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Abstract

The standard tools for analyzing the Cosmic Microwave Background (CMB), a

key component for making cosmological inferences, are usually of global sam-

pling type. Such a methodological bias may preclude the development of im-

portant techniques for cosmology. This thesis develops local, real-space tools for

CMB analysis which may be complemented using harmonic space techniques or

provide useful signal diagnostics on their own.

Particularly, finite-difference schemes for performing local derivatives are inves-

tigated. One can define derivatives which extract the primordial polarization

modes from the measured CMB Stokes parameters by constructing real scalar and

pseudo-scalar fields. The detection of a primordial curl-like (‘B’-mode) CMB po-

larization signal would imply the existence of a background of primordial gravi-

tational waves, the ‘smoking gun’ signal of an inflationary cosmology. On an ob-

scured (masked) sky, the gradient-like (‘E’-mode) signal leaks into the B-mode

signal when the standard harmonic E/B signal decomposition is performed —

using local techniques instead, this leakage can be reduced since the masked re-

gion is not sampled from. An algorithm and a software package are developed

for just such a calculation. Furthermore, differencing errors in the presence of

discontinuous signals are utilized to produce the ‘Laplacian-difference’ method,

which enhances pathological and discontinuous signals. Such signals, in the ab-

sence of systematics, might reveal the presence of cosmic defects.

The scalar and pseudo-scalar fields produced will feature self-coupled mode-

transfer due to masking; the mode-transfer matrices are related to the optimal

apodization schemes for extracting power spectra. The transfer matrices for var-

ious spectral operations on scalar fields are presented, which for the polarization

spectra provide important computational advantages over the direct utilization

of the E- and B-modes.
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Foreword

The contents of this thesis were produced at Imperial College London between

October 2007 and November 2010. They can be summarised thus:

• Chapter 1 provides an overview of the general theoretical and observational

status of early universe cosmology, providing a motivation for the develop-

ment of the later chapters. Particular focus is borne upon the temperature

and linear polarization observables of the CMB, and their connections to

fundamental physics via inflation and topological defects.

• Chapter 2 then develops specific motivations for local methods in CMB

analysis: after an account of Bayesian inference, a general finite-differencing

algorithm for polarization analysis is developed and the harmonic tools

used to detect non-Gaussianity in the CMB are discussed. Further, in an-

ticipation of apodization issues the local scalar field formalism is utilized to

develop the basis of a general theory of mode-transfer for observed cosmo-

logical fields in the presence of masks. Next, the Laplacian-difference tech-

nique for isolating discontinuities is developed. This is then complemented

with a discussion of the needlet method for decomposing local power. Fi-

nally, signals of a finite-resolution CMB are speculated on.

• Chapter 3 presents the MasQU software, the main technological result of

this thesis. The various technical phenomena manifested in implement-

ing the software on the HEALPix grid are discussed, along with improve-

ments that the method presents over harmonic methods in determining the

B-mode spectrum. The determination of real-space weights required to

apodize the polarization signal is discussed. Lastly, toy models of discontin-

uous signals and discrete real-space CMB phenomena are constructed and

studied using the Laplacian-difference formalism.

• Chapter 4 reports an analysis of the MasQU techniques as applied to avail-

able WMAP 7-year data and details some crude limits obtainable from fu-
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ture Planck Surveyor data. A galaxy boundary contaminant in the 7-year

WMAP ILC data is isolated and analyzed in the context of the CMB anoma-

lies.

• Finally, Chapter 5 concludes.

Chapters 2 and 4 contain material which can be found in Bowyer & Jaffe [1].

Material from Bowyer, Jaffe & Novikov [2] can be found in chapters 2 and 3. All

other material will be made available in forthcoming publications.
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Chapter 1

An Overview of Modern

Cosmological Physics

It is a curiosity that, for the amount of time it has spent in the collective hu-

man consciousness, cosmology is one of the youngest scientific studies. The first

breakthrough in the path leading to a scientific cosmology came with Einstein’s

publications of the special [3] and general [4] theories of relativity. The former

theory altered the causal structure in Newton’s mechanics and hence made it

clear that — due to the finite velocity of light — every time one looks through

a telescope, one is really using a sort of time machine. The latter allowed the

explicit construction of mathematical cosmologies [5] that could in principle be

tested. The cosmologies derived from the general theory, under the assumptions

of large-scale spatial homogeneity, isotropy and perfect fluid behaviour, yielded

Friedmann’s celebrated equations [6] which govern the dynamics of the universe.

The Friedmann equations demand a dynamic universe, either contracting or ex-

panding — something Einstein was philosophically unhappy with [7], enough so

as to introduce an ad hoc cosmological constant Λ, which acted to metastabilize

the universe. Conversely, Lemaı̂tre suggested a theory of the ‘primeval atom’ [8],

now referred to as the Big Bang theory), which required an expanding universe.

It was then in 1929 that Einstein’s cosmological constant was disproven, upon

Hubble’s observations that the distant galaxies were receding both from us [9]

and from each other. Some astronomers were initially dissatisfied with the Big

Bang theory, deeming it to bring creationism into science [10] and alternatives

were devised, most famously the ‘Steady State’ theory of Hoyle, Bondi and oth-

ers [11]. Ironically it was Hoyle who coined the term ‘Big Bang’ for Lemaı̂tre’s

theory [12].

However, beside successfully accounting for the abundance of helium in the

13
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Universe (Big Bang Nucleosynthesis [13]), the Big Bang theory had one unique

prediction that Gamow [14] and others determined: when one combines an ex-

panding universe with thermodynamics and the known characteristics of par-

ticle interactions (Thomson scattering), the prediction of an approximately uni-

form background radiation relic from the formation of the surface of last scattering

during recombination is made. Specifically it is the mere existence of this cosmic

background radiation, and not its temperature, which is the sufficient unique pre-

diction of the Big Bang theory. This radiation was then found quite accidentally

in 1965 by Penzias and Wilson [15], who were working on satellite communica-

tions1, ahead of the efforts of the CMB theorist Dicke. The Big Bang theory was

verified, with the CMB temperature now known to be T0 = 2.725± 0.002K [17].

Of course, this was neither far from the end of the predictions made by the Big

Bang theory, nor of the development of the theory itself. Peebles, Silk and others

[18] developed a theory for the primary anisotropies of the radiation, later con-

firmed with spectacular success by the DMR instrument on the COBE2 (Cosmic

Background explorer [19]) satellite in 1992 which revealed that the CMB tem-

perature was homogeneous to one part in 105 (and which resulted in the 2006

Nobel Prize for Physics). COBE was then followed by smaller-budget sub-orbital

experiments attempting to measure the first peak in the power spectrum of the

temperature anisotropies. Later, experiments like the balloon-borne Boomerang

[20] satellite (1998), and more completely the WMAP mission [21] (COBE’s space-

based successor, launched in 2001) confirmed that the Universe is almost per-

fectly spatially flat (as a corollary of the power spectra seen in Fig. 1.1 and mea-

surements of the Hubble parameter) and re-enforced the discovery of the ‘dark

energy’ currently accelerating the cosmic expansion, using observations of the

spectrum of anisotropies.

The CMB is then a primary window into what is now referred to as precision cos-

mology: the coupling of the CMB observations with those of the light element

abundances, supernova data and galaxy surveys, and with the technological and

software advances that now allow one to quickly create cosmological simulations

on even low-end computers has led to a remarkable increase in the accuracy and

reliability of cosmological inferences. The successes of precision cosmology are

numerous, and cosmologists can now boast a standard Big Bang model that nat-

urally incorporates the cosmological observations. The story that unfolds is one

1See the first chapter of Naselsky et al [16] for an account of the near-misses for detecting the
background radiation.

2COBE website: http://lambda.gsfc.nasa.gov/product/cobe/
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of primordial density variations (the anisotropies) in the microwave sky sourcing

the (predominantly bottom-up) formation of structure via gravitation. The first

stars alight in a period of reionization; these stars evolve the chemical abundances

in the universe that allow carbon-dense planets to form and eventually populate

with observers who can infer the present-day accelerated expansion of the uni-

verse, within a cosmic timeframe of ∼ O(13) Gyr. This standard model is typified

by a small set of parameters and a mostly well-understood set of mass/energy

types, of which normal matter only makes a tiny fraction.

Figure 1.1: WMAP 7-year temperature-temperature (TT , top diagram) and
temperature-E-mode polarization (TE, bottom diagram) correlation power
spectra, from Jarosik et al [21]. The height of the first peak, and the acoustic os-
cillations in the TT spectrum betray the global geometry of the Universe and the
physics of the CMB; the anti-phase correlation of the TE spectrum with the TT
spectrum at around l = 50 is indicative of a predominantly adiabatic generation
of fluctuations.
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However, it has been determined that the standard model is in need of exten-

sion via an auxiliary hypothesis in order to explain various observational issues

with the CMB — such as the ‘flatness’ and ‘horizon’ problems (more on these

later). The simplest and most prominent hypothesis is inflation, first championed

by Guth [22] as an economic solution to all the problems of the standard Big Bang

model. In the simplest models, a slow-rolling scalar field inflates the universe,

shrinking the comoving Hubble radius and inevitably leading to a dominantly

Gaussian temperature perturbation field formed from adiabatic processes, with

an almost scale-invariant spectrum as observed. Further to this, quantum effects

from inflationary cosmology are sufficient to source the temperature anisotropies

which in turn seed the formation of structure which is ubiquitous in the Universe.

