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In this paper, we derive the renormalization scale dependence of noncommutative mirror
Yukawa couplings. To achieve this, we first formulate a Euclidean noncommutative version
of the Yukawa sector within the electroweak-scale mirror right-handed neutrinos model.
Then, we calculate the noncommutative one-loop g functions of Yukawa couplings for mir-
ror fermions involved in this model, by taking advantage of the Slavnov—Taylor identities
for the universal mirror Yukawa couplings, and by using the noncommutative vulcanized
scalar and spinor propagators that prevent the UV/IR mixing. This leads us to a system of
six cubic coupled first-order differential equations that depend only on the mirror Yukawa
couplings and not on the noncommutative deformation and vulcanized parameters. We
solve this system numerically for different initial conditions to get the evolution of the mir-
ror Yukawa couplings in terms of the renormalization scale. Furthermore, we discuss the
link to the commutative case and analyze the occurrence of the Landau pole for some spe-
cific sets of initial conditions.

Subject Index B32, B40, B46, B82

1. Introduction
The Standard Model (SM) of particle physics is the current well experimentally established
model that describes the electroweak and strong fundamental interactions and the mass gen-
eration of most fundamental particles [1,2]. However, some observations such as the neutrino
masses and mixing and the baryon asymmetry, and also some expected features like the an-
ticipated unification of the SM with the gravitational theory at the Planck scale, cannot be
accommodated within the SM. This makes it widely believed that the SM is an effective theory
valid until the TeV scale [3]. Beyond this energy scale, a more general theory should hold. This
paves the way to a wide range of beyond standard model (BSM) extensions that extend the
particle sector, the underlying dynamic, or the spacetime structure [3].

Among these extensions, the electroweak-scale mirror right-handed neutrinos model (EWv2!)
[4] is of particular interest. This model, built on the commutative Minkowski spacetime, pre-
serves the same gauge group as in the SM, but extends the scalar sector and adds mirror
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fermions. Moreover, it allows the nonsterile right-handed neutrinos to get mass in the elec-
troweak energy scale [4]. This feature makes it important to deepen the investigation of the
Yukawa coupling behavior of these right-handed neutrinos in terms of the energy scale. To shed
more light on the electroweak symmetry breaking mechanism involved in the mirror fermion
sector within this commutative model, Le and Hung in Ref. [5] have calculated the one-loop
functions of the Yukawa coupling of the right-handed neutrinos, as well as of the other mirror
fermions embroiled in this model. This allowed them to introduce mirror fermion condensate
states, at an energy scale close to that of the Landau pole presented by the Yukawa couplings
of mirror fermions, which manifests itself on the TeV scale [6]. Furthermore, it is important
to note that this model fits well with the observed Large Hadron Collider (LHC) Higgs parti-
cle [7] and the observed Large Hadron Collider beauty (LHCb) muon transmutation [8,9]. This
makes it a good candidate to be efficient at the energies explored by the LHC.

However, the prospect of a noncommutative version of the Yukawa mirror sector of this
model becomes relevant in the context of future colliders [10,11]. These colliders will probe the
electroweak symmetry breaking mechanism more deeply, starting to explore the low sector in
the intermediate range between the LHC scale and the Planck scale, where new physics corre-
lated with the structure of spacetime should manifest itself. Furthermore, a noncommutative
version holds promise in shedding more light on challenging nonperturbative physical phenom-
ena, such as the dynamical electroweak breaking symmetry. This adds to the fact that during
the last two decades, looking for the renormalization group equations in the noncommutative
spacetime era has gained importance. In particular, some noncommutative 8 functions have
been investigated especially for scalar quantum electrodynamics (QED) in Ref. [12], fermionic
QED in Ref. [13], the scalar Gurau model in Ref. [14], the Gross—Neveu model in Ref. [15],
and ¢* theory in Ref. [16]. Recently special attention has been paid to the noncommutative ex-
tension of the Yukawa interaction [17]. Hence, to contribute to dealing with renormalization
group equations in the noncommutative spacetime, we are especially interested in studying, to
the leading radiative corrections, the effect of the noncommutative spacetime on the behavior
of the EWv2! mirror’s Yukawa couplings as a function of the renormalization scale.

First, we construct the corresponding Euclidean Yukawa noncommutative Lagrangian, by
replacing, in the Euclidean version of the EWv¥ | the usual fields product by the Moyal star
product [18,19] that accounts properly for the noncommutative spacetime effect, and by taking
into account all involved field permutations.

Moreover, it is well known that loop calculations in a noncommutative spacetime are con-
fronted with the existence of a correlation between the ultraviolet (UV) and infrared (IR) re-
gions of momentum space induced by the nonplanar Feynman diagrams due to the nonlocal
character inherent to the star product [20-22]. To tackle this mixing problem without spoiling
translation invariance, Gurau et al. [23] and subsequently Bouchachia et al. [24] introduced
nonlocal counter terms in the vein of the vulcanization method [25-28], which leads to a vul-
canized Euclidean scalar and spinor propagators that prevent the UV/IR mixing in a ¢* theory
supplemented by a Yukawa interaction, and consequently restores the renormalizability of the
theory.

Therefore, making use of these vulcanized propagators, we are well equipped to undertake
the calculation of the noncommutative 8 functions of the mirror Yukawa couplings to the
one-loop order within the proposed mirror Yukawa sector of the Euclidean noncommutative
electroweak-scale mirror right-handed neutrinos model (ENC-EWv2/).
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This paper is structured as follows. In the next section, we briefly review the EW v’ model
in Minkowski spacetime, then switch to Euclidean spacetime and formulate the noncommu-
tative Euclidean Yukawa Lagrangian of the electroweak-scale right-handed neutrinos model.
In Section 3, we express the mirror Yukawa Lagrangian in terms of renormalization constants
and renormalized couplings and fields, then establish the Slavnov—Taylor identities for mirror
Yukawa couplings, and formulate the relation that connects the g function to the counter terms
involved in the mirror Yukawa interaction. Section 4 establishes the expression of the necessary
one-loop order UV counter terms, by applying the noncommutative vulcanized Feynman rules
to the selected processes and calculating the corresponding radiative corrections, the compu-
tational details of which are reported in the Appendix. In Section 5, we derive in terms of the
mirror Yukawa couplings the corresponding expressions of the 8 function. This leads us to
the establishment of a system of six first-order coupled nonlinear differential equations. Fur-
thermore, the connection with the commutative case is discussed. Section 6 is devoted to the
extraction and the discussion of the numerical solutions of the differential equation system.
We draw the dependence of the mirror Yukawa couplings on the renormalization scale. We
also report a link to the commutative results of Le-Hung [5,6] and discuss the position of the
occurrence of the Landau pole. Finally, we draw our concluding remarks.

2. Model formulation
2.1. A brief review of the Minkowski commutative EWvY model
The EWv¥ model is an extension of the SM that preserves the gauge sector but extends the
spinor sector by right-handed mirror leptons /)’ and right-handed mirror quarks ¢% doublets,
and left-handed mirror leptons e/ and left-handed mirror quarks u}’ and @} singlets. The
scalar sector is also extended by a singlet ¢, a new doublet ®,,,, and two triplets x and £ fields
as depicted in Table 1.

The corresponding L, Lagrangian constructed by Hung [4] on the Minkowski spacetime
is composed of the SM Lagrangian supplemented by the kinetic term for the mirror fermions
LM the kinetic terms and the potential for the new scalar fields expressed in £ . the

Fermions’ Higgs®
interaction between the SM scalar and the new scalar fields in £Y-SM the Yukawa interac-

Higgs °
tions for the mirror fermions E%kawa, and the combined mirrors and SM fermions Yukawa
. : M—SM T
Iinteractions EYukawa. Hence we can write:
SM
LEW\;% = LGauge + ACFermions + LHiggs + EYukawa + ACGF + LFP s (1)

where the kinetic Lagrangian for the fermions is:

_ pSM M
EFermions - [’Fermions + £Fermions ’ (2)
. M . . . . . . .
with £g . having, for the mirror fermions, an expression similar to that of the Lagrangian

E;ﬁf ions 10T the SM fermions with the difference that the SM left-handed doublet fermions

are replaced by the right-handed doublet mirror fermions and the SM right-handed singlet
fermions are replaced by the left-handed singlet mirror fermions.
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Table 1. Elementary fields in the commutative vaﬁl model. Each symbol v,, e, u, or d stands for the
three corresponding SM flavors. There is no mixing of mirror leptons and no mixing of mirror quarks.

