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Abstract: We discuss a formalism where a universe is identified with the support of a
wave function propagating through space-time. The dynamics is of a squeezing type, with
shrinking in time and expanding in space. As opposed to classical cosmology, the resulting
universe is not a spacelike section of some space-time but a hyperlayer of a finite timelike
width, a set which is not a three-dimensional submanifold of space-time. The universe is in
superposition of different localizations in both space and time so that x? = ct has the same
formal status of a position operator as the remaining three coordinates. We test the formal-
ism on the example of a universe that contains a single harmonic oscillator, a generalization
of the curvature-dependent Carifiena-Rafiada-Santander (CRS) model. As opposed to the
original CRS formulation, here, the curvature is not a parameter but a quantum observable,
a function of the world-position operator. It is shown that asymptotically, for large values
of the invariant evolution parameter T, one reconstructs the standard quantum results, with
one modification: The effective (renormalized) mass of the oscillator decreases with T. The
effect does not seem to be a peculiarity of harmonic oscillators, so one may speculate that
masses of distant elementary quantum systems are greater than the values known from
our quantum mechanical measurements.

Keywords: quantum time; quantum cosmology; hyperbolic space; invariant-time dynamics;
relativistic harmonic oscillator

1. Introduction

Our human brains have no difficulty imagining a two-dimensional surface, al-
though “surfaces” known from physical experience are objects with non-zero thickness;
hence, they are layers not surfaces. Realistic layers consist of atoms, but quantum mechan-
ics describes atoms as objects that do not possess concrete positions in space. Rather, atoms
are in superpositions of different localizations and thus are fundamentally delocalized.
In effect, at the most fundamental level, we are always dealing with “quantum surfaces”
that exist in superpositions of different geometries.

A similar situation is found in space-time physics. What we regard as “space” is
modeled as a three-dimensional hypersurface of space—time, an object with zero thickness
in timelike directions. Yet, our experience of time is fleeting and ephemeral. It is very
difficult, if not impossible, to be truly here and now. In this sense, we do not have everyday
experience with space as a three-dimensional submanifold of space-time. The experience
of “now” seems as delocalized as the atoms that form a quantum surface. Perhaps what we
regard as space is not a hypersurface but a hyperlayer.

This is the first intuition behind the present paper. The second intuition is related to
the passage of time.
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The passage of time means that even if we accept that “now” is somewhat uncertain,
the past should eventually disappear and a sufficiently distant future should not yet
exist. This type of behavior does not appear to have an equivalent in standard relativistic
physics but is well known from quantum mechanics. Indeed, a propagating wave packet
represents a particle in superposition of different localizations, concentrated around the
point of maximal probability density. By the Ehrenfest theorem, the average position of
the wave packet propagates along a solution of a classical Newton equation. A probability
of finding the particle far behind, or far ahead of the wave packet is negligible. Now, it
is enough to replace the space coordinate by x? = ct and treat the evolution parameter, T
say, as something distinct from x. A suitable wave packet propagates along x’, and the
result is precisely the dynamics where the past literally disappears, the future has not
yet happened, and the uncertainty of “now” is represented by the width of the packet.
A three-dimensional classical hypersurface is then obtained by an appropriate Ehrenfest
theorem; in exactly the same way, a classical solution of Newton's equation is found if we
follow the average of the position operator.

Let us stress again that a hyperlayer in four dimensions should not be confused with a
four-dimensional hypersurface of a (D > 4)-dimensional space, similarly to an ordinary
layer in three-dimensional space that is not a hypersurface in D > 3 dimensions. In this
sense, what we discuss should not be regarded as a version of a Pavsi¢-type quantized
gravity [1,2], as the latter is based on higher-dimensional embeddings of four-dimensional
hyper surfaces.

The idea we have just outlined is not entirely new. It seems that its first explicit
formulation was given, for a 1+1 dimensional toy-model, in [3]. A generalization valid for
any dimension was completed in [4] for the case of an empty universe. An inclusion of
matter was briefly discussed in [4] as well, but a concrete study of a quantum mechanical
system that exists and evolves in such a quantum space—-time is still missing. The present
paper is the first attempt of formulating and exactly solving a non-toy model in 1+3.

For obvious reasons, a harmonic oscillator is our first target. Standard non-relativistic
oscillator is simple, well understood, exactly solvable by the factorization method, and is
a cornerstone of field quantization. On the other hand, when it comes to relativistic
physics, numerous possibilities occur. A generalization based on the Dirac equation was
introduced by Moshinsky and Szczepaniak [5,6]. An alternative Dirac-type relativistic
harmonic oscillator implicitly occurs in the so-called second Dirac equation [7], whose
deep and exhaustive discussion can be found in [8]. A generalization where the kinetic
term of the Hamiltonian is proportional to the d’Alembertian aﬂay in Minkowski space,
while the potential is proportional to x,x*, is discussed in [9], generalizing the earlier
works of Stueckelberg, Horwitz, and Piron [10-12]. The Horwitz Hamiltonian is also
basically equivalent to Born’s “metric operator” p,p" + x,x" (in dimensionless units),
generating a spectrum of meson masses [13]. The formalism from [9] is similar to ours in
that the evolution parameter is unrelated to x. In both formulations, the Hilbert spaces
consist of functions integrable with respect to d*x. However, both theories employ different
Hamiltonians, different boundary conditions, and different correspondence principles with
standard quantum mechanics. Our treatment of the harmonic oscillator is closest to the
approach of Carifiena, Rafiada, and Santander (CRS) [14,15], but the overall structure of
our Schrodinger equation differs in the form of the free Hamiltonian, with empty universe
as a reservoir for matter fields, a missing element of the formalism from [14,15].

We begin in Section 2 with a summary of the formalism proposed in [4]. We concentrate
on the distinction between the universe and its background space-time and on the meaning
of the boundary condition. In Section 3, we discuss in some detail the dynamics of the
empty universe. An explicit example, adapted from [4], illustrates the evolution in 1+1
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dimensional background (Appendix A discusses a similar but easier to interpret model,
with the Minkowski space in (1+1)D replaced by the Euclidean plane). We also introduce
the notion of a configuration-space universe. In Section 4, we give a concrete example
of a single oscillator coupled to the universe whose background Minkowski space is
143 dimensional. We discuss both Schrodinger and interaction pictures. The interaction
picture eliminates the free evolution of the universe for the price of making 7-dependent
the Hamiltonian of the oscillator. This T dependence will manifest itself in the form of
the ground state, making the impression that the mass of the oscillator decreases with
7. The effective T dependence of mass can be ignored at time scales available in typical
quantum measurements but, in principle, could influence the interpretation of data from
very distant objects. The next two sections discuss in detail the ground state of the oscillator.
We first analyze in Section 5 an approximation that is simpler to analyze than the exact
model from [14,15]. We concentrate on the ground state, but all the excited states can
be found in Appendix B. We show that the ground state is a Gaussian but with respect
to the geodesic position operator # = % ® &, whose eigenvalues represent the geodesic
distance r = x¢ computed along the hyperboloid x* = g,,,x*x". In Section 6, we perform
an analogous analysis of the ground state for the CRS oscillator. As opposed to the original
CRS formulation, the solution we find describes an oscillator in superposition of different
and 7-dependent curvatures of the universe. The curvature that occurs in the solution
is not, as opposed to [14,15], a parameter but a quantum observable, a fact proving that
we indeed discuss a quantum oscillator in a quantum universe. It is also shown that
differences between the exact CRS model and its much simpler approximate form are
visible only for small 7, that is, in the early stages of evolution of our quantum universe.
For 7 corresponding to the Hubble time, both models are indistinguishable, a result useful
from the point of view of the correspondence principle with standard quantum mechanics.
Section 7 is devoted to the reduction 1 + 3 — 3, obtained by integrating out the width of
the layer. We show that the resulting probability density is a bell-shaped curve similar to a
Gaussian but more smeared out. Section 8 looks at the above issues from the perspective
of a general two-body problem. In Appendix C, we discuss an alternative definition of
the harmonic oscillator associated with a given Laplace-Beltrami operator. Unfortunately,
the resulting potential does not lead to any known factorization of the Hamiltonian.

