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Abstract: We discuss a formalism where a universe is identified with the support of a

wave function propagating through space–time. The dynamics is of a squeezing type, with

shrinking in time and expanding in space. As opposed to classical cosmology, the resulting

universe is not a spacelike section of some space–time but a hyperlayer of a finite timelike

width, a set which is not a three-dimensional submanifold of space–time. The universe is in

superposition of different localizations in both space and time so that x0 = ct has the same

formal status of a position operator as the remaining three coordinates. We test the formal-

ism on the example of a universe that contains a single harmonic oscillator, a generalization

of the curvature-dependent Cariñena–Rañada–Santander (CRS) model. As opposed to the

original CRS formulation, here, the curvature is not a parameter but a quantum observable,

a function of the world-position operator. It is shown that asymptotically, for large values

of the invariant evolution parameter τ, one reconstructs the standard quantum results, with

one modification: The effective (renormalized) mass of the oscillator decreases with τ. The

effect does not seem to be a peculiarity of harmonic oscillators, so one may speculate that

masses of distant elementary quantum systems are greater than the values known from

our quantum mechanical measurements.

Keywords: quantum time; quantum cosmology; hyperbolic space; invariant-time dynamics;

relativistic harmonic oscillator

1. Introduction

Our human brains have no difficulty imagining a two-dimensional surface, al-

though “surfaces” known from physical experience are objects with non-zero thickness;

hence, they are layers not surfaces. Realistic layers consist of atoms, but quantum mechan-

ics describes atoms as objects that do not possess concrete positions in space. Rather, atoms

are in superpositions of different localizations and thus are fundamentally delocalized.

In effect, at the most fundamental level, we are always dealing with “quantum surfaces”

that exist in superpositions of different geometries.

A similar situation is found in space–time physics. What we regard as “space” is

modeled as a three-dimensional hypersurface of space–time, an object with zero thickness

in timelike directions. Yet, our experience of time is fleeting and ephemeral. It is very

difficult, if not impossible, to be truly here and now. In this sense, we do not have everyday

experience with space as a three-dimensional submanifold of space–time. The experience

of “now” seems as delocalized as the atoms that form a quantum surface. Perhaps what we

regard as space is not a hypersurface but a hyperlayer.

This is the first intuition behind the present paper. The second intuition is related to

the passage of time.
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The passage of time means that even if we accept that “now” is somewhat uncertain,

the past should eventually disappear and a sufficiently distant future should not yet

exist. This type of behavior does not appear to have an equivalent in standard relativistic

physics but is well known from quantum mechanics. Indeed, a propagating wave packet

represents a particle in superposition of different localizations, concentrated around the

point of maximal probability density. By the Ehrenfest theorem, the average position of

the wave packet propagates along a solution of a classical Newton equation. A probability

of finding the particle far behind, or far ahead of the wave packet is negligible. Now, it

is enough to replace the space coordinate by x0 = ct and treat the evolution parameter, τ

say, as something distinct from x0. A suitable wave packet propagates along x0, and the

result is precisely the dynamics where the past literally disappears, the future has not

yet happened, and the uncertainty of “now” is represented by the width of the packet.

A three-dimensional classical hypersurface is then obtained by an appropriate Ehrenfest

theorem; in exactly the same way, a classical solution of Newton’s equation is found if we

follow the average of the position operator.

Let us stress again that a hyperlayer in four dimensions should not be confused with a

four-dimensional hypersurface of a (D > 4)-dimensional space, similarly to an ordinary

layer in three-dimensional space that is not a hypersurface in D > 3 dimensions. In this

sense, what we discuss should not be regarded as a version of a Pavšič-type quantized

gravity [1,2], as the latter is based on higher-dimensional embeddings of four-dimensional

hyper surfaces.

The idea we have just outlined is not entirely new. It seems that its first explicit

formulation was given, for a 1+1 dimensional toy-model, in [3]. A generalization valid for

any dimension was completed in [4] for the case of an empty universe. An inclusion of

matter was briefly discussed in [4] as well, but a concrete study of a quantum mechanical

system that exists and evolves in such a quantum space–time is still missing. The present

paper is the first attempt of formulating and exactly solving a non-toy model in 1+3.

For obvious reasons, a harmonic oscillator is our first target. Standard non-relativistic

oscillator is simple, well understood, exactly solvable by the factorization method, and is

a cornerstone of field quantization. On the other hand, when it comes to relativistic

physics, numerous possibilities occur. A generalization based on the Dirac equation was

introduced by Moshinsky and Szczepaniak [5,6]. An alternative Dirac-type relativistic

harmonic oscillator implicitly occurs in the so-called second Dirac equation [7], whose

deep and exhaustive discussion can be found in [8]. A generalization where the kinetic

term of the Hamiltonian is proportional to the d’Alembertian ∂µ∂µ in Minkowski space,

while the potential is proportional to xµxµ, is discussed in [9], generalizing the earlier

works of Stueckelberg, Horwitz, and Piron [10–12]. The Horwitz Hamiltonian is also

basically equivalent to Born’s “metric operator” pµ pµ + xµxµ (in dimensionless units),

generating a spectrum of meson masses [13]. The formalism from [9] is similar to ours in

that the evolution parameter is unrelated to x0. In both formulations, the Hilbert spaces

consist of functions integrable with respect to d4x. However, both theories employ different

Hamiltonians, different boundary conditions, and different correspondence principles with

standard quantum mechanics. Our treatment of the harmonic oscillator is closest to the

approach of Cariñena, Rañada, and Santander (CRS) [14,15], but the overall structure of

our Schrödinger equation differs in the form of the free Hamiltonian, with empty universe

as a reservoir for matter fields, a missing element of the formalism from [14,15].

We begin in Section 2 with a summary of the formalism proposed in [4]. We concentrate

on the distinction between the universe and its background space–time and on the meaning

of the boundary condition. In Section 3, we discuss in some detail the dynamics of the

empty universe. An explicit example, adapted from [4], illustrates the evolution in 1+1
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dimensional background (Appendix A discusses a similar but easier to interpret model,

with the Minkowski space in (1+1)D replaced by the Euclidean plane). We also introduce

the notion of a configuration-space universe. In Section 4, we give a concrete example

of a single oscillator coupled to the universe whose background Minkowski space is

1+3 dimensional. We discuss both Schrödinger and interaction pictures. The interaction

picture eliminates the free evolution of the universe for the price of making τ-dependent

the Hamiltonian of the oscillator. This τ dependence will manifest itself in the form of

the ground state, making the impression that the mass of the oscillator decreases with

τ. The effective τ dependence of mass can be ignored at time scales available in typical

quantum measurements but, in principle, could influence the interpretation of data from

very distant objects. The next two sections discuss in detail the ground state of the oscillator.

We first analyze in Section 5 an approximation that is simpler to analyze than the exact

model from [14,15]. We concentrate on the ground state, but all the excited states can

be found in Appendix B. We show that the ground state is a Gaussian but with respect

to the geodesic position operator r̂ = x̂⊗ ξ̂, whose eigenvalues represent the geodesic

distance r = xξ computed along the hyperboloid x
2 = gµνxµxν. In Section 6, we perform

an analogous analysis of the ground state for the CRS oscillator. As opposed to the original

CRS formulation, the solution we find describes an oscillator in superposition of different

and τ-dependent curvatures of the universe. The curvature that occurs in the solution

is not, as opposed to [14,15], a parameter but a quantum observable, a fact proving that

we indeed discuss a quantum oscillator in a quantum universe. It is also shown that

differences between the exact CRS model and its much simpler approximate form are

visible only for small τ, that is, in the early stages of evolution of our quantum universe.

For τ corresponding to the Hubble time, both models are indistinguishable, a result useful

from the point of view of the correspondence principle with standard quantum mechanics.

Section 7 is devoted to the reduction 1 + 3 → 3, obtained by integrating out the width of

the layer. We show that the resulting probability density is a bell-shaped curve similar to a

Gaussian but more smeared out. Section 8 looks at the above issues from the perspective

of a general two-body problem. In Appendix C, we discuss an alternative definition of

the harmonic oscillator associated with a given Laplace–Beltrami operator. Unfortunately,

the resulting potential does not lead to any known factorization of the Hamiltonian.

2. Expanding Quantum Universe

In the formalism proposed in [4] a universe is identified with a τ-dependent subset of

the background Minkowski space M of signature (+− . . .−) in D dimensions. A point

x ∈ M is said to belong to the universe if Ψτ(x) ̸= 0, where Ψτ is a solution of a certain

Schrödinger-type equation,

iΨ̇τ = HΨτ , Ψτ = e−iHτΨ0. (1)

The evolution parameter τ is dimensionless. Ψτ(x) is normalized in a τ-invariant way,

⟨Ψτ |Ψτ⟩ =
∫

V+

dDx|Ψτ(x)|2 = 1, (2)

but only for τ ≥ 0. For τ < 0, the norm can become τ dependent. Thus, (2) simul-

taneously defines a minimal possible value of τ and the corresponding arrow of time.

Hamiltonian H is not self-adjoint, and yet it generates meaningful unitary dynamics of

the universe. The non-self-adjointness is related to the existence of a minimal value of τ

(see Appendix A for an analogous but more intuitive example formulated in the Euclidean
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plane R2). For large τ, the asymptotic evolution of the universe should reconstruct the form

of quantum mechanics we know from textbooks.

V+ consists of future-timelike world-vectors xµ. The origin of the cone, x = 0, is arbitrary.

In standard classical Friedmann–Robertson–Walker (FRW)-type cosmology it might be natural

to identify x = 0 with the Big Bang, whereas in our model, the initial condition at τ = 0

corresponds to a universe that is not localized at a point in space–time. The initial boundary

condition reads Ψ0(x) = 0 if x ̸∈ V+. Such a Ψ0(x) vanishes outside of the cone V+, including

∂V+, the future light cone of the origin x = 0. We additionally assume that the initial

wavefunction Ψ0(x) is smooth and vanishes if x =
√

(x0)2 − (x1)2 − . . . − (xD−1)2 does not

belong to a certain open interval ]A0, B0[⊂ R+. The possible values of τ turn out to be related

to the choice of A0. Accordingly, different choices of Ψ0(x) imply different limitations on the

minimal value of acceptable τ. All these properties would be impossible if H were self-adjoint,

so that the non-self-adjointness of the Hamiltonian is an important conceptual ingredient of

the theory.