As will be shown, there is more useful information that can be gleaned from the

CMB; particularly, its polarization can provide crucial insight into the nature of

the inflationary mechanism. Whilst the consensus from observations is that in-

flation’s initial competitor for structure formation, cosmic strings, is no longer

viable as the main source of structural seeds there remain competitors that are

yet to be falsified (variable-speed-of-light and ekpyrotic scenarios are examples).

The prediction of large-scale curl-type (‘B’-mode) polarization is a unique and

generic consequence of inflation that would cement the status of inflation in cos-

mology, much as the detection of the CMB did for the original Big Bang model.

This will be probed further by a number of future and current experiments, most

notably by the Planck mission [23], which was launched in May 2009.

This chapter describes a rough account of the status of modern cosmology, with

a focus towards the connection with fundamental physics; the relativistic frame-

work underlying cosmology is described first and then the physics of the CMB

along with the standard tools used to characterize it. The inflationary cosmolog-

ical paradigm is then introduced, which most explicitly provides links between

cosmology and fundamental physics, and describes how inflation provides the

perturbations found in the CMB. Inflation is then linked with CMB polariza-

tion via gravitational waves and experimental issues and future observational

prospects are briefly discussed. This discussion sets up an exploration of a num-

ber of outstanding problems and questions in early universe cosmology in the

following chapter.

Unless stated otherwise, the details presented in this chapter can be found in

standard textbooks on general relativity [24, 25], cosmology [16, 26, 27, 28, 29],

and inflation in particular [30, 31, 32]. The notes on gravitational waves from the

ICTP summer school in cosmology in 2008 [33] were also useful.



1.1. THE STANDARD BIG BANG 17

1.1 The Standard Big Bang

1.1.1 The General Relativistic Cosmology

The framework used to describe the cosmos is that of the general theory of rel-

ativity (GR). Since it is a theory of classical variables, it is expected to be valid

only up until the Planck time where the consensus is that one expects a quantum

theory of gravitation to take over; otherwise one is free to impose quantum fields

over a relativistic background, so long as they are renormalizable. GR was con-

ceptually revolutionary due to the way that spacetime works in the theory. The

special theory of relativity showed that the field equations of Maxwell’s electro-

magnetism were physically compatible with the Lorentz transformations, defor-

mations of the Galilean relativity parameterized by c, the speed of light. It thus

superceded Newton’s mechanics with a theory wherein rotations can be made in

time as well as space — this is popularly referred to as a unification of space and

time, described by the rotation group SO(3, 1) — with all the requisite surprising

results, such as the complete overthrow of the concept of absolute simultaneity

for observers.

The general theory extended the special theory from inertial frames of reference

to accelerated frames of reference, and in doing so swallowed up Newton’s the-

ory of gravitation. It turns out that observers in an accelerated frame of reference

are equivalent to observers in a gravitational field. The mass of a body determines

the geometry of spacetime, which in turn determines the gravitational field — in

this sense the dynamics of the field are entirely dependent on the metric. Fol-

lowing the standard variational approach, one can start with the Einstein-Hilbert

action

SEH =

∫ √−g
[

c4

16πG
R+ LM

]

d4x, (1.1)

where G is the gravitational constant, R the Ricci scalar, LM the matter La-

grangian and g the determinant of the metric gµν , and perform an infinitesimal

variation with respect to the metric to yield the stress-energy tensor (which de-

scribes the density and flux of energy and momentum)

Tµν = −2δLM
δgµν

+ gµνLM . (1.2)

From here on in the theory convention is made use of, where units are defined

such that the speed of light c = 1. One can then construct Einstein’s field equa-
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tions of gravitation

Rµν −
gµν
2

R = 8πGTµν (1.3)

which, in the presence of a cosmological constant Λ, have a factor +Λgµν ap-

pended . The construction of cosmologies begins with these field equations and

make use of the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric, a con-

sequence of assuming a homogeneous and isotropic universe and so utilizing

spherical symmetry. The FLRW metric is defined with a scale factor a and radius

r which describes the evolution of the scale of the universe:

gµν =









1 0 0 0

0 −a2(t) 0 0

0 0 −a2(t)F 2(r) 0

0 0 0 −a2(t)F 2(r) sin2 θ









. (1.4)

Computing the scalar curvature R yields three general solutions in terms of the

spatial curvature parameter k

F (r) =







sin r k = +1

r k = 0

sinh r k = −1

(1.5)

allowing the construction of Tµν ; these solutions correspond to ‘closed’, ‘flat’ and

‘open’ cosmological models respectively. From the components of the (strictly di-

agonal) stress-energy tensor for a perfect fluid one yields Friedmann’s celebrated

equations:

(
ȧ(t)

a(t)

)2

=
8πGρ(t)

3
− k

a(t)2

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p)

(1.6)

where the first Friedmann equation is normally encoded in the Hubble parame-

ter H = ȧ/a which determines the expansion rate of the universe and the overdot

signifies a derivative with respect to t. The Friedmann equations can be solved

exactly for a number of simple model universes; since gravitational collapse com-

petes with the expansion rate, a critical density ρcr = 3H2/(8πG) can be defined

wherein gravitational and expansion dynamics are balanced. Defining the den-
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sity ratio Ω = ρ/ρcr, one can obtain the evolution of the Hubble parameter

H2 = H2
0 (Ωm,0a

−3 + Ωr,0a
−4 + Ωk,0a

−2 + ΩΛ,0) (1.7)

in terms of the functional densities for matter, radiation, the intrinsic curvature

and a cosmological constant, where the implicit time-dependence notation has

been dropped for simplicity and the subscript 0 indicates the value of the pa-

rameter today. For example, one can solve equation (1.7) for a matter-dominated

universe with ΩΛ = 0, Ωk = 0 and Ωr = 0 yielding a3 ∼ 2H0t
2. More generally,

if the universe is dominated by a fluid with equation-of-state parameter w = p/ρ,

then

ρ ∝ a−3(1+w). (1.8)

These simplistic details for homogeneous and isotropic universes were devel-

oped in the early 1920s; since physical considerations of the large-scale structure

of the universe, which have since been borne out by observations [34], suggest

that the universe is spatially isotropic and homogeneous on large scales it makes

sense to utilize this analysis as a first-order approach, to be appended by pertur-

bation analysis informed by the content of the universe. The time derivative of

the scale factor a was confirmed to be positive by Hubble’s famous observations

(where Hubble’s law is v = Hr for the velocity v of receding galaxies at a distance

r from the observer).

Following the observations of the likes of COBE and WMAP there exists now a

standard cosmological model composed of a small number of mass-energy types;

the large scale properties of the early universe are well-modelled by a homoge-

neous, isotropic perfect fluid featuring nonrelativistic ‘baryons’ and dark matter,

photons, Dirac neutrinos and a cosmological constant Λ. This favoured cosmol-

ogy is confirmed by Bayesian statistical analysis; its main remaining descrip-

tive elements are a flat expanding universe with Hubble parameter H0 ≈ 70

kms−1Mpc−1, whose density is dominated by a cosmological constant (ΩΛ ≈
0.73), with cold dark matter (CDM) accounting for Ωcdm ≈ 0.23 whilst bary-

onic matter contributes just Ωb ≈ 0.04. The main observations required for the

construction of this model are the CMB, redshift-distance relations of type-Ia su-

pernovae and large-scale structure surveys such as the Sloan Digital Sky Survey

(SDSS) [35]. The combination of these observations alleviates the geometric de-

generacies inherent in deriving cosmological parameters from the CMB alone and

helps cosmologists to fully understand systematic and foreground issues. The fo-

cus of this thesis is the contribution made by the CMB.
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1.1.2 The Cosmic Microwave Background

Once one appends the simplistic FLRW structure in the previous section with

slightly more detail, i.e., a matter and radiation-filled universe with the general

properties of the dominant particle specie, the inevitable prediction of an after-

glow of the Big Bang is made. It can be argued that this afterglow, the CMB, has

been the most useful observable for cosmology since it provides the earliest obser-

vational snapshot of the universe, occurring at a redshift of z ∼ 1100 (∼ 300, 000

years after the ‘initial singularity’). Studies of the CMB by WMAP, Boomerang

and others have resulted in a description of the large-scale Universe character-

ized by only one small table of parameters3 (Table 1.1); with just this small table

of inputs and the known laws of physics, a powerful enough computer could in

principle simulate the entire universe.

Table 1.1: Summary of parameters generated from combined WMAP 7-year
CMB, SDSS baryon acoustic oscillation and Hubble Space Telescope H0 data,
in the best-fit ΛCDM model.

Parameter Value Parameter Value
Ωb 0.0458± 0.0016 Ωcdm 0.229± 0.015
ΩΛ 0.725± 0.016 ns 0.968± 0.012
τ 0.088± 0.014 PR(k0) (2.430± 0.091)× 10−9

σ8 0.816± 0.024 zreion 10.6± 1.2
H0 70.2± 1.4 km s−1 Mpc−1 t0 13.76± 0.11 Gyr

In an expanding universe filled with a non-exotic fluid, the mean temperature

decreases with time; this has the corollary that the earlier, smaller universe was

hotter. If the universe contains more than one type of entity, then since these en-

ergy densities correspond to different expansion rates it must have been through

a range of phase transitions (some of which are enumerated in Table 1.2), mark-

ing changes of domination of energy density type, from radiation through matter

to the present day dark energy.