2. Expanding Quantum Universe

In the formalism proposed in [4] a universe is identified with a T-dependent subset of
the background Minkowski space M of signature (+ — ... —) in D dimensions. A point
x € M is said to belong to the universe if ¥;(x) # 0, where ¥ is a solution of a certain
Schrodinger-type equation,

Ve =HY,, Yo=e MY, 1)

The evolution parameter T is dimensionless. ¥+ (x) is normalized in a T-invariant way,
(Wel¥r) = [ aPal¥r(xP =1, @
+

but only for T > 0. For T < 0, the norm can become T dependent. Thus, (2) simul-
taneously defines a minimal possible value of T and the corresponding arrow of time.
Hamiltonian H is not self-adjoint, and yet it generates meaningful unitary dynamics of
the universe. The non-self-adjointness is related to the existence of a minimal value of T
(see Appendix A for an analogous but more intuitive example formulated in the Euclidean
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plane R?). For large T, the asymptotic evolution of the universe should reconstruct the form
of quantum mechanics we know from textbooks.

V. consists of future-timelike world-vectors x*. The origin of the cone, x = 0, is arbitrary.
In standard classical Friedmann-Robertson—Walker (FRW)-type cosmology it might be natural
to identify x = 0 with the Big Bang, whereas in our model, the initial condition at 7 = 0
corresponds to a universe that is not localized at a point in space-time. The initial boundary
condition reads ¥o(x) = 0if x ¢ V4. Such a ¥ (x) vanishes outside of the cone V., including
dV,, the future light cone of the origin x = 0. We additionally assume that the initial

wavefunction ¥o(x) is smooth and vanishes if x = 1/(x9)2 — (x1)2 — ... — (xP~1)2 does not
belong to a certain open interval | Ag, By[C R.. The possible values of T turn out to be related
to the choice of Aj. Accordingly, different choices of ¥(x) imply different limitations on the
minimal value of acceptable 7. All these properties would be impossible if # were self-adjoint,
so that the non-self-adjointness of the Hamiltonian is an important conceptual ingredient of
the theory.

The dynamics introduced in [4] guarantee that the support of ¥+ (x) involves only
those x whose Minkowskian norm x belongs to [Ar, Br] C R, with lim; e Ar = o0
and lim;_,«(Br — A7) = 0 (the support is the closure of the set where a given function is
nonzero, so the closed interval is not a typo). Unitarity of the evolution semigroup thus
implies that the universe expands in space and shrinks in time. The unitary dynamics
generated by H are of a squeezing type.

The usual spatial section of a FRW-type universe is here replaced by the support
of ¥¢(x), but as T increases, the timelike width B — A shrinks to 0, so the support
becomes asymptotically concentrated in a neighborhood of a hyperbolic section in V.
In consequence, the universe is a subset of M that resembles a true material hyperbolic
layer of a finite timelike width, propagating towards the future. We assume that at time
scales of the order of the Hubble time, the timelike width of the layer is of the order of the
Planck length, which leads to the estimate T ~ 10243 of the current value of T, whereas one
year is of the order of T ~ 10203 [4].

An analogous construction can be performed for spherical and flat universes.

3. Free Dynamics of an Empty Universe

The free Hamiltonian that describes an empty universe is given by

o
HO = 7@3(” la],,. (3)
It generates a unitary semigroup. Recall that x> = g, x"x", where g, is the

Minkowski-space metric. Here, ¢ is a fundamental length parameter (the Planck length,
say). Parametrizing the solution by means of x and the world-velocity u# = x#/x,

Pe(x,u) = ¥r(x), 4)

we find that 7 is a generator of translations of the non-negative variable x°,

. 0
Hopr(x,u) = —MDmt/JT(x,u), (o)

which is not self-adjoint, an advantage in this context, as it turns out.
We assume that ¥(x) is smooth and compact-support in the variable x, vanishing
outside of |Ag, By| C R. An example of such a function is

1
ex 7
P a(x— Ag)(x — Bo)

for Ag < x < By, (6)
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and 0 otherwise. Normalized versions of (6) for Ay = 1, By = 2, and various values of « are
depicted in Figure 1. With & — oo, (6) converges pointwise to the characteristic function of
Ao, Bp[. In many examples, we will tacitly assume that « is so large that (6) is practically
indistinguishable from the characteristic function, and yet it remains smooth on the whole
of R;.

15F
10

05

R I S M /P S S S N S|

0.5 1.0 15 20 25 3.0

Figure 1. Normalized versions of (6) for Ag = 1, By = 2, and « = 1 (dotted), « = 10 (dashed),
a = 10* (full). With increasing &, the function converges pointwise to the characteristic function of

the interval | Ag, By[. For finite &, the function is smooth, and all its derivatives vanish at both A and
By. The plotted functions are normalized with respect to (f|f) = fooo dx |f(x)]?.

Under the above form of the initial condition, one finds, for /Pt < %P,

XD— D 1/D
¥o(x) = %((leT) x> 7)

ey (x), ()

whereas for 0 < xP < ¢Pt, the solution vanishes identically,
Y:(x) = 0 ©)

The limiting value x” = ¢Pt defines the gap hyperboloid,
2= 02— (x)?2— ... — (kP72 = 12¢?/D, (10)

An example of such a dynamicin D = 14 1isillustrated in Figure 2 (adapted from [4]),
with the initial condition

(11)

¥o(x) = 1 for|x'| <1, (292 - (x1)2 < 1,x >0
O 71 0 otherwise

We assume that the jumps in (11) approximate a function of the form (6).
Before one fills the universe with matter, one needs an analogous formulation of con-
figuration spaces. An N-point configuration-space empty-universe extension is defined by

1/D 1/D

D D D D

xr — LT xy — 7T

‘{’T(xl,...,xN) = Y <1D> xlw--/<N D ) XN/, |/ (12)
X1 XN

which is equivalent to

l/JT(Xl,ul,...,XN,MN) = l[)o(D\/Xllj—fDT,Ml,..., D\/XI?[—EDT,MN) (13)
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with the Hamiltonian
% oy D i d
Ho = — X i—y = —il , (14)
= Dx].D 7 oxt = a(ij)
and the norm
(¥ |¥e) [P /V dPxn|¥e(x, ..., xn) 2 (15)
~ D-1 ; °° D-1 2
/ Xm le /2 dul.../ dXNXNi /2 duN|1/JT(x1,u1,...,xN,uN)| . (16)
0 u]:l 0 uN:l

Here, du; denotes an invariant measure on the world-velocity hyperboloid
2 _
P =
volve the world-velocity parametrization of the form (13). This point is somewhat tricky,

as illustrated in Appendix B by Hamiltonians (A49) and (A50).

u gwu;lu}’ = 1. The right-hand-side of (14) is applicable to functions that in-

Figure 2. Space as an evolving quantum hyperlayer of space—time [4]. Plot of (7) and (8) with the
initial condition (11) at T = 0 (left) and its evolved version for T = 1 (right) ina D = 1+ 1 Minkowski
space, in units where ¢ = 1. ¥ (x) at T = 1 is thinner and wider than ¥-(x) at T = 0. A space—-time
gap occurs between the support of ¥1 (x) and the light cone. In 1 + 3 dimensions, the hyperboloid
that determines the gap is given by £2,/T = c2t> — x?, as contrasted with c?t? — x? 2
expect on the basis of intuitions developed in special relativity. Note that the support of ¥ (x) is

~ T%, as one might
not restricted to a single hyperbolic space. Rather, ¥ (x) is a superposition of functions defined on
hyperbolic spaces of different curvatures, corresponding to different values of 2 = guvx¥x". What
we regard as the universe, is the set of those x in Minkowski space where ¥ (x) # 0. The universe
isnota (D — 1)-dimensional submanifold of the Minkowski space but a D-dimensional open subset
of the Minkowski space. This is the new paradigm. Harmonic oscillators discussed in the present
paper involve less trivial forms of ¥ (x).

Now that we know how to describe the dynamics of an empty universe, it remains to
add matter. We have two goals in mind. First of all, we have to test on some well-understood
quantum mechanical models the asymptotic correspondence principle. The latter means
that for very large 7, the theory should look like ordinary quantum mechanics, where
the integrals are over RP~! and not RP. Secondly, we should understand if and how the
presence of matter influences a geometry of the universe, that is, the probability density

|¥¢(x1,...,xn)|%. A nontrivial modification of the Hamiltonian,

H =Ho— Ho+ Hi, (17)
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can, in principle, influence the set of points that satisfy |¥¢(xq,.. L xN)[> # 0. As the
universe is the set of those x that have non-zero probability density, the same remark
applies to the configuration-space universe.