The dynamics introduced in [4] guarantee that the support of Ψτ(x) involves only

those x whose Minkowskian norm x belongs to [Aτ , Bτ ] ⊂ R+, with limτ→∞ Aτ = ∞

and limτ→∞(Bτ − Aτ) = 0 (the support is the closure of the set where a given function is

nonzero, so the closed interval is not a typo). Unitarity of the evolution semigroup thus

implies that the universe expands in space and shrinks in time. The unitary dynamics

generated by H are of a squeezing type.

The usual spatial section of a FRW-type universe is here replaced by the support

of Ψτ(x), but as τ increases, the timelike width Bτ − Aτ shrinks to 0, so the support

becomes asymptotically concentrated in a neighborhood of a hyperbolic section in V+.

In consequence, the universe is a subset of M that resembles a true material hyperbolic

layer of a finite timelike width, propagating towards the future. We assume that at time

scales of the order of the Hubble time, the timelike width of the layer is of the order of the

Planck length, which leads to the estimate τ ∼ 10243 of the current value of τ, whereas one

year is of the order of τ ∼ 10203 [4].

An analogous construction can be performed for spherical and flat universes.

3. Free Dynamics of an Empty Universe

The free Hamiltonian that describes an empty universe is given by

H0 = − ℓD

Dx
D

xµ i∂µ. (3)

It generates a unitary semigroup. Recall that x
2 = gµνxµxν, where gµν is the

Minkowski-space metric. Here, ℓ is a fundamental length parameter (the Planck length,

say). Parametrizing the solution by means of x and the world-velocity uµ = xµ/x,

ψτ(x, u) = Ψτ(x), (4)

we find that H0 is a generator of translations of the non-negative variable x
D,

H0ψτ(x, u) = −iℓD ∂

∂(xD)
ψτ(x, u), (5)

which is not self-adjoint, an advantage in this context, as it turns out.

We assume that Ψ0(x) is smooth and compact-support in the variable x, vanishing

outside of ]A0, B0[⊂ R+. An example of such a function is

exp
1

α(x− A0)(x− B0)
, for A0 < x < B0, (6)
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and 0 otherwise. Normalized versions of (6) for A0 = 1, B0 = 2, and various values of α are

depicted in Figure 1. With α → ∞, (6) converges pointwise to the characteristic function of

]A0, B0[. In many examples, we will tacitly assume that α is so large that (6) is practically

indistinguishable from the characteristic function, and yet it remains smooth on the whole

of R+.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

Figure 1. Normalized versions of (6) for A0 = 1, B0 = 2, and α = 1 (dotted), α = 10 (dashed),

α = 104 (full). With increasing α, the function converges pointwise to the characteristic function of

the interval ]A0, B0[. For finite α, the function is smooth, and all its derivatives vanish at both A0 and

B0. The plotted functions are normalized with respect to ⟨ f | f ⟩ =
∫ ∞

0 dx | f (x)|2.

Under the above form of the initial condition, one finds, for ℓDτ < x
D,

Ψτ(x) = Ψ0

(

(

x
D − ℓDτ

x
D

)1/D

x

)

(7)

= e−iτH0 Ψ0(x), (8)

whereas for 0 ≤ x
D ≤ ℓDτ, the solution vanishes identically,

Ψτ(x) ≡ 0. (9)

The limiting value x
D = ℓDτ defines the gap hyperboloid,

x
2 = (x0)2 − (x1)2 − . . . − (xD−1)2 = ℓ

2τ2/D. (10)

An example of such a dynamic in D = 1+ 1 is illustrated in Figure 2 (adapted from [4]),

with the initial condition

Ψ0(x) =

{

1 for |x1| < 1, (x0)2 − (x1)2 < 1 , x0 > 0

0 otherwise
(11)

We assume that the jumps in (11) approximate a function of the form (6).

Before one fills the universe with matter, one needs an analogous formulation of con-

figuration spaces. An N-point configuration-space empty-universe extension is defined by

Ψτ(x1, . . . , xN) = Ψ0





(

x
D
1 − ℓDτ

x
D
1

)1/D

x1, . . . ,

(

x
D
N − ℓDτ

x
D
N

)1/D

xN ,



, (12)

which is equivalent to

ψτ(x1, u1, . . . , xN , uN) = ψ0

(

D

√

x
D
1 − ℓDτ, u1, . . . , D

√

x
D
N − ℓDτ, uN

)

(13)
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with the Hamiltonian

H0 = −
N

∑
j=1

ℓD

Dx
D
j

x
µ
j i

∂

∂x
µ
j

= −iℓD
N

∑
j=1

∂

∂(xD
j )

, (14)

and the norm

⟨Ψτ |Ψτ⟩ =
∫

V+

dDx1· · ·
∫

V+

dDxN |Ψτ(x1, . . . , xN)|2 (15)

=
∫ ∞

0
dx1 x

D−1
1

∫

u2
1=1

du1· · ·
∫ ∞

0
dxN x

D−1
N

∫

u2
N=1

duN |ψτ(x1, u1, . . . , xN , uN)|2. (16)

Here, du j denotes an invariant measure on the world-velocity hyperboloid

u2
j = gµνu

µ
j uν

j = 1. The right-hand-side of (14) is applicable to functions that in-

volve the world-velocity parametrization of the form (13). This point is somewhat tricky,

as illustrated in Appendix B by Hamiltonians (A49) and (A50).

Figure 2. Space as an evolving quantum hyperlayer of space–time [4]. Plot of (7) and (8) with the

initial condition (11) at τ = 0 (left) and its evolved version for τ = 1 (right) in a D = 1+ 1 Minkowski

space, in units where ℓ = 1. Ψτ(x) at τ = 1 is thinner and wider than Ψτ(x) at τ = 0. A space–time

gap occurs between the support of Ψ1(x) and the light cone. In 1 + 3 dimensions, the hyperboloid

that determines the gap is given by ℓ2
√

τ = c2t2 − x2, as contrasted with c2t2 − x2 ∼ τ2, as one might

expect on the basis of intuitions developed in special relativity. Note that the support of Ψτ(x) is

not restricted to a single hyperbolic space. Rather, Ψτ(x) is a superposition of functions defined on

hyperbolic spaces of different curvatures, corresponding to different values of x2 = gµνxµxν. What

we regard as the universe, is the set of those xµ in Minkowski space where Ψτ(x) ̸= 0. The universe

is not a (D − 1)-dimensional submanifold of the Minkowski space but a D-dimensional open subset

of the Minkowski space. This is the new paradigm. Harmonic oscillators discussed in the present

paper involve less trivial forms of Ψτ(x).

Now that we know how to describe the dynamics of an empty universe, it remains to

add matter. We have two goals in mind. First of all, we have to test on some well-understood

quantum mechanical models the asymptotic correspondence principle. The latter means

that for very large τ, the theory should look like ordinary quantum mechanics, where

the integrals are over RD−1 and not RD. Secondly, we should understand if and how the

presence of matter influences a geometry of the universe, that is, the probability density

|Ψτ(x1, . . . , xN)|2. A nontrivial modification of the Hamiltonian,

H = H0 7→ H0 +H1, (17)
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can, in principle, influence the set of points that satisfy |Ψτ(x1, . . . , xN)|2 ̸= 0. As the

universe is the set of those x that have non-zero probability density, the same remark

applies to the configuration-space universe.

An inclusion of matter can be accompanied by modifications of background space–

time geometry. As an illustration of the possibility, consider the approach to quantum

gravity based on precanonical field quantization [16,17]. Here, one begins with a Dirac-

type equation for a Clifford-algebra-valued wave function f (ω, x), where ω stands for

a tetrad-formalism connection defined at the space–time point x. The four space–time

coordinates are here parameters, similarly to time t in non-relativistic quantum mechanics

(or our invariant parameter τ), whereas the components of the connection play the role of

configuration space coordinates. The precanonical scalar product involves integration over

the 24 real components of ω but not over the four xµ,

⟨ f (x)|g(x)⟩ =
∫

d24ω Tr
(

f (ω, x)g(ω, x)
)

. (18)

Now, assume that f (ω, x) is a state of the quantized gravitational field at a space–time

point x, whereas Ψ0(x) is smooth, compact-support in the variable x =
√

xµxµ and vanishes

outside of some ]A0, B0[⊂ R+. With the initial condition Ψ0(ω, x) = Ψ0(x) f (ω, x), we

obtain the state of the universe at invariant cosmic time τ,

Ψτ(ω, x) = e−iHτΨ0(ω, x), (19)

with H given by (3). The norm of the full state will be then given by

⟨Ψτ |Ψτ⟩ = ⟨Ψ0|Ψ0⟩ (20)

=
∫

dDx|Ψ0(x)|2
∫

d24ω Tr
(

f (ω, x) f (ω, x)
)

. (21)

However, in the present paper, we consider a simplified problem, with the universe

whose background space–time is Minkowskian (hence with the trivial vanishing connection

ω = 0) but contains a single harmonic oscillator.

4. Quantum Oscillator in D = 1 + 3

We skip the intermediate stage of a general two-body problem (postponed till Section 8)

and directly concentrate on the configuration space of a relative coordinate. To this end, let

us parametrize a future-pointing timelike world vector in (1+3)-dimensional configuration

Minkowski space by the “polar relative coordinates”,

x0 = ct = x cosh ξ, x > 0, ξ ≥ 0, (22)

x1 = x sinh ξ sin θ cos φ, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, (23)

x2 = x sinh ξ sin θ sin φ, (24)

x3 = x sinh ξ cos θ. (25)

In D = 1 + 3, the Hamiltonian consists of the empty-universe free part, H0,

H0ψτ(x, ξ, θ, φ) = −iℓ4 ∂

∂(x4)
ψτ(x, ξ, θ, φ), (26)

and the matter-field interaction part,

H1 = ϵH, (27)
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where H is some “ordinary” Hamiltonian that describes a quantum system on the hyper-

boloid x
2 = gµνxµxν > 0. ϵ is a parameter that makes H1 dimensionless like τ. We shall

concentrate on H describing some form of a relativistic harmonic oscillator.

