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In this paper, we deri v e the renormalization scale dependence of noncommutati v e mirror 
Yukawa couplings. To achie v e this, we first formulate a Euclidean noncommutati v e v ersion 

of the Yukawa sector within the electroweak-scale mirror right-handed neutrinos model. 
Then, we calculate the noncommutati v e one-loop β functions of Yukawa couplings for mir- 
ror fermions involved in this model, by taking advantage of the Slavnov–Taylor identities 
for the uni v ersal mirror Yukawa couplings, and by using the noncommutati v e vulcanized 

scalar and spinor propagators that pre v ent the UV/IR mixing. This leads us to a system of 
six cubic coupled first-order differential equations that depend only on the mirror Yukawa 

couplings and not on the noncommutati v e deformation and vulcanized parameters. We 
solve this system numerically for different initial conditions to get the evolution of the mir- 
ror Yukawa couplings in terms of the r enormalization scale. Furthermor e, we discuss the 
link to the commutati v e case and analyze the occurrence of the Landau pole for some spe- 
cific sets of initial conditions. 
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1. Introduction 

The Standard Model (SM) of particle physics is the current well experimentally established
model that describes the electroweak and strong fundamental interactions and the mass gen-
eration of most fundamental particles [ 1 , 2 ]. Howe v er, some observations such as the neutrino
masses and mixing and the baryon asymmetry, and also some expected features like the an-
ticipa ted unifica tion of the SM with the gravitational theory at the Planck scale, cannot be
accommodated within the SM. This makes it widely belie v ed that the SM is an effecti v e theory
valid until the TeV scale [ 3 ]. Beyond this energy scale, a more general theory should hold. This
paves the way to a wide range of beyond standard model (BSM) extensions that extend the
particle sector, the underlying dynamic, or the spacetime structure [ 3 ]. 

Among these extensions, the electr oweak-scale mirr or right-handed neutrinos model (EW νM 

R 

)
[ 4 ] is of particular interest. This model, built on the commutati v e Minkowski spacetime, pre-
serves the same gauge group as in the SM, but extends the scalar sector and adds mirror
∗bouteldja_abderrahmane@uni v-b lida.dz 
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fermions. Moreover, it allows the nonsterile right-handed neutrinos to get mass in the elec-
tro weak ener gy scale [ 4 ]. This fea ture makes it important to deepen the investiga tion of the
Yukawa coupling behavior of these right-handed neutrinos in terms of the energy scale. To shed
more light on the electroweak symmetry breaking mechanism involved in the mirror fermion
sector within this commutati v e model, Le and Hung in Ref. [ 5 ] have calculated the one-loop β

functions of the Yukawa coupling of the right-handed neutrinos, as well as of the other mirror
fermions embroiled in this model. This allowed them to introduce mirror fermion condensate
sta tes, a t an energy scale close to that of the Landau pole presented by the Yukawa couplings
of mirror fermions, which manifests itself on the TeV scale [ 6 ]. Furthermore, it is important
to note that this model fits well with the observed Large Hadron Collider (LHC) Higgs parti-
cle [ 7 ] and the observed Large Hadron Collider beauty (LHCb) muon transmutation [ 8 , 9 ]. This
makes it a good candidate to be efficient at the energies explored by the LHC. 

Howe v er, the prospect of a noncommutati v e v ersion of the Yukawa mirror sector of this
model becomes relevant in the context of future colliders [ 10 , 11 ]. These colliders will probe the
electroweak symmetry breaking mechanism more deeply, starting to explore the low sector in
the intermediate range between the LHC scale and the Planck scale, where new physics corre-
lated with the structure of spacetime should manifest itself. Furthermore, a noncommutati v e
version holds promise in shedding more light on challenging nonperturbative physical phenom- 
ena, such as the dynamical electroweak breaking symmetry. This adds to the fact that during
the last two decades, looking for the renormalization group equations in the noncommutati v e
spacetime era has gained importance. In particular, some noncommutati v e β functions have
been investigated especially for scalar quantum electrodynamics (QED) in Ref. [ 12 ], fermionic
QED in Ref. [ 13 ], the scalar Gurau model in Ref. [ 14 ], the Gross–Ne v eu model in Ref. [ 15 ],
and φ4 theory in R ef. [ 16 ]. R ecently special attention has been paid to the noncommutati v e e x-
tension of the Yukawa interaction [ 17 ]. Hence, to contribute to dealing with renormalization
group equations in the noncommutati v e spacetime, we are especially interested in studying, to
the leading radiati v e corrections, the ef fect of the noncommuta ti v e spacetime on the behavior
of the EW νM 

R 

mirror’s Yukawa couplings as a function of the renormalization scale. 
First, we construct the corresponding Euclidean Yukawa noncommutati v e Lagrangian, by

replacing, in the Euclidean version of the EW νM 

R 

, the usual fields product by the Moyal star
product [ 18 , 19 ] that accounts properly for the noncommutati v e spacetime effect, and by taking
into account all involved field permutations. 

Moreover, it is well known that loop calculations in a noncommutati v e spacetime are con-
fronted with the existence of a correlation between the ultraviolet (UV) and infrared (IR) re-
gions of momentum space induced by the nonplanar Feynman diagrams due to the nonlocal
character inherent to the star product [ 20–22 ]. To tackle this mixing problem without spoiling
tr anslation invariance, Gur au et al. [ 23 ] and subsequently Bouchachia et al. [ 24 ] introduced
nonlocal counter terms in the vein of the vulcanization method [ 25–28 ], which leads to a vul-
canized Euclidean scalar and spinor propagators that pre v ent the UV/IR mixing in a φ4 theory
supplemented by a Yukawa interaction, and consequently r estor es the renormalizability of the
theory. 

Ther efor e, making use of these vulcanized propagators, we are well equipped to undertake
the calculation of the noncommutati v e β functions of the mirror Yukawa couplings to the
one-loop order within the proposed mirror Yukawa sector of the Euclidean noncommutati v e
electr oweak-scale mirr or right-handed neutrinos model (ENC-EW νM 

R 

). 
2/28 
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This paper is structured as follows. In the next section, we briefly re vie w the EW νM 

R 

model
in Minkowski spacetime, then switch to Euclidean spacetime and formulate the noncommu-
tati v e Euclidean Yukawa Lagrangian of the electroweak-scale right-handed neutrinos model.
In Section 3 , we express the mirror Yukawa Lagrangian in ter ms of renor malization constants
and renormalized couplings and fields, then establish the Slavnov–Taylor identities for mirror
Yukawa couplings, and formulate the relation that connects the β function to the counter terms
involved in the mirror Yukawa interaction. Section 4 establishes the expression of the necessary
one-loop order UV counter terms, by a ppl ying the noncommutative vulcanized Feynman rules
to the selected processes and calculating the corresponding radiati v e corrections, the compu-
tational details of which ar e r eported in the Appendix . In Section 5 , we deri v e in terms of the
mirror Yukawa couplings the corresponding expressions of the β function. This leads us to
the establishment of a system of six first-order coupled nonlinear differential equations. Fur-
thermore, the connection with the commutati v e case is discussed. Section 6 is devoted to the
extraction and the discussion of the numerical solutions of the dif ferential equa tion system.
We draw the dependence of the mirror Yukawa couplings on the renormalization scale. We
also report a link to the commutati v e results of Le–Hung [ 5 , 6 ] and discuss the position of the
occurrence of the Landau pole. Finally, we draw our concluding remarks. 

2. Model formulation 

2.1. A brief review of the Mink o wski commutative EW νM 

R 

model 
The EW νM 

R 

model is an extension of the SM that preserves the gauge sector but extends the
spinor sector by right-handed mirror leptons l M 

R 

and right-handed mirror quarks q 

M 

R 

doublets,
and left-handed mirror leptons e M 

L 

and left-handed mirror quarks u 

M 

L 

and d 

M 

L 

singlets. The
scalar sector is also extended by a singlet ϕ S , a new doublet �2 M 

, and two triplets χ and ξ fields
as depicted in Table 1 . 

The corresponding L EW νM 

R 
Lagrangian constructed by Hung [ 4 ] on the Minkowski spacetime

is composed of the SM Lagrangian supplemented by the kinetic term for the mirror fermions
L 

M 

Fermions , the kinetic terms and the potential for the new scalar fields expressed in L 

M 

Higgs , the
interaction between the SM scalar and the new scalar fields in L 

M−SM 

Higgs , the Yukawa interac-
tions for the mirror fermions L 

M 

Yukawa , and the combined mirrors and SM fermions Yukawa
interactions L 

M−SM 

Yukawa . Hence we can write: 

L EW νM 

R 
= L 

SM 

Gauge + L Fermions + L Higgs + L Yukawa + L GF 

+ L FP , (1) 

where the kinetic Lagrangian for the fermions is: 

L Fermions = L 

SM 

Fermions + L 

M 

Fermions , (2) 

with L 

M 

Fermions having, for the mirror fermions, an expression similar to that of the Lagrangian
L 

SM 

Fermions for the SM fermions with the difference that the SM left-handed doublet fermions
ar e r eplaced by the right-handed doublet mirror fermions and the SM right-handed singlet
fermions are replaced by the left-handed singlet mirror fermions. 
3/28 
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Table 1. Elementary fields in the commutati v e EW νM 

R 

model. Each symbol νe , e , u , or d stands for the 
thr ee corr esponding SM flavors. Ther e is no mixing of mirror leptons and no mixing of mirror quarks. 

SM fermion fields 
S U (3) c ⊗ S U (2) W 

⊗
U (1) Y 

Mirror fermion fields 
S U (3) c ⊗ S U (2) W 

⊗
U (1) Y 

l L = 

(
νe L 
e L 

) (
1 , 2 , −1 

2 

)
l M 

R 

= 

(
νM 

e R 
e M 

R 

) (
1 , 2 , −1 

2 

)
q L = 

(
u L 

d L 

) (
3 , 2 , 

1 

6 

)
q 

M 

R 

= 

(
u 

M 

R 

d 

M 

R 

) (
3 , 2 , 

1 

6 

)
e R 

(
1 , 1 , −1 

)
e M 

L 

(
1 , 1 , −1 

)
u R 

(
3 , 1 , 

2 

3 

)
u 

M 

L 

(
3 , 1 , 

2 

3 

)
d R 

(
3 , 1 , −1 

3 

)
d 

M 

L 

(
3 , 1 , −1 

3 

)

SM scalar fields 
S U (3) c ⊗ S U (2) W 

⊗
U (1) Y 

Extra-SM scalar fields 
S U (3) c ⊗ S U (2) W 

⊗
U (1) Y 

ϕ S 

(
1 , 1 , 0 

)
�2 = 

(
φ+ 

2 
φ0 

2 

) (
1 , 2 , 

1 

2 

)
�2 M 

= 

(
φ+ 

2 M 

φ0 
2 M 

) (
1 , 2 , 

1 

2 

)

˜ χ = 

1 √ 

2 

� τ . � χ = 

(
1 √ 
2 
χ+ χ++ 

χ0 − 1 √ 
2 
χ+ 

) (
1 , 3 , 1 

)

ξ = 

⎛ ⎝ 

ξ+ 

ξ 0 

ξ−

⎞ ⎠ 

(
1 , 3 , 0 

)
SM and EW νM 

R 

gauge fields S U (3) c ⊗ S U ( 2) W 

⊗ U ( 1) Y 

W 

a 
μ

(
1 , 3 , 0 

)
B μ

(
1 , 1 , 0 

)
g 

b 
μ

(
8 , 1 , 0 

)
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The scalar sector is governed by the Lagrangian [ 6 ]: 

L Higgs = 

1 

2 

T r 
[ (

D μ�2 
)† 

( D 

μ�2 ) 
] 