SUB).SUL)w ® SUB3).®@SUQ)w ®
SM fermion fields U(l)y Mirror fermion fields U(l)y

(v, 1 w_ (v 1
=) (123) ) (12-3)
(U 1 M __ u% 1
.~(i) (5:25) o ~(ik) (5:25)

e, (1,1,-1) el (1,1,-1)
2 2
R ) 1’ S o ) 1’ S
! (3 3) . (3 3)
1 1
dR 91’__ dM ( ,1,_—>
(3 3) L 3173
SUB).SU2L)w ® SUB).SURL)w ®
SM scalar fields U(l)y Extra-SM scalar fields U(l)y
op (1, 1, 0)
@) (123) (5 (123)
Oy = ("3 1,2, = Doy = GM 1,2, =
2 <¢g y Ly 2 2M ¢(2)M ) & 2
| (1,3,1)
- oo LX+ x+
X=Ftr= Y kX*>
é;+
£ = (50) (1,3,0)
£
SM and EWv#!
gauge fields SUB).SUR)w U ((l)y
wi (1,3,0)
B, (1,1,0)
g (8.1.0)

The scalar sector is governed by the Lagrangian [6]:

Lhtiggs = %Tr [(D,02)" (D" 2)]
43 P+ T [(Duan)! (D omn)] + 7 (D,3) (07 x)] )

+ V(QOS, Dy, Doy, X) = E]S-[Iégs + Elﬁfiggs + Elﬁ-ﬁ;gssM ’ (3)

with V(¢y, @, apr, X) being the potential interaction between the scalar fields [6], and X is
the 3 x 3 matrix representation of the two scalar triplets written as follows [29]:

XO* 5+ X-H—
X=|x & x]. 4)
x— & x°
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with x == = x ™, x =~ = —x*, £~ = —&*", and the covariant derivatives acting on the scalar
sector are given by [6,29,30]:

ﬁ
D@y = 3,®: + ig(Wu.F)CDZ + i%BMcbz,

£g.= g
D,y ®2as = 8, Dans + 15 (W 1. 9)Pous + 1B, Dy ®)
DX =8,X +igW,. T)X —igB,XT5,

where 7; are the Pauli matrices, and the 7; are the following 3 x 3 matrix representation of the
SU(2) generators:

0 1 0 L(o oo 1 0 0
Ti=—|1 0 1|, m=—|i o —i|l, m=|0o o o|. (6)
V2\o 1 o V2o i o 0 0 -1

The remaining Lyukawa that enables fermions to acquire masses through electroweak symmetry
breaking is:

SM M M—-SM

Lyukawa = ‘CYukawa + ‘CYukawa + ’CYukawa ’ (7)

where C%{f{( awa 18 the SM Yukawa Lagrangian, and
LY s = Lo + Loy + L, ®)

is the pure mirror Yukawa’s interaction with [5]:

Lo = —gouly Dyl — gued ol 1M )
Lo = —gauy Pandy’ — gand} @b qy — gy Soay’ — gty @l gy . (10)
Ly, =g, M Ton il (11)

In the previous Egs. (9—11) we set by = ity ®%,,, and we assume universal couplings g,,, g,
and g,» = g,» = gy whatever is the flavor. Moreover, a global symmetry is introduced to pre-
vent a Majorana mass term for left-handed neutrinos [4]. Besides, we also have the Yukawa
interaction that mixes between mirror and SM fermions:

Lyt = L, + Ls,, (12)

where:
L5, = =g, (L1 +10,) g, (13)
ESq = _gsq (Cji‘/[qL + qui\/I) s — g;q (qi\/lqR + qqu) Ps - (14)

Finally, we draw the reader’s attention to the fact that the gauge-fixing Lagrangian Lgr and
the ghosts Lagrangian Lgp keep the same expressions as those of the SM [31,32] but with the
three Goldstone fields expressed as a combination of the components of all the doublets and
triplets scalar fields involved in this extension as in Refs. [29,30].

2.2.  The mirror Yukawa Euclidean noncommutative EWv Lagrangian

M
Yukawa?

we follow the following two

Starting from the Minkowski commutative Yukawa Lagrangian £ to construct the mirror

. : M ~ M,ENC
Yukawa Euclidean noncommutative EWvy" Lagrangian £y -,
steps:1

I'The construction of the whole EWv# theory on noncommutative spacetime will require in addition
deforming the covariant derivatives [33,34] and is left for future work.
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(i) First, we transform the £/

mutative spacetime, by applying the Wick rotation to get £
a relative minus sign.
(i1) The second step consists of two actions:
 First, we replace, in the commutative £gﬂfxl) the ordinary product between fields
by the star Weyl-Moyal product [18,35,36] that enables us to properly incorporate the
effect of the noncommutative spacetime, and which is defined as follows (A = ¢ = 1):

<~ —
_ J0 0
1guy

)+ B0 =fix) [e 0% 0w B0 =y » (15)

Lagrangian from the Minkowski to the Euclidean com-
M, (Eucl.)

Vokawa  Which simply includes

where f] and f; stand for fields and x and y are the spacetime positions with:

X x” — x¥ % xt = [x*, x"], = io"", (16)
and in the Euclidean spacetime the 6#" are the components of the following totally
antisymmetric tensor:

0 6 0 0
-0 0 0 0
uvy
=10 o o ol a7
0 0 -6 0

in which 6 is the noncommutative small real deformation parameter and has a dimen-
sion inverse to the square of the energy.

» Second, we add all permutations between fields and use the trace property of the star
product [24], which ultimately leads to the following substitution when going from the
commutative Yukawa interaction between a spinor field ¥/ (x) and a scalar field ¢(x) to
the corresponding noncommutative ones:

TP ()P(x) = g"IT(x) % Y (x) % $(x) + 7P (x) x p(x) x Y (x),  (18)
where superscript ¢ stands for commutative and superscript znc¢ for noncommutative.
Since in what follows, we are dealing with noncommutative cases, these indices will be
dropped, except in a few possibly confusing cases.

We can summarize our procedure as follows:

M Wick rotation M, (Eucl.) Moyal product M.ENC
% é ’
‘CYUk'dW’d EYukawa L Yukawa * (1 9)

Applying this procedure, and assuming universal noncommutative mirror Yukawa couplings
respectively for all mirror down leptons’ (e™), all mirror quarks’ (¢) and all mirror up leptons’
(v,,), enables us to write explicitly the Yukawa parts of the Lagrangian corresponding to each
mirror fermionic sector as follows:

Mirror down leptons’ Yukawa sector: L, — [,f,\lfc

ENC _ —M |+ M | =M . 40 M =M - M | =M _ 0% . M
L~ = gem E [VBR *x ¢y xep +ep xpyy xer —e; *¢>2M*VER +e; *¢2M*eR]

e.flavors
5 =M M, i+ M M, 40 M M, - M, M, 0%
+ Gom E |:VHR *xep *x Q) +ep xep xpyy —er * V] * Py € *ep *¢2M],
e.flavors
(20)
. - .
with ¢;,, = — ¢},
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Mirror quarks’ Yukawa sector: Ly — E}IZEC

a —-M -M M
£5§C=g4M Z [u],‘{*d);’M*d%—i-dR *¢8M*d£4—dL *¢2M*u%+dL *¢§A*4*d£/[

q.flavors
_ M =M, + M
+uR ¢2M*uL +d *¢2M*uL +uL *¢2M*“R uy *¢2M*dR]

o _ —M —M _ —M
e Y I e di g3y + Ay el @y — ) w95y )« di 93

q.flavors
—M
=M M 0% M, o~ =M M, 0 =M M+
Uy xup x Py +dg xup x @y, U *up * Py —Up *dp *¢2M].