The Minkowski-space metric satisfies

gµνdxµdxν = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (28)

= dx2 − x
2dξ2 − x

2 sinh2 ξ dθ2 − x
2 sinh2 ξ sin2 θ dφ2. (29)

The corresponding Jacobian,

d4x = dx0dx1dx2dx3 (30)

= dx dξ dθ dφ x
3 sinh2 ξ sin θ, (31)

is consistent with Hermiticity of the polar-form d’Alembertian,

□ =
∂2

∂(x0)2
− ∂2

∂(x1)2
− ∂2

∂(x2)2
− ∂2

∂(x3)2
(32)

=
1

x
3

∂

∂x
x

3 ∂

∂x
− 1

x
2 sinh2 ξ

∂

∂ξ
sinh2 ξ

∂

∂ξ
− 1

x
2 sinh2 ξ

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

, (33)

if appropriate boundary conditions are imposed. The operator,

∆x =
1

x
2 sinh2 ξ

∂

∂ξ
sinh2 ξ

∂

∂ξ
+

1

x
2 sinh2 ξ

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

, (34)

is the Laplace–Beltrami operator on the hyperboloid x
2 = gµνxµxν > 0.

There are numerous ways of defining a harmonic oscillator in hyperbolic geometry

(cf. [6,9] and Appendix A), but we find it simplest to consider a potential proportional to

tanh2 ξ [14,15],

H = − h̄2

2µ
∆x +

µω2
x

2 tanh2 ξ

2
. (35)

A world-vector (ct, x) satisfies in polar coordinates |x|2 = x
2 sinh2 ξ, so the potential

µω2
x

2 sinh2 ξ

2 cosh2 ξ
=

µω2|x|2
2

1

1 + sinh2 ξ
=

µω2|x|2
2

1

1 + |x|2/x2
≈ µω2|x|2

2
, (36)

reconstructs the usual harmonic oscillator if |x| is of the size available in present-day

experiments, while x is of the order of the Hubble radius of the universe. This type of

approximation agrees with the one for the measure on the hyperboloid,

d3x
√

1 + |x|2/x2
≈ d3x, (37)

which characterizes the correspondence principle with standard quantum mechanics.

For small values of ξ, the potential takes another interesting form, namely,

µω2
x

2 tanh2 ξ

2
≈ µω2

x
2ξ2

2
=

µω2
r

2

2
, (38)

where r = xξ is the geodesic distance computed along the hyperboloid. Actually, the right-

hand side of (38) is a natural alternative definition of the potential if one assumes that
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the physical distance between interacting objects should be given in terms of the geodesic

distance r and not in terms of |x|, as the latter is not a geometrically intrinsic characteristic

of the hyperboloid.

Perhaps we can obtain a more illuminating picture of the potential by writing it

as follows:

µω2
x

2 sinh2 ξ

2 cosh2 ξ
=

µω2
x

2

2

(x1)2 + (x2)2 + (x3)2

(x0)2
, (39)

with (x0)2 > (x1)2 + (x2)2 + (x3)2, showing that the possible three-space position of the

oscillator is limited by the light cone x = 0, the boundary of the background space–time.

The full Schrödinger equation,

iψ̇τ(x, ξ, θ, φ) = −iℓ4 ∂

∂(x4)
ψτ(x, ξ, θ, φ) + ϵ

(

− h̄2

2µ
∆x +

µω2
x

2 tanh2 ξ

2

)

ψτ(x, ξ, θ, φ), (40)

can be partly separated by means of

ψlm,τ(x, ξ, θ, φ) = ϕl,τ(x, ξ)Ylm(θ, φ), (41)

iϕ̇l,τ(x, ξ) = −iℓ4 ∂

∂(x4)
ϕl,τ(x, ξ)

+ϵ

(

− h̄2

2µ

1

x
2 sinh2 ξ

∂

∂ξ
sinh2 ξ

∂

∂ξ
+

h̄2

2µ

l(l + 1)

x
2 sinh2 ξ

+
µω2

x
2 tanh2 ξ

2

)

ϕl,τ(x, ξ), (42)

because the angular momentum operator,

J2 = −h̄2

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

, (43)

commutes with the total Hamiltonian, H = H0 +H1.

The free Hamiltonian, H0, is a generator of translations of the non-negative variable

x
4. It effectively replaces x by x(τ) = 4

√
x

4 + ℓ4τ. The next step is therefore the transition to

the interaction picture,

Φl,τ(x, ξ) = e
τℓ4 ∂

∂(x4) ϕl,τ(x, ξ) = ϕl,τ(x(τ), ξ). (44)

The equation to solve,

iΦ̇l,τ(x, ξ) = ϵ

(

− h̄2

2µ

1

x(τ)2 sinh2 ξ

∂

∂ξ
sinh2 ξ

∂

∂ξ
+

h̄2

2µ

l(l + 1)

x(τ)2 sinh2 ξ
+

µω2
x(τ)2 tanh2 ξ

2

)

Φl,τ(x, ξ),

(45)

is equivalent to a harmonic oscillator on a space of constant but τ-dependent negative

curvature. Recall that the solution is normalized by means of

⟨Φ|Φ⟩ =
∫ ∞

0
dx x3

∫ ∞

0
dξ sinh2 ξ |Φ(x, ξ)|2. (46)

Notice that not only is the curvature τ-dependent, but it is not a classical parameter,

as opposed to the standard literature of the subject. This is a quantum observable, as quan-
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tum as the position operator, since one integrates over x in (46). This universe is truly

quantum and dynamic. It exists in the superposition of different curvatures.

5. Interlude: Ground State for Small ξ

Although Schrödinger Equation (45) can be solved exactly, let us first concentrate

on the approximation valid for small ξ, as it will help us to develop physical intuitions

concerning the nature of the solution. Setting sinh ξ ≈ tanh ξ ≈ ξ and l = 0 (as we search

for the ground state), we obtain

iΦ̇0,τ(x, ξ) = ϵ

(

− h̄2

2µ

1

x(τ)2ξ2

∂

∂ξ
ξ2 ∂

∂ξ
+

µω2
x(τ)2ξ2

2

)

Φ0,τ(x, ξ), (47)

with the normalization

⟨Φ|Φ⟩ =
∫ ∞

0
dx x3

∫ ∞

0
dξ ξ2 |Φ(x, ξ)|2 = 1. (48)

The form (48) of the scalar product had to be modified in order to maintain the

Hermiticity of the Laplacian in (47).

Note that (47) and (48) can be alternatively interpreted as an exact model in a spa-

tially flat universe, where spacelike distances are computed by means of the hyperbolic

geodesic distances. Such a flat universe is not equivalent to the Minkowski space and

yet employs the Minkowski space as its background space-time—an interesting option to

contemplate in some future work, especially in the context of the lambda cold dark matter

(ΛCDM) cosmology.

Now, define Fτ(x, ξ) = Φ0,τ(x, ξ)ξ. Then

iḞτ(x, ξ) = ϵ

(

− h̄2

2µ

1

x(τ)2

∂2

∂ξ2
+

µω2
x(τ)2ξ2

2

)

Fτ(x, ξ) (49)

= ϵh̄ω

(

a(x, τ)†a(x, τ) +
1

2

)

Fτ(x, ξ). (50)

The creation and annihilation operators,

a(x, τ)Fτ(x, ξ) =
1√
h̄ω

(

h̄
√

2µ

1

x(τ)

∂

∂ξ
+

√

µ

2
ωx(τ)ξ

)

Fτ(x, ξ), (51)

a(x, τ)†Fτ(x, ξ) =
1√
h̄ω

(

− h̄
√

2µ

1

x(τ)

∂

∂ξ
+

√

µ

2
ωx(τ)ξ

)

Fτ(x, ξ), (52)

satisfy the usual algebra,

[a(x̂, τ), a(x̂, τ)†] = I. (53)

The hat in x̂ reminds us that x is an eigenvalue of x̂. The ground state satisfies

a(x, τ)F0,τ(x, ξ) = 0,

∂F0,τ(x, ξ)

∂ξ
= −µω

h̄
ξ
√

x
4 + ℓ4τF0,τ(x, ξ), (54)

iḞ0,τ(x, ξ) =
ϵh̄ω

2
F0,τ(x, ξ), (55)
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and thus

F0,τ(x, ξ) = F0,τ(x, 0)e−
µω
2h̄ ξ2

√
x4+ℓ4τ , (56)

F0,τ(x, ξ) = e−i ω
2 ϵh̄τ F0,0(x, ξ) (57)

= e−i ω
2 ϵh̄τ F0,0(x, 0)e−

µω
2h̄ x

2ξ2
, (58)

or, equivalently,

Φ0,τ(x, ξ) = e−i ω
2 ϵh̄τ F0,0(x, 0)ξ−1e−

µω
2h̄ x

2ξ2
(59)

= ϕ0,τ

(

4
√

x
4 + ℓ4τ, ξ

)

. (60)

Returning to the Schrödinger picture, we finally find

ϕ0,τ(x, ξ) = e−i ω
2 ϵh̄τ F0,0

(

4
√

x
4 − ℓ4τ, 0

)

ξ−1e−
µω
2h̄

√
x4−ℓ4τξ2

. (61)

Let us recall that ϕ0,0(x, ξ) is non-zero only if x ∈ ]A0, B0[⊂ R+, for some A0 and B0,

a fact implying that

⟨ϕ0,τ |ϕ0,τ⟩ =
∫ ∞

0
dx x3

∫ ∞

0
dξ ξ2 |ϕ0,τ(x, ξ)|2 (62)

=
1

4

∫ B4
0+ℓ4τ

A4
0+ℓ4τ

d(x4)
∫ ∞

0
dξ
∣

∣

∣F0,0

(

4
√

x
4 − ℓ4τ, 0

)∣

∣

∣

2
e−

µω
h̄

√
x4−ℓ4τξ2

(63)

=
∫ B0

A0

dx x3|F0,0(x, 0)|2
∫ ∞

0
dξ e−

µω
h̄ x

2ξ2
(64)

=
1

2

√

πh̄

µω

∫ B0

A0

dx x2|F0,0(x, 0)|2 = 1. (65)

In order to simplify the discussion, assume that F0,0(x, 0) is given by a function pro-

portional to (6) with a large value of α, say α = 10100, so that F0,0(x, 0), being smooth, is

practically indistinguishable from the multiple Cχ]A0,B0[
(x) of the characteristic function