+ 

1 

2 

{ 

| ∂ μϕ S | 2 + T r 
[ (

D μ�2 M 

)† 
( D 

μ�2 M 

) 
] 

+ T r 
[ (

D μX 

)† 
( D 

μX ) 
] } 

+ V (ϕ s , �2 , �2 M 

, X ) = L 

SM 

Higgs + L 

M 

Higgs + L 

M−SM 

Higgs , (3) 

with V (ϕ s , �2 , �2 M 

, X ) being the potential interaction between the scalar fields [ 6 ], and X is
the 3 × 3 matrix r epr esentation of the two scalar triplets written as follows [ 29 ]: 

X = 

⎛ ⎜ ⎝ 

χ0 ∗ ξ+ χ++ 

χ− ξ 0 χ+ 

χ−− ξ− χ0 

⎞ ⎟ ⎠ 

, (4) 
4/28 
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with χ−− = χ++ 

∗, χ− = −χ+ 

∗, ξ− = −ξ+ 

∗, and the covariant deri vati v es acting on the scalar
sector are gi v en by [ 6 , 29 , 30 ]: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

D μ�2 ≡ ∂ μ�2 + i 
g 

2 

( 
−→ 

W μ. � τ )�2 + i 
g 

′ 

2 

B μ�2 , 

D μ�2 M 

≡ ∂ μ�2 M 

+ i 
g 

2 

( 
−→ 

W μ. � τ )�2 M 

+ i 
g 

′ 

2 

B μ�2 M 

, 

D μX ≡ ∂ μX + ig( 
−→ 

W μ. 
−→ 

T ) X − i g 

′ B μX T 3 , 

(5) 

wher e τi ar e the P auli matrices, and the T i are the following 3 × 3 matrix r epr esentation of the
SU (2) generators: 

T 1 = 

1 √ 

2 

⎛ ⎜ ⎝ 

0 1 0 

1 0 1 

0 1 0 

⎞ ⎟ ⎠ 

, T 2 = 

1 √ 

2 

⎛ ⎜ ⎝ 

0 −i 0 

i 0 −i 
0 i 0 

⎞ ⎟ ⎠ 

, T 3 = 

⎛ ⎜ ⎝ 

1 0 0 

0 0 0 

0 0 −1 

⎞ ⎟ ⎠ 

. (6) 

The remaining L Yukawa that enables fermions to acquire masses through electroweak symmetry
breaking is: 

L Yukawa = L 

SM 

Yukawa + L 

M 

Yukawa + L 

M−SM 

Yukawa , (7) 

where L 

SM 

Yukawa is the SM Yukawa Lagrangian, and 

L 

M 

Yukawa = L e M + L q M + L νe R 
(8) 

is the pure mirror Yukawa’s interaction with [ 5 ]: 

L e M = −g e M ̄l M 

R 

�2 M 

e M 

L 

− g e M ̄e M 

L 

�
† 
2 M 

l M 

R 

, (9) 

L q M = −g d M q̄ 

M 

R 

�2 M 

d 

M 

L 

− g d M d̄ 

M 

L 

�
† 
2 M 

q 

M 

R 

− g u M q̄ 

M 

R 

˜ �2 M 

u 

M 

L 

− g u M ū 

M 

L 

˜ �
† 
2 M 

q 

M 

R 

, (10) 

L νe R 
= g M 

l M,T 
R 

σ2 τ2 ˜ χ l M 

R 

. (11) 

In the previous Eqs. ( 9 –11 ) we set ˜ �2 M 

= iτ2 �
∗
2 M 

, and we assume uni v ersal couplings g M 

, g e M ,
and g q M = g u M = g d M whate v er is the flavor. Moreover, a global symmetry is introduced to pre-
vent a Majorana mass term for left-handed neutrinos [ 4 ]. Besides, we also have the Yukawa
interaction that mixes between mirror and SM fermions: 

L 

M−SM 

Yukawa = L S l + L S q , (12) 

where: 

L S l = −g S l 

(
l̄ L l 

M 

R 
+ l̄ M 

R 
l L 
)

ϕ S , (13) 

L S q = −g S q 

(
q̄ 

M 

R 
q L + q̄ L q 

M 

R 

)
ϕ S − g 

′ 
S q 

(
q̄ 

M 

L 
q R + q̄ R q 

M 

L 

)
ϕ S . (14) 

Finally, we draw the reader’s attention to the fact that the gauge-fixing Lagrangian L GF 

and
the ghosts Lagrangian L FP keep the same expressions as those of the SM [ 31 , 32 ] but with the
three Goldstone fields expressed as a combination of the components of all the doublets and
triplets scalar fields involved in this extension as in Refs. [ 29 , 30 ]. 

2.2. The mirror Yukawa Euclidean noncommutative EW νM 

R 

Lagrangian 

Starting from the Minkowski commutati v e Yukawa Lagrangian L 

M 

Yukawa , to construct the mirror
Yukawa Euclidean noncommutati v e EW νM 

R 

Lagrangian L 

M, ENC 

Yukawa , we follow the following two
steps: 1 
1 The construction of the whole EW νM 

R 

theory on noncommutati v e spacetime will r equir e in addition 

deforming the covariant deri vati v es [ 33 , 34 ] and is left for future work. 

5/28 
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(i) First, we transform the L 

M 

Yukawa Lagrangian from the Minkowski to the Euclidean com-
mutati v e spacetime, by applying the Wick rotation to get L 

M, ( Eucl . ) 
Yukawa w hich simpl y includes

a relati v e minus sign. 
(ii) The second step consists of two actions: 

� First, we replace, in the commutati v e L 

M, ( Eucl . ) 
Yukawa , the or dinary product between fields

by the star Weyl–Moyal product [ 18 , 35 , 36 ] that enables us to proper ly incorpor ate the
effect of the noncommutati v e spacetime, and which is defined as follows ( � = c = 1 ): 

f 1 (x ) � f 2 (x ) = f 1 ( x ) 

⎡ ⎢ ⎢ ⎢ ⎣ 

e 
i 
2 θ

μν

← −
∂ 

∂x μ

−→ 

∂ 

∂y ν

⎤ ⎥ ⎥ ⎥ ⎦ 

f 2 ( y ) | x = y , (15) 

where f 1 and f 2 stand for fields and x and y are the spacetime positions with: 
x 

μ � x 

ν − x 

ν � x 

μ = [ x 

μ, x 

ν ] � = iθμν , (16) 
and in the Euclidean spacetime the θμν are the components of the following totally
antisymmetric tensor: 

[ θμν ] = 

⎡ ⎢ ⎢ ⎢ ⎣ 

0 θ 0 0 

−θ 0 0 0 

0 0 0 θ

0 0 −θ 0 

⎤ ⎥ ⎥ ⎥ ⎦ 

, (17) 

in which θ is the noncommutati v e small real deformation parameter and has a dimen-
sion inverse to the square of the energy. 

� Second, we add all permutations between fields and use the trace property of the star
product [ 24 ], which ultimately leads to the following substitution when going from the
commutati v e Yukawa interaction between a spinor field ψ (x ) and a scalar field φ(x ) to
the corresponding noncommutati v e ones: 

g 

(c ) ψ̄ ( x ) ψ ( x ) φ( x ) → g 

(nc ) ψ̄ (x ) � ψ (x ) � φ(x ) + ˜ g 

(nc ) ψ̄ (x ) � φ(x ) � ψ (x ) , (18) 
where superscript c stands for commutati v e and superscript nc for noncommutati v e.
Since in what follows, we are dealing with noncommutati v e cases, these indices will be
dropped, except in a few possibly confusing cases. 

We can summarize our procedure as follows: 

L 

M 

Yukawa 
Wick rotation −−−−−−−→ L 

M, ( Eucl . ) 
Yukawa 

Moyal product −−−−−−−→ L 

M, ENC 

Yukawa . (19) 

A ppl ying this procedure, and assuming uni v ersal noncommutati v e mirror Yukawa couplings
respecti v ely for all mirror down leptons’ ( e M ), all mirror quarks’ ( q 

M ) and all mirror up leptons’
( νe R 

), enables us to write explicitly the Yukawa parts of the Lagrangian corresponding to each
mirror fermionic sector as follows: 

Mirror down leptons’ Yukawa sector: L e M → L 

ENC 

e M 

L 

ENC 

e M 

= g e M 

∑ 

e. flavors 

[ 
νM 

e R 
� φ+ 

2 M 

� e M 

L 

+ e M 

R 

� φ0 
2 M 

� e M 

L 

− e M 

L 

� φ−
2 M 

� νM 

e R 
+ e M 

L 

� φ0 ∗
2 M 

� e M 

R 

] 
+ ˜ g e M 

∑ 

e. flavors 

[ 
νM 

e R 
� e M 

L 

� φ+ 

2 M 

+ e M 

R 

� e M 

L 

� φ0 
2 M 

− e M 

L 

� νM 

e R 
� φ−

2 M 

+ e M 

L 

� e M 

R 

� φ0 ∗
2 M 

] 
, 

(20) 

with φ− = − φ+ ∗. 
2 M 2 M 

6/28 
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Mirror quarks’ Yukawa sector: L q M → L 

ENC 

q M 

L 

ENC 

q M 

= g q M 

∑ 

q. flavors 

[ 
u 

M 

R 

� φ+ 

2 M 

� d 

M 

L 

+ d 

M 

R 

� φ0 
2 M 

� d 

M 

L 

− d 

M 

L 

� φ−
2 M 

� u 

M 

R 

+ d 

M 

L 

� φ0 ∗
2 M 

� d 

M 

R 

+ u 

M 

R 

� φ0 ∗
2 M 

� u 

M 

L 

+ d 

M 

R 

� φ−
2 M 

� u 

M 

L 

+ u 

M 

L 

� φ0 
2 M 

� u 

M 

R 

− u 

M 

L 

� φ+ 

2 M 

� d 

M 

R 

] 
+ ˜ g q M 

∑ 

q. flavors 

[ 
u 

M 

R 

� d 

M 

L 

� φ+ 

2 M 

+ d 

M 

R 

� d 

M 

L 

� φ0 
2 M 

− d 

M 

L 

� u 

M 

R 

� φ−
2 M 

+ d 

M 

L 

� d 

M 

R 

� φ0 ∗
2 M 

+ u 

M 

R 

� u 

M 

L 

� φ0 ∗
2 M 

+ d 

M 

R 

� u 

M 

L 

� φ−
2 M 

+ u 

M 

L 

� u 

M 

R 

� φ0 
2 M 

− u 

M 

L 

� d 

M 

R 

� φ+ 

2 M 

] 
. 

(21) 

Majorana right-handed neutrinos’ Yukawa sector: L νe R 
→ L 

ENC 

νe R 

L 

ENC 

νe R 
= g M 

∑ 

e. flavors 

(
νM,T 

e R 
� χ0 � iσ2 ν

M 

e R 
− 1 √ 

2 

νM,T 
e R 

� χ+ � iσ2 e M 

R 
− 1 √ 

2 

e M,T 
R 

� χ+ � iσ2 ν
M 

e R 

− e M,T 
R 

� χ++ � iσ2 e M 

R 

)
+ ̃

 g M 

∑ 

e. flavors 

(
νM,T 

e R 
� iσ2 ν

M 

e R 
� χ0 − 1 √ 

2 

νM,T 
e R 

� iσ2 e M 

R 
� χ+ 

− 1 √ 

2 

e M,T 
R 

� iσ2 ν
M 

e R 
� χ+ − e M,T 

R 
� iσ2 e M 

R 
� χ++ 

)
. (22) 

It is worth noting here that in this transition from commutati v e to noncommutati v e formula-
tions, the Euclidean two points scalar and spinor functions have to undergo the vulcanization
procedure [ 23 , 24 ] to pre v ent subsequent UV/IR mixing and gain renormalizability. 