It is instructive to analyze the effect of the phase transitions, occurring at

mass/energy-type density equality points in the cosmic timeframe; of particular

relevance here is the time of matter-radiation equality. Until an age tuni ∼ 70, 000

3Ωb, ΩΛ and Ωcdm are the density parameters for baryons, dark energy and cold dark mat-
ter respectively, τ is the optical depth, PR the power spectrum of the curvature perturbations,
zreion the redshift at which reionization occurred, t0 the age of the Universe, H0 the Hubble pa-
rameter today, σ8 is the size of fluctuations on scales of 8 Mpc h−1 and ns is the scalar spectral
index. WMAP website parameters page: http://lambda.gsfc.nasa.gov/product/map/
current/parameters.cfm.
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Table 1.2: Stages in the evolution of the universe, adapted from Mukhanov [28]

Time after the Mean temperature Description
‘initial singularity’

< 10−43 s > 1019 GeV Planck-era physics; the need
for a theory of quantum gravity

becomes unavoidable.
10−36 → 10−32 s ∼ 1016 TeV→∼ 1014 GeV Inflationary period.
10−14 → 10−10 s ∼ 10 TeV→∼ 100 GeV Origin of electroweak

symmetry-breaking and
baryogenesis — the universe
becomes filled with matter.

10−5 s ∼ 200 MeV Quark-gluon phase transition.
0.2 s ∼ 1 MeV Neutrino decoupling.

200− 300 s 0.05 MeV Nucleosynthesis.
1011 s 1 eV Matter-radiation equality.

1012 → 1013 s 0.25 eV CMB last scattering.
1013 yr 1 meV Today.

years, long after the inflationary period is supposed to have run its course, the

Universe was radiation-dominated. Since the mean radiation density would have

been too high for the formation of stable atoms, the Universe would have been

mainly filled with an opaque ‘photon-baryon’4 plasma, in thermal equilibrium.

As the particle density must decrease with time then there is a period in the early

universe when the expansion rate starts to exceed the mean collision rate be-

tween quanta; for photons and baryons this is the decoupling time, a period after

which the universe is no longer an opaque plasma, but when photons can stream

freely with low probabilities of collision. Such a decoupling time corresponds to

a surface of last scattering (LSS), the origin of the CMB. One can calculate the ex-

pected CMB temperature at decoupling starting at the mean energy of a photon

〈Eγ〉 = 3kBTγ (with kB the Boltzmann constant), leading to the number density

of photons capable of ionizing hydrogen at temperature T

nion

nγ
= exp

[

−Eion

kbT

]

(1.9)

where the energy required to ionize Hydrogen is Eion ≈ 13.6 eV. An electrically

neutral universe (ne = nb = 10−9nγ) then implies a mean decoupling temperature

of ∼ 3000 K.

4This is somewhat of a misnomer among astrophysical terms, since the plasma contains lep-
tons too.
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The main features of the CMB remain intact during cosmic evolution, meaning

that observations of the CMB now allow one to determine its state at decoupling.

Standard thermodynamics suggests that such a plasma would be in thermal equi-

librium, best described by a Planck blackbody spectrum; it can be shown that a

blackbody CMB at redshift zLSS will be a blackbody at a later zobs. Indeed this is

what COBE’s FIRAS instrument found in 1992, and it is said that the CMB spec-

trum is the most perfect blackbody curve observed yet in nature [36].

The details of decoupling produce the observables that modern cosmologists are

interested in. At z ∼ 1100, the mean temperature of the blackbody spectrum

reached 0.3 eV and the average photon was no longer energetic enough to pre-

vent formation of H atoms5; immediately before this decoupling period, the uni-

verse was opaque. The elastic scattering of photons off electrons is described

by Thomson scattering. Thomson scattering generically results in a dipole due

to the coupling of the electron’s motion with the oscillation of the photon field.

The electric and magnetic fields of a photon oscillate transverse to the direction of

propagation. One might assume then that the CMB radiation is unpolarized since

Thomson scattering is a necessary but not sufficient means to produce polarized

radiation: if the radiation field is isotropic, the intensities of polarized photons

incoming from opposite directions cancel. The scattering cross-section σT over

the scattering surface Ω is governed by

dσT
dΩ

=
3σT
8π

|ǫ̂ · ǫ̂′|2 (1.10)

where the ǫ terms describe the propagation directions of the incoming and out-

going photon. For isotropic radiation incident on the electron from all directions,

the radiation quanta from incoming and outgoing directions have equal intensi-

ties so the outgoing wave intensities along the x- and y-axes are equal, resulting

in an unpolarized emission. It will later be seen that the CMB is in fact weakly

polarized, and that this has important ramifications.

The Thomson scattering effectively ceases due to an increase in the photon mean

free path, forming the surface of last scattering and allowing photons to stream

freely. This process is an extended one due to the tail in the Planck blackbody

function. As previously mentioned, the temperature distribution has fluctuations

of one part in 105. Temperature fluctuations in the CMB are induced by a range

of physical processes, including:

5This is lower than the binding energy due to the large photon-to-baryon ratio introduced in
equation (1.9).
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• A change in radiation density at a given point due to dark-matter-enhanced

photon acoustic oscillations.

• A Doppler shift due to the motion of the CMB with respect to the ob-

server; together with the density oscillations these dominate perturbations

on scales characterized by multipoles 50 . l . 600.

• The Sachs-Wolfe effect, the gravitational redshift of a photon leaving a po-

tential well; this effect dominates perturbations on super-Hubble-radius

scales at decoupling. There is also the integrated SW effect, which is simply

the same effect but for time-evolving gravitational potentials.

• Diffusion (Silk) damping, the statistical random walk of photons through an

opaque plasma; this exponentially suppresses fluctuations on small scales,

combining with rescattering from reionization to wash out fine-grained

anisotropies.

The most important of these mechanisms for the purposes of this text is the ra-

diation density variation which is seeded by acoustic oscillations in the photon-

baryon fluid. During the radiation era, competition between gravitational col-

lapse and radiation pressure sets up acoustic waves in the plasma. The density

modes will be either expanding or collapsing during the recombination period,

and hence when Thomson scattering ceases, the modes will be frozen in on the

horizon scale (i.e., depending on their collapse/expansion radius at the time of

last scattering). So the acoustic modes will exist at different scales — this man-

ifests itself in temperature overdensities. Furthermore, the modes are affected

further by the presence of a pressureless dark matter component (enhancing the

gravitational well of a dense region).

This radiation density variation informs cosmologists about the large-scale prop-

erties of the universe; one example is geometry. Due to the sizable distance be-

tween the LSS and Earth, any large intrinsic curvature in the universe will have

observable curved geodesics. For example, in a positively curved universe, non-

identical geodesics bearing from the same point bend toward each other. This is

essentially the reason that the search for a justification of Euclid’s parallel pos-

tulate was to put to bed: it turns out to be the special case for a flat space. The

angular diameter distance DA = d/θ, the ratio of the intrinsic size of a region

over the angular size as viewed by an observer, should then change with geom-

etry: for a flat geometry with a dominant dark energy component, the horizon

at the LSS subtends approximately 2 degrees on the sky. The prominent peak in
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the CMB power spectrum at l ∼ 200, combined with Hubble data, then implies a

flat universe. By comparing the apparent observed scale with a known physical

scale at the LSS, one can determine the large-scale geometry of the universe —

two such scales are the sound horizon after scattering (which is set by the wave-

lengths of the acoustic oscillations) and the Silk (diffusion) damping scale. This

measurement must be coupled with a determination of the matter content Ωm

and cosmological constant term ΩΛ in order to avoid a geometrical degeneracy.

The CMB provides a context against which which two other important cosmo-

logical processes take place: nucleosynthesis and galaxy formation. Nucleosyn-

thesis is the mechanism for generating the observed quantities of the light ele-

ments such as D, 3He and 7Li; at around approximately the first three minutes,

the neutron-proton ratio froze as the universe cooled to ∼ 1 MeV since the expan-

sion rate dilutes neutron-to-proton inter-conversion. β-decay further reduced the

ratio to ∼ 1/7, whilst light element production started at ∼ 0.1 MeV. Since the

vast majority of neutrons are combined into 4He and the formation rates of the

other elements are dependent on both the Hubble expansion rate and the baryon

density, one can use the observations to check the consistency of standard par-

ticle physics with reality. The timespan for Big Bang nucleosynthesis is further

constrained by the requirement of a dearth of elements heavier than Beryllium in

the early universe.

The decoupling of photons has its analogous process with neutrinos, forming a

neutrino background (which remains only indirectly detected [37]). These neutri-

nos free-stream and also contribute to the cosmological radiation energy density;

the main effect of this is as radiative pressure, the anisotropic stress damping

the photon acoustic oscillations. Indeed, cosmological observations also provide

a method with which to determine the mass of neutrinos — the accepted so-

lution to the solar neutrino problem6 is to allow mass eigenstate mixing in the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, inducing neutrino flavour

oscillations and a non-zero neutrino mass. Observations imply that this mass, if

the solution is correct, must be tiny — less than ∼ 1eV [38].