χ]A0,B0[
of the open interval ]A0, B0[. The normalization now reads

1 ≈ |C|2
6

√

πh̄

µω
(B3

0 − A3
0) (66)

so that

ϕ0,τ(x, ξ) ≈
√

6

B3
0 − A3

0

(µω

πh̄

)1/4
e−i ω

2 ϵh̄τχ]A0,B0[

(

4
√

x
4 − ℓ4τ

)

ξ−1e
− µω

2h̄ x
2ξ2

√

1− ℓ4τ
x

4 . (67)

The universe consists here of those events whose probability density is non-zero,

|ϕ0,τ(x, ξ)|2 ̸= 0. Therefore, when analyzing the differences between (67) and the standard

quantum prediction for the ground state, we can skip the characteristic function, still keep-

ing in mind that its argument satisfies A0 <
4
√
x

4 − ℓ4τ < B0, with A0 and B0 determined

by the initial condition for the universe at τ = 0, hence, some 13 billion years ago. Moreover,

it is clear that the role of non-relativistic time t is played here by ϵh̄τ, while the product

x
2ξ2 = r

2 is the square of the hyperboloid’s geodesic distance. The characteristic function

implies that

0 <
A2

0

x
2
<

√

1 − ℓ4τ

x
4

<
B2

0

x
2
<

B2
0

ℓ2
√

τ
, (68)
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so ϕ0,τ(x, ξ) spreads along spacelike directions in a future neighborhood of the gap hyper-

boloid x
2 = ℓ2

√
τ, simultaneously shrinking in the timelike direction in a way determined

by (68). All these properties are consistent with the analysis given in [4].

A qualitatively new element is given by the square root occurring in the Gaussian,

−µω

2h̄
r

2

√

1 − ℓ4τ

x
4

, (69)

because, as a consequence of (68), we effectively find

lim
τ→∞

µω

h̄

√

1 − ℓ4τ

x
4

= 0. (70)

Assuming that h̄ is a fundamental constant, and taking into account that ω occurs in

the oscillating term e−i ω
2 ϵh̄τ = e−i ω

2 t in exactly the same way as the one we know from

textbook quantum mechanics, we conclude that the Gaussian behavior of the geodesic

variable r = xξ is controlled by the mass term

µ

√

1 − ℓ4τ

x
4

, (71)

which, accordingly, should be observed as decreasing with time. Obviously, in time scales

available in present-day quantum measurements, we can assume that

µ

√

1 − ℓ4(τ + δτ)

x
4

≈ µ

√

1 − ℓ4τ

x
4

, (72)

and thus, quantum oscillators are expected to behave as if their masses were time invariant.

However, if what we observe is indeed the geodesic position r, then very distant objects

should behave as if their masses were greater from the ones we know from our human

laboratory measurements. Our conclusion is reminiscent of some results on time dependent

masses of quantized scalar fields in both classical [18,19] and quantum cosmology [20–22].

All we have written above applies to the geodesic observable r̂ = x̂ ⊗ ξ̂, whose

eigenvalues are given by r = xξ. A measurement of r̂ is therefore a measurement of a

tensor product of two observables. One of them, namely, x̂, determines location of the

hyperboloid in the background Minkowski space (up to the uncertainty relation following

from (68)). This is effectively a measurement of quantum time, as it approximately determines

the value of τ. The measurement of ξ̂ determines the position of the oscillator along the

hyperboloid, so this is, essentially, a measurement of position. More precisely, the variable

ξ has the status of a shape variable in Barbour’s sense (see [23] and the example discussed

in [4]).

The two observables are distributed in space–time by means of the two reduced

probability densities,

ρτ(x) =
∫ ∞

0
dξ x3ξ2 |ϕ0,τ(x, ξ)|2, (probability density of quantum time), (73)

ρτ(ξ) =
∫ ∞

0
dx x3ξ2 |ϕ0,τ(x, ξ)|2 = ρ0(ξ), (probability density of quantum position). (74)

Neither of them is the usual Gaussian, but the joint space–time probability distribution

is Gaussian. ρτ(ξ) = ρ0(ξ) in consequence of the same calculation as in the transition

between (63) and (64).
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6. The Exact Ground State

Let us consider the exact l = 0 Equation (45) for Fτ(x, ξ) = Φ0,τ(x, ξ) sinh ξ,

iḞτ(x, ξ) = ϵ
h̄2

2µ

1

x(τ)2

(

− ∂2

∂ξ2
+

µ2ω2
x(τ)4 tanh2 ξ

h̄2
+ 1

)

Fτ(x, ξ). (75)

The Hamiltonian in (75) can be factorized,

iḞτ(x, ξ) = ϵ
h̄2

2µ

1

x(τ)2



A(x, τ)† A(x, τ) +

√

1

4
+

µ2ω2
x(τ)4

h̄2
+

1

2



Fτ(x, ξ), (76)

A(x, τ) =
∂

∂ξ
+





√

1

4
+

µ2ω2
x(τ)4

h̄2
− 1

2



 tanh ξ, (77)

A(x, τ)† = − ∂

∂ξ
+





√

1

4
+

µ2ω2
x(τ)4

h̄2
− 1

2



 tanh ξ. (78)

The ground state is annihilated by A(x̂, τ),

A(x, τ)F0,τ(x, ξ), = 0, (79)

which implies

∂F0,τ(x, ξ)

∂ξ
= −





√

1

4
+

µ2ω2
x(τ)4

h̄2
− 1

2



 tanh ξF0,τ(x, ξ) (80)

and

Φ0,τ(x, ξ) =
F0,τ(x, ξ)

sinh ξ
(81)

=
1

sinh ξ
(cosh ξ)

1
2−
√

1
4+

µ2ω2(x4+ℓ4τ)

h̄2 F0,τ(x, 0). (82)

Let us keep in mind that this is still the interaction-picture solution.

The τ-dependent equation,

iḞ0,τ(x, ξ) = ϵ
h̄2

2µ

1

x(τ)2





√

1

4
+

µ2ω2
x(τ)4

h̄2
+

1

2



F0,τ(x, ξ), (83)

is solved by

F0,τ(x, ξ) = e
−iϵ h̄2

4µ

∫ τ
0 dτ′

(

√

1
x

4+ℓ4τ′ +
4µ2ω2

h̄2 + 1√
x

4+ℓ4τ′

)

F0,0(x, ξ), (84)

with F0,0(x, ξ) following from (82),

F0,0(x, ξ) = (cosh ξ)
1
2−
√

1
4+

µ2ω2
x

4

h̄2 F0,0(x, 0). (85)
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The integral

I(x, ω, τ) =
∫ τ

0
dτ′
√

1

x
4 + ℓ4τ′ +

4µ2ω2

h̄2
(86)

is explicitly given by

I(x, ω, τ) =
h̄

2µω

1

ℓ4
ln





√

1 +
4µ2ω2

h̄2
(x4 + ℓ4τ) +

2µω

h̄

√

x
4 + ℓ4τ



+
1

ℓ4

√

1 +
4µ2ω2

h̄2
(x4 + ℓ4τ)

√

x
4 + ℓ4τ

− h̄

2µω

1

ℓ4
ln





√

1 +
4µ2ω2

h̄2
x

4 +
2µω

h̄
x

2



− 1

ℓ4

√

1 +
4µ2ω2

h̄2
x

4
x

2. (87)

Note that

lim
ω→0

h̄

2µω

1

ℓ4
ln





√

1 +
4µ2ω2

h̄2
(x4 + ℓ4τ) +

2µω

h̄

√

x
4 + ℓ4τ



 = lim
ω→0

1

ℓ4

√

1 +
4µ2ω2

h̄2
(x4 + ℓ4τ)

√

x
4 + ℓ4τ

=

√
x

4 + ℓ4τ

ℓ4
, (88)

hence,

I(x, 0, τ) =
2

ℓ4

(
√

x
4 + ℓ4τ − x

2
)

=
∫ τ

0
dτ′ 1√

x
4 + ℓ4τ′ , (89)

as implied by (87)–(88), can be cross-checked by direct integration. The full interaction-

picture solution reads

Φ0,τ(x, ξ) = e
−iϵ h̄2

4µ

(

I(x,ω,τ)+I(x,0,τ
)

1

sinh ξ
(cosh ξ)

1
2−
√

1
4+

µ2ω2
x

4

h̄2 F0,0(x, 0), (90)

which translates in the Schrödinger picture into

ϕ0,τ(x, ξ) = e
−iϵ h̄2

4µ

(

I( 4√
x4−ℓ4τ,ω,τ)+I( 4√

x4−ℓ4τ,0,τ)
)

1

sinh ξ
(cosh ξ)

1
2− 1

2

√

1+
4µ2ω2(x4−ℓ4τ)

h̄2 F0,0

( 4
√

x
4 − ℓ4τ, 0

)

.

(91)

For x > 0, which we assume, the solution is normalized by

⟨ϕ0,τ |ϕ0,τ⟩ = ⟨ϕ0,0|ϕ0,0⟩ = 1 (92)

=
∫ ∞

0
dx x3

∫ ∞

0
dξ sinh2 ξ |ϕ0,τ(x, ξ)|2 (93)

=
∫ B0

A0

dx x3 |F0,0(x, 0)|2
∫ ∞

0
dξ (cosh ξ)

1−
√

1+
4µ2ω2

x
4

h̄2 , (94)

with

∫ ∞

0
dξ (cosh ξ)1−a = 2a−1





2F1

(

1
2 (a + 1), a; 1

2 (a + 3);−1
)

a + 1
+

2F1

(

1
2 (a − 1), a; 1

2 (a + 1);−1
)

a − 1



, (95)
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for a > 1. Equation (94) reconstructs the approximate result (64) in consequence of the limit

lim
x→∞

(

cosh(r/x)
)1−

√

1+
4µ2ω2

x
4

h̄2 = e−
µω
h̄ r

2
, (96)

and its uniform and fast convergence.

The phase factor e−iS(τ) in (91) is given by

S(τ) = ϵ
h̄2

4µ

(

I( 4
√

x
4 − ℓ4τ, ω, τ) + I( 4

√

x
4 − ℓ4τ, 0, τ)

)

. (97)

Its late-τ asymptotics should be compared with ωt/2 = ωϵh̄τ/2, occurring in (67).