3. Renormalization of the mirror Yuka w a sector 
3.1. Renormalization constants 
The bare quantities 2 ψ 0 , φ0 , g 0 ,X , and ˜ g 0 ,X , and renormalized quantities ψ r , φr , g X ,r , and ˜ g X ,r , are
related through the renormalization constants Z ψ 

, Z φ, Z g X 
, and Z ˜ g X 

as follows: 

ψ 0 = 

√ 

Z ψ 

ψ r , φ0 = 

√ 

Z φ φr , g 0 ,X = Z g X 
g X ,r , and ˜ g 0 ,X = Z ˜ g X 

˜ g X ,r , (23) 

where, depending on the case, the index X refers to M, e M , or q 

M . The spinor field ψ stands
for ψ ≡ νM 

e R , e 
M 

L 

, e M 

R 

, u 

M 

L 

, u 

M 

R 

, d 

M 

L 

, d 

M 

R 

; with e , u , and d each r epr esenting the three mirror down
lepton flavors, the three mirror up quark flavors, and the three mirror down quark flavors, re-
specti v ely. Whereas the scalar field φ stands for: φ ≡ χ0 , χ+ , χ++ , φ0 

2 M 

, φ+ 

2 M 

, φ−
2 M 

. 3 

For simplicity, we assume that the scalar field’s renormalization constants fulfill the following
relations: √ 

Z χ ≡ √ 

Z χ0 = 

√ 

Z χ+ = 

√ 

Z χ++ , √ 

Z φ ≡
√ 

Z φ0 
2 M 

= 

√ 

Z φ+ 
2 M 

= 

√ 

Z φ−
2 M 

. 
(24) 

Furthermore, for the spinor fields’ renormalization constants, we assume that Z νM 

e R 
, Z e M 

R 
, Z e M 

L 
,

Z u M 

R 
, Z u M 

L 
, Z d M 

R 
, and Z d M 

L 
are invariant under flavor changing. 
2 In the previous section all couplings and fields were bare ones. 
3 We do not consider here the ξ and ϕ s fields since they are not involved in the purely mirror Yukawa 

sector with which we are dealing. 
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3.2. Slavnov–Taylor identities 
For the mirror down leptons’ Yukawa sector, replacing the bare quantities in terms of the cor-
r esponding r enormalized ones leads to the f ollowing f orm of the Lagrangian L 

ENC 

e M 

: 

L 

ENC 

e M 

= g e M 

[ 

Z νR e L φ

∑ 

e. flavors 

(
νM 

e R � φ+ 

2 M 

� e M 

L 

− e M 

L 

� φ−
2 M 

� νM 

e R 

)+ Z e R e L φ

∑ 

e. flavors 

(
e M 

R 

� φ0 
2 M 

� e M 

L 

+ e M 

L 

� φ0 ∗
2 M 

� e M 

R 

)] 

+ ˜ g e M 

[ ˜ Z νR e L φ

∑ 

e. flavors 

(
νM 

e R � e M 

L 

� φ+ 

2 M 

− e M 

L 

� νM 

e R � φ−
2 M 

)
+ 

˜ Z e R e L φ

∑ 

e. flavors 

(
e M 

R 

� e M 

L 

� φ0 
2 M 

+ e M 

L 

� e M 

R 

� φ0 ∗
2 M 

)] 

, (25) 

wher e her e the fields and couplings ar e the r enormalized ones e v en if in all that follows, we
drop the r index so as not to clutter the writing. The v erte x renormalization constants Z νR e L φ

,
Z e R e L φ

, ˜ Z νR e L φ
, and 

˜ Z e R e L φ
are connected to the fields’ and couplings’ renormalization constants

through the following relations: 

Z νR e L φ
= Z g e M 

√ 

Z νM 

e R 

√ 

Z e M 

L 

√ 

Z φ , Z e R e L φ
= Z e L e R φ

= Z g e M 

√ 

Z e M 

R 

√ 

Z e M 

L 

√ 

Z φ , 

˜ Z νR e L φ
= Z ˜ g e M 

√ 

Z νM 

e R 

√ 

Z e M 

L 

√ 

Z φ , ˜ Z e R e L φ
= 

˜ Z e L e R φ
= Z ˜ g e M 

√ 

Z e M 

R 

√ 

Z e M 

L 

√ 

Z φ . 
(26) 

The uni v ersality of the mirror down leptonic Yukawa coupling constants leads to the following
Slavnov–Taylor identities: 

Z g e M 

= 

Z νR e L φ√ 

Z νM 

e R 

√ 

Z e M 

L 

√ 

Z φ

= 

Z e R e L φ√ 

Z e M 

R 

√ 

Z e M 

L 

√ 

Z φ

, 

Z ˜ g e M 

= 

˜ Z νR e L φ√ 

Z νM 

e R 

√ 

Z e M 

L 

√ 

Z φ

= 

˜ Z e R e L φ√ 

Z e M 

R 

√ 

Z e M 

L 

√ 

Z φ

. 

(27) 

Besides, for the mirror quarks’ Yukawa sector, the Lagrangian L 

ENC 

q M 

expressed in terms of the
renormalized quantities takes the form: 

L 

ENC 

q M 

= g q M 

∑ 

q. flavors 

[ 
Z u R d L φ

(
u 

M 

R 

� φ+ 

2 M 

� d 

M 

L 

− d 

M 

L 

� φ−
2 M 

� u 

M 

R 

)
+ Z u L d R φ

(
d 

M 

R 

� φ−
2 M 

� u 

M 

L 

− u 

M 

L 

� φ+ 

2 M 

� d 

M 

R 

)
+ Z d R d L φ

(
d 

M 

R 

� φ0 
2 M 

� d 

M 

L 

+ d 

M 

L 

� φ0 ∗
2 M 

� d 

M 

R 

)
+ Z u R u L φ

(
u 

M 

R 

� φ0 ∗
2 M 

� u 

M 

L 

+ u 

M 

L 

� φ0 
2 M 

� u 

M 

R 

)] 
+ ˜ g q M 

∑ 

q. flavors 

[ 
˜ Z u R d L φ

(
u 

M 

R 

� d 

M 

L 

� φ+ 

2 M 

− d 

M 

L 

� u 

M 

R 

� φ−
2 M 

)
+ 

˜ Z u L d R φ

(
d 

M 

R 

� u 

M 

L 

� φ−
2 M 

− u 

M 

L 

� d 

M 

R 

� φ+ 

2 M 

)
+ 

˜ Z d R d L φ

(
d 

M 

R 

� d 

M 

L 

� φ0 
2 M 

+ d 

M 

L 

� d 

M 

R 

� φ0 ∗
2 M 

)
+ 

˜ Z u R u L φ
(
u 

M 

R 

� u 

M 

L 

� φ0 ∗
2 M 

+ u 

M 

L 

� u 

M 

R 

� φ0 
2 M 

)] 
. (28) 

The corresponding v erte x renormalization constants Z u R d L φ
, Z u L d R φ

, Z d R d L φ
, Z u R u L φ

, ˜ Z u R d L φ
,

˜ Z u d φ, ˜ Z d d φ, and 

˜ Z u u φ ar e r elated to the r enormalization constants of fields and couplings

L R R L R L 
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as follows: 
Z u R d L φ

= Z g q M 

√ 

Z u M 

R 

√ 

Z d M 

L 

√ 

Z φ , Z d R d L φ
= Z d L d R φ

= Z g q M 

√ 

Z d M 

R 

√ 

Z d M 

L 

√ 

Z φ , 

Z u L d R φ
= Z g q M 

√ 

Z u M 

L 

√ 

Z d M 

R 

√ 

Z φ , Z u R u L φ
= Z u L u R φ

= Z g q M 

√ 

Z u M 

R 

√ 

Z u M 

L 

√ 

Z φ , 

˜ Z u R d L φ
= Z ˜ g q M 

√ 

Z u M 

R 

√ 

Z d M 

L 

√ 

Z φ , ˜ Z d R d L φ
= 

˜ Z d L d R φ
= Z ˜ g q M 

√ 

Z d M 

R 

√ 

Z d M 

L 

√ 

Z φ , 

˜ Z u L d R φ
= Z ˜ g q M 

√ 

Z u M 

L 

√ 

Z d M 

R 

√ 

Z φ , ˜ Z u R u L φ
= 

˜ Z u L u R φ
= Z ˜ g q M 

√ 

Z u M 

R 

√ 

Z u M 

L 

√ 

Z φ , 

(29) 

with the corresponding Slavnov–Taylor identities gi v en by: 

Z g q M 

= 

Z u R d L φ√ 

Z u M 

R 

√ 

Z d M 

L 

√ 

Z φ

= 

Z u L d R φ√ 

Z u M 

L 

√ 

Z d M 

R 

√ 

Z φ

= 

Z d R d L φ√ 

Z d M 

R 

√ 

Z d M 

L 

√ 

Z φ

= 

Z u R u L φ√ 

Z u M 

R 

√ 

Z u M 

L 

√ 

Z φ

, 

Z ˜ g q M 

= 

˜ Z u R d L φ√ 

Z u M 

R 

√ 

Z d M 

L 

√ 

Z φ

= 

˜ Z u L d R φ√ 

Z u M 

L 

√ 

Z d M 

R 

√ 

Z φ

= 

˜ Z d R d L φ√ 

Z d M 

R 

√ 

Z d M 

L 

√ 

Z φ

= 

˜ Z u R u L φ√ 

Z u M 

R 

√ 

Z u M 

L 

√ 

Z φ

. 

(30) 

Furthermore, for the Majorana right-handed neutrinos’ Yukawa sector, in terms of renormal-
ized quantities the Lagrangian L 

ENC 

νe R 
takes the form: 

L 

ENC 

νe R 
= g M 

[ 

Z νT 
R 

νR χ

∑ 

e. flavors 

(νM,T 
e R � χ0 � iσ2 νe R ) − Z e T 

R 
e R χ

∑ 

e. flavors 

(e M,T 
R 

� χ++ � iσ2 e M 

R 

) 

− 1 √ 

2 

Z νT 
R 

e R χ

∑ 

e. flavors 

(νM,T 
e R � χ+ � iσ2 e M 

R 

) − 1 √ 

2 

Z νR e 
T 
R 
χ

∑ 

e. flavors 

(e M,T 
R 

� χ+ � iσ2 ν
M 

e R ) 

] 

+ ̃

 g M 

[ 

˜ Z νT 
R 

νR χ

∑ 

e. flavors 

(νM,T 
e R � iσ2 ν

M 

e R � χ0 ) − ˜ Z e T 
R 

e R χ

∑ 

e. flavors 

(e M,T 
R 

� iσ2 e M 

R 

� χ++ ) 

− 1 √ 

2 

˜ Z νT 
R 

e R χ

∑ 

e. flavors 

(νM,T 
e R � iσ2 e M 

R 

� χ+ ) − 1 √ 

2 

˜ Z νR e 
T 
R 
χ

∑ 

e. flavors 

(e M,T 
R 

� iσ2 ν
M 

e R � χ+ ) 

] 

. 