An inclusion of matter can be accompanied by modifications of background space—
time geometry. As an illustration of the possibility, consider the approach to quantum
gravity based on precanonical field quantization [16,17]. Here, one begins with a Dirac-
type equation for a Clifford-algebra-valued wave function f(w, x), where w stands for
a tetrad-formalism connection defined at the space—time point x. The four space-time
coordinates are here parameters, similarly to time ¢ in non-relativistic quantum mechanics
(or our invariant parameter 7), whereas the components of the connection play the role of
configuration space coordinates. The precanonical scalar product involves integration over
the 24 real components of w but not over the four x#,

Flg) = [ a0 Tr(Flw,x)g(w,x). (18)

Now, assume that f(w, x) is a state of the quantized gravitational field at a space-time
point x, whereas ¥ (x) is smooth, compact-support in the variable x = /x,x" and vanishes
outside of some |Ap, Bo| C R. With the initial condition ¥Yo(w, x) = ¥o(x)f(w, x), we
obtain the state of the universe at invariant cosmic time T,

Yo(w,x) = e M"Y (w, x), (19)
with H given by (3). The norm of the full state will be then given by

(Y«[¥7) = (Yol¥o) (20)
/de|‘~I’0(x)|2/d24wTr<f(w,x)f(w,x)>. (21)

However, in the present paper, we consider a simplified problem, with the universe
whose background space-time is Minkowskian (hence with the trivial vanishing connection
w = 0) but contains a single harmonic oscillator.

4. Quantum Oscillatorin D =1+ 3

We skip the intermediate stage of a general two-body problem (postponed till Section 8)
and directly concentrate on the configuration space of a relative coordinate. To this end, let
us parametrize a future-pointing timelike world vector in (1+3)-dimensional configuration
Minkowski space by the “polar relative coordinates”,

X = ct=xcosh& x>0,¢>0, (22)
x!' = xsinh¢sinfcosp, 0<0< 7 0<¢<2m, (23)
¥ = xsinh ¢ sinfsin ¢, (24)
x> = xsinh¢ cos®. (25)

In D =1 + 3, the Hamiltonian consists of the empty-universe free part, H,

0

Hop-(x,8,0,9) = —ie‘*m%(x, &0,9), (26)

and the matter-field interaction part,

H1 = eH, 27)
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aZ

where H is some “ordinary” Hamiltonian that describes a quantum system on the hyper-
boloid x2 = guvx¥x¥ > 0. € is a parameter that makes #; dimensionless like 7. We shall
concentrate on H describing some form of a relativistic harmonic oscillator.

The Minkowski-space metric satisfies

gudxidx’ = (dx°)? — (dx)? — (dx?)? — (dx®)? (28)
= dx* — x2d¢? — x* sinh? & d6? — x* sinh? & sin” 0 d?. (29)

The corresponding Jacobian,

d*x = dx%dxldx2dLd (30)
dxd¢ d6 de x> sinh® & sin 6, (31)

is consistent with Hermiticity of the polar-form d’Alembertian,

02 02 02

9(x0)2 o a(x1)2 o 9(x2)2 o 3(x3)2

19 50 1 90 . .,,0 1 1 9 . .0 1 92

(32)

ﬁ_xzsinh%;‘ sinfo0 " o0 sin2 § 9?2

if appropriate boundary conditions are imposed. The operator,

B 1 9 ..,,0 1 1 9 . .0 1 02
S = et N s (g g ) O

is the Laplace-Beltrami operator on the hyperboloid x? = gy, x#x¥ > 0.

There are numerous ways of defining a harmonic oscillator in hyperbolic geometry
(cf. [6,9] and Appendix A), but we find it simplest to consider a potential proportional to
tanh? & [14,15],

1 w22 tanh? &

A world-vector (ct, x) satisfies in polar coordinates |x|> = x?sinh® &, so the potential

w22 sinh? & _ pw?|x]? 1 _ pw?|xf? 1 _ pw?|xf?

~ , (36
2cosh? & 2 14sinh?¢ 2 1+ |x[2/x2 2 (36)

reconstructs the usual harmonic oscillator if |x| is of the size available in present-day

experiments, while x is of the order of the Hubble radius of the universe. This type of

approximation agrees with the one for the measure on the hyperboloid,
d3x 3

S Y
1+ 22/

which characterizes the correspondence principle with standard quantum mechanics.

(37)

For small values of ¢, the potential takes another interesting form, namely,

pwP tanh® & pw?x2@2  pw?r?
2 YT T 2 (38)

where r = x¢ is the geodesic distance computed along the hyperboloid. Actually, the right-
hand side of (38) is a natural alternative definition of the potential if one assumes that
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ilibT (X, g/ 6/ (P)

i(]Sl,T(X, é) =

id)l,‘[' (X/ é) =

the physical distance between interacting objects should be given in terms of the geodesic
distance r and not in terms of |x|, as the latter is not a geometrically intrinsic characteristic
of the hyperboloid.

Perhaps we can obtain a more illuminating picture of the potential by writing it
as follows:

pew?x?sinh® ¢ pw?x® (x1)? + (x2)% + (a3)?
2cosh? & 2 (x0)2

, (39)

with (x9)2 > (x1)2 + (x?)2 + (x3)?, showing that the possible three-space position of the
oscillator is limited by the light cone x = 0, the boundary of the background space-time.
The full Schrodinger equation,

) 32 2.2 4042
— —164W¢T(x, &0,p)+e€ <—2VAX + W) (%8, 0,9), (40)

can be partly separated by means of

Yimc (Xr ¢,0, 99) = ¢ir (X, g) Yim (9, (P)/ (41)

. d
ﬂﬁm‘l’l:(ﬁ Z)

w1 9 5.9 K I(I+1)  pew’x®tanh®¢
el To annzz o S e T oy ,6), 42
( 2 x2 sinh? ¢ ¢ o¢  2u x2 sinh? z 2 1< (X (:) (42)

because the angular momentum operator,
19 J 19
2 2 :
= _h — sinf— 4
J <sin9 265 T sjnz()a(pz)' 43

commutes with the total Hamiltonian, H = Hg + H1.

The free Hamiltonian, Hy, is a generator of translations of the non-negative variable
x*. Tt effectively replaces x by x(7) = v/x% + £47. The next step is therefore the transition to
the interaction picture,

40

0
qDI,T(X/ g) = ¢ a(X4)¢l,T(XI g) = ¢Z,T(X(T)f ‘:) (44)
The equation to solve,
h? 1 d . ,,9 K I(I+1) pw?x(7)? tanh? &
T A, ., <A . .9 _A"=x h e -~ ¢ T 4 7
€< 20 x(02sinh22 0 O 38 T 2w (r)2einnZe 2 1e(%,6)

(45)

is equivalent to a harmonic oscillator on a space of constant but T-dependent negative
curvature. Recall that the solution is normalized by means of

(@D) = /O'wdxx3/oo°dgsinhzg|q>(x,g)|2. (46)

Notice that not only is the curvature T-dependent, but it is not a classical parameter,
as opposed to the standard literature of the subject. This is a quantum observable, as quan-
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tum as the position operator, since one integrates over x in (46). This universe is truly
quantum and dynamic. It exists in the superposition of different curvatures.

5. Interlude: Ground State for Small ¢

Although Schrodinger Equation (45) can be solved exactly, let us first concentrate
on the approximation valid for small ¢, as it will help us to develop physical intuitions
concerning the nature of the solution. Setting sinh ¢ ~ tanh ¢ ~ ¢ and I = 0 (as we search
for the ground state), we obtain

s B o1 9,0  uwx(1)?E?
iPor(x,¢) = €<2“MX(T)2€2 %C aig + R Do, (x,6), (47)
with the normalization
@lo) = [Taxs [T dge o oP - 1. (48)

The form (48) of the scalar product had to be modified in order to maintain the
Hermiticity of the Laplacian in (47).

