−2−d

2 = Atλ
−d (4.107)

Ai → Aiλ
z−d

2 = Aiλ
d+2−d

2 = Aiλ
1 (4.108)

As with the multi-scalar model, if we try to add a homogeneous polynomial
as a potential term depending on multiple scalar fields again we get the same
result

n = −2d − 2. (4.109)

Therefore, it is also not possible to add a potential term to this swifton action
since it is never positive for positive integer dimensions d.

However, since the electromagnetic model has the same restriction z = d + 2
from the interaction term as the multi-scalar model it is possible to combine
spin 0 and spin 1 theories for Carroll swiftons.

4.5 Carroll Dilaton Gravity in 2D

For the coupling of swiftons to gravity we focus on two spacetime dimensions.
As described in [1] the reason for this is that all known Carroll black hole
solutions are described by 2d models (intrinsically or by dimensional reduction).
The Carroll dilaton gravity in 2d was introduced in [20], [21] and its action
given by

ICDG ∼
�
(Xdω + XH(dτ + ω ∧ e) + XP de + τ ∧ eV(X, XH)) (4.110)

depends on the temporal einbein τ, the spatial einbein e, the Carroll boost con-
nection ω, the dilaton X, the Lagrange multiplier XH for the torsion constraint,
and the Lagrange multiplier XP for the intrinsic torsion constraint.

Like before we want to find the transformation exponents for X, XH, XP and
V(X, XH) so that the whole expression is Carroll z-scale invariant. As quickly
mentioned in the first section, we will now look at the transformations of
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the vielbein instead of the transformations of the coordinates themselves. The
transformations are given as

e → eλ (4.111)

τ → τλz (4.112)

ω → ωλz−1 (4.113)

whereas, for the unknown exponents of X, XH, XP and V(X, XH), we just set

X → Xλa (4.114)

XH → XHλb (4.115)

XP → XPλc (4.116)

V(X, XH) → V(X, XH)λ
d (4.117)

The transformation of the first term of the Carroll dilaton gravity

Xdω → Xλadωλz−1 = λa+z−1Xdω (4.118)

already gives us the transformation for X as

a = 1 − z (4.119)

Now all the other terms need to be consistent with this transformation
restriction so we see that the transformation for XH from the second term must
be given by

XHdτ → XHλbXHλzdτ = λb+zXHdτ (4.120)

where we can substitute z = 1 − a to get

b = a − 1 = −z (4.121)

Furthermore, this needs to be consistent with the term

XH ω ∧ e → XHλbωλz−1 ∧ eλ = λb+z−1+1XH ω ∧ e (4.122)
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which yields the same equation b = −z. We only get one equation for XP

XP de → XPλc deλ = λc+1XP de (4.123)

which simplifies down to

c = −1 = a + z − 2. (4.124)

Finally, for the potential V(X, XH) we get

τ ∧ eV(X, XH) → τλz ∧ eλV(X, XH)λ
d (4.125)

which yields
d = a − 2. (4.126)

Therefore, if we set z = 1 to be the isotropic scaling we get

ICDG ∼
�
(Xdω + XH(dτ + ω ∧ e) + XP de + τ ∧ eV(X, XH)) →�

(Xdω + λ−1XH(dτ + ω ∧ e) + λ−1XP de + τ ∧ eλ−2V(X, XH)) (4.127)

We are now able to state a 2d Carroll swifton scalar field action

I2d =
1
2

�
d2xΩF

�
ϕ̇2 + g(∂̂ϕ)2 + hϕ̇∂̂ϕ



(4.128)

where the coupling function F, g, h may depend on the dilatation X and the
Carroll boost-invariant scalar XH. The volume form in this case is given by
d2Ω = t ∧ e. The most general Carroll invariant second order equation above
combines non-trivially time- and space-derivatives of the scalar field ϕ. Further-
more, it does not introduce any extra structure besides the Carroll background.
The Carroll boost-invariant derivative is defined as

∂̂ = eµ∂µ +
XP

XH
vµ∂µ. (4.129)

The first two terms in equation (4.128) generalize to higher dimensions but the
last one does not. In [1] the authors stress that they added a term in ∂̂ that
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transforms like a Stückelberg field [22], but using only fields that were there
already in the gravity action.

Furthermore, the definition of the Carroll-boost invariant derivative intro-
duces the restriction XH ̸= 0. This shows that one is not allowed to sit on a
Carroll extremal surface introduced in [10]. Therefore, if one needs to extend
the 2d Carroll swifton scalar field action onto a Carroll extremal surface XH = 0,
the coupling function g needs to be chosen appropriately, e.g. g ∝ X2

H. However,
we will see that this is not possible if we want the whole action to be Carroll
z-invariant.

We state the transformations of X, XH and XP in terms of z again since it is
easier to see what the coupling functions need to be proportional to.