(31) 

In terms of the fields’ and couplings’ renormalization constants, the v erte x renormalization
constants Z νT 

R 
νR χ

, Z e T 
R 

e R χ
, Z νT 

R 
e R χ

, Z νR e 
T 
R 
χ , ˜ Z νT 

R 
νR χ

, ˜ Z e T 
R 

e R χ
, ˜ Z νT 

R 
e R χ

, and 

˜ Z νR e 
T 
R 
χ can be written as: 

Z νT 
R 

νR χ
= Z g M 

√ 

Z νM,T 
e R 

√ 

Z νM 

e R 

√ 

Z χ , ˜ Z νT 
R 

νR χ
= Z ˜ g M 

√ 

Z νM,T 
e R 

√ 

Z νM 

e R 

√ 

Z χ , 

Z e T 
R 

e R χ
= Z g M 

√ 

Z e M,T 
R 

√ 

Z e M 

R 

√ 

Z χ , ˜ Z e T 
R 

e R χ
= Z ˜ g M 

√ 

Z e M,T 
R 

√ 

Z e M 

R 

√ 

Z χ , 

Z νT 
R 

e R χ
= Z g M 

√ 

Z νM,T 
e R 

√ 

Z e M 

R 

√ 

Z χ , ˜ Z νT 
R 

e R χ
= Z ˜ g M 

√ 

Z νM,T 
e R 

√ 

Z e M 

R 

√ 

Z χ , 

Z νR e 
T 
R 
χ = Z g M 

√ 

Z νM 

e R 

√ 

Z e M,T 
R 

√ 

Z χ , ˜ Z νR e 
T 
R 
χ = Z ˜ g M 

√ 

Z νM 

e R 

√ 

Z e M,T 
R 

√ 

Z χ , 

(32) 

with the corresponding Slavnov–Taylor identities expressed as: 
9/28 
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Z g M 

= 

Z 

νT 
R 

νR χ√ 

Z 

ν
M,T 
e R 

√ 

Z 

νM 

e R 

√ 

Z χ

= 

Z e T 
R 

e R χ√ 

Z 

e M,T 
R 

√ 

Z e M 

R 

√ 

Z χ

= 

Z 

νT 
R 

e R χ√ 

Z 

ν
M,T 
e R 

√ 

Z e M 

R 

√ 

Z χ

= 

Z 

νR e 
T 
R 

χ√ 

Z 

νM 

e R 

√ 

Z 

e M,T 
R 

√ 

Z χ

, 

Z ˜ g M 

= 

˜ Z 

νT 
R 

νR χ√ 

Z 

ν
M,T 
e R 

√ 

Z ν
e M 

R 

√ 

Z χ

= 

˜ Z e T 
R 

e R χ√ 

Z 

e M,T 
R 

√ 

Z e M 

R 

√ 

Z χ

= 

˜ Z 

νT 
R 

e R χ√ 

Z 

ν
M,T 
e R 

√ 

Z e M 

R 

√ 

Z χ

= 

˜ Z 

νR e 
T 
R 

χ√ 

Z 

νM 

e R 

√ 

Z 

e M,T 
R 

√ 

Z χ

. 

(33) 

Equipped with the previous Slavnov–Taylor identities in Eqs. ( 27 ), ( 30 ), and ( 33 ), to determine
for each mirror Yukawa coupling the corresponding expression of the renormalization con- 
stant, it suffices to choose from the right-hand side of these identities one of the gi v en e xpres-
sions and to use it as a basis for calculation. Thus, under this choice, for each mirror Yukawa
coupling, we keep only one term in the underlying renormalized mirror Yukawa Lagrangian,
draw the Feynman diagrams of the corresponding process at the loop le v el, and then compute
the necessary radiati v e corrections that lead to the desired β functions. 

3.3. β function 

The dependence on the renormalization scale μ of a renormalized dimensionless coupling con- 
stant g is gi v en through the β function defined by: 

βg = μ
dg 

dμ
= 

dg 

dt 
, (34) 

where t is the dimensionless quantity that we relate to the renormalization scale μ through the
relation t = ln (μ/m t ) , with m t being the mass of the top quark. 

In this work, we ar e inter ested in looking for the dependence of the mirror Yukawa couplings
on the renormalization scale in a Euclidean noncommutati v e spacetime of dimension D which
we have to bring to four at the end of the calculation. Hence, to deri v e the corresponding mir-
ror Yukawa β functions from the belonging renormalization constants, we use the following 

defining relation: 

βg ( k ) = lim 

ε UV → 0 
μ

∂ 

∂μ
g 

( k ) = lim 

ε UV → 0 

{ 

−ε UV 

2 

g 

( k ) − g 

( k ) μ

Z 

(k) 
g 

∂Z 

(k) 
g 

∂μ

} 

= −g 

( k ) ∂ ln Z 

(k) 
g 

∂ ln μ
, (35) 

with: 

Z 

(k) 
g = 

Z 

(k) 
ψ ψ 

′ φ

Z 

1 / 2 
ψ 

Z 

1 / 2 
ψ 

′ Z 

1 / 2 
φ

, g 

( k ) = g, ˜ g , and ε UV = 4 − D , (36) 

and: 

Z 

(k) 
ψ ψ 

′ φ = 1 + 

δ
(k) 
g 

g 

( k ) 
, Z ψ 

= 1 + δψ 

, Z ψ 

′ = 1 + δψ 

′ , Z φ = 1 + δφ, (37) 

where δ(k) 
g is the v erte x counter term, and δψ 

, δψ 

′ , and δφ are spinor and scalar self-energies
counter terms, respecti v ely. 

Hence, we can write: 

βg ( k ) = g 

( k ) ∂ 

∂ ln μ

[ 

− δ
(k) 
g 

g 

( k ) 
+ 

1 

2 

(
δψ 

+ δψ 

′ 
)+ 

1 

2 

δφ

] 

. (38) 

So, to get the β function that governs each of the mirror Yukawa couplings, we have first
to select, in respect of the Slavnov–Taylor identities, one term from the corresponding mirror
Yukawa Lagrangian. Then for a process that embodies this chosen term, we determine through
radiati v e corrections calculation the counter terms δ(k) 

g , δψ 

, δψ 

′ , and δφ, needed for Eq. ( 38 ). 
10/28 
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For better clarity, and before getting into the details of the loop calculations, it is worth-
while to recall here tha t a t the high energy scale in which we are interested, our computational
assumptions are: 

� The mirror Yukawa couplings g M 

, g e M , and g q M are flavor independent. 
� As in Ref. [ 4 ], relati v e to the mirror Yukawa couplings g M 

, g e M , and g q M , we neglect: 
(i) the gauge couplings g, g 

′ , and g s , 
(ii) the g S l 

, g S q 
, and g 

′ 
S q 

couplings between mirror and SM fermions, 
(iii) the λi couplings occurring in the V (ϕ s , �2 , �2 M 

, X ) scalar potential. 
� There is no mixing of mirror leptons and no mixing of mirror quarks. 

4. One-loop counter terms for the mirror Yukawa sector 
To obtain the leading contributions to the β functions for the mirror Yukawa couplings, we con-
sider respecti v ely the one-loop radiati v e corrections of the process νe R (p) + νT 

e R (p 

′ ) → χ0 (q ) for
the g M 

, ˜ g M 

couplings, then of the process e M 

R 

(p) + e M 

L 

(p 

′ ) → φ0 
2 M 

(q ) for the g e M , ˜ g e M couplings,
and then of the process u 

M 

R 

(p) + u 

M 

L 

(p 

′ ) → φ0 
2 M 

(q ) for the g q M and ˜ g q M couplings. The tree-le v el
Feynman diagrams belonging to these processes are depicted in Fig. 1 . The corresponding one-
loop Feynman diagrams are shown in the Appendix and are consistent with the assumptions
highlighted at the end of the previous section. 

To achie v e the calculation of the radiati v e corrections, we harness the work of Gurau
et al. [ 23 ] and Bouchachia et al. [ 24 ] and adjust their results to our case of massless scalar
and fermionic fields, to comply with the fact that we are dealing with a Lagrangian form for-
mula ted a t energies before the occurrence of the electroweak symmetry breaking. Hence, in the
Euclidean momentum space, for the scalar massless vulcanized propagator �(p) , we use: 

(39) 

And, for the spinor massless vulcanized propagator S(p) , we use: 

(40) 

where θ is the dimensionful deformation parameter, a and b are real dimensionless vulcanized
parameters, and 	 ˜ p = γμ ˜ p 

μ = γμθμν p ν . 
4 Feynman diagrams are drawn using Jaxodraw [ 37 ]. 
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For the Yukawa v erte x V g ( p 

′ , p ) , we use: 

(41) 

where p and p 

′ stand for momenta, p 

′ ˜ p = p 

′ 
μθμν p ν ≡ p 

′ ∧ p, q = p − p 

′ , and g and ˜ g are the
noncommutati v e Yukawa couplings related to the same v erte x. ψ and ψ 

′ are spinor fields, and
φ is a scalar field. 

To identify our needed counter terms, we use the minimal subtraction defining relations [ 24 ]
that connect the di v ergent part of the radiati v e corrections to their corresponding counter
terms. 

Hence: 

� The relation between δφ and δa 2 counter terms, and the �( div ) 
φ di v ergent part of the self-

energy of the vulcanized massless scalar propagator, observes the formula: 5 

�
( div ) 
φ −δφ p 

2 − δa 2 
1 

θ2 p 

2 
= �

( div ) 
φ − (Z φ − 1) p 

2 − (a 

2 
0 Z φ − a 

2 ) 
1 

θ2 p 

2 
= 0 . (42) 

� The relation between δψ 

and δb counter terms, and the �( div ) 
ψ 

di v ergent part of the self-energy
of the vulcanized massless fermionic propagator, fulfills the constraint: 

�
( div ) 
ψ 

+ iδψ 

	 p − iδb 
	 ˜ p 

θ2 p 

2 
= �

( div ) 
ψ 

+ i(Z ψ 

− 1) 	 p − i(b 0 Z ψ 

− b ) 
	 ˜ p 

θ2 p 

2 
= 0 . (43) 

� The relation between δg and δ ˜ g counter terms, and the �( div ) 
g di v ergent part of the noncom-

mutati v e Yukawa v erte x, is governed by: 

�( div ) 
g − δg e 

i 
2 p′ ̃  p − δ ˜ g e −

i 
2 p′ ̃  p = �( div ) 

g + (Z ψ ψ ′ φ − 1) e 
i 
2 p′ ̃  p + ( ˜ Z ψ ψ ′ φ − 1) e −

i 
2 p′ ̃  p = 0 . (44) 

So, to get the needed counter terms, we first use the one-loop Feynman diagrams of 
Figs. A1 , A2 , and A3 drawn in the Appendix for each of the tree-le v el processes depicted in
Fig. 1 . Then, we a ppl y the previous vulcanized Feynman rules and perform the integrals to get
the corresponding radiati v e corrections (see the Appendix for calculation details). Finally, we
use Eqs. ( 42 –44 ) to extract the following UV divergent parts of the counter terms: 

(i) Fr om the pr ocess e M 

R 

(p) + e M 

L 

(p 

′ ) → φ0 
2 M 

(q ) , we obtain for the mirror down leptons’
Yukawa sector: 
� the v erte x δg e M 

and δ ˜ g e M 

counter terms: 
δg e M 

g e M 

= 

δ ˜ g e M 

˜ g e M 

= −2 g e M ˜ g e M 

( 4 π ) 2 
1 

ε UV 

, (45) 

� the fermionic self-energy δe counter term: 

δe = δe M 

R 
+ δ ˜ e M 

L 
= 

3 

(
g 

2 
e M 

+ ˜ g 

2 
e M 

)+ 

3 
2 

(
g 

2 
M 

+ ˜ g 

2 
M 

)
( 4 π ) 2 

1 

ε UV 

, (46) 

� and the scalar self-energy δ
(e ) 
φ0 counter term: 

δ
(e ) 
φ0 = 3 ×

8 

(
g 

2 
e M 

+ ˜ g 

2 
e M 

)+ 16 

(
g 

2 
q M 

+ ˜ g 

2 
q M 

)
( 4 π ) 2 

1 

ε UV 

. (47) 
5 a 0 and b 0 are bare parameters, while a and b are the corresponding renormalized ones. 
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(ii) Fr om the pr ocess u 