In order to take further information from the CMB, one looks to the anisotropies

that exist on a small scale by the utility of power spectra. These anisotropies are

responsible for the formation of structure. The details of structure formation are

left for the next section, when the matter power spectrum is discussed.

6A discrepancy between the theoretical and observed solar flux of electron neutrinos, approx-
imately a third of what is expected from the standard model of particle physics combined with
known solar physics. Neutrino flavour oscillation, indicative of a non-zero neutrino mass, can
resolve this issue.
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1.1.3 Power Spectra

One can only observe one universe, from one vantage point; in order to make

rigorous statements about cosmology, it is necessary to consider what statistics

can be used to make valid inferences since, for a random field, individual sam-

plings on the observed sky imply very little about the underlying processes. The

angular n-point function

〈

f(Ω̂1)f(Ω̂2) · · · f(Ω̂n)
〉

(1.11)

is just such a statistic, which describes the ensemble average clustering of a ran-

dom field; since the CMB at last scattering is a collection of random and indepen-

dent processes, the central limit theorem ensures that the n-point function can be

applied to CMB studies. Unfortunately, it is not always the case that data points

of the correlation function at different scales are independent of each other. In-

stead one should use a basis which is necessarily orthogonal, such as a harmonic

basis. This is where the power spectrum comes in.

The power spectrum is a measure of the amplitude of a signal at different scales

(the statistically isotropic harmonic transform of the two-point correlation func-

tion), and for a purely Gaussian signal is the most compact and complete de-

scription of a signal. In cosmology it comes in two forms: the theoretical power

spectrum and the observable angular power spectrum. The power spectra are of

central importance to CMB studies since they are the major descriptors of CMB

physics, complementary to that of the correlation function, although later the im-

portance for cosmology of spectra associated with non-Gaussianity shall be seen.

To understand where the power spectra come from, consider a random field g in

a comoving box of length L, with harmonic components gk in momentum space

k. The probability of finding the real part R of gk with variance σ2 is given by

P (R) =
1√
2πσ

exp

[

− R2

2σ2

]

, σ2 =
1

2

〈
|gk|2

〉
. (1.12)

As the box becomes large, the variance becomes independent of the direction of

the modes k, so the power spectrum Pg can be defined thus:

Pg(k) ≡
(
L

2π

)3

4πk3
〈
|gk|2

〉
,

〈
g2(x)

〉
=

∫ ∞

0

Pg(k)
dk

k
. (1.13)
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By taking the harmonic transform of the two-point average, the power spectrum

takes the form

〈g∗kgk′〉 = δ3(k − k′)
2π2

k3
Pg(k), (1.14)

which is statistically invariant under rotations and translations. The CMB power

spectra depend on almost all the cosmological parameters, making for a pow-

erful probe of cosmology. For the case of the observational CMB one works on

the sphere, so it is necessary to determine the angular power spectra. Given the

harmonic decomposition of a field F on the sphere into harmonic coefficients

aFlm =

∫

F (Ω)Y ∗
lm(Ω)dΩ, (1.15)

and assuming statistical isotropy, the angular spectrum has variance and mean

governed by

CFF ′

l δll′δmm′ =
〈

aF∗
lma

F ′

l′m′

〉

,
〈
aFlm
〉
= 0 (1.16)

respectively, where isotropy is confirmed by checking for invariance under rota-

tion by the operation of the Wigner D-matrices. A corollary of all this is that if

the signal is fully Gaussian, all that is needed to describe it is its mean and vari-

ance, naturally encoded in the power spectrum. Specifically, one averages over

azimuthal multipoles m to construct the observable power spectrum, meaning

that the correlation function is only dependent on the separation angle θ between

two points on the sphere. For a statistically isotropic universe this has the effect

of averaging over noise.

The statement that the CMB is primarily constructed from an ensemble of inde-

pendent processes neglects gravity. In this sense then, one can decompose the

fluctuations of the CMB signal into (Gaussian-distributed) non-gravitationally-

enhanced physics and the remaining non-Gaussian distribution, which is known

to be small. Unlike the Gaussian case, a non-Gaussian signal can manifest itself

in any number of the higher-order correlation functions corresponding to the bis-

pectrum (harmonic transform of the 3-point function), trispectrum (4-point), and

so on. If the CMB is fully Gaussian, the angular spectra at different multipoles l

are uncorrelated.

In modern cosmology, the main types of spectra cosmologists are concerned with

are the matter power spectrum, the CMB temperature anisotropy spectrum that

seeds it, and the CMB polarization spectra; in order to make the connection be-

tween the anisotropies of the CMB measured now and their state at decoupling

one needs a construction of the theoretical power spectra based on physical the-
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ory and a transfer function between epochs.

Since the initial temperature fluctuations are randomly-distributed and their

evolution via gravitation is non-random, each mode has the same direction-

independent phase. These initial fluctuations that form the seeds of structure

formation are enhanced by the presence of dark matter haloes which are probed

via the matter power spectrum. The Newtonian potential today is given by

Φk(a) =
9

10
Φk,0T (k)D(a), (1.17)

where T (k) is the transfer function for mode transfer across the horizon (depen-

dent only on k), D(a) is the growth function and Φk,0 is the initial potential, de-

termined by the inflationary mechanism. The Poisson equation for dark matter

density perturbations leads to a calculation of the density contrast δ = δρ/ρ

δk(a) =
3k2

5ΩmH2
0

Φk,0T (k)D(a). (1.18)

This information is used to define a power spectrum for the density perturbations

and the potential

〈δk, δ∗k′〉 = (2π)3δ(k − k′)Pδ(k, a), 〈Φk,Φ
∗
k′〉 = (2π)3δ(k − k′)PΦ(k, a) (1.19)

with PΦ the primordial value of the curvature power spectrum

PΦ(k) ∝ kns−4, Pδ(k) ≡ ASk
nsT 2(k)D2(a) (1.20)

where ns = 1 is the Harrison-Zel’dovich (HZ) scale-invariant case for the scalar

spectral index ns, as predicted by standard inflation models and AS the scalar

spectral amplitude at horizon-crossing. Since primordial perturbations are ex-

pected to behave the same way on all scales except at the sound horizon, it makes

sense that the initial power spectrum should be approximately given by the fea-

tureless power law HZ case.

Taking the ensemble average of the temperature field, the theoretical temperature

anisotropy spectrum is obtained:

CTT
l =

2

π

∫

k2PΦ(k)

∣
∣
∣
∣

Tl(k)

Φ(k)

∣
∣
∣
∣

2

dk (1.21)
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where Tl is the photon transfer function with source function S

Tl(η0, k) = il
∫ η0

0

S(η, k)jl(k(η0 − η))dη (1.22)

in terms of Bessel functions jl. In order to determine the relation between obser-

vations today and the primordial power spectrum, one must solve the Boltzmann

equations for radiative transfer7,

Π = T2 + TP2 + TP0

Ṫ + ikµT = −Φ̇− ikµΨ− τ̇
[

T0 − T + µvb − P2(µ)
2

Π
]

ṪP + ikµTP = −τ̇
[
−TP + 1

2
(1− P2(µ))Π

]







photons

δ̇ + ikv = −3Φ̇

v̇ + ȧ
a
v = −ikΨ

}

dark

matter

δ̇b + ikvb = −3Φ̇

v̇b +
ȧ
a
vb = −ikΨ+ τ̇

R
[vb + 3iT1]

}

baryons

Ṅ + ikµN = −Φ̇− ikµΨ
massless

neutrinos

(1.23)

and the Einstein equations for the perturbations,

k2Φ + 3
ȧ

a

(

Φ̇−Ψ
ȧ

a

)

= 4πGa2[ρmδm + 4ργT0]

k2(Φ + Ψ) = −32πGa2ργT2

(1.24)

at first-order. The Boltzmann equations describe the evolution of the particle dis-

tributions. The full range of equations is shown to portray the intricacy of the

required calculations. These coupled equations had been quite time-expensive

to solve until the introduction of CMBFAST8 [39], which uncoupled the geomet-

ric and dynamic aspects of the Boltzmann equations on super- and sub-horizon

scales9; the temperature anisotropy is written as a time integral over the product

of a geometrical term and a source term. Furthermore, whilst previous methods

7τ is the optical depth, µ is the direction of photon propagation, v is the electron velocity
(or baryon velocity if subscripted with a b), N is the neutrino distribution function, P2 is the
Legendre polynomial for l = 2, whilst T0 and T2 represent the monopole and quadrupole parts
of the temperature perturbations, with TP and TP2 their polarization field counterparts. The Φ
and Ψ terms are Bardeen’s gauge-invariant potentials. These equations are written with respect
to conformal time dτ = dt/a rather than time.

8CMBFAST website: http://cfa-www.harvard.edu/˜mzaldarr/CMBFAST/cmbfast.
html

9See chapter 8 of Dodelson [27] for an excellent account of the evolution of anisotropies.
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had computed the evolution of each primordial photon perturbation moment to

the present day, the CMBFAST method uses a line-of-sight approach (in effect,

the ray-tracing approach) to speed up the calculation.