X → Xλa = Xλ1−z (4.130)

XH → XHλb = XHλ−z (4.131)

XP → XPλc = XPλ−1 (4.132)

Since we know how X and XH need to transform we can quickly see that

X → λ1−zX =
�
λ−z� z−1

z X ⇔ λ−zX
z−1

z
H (4.133)

XH → λ−zXH =
�

λ1−z

 z

z−1 X ⇔ λ1−zX
z

z−1 (4.134)

Furthermore, we set the transformation of the coupling functions F, g and h
as

F → Fλp (4.135)

g → gλq (4.136)

h → hλr (4.137)

with the scaling exponents p, q, r to be calculated.
We start with the first term to calculate the transformation of the coupling

function F

d2xFϕ̇2 → λz+1d2xFλp(ϕ̇)2λ2(α−z) = λz+1+p+2α−2zd2xFϕ̇2. (4.138)
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4 Carroll z-scale invariance

This yields
p = 0 (4.139)

which means that F has to be constant for the term to be Carroll z-scale invariant
but can be proportional to X

z−1
z

H /X.
Before looking at the second term and the second coupling function g we

first see how ∂̂ϕ transforms. We start by unraveling the definition

∂̂ϕ = eµ∂µϕ +
XP

XH
vµ∂µϕ = ∂iϕ +

XP

XH
∂tϕ (4.140)

where we can then apply the transformations we already know

∂iϕ +
XP

XH
∂tϕ → ∂iϕλα−1 +

XP

XH
λ−1+z∂tϕλα−z (4.141)

= λα−1∂iϕ + λα−1 XP

XH
∂tϕ (4.142)

We can now calculate the scaling exponent for the second coupling function
g by

d2xFg(∂̂ϕ)2 → d2xλz+1Fgλq(∂̂ϕ)2λ2(α−1) = λz+1+q+2α−2d2xFg(∂̂ϕ)2 (4.143)

which yields
q = 2 − 2z. (4.144)

Therefore, we see that for the whole action to be Carroll z-scale invariant the
coupling function g cannot be proportional to X2

H but needs to be proportional

to X2 or X
2(z−1)

z
H . This shows that a Carroll z-scale invariant action of the form

equation (4.128) cannot be extended onto a Carroll extremal surface XH = 0.
Lastly, we look at the transformation exponent for the coupling function h

d2xFhϕ̇∂̂ϕ → d2xλz+1Fhλrϕ̇λα−z∂̂ϕλα−1 = λz+1+r+α−z+α−1d2xFhϕ̇∂̂ϕ (4.145)

Therefore, we get
r = 1 − z. (4.146)
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and the coupling function h is proportional to X or X
z−1

z
H . This shows a peculiar

feature of the 2d-Carroll dilaton gravity action that all coupling functions F, g, h
are different.

Again, if we set z = 1 to be the isotropic (or “standard”) scale again, we see
that

F → Fλ0 (4.147)

g → gλ2 (4.148)

h → hλ1 (4.149)

4.6 Summary

In this section we summarize the results of the whole chapter such that all the
information is easily accessible at a glance.

We started out by investigating the transformation of the “electric” model

Ie =
1
2

�
dnx

�
(∂tϕ)

2 − V(ϕ)



(4.150)

and saw that the scalar field needs to transform like

ϕ → λ
z−d

2 ϕ (4.151)

to be z-scale invariant. If one wants to add an additional potential (depending
on the scalar field ϕ) the scaling exponent of the potential term needs to be

n =
2(z + d)

d − z
. (4.152)

From this equation it is easy to see that only for specific values of the scaling
parameter z and (positive) dimension d the scaling exponent n is an integer, i.e.
for z = 1 we get

n =
2(d + 1)

d − 1
⇒

������������

d = 2 : n = 6

d = 3 : n = 4

d = 5 : n = 3

d → ∞ : n = 2

(4.153)
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In the bi-scalar model

IM =
1
2

�
dnxΩ

��
vµ∂µϕ

�2
+

�
vµ∂µχ

�2
+ gBµBµ + V(ϕχ)n



(4.154)

the terms for the scalar fields have not changed, hence they transform the
same way as before. However, due to the additional interaction term we get a
restriction on the values on the scaling exponents since it has to transform like

BµBµ = λz−d−2BµBµ. (4.155)

Therefore, in the bi-scalar model, the scalar fields need to transform like

ϕ → λϕ (4.156)

in order to be z-scale invariant. In contrast to the “electric” model, this Carroll-
invariant scalar field theory cannot have a positive scaling exponent n for the
potential term for positive dimension d since

n = −2d − 2. (4.157)

Surprisingly, the same multi-scalar model (here with three scalar fields)

IM3 =
1
2

�
dnxΩ

�
3

∑
A=1

�
vµ∂µϕA


2
+ gBµνBµν + V(ϕχψ)n

�
(4.158)

has the exact same scaling exponents for the scalar fields and the interaction
term as the bi-scalar model. On the one hand, this means that it is still not
possible to add a potential term with positive scaling exponent. On the other
hand, this shows that it is possible to combine the interaction terms of an
arbitrary amount of scalar fields in the action, e.g.