M 

R 

(p) + u 

M 

L 

(p 

′ ) → φ0 
2 M 

(q ) and by ignoring color charges, we infer for
the mirror quarks’ Yukawa sector: 
� the v erte x δg q M 

and δ ˜ g q M 

counter terms: 
δg q M 

g q M 

= 

δ ˜ g q M 

˜ g q M 

= −2 g q M ˜ g q M 

( 4 π ) 2 
1 

ε UV 

, (48) 

� the fermionic self-energy δq counter term: 

δq = δu M 

R 
+ δ ˜ u M 

L 
= 

4 

[ 
g 

2 
q M 

+ ˜ g 

2 
q M 

] 
( 4 π ) 2 

1 

ε UV 

, (49) 

� and the scalar self-energy δ
(q ) 
φ0 counter term: 

δ
(q ) 
φ0 = δ

(e ) 
φ0 = 3 ×

8 

(
g 

2 
e M 

+ ˜ g 

2 
e M 

)+ 16 

(
g 

2 
q M 

+ ˜ g 

2 
q M 

)
( 4 π ) 2 

1 

ε UV 

. (50) 

(iii) Fr om the pr ocess νe R (p) + νT 
e R (p 

′ ) → χ0 (q ) , we get for the Majorana right-handed neu-
trinos’ Yukawa sector: 
� the v erte x δg M 

and δ ˜ g M 

counter terms: 
δg M 

g M 

= 

δ ˜ g M 

˜ g M 

= −2 g M 

˜ g M 

( 4 π ) 2 
1 

ε UV 

, (51) 

� the fermionic self-energy δν counter term: 

δν = δνR 
+ δνT 

R 
= 

3 

(
g 

2 
M 

+ ˜ g 

2 
M 

)+ g 

2 
e M 

+ ˜ g 

2 
e M 

( 4 π ) 2 
1 

ε UV 

, (52) 

� and the scalar self-energy δ
(ν) 
χ (0) counter term: 

δ
(ν) 
χ (0) = 3 × 4 

(
g 

2 
M 

+ ˜ g 

2 
M 

)
( 4 π ) 2 

1 

ε UV 

. (53) 

It is worth drawing the reader’s attention here to the fact that, for all our previously found UV
di v ergent parts of the counter terms, there is no explicit dependence on the noncommutative
spacetime deformation parameter θ , in agreement with the results found in Ref. [ 12 ] for the
noncommutati v e scalar QED. Also, there is no dependence on the vulcanization parameters a
and b. This feature can be traced to the following decomposition of the vulcanized scalar and
spinor propagators: 6 

�(p ) = 

1 

p 

2 + 

a 

2 

θ2 p 

2 

= 

1 

p 

2 
− 1 

p 

2 

a 

2 

(θ2 p 

4 + a 

2 ) 
, (54) 

and 

S(p) = 

(
i 	 p + ib 

	 ˜ p 

θ2 p 

2 

)
1 

p 

2 + 

b 

2 

θ2 p 

2 

= i 
	 p 

p 

2 
+ 

ib 	 ˜ p 

θ2 p 

4 
− ib 

2 	 p 

p 

2 (θ2 p 

4 + b 

2 ) 
− ib 

3 	 ˜ p 

θ2 p 

4 (θ2 p 

4 + b 

2 ) 
. (55) 

When these propagators occur in the one-loop integrals, only the first term of each of the
corresponding decompositions contributes to the logarithmic UV di v ergent part. This term is
free from the deformation parameter θ and the vulcanized parameters a and b. All the remaining
terms that depend on θ , a , and b have finite contributions to the loop integrals. Ther efor e, they
6 We use here as in Ref. [ 14 ] the relationship: 
1 

A + B 

= 

1 

A 

− 1 

A 

B 

1 

A + B 

. 
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do not contribute to the UV di v ergent parts of the counter terms in the minimal subtraction
scheme of interest. 

Lastly, it is worthwhile to point out the following: 

(i) First, when trying to get the commutati v e limit starting from the noncommutati v e e xpres-
sions by letting θ → 0 in a direct, “nai v e” way, the vulcanized propagators no longer make
sense. In fact, to correctly obtain the commutati v e limit one should proceed as indicated
by Magnen et al. [ 38 ]. Ne v ertheless, in this study, we are not concerned with the commu-
tati v e limit; we instead focus on getting the most suitable link between the commutati v e
and the noncommutati v e β functions at the one-loop order. 

(ii) Subsequently, by examining the formula ( 38 ) from which the β functions are established,
we notice that it depends on a sum involving the counter term δ

(k) 
g of the Yukawa v erte x

and the counter terms δψ 

, δψ 

′ , and δφ of spinor and scalar propagators. As pointed out in
Ref. [ 24 ], at the one-loop order the link between commutati v e and noncommutati v e v er-
sions of the counter terms δ(k) 

g of Yukawa v ertices e xpressed in terms of couplings follows
a different formula than the link between commutati v e and noncommutati v e v ersions of 
the counter terms δψ 

, δψ 

′ , and δφ of the propagators expressed in terms of couplings. In
fact, at the one-loop order, starting from the commutati v e v ersion, the βg (c ) X 

function, e x-

pressed in the form of the formula ( 38 ), i.e. in terms of the counter terms δ(k) 
g , δψ 

, δψ 

′ ,
and δφ and the couplings g 

(k) , to recover the corresponding noncommutati v e v ersion β
(nc ) 
g X (

or respecti v ely : β (nc ) 
˜ g X 

)
, we have to perform the following substitutions: 

� For g 

(k) , replace g 

(c ) 
X 

by g X ( resp. ˜ g X ) . 

� In the 
δ

(k) 
g 

g 

(k) 
expression, replace 

[
g 

(c ) 
X 

]2 
by g X ˜ g X ( resp. ˜ g X g X ) . 

� In δψ 

+ δψ 

′ and in δφ expressions, replace 
[
g 

(c ) 
X 

]2 
by g 

2 
X 

+ ˜ g 

2 
X 

(
resp. ˜ g 

2 
X 

+ g 

2 
X 

)
. 

Ther efor e, gi v en this substitution r elation, ther e can be no exact proportionality between
commutati v e and noncommutati v e β functions for Yukawa mirror couplings. Moreover, since
spinor and scalar propagators fulfill the same substitution formula, the more loops are involved
in the radiati v e corrections of the propagators, the more the predominance of the propagator
counter terms over the vertex counter terms becomes in favor of the propagator counter terms.
The latter case, if fulfilled, induces an approximate proportionality rule between the commu-
tati v e and noncommutati v e cases which would be governed by the counter terms of the prop-
agators. 

5. One-loop noncommutative mirror Yuka w a β functions 
Since in the β function evaluation, we are concerned with the renormalized dimensionless 
couplings g X, Ren . , while our counter terms are expressed in terms of couplings g X, ren . carrying
dimension, we first incorporate the connecting relation g X, ren . = g X, Ren . μ

ε UV / 2 to obtain the μ-
dependence of the counter terms. Then, we introduce the corresponding counter terms in the
formula ( 38 ) of the β function to get the following system of six autonomous coupled cubic
14/28 
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ordinary differential equations. 7 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

β
(nc ) , dif 
g M 

= 

dg M 

dt 
= 

1 

32 π2 

[
15 g 

3 
M 

(t) + 15 g M 

( t) ̃  g 

2 
M 

( t) + 4 g 

2 
M 

( t) ̃  g M 

( t) + g M 

( t) g 

2 
e M 

( t) 

+ g M 

( t) ̃  g 

2 
e M 

( t) 
]
, 

β
(nc ) , dif 
˜ g M 

= 

d ̃  g M 

dt 
= 

1 

32 π2 

[
15 ˜ g 

3 
M 

(t) + 15 g 

2 
M 

(t ) ̃  g M 

(t ) + 4 g M 

(t ) ̃  g 

2 
M 

(t ) + ˜ g M 

(t ) g 

2 
e M 

(t ) 

+ ˜ g M 

( t) ̃  g 

2 
e M 

( t) 
]
, 

β
(nc ) , dif 
g e M 

= 

dg e M 

dt 
= 

1 

32 π2 

[
27 g 

3 
e M 

(t) + 27 g e M ( t) ̃  g 

2 
e M 

( t) + 4 g 

2 
e M 

( t) ̃  g e M ( t) 

+ 

3 

2 

g e M ( t) g 

2 
M 

( t) + 

3 

2 

g e M ( t) ̃  g 

2 
M 

( t) + 48 g 

2 
q M 

( t) g e M ( t) + 48 ˜ g 

2 
q M 

( t) g e M ( t) 
]
, 

β
(nc ) , dif 
˜ g e M 

= 

d ̃  g e M 

dt 
= 

1 

32 π2 

[
27 ˜ g 

3 
e M 

(t) + 27 g 

2 
e M 

(t ) ̃  g e M (t ) + 4 g e M (t ) ̃  g 

2 
e M 

(t ) 

+ 

3 

2 

˜ g e M ( t) g 

2 
M 

( t) + 

3 

2 

˜ g e M ( t) ̃  g 

2 
M 

( t) + 48 g 

2 
q M 

( t) ̃  g e M ( t) + 48 ˜ g 

2 
q M 

( t) ̃  g e M ( t) 
]
, 

β
(nc ) , dif 
g q M 

= 

dg q M 

dt 
= 

1 

8 π2 

[ 
13 g 

3 
q M 

(t) + 13 g q M ( t) ̃  g 

2 
q M 

( t) + g 

2 
q M 

( t) ̃  g q M ( t) 

+ 6 g q M ( t) g 

2 
e M 

( t) + 6 g q M ( t) ̃  g 

2 
e M 

( t) 
] 
, 

β
(nc ) , dif 
˜ g q M 

= 

d ̃  g q M 

dt 
= 

1 

8 π2 

[ 
13 ˜ g 

3 
q M 

(t) + 13 ˜ g q M ( t) g 

2 
q M 

( t) + g q M ( t) ̃  g 

2 
q M 

( t) 

+ 6 ˜ g q M ( t) g 

2 
e M 

( t) + 6 ˜ g q M ( t) ̃  g 

2 
e M 

( t) 
] 
. 

(56) 

These equations are symmetric in the swap between g X and ˜ g X couplings belonging to the
same v erte x. The inde x X stands for M, e M , or q 

M . Hence, to get the dependence of the non-
commutati v e mirror Yukawa coupling constants on the renormalization energy scale, we need
to solve these coupled differential equations numerically, for gi v en sets of initial values. 

Furthermore, it is worth pointing out here that for the special case where g X (t) = ˜ g X (t) , our
noncommutati v e system of the differential equations becomes: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

β
(nc ) , equ 
g M 

= β
(nc ) , equ 
˜ g M 

= 

dg M 

dt 
= 

1 

16 π2 

[
17 g 

3 
M 

(t) + g M 

( t) g 

2 
e M 

( t) 
]
, 

β
(nc ) , equ 
g e M 

= β
(nc ) , equ 
˜ g e M 

= 

dg e M 

dt 
= 

1 

32 π2 

[ 
58 g 

3 
e M 

(t) + 3 g e M ( t) g 

2 
M 

( t) + 96 g e M ( t) g 

2 
q M 

( t) 
] 
, 

β
(nc ) , equ 
g q M 

= β
(nc ) , equ 
˜ g q M 

= 

dg q M 

dt 
= 

1 

4 π2 

[ 
13 . 5 g 

3 
q M 

(t) + 6 g q M ( t) g 

2 
e M 

( t) 
] 
. 