The Matter Power Spectrum

The matter power spectrum allows one to probe the density of matter and the

evolution of structure. Measurements of the galaxy power spectrum (in order to

characterize the galaxy distribution), which is related to the matter power spec-

trum via a bias Pgal = b2Pm, provides an observational handle on the matter dis-

tribution. The bias is related to the existence of dark matter haloes enveloping the

galaxies, meaning that one can also trace the underlying dark matter distribution;

since galaxies are the peak densities of the matter distribution, Pgal represents the

regions of matter density above some threshold. The requirement for dark matter

has its roots in Zwicky’s [40] observations that the virial mass within clusters was

considerably larger than that accounted for by mass-luminosity relations; further

evidence came from the famous galactic rotation curve plots [41] which are ap-

proximately flat scaling against distance from the galactic origin, whereas Keple-

rian dynamics would demand an inverse square relation. Recently, alternatives

to dark matter such as Modified Newtonian Dynamics (MOND) have been dealt

a significant blow by observations of the Bullet cluster [42] 1E 0657-56, showing

a clear discrepancy between the x-ray emittance map for the gas component and

the weak lensing map that describes purely the mass distribution in the clus-

ter. The dark component is popularly expected to be of the ‘cold’ WIMP10-type

[43, 44], since neutrino-based ‘hot’ dark matter is excluded due to their inhibiting

of small-scale structure.

In order to make predictions of the observed structure from underlying cosmo-

logical constraints, it is possible to perform hydrodynamical n-body simulations,

the Millenium simulation being the most famous example (Fig. 1.2). Since these

simulations need to evolve gravitationally, they can be understood analytically in

terms of collapse models, and (along with much of the remaining computational

physics involved) are highly simplified in order that computation at large n is

even feasible. The simplest model is the spherical collapse model, wherein each

cluster is approximated by a ‘baby universe’ bubble in which a collapse proceeds.

For any collapse to occur at all, the minimum constraint is that the bubble con-

tains a mean density ρ = ρcr. This scenario corresponds to the linear regime. One

10Weakly-Interacting Massive Particle.
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then wishes to produce a small perturbation δ in an infinitesimally thin spherical

shell, in order to induce the collapse and enter the non-linear regime (k = 1) from

Ωbubble = 1 + δc. Newton’s iron sphere theorem implies that the universe outside

the bubble is entirely unaffected by that inside the bubble. The space outside the

bubble (‘background’) has Ωm < 1, so evolves similarly to a k = −1 universe.

For a universe composed of multiple bubbles (i.e., more than one cluster), it is

important that shell lines must not cross if the simplicity of the analysis is to be

maintained. This model requires that the virialization process be built-in by hand,

since in reality clusters do not collapse to a point.

Figure 1.2: Sequential zoom through the Millenium-II simulation due to the
Virgo consortium, from Boylan-Kolchin et al [45].

Starting with a local scale factor A of the bubble in the Friedmann equations
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(equation (1.6)), one can derive

H2
0Ωm,0A

3
0 =

Ωm,0

H0|Ωm,0 − 1|3/2 (1.25)

which is constant by definition. Further analysis then reparameterizes the evolu-

tion of the model in terms of the horizon coordinate η

A(η) =
Ωm,0

2H0|Ωm,0 − 1|3/2 (1− cos η), t(η) =
Ωm,0

2H0|Ωm,0 − 1|3/2 (η − sin η). (1.26)

In a collapsing universe the scale factor reaches a maximum Amax at η = π,

Amax =
Ωm,0

H0|Ωm,0 − 1|3/2 , tmax =
πΩm,0

2H0|Ωm,0 − 1|3/2 . (1.27)

It is then possible to study perturbations by utilizing low-order expansion terms

Alin

Amax

≃ 1

4

(

6π
t

tmax

)2/3
[

1− 1

20

(

6π
t

tmax

)2/3
]

, (1.28)

yielding the linear expression for the growth of a perturbation in a spherical bub-

ble where the first term represents the expansion of the background universe,

whilst the second term is the lowest-order expansion of the perturbation. For the

full non-linear description, one would want to use the expansion to all orders. At

turnaround, the point at which the bubble has reached maximum expansion and

starts to collapse, the linear term yields a density contrast δc = 1.06; at collapse,

δc = 1.686. In the real universe (i.e., in presence of pressure) this collapse never

reaches a = 0. Also, one cannot expect that the density perturbation will be sym-

metric about the shell; in fact one can see the result of asymmetries in the collapse

mechanism by the fact that ‘pancake’-like structures are observed in the Universe.

However, the analysis serves as a reasonable approximation. One also needs to

determine the density contrast for the non-linear regime, both at turnaround and

at the final collapse stage. It turns out that solutions give values of Ωm+ δc = 5.55

for the density at turn-around and Ωm + δc = 177.6 (the cluster overdensity) for

the density at virialization in the non-linear regime.

The utility of the overdensities that have been determined is in a suitable theory

that defines a mass function with which to calculate the number of collapsed ob-

jects of a given massM . Such a theory was developed by Press and Schechter [46]

in 1974, and shows a remarkable correspondence with numerical simulations, de-

spite some theoretical shortcomings [27, 47]. The theory is based on taking a ran-
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dom Gaussian density field and smoothing it beyond some density threshold; in

other words one assumes that only the largest overdensities (confined to smaller

regions) collapse to form clusters. The smoothing is invariant across mass scales.

For such a density field, the number distribution above a given mass decays ex-

ponentially. One problem with neglecting densities beyond a threshold, is that it

limits the number of objects that can form bound structures to less than that in

the real universe; an area with a small non-zero overdensity will still collapse to

form a bound structure, albeit it will take longer to do so (this is known as the

‘cloud-in-cloud’ problem).

The root-mean-square (rms) mass fluctuation parameter in PS theory features a

spherical top-hat window function in momentum-space that defines the scale of

the fluctuations. If one assumes the cluster mass follows the spherical model and

that the probability for finding a given overdensity at a given point in space is

given by a Gaussian distribution, then by following through arguments for the

probability densities of clusters with mass M forming within a radius A one can

obtain the PS mass function:

M2 dn

dM
= 2δcρ0

∣
∣
∣
∣

d ln σ

d lnM

∣
∣
∣
∣
P (δc) (1.29)

where the factor of 2 comes from the cloud-in-cloud problem, σ is the density

variance and P (δc) is the probability of the overdensity. The PS mass function

provides an indispensable weapon with which to determine the evolution of den-

sity perturbations, in such a way that cosmological models can be differentiated.

As one might expect, there are some small deviations of PS theory from full nu-

merical simulations. A more exact form of the number density per object of mass

M has been determined, such as that given by the Virgo consortium [48].

Such constructions allow one to place constraints on cosmological parameters

such as Ωm, the cluster-scale matter power spectrum, and even dark energy,

which can affect the comoving cluster volume term dV/dΩdz, the growth factor

in the mass function dn/dM , where its effect is most prominent, and the limiting

mass Mlim over which one can evaluate expected cluster populations.

Complementary to large-scale simulations are the ambitious surveys which have

sought to map the quantities which inform the matter power spectrum. The 2dF

galaxy redshift survey [49] for example, took photometry of over 200,000 galax-

ies in the local universe allowing for a measurement of Ωmh and confirming the

acoustic oscillations of baryonic matter. Later, the SDSS survey mapped spectra

for over 1 million objects, mostly galaxies and quasars, detailing the void and
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filamentary details of the large-scale structure of the Universe [50], further con-

firming the baryonic acoustic oscillations [51] — notably the acoustic peak that

conforms to the standard cosmological parameters — and detailing such proper-

ties as the cluster mass function [52]. Curiously, the cross-correlation of the galaxy

density with the CMB temperature field can be used to infer the late-time inte-

grated Sachs-Wolfe effect (the linear Rees-Sciama effect [53]), providing further

evidence for dark energy [54]. Further to these are observations of weak gravi-

tational lensing (which traces the mass distribution via distortion of the photon

geodesic from background luminous bodies — ‘cosmic shear’), and the Lyman-α

forest, the absorption lines in the spectra of distant quasars produced by the neu-

tral hydrogen in regions of overdense intergalactic gas along the line of sight at a

redshift z ∼ 2− 4, which allows one to probe the population of neutral hydrogen

clouds.

The Observed Temperature Power Spectrum

Complementing the matter power spectrum which relates to gravity-driven

spherical collapse, the CMB temperature angular power spectrum codifies the

observed scalar perturbations which source the collapse mechanism. One can

decompose the temperature field into the mean part T̄ and the anisotropic fluc-

tuations δT

TCMB(Ω) = T̄ + δT (Ω) (1.30)

Since there is no further need of the mean temperature in this thesis, the

anisotropy field is referred to simply by T ; it can be expanded in spherical har-

monic space (using the spherical harmonics Ylm) as

T (Ω) =
∞∑

l=1

l∑

m=−l

aTlmYlm(Ω), aTlm =

∫

T (n̂)Y ∗
lm(Ω)dΩ. (1.31)

From here on in, the notational identity
∑

lm ≡ ∑∞
l=1

∑l
m=−l shall be used to

denote the summation of harmonic components. For observational purposes it

is necessary to construct an unbiased (i.e., with
〈

Ĉl

〉

= Cl) estimator Ĉl of the

power spectrum:

ĈTT
l =

1

2l + 1

l∑

m=−l

aT∗lma
T
lm (1.32)

with the 2l + 1 factor due to normalization. The multipoles scale as l ∼ 180o/θ,

so multipoles at larger l correspond to a smaller angular resolution. Since for a
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Gaussian field the power spectrum already specifies all the information, then the

correlation function is simply

CTT (θ) ≡ 〈T (n̂1)T (n̂2)〉cos θ=n̂1·n̂2
=
∑

l

2l + 1

4π
CTT
l Pl(cos θ) (1.33)

where the Pl are the Legendre functions and statistical isotropy is assumed. Mea-

suring the temperature power spectrum is not quite as simple as this, of course.