Note that (47) and (48) can be alternatively interpreted as an exact model in a spa-
tially flat universe, where spacelike distances are computed by means of the hyperbolic
geodesic distances. Such a flat universe is not equivalent to the Minkowski space and
yet employs the Minkowski space as its background space-time—an interesting option to
contemplate in some future work, especially in the context of the lambda cold dark matter
(ACDM) cosmology.

Now, define Fr(x,§) = ®g +(x,¢)¢. Then

2 2 2X 272
iFe(x,&) = 6(;;411-)2;§2+W>F7(X’@ (49)
_ ehw(u(x,r)+a(x,r)+;)Fr(x,é). (50)

The creation and annihilation operators,

a(x,T)F(x,8) = \/:E < \/%x(lr) aag; + Z(ux(f)«j) Fr(x,8), (51)

a(x,T) Fe(x,6) = \/%(_\/%X(lﬂ%Jr\/gwx(f)g) F:(x,8), (52)

satisfy the usual algebra,
[a(%1),a%10) = L (53)

The hat in & reminds us that x is an eigenvalue of . The ground state satisfies
a(x, T)Fo(x,¢) =0,

apo,g(gx,g) - —%(f\/x‘l—%f‘;’(ﬂ),r(x,é‘), (54)
ifye(x8) = TR (x0), (55)



Entropy 2025, 27, 549 11 of 30
and thus
FO,T (XI g) = FO,T(X/ 0)(3_ %éz X4+é4r/ (56)
For(x,&) = e 2" (%, &) (57)
= e TR ((x,0)e” TEE, (58)
or, equivalently,
Dor(x,E) = e 1TNTE (x,0)F Lo mEE (59)

$o, (X, g)

= o (Vo eine). (60)

Returning to the Schrédinger picture, we finally find

Poe(xd) = e EM Ry, (Yt fiz,0)g e BV (61)
Let us recall that ¢ o(x, ¢) is non-zero only if x € |Ag, By[ C R, for some Aj and By,
a fact implying that
(oclgor) = [ dex® [“dze g0 0 (62
Bdt+r4t o) 2 w
N T / de ’Foo(\4/x4 — £4r,0) ‘ o~ HVE-ETE (g3
4 Abt04T 0 ’
B o 1w
_ / " dx x| Fyo(x, 0) / dg e 58 (64)
Ao 0

]. 7Th BO 2 2
— 5,/?&)/140 dx x| Fo (x,0)[% = 1. (65)

In order to simplify the discussion, assume that Fy(x,0) is given by a function pro-
portional to (6) with a large value of &, say a = 10'%, so that Fy((x,0), being smooth, is
practically indistinguishable from the multiple Cx) 4, g,[(x) of the characteristic function
X]Ao,B,[ ©f the open interval Ao, Bg[- The normalization now reads

o [CP [mh s s
1 =~ = yw(Bo Ap) (66)

_Hw 2

: (&)1/2—1‘%%%}%,&[(@) e 7 \1-% . (67)

3 3
By — Ay h

so that

Q

The universe consists here of those events whose probability density is non-zero,
|0+ (x,&)|> # 0. Therefore, when analyzing the differences between (67) and the standard
quantum prediction for the ground state, we can skip the characteristic function, still keep-
ing in mind that its argument satisfies Ay < Vx% — (4t < B, with Ay and By determined
by the initial condition for the universe at T = 0, hence, some 13 billion years ago. Moreover,
it is clear that the role of non-relativistic time t is played here by efit, while the product
x2¢2 = r? is the square of the hyperboloid’s geodesic distance. The characteristic function
implies that

2 2 2
0<%< AP R

e I N

(68)
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s0 ¢,7(x, ¢) spreads along spacelike directions in a future neighborhood of the gap hyper-
boloid x* = ¢2/7, simultaneously shrinking in the timelike direction in a way determined
by (68). All these properties are consistent with the analysis given in [4].

A qualitatively new element is given by the square root occurring in the Gaussian,

w 5 [ T
—%I‘z 1 - F, (69)

because, as a consequence of (68), we effectively find

. Hw it
Hm Syl =0 (70)

Assuming that 7 is a fundamental constant, and taking into account that w occurs in

the oscillating term e~*3€"T = ¢~1%* in exactly the same way as the one we know from
textbook quantum mechanics, we conclude that the Gaussian behavior of the geodesic

variable r = x¢ is controlled by the mass term

/ ks
py/1— e (71)

which, accordingly, should be observed as decreasing with time. Obviously, in time scales
available in present-day quantum measurements, we can assume that

T+ 6T At
V\/l—%zﬂ\ll—gf (72)

and thus, quantum oscillators are expected to behave as if their masses were time invariant.
However, if what we observe is indeed the geodesic position r, then very distant objects
should behave as if their masses were greater from the ones we know from our human
laboratory measurements. Our conclusion is reminiscent of some results on time dependent
masses of quantized scalar fields in both classical [18,19] and quantum cosmology [20-22].

All we have written above applies to the geodesic observable # = & ® ¢, whose
eigenvalues are given by r = x{. A measurement of # is therefore a measurement of a
tensor product of two observables. One of them, namely, %, determines location of the
hyperboloid in the background Minkowski space (up to the uncertainty relation following
from (68)). This is effectively a measurement of quantum time, as it approximately determines
the value of 7. The measurement of ¢ determines the position of the oscillator along the
hyperboloid, so this is, essentially, a measurement of position. More precisely, the variable
¢ has the status of a shape variable in Barbour’s sense (see [23] and the example discussed
in [4]).

The two observables are distributed in space-time by means of the two reduced
probability densities,

/ A x3E | o (x,E)|?,  (probability density of quantum time), (73)
0

/ dxx3& o, (x,E))* = po(E), (probability density of quantum position). (74)
0

Neither of them is the usual Gaussian, but the joint space-time probability distribution
is Gaussian. p-(&) = po(¢) in consequence of the same calculation as in the transition
between (63) and (64).
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6. The Exact Ground State
Let us consider the exact | = 0 Equation (45) for Fr(x,&) = P (x,{) sinh§,

2 2 2,2 ()4 2
iF(x,8) = e ( d uw*x(T)* tanh” &

The Hamiltonian in (75) can be factorized,

B hZ 1 1 2002x 4 1
i (5,8) = eM}W(A(x,r)*A(x,m 4+”“’hz(”+2>ﬂ<x,¢>, (76)
20025 (1)
A7) = ;§+( i#‘“’hz(”;) tanh?, 77)
x 4
Alx,T)t = §;‘+< leerZw;z(r);) tanh ¢. (78)

The ground state is annihilated by A(%, T),

A(x,T)F(x,¢), = 0O, (79)
which implies
dFor(x,8) _ 1, pPex(mt 1
- i 7z 2 tanh {Fy - (%, G) (80)
and
For(%,8)
= L 1
qDO,T(X/ g) Sinhé (8 )
%7 %+y2w2(x‘21+é’41)
— h
Sinhe (cosh &) Fo-(%,0). (82)
Let us keep in mind that this is still the interaction-picture solution.
The T-dependent equation,
- R 1 pw?x(T)* 1
ZFO,T(XIC) - eﬂx(,{)z ( 1 + T + E FO,T(Xlg)I (83)
is solved by

> Foo(x, ), (84)

12T 1 42w? 1
—ier [y dT
4 JO ( xdppde! * n2 N

FO,T(X/ (:) = e

with Fyo(x, ) following from (82),

11 et
Foo(x,&) = (coshd)® Vi 7% Fyo(x,0). (85)
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The integral
B T, 1 4}12w2
I(x,w,7) = AdT¢ﬁ+ﬂﬂ+ 2 (86)
is explicitly given by
202 2,2
I(x,w,7) = 2554 In <\/ 4?;;’ (x4 + f47) + 2”7“’ x + e%) + ;4\/1 + 4”7;’ (x4 + (47) /b + fo7
nol 4y w? 2uw 1 42w? , 5
Note that
ho1 4u2w? 2uw .1 4p2w?
i}gb 2 I In (\/1 + 7(;(4 +047) + 5 x0T = i;linoéj 1+ - (x*+ A1)V x* + (AT
xt+ (4T
= —a (88)
hence,
2 1
— 4 —