2D

L:ENC

Majorana right-handed neutrinos’ Yukawa sector: ,C‘,ek -
‘R

1 1
LENC =g, E (vM’T * O wioy M — — M Tyt sy eﬁ/[ — —eMT ™t wioy vj‘;]

eR ¢R eR R

e.flavors ﬁ ﬁ

1
—ef’T*XJ’JF*wge >+gMZ <MT*1021) * x° ﬁvf’T*zazeﬁl*XJr
e.flavors
1
oMT MT
\/_R *zazv *xx T *zcrze *xT). (22)

It is worth noting here that in this transition from commutative to noncommutative formula-
tions, the Euclidean two points scalar and spinor functions have to undergo the vulcanization
procedure [23,24] to prevent subsequent UV/IR mixing and gain renormalizability.

3. Renormalization of the mirror Yukawa sector

3.1. Renormalization constants

The bare quantities® v, ¢,, g, ,, and g, ,, and renormalized quantities ¥, ¢,, g, ,, and g, ,, are
related through the renormalization constants Zy,, Zy, Z, , and Z; as follows:

= Zw Vi, ¢0 = Z¢> br, gox = ZgX 8y, and go,x = L8, g’x,l‘v (23)

where, depending on the case, the index X refers to M, eM, or ¢g™. The spinor field ¥ stands
fory = v e}l e u) uy, d}, di!; with e, u, and d each representing the three mirror down
lepton flavors, the three mirror up quark flavors, and the three mirror down quark flavors, re-
spectively. Whereas the scalar field ¢ stands for: ¢ = x°, x*, x ™, ¢gM, 31y 3, M.3

For simplicity, we assume that the scalar field’s renormalization constants fulfill the following

relations:
,/Z E‘/ZX():‘/ZX+ ,/ xtt (24)
VZo=\[Zp, = \[Zss, = \[Zss, -

Furthermore, for the spinor fields’ renormalization constants, we assume that Z, v, Ze%, Zey,
°R
Zy, Zyy, Zyn, and Z v are invariant under flavor changing.
R L R L

’In the previous section all couplings and fields were bare ones.
3We do not consider here the & and g; fields since they are not involved in the purely mirror Yukawa
sector with which we are dealing.

7128

G20z Yyotey L0 uo 1senb Aq y61+86./.09£20/2/S20Z/el01e/dsid/woo dno-olwepede//:sdiy woly pepeojumoq



PTEP 2025, 023B07 K. A. Bouteldja et al.

3.2.  Slavnov-Taylor identities
For the mirror down leptons’ Yukawa sector, replacing the bare quantities in terms of the cor-

responding renormalized ones leads to the following form of the Lagrangian £ENC :

ENC —M M M | 0 M
L =geM|:Z,)ReL¢ Z (Vek*d’er*eL eL * Pyyg * Vo, )+Z€ e, ¢ Z (eR * Gy x €

e.flavors e.flavors

+e *¢2M*6R):|+g€M|: vee, ¢ Z oxer %@y — e x vl x ¢y

e.flavors

+7, €L¢Z eR *eL *¢2M—|—eL *eR *¢ ):|, (25)

e.flavors
where here the fields and couplings are the renormalized ones even if in all that follows, we
drop the r index so as not to clutter the writing. The vertex renormalization constants Z, . ¢,
Zere, 9> Luvge, 5 and Ze e, ¢ ATC connected to the fields’ and couplings’ renormalization constants
through the following relations:

¢ = deM\/ Z"é‘z V Zei’ \ Zs - ZeR€L¢ = ZeLgR¢ = deM Z“’r\/ Z‘-’ﬁ’ \ Zy >
0 = Zgu JLvi \JZeiNZy s Zeye,p = Zeyenp = ZgZ,M\/ZT;g, [Zeuy/Zs -

The universality of the mirror down leptonic Yukawa coupling constants leads to the following
Slavnov-Taylor identities:

_ Z”R€L¢ _ ZeReL¢
M T - k]
[Zo [ZeiZo [Zew [Ze /7,

(26)

(27
P vkem exe

Besides, for the mirror quarks’ Yukawa sector, the Lagranglan EEEC

renormalized quantities takes the form:
_ =M _ —M _
C:{EAI;IC =g m Z [Z”RdL‘P (u% * qb;'M * dgf —dy x ¢y, * u%) + Z“LdR‘P (dR * Py * uﬁl

g.flavors

_ —M —M .
_ uﬁd*qﬁfM*d}y) + Zayd ¢ (dR *¢3M*d£4+dL *q&gM*dﬁ/l)

expressed in terms of the

+Z, uL¢(”R *¢2M*”L +uy *¢3M*u%)]

~ ~ _ =M _ ~ —M _
+ gy Z [Z“RdL‘f’ (u?{[ *dﬁ”f*qbng —d; *”]1‘%4*‘1’2/\/1) +Zu o (dR *uﬁ/f*qsz

g.flavors

—_ > —M M
— uf*dﬁl*cb;M) +Za,d, ¢ (dR *diw*‘b(z)M"'dL *d%*(ﬁgj})

+Zu u ¢(”R *“L *¢2M+“L * Up *¢2M):| . (28)
The corresponding vertex renormalization constants Zy a ¢, Zu, d,¢» Zd,d,¢> Zuyu,¢» ZuRqu;,

Zy,d > Ly, 5 and Zyu, ¢ 1€ related to the renormalization constants of fields and couplings
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as follows:

Zugyo = Zapu | Zun [Zan/Zg » Zaa,o = Zayaps = Zapu [ Zay [Zaw\/Zs .
Zuyans = Zapu | Zun [Zav/Zg . Zugiis = Zujugs = Zoy\[Zun [Zun [ Zg

(29)
Zugd, o = Ly [ Zun [ Zavy Zg Zado=2a dp= Ly Zav [ZLav/ Ly
Zuydet = Zgp | Zur [ Zay/Zy Ziuguys = Zuyugs = Za [Zp [ Zus [ Zs
with the correspondmg Slavnov—Taylor identities given by:
Zad, ¢
ZdM‘/ dM,/ Zd[l/l ZdM,/ LIM Z ’\/l,/
v "y v "y V ZJ -y " G0)
u d, ¢ u dp¢ dpd, ¢

Furthermore, for the Majorana rlght-handed neutrinos’ Yukawa sector, in terms of renormal-
ized quantities the Lagrangian £ENC takes the form:
(’R

U‘R

ENC MT 0 . MT 4+, o M
L —gM|:ZVRTURX E (ve, " * X *leVeR)—Ze;;eRX E (eg'" * x " xioyey)

e.flavors e.flavors

o X OUT atvioell) - 7, Y Tt M}

e.flavors e.flavors

~ |5 M, T MT | . M, _++
+gM|:Zu1§va E (Ve " *io2 v, Moy x®) — Ze;eRx E (eg’" xioper *xx™ )

e.flavors e.flavors
1 5 MT . M, _+
Teox (v T xioy eR *x ) — «/5 veelx (eg" xiopv,, xx7)|.
e.flavors e.flavors

(1)
In terms of the fields’ and couplings’ renormalization constants, the vertex renormalization

constants Zv,vaxa Zeré e ngeRX, ZVR€£X’ Z,,TU X ZeﬁeRm ZV£€RX’ and ZVR€£X can be written as:

Zagors = Zou |2 (2o« Popens = Zan[Zor [Zon /7
Zipus = Zeu 2 2oV L = 2
Zv;eRx = Zg,w\/?f‘y\/?ef\/? ’ Zvlgekx = Zé‘w\/@\/fe;’\/z; ’
Zosgs = ZanZop [Far e+ P = Zau [Py Zeg

with the corresponding Slavnov—Taylor identities expressed as:

(32)
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Z. = Z}? "RX Z‘R‘RX ZI€ ‘RX ZR ‘R*
am \/ZMT/Z‘I/I\/_ /ZMT/ZM\/_ \/ MT/Z’\/[«/_ 4 o 1z MT\/_
(33)
Zr Zr Zr V4

7. — RVRX eherx vherx vpehx
9% \/ZMT\/ZiM«/_ /ZMT\/Ef \/ZMT\/Zﬁ\/_ \/HW\/_

Equipped with the previous Slavnov-Taylor identities in Egs. (27), (30), and (33), to determine
for each mirror Yukawa coupling the corresponding expression of the renormalization con-
stant, it suffices to choose from the right-hand side of these identities one of the given expres-
sions and to use it as a basis for calculation. Thus, under this choice, for each mirror Yukawa
coupling, we keep only one term in the underlying renormalized mirror Yukawa Lagrangian,
draw the Feynman diagrams of the corresponding process at the loop level, and then compute
the necessary radiative corrections that lead to the desired 8 functions.