One can only ever measure one sky (which is a rather small statistic), so the en-

semble average variance of the sampled harmonic coefficients limits what can be

said about low-l cosmology; this is known as cosmic variance, expressed by

δCl =
Cl

√

l + 1
2

. (1.34)

This fundamental limit to the accuracy of statements at a given l has not stopped

cosmologists attempting to overcome it [55, 56, 57, 58].

Of course, one wants to connect the angular power spectrum with the theoreti-

cal power spectrum; as mentioned, this mapping is achieved by determining the

photon transfer function in equation (1.22) and solving the Boltzmann transfer

equation given in equation (1.23). Solutions to the Boltzmann equations yield

the form of the peaks in the power spectrum, such as the first peak of the TT

spectrum, which is dependent on the angular diameter distance DA, describing

the horizon scale at recombination. Observationally, there are complications in-

volved with noise and the fact that one cannot observe the whole sky (due to i.e.,

galaxy obscuration). A variety of methods then exist to produce estimators of the

temperature power spectrum [59]; maximum likelihood methods compute the

determinants of non-sparse n × n covariance arrays, with computations scaling

as ∼ O(n3); quicker, less accurate calculations can be performed using quadratic

methods, which scale as ∼ O(n3/2).

Polarization Spectra

The first to realize that the CMB should be polarized was Rees [60]. In order for

a photon field to be polarized, it needs to feature anisotropies. Fortunately, it

is already known that anisotropies are produced in the CMB and that Thomson

scattering will produce a dipole. However, a dipole pattern is not enough since

this leads only to intensity cancellations. The incoming radiation is required to

have a nonzero quadrupole in order to produce linear polarized radiation (Fig.
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1.3) — such a quadrupole is generated, for example, by velocity distributions in

the CMB plasma that are not in phase with the density modes. Rapid Thomson

scattering (i.e., a small optical depth for the LSS) would destroy any quadrupole

anisotropy, so it is only thanks to an extended optical depth that the quadrupole

can be measured.

For a nearly monochromatic plane wave propagating in the z-direction, the elec-

tric field vector E can be decomposed into a combination of n = 2 basis terms

ǫn

E = (E+ǫ+ + E−ǫ−)e
i(k·x−ωt), (1.35)

where the En are the wave amplitudes (in this case, a circular basis has been cho-

sen). For a polarized wave, there will be a correlation between the two elements

E1 and E2 of the vector in a linear basis given by basis terms ǫ1 and ǫ2 — if they

have the same phase then the wave is linearly polarized, else the wave is ellipti-

cally polarized. The properties (ǫ1 ·E, ǫ2 ·E) and (ǫ∗+ ·E, ǫ∗− ·E) are then amplitudes

of radiation: respectively these correspond to linear polarization in the (x, y) di-

rections, and (positive, negative) helicities.

Polarized photons are conveniently described in terms of the Stokes parameters,

I =
〈
a2+
〉
+
〈
a2−
〉

V =
〈
a2+
〉
−
〈
a2−
〉

Q = 〈2a+a− cos(θ− − θ+)〉 U = 〈2a+a− sin(θ− − θ+)〉
(1.36)

where I is the radiation intensity (the temperature), the remaining terms define

the polarization state of the wave (Q and U are mutually orthogonal linear states,

whilst V is circular polarization), and an = Ene
iθn defines the phase information

per basis. Whilst I and V are coordinate-system-invariant, the terms Q and U are

not. The Q and U parameters rotate via

(

Q′

U ′

)

=

(

cos(2φ) sin(2φ)

− sin(2φ) cos(2φ)

)(

Q

U

)

(1.37)

where the angle of rotation in the x − y plane is given by φ and the polarization

angle α ≡ (1/2) tan−1 (U/Q) becomes α − φ. It then follows that the quantity

Q2 + U2 is an invariant with respect to rotation.
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Figure 1.3: Thomson scattering of quadrupole radiation induces linear polariza-
tion in the outgoing radiation. From Hu & White [62].

If one wants to make a proper analysis of CMB polarization then it is necessary

to work in a basis-independent framework; gradient-like (E) and curl-like (B)

modes, in analogy to to the electric and magnetic terms in Maxwell theory, can

be produced from the Q and U states which satisfy just this requirement. Po-

larization is a spin-two quantity; hence rotation through an angle π leaves the

Stokes parameters invariant. One can form an equivalent polarization tensor

from ρ ∝
〈
EE

†
〉

ρ =
1

2

(

I +Q U − iV

U + iV I −Q

)

=
I

2
gab −

i

2
V ǫab + P STF

ab (1.38)

where the displayed components are in an orthonormal basis, ǫab is the (covari-

ant) Levi-Civita tensor and P STF
ab denotes the symmetric, trace-free (STF) polar-



1.1. THE STANDARD BIG BANG 37

ization tensor. In spherical polar coordinates,

P STF
ab =

1

2

(

Q −U sin θ

−U sin θ −Q sin2 θ

)

. (1.39)

Since Thomson scattering can generate no circular polarization, in non-exotic sce-

narios V = 0 . The STF polarization tensor can be transformed into two basis-

independent variables by making use of the E and B decompositions of the ten-

sor spherical harmonic basis:

aElm =

∫

PabY
E(ab)∗
lm dΩ, aBlm =

∫

PabY
B(ab)∗
lm dΩ. (1.40)

Looking at the pattern that a single plane wave (aligned with the z direction) will

produce, in terms of spherical harmonics Ylm the quadrupole anisotropy corre-

sponds to m = 0, ±1, ±2 for a CMB populated by scalar, vector and tensor modes

respectively. Fig. 1.4 shows the patterns for the E and B modes generated from

the Q and U modes for each type of perturbation. Clearly scalars, vectors and

tensors correspond to distinct patterns in the polarization of the CMB. The polar-

ization pattern is altered across the LSS by the plane wave spatial dependence of

the perturbation, producing B-modes from local E-modes. For scalars, the po-

larization field is a pure Q-field and so no B-modes are generated; for vectors

the U -field is dominant, producing mostly B-modes for short wavelength fluctu-

ations; tensors have Q and U components of approximately the same strength, so

comparable E- and B-modes are produced at short wavelengths. Unfortunately,

they do not separate cleanly into m polarization patterns for a spectrum of fluc-

tuations each with a different k; but parity and the temperature correlations do

survive superposition of perturbations. Since one does not want to confuse the

E-modes with the plane wave amplitudes, the plane wave amplitudes shall no

longer be referred to.

It will later be shown that inflationary cosmological models make a generic

potential-dependent prediction of a stochastic background of gravitational waves.

This comes from the tensor perturbations of the metric in the same fashion as the

scalar temperature perturbations generate overdensities which lead to structure.

Since tensor modes have chirality, one can measure these through detecting the

B-modes in the polarization of the CMB. This is possible since all tensor fields can

be decomposed into divergence-like and curl-like parts [61, 62]. Existing vector

(vorticity) modes are exponentially diluted during inflation, implying a unique

probe of the inflationary mechanism.
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Figure 1.4: Top diagram: The polarization pattern on the sky from a scalar mode;
note that only the intensity of the headless vectors change across the sphere. Mid-
dle diagram: The vector pattern, with a curl-like component. Bottom diagram:
The tensor pattern — this, like the vector pattern, switches parity upon reflection
at φ = π. Taken from Hu & White [62].

For completeness, the Q, U correlation functions relate to the E, B spectra by

CQQ(θ) = −
∑

l

2l + 1

2π
N2
l (C

EE
l G+

l2(cos θ) + CBB
l G−

l2(cos θ))

CUU(θ) = −
∑

l

2l + 1

2π
N2
l (C

BB
l G+

l2(cos θ) + CEE
l G−

l2(cos θ))

CTQ(θ) =
∑

l

2l + 1

4π
NlC

TE
l P 2

l (cos θ),

(1.41)
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with the reverse relations being

CEE
l = −πN2

l

∫ π

0

sin θ(CQQ(θ)G+
l2(cos θ) + CUU(θ)G−

l2(cos θ))dθ

CBB
l = −πN2

l

∫ π

0

sin θ(CUU(θ)G+
l2(cos θ) + CQQ(θ)G−

l2(cos θ))dθ

(1.42)

where

G+
lm = −

(

(l −m2) csc2 θ +
l(l − 1)

2

)

Plm(cos θ) + (l +m) cos θ csc θ2Pl−1,m(cos θ)

G−
lm = m csc2 θ ((l − 1) cos θPlm(cos θ)− (l +m)Pl−1,m(cos θ))

(1.43)

and the Plm are the associated Legendre functions, related to the normal Legen-

dre functions Pl. The existence of E-type polarization power as predicted by the

existence of a Q field from scalar anisotropies has been confirmed by DASI [63]

and others; the cross-correlation spectra CTE
l also show a characteristic antiphase

with the CTT
l signal around l = 50 that confirms adiabatic modes as the dominant

structure-forming processes (typical of inflationary cosmology) as opposed to the

characteristic in-phase signal of isocurvature-dominated structure formation (as

in defect models). So far then, uses for the TT , EE and TE spectra have been

discussed. The BB spectra can be sourced by gravitational waves; in the next

section it shall transpire that the inflationary cosmology predicts precisely such a

BB spectra, which has thus far eluded detection.