To this end, we have to recall the support property of the initial condition at τ = 0,

and its consequence

A4
0 < x

4 − ℓ
4τ < B4

0, (98)

where B0 − A0 is of the order of several light-minutes, roughly 1 astronomical unit AU (for

a justification of the estimate, see [4]). Under these assumptions, we are interested in the

asymptotic form of

I( 4
√

x
4 − ℓ4τ, ω, τ) = − h̄

2µω

1

ℓ4
ln





√

1 +
4µ2ω2

h̄2
(x4 − ℓ4τ) +

2µω

h̄

√

x
4 − ℓ4τ





− 1

ℓ4

√

1 +
4µ2ω2

h̄2
(x4 − ℓ4τ)

√

x
4 − ℓ4τ

+
h̄

2µω

1

ℓ4
ln





√

1 +
4µ2ω2

h̄2
x

4 +
2µω

h̄
x

2



+
1

ℓ4

√

1 +
4µ2ω2

h̄2
x

4
x

2, (99)

I( 4
√

x
4 − ℓ4τ, 0, τ) = − 2

ℓ4

(
√

x
4 − ℓ4τ − x

2
)

, (100)

which, effectively, can be reduced by means of the gap-hyperboloid condition to x ≈ ℓτ1/4,

I( 4
√

x
4 − ℓ4τ, ω, τ) + I( 4

√

x
4 − ℓ4τ, 0, τ) ≈ h̄

2µω

1

ℓ4
ln





√

1 +
4µ2ω2

h̄2
x

4 +
2µω

h̄
x

2





+
1

ℓ4

√

1 +
4µ2ω2

h̄2
x

4
x

2 +
2

ℓ4
x

2 (101)

≈ h̄

2µω

1

ℓ4
ln





√

4µ2ω2

h̄2
x

4 +
2µω

h̄
x

2



+
1

ℓ4

√

4µ2ω2

h̄2
x

4
x

2 +
2

ℓ4
x

2 (102)

≈ h̄

2µω

1

ℓ4
ln

(

4µω

h̄
x

2

)

+
1

ℓ4

2µω

h̄
x

4 +
2

ℓ4
x

2 (103)

≈ 1

ℓ4

2µω

h̄
x

4 ≈ 1

ℓ4

2µω

h̄
ℓ

4τ. (104)

Asymptotically, for large τ, we obtain the expected result,

S(τ) ≈ ϵ
h̄2

4µ

2µω

h̄
τ =

ω

2
ϵh̄τ =

ω

2
t. (105)
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7. 1 + 3 → 3 Reduction: Three-Space Probabilities

The three-space probability density is defined by either

ρτ(ξ, θ, φ) =
∫

dx x3 sinh2 ξ sin θ|ψτ(x, ξ, θ, φ)|2, (106)

or

ρτ(ξ, θ, φ) =
∫

dx x3ξ2 sin θ|ψτ(x, ξ, θ, φ)|2, (107)

if we work in the approximation sinh ξ ≈ tanh ξ ≈ ξ (or in a flat universe). In virtue of the

initial condition, we assume the support of ψτ(x, ξ, θ, φ) is restricted by the inequality

4

√

A4
0 + ℓ4τ ≤ x ≤ 4

√

B4
0 + ℓ4τ, (108)

for some 0 ≤ A0 < B0 < ∞. When we speak of the support, we mean, of course, the closure

of the set of those xµ where the wave function is non-zero. Hence, even for A0 = 0 and

τ = 0, we may treat the argument xµ of the wave function as a future-pointing timelike

world vector, with x strictly positive.

A practical implication of inequality (108) is that asymptotically, for large τ, the solu-

tion is localized in a future neighborhood of the hyperboloid x
2 = ℓ2

√
τ, with τ counted

out since the origin of the universe. This, on the other hand, implies that the present age of

the universe, when referred to our human labs, is approximately equal to ℓ 4
√

τ.

For large τ, the theory reconstructs standard quantum mechanics if we treat r = xξ

as the measure of distance in position space. More precisely, r should be treated as the

radial coordinate in spherical coordinates. However, the integration over x implies that

r = xξ will not occur in the asymptotic three-space formulas. Therefore, in order to

compare the three-space theory with standard 3D-space quantum mechanics, we have

to introduce a parameter, R, representing an average x, averaged under the assumption

of (108). Present-day quantum measurements may be expected to involve R of the order

of 10–20 billion light-years. Accordingly, as another rule of thumb, we may assume that

r = Rξ ≈ ξℓ 4
√

τ is the radial coordinate known from quantum mechanics textbooks. At

time scales δτ/τ ≪ 1, available in our human galaxy-scale quantum measurements, we

can assume ξℓ 4
√

τ + δτ ≈ ξℓ 4
√

τ. A variation of r with τ can be ignored as long as the

asymptotic form of quantum mechanics is being used.

What we have just described is the correspondence principle with standard quantum

mechanics. It is similar to the one introduced by Infeld and Schild [24] in their analysis of

the Kepler problem. The difference is that [24] treats the hyperbolic space as the configura-

tion space for 3-dimensional position-representation quantum mechanics, whereas in our

formalism, the configuration space is Minkowskian (i.e., (1+3)-dimensional), and instead

of a single hyperbolic geometry, the configuration space is a quantum superposition of

different hyperbolic geometries (with different curvatures).

7.1. Approximate Three-Space Probabilities

We again begin with the approximation sinh ξ ≈ tanh ξ ≈ ξ. F0,0(x, 0) is being given

by a function of the form depicted in Figure 1, with large α, so that the differences with

respect to the characteristic function of ]A0, B0[ can be ignored. For l = 0, the dependence

on spherical angles is trivial, so we are left with



Entropy 2025, 27, 549 17 of 30

ρτ(ξ) =
∫ ∞

0
dx x3ξ2 |ϕ0,τ(x, ξ)|2 (109)

=
3

(B3
0 − A3

0)
√

π

(

h̄

µω

)3/2 e−
µω
h̄ ξ2 A2

0
( µω

h̄ ξ2 A2
0 + 1

)

− e−
µω
h̄ ξ2B2

0
( µω

h̄ ξ2B2
0 + 1

)

ξ4
. (110)

In order to switch from the shape variable ξ to the asymptotic spherical coordinate

r = Rξ (not to be confused with r = xξ), we employ the change of variables

ϱ0(r) = R−1ρ0(R−1r) (111)

=
3R3

(B3
0 − A3

0)
√

π

(

h̄

µω

)3/2 e
− A2

0
R2

µω
h̄ r2
(

A2
0

R2
µω
h̄ r2 + 1

)

− e
− B2

0
R2

µω
h̄ r2
(

B2
0

R2
µω
h̄ r2 + 1

)

r4
. (112)

To illustrate the form of ϱ0(r), let us take A0 = 0 and denote by µ̃ = µB2
0/R2 the “renormal-

ized mass”. The resulting density,

ϱ0(r) =
3√
π

(

h̄

µ̃ω

)3/2 1 − e−
µ̃ω
h̄ r2
(

µ̃ω
h̄ r2 + 1

)

r4
, (113)

is plotted in Figure 3, as compared to the Gaussian with the same parameters,

ρg(r) = 2

√

µ̃ω

πh̄
e−

µ̃ω
h̄ r2

. (114)

For a given τ, the universe is localized in a future neighborhood of the hyperboloid

x = ℓ 4
√

τ, so that for a negligible ratio |x|/x (typical of our-galaxy labs), the Minkowski-

space time coordinate of quantum events, x0 = ct, is approximately equal to ℓ 4
√

τ, a fact

implying that

µ̃ = µ
B2

0

R2
≈ µ

B2
0

ℓ2
√

τ
≈ µ

B2
0

c2t2
≈ µ

B2
0

c2(t0 + δt)2
≈ µ

B2
0

c2t2
0

− 2µ
B2

0

c2t3
0

δt = µ0

(

1 − 2δt

t0

)

, (115)

where µ0 and t0 denote, respectively, the current value of mass of the oscillator and the

current age of the universe. δt is the duration of the quantum measurement. Assuming t0

is 10 billion years and δt a thousand years, we obtain

µ̃ ≈ µ0 − δµ0, (116)

with δµ0/µ0 ∼ 10−7. The masses we are dealing with have decreased during the past

millennium by some 10−5 percent.

Of course, one should not treat the above estimate too seriously—we are still

at the level of an approximate toy model, with the universe “filled” with a single

harmonic oscillator.
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Figure 3. Gaussian (114) (dotted) versus ϱ0(r) (full) given by (113). The units are dimensionless,

µ̃ω/h̄ = 1, and the normalization is
∫ ∞

0 dr ρg(r) =
∫ ∞

0 dr ϱ0(r) = 1. The parameter that controls both

densities, µ̃ = µB2
0/R2, effectively depends on τ, because asymptotically R ≈ ℓ 4

√
τ. The fact that

wave functions are defined on space–time makes the reduced ground state additionally smeared out

in the 3-position space. The effective τ dependence of µ̃ can be ignored as long as the duration of

quantum measurements, δτ, is negligible in comparison to the age τ of the universe, δτ/τ ≪ 1.

7.2. The Exact Three-Space Probabilities

Assuming that within the range of integration, F0,0(x, 0) is well approximated by a

constant C, we find

ρτ(ξ) = ρ0(ξ) = |C|2
∫ B0

A0

dx x3 (cosh ξ)
1−
√

1+
4µ2ω2

x
4

h̄2 (117)

=
h̄2

2µ2ω2

|C|2
4

cosh ξ − (1 + ln coshz ξ) cosh1−z ξ

(ln cosh ξ)2

∣

∣

∣

∣

∣

√

1+
4µ2ω2B4

0
h̄2

z=

√

1+
4µ2ω2 A4

0
h̄2

, (118)

ρτ(0) =
|C|2

4
(B4

0 − A4
0), (119)

where f (z)
∣

∣

b

z=a
= f (b)− f (a). In order to compare (118) with (110), without invoking a

cumbersome explicit formula for |C|2, let us take A0 = 0 and express (110) in terms of its

value at ξ = 0,

ρτ(0) =
3B0

2
√

π

(

h̄

µω

)−1/2

= Rϱτ(0), (120)

ϱτ(r) =
2h̄2

µ̃2ω2
ϱτ(0)

1 − e−
µ̃ω
h̄ r2
(

µ̃ω
h̄ r2 + 1

)

r4
, (121)

where µ̃ = µB2
0/R2. Analogously, setting A0 = 0 in (118), we find

ϱτ(r) =
2h̄2

µ̃2ω2
ϱτ(0)

(1 + ln coshz(r/R)) cosh1−z(r/R)

4R4(ln cosh(r/R))2

∣

∣

∣

1

z=

√

1+
4µ̃2ω2R4

h̄2

. (122)

Now, one can directly verify that (121) is the R → ∞ limit of (122). The limit is taken

with µ̃ = const.