3.3. B function
The dependence on the renormalization scale u of a renormalized dimensionless coupling con-
stant g is given through the g function defined by:
dg _dg
By = an = ar
where ¢ is the dimensionless quantity that we relate to the renormalization scale u through the
relation ¢t = In(u/m;), with m, being the mass of the top quark.

In this work, we are interested in looking for the dependence of the mirror Yukawa couplings
on the renormalization scale in a Euclidean noncommutative spacetime of dimension D which
we have to bring to four at the end of the calculation. Hence, to derive the corresponding mir-
ror Yukawa B functions from the belonging renormalization constants, we use the following
defining relation:

(34)

9 02y alnzy
feo = lim u—g"‘) = lim | -2wok _ 40 % g L _wlZ% (35
ey—0 O e,y —0 2 Zg) o dlnp
with:
® Zyys
— ' K — 55 —
Zy = 212170 g¥=gg and e,=4-D, (36)
vy e
and:
. s
prl;¢_1+gk), Zy =148y, Zy=1+48y, Zy=1+56,, (37)
where Sék) is the vertex counter term, and 8y, 8y, and 84 are spinor and scalar self-energies

counter terms, respectively.
Hence, we can write:

dlnp| gk

So, to get the g function that governs each of the mirror Yukawa couplings, we have first
to select, in respect of the Slavnov—Taylor identities, one term from the corresponding mirror
Yukawa Lagrangian. Then for a process that embodies this chosen term, we determine through
radiative corrections calculation the counter terms 3;1«)’ 8y, 8y, and 8,4, needed for Eq. (38).

w 9 58 1 1
,BgU") =g + = (51/, + SW’) + = > 8¢ (38)
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=M =M MT
er v,

€R

M M M
ep up Ve

(a) e (0) + 21 (0) = $3(a)- (b) wi (p) + Tt (#') = $3ns(a)- (c) v () + v ) = X (a).

Fig. 1. Tree-level Feynman diagrams for the processes used in the computation of the mirror Yukawa S
functions.*

For better clarity, and before getting into the details of the loop calculations, it is worth-
while to recall here that at the high energy scale in which we are interested, our computational
assumptions are:

¢ The mirror Yukawa couplings g,,, g.v, and g,v are flavor independent.

* Asin Ref. [4], relative to the mirror Yukawa couplings g,,, g.v, and g v, we neglect:
(1) the gauge couplings g, ¢, and g,
(i) the g5, &s,» and g , couplings between mirror and SM fermions,
(iii) the A; couplings occurring in the V' (g;, ®,, @2y, X) scalar potential.

e There is no mixing of mirror leptons and no mixing of mirror quarks.

4. One-loop counter terms for the mirror Yukawa sector

To obtain the leading contributions to the 8 functions for the mirror Yukawa couplings, we con-
sider respectively the one-loop radiative corrections of the process v.,(p) + vg; (7)) — x"q) for
the g,,, &,, couplings, then of the process ¥ (p) + Eﬁl (p) — qbg v (q) for the g v, g.n couplings,
and then of the process u (p) + uy’ (p') — ¢3,,(¢) for the g, and g, couplings. The tree-level
Feynman diagrams belonging to these processes are depicted in Fig. 1. The corresponding one-
loop Feynman diagrams are shown in the Appendix and are consistent with the assumptions
highlighted at the end of the previous section.

To achieve the calculation of the radiative corrections, we harness the work of Gurau
et al. [23] and Bouchachia et al. [24] and adjust their results to our case of massless scalar
and fermionic fields, to comply with the fact that we are dealing with a Lagrangian form for-
mulated at energies before the occurrence of the electroweak symmetry breaking. Hence, in the
Euclidean momentum space, for the scalar massless vulcanized propagator A(p), we use:

1
P _ _
p 2, 8 = A(p) = 27612
"""""""""""""" Pt =
0%p? (39)
And, for the spinor massless vulcanized propagator S(p), we use:
i+ ib%
— _r, = Sp)=—3—
G R ¥ 0t b
02p? (40)

where 6 is the dimensionful deformation parameter, « and b are real dimensionless vulcanized
parameters, and p = y, p* = y,.0"" p,.

4Feynman diagrams are drawn using Jaxodraw [37].
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For the Yukawa vertex V, (p/, p), we use:

= V,(0p) =- [f}el?”"}+§6*3”"3

(41)
where p and p’ stand for momenta, p'p = p|,0""'p, = p' A p, g =p—p', and g and g are the
noncommutative Yukawa couplings related to the same vertex. ¢ and v’ are spinor fields, and
¢ 1s a scalar field.

To identify our needed counter terms, we use the minimal subtraction defining relations [24]
that connect the divergent part of the radiative corrections to their corresponding counter
terms.

Hence:

 The relation between §, and §,. counter terms, and the prdiv) divergent part of the self-
energy of the vulcanized massless scalar propagator, observes the formula:’

H((l)div)_%pz — 5, _ l—[((bdiv) —(Zy - ? — (a(z)z¢ &) (42)

1
=0.
02 p2 02 p2
 The relation between §, and §, counter terms, and the X fpdiv) divergent part of the self-energy
of the vulcanized massless fermionic propagator, fulfills the constraint:

= E;div) -+ l(Zw — l)ﬁ — l(bOZw — b)i = 0. (43)

(div) | . .
Ewlv + lawﬁ — 18 92 p2

62 pz
* The relation between 8, and 8z counter terms, and the Fédiv) divergent part of the noncom-
mutative Yukawa vertex, is governed by:

P 5, e3P — §e7 37 = T 4 (Z, 06 — Det?? +(Zyyip — De 7 = 0. (44)

So, to get the needed counter terms, we first use the one-loop Feynman diagrams of
Figs. Al, A2, and A3 drawn in the Appendix for each of the tree-level processes depicted in
Fig. 1. Then, we apply the previous vulcanized Feynman rules and perform the integrals to get
the corresponding radiative corrections (see the Appendix for calculation details). Finally, we
use Egs. (42-44) to extract the following UV divergent parts of the counter terms:

b

(i) From the process e (p) +eM(p) — #3,,(q), we obtain for the mirror down leptons
Yukawa sector:
e the vertex ¢ ,, and Jz ,, counter terms:
5g€M 5§FM _ 2g0m gom L

= =< — 5 , (45)
oM GoM (47'[ ) Euv
* the fermionic self-energy §, counter term:
3(SPu+2u)+3 (G +&) 1
8¢ = 8u 4 Spu = (8o + &) - (3 + i) — (46)
R L (47_[) 8UV
¢ and the scalar self-energy 8;‘;) counter term:
© 8 (gi/w + gfﬂw) + 16 (gf[,w + gzM) 1
8, =3x 5 —. (47)
¢ (4r) Euy

3ag and by are bare parameters, while ¢ and b are the corresponding renormalized ones.

12/28

G20z Yyotey L0 uo 1senb Aq y61+86./.09£20/2/S20Z/el01e/dsid/woo dno-olwepede//:sdiy woly pepeojumoq



PTEP 2025, 023B07 K. A. Bouteldja et al.