(57) 
7 In what follows, all couplings are dimensionless although we drop the index Ren . 
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A similar computation in the commutati v e case 8 enables us to get the following β functions for
the corresponding commutati v e mirror Yukawa couplings g 

(c ) 
X 

: 9 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

βg (c ) M 

= 

dg 

(c ) 
M 

dt 
= 

1 

2 

× 1 

16 π2 

{
19 

[
g 

(c ) 
M 

(t) 
]3 + g 

(c ) 
M 

( t) 
[ 
g 

(c ) 
e M 

( t) 
] 2 }

, 

βg (c ) 
e M 

= 

dg 

(c ) 
e M 

dt 
= 

1 

2 

× 1 

32 π2 

{
62 

[ 
g 

(c ) 
e M 

(t) 
] 3 

+ 3 g 

(c ) 
e M 

(t) 
[
g 

(c ) 
M 

(t) 
]2 + 96 g 

(c ) 
e M 

(t) 
[ 
g 

(c ) 
q M 

(t) 
] 2 }

, 

βg (c ) 
q M 

= 

dg 

(c ) 
q M 

dt 
= 

1 

2 

× 1 

4 π2 

{
14 

[ 
g 

(c ) 
q M 

(t) 
] 3 

+ 6 g 

(c ) 
q M 

(t) 
[ 
g 

(c ) 
e M 

(t) 
] 2 }

. 

(58) 

These results lead us to the following remarks: 

(i) Ther e ar e six independent noncommutati v e mirror Yukawa couplings that are coor di-
nated through the β (nc ) , dif 

g X 
functions. This number of independent couplings reduces to 

three for the special case of g X (t) = ˜ g X (t) as in the commutati v e case. 
(ii) The special case where g X (t) = ˜ g X (t) does not correspond to the commutati v e case since

it always carries information about noncommutati v e spacetime. This difference seems 
natural since it can be partly attributed to the fact that e v en for g X (t) = ˜ g X (t) the depen-
dence of the noncommutati v e v erte x coupling ( 41 ) on the small noncommutati v e finite
parameter θ persists and is gi v en by: 

g X e 
i 
2 p′ ̃  p + ˜ g X e 

− i 
2 p′ ̃  p → 2 g X cos 

(
1 

2 

p 

′ 
μθμν p ν

)
. (59) 

In addition, in the loop radiati v e calculations of interest, the involved vulcanized propa-
gators [( 39 ), ( 40 )] contain the noncommutati v e parameters, which can gi v e rise to slightly
modified β functions compared to the commutati v e case. 

(iii) The commutati v e system of Eqs. ( 58 ) has coefficients that are roughly half of the cor-
responding ones in the noncommutati v e system ( 57 ), i.e. for g X (t) = ˜ g X (t) , which means
that: 

βg (c ) X 
= 

dg 

(c ) 
X 

(t ′ ) 
dt ′ 

� 

1 

2 

βg (nc ) , equ 
X 

= 

1 

2 

dg 

(nc ) , equ 
X 

(t) 

dt 
. (60) 

This property can be easily understood by inspecting the formula ( 38 ) of the β function,
and sim ultaneousl y by taking into account the substitution formulas at the end of the
previous section and the one-loop Feynman diagrams of Figs. A1 , A2 , and A3 presented
in the Appendix . 
(a) In fact, out of respect for the loop order substitution relations presented at the end of 

the previous section, when passing from commutati v e to noncommutati v e functions
8 For the Yukawa interaction of interest, Feynman diagrams for the commutati v e case are the same as 
those for the noncommutati v e one since no new vertex is introduced by the noncommutativity. All that 
happens in the noncommutati v e case is that the Yukawa v erte x splits into two orthogonal parts, and the 
propagators get vulcanized to cure the UV/IR mixing. 

9 We fall back into the Le–Hung commutati v e result [ 5 ] if we add the Feynman diagram depicted in 

the right side of Fig. 1 in Ref. [ 5 ], and if in the scalar self-energy we consider only one diagram with a 

mirror leptonic loop for the case of βg e M 

and a mirror quark loop for the case of βg q M 

, hence inducing 

the decoupling of the mirror quarks’ Yukawa β function as revealed by Eq. (23) in Ref. [ 5 ]. 
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β for g X (t) = ˜ g X (t) , we must perform the following substitutions: ⎧ ⎪ ⎨ ⎪ ⎩ 

[
g 

(c ) 
X 

]2 → 

[
g 

(nc ) , equ 
X 

]2 
, in the v erte x counter term , 

[
g 

(c ) 
X 

]2 → 2 

[
g 

(nc ) , equ 
X 

]2 
, in the propagator counter terms . 

(61) 

(b) Next, looking at the one-loop Feynman diagrams in Figs. A1 , A2 , and A3 in the
Appendix , we notice that for each process of inter est, ther e is only one v erte x Feyn-
man diagram for about ten self-energy Feynman diagrams involved. Thus, in our
expressions for the β functions, the propagators that contribute a factor of two out-
number the vertices that contribute only a factor of one. This roughly translates to a
factor of two of the noncommutati v e β functions relati v e to the corresponding com-
mutati v e functions, which appears in the relation ( 60 ). 

(iv) Moreover, by setting θ = 0 in the tree-le v el noncommutati v e Yukawa v erte x relationship
( 41 ), we end up with the following correspondence rules between the commutati v e and
noncommutati v e mirror Yukawa couplings: 10 ⎧ ⎪ ⎨ ⎪ ⎩ 

g 

(c ) 
X 

= g X,c + ˜ g X,c → g X + ˜ g X , for g X (t) 	 = ˜ g X (t) . 

g 

(c ) 
X 

= 2 g X,c → 2 g X , for g X (t) = ˜ g X (t) . 
(62) 

Hence, to look for the discrepancy between the noncommutati v e and the commutati v e
mirror Yukawa couplings as a function of the renormalization scale, we will compare

the combined noncommutati v e Yukawa mirror fine structure α(nc ) 
X 

= 

[
g X + ˜ g X 

]2 

4 π
to the

commutati v e one: α(c ) 
X 

= 

[
g 

(c ) 
X 

]2 

4 π
. 

6. Numerical solutions of the β functions systems 
Solving numerically the previously obtained β systems of equations 11 enables us to display the
dependence of the mirror Yukawa couplings in terms of the t renormalization scale. Figure 2
shows this dependence, in the noncommutati v e case both f or g 

(nc ) , dif 
X 

and f or g 

(nc ) , equ 
X 

, 12 respec-
ti v ely for Set 1 and Set 2 of the values listed in Table 2 , and which are related to the initial
mirror Yukawa coupling values through the following relations: ⎧ ⎪ ⎨ ⎪ ⎩ 

g 

(nc ) , dif 
M 

(0) = x , g 

(nc ) , dif 
e M 

(0) = y , g 

(nc ) , dif 
q M 

(0) = z , 

˜ g 

(nc ) , dif 
M 

(0) = ˜ x , ˜ g 

(nc ) , dif 
e M 

(0) = ˜ y , ˜ g 

(nc ) , dif 
q M 

(0) = ˜ z , 
(63) 

⎧ ⎪ ⎨ ⎪ ⎩ 

g 

(nc ) , equ 
M 

(0) = ˜ g 

(nc ) , equ 
M 

(0) = (x + ˜ x ) / 2 , g 

(nc ) , equ 
e M 

(0) = ˜ g 

(nc ) , equ 
e M 

(0) = (y + ˜ y ) / 2 , 

g 

(nc ) , equ 
q M 

(0) = ˜ g 

(nc ) , equ 
q M 

(0) = (z + ˜ z ) / 2 , 

(64) 
10 Here, we must pay attention to the fact that g 

(c ) 
X 

= g X,c + ˜ g X,c , whereas g 

(c ) 
X 

	 = g X + ˜ g X since the former 
are commutati v e quantities wher eas the latter ar e noncommutati v e ones. Hence, we will just compare the 
commutati v e couplings g 

(c ) 
X 

(t) evolution in terms of t, with the corresponding noncommutati v e g X + ˜ g X 

ones (i.e. g 

(c ) 
X 

→ g X + ˜ g X ), in order to identify discrepancies between them. Also, one should not confuse 
the factors of 2 that appear in Eqs. ( 61 ) and ( 62 ). The first originates from a loop-le v el computation 

whereas the second comes from a tree-le v el formula. 
11 The numerical calculations and the drawing of the corresponding plots are performed through Math- 

ematica [ 39 ]. 
12 Where g 

( nc ) , dif 
X 

stands for g X or ˜ g X with g X 	 = ˜ g X , and g 

(nc) , equ 
X 

also for g X or ˜ g X but with g X = ˜ g X . 
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Fig. 2. Evolution of the mirror Yukawa couplings as a function of the renormalization scale t. 

Table 2. Used constant sets to construct the corresponding initial mirror Yukawa couplings values. 13 

x ˜ x y ˜ y z ˜ z 

Set 1 3.95 3.2 2.95 1.35 1.41 0.82 

Set 2 1.784 1.784 1.1 1.1 0.617 0.617 

Set 3 3.9 1.6 1.26 2.2 1.25 0.8 

Set 4 2.3 0.2 2.0 0.46 1.7 1.03 

Set 5 2.32 0.5 1.1 0.48 1.9 1.06 

Set 6 0.92 0.25 1.02 0.35 1.12 0.45 
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g 

(c ) 
M 

(0) = x + ˜ x , g 

(c ) 
e M 

(0) = y + ˜ y , g 

(c ) 
q M 

(0) = z + ˜ z . (65) 
Moreover, to smooth the comparison between the commutative and the noncommutative be- 

haviors, it is more convenient to deal with the mirror fine structure constants α(nc ) 
X 

(t) and α
(c ) 
X 

(t) ,
for which the previous initial mirror Yukawa couplings values’ relationship to the constant sets
of Table 2 has been set to ensure that: 

α
(nc ) , dif 
X 

(0) = α
(nc ) , equ 
X 

(0) = α
(c ) 
X 

(0) , (66) 

as shown in Fig. 3 (b–d) for the plots’ starting point at t = 0 . 
Our results presented in Figs. 2 and 3 , and Table 3 highlight the following remarks: 

(i) The noncommutati v e mirror Yukawa couplings preserv e the behavior of the commutati v e
ones pointed out in Ref. [ 5 ], i.e. a plateau for low t values, then a Landau pole at some
higher t P scale, as shown in Fig. 2 for the mirror Yukawa couplings and in Fig. 3 in terms
of the corresponding mirror Yukawa fine structure constants. 

(ii) The position of the Landau poles in the noncommutati v e and commutati v e calculation
approaches depends on the chosen set of initial values as shown in Table 3 . In particular,
columns 7, 11, and 12 of this table show that we can set the initial values of the mirror
Yukawa coupling so that the noncommutati v e Landau poles (namely t (nc ) , dif 

P 
= 1 . 50 and

t (nc ) , equ = 1 . 78 for Set 6 of the initial values) are the same as the commutati v e one (i.e.

P 

13 In choosing these sets of constants, we ensured that the initial values of all commutati v e Yukawa 

couplings ar e gr eater than the Yukawa top quark coupling w hich a pproaches unity. Moreover, Set 4 and 

Set 5 correspond, in the commutati v e case, to the initial values taken by Le–Hung in Refs. [ 5 ] and [ 6 ], 
respecti v ely. 

18/28 



PTEP 2025 , 023B07 K. A. Bouteldja et al. 

Fig. 3. Evolution of the mirror Yukawa fine structure constants in terms of the renormalization scale t
for Set 3 of initial values. 

Table 3. Landau pole positions for different sets of initial values of mirror Yukawa couplings. 

All involved loops and flavor families Only one special loop is considered in 

ar e consider ed in the scalar propagator the scalar propagator as in Ref. [ 5 ] 

Initial values Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

t (nc ) , dif 
P 

0.35 1.43 0.53 0.50 0.55 1.50 0.66 2.68 1.03 3.68 3.44 11.55 

t (nc ) , equ 
P 

0.36 1.43 0.58 0.58 0.60 1.78 0.67 2.68 1.13 4.24 3.60 12.81 

t (c ) 
P 

0.16 0.64 0.27 0.28 0.29 0.87 0.27 1.10 0.46 1.77 1.50 5.34 
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t (c ) 
P 

= 1 . 50 for Set 5 of the initial values and t (c ) 
P 

= 1 . 77 for Set 4 of the initial values). The
above Landau pole values are of special interest because they would correspond to an
energy scale in the TeV domain, and besides they refer to the values pointed out in Refs.
[ 5 ] and [ 6 ]. 

