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Motivation for Exploring Novel Beam-Intercepting Materials

Particle-production targets, beam windows, absorbers, ...

Absorber

The NuMI beam (Fermilab) Muon Monitors
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Target Station

Protons hit target
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swelling (FNAL)

« Target components are constantly bombarded by
high-energy high-intensity beams

— Operate under extreme conditions, enduring beam-
induced thermal shock and radiation damage

— Need to withstand millions of beam pulses NOvVA 1-MW target. Peak temperature rise ~ 245 °C from

. . . . . . - 7
« Conventional materials are reaching their limits, 10-his beam puise (2.5 107K05)
and restricting the scope of experiments
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Impacts of Beam-Induced Radiation Damage and Thermal Shock

Radiation Damage: disruption of lattice structure of the material upon irradiation
Expressed by Displacements Per Atom (DPA)

L ke e « Hardening and embrittlement (loss of ductility)
s « Bulk swelling (dimensional changes)
020, * Fracture toughness reduction
oo « Thermal conductivity reduction
o «  Coefficient of thermal expansion increase
. > e « Transmutation and gas production

Interstital impurity atom
Self interstitial atom

Precipiate of
impunity atoms

Interstirial type Dimensional changes after irradiation,
dislocation loop D.L. Porter and F. A. Garner, J. Nucl.
Mater., 159, p. 114 (1988)

Thermal Shock: Localized energy deposition in the
material induces dynamic stress waves

» Caused by short pulsed beams

» Cyclic loading environment can lead to fatigue failure

Sigraflex graphite (left) and Iridium (right) targets tested at CERN’s
HiRadMat facility with high-intensity single-shot beam pulse
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Looking Beyond Conventional Materials

To advance the state-of-the-art of beam-intercepting
materials

« Enable future multi-MW accelerator target facilities
—  LBNF/DUNE 2.4 MW, Mu2e-Il, Future Muon Collider (4 MW+), ...

«  Maximize particle production efficiency, improve
reliability and operation lifetimes

High-Entropy Alloys and Nanofiber Materials
Development Program
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Neutrino HPT R&D Materials Exploratory Map
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* Expect >10x increase in accumulated
proton fluence and power density
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Why High-Entropy Alloys (HEAs)

* Unlike conventional alloys, HEAs contain multiple principal

elements in roughly equal proportions

« Offer large composition space to explore new alloy systems

with tunable properties

S -
(a) Conventional alloy, (b) High-entropy alloy

(Miracle & Senkov, 2016)

HEAs have shown promising properties and remarkable radiation damage resistance

* High-temperature strength

* High specific strength

* Improved fatigue and fracture
properties

» Corrosion and oxidation resistance

 Enhanced radiation tolerance

«  Greater phonon scattering, sluggish
diffusion of atoms/defects, broad
migration energies, and more...
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Void swelling shown to be less pronounced in more
compositionally complex alloys upon heavy-ion
irradiation (3-MeV Ni* ions to 5 x 1016 cm-2 at 773 K),
Lu et al., Nature Com., 2016

~6.7%

Ni 3 MeV Ni ion irradiation

~1.1%
Nicocr ~0-33%  <0.2%

NiCoFeCr NiCoFeCri
NiFe NiCoFe

30

0
Samples

Swelling of increasingly complex alloys
under ion irradiation, Jin et al., Scripta
Materialia 119 (2016)
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HEAs for Accelerator Beam Windows

Elemental selection considerations “K ”C”g -
« Light-weight elements (low density) o
«  Primarily a single-phase Cs Ba la

 Minimal activation

Li Be

HEA design approach: CALPHAD simulations to predict
phase diagrams of the multicomponent alloy system
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CrMnV (Barron et al., 2020)
Equimolar BCC single phase

CrMnTiV
Impurity getter

AICrMnTiV
BCC phase stabilizer
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HEA Synthesis & Characterization

. SEM-EDS maps of
Sectioned arc-melted Larger plates fabrication by CrMnV alloy

ingots (UW-Madison) Sophisticated Alloys Inc.

* Plates underwent heat treatment to

promote single phase . i
* HIP under Ar at 1200 °C, 15 ksi for 4 hrs 3000
» Homogenized at 1200 °C for 48 hrs 00
é 2000 211)

1500

" B=[011]

» Achieved target composition within 1 at%

_ _ 1000 (200) 0.5 um ; a=301 A
« SEM-EDS confirmed homogeneity 0 ] j — T —
« XRD confirmed BCC single phase T e w e oo o0 o ow o w
BCC XRD peaks .y .
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Evaluating Radiation Damage with Low-Energy lon Irradiation

 lon irradiation: fast, inexpensive, no activation
« Study radiation-induced effects in the material
 Voids, dislocation loops, elemental segregation
* Phase stability

* Hardening and embrittlement through micromechanical
testing methods

D impl . .
Elalmagfa andl imp 'antatllon pr?flle f'or CrMnV Samples in holder prior
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CrMnV HEA and Ti-6Al-4V irradiation
« 3.7 MeV V2+ions at 500 °C
\ ' « 50 and 100 DPA at 2.5x10'2 ions/cm2/s
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Post-Irradiation Radiation-Induced Microstructural Defects
TEM analysis of CrMnV and Ti-6Al-4V samples at 50 DPA