(ii) From the process u} (p) + u; M) — ¢2 (¢) and by ignoring color charges, we infer for
the mirror quarks’ Yukawa sector:
* the vertex §, ,, and 8; ,, counter terms:

S, _ 3~ng _ _2ng gqu L’ (48)
qM &M ()" Euy
* the fermionic self-energy §, counter term:
8g =8 + 8y = —5——, (49)
R L (4”) SUV
 and the scalar self-energy 8;)%) counter term:
8 (2 + 2) +16 (20 + 2
5%) — 5“;3 =3x L T/ - (50)

(471) Euy
(ii1) From the process v, (p) + v, (p ) — x°(q), we get for the Majorana right-handed neu-
trinos’ Yukawa sector:
* the vertex §;, and &z counter terms:

dey _ % _ _28u8& 1

=2 = 5 , (51)
o 8u 8 (47T ) Euv
* the fermionic self-energy §, counter term:
3 +& ) +tou+Eu 1
8, =8, 481 = (£, +8.) fﬁw giM—, (52)
R (4m) Euy
 and the scalar self-energy s L counter term:
(v) (gi + gi) L
o =3x ——"—. (53)
X (4m) €

It is worth drawing the reader’s attention here to the fact that, for all our previously found UV
divergent parts of the counter terms, there is no explicit dependence on the noncommutative
spacetime deformation parameter 6, in agreement with the results found in Ref. [12] for the
noncommutative scalar QED. Also, there is no dependence on the vulcanization parameters a
and b. This feature can be traced to the following decomposition of the vulcanized scalar and
spinor propagators:®

1 1 1 a?
Ap)= ———  — - 54
(») S 2 72 PO ta) (54)

92 2
and
Y 1 1) ib p ib* p ib® p
S(p) = b =iz — . (55
(») (l/ﬁJrl 92p2> P e p 92 T RO+ OO+ B (55)
92p

When these propagators occur in the one-loop integrals, only the first term of each of the
corresponding decompositions contributes to the logarithmic UV divergent part. This term is
free from the deformation parameter # and the vulcanized parameters a and b. All the remaining
terms that depend on 6, ¢, and b have finite contributions to the loop integrals. Therefore, they

®We use here as in Ref. [14] the relationship:
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do not contribute to the UV divergent parts of the counter terms in the minimal subtraction
scheme of interest.
Lastly, it is worthwhile to point out the following:

(1) First, when trying to get the commutative limit starting from the noncommutative expres-
sions by letting® — 0in a direct, “naive” way, the vulcanized propagators no longer make
sense. In fact, to correctly obtain the commutative limit one should proceed as indicated
by Magnen et al. [38]. Nevertheless, in this study, we are not concerned with the commu-
tative limit; we instead focus on getting the most suitable link between the commutative
and the noncommutative 8 functions at the one-loop order.

(i1) Subsequently, by examining the formula (38) from which the g functions are established,
we notice that it depends on a sum involving the counter term Sék) of the Yukawa vertex
and the counter terms 8, 8y, and 84 of spinor and scalar propagators. As pointed out in
Ref. [24], at the one-loop order the link between commutative and noncommutative ver-
sions of the counter terms 85(,/‘) of Yukawa vertices expressed in terms of couplings follows
a different formula than the link between commutative and noncommutative versions of
the counter terms 8y, 8/, and 8, of the propagators expressed in terms of couplings. In
fact, at the one-loop order, starting from the commutative version, the ,Bg(;) function, ex-

pressed in the form of the formula (38), i.e. in terms of the counter terms (Sék ) s Syrs By,

and 84 and the couplings g, to recover the corresponding noncommutative version ,3;,2 %

(or respectively : ,Bé'l“)>, we have to perform the following substitutions:
X

* For g, replace ') by g, (resp. g,).
(k)

. 12 . N
* In the g% expression, replace [g')]" by g, &, (resp. §,g, )
e In 8, + 8y and in 8, expressions, replace [gg(")]z by & + & (resp. & + g3).

Therefore, given this substitution relation, there can be no exact proportionality between
commutative and noncommutative 8 functions for Yukawa mirror couplings. Moreover, since
spinor and scalar propagators fulfill the same substitution formula, the more loops are involved
in the radiative corrections of the propagators, the more the predominance of the propagator
counter terms over the vertex counter terms becomes in favor of the propagator counter terms.
The latter case, if fulfilled, induces an approximate proportionality rule between the commu-
tative and noncommutative cases which would be governed by the counter terms of the prop-
agators.

5. One-loop noncommutative mirror Yukawa g functions

Since in the 8 function evaluation, we are concerned with the renormalized dimensionless
couplings g, ..., while our counter terms are expressed in terms of couplings g, . carrying
dimension, we first incorporate the connecting relation g, . = g, ... u°vv/? to obtain the u-
dependence of the counter terms. Then, we introduce the corresponding counter terms in the
formula (38) of the B function to get the following system of six autonomous coupled cubic
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ordinary differential equations.’

. d 1
Ut — L8 — 158 (1) + 152, (DE (1) + 4 & (13, (1) + £, ()2 (1)

fwo o dr o 32w?
+8, (0% (1]
dit dg 1
pre = S = S [158,(0+ 158, (02, () + 48, (0F,(1) + &, (D (1)

+ gM (t)ggM (Z)] ’

ne),di dgeM 1 o -
= = 3573 1278 () + 27 2en (DZ (D) + 4 25 (D2 (1)

3 3
#3200+ 3 £ (OF, 0+ 48 Gl () + 48 Ep g 0)].

dg.m 1 (56)

dt  327x2

(nc),dif __
’8§ M -

[27 200 (1) + 27 g0 (8 (1) + 4 gow ()T (1)
3 3
+ 5 Gen(t )g,, (1) + F8eu 1 )&, (1) + 488 (1)Zou (1) + 48 2., ()G (1 )] ;

ne).di dg M l - -
govar = Bt _ W[B Eor(0) + 138 (DT (1) + L (3 (1)

+ 6 8D (1) + 62 (NP (D)),

) di dg v 1
g _ 98 _ [13 Z(0) + 132D (0) + g (D (1)

84M dt 82

6 2 (D (1) + 6.2 (NP ()]

These equations are symmetric in the swap between g, and g, couplings belonging to the
same vertex. The index X stands for M, e™, or ¢™. Hence, to get the dependence of the non-
commutative mirror Yukawa coupling constants on the renormalization energy scale, we need
to solve these coupled differential equations numerically, for given sets of initial values.

Furthermore, it is worth pointing out here that for the special case where g, (1) = g,(¢), our
noncommutative system of the differential equations becomes:

: : d 1
(nc),equ __ p(nc)equ 8u _
B, = ’Bé’M =0 " 1642 (172, (1) + g, () (1],
: dg.m 1
(nc),equ __ p(nc)equ &e _
et = et = R o [ 888 (1) + 38 (0, (0 + 96 g (D (0] . (57)
. dg M 1
(nc),equ __ p(nc)equ q”
e = gt = = = o 113,583, (1) + 6.2, (02 (1)].

"In what follows, all couplings are dimensionless although we drop the index gep,
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A similar computation in the commutative case® enables us to get the following 8 functions for

the corresponding commutative mirror Yukawa couplings g,

()9

dot® 1 1 D)
b= =2 Tom {19 [£0)] +€9) [0 }
g, 1
e, = ~ar =3 % 332 { [ (L)([)] +3g500 [g00] +96g(‘)(f)[ (‘)(t)] } (58)

dg(C) 11 © () © T
B, = =§Xm{ [£20] + 650 [ (t)]}.

These results lead us to the following remarks:

(1)

(i)

There are six independent noncommutative mirror Yukawa couplings that are coordi-
nated through the ﬂg{"’)‘dif functions. This number of independent couplings reduces to
three for the special case of g, (¢) = g, (¢) as in the commutative case.

The special case where g, (1) = &, (¢) does not correspond to the commutative case since
it always carries information about noncommutative spacetime. This difference seems
natural since it can be partly attributed to the fact that even for g, (¢) = g, (¢) the depen-
dence of the noncommutative vertex coupling (41) on the small noncommutative finite
parameter 6 persists and is given by:

- i 1
g, e 4§ e P 2g cos (Ep;ﬂ“”pu) : (59)

In addition, in the loop radiative calculations of interest, the involved vulcanized propa-
gators [(39), (40)] contain the noncommutative parameters, which can give rise to slightly
modified B functions compared to the commutative case.

(iii) The commutative system of Eqs. (58) has coefficients that are roughly half of the cor-

responding ones in the noncommutative system (57), i.e. for g, () = g, (¢), which means
that:

dgO) 1, 1dgtose()
T L S TE

This property can be easily understood by inspecting the formula (38) of the 8 function,

and simultaneously by taking into account the substitution formulas at the end of the

previous section and the one-loop Feynman diagrams of Figs. A1, A2, and A3 presented

in the Appendix.