I(x07) = & (Vi + i -2 / Rl (89)
as implied by (87)—(88), can be cross-checked by direct integration. The full interaction-
picture solution reads

—ie” (T(x x 1 31/ 1 }2“24
Bpo(x ) = e (TEentIEor) 1 smnz(coshe)’ v O R 0),  (0)
which translates in the Schrodinger picture into
—Z’€E(I(4 X4—[4TWT)+I( 4/X4—E4TOT)) 1 1.1 1+4}42w2<x47/4‘r)
Por(x,8) = e W o ) ——(coshg)® * " Fyo(Vxt—047,0)
’ sinh ¢
o1
For x > 0, which we assume, the solution is normalized by
(Poclpor) = (Poolgoe) =1 (92)
=[x [ dg sinh® ¢ o (x,0) 93)
0 0
B 0 A
=[x [Eon(x 0 [ de (coshg) VTR (94)
0 0

with

o Fi(i(a+1),a3(a+3);-1 F(ia—1),ai@+1);,-1
[ d (cosmgy e = za-l(“(Z(” ara+9i-1) | ah(de-1e 36 +D) )>, 95)

a+1 a—1
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for a > 1. Equation (94) reconstructs the approximate result (64) in consequence of the limit

- 32024 .
lim (cosh(r/x))1 V1 = T (96)

7
X—00

and its uniform and fast convergence.

—iS(t

The phase factor e ) in (91) is given by

2
S(t) = er (Z(Y/x = Br,w,m) + T(Vad = fim,0,7) ). ©7)

4p

Its late-T asymptotics should be compared with wt/2 = weht/2, occurring in (67).
To this end, we have to recall the support property of the initial condition at T = 0,
and its consequence

A§ < x* — r*t < B}, (98)

where By — Ay is of the order of several light-minutes, roughly 1 astronomical unit AU (for
a justification of the estimate, see [4]). Under these assumptions, we are interested in the
asymptotic form of

_2;4(/.)£TL

2,52
I(Vxt—t,w,1) = L ln<\/1+4yh2w (X4—€4T)+2‘l;;u\/x4—€4T)

2.2
—1\/1+W(x4—£4r) 4 _ (At

2,452 2,92
+h11n< 1+4ﬂ2w x4+2ywx2)+l 14w x4x?, (99)
Hw h
T(Vx4 — 37,0,1) = —%(\/X4—54T—x2), (100)

which, effectively, can be reduced by means of the gap-hyperboloid condition to x &~ ¢7!/4,

2uw 1+ " h

1 42 w? 2
—1—6—4“1—1— th }(4Xz—+—€—4x2 (101)
ho1 4p2w? 2Uw 5 1 [4p20% , , 2,
zwﬂn( e R

2002
I(Vx* = 041,0,7) + I(Vx* — 041,0,7) = f 11 ( 1+4Vh2“) X4+2ywxz)

1%

LR
2uw (4
1 2pw 4 1 2pw

4

R

(103)

Q

Asymptotically, for large T, we obtain the expected result,

W2 2uw w w
S(t) = G@TT = Eehr =5t (105)
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7.1+ 3 — 3 Reduction: Three-Space Probabilities
The three-space probability density is defined by either
0:(5,6,9) = / dxx® sinh? & sin 0pr (x, &, 6, ¢) 2, (106)
or
pc(@0,9) = [ dxx'esinolye(x2,0,9) (107)

if we work in the approximation sinh ¢ ~ tanh ¢ ~ ¢ (or in a flat universe). In virtue of the
initial condition, we assume the support of ¢ (x, &, 6, ¢) is restricted by the inequality

VAR + 04t < x < {/B} + 41, (108)

for some 0 < Ay < By < oco. When we speak of the support, we mean, of course, the closure
of the set of those x# where the wave function is non-zero. Hence, even for Ag = 0 and
T = 0, we may treat the argument x* of the wave function as a future-pointing timelike
world vector, with x strictly positive.

A practical implication of inequality (108) is that asymptotically, for large 7, the solu-
tion is localized in a future neighborhood of the hyperboloid x> = ¢2/7, with T counted
out since the origin of the universe. This, on the other hand, implies that the present age of
the universe, when referred to our human labs, is approximately equal to £+/7.

For large 7, the theory reconstructs standard quantum mechanics if we treat r = x¢
as the measure of distance in position space. More precisely, r should be treated as the
radial coordinate in spherical coordinates. However, the integration over x implies that
r = x¢{ will not occur in the asymptotic three-space formulas. Therefore, in order to
compare the three-space theory with standard 3D-space quantum mechanics, we have
to introduce a parameter, R, representing an average x, averaged under the assumption
of (108). Present-day quantum measurements may be expected to involve R of the order
of 10-20 billion light-years. Accordingly, as another rule of thumb, we may assume that
r = R¢ = {{/7 is the radial coordinate known from quantum mechanics textbooks. At
time scales 67/7 < 1, available in our human galaxy-scale quantum measurements, we
can assume &/v/T + 6T ~ &(/T. A variation of r with T can be ignored as long as the
asymptotic form of quantum mechanics is being used.

What we have just described is the correspondence principle with standard quantum
mechanics. It is similar to the one introduced by Infeld and Schild [24] in their analysis of
the Kepler problem. The difference is that [24] treats the hyperbolic space as the configura-
tion space for 3-dimensional position-representation quantum mechanics, whereas in our
formalism, the configuration space is Minkowskian (i.e., (1+3)-dimensional), and instead
of a single hyperbolic geometry, the configuration space is a quantum superposition of
different hyperbolic geometries (with different curvatures).

7.1. Approximate Three-Space Probabilities

We again begin with the approximation sinh § ~ tanh § ~ ¢. Fyo(x,0) is being given
by a function of the form depicted in Figure 1, with large «, so that the differences with
respect to the characteristic function of | Ay, By[ can be ignored. For I = 0, the dependence
on spherical angles is trivial, so we are left with
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pe@ = [ axxE ol 0 (109
(e ) TR e o
(B3 — A3/ \pew & '
In order to switch from the shape variable ¢ to the asymptotic spherical coordinate
r = R¢ (not to be confused with r = x¢), we employ the change of variables
0o () R~ po(R71r) 111)
3R3 h 3/2€ RZ T <R2hr +1) —e RZ T <R2h7’ +l>
—_ | — (112)
(BS—AS)\/E(W> rt

To illustrate the form of 0y (r), let us take Ay = 0 and denote by ji = 1B3/R? the “renormal-
ized mass”. The resulting density,

fw.2 (4
3/21—e  n (B2 41
3 h > (h ) (113)

o(r) = ﬁ(ﬁw o ’

is plotted in Figure 3, as compared to the Gaussian with the same parameters,

fw _fwp
pg(r) = 2¢/ e mh. (114)

For a given 7, the universe is localized in a future neighborhood of the hyperboloid
x = (/7 so that for a negligible ratio |x|/x (typical of our-galaxy labs), the Minkowski-
space time coordinate of quantum events, x’ = ct, is approximately equal to ¢{/7, a fact

implying that
By o, B0 B0 B3 B, B 25t
— & = RS N -2 t= 1— 11
RSP E g S an S e, e S ag ~ g’ ”(’( fo ) (115

where pg and ¢ty denote, respectively, the current value of mass of the oscillator and the
current age of the universe. ¢t is the duration of the quantum measurement. Assuming tg
is 10 billion years and 6t a thousand years, we obtain

fi &= po — o, (116)

with 610/ o ~ 1077, The masses we are dealing with have decreased during the past
millennium by some 10~ percent.

Of course, one should not treat the above estimate too seriously—we are still
at the level of an approximate toy model, with the universe “filled” with a single
harmonic oscillator.
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Figure 3. Gaussian (114) (dotted) versus go(r) (full) given by (113). The units are dimensionless,
fiw/h =1, and the normalization is [° dr pg(r) = [;~dr 0o(r) = 1. The parameter that controls both
densities, i = yBg/ R?, effectively depends on 7, because asymptotically R &~ £y/T. The fact that
wave functions are defined on space-time makes the reduced ground state additionally smeared out
in the 3-position space. The effective T dependence of i can be ignored as long as the duration of
quantum measurements, J7, is negligible in comparison to the age 7 of the universe, 67/7 < 1.