8. A Two-Body Problem

A single harmonic oscillator in space is, in its simplest version, an example of a two-

body problem with the potential V(x1 − x2) that depends on the relative coordinate of the

two bodies; the center-of-mass coordinate is typically subject to a free motion. An analogous
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situation is encountered in the problem we discuss in the present paper. So far, we have

concentrated on the analysis of the relative coordinate, but one should be able to extend

the analysis to the entire configuration space, involving an arbitrary number of particles.

The two-body problem is thus the first step. We begin with

iψ̇τ(x1, ξ1, θ1, φ1, x2, ξ2, θ2, φ2) = −iℓ4 ∂

∂(x4
1)

ψτ(x1, ξ1, θ1, φ1, x2, ξ2, θ2, φ2)

−iℓ4 ∂

∂(x4
2)

ψτ(x1, ξ1, θ1, φ1, x2, ξ2, θ2, φ2)

+ϵ

(

− h̄2

2m1
∆x1

− h̄2

2m2
∆x2 + U(x1, ξ1, x2, ξ2)

)

ψτ(x1, ξ1, θ1, φ1, x2, ξ2, θ2, φ2). (123)

Restricting our analysis to the l = 0 cases, we can separate the angular variables and

concentrate on

iϕ̇τ(x1, ξ1, x2, ξ2) = −iℓ4 ∂

∂(x4
1)

ϕτ(x1, ξ1, x2, ξ2)− iℓ4 ∂

∂(x4
2)

ϕτ(x1, ξ1, x2, ξ2)

+ϵ

(

− h̄2

2m1
∆x1

− h̄2

2m2
∆x2 + U(x1, ξ1, x2, ξ2)

)

ϕτ(x1, ξ1, x2, ξ2), (124)

where

∆xk
=

1

x
2
k sinh2 ξk

∂

∂ξk
sinh2 ξk

∂

∂ξk
, k = 1, 2. (125)

Switching to the interaction picture,

Φτ(x1, ξ1, x2, ξ2) = e
τℓ4
(

∂

∂(x4
1
)
+ ∂

∂(x4
2)

)

ϕτ(x1, ξ1, x2, ξ2) (126)

= ϕτ

(

x1(τ), ξ1, x2(τ), ξ2

)

, (127)

xk(τ) = 4

√

x
4
k + ℓ4τ, (128)

we find

iΦ̇τ(x1, ξ1, x2, ξ2) = ϵ

(

− h̄2

2m1
∆
x1(τ)

− h̄2

2m2
∆
x2(τ)

+ U
(

x1(τ), ξ1, x2(τ), ξ2

)

)

Φτ(x1, ξ1, x2, ξ2). (129)

Now, let

Fτ(x1, ξ1, x2, ξ2) = Φτ(x1, ξ1, x2, ξ2) sinh ξ1 sinh ξ2. (130)

Employing g−2
(

g2( f /g)′
)′

= g−1
(

f ′′ − f g′′/g
)

, we obtain

iḞτ(x1, ξ1, x2, ξ2)

= ϵ

[

− h̄2

2m1x1(τ)2

(

∂2

∂ξ2
1

− 1

)

− h̄2

2m2x2(τ)2

(

∂2

∂ξ2
2

− 1

)

+ U
(

x1(τ), ξ1, x2(τ), ξ2

)

]

Fτ(x1, ξ1, x2, ξ2). (131)

An analogue of the center-of-mass system of coordinates is defined by

Ξ =
m1x1(τ)

2ξ1 + m2x2(τ)
2ξ2

m1x1(τ)2 + m2x2(τ)2
, (132)

ξ = ξ2 − ξ1. (133)
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Repeating standard calculations, we arrive at the interaction-picture Schrödinger equation,

iĠτ(x1, Ξ, x2, ξ)

= ϵ

(

− h̄2

2I
(

x1(τ), x2(τ)
)

∂2

∂Ξ2
− h̄2

2ι
(

x1(τ), x2(τ)
)

∂2

∂ξ2
+ V

(

x1(τ), Ξ, x2(τ), ξ
)

)

Gτ(x1, Ξ, x2, ξ), (134)

involving reduced and total moments of inertia (rather than reduced and total masses),

1

ι
(

x1, x2

) =
1

m1x
2
1

+
1

m2x
2
2

, (135)

I
(

x1, x2

)

= m1x
2
1 + m2x

2
2, (136)

the wave function,

Gτ(x1, Ξ, x2, ξ) = Fτ

(

x1, Ξ − m2x
2
2

m2x
2
2 + m1x

2
1

ξ, x2, Ξ +
m1x

2
1

m2x
2
2 + m1x

2
1

ξ

)

, (137)

and the potential

V(x1, Ξ, x2, ξ) =
h̄2

2ι(x1, x2)
+ U

(

x1, Ξ − m2x
2
2

m2x
2
2 + m1x

2
1

ξ, x2, Ξ +
m1x

2
1

m2x
2
2 + m1x

2
1

ξ

)

. (138)

In the limiting case m1 → ∞, one reconstructs the formalism we have used so far, with

ξ1 = Ξ, (139)

ξ2 = Ξ + ξ, (140)

and

iĠτ(x1, Ξ, x2, Ξ + ξ) = ϵ

(

− h̄2

2m2x2(τ)2

∂2

∂ξ2
+ V

(

x1(τ), Ξ, x2(τ), Ξ + ξ
)

)

Gτ(x1, Ξ, x2, Ξ + ξ). (141)

The harmonic oscillator example corresponds to Ξ = 0, m2 = µ, x2 = x, and

V(x1, 0, x, ξ) =
µω2

x
2 tanh2 ξ

2
. (142)

For large values of τ, both x1 and x2 are localized in a neighborhood of x = ℓ 4
√

τ.

9. Conclusions

The discussed formalism is meant as a unification and generalization of both standard

cosmology and quantum mechanics. As opposed to classical cosmology, the universe is

not represented by a spatial section of some space–time but by the support of a wave

function propagating through space–time. Quantum mechanics known from textbooks are

reconstructed asymptotically, for large times, by means of an appropriate correspondence

principle. The universe is in general deformed by the presence of matter. We have decided

to perform an explicit analysis of a simple but physically meaningful and exactly solvable

system, hence, the choice of a harmonic oscillator. Among various possibilities, we have

chosen the CRS model of the quantum harmonic oscillator, very natural in the context of

spaces with constant curvature. Yet, as opposed to the original CRS formalism, the curva-

ture in our formalism is not a parameter but a quantum observable. The resulting universe

exists in a quantum superposition of different curvatures.
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A general conclusion is that for late times, the evolution of the oscillator is essentially

the one we know from standard quantum mechanics but with one important subtlety.

Namely, the effective renormalized mass of the oscillator (inferred on the basis of the

uncertainty of its geodesic distance r) is time-dependent, as opposed to the bare mass

that occurs in the Hamiltonian. The time in e−iω(n+1/2)t is asymptotically (i.e., for late

times) proportional to the quantum evolution parameter, t ∼ τ, the age of the universe is

proportional to 4
√

τ, and the renormalized mass decays as 1/
√

τ. The effect does not seem

to be a peculiarity of this concrete potential. Rather, it is a consequence of the concrete form

of the empty-universe Hamiltonian and its coupling with matter. Since the renormalization

of mass is influenced by the dynamics of the universe, the effect may be regarded as yet

another version of Mach’s principle.
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Appendix A

Self-Adjointness, Unitarity, and Arrow of Time: Euclidean 2-Dimensional Case Study

In order to better understand the issues related to self-adjointness of the Hamiltonian

and the problems of unitarity, let us simplify the discussion by considering an analogous

problem but in the two dimensional plane R2. The resulting example may be treated as

a toy model of a closed positive-curvature quantum universe—the universe identified

with some rotationally invariant layer in two Euclidean dimensions, a support of some

wave function.

Consider the Hilbert space of square-integrable functions f : R2 → C, with the

scalar product

⟨ f |g⟩ =
∫ ∞

0
dr r

∫ 2π

0
dφ f (r, φ)g(r, φ), (A1)

and the Schrödinger equation analogous to (3),

i
dψτ(r, φ)

dτ
= Hψτ(r, φ) = −i

ℓD

DrD
r

∂ψτ(r, φ)

∂r
(A2)

= −i
ℓ2

2r

∂ψτ(r, φ)

∂r
= −iℓ2 ∂ψτ(r, φ)

∂(r2)
, (A3)

where D = 2 is the dimension of the Euclidean space R2. Definition (A2) is analogous to

(3), but instead of the background (1 + 3)-dimensional Minkowski space, we consider the

ordinary Euclidean plane. The coordinates are the usual polar r and φ. Let us now change

variables, ρ = r2, and define the new function

Fτ(ρ, φ) = ψτ(
√

ρ, φ), (A4)
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so that the Schrödinger equation, as well as its general solution, reads

dFτ(ρ, φ)

dτ
= −ℓ

2 ∂Fτ(ρ, φ)

∂ρ
, (A5)

Fτ(ρ, φ) = e
−τℓ2 ∂

∂ρ F0(ρ, φ) = F0(ρ − τℓ2, φ) = F0(ρτ , φ) = ψ0(
√

ρτ , φ) (A6)

= ψ0(
√

r2 − τℓ2, φ) = ψτ(r, φ). (A7)

Formally, (A5) is the wave equation describing waves propagating to the right with

velocity ℓ2. As the initial condition, we will take a function that is non-zero only in the

open ring r1 < r < r2, with some non negative r1, r2. Assume for simplicity,

ψ0(r, φ) =
1

√

π(r2
2 − r2

1)
χ]r1,r2[

(r), (A8)

where χ]r1,r2[
(r) is a smooth compact-support function of the type discussed in Figure 1,

approximating with arbitrary accuracy the characteristic function of the open interval