(a) Infact, out of respect for the loop order substitution relations presented at the end of

the previous section, when passing from commutative to noncommutative functions

Byo = (60)

$For the Yukawa interaction of interest, Feynman diagrams for the commutative case are the same as
those for the noncommutative one since no new vertex is introduced by the noncommutativity. All that
happens in the noncommutative case is that the Yukawa vertex splits into two orthogonal parts, and the
propagators get vulcanized to cure the UV/IR mixing.

9We fall back into the Le-Hung commutative result [5] if we add the Feynman diagram depicted in
the right side of Fig. 1 in Ref. [5], and if in the scalar self-energy we consider only one diagram with a
mirror leptonic loop for the case of B, ,, and a mirror quark loop for the case of Be > hence inducing
the decoupling of the mirror quarks’ Yukawa § function as revealed by Eq. (23) in Ref. [3].
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p for g (¢) = g, (t), we must perform the following substitutions:
[g()f)]z — [gg(”c)*equ]2 , in the vertex counter term,
(61)
[gg{")]2 -2 [g(;"’)’eq“]z , in the propagator counter terms.

(b) Next, looking at the one-loop Feynman diagrams in Figs. A1, A2, and A3 in the
Appendix, we notice that for each process of interest, there is only one vertex Feyn-
man diagram for about ten self-energy Feynman diagrams involved. Thus, in our
expressions for the 8 functions, the propagators that contribute a factor of two out-
number the vertices that contribute only a factor of one. This roughly translates to a
factor of two of the noncommutative 8 functions relative to the corresponding com-
mutative functions, which appears in the relation (60).

(iv) Moreover, by setting & = 0 in the tree-level noncommutative Yukawa vertex relationship

(41), we end up with the following correspondence rules between the commutative and

noncommutative mirror Yukawa couplings:'°

=g, +8&.—> g +&, for g.()#g.)
(62)

d9=2g, —2g,, for g (1)=g,().
Hence, to look for the discrepancy between the noncommutative and the commutative
mirror Yukawa couplings as a function of the renormalization scale, we will compare

)
. . . : +
the combined noncommutative Yukawa mirror fine structure oz;“) = [gX4—gX]
T

2
©_ &
4

to the

commutative one: oy

6. Numerical solutions of the $ functions systems

Solving numerically the previously obtained 8 systems of equations!! enables us to display the
dependence of the mirror Yukawa couplings in terms of the ¢ renormalization scale. Figure 2
shows this dependence, in the noncommutative case both for ggf"’)’dif and for g()f")’eq“,lz respec-
tively for Set 1 and Set 2 of the values listed in Table 2, and which are related to the initial
mirror Yukawa coupling values through the following relations:

gﬁ;;c), dif(o) = x, g(n}‘;) dlf(o) =, (nc) dlf(o) =z,
(63)
~(nc), dif = ~(nc) dif ~(nc) dif
gue-dit0) = x, 0) = 0)=1z,
101 (0) = 200) = (v + 2. i’,’;’ () 2 90 = O+ )2,
(64)

(nc) equ(O) ~(nc) equ(O) (Z + 2)/2’

0Here, we must pay attention to the fact that g“) =g, +8,., whereas g‘x‘) # g, + g, since the former
are commutative quantities whereas the latter are noncommutative ones. Hence, we will just compare the
commutative couplings g(;)(t) evolution in terms of 7, with the corresponding noncommutative g, + g,
ones (i.e. ggf) — g, + &,), in order to identify discrepancies between them. Also, one should not confuse
the factors of 2 that appear in Eqgs. (61) and (62). The first originates from a loop-level computation
whereas the second comes from a tree-level formula.

"1"The numerical calculations and the drawing of the corresponding plots are performed through Math-
ematica [39].

2Where g{"4 stands for g, or g, with g, # &,, and g")-%“ also for g, or g, but with g, = g, .
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(a) gﬁ(”c)’ i/ for Set 1 of initial values. (b) g&"c)’eq” for Set 2 of initial values.

Fig. 2. Evolution of the mirror Yukawa couplings as a function of the renormalization scale ¢.

Table 2. Used constant sets to construct the corresponding initial mirror Yukawa couplings values.'?

by by y y z z
Set 1 3.95 32 2.95 1.35 1.41 0.82
Set 2 1.784 1.784 1.1 1.1 0.617 0.617
Set 3 39 1.6 1.26 2.2 1.25 0.8
Set 4 2.3 0.2 2.0 0.46 1.7 1.03
Set 5 2.32 0.5 1.1 0.48 1.9 1.06
Set 6 0.92 0.25 1.02 0.35 1.12 0.45
g0 =x+% IO =yp+5  dUO0)=z+:z. (65)

Moreover, to smooth the comparison between the commutative and the noncommutative be-
haviors, it is more convenient to deal with the mirror fine structure constants ag?"‘)(t) and af‘f) (1),
for which the previous initial mirror Yukawa couplings values’ relationship to the constant sets
of Table 2 has been set to ensure that:

as shown in Fig. 3(b—d) for the plots’ starting point at t = 0.
Our results presented in Figs. 2 and 3, and Table 3 highlight the following remarks:

(i) Thenoncommutative mirror Yukawa couplings preserve the behavior of the commutative
ones pointed out in Ref. [5], i.e. a plateau for low ¢ values, then a Landau pole at some
higher ¢, scale, as shown in Fig. 2 for the mirror Yukawa couplings and in Fig. 3 in terms
of the corresponding mirror Yukawa fine structure constants.

(i) The position of the Landau poles in the noncommutative and commutative calculation
approaches depends on the chosen set of initial values as shown in Table 3. In particular,
columns 7, 11, and 12 of this table show that we can set the initial values of the mirror
Yukawa coupling so that the noncommutative Landau poles (namely "4 = 1.50 and
tf,”c)’eq” = 1.78 for Set 6 of the initial values) are the same as the commutative one (i.e.

B3In choosing these sets of constants, we ensured that the initial values of all commutative Yukawa
couplings are greater than the Yukawa top quark coupling which approaches unity. Moreover, Set 4 and
Set 5 correspond, in the commutative case, to the initial values taken by Le-Hung in Refs. [5] and [6],
respectively.
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Fig. 3. Evolution of the mirror Yukawa fine structure constants in terms of the renormalization scale ¢
for Set 3 of initial values.

Table 3. Landau pole positions for different sets of initial values of mirror Yukawa couplings.

All involved loops and flavor families Only one special loop is considered in
are considered in the scalar propagator the scalar propagator as in Ref. [5]
Initial values  Set1 Set2 Set3 Set4 Set5 Set6 Setl Set2 Set3 Set4 Set5 Set6
li(,””)*dif 035 143 053 050 0.55 1.50 0.66 268 1.03 3.68 344 11.55
tﬁ”")veq“ 036 143 0.58 0.58 0.60 1.78 0.67 2.68 1.13 424 3.60 12.81
ll(f) 0.16 0.64 027 028 029 087 027 110 046 177 150 534

1) = 1.50 for Set 5 of the initial values and () = 1.77 for Set 4 of the initial values). The
above Landau pole values are of special interest because they would correspond to an
energy scale in the TeV domain, and besides they refer to the values pointed out in Refs.
[5] and [6].

(iii) Comparing the right side part to the left side part of Table 3 shows that for the same set
of initial values, the fewer loops taken into account in the scalar propagator, the higher
the values of the Landau poles.

(iv) The swap symmetry between g, and g, couplings in the differential equations manifests
itself in the corresponding solutions through the three following ways:

(a) In Fig. 2(a) belonging to Set 1 of the initial values, the plots for g, and g, are inter-
changed when we swap the corresponding initial values.
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(b) When we adopt Set 2 of the initial values in Egs. (56) and (57), their corresponding
solutions become superimposed and give the plots drawn in Fig. 2(b).

(c) For Set 2 of the initial values, the Landau poles tI(J”")'dif and zf,”")’eq“ arising from
Egs. (56) and (57), respectively, become identical as indicated by the corresponding
columns in Table 3.

