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NOvA 1-MW target. Peak temperature rise ~ 245 ºC from 
10-μs beam pulse (2.5 × 107 K/s)

Motivation for Exploring Novel Beam-Intercepting Materials
Particle-production targets, beam windows, absorbers, …

MINOS NT-02 target failure along 
beam path: radiation-induced 
swelling (FNAL)

Primary beryllium  window embrittlement 
(FNAL)

• Target components are constantly bombarded by 
high-energy high-intensity beams
– Operate under extreme conditions, enduring beam-

induced thermal shock and radiation damage
– Need to withstand millions of beam pulses

• Conventional materials are reaching their limits, 
and restricting the scope of experiments

The NuMI beam (Fermilab)

120-GeV proton beam
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Impacts of Beam-Induced Radiation Damage and Thermal Shock
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Radiation Damage: disruption of lattice structure of the material upon irradiation
Expressed by Displacements Per Atom (DPA)

Thermal Shock: Localized energy deposition in the 
material induces dynamic stress waves
• Caused by short pulsed beams 
• Cyclic loading environment can lead to fatigue failure

• Hardening and embrittlement (loss of ductility)
• Bulk swelling (dimensional changes)
• Fracture toughness reduction
• Thermal conductivity reduction
• Coefficient of thermal expansion increase
• Transmutation and gas production
• …

Dimensional changes after irradiation, 
D.L. Porter and F. A. Garner, J. Nucl. 
Mater., 159, p. 114 (1988) 

Sigraflex graphite (left) and Iridium (right) targets tested at CERN’s 
HiRadMat facility with high-intensity single-shot beam pulse
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• Expect >10x increase in accumulated 
proton fluence and power density

To advance the state-of-the-art of beam-intercepting 
materials
• Enable future multi-MW accelerator target facilities

– LBNF/DUNE 2.4 MW, Mu2e-II, Future Muon Collider (4 MW+), …

• Maximize particle production efficiency, improve 
reliability and operation lifetimes

High-Entropy Alloys and Nanofiber Materials 
Development Program

Neutrino HPT R&D Materials Exploratory Map

Looking Beyond Conventional Materials

Materials 
simulation and 
design 
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Why High-Entropy Alloys (HEAs)
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• Unlike conventional alloys, HEAs contain multiple principal 
elements in roughly equal proportions

• Offer large composition space to explore new alloy systems 
with tunable properties

• High-temperature strength
• High specific strength
• Improved fatigue and fracture 

properties
• Corrosion and oxidation resistance
• Enhanced radiation tolerance

• Greater phonon scattering, sluggish 
diffusion of atoms/defects, broad 
migration energies, and more…

HEAs have shown promising properties and remarkable radiation damage resistance

Swelling of increasingly complex alloys 
under ion irradiation, Jin et al., Scripta 
Materialia 119 (2016)

Void swelling shown to be less pronounced in more 
compositionally complex alloys upon heavy-ion 
irradiation (3-MeV Ni+ ions to 5 x 1016 cm-2 at 773 K), 
Lu et al., Nature Com., 2016

(a) Conventional alloy, (b) High-entropy alloy 
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HEAs for Accelerator Beam Windows
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Elemental selection considerations
• Light-weight elements (low density)
• Primarily a single-phase 
• Minimal activation

CrMnV (Barron et al., 2020)
Equimolar BCC single phase

CrMnTiV
Impurity getter

AlCrMnTiV
BCC phase stabilizer

AlCoCrMnTiV
Semi-coherent secondary phase

HEA design approach: CALPHAD simulations to predict 
phase diagrams of the multicomponent alloy system

Single body-centered-
cubic phase predicted by 
CALPHAD (400 – 500 ºC)

Equimolar CrMnV 
phase diagram
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HEA Synthesis & Characterization
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Sectioned arc-melted 
ingots (UW-Madison)

Larger plates fabrication by 
Sophisticated Alloys Inc.

• Plates underwent heat treatment to 
promote single phase
• HIP under Ar at 1200 ºC, 15 ksi for 4 hrs
• Homogenized at 1200 ºC for 48 hrs

• Achieved target composition within 1 at%
• SEM-EDS confirmed homogeneity
• XRD confirmed BCC single phase

SEM-EDS maps of 
CrMnV alloy

BCC XRD peaks

N. Crnkovich, UW-Madison
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Evaluating Radiation Damage with Low-Energy Ion Irradiation
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• Ion irradiation: fast, inexpensive, no activation
• Study radiation-induced effects in the material

• Voids, dislocation loops, elemental segregation
• Phase stability
• Hardening and embrittlement through micromechanical 

testing methods Wisconsin Ion Beam Laboratory (IBL)

Damage and implantation profile for CrMnV Samples in holder prior 
to irradiation