Ti-6Al-4V at 50 DPA CrMnV at 50 DPA

- \‘~ g
Disloqatio;t_j

" N. Crnkovich, UW-Madison

« Void formation and dislocation loops * Needle morphology observed, as in
observed in irradiated region unirradiated condition, but no discernible

segregation along needles

* No voids or dislocation loops observed
2& Fermilab
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HEAs Exposed to High-Intensity Pulses at CERN’s HiRadMat Facmty

« Thermal shock test of several HEA specimens
 Single-shots: 7 X 102 protons/pulse, 440 GeV, ¢: 0.25 mm
« AT ~1200°Cin 8 us

* No visible damage to HEA specimens

« Ensuing profilometry and SEM will assess
plastic deformation

Delamination of
graphite foll
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Minimal Hardening of CrMnV HEA up to 100 DPA

| | Tis4
[ CrMnV

Hardness (GPa)

40 | |EEEETI64
[ CrMinY

50 100 50 100
Displacements per atom (dpa) Displacements per atom (dpa)

» Less than 5% hardening of CrMnV at 100 DPA

» Hardening of up to 30% in Ti-6AIl-4V at 100 DPA

« Likely due to observed irradiation-induced voids and dislocations
from TEM analysis
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Berkovich tip
nanoindentation
matrix on sample

No observable cracks
at corners of indents
indicate ductility
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HEA Design Refinement

- Systematic qompog’uonal space search using high-throughput CrMnV (Barron et al,, 2020)
CALPHAD simulations Equimolar BCC single phase
« ~120,000 composition explored/optimized .
. : CrMnTiV

« Broaden BCC single phase region Impurity getter

* Reduce concentration of impurities
: . AICrMnTiV

* Introduce semi-coherent B2 phase and reduce density BCG phase stabilizer

AlICoCrMnTiV

Semi-coherent secondary phase

Material characterization,
irradiation and post-irradiation
characterization underway

New batch of optimized HEAs AICoCrMnTiV HEA, Grain size ~ 150 — 500 pum
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Electrospun Nanofiber Materials

* Intrinsically tolerant to both thermal shock and
radiation damage

 Nanofiber continuum is discretized at the
microscale but continuum at meso-scale

* More uniform heating - fiber diameter orders of
magnitude smaller than typical beam spot sizes
* Fiber discontinuity mitigates stress wave
propagation
« Evidence of radiation damage resistance due
to nanopolycrystalline structure of nanofibers

« Large number of grain boundaries acts as
defect sinks

Ohmic flow 1 Convective flow
- . -
i
Slow 1 Rapid
acceleration 1 acceleration =
i
Flat !
needle ] pm——
y KV/ X i Collector
+- I
Taylor cone H plate
i
1 Transition liquid .
! to solid Photo: Reidar Hahn, FNAL

Electrospinning technique and Taylor cone.

SEM images of Zirconia nanofibers produced at Fermilab,
(a) bulk nanofiber mat, (b) single nanofibers revealing
polycrystalline grains (Bidhar et al., PRAB, 24, 2021)
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In-Beam Tests of Ceramic Nanofibers

Normalized Intensity

lon irradiation (in-situ TEM) & Thermal shock test (HiRadMat) Q
Argonne & o ) HiRadMat
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TEM after irradiation 2
. =
* 1 MeV Kr2* ion 2
+ 3.25x 10" ions/cm?, 5 dpa =
. =]
* No measurable change in 2.
lattice parameter 0:0.25 mm, 1.21 x 103 protons in 4 :
* No defects formation P T L P H
* Initial evidence of radiation - Observed damage in higher packing density
damage resistance IVEM (ANL) samples (W. Asztalos, Paper TUPS44)

S. Bidhar, PRAB, 24, 2021
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Tungsten Nanofiber Production

15

High-density material to compensate for the
reduced effective density in nanofiber form
(W nanofiber ~2 g/cm3)

Primary challenge is reducing oxide content
after heat treatment of W-doped polymer
nanofiber sample (several iterations)

In-situ XRD finally showed heat treatment at
850 °C in forming gas (95%N,, 5%H,)
produced 99%W-1%WO,

Currently planning in-situ ion irradiation to
assess radiation damage behavior

5/23/24
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In-situ XRD of tungsten nanofibers during heat treatment
(IMSERC facility — Northwestern University)
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Conclusions

16
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Initial HEA synthesis and tests demonstrate promising
radiation damage tolerance
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Success in fabricating highly pure Tungsten
Nanofibers

v onga: N

lterative novel material development process
» Refining composition and microstructure (heat treatment)
* Microstructural characterization and bulk property testing before and after irradiation
« Complementary DFT and MD modeling of radiation damage effects to guide material design
« Irradiation and evaluation under prototypic beam conditions (high-energy proton beams)

Our goal is to develop robust target materials to enable next-generation multi-MW
accelerator target facilities
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