1.2 Inflation

The inflationary cosmology paradigm, a widely-accepted extension to the stan-

dard Big Bang picture of the previous section, is now fully introduced. As men-

tioned in the introduction, the standard Big Bang theory does have some discrep-

ancies with observations of the CMB. The most significant of these is probably

the causal, or horizon, problem. Regions of the CMB separated by ∼ 2◦ should

be out of causal contact with each other, but it has already been seen that the

CMB is uniform to 1 part in 105. Unless it is postulated that the Universe started

off with such small-scale temperature variations, how is this phenomenon to be

explained in terms of thermodynamic equilibrium? The regions simply would

not have time to communicate and settle on such similar temperatures. A second

major problem is the ‘flatness’ problem. Measurement of the first acoustic peak in
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the TT spectrum suggests that the Universe is approximately flat — and would

need to be flat to 1 part in 1015 at recombination since the curvature scales with

radius like a−2. Again, there is no natural way in the standard theory to accom-

modate this very fine tuning.

Inflationary cosmology extends the standard theory to account for these and

other problems in a very simple manner, but with some surprising results. By

postulating a scalar field (the ‘inflaton’) that accelerates the early expansion of

the Universe exponentially, one can apparently causally separate regions that

were initially causally connected and flatten out a universe with high initial cur-

vature. There is then no need to postulate special initial conditions to account

for these. Not only can this solve the problems of the standard theory, but when

perturbation analysis is performed on the inflaton field that powers inflation, it

is found that the inflaton naturally generates the fluctuations required to create

the structure seen in the modern universe. Finally, and crucially, inflation makes

predictions about the spectral tilt which are borne out in observation.

Linde’s account [64] of the history of the development of inflation suggests

that the first semi-realistic inflation model was developed by Alexei Starobinsky

[65, 66] in 1979, but with aims very different to solving the standard CMB prob-

lems, making a first prediction of a cosmic gravitational wave background (CGB).

Predictions of adiabatic perturbations followed through the analysis of Starobin-

sky’s model by Mukhanov and Chibisov in 1981 [67]. The western world’s ex-

posure to the inflationary paradigm occurred predominantly through Guth [22]

(also in 1981), whose grand unified theory (GUT)-inspired inflationary model

was seen to be simpler than Starobinsky’s, with the first explicit description of

how inflation solves the major cosmological problems. Unfortunately, issues

with bubble nucleation meant that the model could not work (a manifestation

of the ‘graceful exit’ problem), and it was superceded by Linde’s ‘new inflation’

[68], of the standard slow-roll type. A later introduction, the ‘chaotic inflation’

[69] model, allowed for the embedding of the inflationary mechanism into a

multiverse-type paradigm.

One can stimulate an accelerated expansion by introducing a cosmological con-

stant into the Einstein equations of an empty universe; this is identical to filling

the universe with a classical scalar field. The first Friedmann equation is then

solved to yield

a(t) = e
√

Λ
3
t, ä =

Λ

3
e
√

Λ
3
t > 0 (1.44)
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where Λ is a positive cosmological constant term. This is just the exponential

expansion that is termed ‘inflation’, equivalent to a Lorentzian manifold with

constant positive curvature (a de Sitter space). During inflation, since the Hubble

rate is approximately constant

Ω− 1 =
k

a2H2
∝ e−2

√
Λ
3
t ⇒ |Ω− 1|t

|Ω− 1|t0
≪ 1, (1.45)

it can immediately be seen that the curvature decreases exponentially; it turns out

that in this simple picture approximately at least 50-70 e-folds N = ln [a(tend)/a(t)]

are needed in order to satisfy the observational constraints. Meanwhile, the co-

moving causal horizon can be expressed via

ηh =

∫ t0

0

dt

a(t)
; (1.46)

so distributions that existed on scales that were in causal contact before inflation

appear to be out of contact in the aftermath of inflation. If a particle is located at

η > ηh, it is out of causal contact. During matter- and radiation-dominance, the

density scales like a−3 and a−4 respectively, yielding horizons for either type of

particle of order
√
t0 and t0. Since the integral equation (1.46) does not converge

for an inflation-dominated universe, it can be seen from the exponential expan-

sion that causal regions can be separated during inflation quite easily.

Beside the causal and flatness problems, inflation can solve a number of other

mysteries in a similar fashion. A good example is the defect problem: all rea-

sonable attempts to produce unified theories of fundamental physics predict the

existence of topological defects, most notably monopoles. The predicted abun-

dances of these particles, often with large masses, should be enough that the

universe collapsed in a ‘big crunch’ long before the current age of the universe

had transpired; it is just as well then that no such particles have been found ex-

perimentally. Inflation can solve this by exponentially diluting the abundance of

such defects, so that no such ‘overclosing’ takes place11.

1.2.1 The Standard Inflaton Formalism

The inflationary theory is now given a more solid treatment, using the simplest,

canonical example. One starts with a generic scalar field — the inflaton φ —

11Of course they could simply not exist, but there are strong theoretical reasons to suspect that
they do.
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minimally coupled to gravity, in a standard FLRW universe. Beginning with the

standard Lagrangian formalism

S =

∫ √−gLd4x, L =
1

2
∂µφ∂µφ− V (φ),

√−g = a3 (1.47)

with V (φ) the field potential, variation with respect to φ yields the harmonic os-

cillator equation (HOE) for the field

φ̈+ 3Hφ̇− ∇2φ

a2
+ V ′(φ) = 0, V ′ ≡ dV (φ)

dφ
(1.48)

where one is reminded that the overdot signifies differentiation with respect to

time t. The stress-energy tensor for the field follows:

T00 = ρφ =
φ̇2

2
+ V (φ) +

(∇φ)2
2a2

, Tii = pφ =
φ̇2

2
− V (φ)− (∇φ)2

6a2
. (1.49)

The standard inflationary phenomena can be recovered in the limit of the slow-

roll condition (φ̇2 → 0). By substituting the pressure and density terms into

the Friedmann equations (reformulated in terms of the Planck mass MPl =

(8πG)−1/2), one finds for a flat universe:

H2 =
1

3M2
Pl

(

V (φ) +
1

2
φ̇2

)

, φ̈+ 3Hφ̇ = −V ′, (1.50)

so the potential determines how the universe evolves (where spatial variation in

φ has been neglected). For a slow-rolling scalar with pφ ≃ −ρφ, the FLRW metric

can be written as

H2 ∼ 8πG

3
V (φ), 3Hφ̇ = −V ′(φ), (1.51)

allowing one to define the slow-roll parameters

ǫ = − Ḣ

H2
≈ M2

Pl

2

(
V ′

V

)2

, η ≈M2
Pl

V ′′

V
=

V ′′

3H2
, (1.52)

which must both be much smaller than unity for inflation to work; ǫ encodes the

rate of change of H during inflation. A typical potential that achieves this aim is

shown in Fig. 1.5.
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Figure 1.5: A quartic inflaton potential. The expectation value for the field is in
a metastable state (false vacuum) until it is perturbed slightly and rolls down to
the true vacuum, the energy release powering the accelerated expansion of the
Universe.

Since reality obeys quantum mechanics, the inflaton should be split into the sum

of a classical field and quantum perturbations φ(t) = φ0(t) + δφ(x, t). To analyze

the quantum perturbations, one starts by quantizing the harmonic oscillator, so

generally canonical coordinates are promoted to operators, such as x → x̂. This

leads to a description of the field perturbations in terms of raising and lowering

operators (â, â†):

φk = uk(t)âk + u∗k(t)â
†
−k, uk(t) = (2Ek)

−1/2e−iEkt (1.53)

where the expectation value 〈|φ2
k|〉 defines the spectrum for fluctuations, making

it clear that the quantum fluctuations are dependent on the inflationary potential

via the expansion rate. A quantum vacuum which is both de Sitter-invariant and

time-invariant is known as a Bunch-Davies vacuum [70].

The simplest scalar analysis is of the quantum fluctuations of a massless scalar

field. By expanding the fluctuations in harmonic space, the harmonic equation
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for the fluctuations can be written

δφ̈k + 3Hδφ̇k +
k2

a2
δφk = 0, δφ(x, t) =

1

(2π)3/2

∫

δφk(t)e
ik·xd3k. (1.54)

The qualitative behaviour of the solutions can be split into two regimes:

• Within the horizon, where k ≫ aH , the fluctuations are oscillatory since one

can neglect friction.

• Outside the horizon (k ≪ aH) the k2/a2 term can be neglected, so the fluc-

tuations are constant: |δφk| ∼ H/
√
2k3.