IM3 =
1
2

�
dnxΩ

�
3

∑
A=1

�
vµ∂µϕA


2
+ g(BµBµ + BνBν + BρBρ + . . . )

�
. (4.159)

The next Carroll-invariant field theory we looked at was the electromagnetic
model

IEM =
1
2

�
dnxΩ

��
vµFµν

�2
+ gCµνρCµνρ



(4.160)
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with the electromagnetic field

Fµν = (∂µ Aν − ∂ν Aµ). (4.161)

For the vector Aµ we found that it has to transform like

At → Atλ
2−z−d

2 (4.162)

Ai → Aiλ
z−d

2 (4.163)

to be z-scale invariant. However, the interaction term also imposes restriction
on the values of the scaling exponents which, again, turns out to be

CµνρCµνρ → λz−d−2CµνρCµνρ. (4.164)

Therefore, the transformation exponents of the vector Aµ reduce to

At → Atλ
−d (4.165)

Ai → Aiλ. (4.166)

The last model we looked at was the Carroll dilaton gravity in two dimensions
for the coupling of swiftons to gravity. The Carroll dilaton gravity in 2d is given
by

ICDG ∼
�
(Xdω + XH(dτ + ω ∧ e) + XP de + τ ∧ eV(X, XH)) (4.167)

and is z-scale invariant if

X → λ1−zX (4.168)

XH → λ−zXH (4.169)

XP → λ−1XP (4.170)

V(X, XH) → λ−z−1V(X, XH). (4.171)

A quick calculation also shows that

X → λ−zX
z−1

z
H (4.172)

XH → λ1−zX
z

z−1 . (4.173)
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Finally, the 2d Carroll swifton scalar field action is given as

I2d =
1
2

�
d2xΩF

�
ϕ̇2 + g(∂̂ϕ)2 + hϕ̇∂̂ϕ



(4.174)

where the coupling function F, g, h may depend on the dilatation X and the
Carroll boost-invariant scalar XH and the Carroll boost-invariant derivative is
introduced as

∂̂ = eµ∂µ +
XP

XH
vµ∂µ. (4.175)

The scaling exponents of the coupling functions are then given by

F → λ0F = F (4.176)

g → λ2−2zg (4.177)

h → λ1−zh (4.178)

which shows the peculiar feature of the 2d-Carroll dilaton gravity action that
all coupling functions are different. Furthermore, the coupling constant g is

proportional to X2 or X
2(z−1)

z
H which shows that the above Carroll z-scale invariant

action cannot be extended to a Carroll extremal surface XH = 0.
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5 Conclusion

In this thesis, we first introduced the general mathematical framework of Carrol-
lian physics as well as the derivation of the “electric” and “magnetic” Carrollian
scalar field theories. We also gave a motivation on why the study of Carroll
symmetries might be fruitful as conformal Carroll field theories are expected
to be dual to quantum gravity in asymptotically flat spacetimes. Furthermore,
different examples of the Carroll groups/algebras were introduced.

In chapter 3, we recalled the construction and properties of Carroll-invariant
scalar and vector field theories with fields propagating outside the Carroll
lightcone, i.e. at a speed strictly greater than zero. The authors of [1] coined
those “Carroll swiftons” to distinguish them from the standard Lorentzian
“tachyons” since they also propagate outside the lightcone but do not possess
the usual pathologies that come from the standard Lorentz tachyonic instabilities
(like the unboundedness from below of the energy). Specifically, we recalled
that the bi-scalar, multi-scalar and electromagnetic model had indeed a lower
bound for the energy density and the model for Carroll swiftons coupled with
2d dilaton gravity.

The next step and main part of this thesis was then to check for which scaling
exponent z and which dimension d these Carroll-invariant scalar and vector
field theories are Carroll z-scale invariant. Here, scaling exponent z represents
an anisotropy parameter of Lifschitz type where z = 1 is the isotropy (or
“standard”) scale. We have seen that, analogously to classical quantum field
theories, only a certain exponent for a potential term is allowed for a certain
dimension d and scale z. However, we have also shown that, for any of the
constructed “Carroll swiftons” in [1], the exponent of the additional potential
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term can not be positive opposed to the “electric” model.
From this point on the Carroll z-scale invariance of the remaining Carroll-

invariant field theories was studied and it turned out that the bi-scalar, multi-
scalar and electromagnetic model have the same restriction on the scale z,
namely

z = d + 2. (5.1)

Therefore, it is possible to combine interaction terms from the bi-scalar and
multi-scalar models not limited to the ones introduced [1]. Furthermore, it is
possible to combine the spin 0 and spin 1 Carroll-invariant scalar/vector field
theories and their interaction terms.

Lastly, we investigated the Carroll z-scale invariance of the Carroll dilaton
gravity in 2d introduced in [20], [21] were we used the equivalent transforma-
tions of the Cartan variables e, τ, ω instead of the coordinates t, x to determine
for which scale z and dimension d the action is Carroll z-scale invariant. We
found the scaling exponent of the dilaton X, the Lagrange multiplier XH for the
torsion constraint, the Lagrange multiplier XP for the intrinsic torsion constraint
and the potential V(X, XH). Consequently, we then found the transformations
for the coupling functions F, g and h of the 2d Carroll swifton scalar field action
and showed that, in contrast to the the Lorentzian case, the coupling functions
all transform differently and that this model cannot be extended to the Carroll
extremal surface XH = 0.
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