7.2. The Exact Three-Space Probabilities

Assuming that within the range of integration, Fy(x,0) is well approximated by a
constant C, we find

L B 1o f1a 22t
pe(@) = po(@) = [CP [ dx (cosh) VT (117)
0
1+4y2w233
G Hcoshé—(1+lncosh‘z§)cosh1*z§ ” (118)
o 2u20? 4 (In cosh ¢)2 w2a2al’
I4—0
ICI> ps 44
px(0) = T(Bo—Ao)r (119)

where f(z) ’Z:a = f(b) — f(a). In order to compare (118) with (110), without invoking a
cumbersome explicit formula for |C|?, let us take Ay = 0 and express (110) in terms of its
valueat¢ =0,

3By [ h O\ V/?
= —| — =R 12
pr0) = 2 () = Recl0) (120)
,/’77“)72 fiw 2
o2 1—e 7 (B 1)
QT(Y) = ﬁzwng(O) A ’ (121)

where ji = uB%/R?. Analogously, setting Ag = 0in (118), we find
212 (14 Incosh?(r/R)) cosh! 7*(r/R) |1

oc(r) = ﬁZanQT(O) 4R*(In cosh(r/R))? (122)

4112“)2 R4 -

z=1/1+ 2

Now, one can directly verify that (121) is the R — co limit of (122). The limit is taken
with fi = const.

8. A Two-Body Problem

A single harmonic oscillator in space is, in its simplest version, an example of a two-
body problem with the potential V' (x; — x;) that depends on the relative coordinate of the
two bodies; the center-of-mass coordinate is typically subject to a free motion. An analogous
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situation is encountered in the problem we discuss in the present paper. So far, we have
concentrated on the analysis of the relative coordinate, but one should be able to extend
the analysis to the entire configuration space, involving an arbitrary number of particles.
The two-body problem is thus the first step. We begin with

9

7 /9 7 7 7 /9 7
a(le})l,b'r(xl C1,61, 91,%2,82,02, 92)

il,bT(xlr 61/01/ P1,%x2, 62/ 62/ (PZ) = _164

. d
—zé4mlpr(xlz 81,01, 91,%2,82, 62, 92)
2

n? h?
+el| — Axl - AXZ + U(Xl, 61/X2/ 62) lPT(xll Cl/ell P1,%2, 62/ 92/ ¢2) (123)
27’/’!1 27’1’12

Restricting our analysis to the I = 0 cases, we can separate the angular variables and
concentrate on

; d 0
1 7 7 7 - _647 7 7 7 - 647 7 7 7
ifr(x1,81,%2,62) i a(x%)¢r(X1 81,%,82) — 1 a(x§)¢T(X1 81,%2,82)
n? n?
+€ (2771]AX1 - %AX2 + U(Xlr gerZI 62)> (PT(Xl/ élIXZI 52)/ (124)
where
1 9 .. 9

A = —————sinh“=—, k=1,2. 125
* x7 sinh? & 98k Z 9Ck (129)

Switching to the interaction picture,

T44(a+a)

qDT(Xll gl/XZ/ 62) = € a(x%) a<x%) 4)T(X1/ Cl/XZ/ 62) (126)
= ¢c(x1(1),81,%2(7), &2), (127)
x(T) =[x+, (128)
we find
. h2 hz
l'CDT(Xl/ C1, %2, 52) = €<2mle1(T) - %sz(r) + U(Xl (T), ¢1, Xz(T),(;rz))CDT(Xl, C1, %2, 52) (129)
Now, let
Fr(x1,81,%2,82) = Pr(x1, 81, %2,§2) sinh {q sinh §o. (130)

Employing g7 2(g2(f/5)") = ¢ ' (f" — f¢"/g), we obtain

iFT(Xl/ Cl/ X2, CZ)

1 92 n? &
=€ [—W (a{;’% — 1) — m (a(:% - 1> + u(Xl (T)I gl/XZ(T)’ CZ) FT(xl/ Cl/XZI CZ) (131)

An analogue of the center-of-mass system of coordinates is defined by

= omixi(7)%8 +max(7)%6
T mx ()2 max(7)? (152

& = &—-a. (133)
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Repeating standard calculations, we arrive at the interaction-picture Schrédinger equation,

iGT(X1,E, X2, (f)
2 92 n? 92 _ _
(e e RO o, o

involving reduced and total moments of inertia (rather than reduced and total masses),

1 1 1
_— = 5+ —, (135)
l(Xl, Xz) mlxl mzxz
I(Xl, Xz) = mlx% + mzx%, (136)
the wave function,
Gelan B8 = FelmE- "2 _cpmi MH o) )
X1, 8, X, = X,8— ———=——(,x, 84+ ——C|,
o 2 T\ mgx% + mlx% 2 mzx% + mlx%
and the potential
Flz T’l’lzXZ mlxz
V(x1, 8, %2, = — 4+ U|x,E-—"2 _Fx, B+ —5—1L 7). 138
(1 2¢) 2i(x1,%2) < ! mzx% + mlx%g 2 mZX% + mlx%g (138)

In the limiting case m1 — oo, one reconstructs the formalism we have used so far, with

& = & (139)
G = E+¢, (140)
and
. h? 02
iGe(x1,8,%,E4+8&) = € —W@—i—V(xl(r),a,xz(ﬂ,a—i—g) Gr(x1, 8, %, E+¢). (141)

The harmonic oscillator example corresponds to & = 0, mp = u, xp = %, and

| pw?x? tanh? &

V(Xl,O,X,C) >

(142)

For large values of T, both x; and x; are localized in a neighborhood of x = ¢+/7.

9. Conclusions

The discussed formalism is meant as a unification and generalization of both standard
cosmology and quantum mechanics. As opposed to classical cosmology, the universe is
not represented by a spatial section of some space-time but by the support of a wave
function propagating through space-time. Quantum mechanics known from textbooks are
reconstructed asymptotically, for large times, by means of an appropriate correspondence
principle. The universe is in general deformed by the presence of matter. We have decided
to perform an explicit analysis of a simple but physically meaningful and exactly solvable
system, hence, the choice of a harmonic oscillator. Among various possibilities, we have
chosen the CRS model of the quantum harmonic oscillator, very natural in the context of
spaces with constant curvature. Yet, as opposed to the original CRS formalism, the curva-
ture in our formalism is not a parameter but a quantum observable. The resulting universe
exists in a quantum superposition of different curvatures.
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A general conclusion is that for late times, the evolution of the oscillator is essentially
the one we know from standard quantum mechanics but with one important subtlety.
Namely, the effective renormalized mass of the oscillator (inferred on the basis of the
uncertainty of its geodesic distance r) is time-dependent, as opposed to the bare mass

that occurs in the Hamiltonian. The time in e~ i@ (n+1/2)t

is asymptotically (i.e., for late
times) proportional to the quantum evolution parameter, t ~ T, the age of the universe is
proportional to /7, and the renormalized mass decays as 1/+/7. The effect does not seem
to be a peculiarity of this concrete potential. Rather, it is a consequence of the concrete form
of the empty-universe Hamiltonian and its coupling with matter. Since the renormalization
of mass is influenced by the dynamics of the universe, the effect may be regarded as yet

another version of Mach'’s principle.
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Appendix A
Self-Adjointness, Unitarity, and Arrow of Time: Euclidean 2-Dimensional Case Study

In order to better understand the issues related to self-adjointness of the Hamiltonian
and the problems of unitarity, let us simplify the discussion by considering an analogous
problem but in the two dimensional plane R?. The resulting example may be treated as
a toy model of a closed positive-curvature quantum universe—the universe identified
with some rotationally invariant layer in two Euclidean dimensions, a support of some
wave function.