(v) Table 3 and Fig. 3(b-d) show that the noncommutative Landau poles’ positions are
roughly twice the corresponding commutative ones for the same initial values. This can
be seen as follows.

For simplicity’s sake, we consider the right-hand side of the noncommutative equa-

tion system (57) and take into account the relationship (62) th(a;[ connects the commu-

c /

tative and the noncommutative couplings, i.e. by plugging in % for each g, (). We

end up with an additional % global factor on the right-hand side due to cubic terms, and

1
a factor 5 on the left-hand side. Which, for the first equation in Eq. (57), leads to:

dgy?* () 1dg) 1 [17q

3 1 2
/ Y (c)
a2 di len? M} ([)+§gfw)(t){ge‘”} (Z/)]' (©7)
Or equivalently:

dg 1 [17 (.3 1, o>
dgg/(z)) ~ 1672 [7 {g(ﬂj)} () + 58, {gﬁ},} (Z/)]' (©9

Which must be brought closer to the right-hand side of the first equation in Eqgs. (58),

ie.
dgl(t) 1 19 IRERES / Y
Z;/ =162 {j [gﬁ;)(t )] + Egﬁj)(t)[gg&(l )] } . (69)
Hence, if in Eq. (68) we set:
t=2¢, (70)

we end up with an equation that has a similar form to Eq. (69) with the coefficient 19
replaced by the coefficient 17, and with 7 linked to the noncommutative case and ¢’ to the
commutative case. Thus, by modeling a simple commutative Landau pole as:

li , ith4 >0, B>0, and C > 0, 71
t/ir?;) B —Cr — 400, Wi > >0, an > (71)

we obtain:

1) = (72)

Al ™

Then, by relaxing the constraint (70) so that the equality becomes approximate rather
than exact, the corresponding noncommutative Landau pole manifests at:

11~ 24 (73)

which is in complete agreement with the results cited above.
(vi) Table 3 and Fig. 3(b—d) show that for each of the sets 1, 3, 4, 5, and 6 of the initial val-
ues that fulfill for 7 = 0 the relation g 4f(0) 5 g- 4if(0), the noncommutative Landau
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poles tﬁ”"’)’dif and tl(,’“’)'eq“ belonging to Egs. (56) and (57), respectively, have distinct val-
ues as expected, but with 11" always greater than "4, while for Set 2 of the initial
values for which at ¢ = 0 we have g 4(0) = - 4(0), the pole positions ("4 and
1(7)ea% are the same.

To understand this property, we focus on the Landau pole region for which ¢ is in the
interval ]z, ¢,[ with 7, having a value lower than but close to #,. In this region, all the
Yukawa coupling functions g, (#) and g, (¢) carry large values. Let us therefore consider
two functions &(¢) and n(¢) that carry large values and have behavior that mimics the
mirror Yukawa couplings in this region. Furthermore, keeping in mind the above swap
symmetry, we can write:

g dif(ry = §(1) + €,
GOty = 5(1) — € | fort € Jt,,t,[, (74)

grsan(r) = e () = n(r) ,

regardless of X being M, e,,, or ¢y, and with € being an infinitesimal positive parameter.
In addition, using the first equation in the equations system (56) and the first equation in
the equations system (57), we obtain the following:

(56) — % = % [4[8(r) + €]’ + 4[5(r) + €][8(r) — €]* + [8(2) + €]*[8(1) — €]],
(75)
dn(t) 9
(57) =,

So, to first order in the infinitesimal parameter ¢, the above equations take the form:

ds(t) en 9 4 -9
= (145) gz 0 =1+ 5520,
(76)
dn(t) 9
- 1),
dt g2 @)
with € = €/8 being a new infinitesimal positive parameter.

dé(t)

Thus, for a given ¢ in ]z, ¢,[, the slope of the function §(¢) is slightly greater than

dn(t
the slope n(®)

of the function 7(¢). Therefore, assuming 8(¢y) = n(f9) we get that 5(z)

will reach its asymptote, i.e. ("4

We should then have:

, sooner than n(¢) does, i.e. £,

Z(nc),equ > l(nc),dif’ (77)
P P

which is what we obtain numerically.

7. Concluding remarks

In this work, we have first used the Moyal product to construct a noncommutative Euclidean

mirror Yukawa Lagrangian within the electroweak-scale right-handed neutrinos model.
Second, we established the Slavnov—Taylor identities for the noncommutative universal mir-

ror Yukawa couplings. We utilized them to select from several possibilities the processes for

which we had to calculate the one-loop order radiative corrections involved in determining the
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counter terms for the noncommutative mirror Yukawa B functions. Through this calculation,
the noncommutative vulcanized scalar and spinor propagators have provided valuable support
to avoid the mixing between the UV and IR momenta.

The obtained counter term UV divergent parts result only from planar integrals and thus have
the same divergent structure as the commutative case but with different factors. Moreover, they
do not depend explicitly on the deformation parameter 6, nor on the vulcanized parameters a
and b. These parameters only affect the finite part for which both planar and nonplanar inte-
grals contribute. This means that the commutative limit cannot be obtained simply by making
the noncommutative parameters tend to zero, in which case this leads us to expressions which
no longer make sense.

However, analyzing the expressions of these counter terms in parallel with their implica-
tion in the expression of the B function allows us to state a simple relationship that enables
a direct link between the commutative and the noncommutative one-loop 8 function expres-
sions in terms of occurring couplings. These correspondence rules act differently for propa-
gators and vertices and thus reflect the fact that there can be no strict proportionality be-
tween the considered commutative and noncommutative 8 functions, but rather a possible
approximate proportionality depending on the relative weights between the involved counter
terms.

Our procedure results in a system of six coupled nonlinear first-order differential equations,
which we solved numerically. The obtained numerical solutions allowed us to state that, at the
one-loop level within the EWv%! and in terms of the renormalization scale, the noncommu-
tative geometry preserves the behavior of a plateau followed by a Landau pole for the mirror
Yukawa couplings as is the case in the commutative formulation, with the notable difference
that the position of the noncommutative Landau pole is roughly twice that of the commuta-
tive one. This would indicate that in noncommutative spacetime, new phenomena can be trig-
gered by a phase transition at higher energy scales than would be expected by the commutative
case.

Moreover, the exact behavior of the obtained solutions and the position of the correspond-
ing Landau pole depend on the choice of the initial values that may be related to low energy
masses of the mirror fermions. Therefore, it seems interesting to probe the inverse problem in a
multidimensional coupling space to shed more light on the flow between high and low energy
scales. This is left for future work.

Finally, exploring the effects of the A; couplings occurring in the scalar potential
V(ps, @3, Popr, X), on the running of the noncommutative mirror Yukawa couplings gy
and gy, is a natural extension of this work since the Yukawa interaction is involved in the one-
loop Feynman diagrams corresponding to this potential. This is currently under investigation
and will be discussed separately in the future.
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Appendix. Radiative corrections leading to the counter terms (45-53)

Applying noncommutative vulcanized Feynman rules to the Feynman diagrams depicted in
Figs. A1, A2, and A3 belonging to the processes e (p) + 7 (p') — ¢3,,(q), u¥ (p) +uy' (p) —
¢g (@), and v (p) + v ETR (7)) = x°(q), respectively, leads to the following radiative correc-
tions.

e TheI',, I'y, and I', vertex one-loop corrections:

FE(p’ p/’ 0,a, b’ 8eM, geM) =1 (p’ p/’ 0,a, b’ 8eM, ge“) s (Al)
Fq(pv plv 97 av bv ng’ ng) - I (pv ply 97 av bv ngv ng) ’ (A‘2)
Fv(p9 p/’ 0,a, b’ Eu» gM) =1 (p9 p/’ 0,a, b’ Eu> gw) ’ (A3)

Wy (@7)
-M M =M ;5 M
ey (€'r) up (dr)
s Pr m Par
o, T T - -
e et o @)
“'/Al\e[ d,}‘f[)
. . e
(a) Vertex correction Te. (b) Scalar self-energy correction H;O).
0 L
Do Doy
2M 2M
e ~ e ~
A
/ k \ / \
< [ < | < | < | <
=M M SM M M
e e% e e Vep e
(¢) Fermionic self-energy correction Yom.
L
Do vt ++
2M <« X < X
- ~ - ~ Ve ~
P
/ Xk \ / \ / \
[ | [ | [ |
oM oM oM eM o M oM GMT M