]r1, r2[. The initial condition is normalized,

⟨ψ0|ψ0⟩ =
∫ ∞

0
dr r

∫ 2π

0
dφ |ψ0(r, φ)|2 (A9)

=
1

π(r2
2 − r2

1)

∫ r2

r1

dr r
∫ 2π

0
dφ = 1. (A10)

The form (A7) of the solution implies that ψτ(r, φ) is non-vanishing only for

r1 <

√

r2 − τℓ2 < r2. (A11)

which is equivalent to

√

r2
1 + τℓ2 < r <

√

r2
2 + τℓ2. (A12)

Accordingly,

⟨ψτ |ψτ⟩ =
∫ ∞

0
dr r

∫ 2π

0
dφ |ψτ(r, φ)|2 (A13)

=
1

π(r2
2 − r2

1)

∫

√
r2

2+τℓ2

√
r2

1+τℓ2
dr r

∫ 2π

0
dφ = 1. (A14)

Let us note that (A12) is well defined for the evolution parameter τ, restricted by

−r2
1/ℓ2 ≤ τ, (A15)

which means that τ in both

Fτ(ρ, φ) = e
−τℓ2 ∂

∂ρ F0(ρ, φ) (A16)

and

⟨ψτ |ψτ⟩ = 1 (A17)

is restricted by (A15) as well. The geometric interpretation of this property is obvious: For

negative τ, the evolution given by (A16) shifts Fτ(ρ, φ) to the left along the ρ coordinate,

but ρ = r2 cannot become negative on R2. Moreover, by the same inequality (A15), we
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observe that the possible range of available τ depends on the form of the initial condition.

The interpretation of the latter property is also evident: An available time of propagation

to the left depends on how far to the right we begin.

For τ < −r2
1/ℓ2, we obtain

⟨ψτ |Hψτ⟩ ̸= ⟨Hψτ |ψτ⟩, (A18)

because the boundary terms arising from integration by parts will no longer cancel each

other. All these properties are typical of a unitary semigroup, possessing an arrow of time,

and this is why H is not self-adjoint. Any attempt of rescuing self-adjointness by continuing

r2 to negative values would bring us outside of the real plane, contradicting our assumption

that the waves propagate on R2.

On the other hand, for τ satisfying (A15), the norm of the solution equals 1, so

this is just a wave that represents some probability density radially propagating on R2.

As opposed to standard circular waves created by a stone thrown into a lake, the resulting

wave does not decrease its height, and does not spread along the radial direction. Just the

opposite, this is like a solitary wave whose radial width shrinks to zero so that the mass

contained in the volume of the wave remains unchanged.

There is no problem with analyzing this type of wave propagation by means of Fourier

analysis, with the Fourier modes playing the role of the basis in the Hilbert space in

question. Interestingly, the fact that the support of ψτ is a ring of finite radius and width

implies that the resulting Fourier modes will be discrete for any τ. The Fourier analysis

effectively replaces the missing spectral theory of the Hamiltonian. We do not make any

attempt of formulating a theory of measurement, as the universe that contains only a single

harmonic oscillator involves no laboratory observers.

As a final remark, let us note that the presence of rD and x
D in the denominators of

(A2) and (3) distinguishes these Hamiltonians from dilatation generators r∂/∂r and xµ∂µ.

Our Hamiltonians do not generate dilatations of r or x but translations of rD and x
D, which

turns out to be equivalent to a form of squeezing.

Appendix B

Appendix B.1. Excited States for sinh ξ ≈ tanh ξ ≈ ξ

So far, we have concentrated on the ground states, but it is a simple exercise to

derive all the excited states as long as we work in the approximate model, valid for

sinh ξ ≈ tanh ξ ≈ ξ. All the excited states should lead to coherent states and a semiclassical

limit of our theory, the problem worthy of a separate study. The exact CRS model is much

more complicated but still exactly solvable by a combination of the results from [14,15] with

what we describe in the present paper. It must be kept in mind that potentials proportional

to tanh2 ξ are bounded from above, and thus, only a finite number of discrete-energy states

are expected to occur. The same subtlety is found in the Kepler problem, as discussed

in [24].

For simplicity, let us consider D = 1 + 1 so that the angular coordinates are absent

from the very outset. The main difference between D = 1 + 1 and D = 1 + 3, l = 0, is in

the form of the free Hamiltonian, a generator of translations of xD. In case of a Gaussian,

the variable x
2 is replaced in interaction picture by x

2 + ℓ2τ, for D = 1 + 1, and by√
x

4 + ℓ4τ, for D = 1 + 3. In various other respects the two cases are qualitatively similar.

Assume

U(x1, x, ξ) =
ι(x)ω2ξ2

2
, (A19)
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where ι(x) is a moment of inertia to be specified later. Switching to the interaction picture,

ϕ̃τ(x1, ξ1, x, ξ) = e
τℓ2

(

∂

∂(x2
1
)
+ ∂

∂(x2)

)

ϕτ(x1, ξ1, x, ξ) (A20)

= ϕτ

(

√

x
2
1 + τℓ2, ξ1,

√

x
2 + τℓ2, ξ

)

, (A21)

we obtain a τ-dependent Hamiltonian,

i
d

dτ
ϕ̃τ(x1, ξ1, x, ξ) = ϵ



− h̄2

2ι
(√

x
2 + τℓ2

)

∂2

∂ξ2
+

ι
(√

x
2 + τℓ2

)

ω2ξ2

2



ϕ̃τ(x1, ξ1, x, ξ) (A22)

= ϵh̄ω

(

a
(
√

x
2 + τℓ2

)†
a
(
√

x
2 + τℓ2

)

+
1

2

)

ϕ̃τ(x1, ξ1, x, ξ), (A23)

where

a(x) =
1√
h̄ω

(

h̄
√

2ι(x)

∂

∂ξ
+

√

ι(x)

2
ωξ

)

, (A24)

a(x)† =
1√
h̄ω

(

− h̄
√

2ι(x)

∂

∂ξ
+

√

ι(x)

2
ωξ

)

. (A25)

The ground state

ϕ̃0,τ(x1, ξ1, x, ξ) = ϕ0,τ

(

√

x
2
1 + τℓ2, ξ1,

√

x
2 + τℓ2, ξ

)

, (A26)

is defined by

a
(
√

x
2 + τℓ2

)

ϕ̃0,τ(x1, ξ1, x, ξ) = a
(
√

x
2 + τℓ2

)

ϕ0,τ

(

√

x
2
1 + τℓ2, ξ1,

√

x
2 + τℓ2, ξ

)

= 0. (A27)

Following the standard steps one proves

i
d

dτ
ϕ̃n,τ(x1, ξ1, x, ξ) = ϵh̄ω

(

n +
1

2

)

ϕ̃n,τ(x1, ξ1, x, ξ), (A28)

ϕ̃n,τ(x1, ξ1, x, ξ) = e−iϵh̄ω(n+ 1
2 )τ ϕ̃n,0(x1, ξ1, x, ξ), (A29)

or equivalently,

ϕn,τ

(

√

x
2
1 + τℓ2, ξ1,

√

x
2 + τℓ2, ξ

)

= e−iϵh̄ω(n+ 1
2 )τϕn,0(x1, ξ1, x, ξ) (A30)

and thus,

ϕn,τ(x1, ξ1, x, ξ) = e−iϵh̄ω(n+ 1
2 )τϕn,0

(

√

x
2
1 − τℓ2, ξ1,

√

x
2 − τℓ2, ξ

)

, (A31)

with

ϕn,0(x1, ξ1, x, ξ) =
1√
2nn!

f (x1, ξ1, x)Hn

(
√

ι(x)ω

h̄
ξ

)

e−
ι(x)ω

2h̄ ξ2
, (A32)

Hn(η) = (−1)neη2 dn

dηn
e−η2

, (A33)
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and f (x1, ξ1, x) still unspecified. Formula (A31) shows that the usual quantum mechanical

time parameter can be identified with t = ϵh̄τ. Note that t is as invariant as τ and x and

thus cannot be regarded as a timelike coordinate t = x0/c of a world-position.

Let us recall that in m1 → ∞ limit. the first two coordinates,

x1 = (x0
1, x1

1) = x1(cosh ξ1, sinh ξ1), (A34)

describe the center-of-mass spacetime-position operator of the system. We can consider an

initial condition that separates the center of mass coordinate x
µ
1 from xµ, the relative one,

and concentrate on the latter,

ϕn,τ(x, ξ) = e−iϵh̄ω(n+ 1
2 )τ 1√

2nn!
f
(
√

x
2 − τℓ2

)

Hn









√

√

√

√

ωι
(√

x
2 − τℓ2

)

h̄
ξ









e−
ω
2h̄ ι(

√
x2−τℓ2)ξ2

. (A35)

It is subject to normalization

1 = ⟨ϕn,τ |ϕn,τ⟩ = ⟨ϕn,0|ϕn,0⟩ = ⟨ϕ0,0|ϕ0,0⟩ (A36)

=
∫ ∞

0
dx x| f (x)|2

∫ ∞

−∞
dξe−

ω
h̄ ι(x)ξ2

(A37)

=

√

πh̄

ω

∫ ∞

0
dx

x| f (x)|2
√

ι(x)
. (A38)

In (A37), we integrate over ξ ∈ R and not over ξ ∈ R+, a peculiarity of the 1+1 case.

Appendix B.1.1. Constant Moment of Inertia, ι(x) = mR2

For ι(x) = mR2 (i.e., in a flat universe), we obtain

ϕn,τ(x, ξ) = e−iϵh̄ω(n+ 1
2 )τ 1√

2nn!
f
(
√

x
2 − τℓ2

)

Hn

(
√

mω

h̄
Rξ

)

e−
mω
2h̄ R2ξ2

, (A39)

with

A2
0 < x

2 − ℓ
2τ < B2

0. (A40)

This is, essentially, an oscillator described in terms of some geodesic coordinate r = Rξ

and time t = ϵh̄τ.