Consider the Hilbert space of square-integrable functions f : R?> — C, with the
scalar product

o 27 —
(flg) = [ arr [ agf(r9)s(r9), (A1)
and the Schrodinger equation analogous to (3),
Adpe(r, @) _ _-£ P (r, ¢)
i e = HyY(r,9) = lDrD r 3 (A2)
_ o) _ L p09e(r )
= iy = —il 32) (A3)

where D = 2 is the dimension of the Euclidean space R2. Definition (A2) is analogous to
(3), but instead of the background (1 + 3)-dimensional Minkowski space, we consider the
ordinary Euclidean plane. The coordinates are the usual polar r and ¢. Let us now change
variables, p = 2, and define the new function

Fr(p, @) = ¥ (/0. 9), (A4)
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so that the Schrédinger equation, as well as its general solution, reads
k(o) _ _ p9F(p,9)
dt = d (A5)
22
Fep.p) = ¢ " "R(p,9) = F(p =70 ¢) = Fo(pr, ¢) = o(vPr, @) (A6)
= Yo(Vr2 =72, 9) = ¢ (1, 9)- (A7)

Formally, (A5) is the wave equation describing waves propagating to the right with
velocity £2. As the initial condition, we will take a function that is non-zero only in the
openring r| < r < rp, with some non negative 1, rp. Assume for simplicity,

Yo(r, @) = T?ﬂrl,m[(r)/ (A8)
m(r; —r1)
where xj,, ,,((r) is a smooth compact-support function of the type discussed in Figure 1,
approximating with arbitrary accuracy the characteristic function of the open interval
|1, 2[. The initial condition is normalized,

[e9) 21
(olyo) = [ drr [~ dolyo(r @) (A9)
1 ) 27

The form (A7) of the solution implies that - (r, ¢) is non-vanishing only for
< VrZ—tl2 <. (A11)

which is equivalent to

VTR <1< \[r3+ T2 (A12)

Accordingly,

co 27
elpe) = [ drr [~ dplye(r o) (A1)
/13402 27
% ’ drr dp =1. (A14)
ey =) SV o

Let us note that (A12) is well defined for the evolution parameter 7, restricted by

-/ <, (A15)
which means that 7 in both
Elo,p) = ¢ " hR(pg) (A16)
and
(Pelypr) =1 (A17)

is restricted by (A15) as well. The geometric interpretation of this property is obvious: For
negative 7, the evolution given by (A16) shifts F;(p, ¢) to the left along the p coordinate,

but p = r? cannot become negative on R2. Moreover, by the same inequality (A15), we
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observe that the possible range of available T depends on the form of the initial condition.
The interpretation of the latter property is also evident: An available time of propagation
to the left depends on how far to the right we begin.

For T < —r% /0%, we obtain

(P Hpr) # (Hpe|po), (A18)

because the boundary terms arising from integration by parts will no longer cancel each
other. All these properties are typical of a unitary semigroup, possessing an arrow of time,
and this is why H is not self-adjoint. Any attempt of rescuing self-adjointness by continuing
r? to negative values would bring us outside of the real plane, contradicting our assumption
that the waves propagate on R2.

On the other hand, for T satisfying (A15), the norm of the solution equals 1, so
this is just a wave that represents some probability density radially propagating on R2.
As opposed to standard circular waves created by a stone thrown into a lake, the resulting
wave does not decrease its height, and does not spread along the radial direction. Just the
opposite, this is like a solitary wave whose radial width shrinks to zero so that the mass
contained in the volume of the wave remains unchanged.

There is no problem with analyzing this type of wave propagation by means of Fourier
analysis, with the Fourier modes playing the role of the basis in the Hilbert space in
question. Interestingly, the fact that the support of ¢ is a ring of finite radius and width
implies that the resulting Fourier modes will be discrete for any 7. The Fourier analysis
effectively replaces the missing spectral theory of the Hamiltonian. We do not make any
attempt of formulating a theory of measurement, as the universe that contains only a single
harmonic oscillator involves no laboratory observers.

As a final remark, let us note that the presence of 7P and xP in the denominators of
(A2) and (3) distinguishes these Hamiltonians from dilatation generators rd/dr and x/9,,.
Our Hamiltonians do not generate dilatations of r or x but translations of r? and xP, which
turns out to be equivalent to a form of squeezing.

Appendix B
Appendix B.1. Excited States for sinh ¢ ~ tanh{ ~ ¢

So far, we have concentrated on the ground states, but it is a simple exercise to
derive all the excited states as long as we work in the approximate model, valid for
sinh ¢ = tanh ¢ ~ ¢. All the excited states should lead to coherent states and a semiclassical
limit of our theory, the problem worthy of a separate study. The exact CRS model is much
more complicated but still exactly solvable by a combination of the results from [14,15] with
what we describe in the present paper. It must be kept in mind that potentials proportional
to tanh? ¢ are bounded from above, and thus, only a finite number of discrete-energy states
are expected to occur. The same subtlety is found in the Kepler problem, as discussed
in [24].

For simplicity, let us consider D = 1 + 1 so that the angular coordinates are absent
from the very outset. The main difference between D =1+1and D =1+3,]/ =0, isin
the form of the free Hamiltonian, a generator of translations of xP. In case of a Gaussian,
the variable x? is replaced in interaction picture by x? + ¢?>t, for D = 1+ 1, and by
Vx* 4 (41, for D = 1 + 3. In various other respects the two cases are qualitatively similar.

Assume

1(x)w?E?

Uz, x§) = —5— (A19)
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where ((x) is a moment of inertia to be specified later. Switching to the interaction picture,

2)

2 2 Lz
Pe(x1,61,%x,8) = e <a<"1 i ’>¢T<xl,§1,x, Z) (A20)
— (pT( x3 + 102,81, V22 4 TL?, fj), (A21)

we obtain a T-dependent Hamiltonian,

d . h2 aZ L(\/ X2 + T£2>0J2§2 B
ZE(PT(Xl/Cl/X/g) = € _ZL(m) @"’ ) ¢T(Xl/€1/X/€) (A22)
= chwla (\/x2 + T€2)+a (\/X2 + T€2> + ;)&T(xl,é‘l,x, &), (A23)
where
a(x) = } ( \/L aag VL) wé’), (A24)
a(x)t = } ( \/L aag Hx) wg> . (A25)
The ground state

QBO,T (Xll Cl, X, é) = 4)0,1' ( X% + Téz/ 61/ \% XZ + ng/ é) ’ (A26)

is defined by

a (\/ x2 4 Tﬂz)gﬁo,T(xl, ,x,8) = a (\/ x2 4+ sz)%,r ( x2 4+ 02,8, VX2 + T2, @') =0. (A27)

Following the standard steps one proves

Z%J’n,r(xllﬁlfx/ §) = ehw (” + ;>4~7n,r(><1/€1/x/ &), (A28)
Gue(x1,C1%, €)= e MOl o(xy, 81,%,8), (A29)
or equivalently,
ousc (VT TG ) = T, fn ) (A0
and thus,
P (x1,E1,%,8) = eiehw(”+;)T¢nlo( 2 — T2, &, VK2 — T2, g), (A31)
with

Pno(x1,81,%,8) = 21n| (x1,81,%) (F@) (A32)

2 dt 2

Hy(n) = (=1)"" ——.7T, (A33)
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and f(x1, {1, x) still unspecified. Formula (A31) shows that the usual quantum mechanical
time parameter can be identified with t = €fiT. Note that t is as invariant as T and x and
thus cannot be regarded as a timelike coordinate t = x°/c of a world-position.

Let us recall that in m7 — oo limit. the first two coordinates,

x; = (xf,x]) = x(cosh &, sinh &), (A34)

describe the center-of-mass spacetime-position operator of the system. We can consider an
initial condition that separates the center of mass coordinate xi‘ from x*, the relative one,
and concentrate on the latter,

)
Pue(x,8) = eiehw(n+%)T\/%f(\/X2—T€2>Hn JM( P - )é‘ e HVETEE L (az)
"n!

It is subject to normalization

1 = { ) = 0) = ( 0) (A36)
- / " dxx f(x)P /Oo dge™ #1000 (A37)

_ \f [ X|f (A38)

In (A37), we integrate over ¢ € R and not over ¢ € R, a peculiarity of the 1+1 case.

Appendix B.1.1. Constant Moment of Inertia, ((x) = mR?

For ((x) = mR? (i.e., in a flat universe), we obtain

purled) = el (V) (| R ) F S, a9

with
A3 < x* — ’1 < BZ. (A40)

This is, essentially, an oscillator described in terms of some geodesic coordinate r = R&
and time t = eht.

Appendix B.1.2. x-Dependent Moment of Inertia, (x) = mx?