CrMnV HEA and Ti-6Al-4V irradiation
• 3.7 MeV V2+ ions at 500 ºC
• 50 and 100 DPA at 2.5×1012 ions/cm2/s
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Post-Irradiation Radiation-Induced Microstructural Defects
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TEM analysis of CrMnV and Ti-6Al-4V samples at 50 DPA

Ti-6Al-4V at 50 DPA CrMnV at 50 DPA

• Void formation and dislocation loops 
observed in irradiated region

• Needle morphology observed, as in 
unirradiated condition, but no discernible 
segregation along needles

• No voids or dislocation loops observed

N. Crnkovich, UW-Madison
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HEAs Exposed to High-Intensity Pulses at CERN’s HiRadMat Facility
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• Thermal shock test of several HEA specimens
• Single-shots: 7×1012 protons/pulse, 440 GeV, 𝜎: 0.25 mm
• ΔT ~1200 ºC in 8 μs

• No visible damage to HEA specimens
• Ensuing profilometry and SEM will assess 

plastic deformation

Delamination of 
graphite foil

0Fermilab 



Minimal Hardening of CrMnV HEA up to 100 DPA
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• Less than 5% hardening of CrMnV at 100 DPA
• Hardening of up to 30% in Ti-6Al-4V at 100 DPA

• Likely due to observed irradiation-induced voids and dislocations 
from TEM analysis

No observable cracks 
at corners of indents 
indicate ductility

Berkovich tip 
nanoindentation 
matrix on sample
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HEA Design Refinement
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CrMnV (Barron et al., 2020)
Equimolar BCC single phase

CrMnTiV
Impurity getter

AlCrMnTiV
BCC phase stabilizer

AlCoCrMnTiV
Semi-coherent secondary phase

• Systematic compositional space search using high-throughput 
CALPHAD simulations
• ~120,000 composition explored/optimized
• Broaden BCC single phase region
• Reduce concentration of impurities
• Introduce semi-coherent B2 phase and reduce density

AlCoCrMnTiV HEA, Grain size ≈ 150 – 500 𝜇m 

Material characterization, 
irradiation and post-irradiation 
characterization underway

New batch of optimized HEAs
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Electrospun Nanofiber Materials
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SEM images of Zirconia nanofibers produced at Fermilab, 
(a) bulk nanofiber mat, (b) single nanofibers revealing 
polycrystalline grains (Bidhar et al., PRAB, 24, 2021)

Electrospinning technique and Taylor cone.

• Intrinsically tolerant to both thermal shock and 
radiation damage

• Nanofiber continuum is discretized at the 
microscale but continuum at meso-scale
• More uniform heating - fiber diameter orders of 

magnitude smaller than typical beam spot sizes
• Fiber discontinuity mitigates stress wave 

propagation
• Evidence of radiation damage resistance due 

to nanopolycrystalline structure of nanofibers
• Large number of grain boundaries acts as 

defect sinks

Photo: Reidar Hahn, FNAL
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In-Beam Tests of Ceramic Nanofibers
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Ion irradiation (in-situ TEM) Thermal shock test (HiRadMat)

TEM before irradiation

TEM after irradiation

IVEM (ANL)
S. Bidhar, PRAB, 24, 2021

• 1 MeV Kr2+ ion
• 3.25 x 1015 ions/cm2, 5 dpa 
• No measurable change in 

lattice parameter
• No defects formation
• Initial evidence of radiation 

damage resistance

Low
 packing density

H
igh packing density

440 GeV protons, σ: 0.25 mm, 1.21 x 1013 protons in 4 µs

• Observed damage in higher packing density 
samples (W. Asztalos, Paper TUPS44)
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Tungsten Nanofiber Production
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• High-density material to compensate for the 
reduced effective density in nanofiber form 
(W nanofiber ~2 g/cm3)

• Primary challenge is reducing oxide content 
after heat treatment of W-doped polymer 
nanofiber sample (several iterations)

• In-situ XRD finally showed heat treatment at 
850 ºC in forming gas (95%N2, 5%H2) 
produced 99%W-1%WO2 

• Currently planning in-situ ion irradiation to 
assess radiation damage behavior

In-situ XRD of tungsten nanofibers during heat treatment 
(IMSERC facility – Northwestern University)

SEM of W nanofibers showing 0.5 μm fiber diameter
5µm 
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Conclusions
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• Initial HEA synthesis and tests demonstrate promising 
radiation damage tolerance

• Success in fabricating highly pure Tungsten 
Nanofibers

• Iterative novel material development process
• Refining composition and microstructure (heat treatment)
• Microstructural characterization and bulk property testing before and after irradiation
• Complementary DFT and MD modeling of radiation damage effects to guide material design
• Irradiation and evaluation under prototypic beam conditions (high-energy proton beams)

• Our goal is to develop robust target materials to enable next-generation multi-MW 
accelerator target facilities

CrMnTiV AS-Casi 
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