(iii) Comparing the right side part to the left side part of Table 3 shows that for the same set
of initial values, the fewer loops taken into account in the scalar propagator, the higher
the values of the Landau poles. 

(iv) The swap symmetry between g X and ˜ g X couplings in the dif ferential equa tions manifests
itself in the corresponding solutions through the three following ways: 
(a) In Fig. 2 (a) belonging to Set 1 of the initial values, the plots for g X and ˜ g X are inter-

changed when we swap the corresponding initial values. 
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(b) When we adopt Set 2 of the initial values in Eqs. ( 56 ) and ( 57 ), their corresponding
solutions become superimposed and gi v e the plots drawn in Fig. 2 (b). 

(c) For Set 2 of the initial values, the Landau poles t (nc ) , dif 
P 

and t (nc ) , equ 
P 

arising from
Eqs. ( 56 ) and ( 57 ), respecti v ely, become identical as indicated by the corresponding
columns in Table 3 . 

(v) Table 3 and Fig. 3 (b–d) show that the noncommutati v e Landau poles’ positions are
roughly twice the corresponding commutati v e ones for the same initial values. This can
be seen as follows. 
For simplicity’s sake, we consider the right-hand side of the noncommutati v e equa-
tion system ( 57 ) and take into account the relationship ( 62 ) that connects the commu-

tati v e and the noncommutati v e couplings, i.e. by plugging in 

g 

(c ) 
X 

(t ′ ) 
2 

for each g X (t) . We

end up with an additional 
1 

8 

global factor on the right-hand side due to cubic terms, and

a factor 
1 

2 

on the left-hand side. Which, for the first equation in Eq. ( 57 ), leads to: 

dg 

(nc ) , equ 
M 

(t) 

dt 
→ 

1 

2 

dg 

(c ) 
M 

(t ′ ) 
dt 

= 

1 

16 π2 

[
17 

8 

{ 

g 

(c ) 
M 

} 3 
( t ′ ) + 

1 

8 

g 

(c ) 
M 

( t ′ ) 
{ 

g 

(c ) 
e M 

} 2 
( t ′ ) 

]
. (67) 

Or equivalently: 

dg 

(c ) 
M 

(t ′ ) 
d ( t/ 2 ) 

= 

1 

16 π2 

[
17 

2 

{ 

g 

(c ) 
M 

} 3 
( t ′ ) + 

1 

2 

g 

(c ) 
M 

( t ′ ) 
{ 

g 

(c ) 
e M 

} 2 
( t ′ ) 

]
. (68) 

Which must be brought closer to the right-hand side of the first equation in Eqs. ( 58 ),
i.e. 

dg 

(c ) 
M 

(t ′ ) 
dt ′ 

= 

1 

16 π2 

{
19 

2 

[ 
g 

(c ) 
M 

(t ′ ) 
] 3 

+ 

1 

2 

g 

(c ) 
M 

( t ′ ) 
[ 
g 

(c ) 
e M 

( t ′ ) 
] 2 }

. (69) 

Hence, if in Eq. ( 68 ) we set: 

t = 2 t ′ , (70) 

we end up with an equation that has a similar form to Eq. ( 69 ) with the coefficient 19
replaced by the coefficient 17, and with t linked to the noncommutati v e case and t ′ to the
commutati v e case. Thus, by modeling a simple commutati v e Landau pole as: 

lim 

t ′ → t (c ) P 

A 

B − Ct ′ 
→ + ∞ , with A > 0 , B > 0 , and C > 0 , (71) 

we obtain: 

t (c ) 
P 

= 

B 

C 

. (72) 

Then, by relaxing the constraint ( 70 ) so that the equality becomes approximate rather
than exact, the corresponding noncommutative Landau pole manifests at: 

t (nc ) 
P 

≈ 2 t (c ) 
P 

, (73) 

which is in complete agreement with the results cited above. 
(vi) Table 3 and Fig. 3 (b–d) show that for each of the sets 1, 3, 4, 5, and 6 of the initial val-

ues that fulfill for t = 0 the relation g 

(nc ) , dif 
X 

(0) 	 = ˜ g 

(nc ) , dif 
X 

(0) , the noncommutati v e Landau
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poles t (nc ) , dif 
P 

and t (nc ) , equ 
P 

belonging to Eqs. ( 56 ) and ( 57 ), respecti v ely, hav e distinct val-
ues as expected, but with t (nc ) , equ 

P 
always greater than t (nc ) , dif 

P 
, while for Set 2 of the initial

values for which at t = 0 we have g 

(nc ) , dif 
X 

(0) = ˜ g 

(nc ) , dif 
X 

(0) , the pole positions t (nc ) , dif 
P 

and
t (nc ) , equ 

P 
are the same. 

To understand this property, we focus on the Landau pole region for which t is in the
interval ] t 0 , t P [ with t 0 having a value lower than but close to t P . In this region, all the
Yukawa coupling functions g X (t) and 

˜ g X (t) carry large values. Let us ther efor e consider
two functions δ(t) and η(t) that carry large values and have behavior that mimics the
mirror Yukawa couplings in this r egion. Furthermor e, keeping in mind the above swap
symmetry, we can write: 

g 

(nc ) , dif 
X 

(t) = δ(t) + ε , 

˜ g 

(nc ) , dif 
X 

(t) = δ(t) − ε , 

g 

(nc ) , equ 
X 

(t) = ˜ g 

(nc ) , equ 
X 

(t) = η(t) , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

for t ∈ ] t 0 , t P [ , (74) 

regardless of X being M, e M 

, or q M 

, and with ε being an infinitesimal positi v e parameter.
In addition, using the first equation in the equations system ( 56 ) and the first equation in
the equations system ( 57 ), we obtain the following: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

( 56) → 

dδ( t) 
dt 

= 

1 

8 π2 

[
4[ δ( t) + ε] 3 + 4[ δ(t) + ε][ δ(t) − ε] 2 + [ δ(t) + ε] 2 [ δ(t) − ε] 

]
,

( 57) → 

dη( t) 
dt 

= 

9 

8 π2 
η3 ( t) . 

(75) 

So, to first order in the infinitesimal parameter ε, the above equations take the form: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

dδ(t) 
dt 

= 

(
1 + 

ε

δ

) 9 

8 π2 
δ3 (t) = (1 + ˜ ε) 

9 

8 π2 
δ3 (t) , 

dη(t) 
dt 

= 

9 

8 π2 
η3 (t) , 

(76) 

with ˜ ε = ε/δ being a new infinitesimal positive parameter. 

Thus, for a gi v en t in ] t 0 , t P [ , the slope 
dδ(t ) 

dt 
of the function δ(t ) is slightly greater than

the slope 
dη(t) 

dt 
of the function η(t) . Ther efor e, assuming δ(t 0 ) = η(t 0 ) we get that δ(t)

will reach its asymptote, i.e. t (nc ) , dif 
P 

, sooner than η(t) does, i.e. t (nc ) , equ 
P 

. 
We should then have: 

t (nc ) , equ 
P 

≥ t (nc ) , dif 
P 

, (77) 

which is what we obtain numerically. 

7. Concluding remarks 
In this work, we have first used the Moyal product to construct a noncommutati v e Euclidean
mirror Yukawa Lagrangian within the electroweak-scale right-handed neutrinos model. 

Second, we established the Slavnov–Taylor identities for the noncommutati v e uni v ersal mir-
ror Yukawa couplings. We utilized them to select from se v eral possibilities the processes for
which we had to calculate the one-loop order radiative corrections involved in determining the
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counter terms for the noncommutati v e mirror Yukawa β functions. Through this calculation,
the noncommutati v e vulcanized scalar and spinor pr opagators have pr ovided valuable support
to avoid the mixing between the UV and IR momenta. 

The obtained counter term UV di v ergent parts result only from planar integrals and thus have
the same di v ergent structure as the commutati v e case but with different factors. Moreover, they
do not depend explicitly on the deformation parameter θ , nor on the vulcanized parameters a
and b. These parameters only affect the finite part for which both planar and nonplanar inte-
grals contribute. This means that the commutati v e limit cannot be obtained simply by making
the noncommutati v e parameters tend to zero, in which case this leads us to expressions which
no longer make sense. 

Howe v er, analyzing the expressions of these counter terms in parallel with their implica-
tion in the expression of the β function allows us to state a simple rela tionship tha t enables
a direct link between the commutati v e and the noncommutati v e one-loop β function expres-
sions in terms of occurring couplings. These correspondence rules act differently for propa-
gators and vertices and thus reflect the fact that there can be no strict proportionality be-
tween the considered commutati v e and noncommutati v e β functions, but rather a possible
appr oximate pr oportionality depending on the relati v e w eights betw een the involved counter
terms. 

Our procedur e r esults in a system of six coupled nonlinear first-order dif ferential equa tions,
which we solved numerically. The obtained numerical solutions allowed us to sta te tha t, a t the
one-loop le v el within the EW νM 

R 

and in ter ms of the renor malization scale, the noncommu-
tati v e geometry preserv es the behavior of a plateau followed by a Landau pole for the mirror
Yukawa couplings as is the case in the commutati v e formulation, with the notab le difference
that the position of the noncommutati v e Landau pole is roughly twice that of the commuta-
ti v e one. This would indica te tha t in noncommuta ti v e spacetime, ne w phenomena can be trig-
gered by a phase transition at higher energy scales than would be expected by the commutati v e
case. 

Moreov er, the e xact behavior of the obtained solutions and the position of the correspond-
ing Landau pole depend on the choice of the initial values that may be related to low energy
masses of the mirror fermions. Ther efor e, it seems inter esting to probe the inv erse prob lem in a
multidimensional coupling space to shed more light on the flow between high and low energy
scales. This is left for future work. 

Finally, exploring the effects of the λi couplings occurring in the scalar potential 
 (ϕ s , �2 , �2 M 

, X ) , on the running of the noncommutati v e mirror Yukawa couplings g X 

and ˜ g X 

, is a natural extension of this work since the Yukawa interaction is involved in the one-
loop Feynman diagrams corresponding to this potential. This is currently under investigation 

and will be discussed separately in the future. 
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Appendix. Radiative corrections leading to the counter terms ( 45 –53 ) 
A ppl ying noncomm utati v e vulcanized F eynman rules to the F eynman diagrams depicted in
Figs. A1 , A2 , and A3 belonging to the processes e M 

R 

(p) + e M 

L 

(p 

′ ) → φ0 
2 M 

(q ) , u 

M 

R 

(p) + u 

M 

L 

(p 

′ ) →
φ0 

2 M 

( q ) , and νe R ( p) + νT 
e R (p 

′ ) → χ0 (q ) , respecti v ely, leads to the following radiati v e correc-
tions. 