For ((x) = mx? (i.e., in the hyperbolic universe), the non-vanishing part of the solu-
tion reads

Puclind) = MO (o) (VR e TR

Vv2"n!

with
A} < x* — 1’1 < B3. (A42)

Appendix B.1.3. Renormalization of Mass
Define r = x¢. For A% <x?> -1t < BS‘, rewrite (A35) as
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Pni(x,1)

v(t, %)

i 1 mw mw 2.2
= eiw(nti)e 7]‘(\/ x? — £2T> Hy( / ==7(t,x)r |e~ 2 7(&x)r (A43)
V21! h ’ ’
B ((Vx2—Let) R/x for 1 = mR? (A44)
- mx2 ) V1—021/%2 fori=mx? ’
where
Ag/x < V1 —£021/x2 < By/x. (A45)

Otherwise ¢y +(x,r) = 0.

An observer who performs position measurements in terms of r will conclude that the
role of the parameter ¢ is played by its rescaled version % (t,x)?. Simultaneously, one
does not observe any modification of frequency in the oscillating term e @(m2)% Accord-
ingly, the rescaling of mw /# has to be caused by a renormalization of m /7, the parameter
that controls the classical limit of the theory. It seems most natural to associate the effect
with the renormalization of mass. Therefore, defining

m(t,x) = my(t,x)? (A46)

we find that the observed mass m(t, x) decays asymptotically, for late times, as 1/x? ~ 1/t.
For D =1+ 3, the dependence on t is different, but still, m(t,x) asymptotically tends to
zero. Observers performing quantum measurements in position representation defined by
r = x¢ may conclude that the present mass of the oscillator is smaller than its earlier values.

Let us note that the change in variables from (x, §) to (x, r) entails a modification of
the form of Hy. Denoting

¥(x,&) = ¥(xcosh¢ xsinh¢) = ¥(x%x1), (A47)
§xr) = ¥(xcosh,xsinh>), (A48)

and employing the proportionality between 7 and Euler’s homogeneity operator, we find

0
_ 2
%Ow(xfg) - il a(XZ)w(Xfé)/ (A49)
y 200 2,
Hop(x,r) = —iss (Xax + rar)w(x,r). (A50)
The inverse formulas read

x = (x0)2 — (x1)2, (A51)

x0 4 x1
¢ o= Iy 5, (A52)

0 1
_ 02 _ (y1)21n /X +x A

T (x9)2 — («1) N (A53)

(A54)
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whereas the corresponding scalar products are related by
(YD) = / dx ¥ (x)d(x) (A55)
Vi
= / dx/ dr P(x,1)P(x, 1) (A56)
0 —0o0
- /O dxx/_oo e 9%, O)(x, &) (A57)

Figure A1l. Geodesic coordinate r(x%,x!) given by (A53) as a function of the Minkowski-space
coordinates. r(x’,x!) decays to 0 as x approaches the light cone x = 0, a property that does
not contradict the normalization by means of [*_dr, because the integral is computed along the
hyperboloid x = const > 0. Non-relativistic, late-time asymptotics of the position operator follow
from the pointwise but non-uniform convergence limo_,, r(x%, x!) = x!. The boundary condition,

Y. (x) = 0if x = 0, implies that the light cone does not belong to the universe.

Appendix B.1.4. Example: Mass vs. Effective Renormalized Mass (Hyperbolic Case)
Consider (A35), with n = 0, 1 = mx? (the hyperbolic case), Ag = 0, Bg > 0,

Poc(x,8) = e FMTL(V/iE o) F O (A58)
~ CehwteHm(I-tC/R)  p0 212 o B3 (A59)

and 0 otherwise, normalized by (A38),

_ th [ 2 _ | 7h 2
1= 2 [Tl P~y Bl CP (A60)

The renormalized mass,

i =m(1—1l/x%), (A61)

is the effective mass as measured by the width of the Gaussian, hence, by the uncertainty
of the geodesic coordinate r = x¢. Now assume that 1y is the current age of the universe,
and thus,

0 < 1itg = m(1 — 1l*/x*) < B3 /%%, (A62)
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O (x,x) = e EF( (02 - ()2 - w2)e

is the current renormalized mass of, say, an electron oscillating with frequency w. Note
that x belongs to the support of the wave function at the current value of 7. Denoting
tg = €hTty, to + 0t = ehty + €hdT, we find

¢O,T0+§T(Xl§) ~ Cefi'w(toJrét)ef%m(17(T0+5'r)£2/x2)r2 (A63)

Com bttt 80) - g (A64)

Q

if 6t/tgp < 1, which can be safely assumed for all quantum mechanical experiments
performed during the past century. Equation (A64) is the standard nonrelativistic result.
However, if 6T =~ —1p, that is, we look at the state of the oscillator in a distant past,
hence, for small x, the renormalized mass tends towards the bare mass, /1 ~ m, which is
much larger.

The situation changes if we work with the bare mass. When expressed in space-time
coordinates, (xO, xl), the solution evolves in configuration space-time as a squeezed state:

wm ((x0>2_(x1)2_rg2) 2 xgt 1

(A65)

i —wm ((xo)z—(xl)z—réz) In? 7"g+ }

~ Ce 2wt 7 (A66)

if0 < (x%)2 — (x!)? — /2 < B3 and vanishes otherwise. Figure A2 illustrates the probability
density associated with (A66) for some arbitrarily chosen dimensionless parameters.

Figure A2. An analogue of Figure 2 but for the solution (A66). The parameters are By = 1, mw /i =1,
¢ =1, 7 =0 (left), and T = 2 (right). The white region represents the support of the wave function,
i.e., the configuration-space universe as a subset of the Minkowski space in D = 1 4 1, characterized
by @ ¢(x%, x1) # 0. The mass is given by its bare value.

Appendix C
An Alternative Definition of the Harmonic Oscillator

In the symmetry scattering approach to Schrodinger equations [25], a potential is
identified with the angular part of an appropriate Laplace-Beltrami operator, hence, in our
case, this would be the term proportional to I(I + 1). Of course, this is not what we are
interested in if we want to define a harmonic oscillator. Let us therefore try an alternative
but equally general formulation.
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We start with the observation that in nonrelativistic quantum mechanics, we find

mwzxz

2

AU(x) = A = 3mw? = const > 0. (A67)

An analogous generalization can be formulated for any Laplace—Beltrami operator,
in particular,

AU(x,E,0,9)
1 0 J 1 1 9 9 19
= —sinh?¢_U 0 ———— | =5 sinf— + ——=—=
sinnZg g M Cag IOt g (59305055 * gz ) U E0.0)
= const > 0. (A68)
So, first of all,
U(x,E,0,9) =x*V(,0,9), (A69)
and
1 9 0 1 1 9 0 12
———— —sinh?¢—V | g sinf— + = = .
sinh? & 9¢ s gaé (¢,0,9)+ sinhZ g (sin@ 50 sm@ae + v 8¢2>V(C’9’(P) C>0
(A70)
Assuming rotational invariance, we obtain
1 90 . .,,0
—————sinh“" =V =C, A71
whose general solution reads
C
V() = EC coth & + Cq coth & + Cs. (A72)

For C = 0, we reconstruct the Infeld-Schild version of the Coulomb-Newton potential [24].
It is intriguing that the oscillator and the Kepler problem are so intimately related, even at
such a general level.

A finite value at ¢ = 0 implies C; = 0, and then

. . c
gg})\/(g) = S +C (A73)

We assume C, = —C/2, so that V(0) = 0. Then,

2x2
U(x,&0,¢) = gxz({;’coth{f—l):%%—i—... (A74)

The correspondence principle with standard quantum mechanics implies

n? 3
H = ———Ay+ -mw’x? -
™ +2mw x“(Ecothg —1) (A75)
h? mw?r?
= ——A
b+ —— + (A76)
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where r = x(¢ is the geodesic coordinate, i.e.,
AU(x,E6,9) = 3mw?, (A77)

which is the same definition as in nonrelativistic quantum mechanics. For large ¢, the po-
tential is linear,

U(x,¢,0,¢) = gmwzxz(é‘ cothd —1) = gmwzx‘z((j -1) = %mwzx(r —x). (A78)

As opposed to the CRS potential, Equation (A75) is expected to have infinitely many
bound states and purely discrete spectrum (cf. [26]). Unfortunately, we have not managed
to factorize (A75).
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