(d) Fermionic self-energy correction X M-
Fig. Al. One-loop radiative corrections to the process e¥ (p) + Eﬁl ) — qbg (@), where e stands for a

specific mirror lepton flavor, and «/, d’, and ¢ each stand for the three mirror up quark, three mirror
down quark, and three mirror lepton flavors, respectively.
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— M M
w'r (d'R)

=M
uy M M M (oM
u'p (drg) e (€'r)
40 40 40 40
Ponr Ponr Ponr Ponr
10 [ — —_— = [ — —_— =
0 (5%
Pan e
uR (d5) e (1)
A M M
uf u'p (d7)
(a) Vertex correction I'q. (b) Scalar self-energy correction Hfb%)'
D Pam P 29
e ~N e ~N e N e ~N
/ \ / \ / \ / \
[ | [ | [ | [ |
“;el 1,1‘,‘/’ uj‘fl 1/}{ d‘,y u}‘,’ ﬂi’ ﬂ‘}‘?’ 1721 ﬂj{’ J}\,’ 112’
(C) Fermionic self-energy correction X as. (d) Fermionic self-energy correction s .
R L

Fig. A2. One-loop radiative corrections to the process u¥! (p) + uy' (p') — qbg (@), where u stands for a
specific mirror up quark flavor, and «', d’, and ¢’ each stand for the three mirror up quark, three mirror
down quark, and three mirror lepton flavors, respectively.

v
0 0
O X X
MT
I/P/l{
. . (vg)
(a) Vertex correction I',. (b) Scalar self-energy correction HXO .
0 + i+
X X Ponr
—5— > >
- ~ e ~ e ~
/ \ / \ / \
> | 5 | 5 > | 5 | 5 > | 5 | 5
M MT M M MT M M M M
Vep Ver Ver Ver €R Ver Ver €, Ver
(c) Fermionic self energy correction ¥ .
R
0
X x*
> o
e ~ e ~
/ \ / \
[ | [ |
M,T M M,T M,T M M,T
Ver Ve Ver Ver R Ver

(d) Fermionic self-energy correction EVM’T'
R

Fig. A3. One-loop radiative corrections to the process v,,(p) + veTR (7)) = x°(q), where e stands for a
specific mirror lepton flavor and ¢’ stands for the three mirror lepton flavors.
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where:
/ 5 dk —Lp=pk o 5 o+E—p)k 59/ (k=p)
Hpr0abe.g)= [ 555 D (e 004 gt (g, e
—I—gxe_%l’/(k—i’)) X (g)(%kl’3 +§Xe_5k~) X —lk+ Yot
k* + 62k2
7. ’
ik p+ )+ bt Ll |
x Choptr) . (A4)
(k—p+p) +W (k —p)’ + o
e The X, mirror down leptonic self-energy one-loop correction:
2 (P’ p/’ 0,a,b, 8eM geM’ s gM) = Ee% (P’ 0,a,b, 8eM geM’ 8us gM)
+ Sy (P, 0.a,b gu, go), (A.5)

with:

. - . 3 -
Ee% (p’ 0,a, b’ geM s M s &y gM) = J(p’ 0,a, b’ 8eM, geM) + E‘](p’ 0,a, b’ 8us gM)’ (A6)

and
S (0,0, a,b, gon, G ) = 2J (P, 6, a,b, gou, gen) (A7)
where:
J(,0,a,bg,.3,)= (jjf,) [ etk 4 g ot ”‘} [gxe ik +gxe+%kf]
i(]+ k)+ ’bezﬁkl) | s
(+0'+ aiy | P+t ' '

» The X, mirror quark self-energy one-loop correction:
Sy (pp.0,a,b g, ) = Zgu (1.6, a, b, ggu, gv) + Zow (1,0, a, b, g, G ) (A9)
with
Zq% (p, 0,a,b, gy, ng) =2J (p, 0,a,b, ggm, gq,w) , (A.10)
and
o (P, 6, a,b,ggu, &) =2J (P, 6, a,b,ggu, ggu) . (A.11)
e The X, right-handed neutrinos’ self-energy one-loop corrections:
S (pp.0,a,b,g,. 8, g &) =T (p.0,a,b, g, &, 8ot Eov)
+ Ev%r (p/, 0,a,bg,, gM), (A.12)
with:
Do (0,0, 8, By 8ot Bo) = 37 (.0,0.5,8,8,) +J (9.0, 0., g, Zo).
(A.13)
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and
/ ~ 3 / ~
B, r (p/.0,a,b.g,.8,) = 3 J(p.0,a,bg,.8,). (A.14)

e And the I'[;eo), Hg{)) ,and H ®) scalar self-energy one-loop correction:

H;;)) (p - p/’ 0, b’ 8eM, geM’ g s gq“”) = Hquo) (p - p/’ 0, b» 8eM, ge’”v gy s gq’”)

= 6K(p — ., 0,b, g, g’eM) + 12K(p —-p.,0,b, ngyng) , (A.15)
(VR) / o / ~
M (p—p.0.b.8,.8,) = 3K (p = /.0.b.g,.8,). (A.16)
where
K(l,0,b,g,..8)= a7k (—1)[g etk g e+s'lfc] [g L e+gkf]
T T exrex (27_[)D X X X ¥
zk+zb62/,; i)+ k)+ib92](€likl)2
SN w r— (A.17)
k= + 92k2 (l +k) —+ m

Each of these D-dimension Euclidean momentum space integrals can be sundered into planar
and nonplanar integrals. Hence, performing this calculation using the dimensional regulariza-
tion method and in the way described in Refs. [24,40] leads us, for our special case of massless
particles, to the following UV divergent part:

Co(p, p/,0,a,b, g, gom) = — 2geM2geM {geM e 2P 4 gy et 2lP }
(4m)” &4y

+ UV finite part(p, p', 0, a, b, gou, g,m), (A.18)
2ng ng
(47)* £,y

+ UV finite part(p, p', 0, a, b, g u, Zu), (A.19)

L,p.p.0,a,b, ggvs Eqm) = — {ng e~ 2P + &M e+5p,ﬁ}

28u 8
(4r) ey,
+ UV finite part(p, p’,0,a,b, g,,,8,), (A.20)

Fl)(ps p/a 97 as ba gM$ g-M) = — {gM e_%p/ﬁ +§M e+%]7'[7}

3
Ee(p,p’,G,a,b,geM,geM,gM,éM)—(4 ) {[(gz + &) + 5 (2, +§i)}/ﬁ

+ 2[g§M + gZM] /p’} + UV finite part(p, p', 0, a, b, g, o, g,y+ &1/)s (A.21)

2| @ + &

" (p+ p)+ UV finite part(p. p', 6, @, b, gy, §),
(4m)" ey,

Z‘I(p’ p/’ 99 a, bv ng, g'qM) = —

(A.22)
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, . . —i 3 - -
Zv(pvp ’ 99617 bv ng ng 8o, geM) = {[z (gZM —J’_gZM) +g(23M +g§’”i| ﬁ

(4m) &gy
3 : ~ ~
+ [5 (¢ + z;rZM)} 4)’} + UV finite part(p, ', 0. 4. b, g, & e, Zon). - (A23)

H;fo)(p - p/v 6, b’ 8eM, geM’ g s ng) = Hé,qo) (p - p/’ 0, b» 8geM, ge"”v gy s gq’”)

) 8 (2 + Z) +16 (2 + Z)

=3 (r—p)
(47) ey
+ UV finite part(p — p', 0, b, gev, g, &g, yir), (A.24)
y : - 4(g, +8, : . : -
M (p =7, 0.b.2,.2,) = 3 % (p—p)* + UV finite part(p — p'.6.b.g,,. &,).
uv

(A.25)

We then introduce the divergent parts of these radiative corrections into Eqs. (42-44), to infer
directly the corresponding counter terms given by Egs. (45-53).
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