Appendix B.1.2. x-Dependent Moment of Inertia, ι(x) = mx
2

For ι(x) = mx
2 (i.e., in the hyperbolic universe), the non-vanishing part of the solu-

tion reads

ϕn,τ(x, ξ) = e−iϵh̄ω(n+ 1
2 )τ 1√

2nn!
f
(
√

x
2 − ℓ2τ

)

Hn

(
√

mω

h̄

√

x
2 − ℓ2τξ

)

e−
mω
2h̄ (x2−ℓ2τ)ξ2

, (A41)

with

A2
0 < x

2 − ℓ
2τ < B2

0. (A42)

Appendix B.1.3. Renormalization of Mass

Define r = xξ. For A2
0 < x

2 − ℓ2τ < B2
0, rewrite (A35) as
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ϕ̌n,t(x, r) = e−iω(n+ 1
2 )t 1√

2nn!
f
(
√

x
2 − ℓ2τ

)

Hn

(
√

mω

h̄
γ(t, x)r

)

e−
mω
2h̄ γ(t,x)2

r
2
, (A43)

γ(t, x) =

√

ι(
√
x

2 − ℓct)

mx
2

=

{

R/x for ι = mR2
√

1 − ℓ2τ/x2 for ι = mx
2 , (A44)

where

A0/x <

√

1 − ℓ2τ/x2 < B0/x. (A45)

Otherwise ϕ̌n,t(x, r) = 0.

An observer who performs position measurements in terms of r will conclude that the

role of the parameter mω
h̄ is played by its rescaled version mω

h̄ γ(t, x)2. Simultaneously, one

does not observe any modification of frequency in the oscillating term e−iω(n+ 1
2 )t. Accord-

ingly, the rescaling of mω/h̄ has to be caused by a renormalization of m/h̄, the parameter

that controls the classical limit of the theory. It seems most natural to associate the effect

with the renormalization of mass. Therefore, defining

m(t, x) = mγ(t, x)2, (A46)

we find that the observed mass m(t, x) decays asymptotically, for late times, as 1/x2 ∼ 1/t.

For D = 1 + 3, the dependence on t is different, but still, m(t, x) asymptotically tends to

zero. Observers performing quantum measurements in position representation defined by

r = xξ may conclude that the present mass of the oscillator is smaller than its earlier values.

Let us note that the change in variables from (x, ξ) to (x, r) entails a modification of

the form of H0. Denoting

ψ(x, ξ) = Ψ(x cosh ξ, x sinh ξ) = Ψ(x0, x1), (A47)

ψ̌(x, r) = Ψ
(

x cosh
r

x
, x sinh

r

x

)

, (A48)

and employing the proportionality between H0 and Euler’s homogeneity operator, we find

H0ψ(x, ξ) = −iℓ2 ∂

∂(x2)
ψ(x, ξ), (A49)

H0ψ̌(x, r) = −i
ℓ2

2x2

(

x
∂

∂x
+ r

∂

∂r

)

ψ̌(x, r). (A50)

The inverse formulas read

x =
√

(x0)2 − (x1)2, (A51)

ξ = ln

√

x0 + x1

x0 − x1
, (A52)

r =
√

(x0)2 − (x1)2 ln

√

x0 + x1

x0 − x1
, (A53)

Ψ(x0, x1) = ψ





√

(x0)2 − (x1)2, ln

√

x0 + x1

x0 − x1



, (A54)
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whereas the corresponding scalar products are related by

⟨Ψ|Φ⟩ =
∫

V+

dx Ψ(x)Φ(x) (A55)

=
∫ ∞

0
dx
∫ ∞

−∞
dr ψ̌(x, r)ϕ̌(x, r) (A56)

=
∫ ∞

0
dx x

∫ ∞

−∞
dξ ψ(x, ξ)ϕ(x, ξ). (A57)

Figure A1. Geodesic coordinate r(x0, x1) given by (A53) as a function of the Minkowski-space

coordinates. r(x0, x1) decays to 0 as x approaches the light cone x = 0, a property that does

not contradict the normalization by means of
∫ ∞

−∞
dr, because the integral is computed along the

hyperboloid x = const > 0. Non-relativistic, late-time asymptotics of the position operator follow

from the pointwise but non-uniform convergence limx0→∞ r(x0, x1) = x1. The boundary condition,

Ψτ(x) = 0 if x = 0, implies that the light cone does not belong to the universe.

Appendix B.1.4. Example: Mass vs. Effective Renormalized Mass (Hyperbolic Case)

Consider (A35), with n = 0, ι = mx
2 (the hyperbolic case), A0 = 0, B0 > 0,

ϕ0,τ(x, ξ) = e−
i
2 ϵh̄ωτ f

(

√

x
2 − τℓ2

)

e−
ωm
2h̄ (x2−τℓ2)ξ2

(A58)

≈ Ce−
i
2 ωte−

ω
2h̄ m
(

1−τℓ2/x2
)

r
2

, for 0 < x
2 − τℓ2

< B2
0 (A59)

and 0 otherwise, normalized by (A38),

1 =

√

πh̄

mω

∫ ∞

0
dx| f (x)|2 ≈

√

πh̄

mω
B0|C|2. (A60)

The renormalized mass,

m̃ = m
(

1 − τℓ2/x2
)

, (A61)

is the effective mass as measured by the width of the Gaussian, hence, by the uncertainty

of the geodesic coordinate r = xξ. Now assume that τ0 is the current age of the universe,

and thus,

0 < m̃0 = m
(

1 − τ0ℓ
2/x2

)

< B2
0/x2, (A62)
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is the current renormalized mass of, say, an electron oscillating with frequency ω. Note

that x belongs to the support of the wave function at the current value of τ0. Denoting

t0 = ϵh̄τ0, t0 + δt = ϵh̄τ0 + ϵh̄δτ, we find

ϕ0,τ0+δτ(x, ξ) ≈ Ce−
i
2 ω(t0+δt)e−

ω
2h̄ m
(

1−(τ0+δτ)ℓ2/x2
)

r
2

(A63)

≈ Ce−
i
2 ω(t0+δt)e−

ω
2h̄ m̃0r

2
, (A64)

if δt/t0 ≪ 1, which can be safely assumed for all quantum mechanical experiments

performed during the past century. Equation (A64) is the standard nonrelativistic result.

However, if δτ ≈ −τ0, that is, we look at the state of the oscillator in a distant past,

hence, for small x, the renormalized mass tends towards the bare mass, m̃ ≈ m, which is

much larger.

The situation changes if we work with the bare mass. When expressed in space–time

coordinates, (x0, x1), the solution evolves in configuration space–time as a squeezed state:

Φ0,τ(x0, x1) = e−
i
2 ωt f

(

√

(x0)2 − (x1)2 − τℓ2
)

e
− ωm

2h̄

(

(x0)2−(x1)2−τℓ2
)

ln2

√

x0+x1

x0−x1
(A65)

≈ Ce−
i
2 ωte

− ωm
2h̄

(

(x0)2−(x1)2−τℓ2
)

ln2

√

x0+x1

x0−x1
, (A66)

if 0 < (x0)2 − (x1)2 − τℓ2 < B2
0 and vanishes otherwise. Figure A2 illustrates the probability

density associated with (A66) for some arbitrarily chosen dimensionless parameters.

Figure A2. An analogue of Figure 2 but for the solution (A66). The parameters are B0 = 1, mω/h̄ = 1,

ℓ = 1, τ = 0 (left), and τ = 2 (right). The white region represents the support of the wave function,

i.e., the configuration-space universe as a subset of the Minkowski space in D = 1 + 1, characterized

by Φ0,τ(x0, x1) ̸= 0. The mass is given by its bare value.

Appendix C

An Alternative Definition of the Harmonic Oscillator

In the symmetry scattering approach to Schrödinger equations [25], a potential is

identified with the angular part of an appropriate Laplace–Beltrami operator, hence, in our

case, this would be the term proportional to l(l + 1). Of course, this is not what we are

interested in if we want to define a harmonic oscillator. Let us therefore try an alternative

but equally general formulation.
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We start with the observation that in nonrelativistic quantum mechanics, we find

∆U(x) = ∆
mω2x2

2
= 3mω2 = const > 0. (A67)

An analogous generalization can be formulated for any Laplace–Beltrami operator,

in particular,

∆xU(x, ξ, θ, φ)

=
1

x
2 sinh2 ξ

∂

∂ξ
sinh2 ξ

∂

∂ξ
U(x, ξ, θ, φ) +

1

x
2 sinh2 ξ

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

U(x, ξ, θ, φ)

= const > 0. (A68)

So, first of all,

U(x, ξ, θ, φ) = x
2V(ξ, θ, φ), (A69)

and

1

sinh2 ξ

∂

∂ξ
sinh2 ξ

∂

∂ξ
V(ξ, θ, φ) +

1

sinh2 ξ

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

V(ξ, θ, φ) = C > 0.

(A70)

Assuming rotational invariance, we obtain

1

sinh2 ξ

∂

∂ξ
sinh2 ξ

∂

∂ξ
V(ξ) = C, (A71)

whose general solution reads

V(ξ) =
C

2
ξ coth ξ + C1 coth ξ + C2. (A72)

For C = 0, we reconstruct the Infeld–Schild version of the Coulomb–Newton potential [24].

It is intriguing that the oscillator and the Kepler problem are so intimately related, even at

such a general level.

A finite value at ξ = 0 implies C1 = 0, and then

lim
ξ→0

V(ξ) =
C

2
+ C2. (A73)

We assume C2 = −C/2, so that V(0) = 0. Then,

U(x, ξ, θ, ϕ) =
C

2
x

2(ξ coth ξ − 1) =
C

2

x
2ξ2

3
+ . . . (A74)

The correspondence principle with standard quantum mechanics implies

H = − h̄2

2m
∆x +

3

2
mω2

x
2(ξ coth ξ − 1) (A75)

= − h̄2

2m
∆x +

mω2
r

2

2
+ . . . (A76)



Entropy 2025, 27, 549 30 of 30

where r = xξ is the geodesic coordinate, i.e.,

∆xU(x, ξ, θ, φ) = 3mω2, (A77)

which is the same definition as in nonrelativistic quantum mechanics. For large ξ, the po-

tential is linear,

U(x, ξ, θ, φ) =
3

2
mω2

x
2(ξ coth ξ − 1) ≈ 3

2
mω2

x
2(ξ − 1) =

3

2
mω2

x(r− x). (A78)

As opposed to the CRS potential, Equation (A75) is expected to have infinitely many

bound states and purely discrete spectrum (cf. [26]). Unfortunately, we have not managed

to factorize (A75).
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