� The �e , �q , and �ν v erte x one-loop corrections: 

�e (p, p 

′ , θ, a, b, g e M , ˜ g e M ) = I 
(
p, p 

′ , θ, a, b, g e M , ˜ g e M 

)
, (A.1) 

�q (p, p 

′ , θ, a, b, g q M , ˜ g q M ) = I 
(
p, p 

′ , θ, a, b, g q M , ˜ g q M 

)
, (A.2) 

�ν (p, p 

′ , θ, a, b, g M 

, ˜ g M 

) = I 
(
p, p 

′ , θ, a, b, g M 

, ˜ g M 

)
, (A.3) 
Fig. A1. One-loop radiati v e corrections to the process e M 

R 

(p) + e M 

L 

(p 

′ ) → φ0 
2 M 

(q ) , where e stands for a 

specific mirror lepton flavor, and u 

′ , d 

′ , and e ′ each stand for the three mirror up quark, three mirror 
down quark, and three mirror lepton flavors, respecti v ely. 
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Fig. A2. One-loop radiati v e corrections to the process u 

M 

R 

(p) + u 

M 

L 

(p 

′ ) → φ0 
2 M 

(q ) , where u stands for a 

specific mirror up quark flavor, and u 

′ , d 

′ , and e ′ each stand for the three mirror up quark, three mirror 
down quark, and three mirror lepton flavors, respecti v ely. 

Fig. A3. One-loop radiati v e corrections to the process νe R (p) + νT 
e R (p 

′ ) → χ0 (q ) , where e stands for a 

specific mirror lepton flavor and e ′ stands for the three mirror lepton flavors. 
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where: 

I 
(
p, p 

′ , θ, a, b, g X , ˜ g X 

) = 

∫ 
d 

D k 

( 2 π ) D 

(−1) 
(

g X e 
− i 

2 (p −p ′ ) ̃ k + ˜ g X e 
+ 

i 
2 (p −p ′ ) ̃ k 

)(
g X e 

i 
2 p 

′ ( ̃ k − ˜ p ) 

+ ˜ g X e 
− i 

2 p 
′ ( ̃ k − ˜ p ) 

)
×
(

g X e 
i 
2 k ̃  p + ˜ g X e 

− i 
2 k ̃  p 
)

× i 	 k + ib 

	 ˜ k 

θ2 k 2 

k 

2 + 

b 2 
θ2 k 2 

×
i ( 	 k − 	 p + 	 p 

′ ) + ib 

	 ˜ k −	 ˜ p + 	 ˜ p 

′ 
θ2 ( k−p + p ′ ) 2 

( k − p + p 

′ ) 2 + 

b 2 

θ2 ( k−p + p ′ ) 2 
× 1 

( k − p ) 2 + 

a 2 

θ2 ( k−p ) 2 

. (A.4) 

� The �e mirror down leptonic self-energy one-loop correction: 

�e 
(
p, p 

′ , θ, a, b, g e M , ˜ g e M , g M 

, ˜ g M 

) = �e M 

R 
( p, θ, a, b, g e M , ˜ g e M , g M 

, ˜ g M 

) 

+ � ˜ e M 

L 

(
p 

′ , θ, a, b, g e M , ˜ g e M 

)
, (A.5) 

with: 

�e M 

R 
( p, θ, a, b, g e M , ˜ g e M , g M 

, ˜ g M 

) = J ( p, θ, a, b, g e M , ˜ g e M ) + 

3 

2 

J ( p, θ, a, b, g M 

, ˜ g M 

) , (A.6) 

and 

� ˜ e M 

L 

(
p 

′ , θ, a, b, g e M , ˜ g e M 

) = 2 J 

(
p 

′ , θ, a, b, g e M , ˜ g e M 

)
, (A.7) 

where: 

J ( l , θ, a, b, g X , ˜ g X ) = 

∫ 
d 

D k 

( 2 π ) D 

[ 
g X e 

− i 
2 l ̃

 k + ˜ g X e 
+ 

i 
2 l ̃

 k 
] [ 

g X e 
− i 

2 k ̃
 l + ˜ g X e 

+ 

i 
2 k ̃

 l 
] 

×

⎛ ⎜ ⎝ 

i ( 	 l + 	 k ) + ib 

	 ˜ k + 	 ˜ l 
θ2 ( l+ k ) 2 

( l + k ) 2 + 

b 2 

θ2 ( l+ k ) 2 

⎞ ⎟ ⎠ 

1 

k 

2 + 

a 2 
θ2 k 2 

. (A.8) 

� The �q mirror quark self-energy one-loop correction: 

�q 
(
p, p 

′ , θ, a, b, g q M , ˜ g q M 

) = �q M 

R 

(
p, θ, a, b, g q M , ˜ g q M 

)+ � ˜ e M 

L 

(
p 

′ , θ, a, b, g q M , ˜ g q M 

)
, (A.9) 

with 

�q M 

R 

(
p, θ, a, b, g q M , ˜ g q M 

) = 2 J 

(
p, θ, a, b, g q M , ˜ g q M 

)
, (A.10) 

and 

� ˜ e M 

L 

(
p 

′ , θ, a, b, g q M , ˜ g q M 

) = 2 J 

(
p 

′ , θ, a, b, g q M , ˜ g q M 

)
. (A.11) 

� The �ν right-handed neutrinos’ self-energy one-loop corrections: 

�ν

(
p, p 

′ , θ, a, b, g M 

, ˜ g M 

, g e M , ˜ g e M 

) = �νM 

R 
( p, θ, a, b, g M 

, ˜ g M 

, g e M , ˜ g e M ) 

+ �νM,T 
R 

(
p 

′ , θ, a, b, g M 

, ˜ g M 

)
, (A.12) 

with: 

�νM 

R 
( p, θ, a, b, g M 

, ˜ g M 

, g e M , ˜ g e M ) = 

3 

2 

J ( p, θ, a, b, g M 

, ˜ g M 

) + J ( p, θ, a, b, g e M , ˜ g e M ) , 

(A.13) 
25/28 



PTEP 2025 , 023B07 K. A. Bouteldja et al. 

 

 

 , 

2) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2025/2/023B07/7984494 by guest on 07 M

arch 2025
and 

�νM,T 
R 

(
p 

′ , θ, a, b, g M 

, ˜ g M 

) = 

3 

2 

J 

(
p 

′ , θ, a, b, g M 

, ˜ g M 

)
. (A.14) 

� And the �(e ) 
φ0 , �

(q ) 
φ0 , and �

(νR ) 
χ0 scalar self-energy one-loop correction: 

�
(e ) 
φ0 

(
p − p 

′ , θ, b, g e M , ˜ g e M , g q M , ˜ g q M 

) = �
(q ) 
φ0 

(
p − p 

′ , θ, b, g e M , ˜ g e M , g q M , ˜ g q M 

)
= 6 K 

(
p − p 

′ , θ, b, g e M , ˜ g e M 

)+ 12 K 

(
p − p 

′ , θ, b, g q M , ˜ g q M 

)
, (A.15) 

�
(νR ) 
χ0 

(
p − p 

′ , θ, b, g M 

, ˜ g M 

) = 3 K 

(
p − p 

′ , θ, b, g M 

, ˜ g M 

)
, (A.16) 

where 

K ( l , θ, b, g X , ˜ g X ) = 

∫ 
d 

D k 

( 2 π ) D 

( −1 ) 
[ 
g X e 

− i 
2 l ̃

 k + ˜ g X e 
+ 

i 
2 l ̃

 k 
] [ 

g X e 
− i 

2 k ̃
 l + ˜ g X e 

+ 

i 
2 k ̃

 l 
] 

× tr 

⎡ ⎢ ⎣ 

⎛ ⎜ ⎝ 

i 	 k + ib 

	 ˜ k 

θ2 k 2 

k 

2 + 

b 2 
θ2 k 2 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

i ( 	 l + 	 k ) + ib 

	 ˜ k + 	 ˜ l 
θ2 ( l+ k ) 2 

( l + k ) 2 + 

b 2 

θ2 ( l+ k ) 2 

⎞ ⎟ ⎠ 

⎤ ⎥ ⎦ 

. (A.17) 

Each of these D-dimension Euclidean momentum space integrals can be sundered into planar
and nonplanar integrals. Hence, performing this calculation using the dimensional regulariza- 
tion method and in the way described in Refs. [ 24 , 40 ] leads us, for our special case of massless
particles, to the following UV di v ergent part: 

�e (p, p 

′ , θ, a, b, g e M , ˜ g e M ) = − 2 g e M ˜ g e M 

( 4 π ) 2 ε UV 

{ 

g e M e −
i 
2 p 

′ ˜ p + ˜ g e M e + 

i 
2 p 

′ ˜ p 
} 

+ UV finite part (p, p 

′ , θ, a, b, g e M , ˜ g e M ) , (A.18) 

�q (p, p 

′ , θ, a, b, g q M , ˜ g q M ) = −2 g q M ˜ g q M 

( 4 π ) 2 ε UV 

{ 

g q M e −
i 
2 p 

′ ˜ p + ˜ g q M e + 

i 
2 p 

′ ˜ p 
} 

+ UV finite part (p, p 

′ , θ, a, b, g q M , ˜ g q M ) , (A.19) 

�ν (p, p 

′ , θ, a, b, g M 

, ˜ g M 

) = − 2 g M 

˜ g M 

( 4 π ) 2 ε UV 

{ 

g M 

e −
i 
2 p 

′ ˜ p + ˜ g M 

e + 

i 
2 p 

′ ˜ p 
} 

+ UV finite part (p, p 

′ , θ, a, b, g M 

, ˜ g M 

) , (A.20) 

�e (p, p 

′ , θ, a, b, g e M , ˜ g e M , g M 

, ˜ g M 

) = 

−i 

( 4 π ) 2 ε UV 

{[(
g 

2 
e M 

+ ˜ g 

2 
e M 

)+ 

3 

2 

(
g 

2 
M 

+ ˜ g 

2 
M 

)] 	 p 

+ 2 

[
g 

2 
e M 

+ ˜ g 

2 
e M 

]
	 p 

′ 
}

+ UV finite part (p, p 

′ , θ, a, b, g e M , ˜ g e M , g M 

, ˜ g M 

) , (A.21) 

�q (p, p 

′ , θ, a, b, g q M , ˜ g q M ) = −
2 i 
[ 
g 

2 
q M 

+ ˜ g 

2 
q M 

] 
( 4 π ) 2 ε UV 

( 	 p + 	 p 

′ ) + UV finite part (p, p 

′ , θ, a, b, g q M , ˜ g q M )

(A.2
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�ν (p, p 

′ , θ, a, b, g M 

, ˜ g M 

, g e M , ˜ g e M ) = 

−i 

( 4 π ) 2 ε UV 

{[
3 

2 

(
g 

2 
M 

+ ˜ g 

2 
M 

)+ g 

2 
e M 

+ ˜ g 

2 
e M 

]
	 p 

+ 

[
3 

2 

(
g 

2 
M 

+ ˜ g 

2 
M 

)] 	 p 

′ 
}

+ UV finite part (p, p 

′ , θ, a, b, g M 

, ˜ g M 

, g e M , ˜ g e M ) , (A.23) 

�
(e ) 
φ0 (p − p 

′ , θ, b, g e M , ˜ g e M , g q M , ˜ g q M ) = �
(q ) 
φ0 

(
p − p 

′ , θ, b, g e M , ˜ g e M , g q M , ˜ g q M 

)
= 3 ×

8 

(
g 

2 
e M 

+ ˜ g 

2 
e M 

)+ 16 

(
g 

2 
q M 

+ ˜ g 

2 
q M 

)
( 4 π ) 2 ε UV 

(p − p 

′ ) 2 

+ UV finite part (p − p 

′ , θ, b, g e M , ˜ g e M , g q M , ˜ g q M ) , (A.24) 

�
(ν) 
χ0 (p − p 

′ , θ, b, g M 

, ˜ g M 

) = 3 × 4 

(
g 

2 
M 

+ ˜ g 

2 
M 

)
( 4 π ) 2 ε UV 

( p − p 

′ ) 2 + UV finite part ( p − p 

′ , θ, b, g M 

, ˜ g M 

) . 

(A.25) 

We then introduce the di v ergent parts of these radiati v e corrections into Eqs. ( 42 –44 ), to infer
directly the corresponding counter terms gi v en by Eqs. ( 45 –53 ). 
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