This can be calculated alternatively from the action

δSk =

∫ [
δσ

′2
k

2
− 1

2

(

k2 − a′′

a

)

δσ2
k

]

dτ, δσk ≡ aδφk (1.55)

where the prime implies differentiation with respect to conformal time τ . The

dynamics of the inflaton are however slightly more complicated than a generic

massless scalar. Since the inflaton field dominates the energy-momentum of the

Universe during inflation and has a coupling to gravity, then δφ ⇒ δTµν ⇒ δgµν ;

the scalar field fluctuations will induce curvature fluctuations in the metric. The

perturbation of the metric on the other hand influences the evolution of the infla-

ton perturbation via the perturbed Klein-Gordon equation

δφ̈+ 3Hδφ̇− ∇2δφ

a2
+ V ′′δφ = 0, (1.56)

so δgµν → δφ, meaning that the perturbations are coupled to each other. The

FLRW metric can be perturbed most generally via

gµν = a2

(

−1− 2A ∂iB

∂iB (1− 2ψ)δij +DijE

)

Dij = ∂i∂j −
1

3
δij∇2,

(1.57)

with B the shift function, A the lapse function and ψ the potential. The Einstein

components of the perturbed field then determine the components of the per-
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turbed stress-energy tensor

T00 =
φ̇2

2
+ V (φ)a2 Tij =

(

φ̇2

2
− V (φ)a2

)

δij

δT00 = φ̇δφ̇+ 2AV (φ)a2 + a2
∂V

∂φ
δφ δT0i = ∂iδφφ̇+

1

2
∂iBφ̇

2 − ∂iBV a
2

δTij =

(

φ̇δφ̇− Aφ̇2 − a2
∂V

∂φ
δ(1)φ− ψφ̇2 + 2ψV (φ)a2

)

δij +
1

2
DijEφ̇

2 −DijEV (φ)a2.

(1.58)

The coupled scalar and metric perturbations can be split into

• Adiabatic/curvature perturbations

Hδt = H
δφ

φ̇

• Isocurvature perturbations (for a fluid with energy density ρ):

δφ

φ̇

∣
∣
∣
∣
δρ=0

=
δφ

φ̇
− δρ

ρ̇

which give the value of a perturbation on uniform-density contours.

This provides information on which physical processes are most responsible for

the formation of structure seeds; the adiabatic modes are density fluctuations,

whilst the isocurvature modes can be generated by anisotropic stress — and they

yield different forms for the theoretical power spectra.

Following the adiabatic modes, the curvature perturbation is defined on slices

of uniform energy density ζ and Bardeen’s gauge-invariant metric perturbation

potentials Φ, Ψ by:

ζ = ψ+H
δρ

ρ̇
Φ = −A+1

a

[(

−B +
E ′

2

)

a

]′

Ψ = −ψ−∇2E

6
+
a′

a

(

B − E ′

2

)

.

(1.59)

A gauge choice refers to a choice of the configuration of the field (analogous to

choosing a coordinate system). In a dynamical spacetime environment i.e., with

curvature, particular choices of gauge lead to unphysical gauge modes. This

makes a gauge-invariant approach particularly useful. By rewriting the Einstein

equations in terms of the gauge-invariant perturbations one can then find

Φk = −4πGz

k2
Huk, u ≡ aδφGI +Ψz, z ≡ aφ̇

H
. (1.60)
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The full harmonic equation can then be written

u′′ −∇2u− z′′

z
u = 0, (1.61)

giving as sub- and super-horizon solutions for the potential Φ:

Φk≫aH ∼ i
4πGφ̇√
2k3

e−
ik
a , Φk≪aH ∼ ηRk, R ≡ −Ψ− HδφGI

φ′
, (1.62)

hence the power spectrum PR of the comoving curvature perturbations and their

spectral index ns are given by

PR(k) =
k3H2

2π2φ̇2
|δφk|2 ≈

1

2M2
Plη

(
H

2π

)2(
k

aH

)ns−1

, ns =
d lnPR

d ln k
= 2η − 6ǫ

(1.63)

which is an almost scale-invariant quantity, i.e., approximately an HZ power

law. Different inflation models make testable predictions for ns and its running

dns/d ln k; this means that the expansion history of the early universe can be re-

constructed by determining the potential V from the primordial power spectrum.

Models of Inflation

It has been seen just how rich a phenomenon inflation is; however, there is as

yet no consensus on the precise details of inflation such as the functional form

of the potential. There is a vast literature on inflation models, and no reasonable

way one can accommodate them all in such a text; examples include DBI (‘brane’)

inflation [71], supersymmetric F-term inflation [72] and many more (an overview

of a selection of models can be found in Lyth [73]). Instead, just some of the

different types of models are outlined:

• Small-field inflation: Typically these arise from spontaneous symmetry-

breaking, such as in the slow-roll inflationary mechanism and in ‘natural’

inflation where the inflaton is a pseudo-Nambu-Goldstone boson. The field

starts in a metastable state and rolls down to the true vacuum.

• Large-field inflation: Often found in the chaotic inflationary theory (wherein

the universe is thought of as having a fractal structure on the largest scales)

— the scalar field is perturbed from its minimum by a value ∼ O(MPl),

the potential usually a polynomial or exponential . Since then V (φ) ∼ M4
Pl,

there is a large friction term in the Friedmann equation leading to the re-

quired slow-roll phenomena.
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• Hybrid inflation: These are multi-field theories, where another field ψ

rather than the inflaton φ provides the majority of the energy density. It is

only when the φ field reaches a critical value that slow-roll occurs — when

the ψ field is tachyonic, slow-roll must come to an end. Often a phase tran-

sition occurs at the end of inflation in these models, producing topological

defects. One extra concern regarding hybrid models is that of the type of

perturbation: isocurvature perturbations are expected only of multi-field

inflation models, so this provides an extra discriminatory factor.

Inflation appears to be the simplest paradigm that solves the most problems.

Competitors do exist, such as variable-speed-of-light [74] theories (often breaking

global Lorentz-invariance [75]) and ekpyrotic/cyclic [76] theories (often proposed

as resulting from brane collision, not without its own fine-tuning issues [77]),

however it is often difficult to reproduce the successes of inflation in competitor

theories [78] without invoking a scalar field, in particular the flat HZ spectrum.

Crucially, these alternatives make a fundamentally contrary prediction to that of

the inflationary paradigm: that there are no primordial gravitational waves.

One interesting result of the chaotic inflation regime is that it leads to ‘eternal in-

flation’: large quantum fluctuations are produced which increase φ in some parts

of the universe — these regions then expand at a greater rate than their parent

domains, and quantum fluctuations inside them lead to the production of new

inflationary domains, ad infinitum. This results in a universe which is eternally

self-reproducing. Since any regions separated by a distance greater than the Hub-

ble radius are causally disconnected, this is essentially a multiverse theory12. This

could then find a natural setting in the landscape program of string theory, where

scalar fields are ubiquitous and the potential energies of these scalar fields can

have different minima — and hence different vacuum states, with different types

of symmetry-breaking between fundamental interactions and different laws of

low-energy physics. The number of minima has been estimated at perhaps some

10500 which is for all practical reasons almost infinite. It has been argued that an

anthropic selection process is then the correct way to determine which, if any,

vacuum is correct — however, such an idea has attracted criticism from across

the high energy physics and astrophysics communities [80, 81, 82].

It has now been seen how inflation can generically solve the problems of the

Big Bang theory, and also generate the observed spectrum of density fluctuations

(temperature anisotropies). Fluctuations in the energy density of the inflaton will

12See Tegmark [79] for a discussion of classes of multiverse theories.
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also impose fluctuations on the metric (independent of quantum gravity) beyond

the standard curvature perturbations; these are gravitational waves — a generic

prediction of inflation that results in a non-zero BB spectrum, explored after a

brief discussion of symmetry-breaking mechanisms and topological defects.

1.2.2 Symmetry-breaking, Topological Defects

and Non-Gaussianity

One of the most elegant potential causations for inflation lies in symmetry-

breaking. Symmetry-breaking is a generic phenomenon in quantum field the-

ory, and much of the basis of unification programs13. Examples include the

symmetry-breaking of the electroweak Lagrangian in the early universe to yield

the weak nuclear and electromagnetic forces and the symmetry-restoration that

accurately describes superconductivity. Given a particular Lagrangian, one can

inspect it to see what symmetries it respects. For example,

V (φ) = V0 −
m2φ2

2
+
λφ4

4
(1.64)

is invariant under φ → −φ, with minima φmin = ±m/
√
λ. By taking the positive

minima, one can define a new field φ̄ = φ −m/
√
λ. By defining V0 such that the

potential vanishes at the minimum, near the minimum the vacuum energy value

(VEV) is

V =
2m2φ̄2

2
+ Aφ̄2 +Bφ̄4 + · · · . (1.65)

Since the original symmetry is not explicit in this theory, it is said to be ‘broken’.

In physical systems there is usually a critical temperature associated with

symmetry-breaking and restoration; when the field energy is larger than the criti-

cal temperature, it resides in a ‘false’ vacuum (not the lowest minima), with a zero

VEV. Upon reaching the critical temperature, spontaneous symmetry-breaking

occurs, forming a new ‘true’ vacuum which the scalar field rolls into. This is

precisely the kind of behaviour that one would want to start the inflationary ex-

pansion. When symmetries are spontaneously broken, stable field configurations

called topological defects [85] may form. Kibble [86] was the first to realise this

in 1976 when studying the Higgs scalar field which induces mass in fermions;

phase transitions in an expanding universe produce domains that coalesce, pro-

13More information on symmetry-breaking mechanisms in a quantum field theory context can
be found in Peskin & Schroeder [83] and in Weinberg [84].
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ducing the relic defects. Since there is no correlation between separate domains,

the Higgs field in those domains take on arbitrary orientations — not unlike the

magnetic domains of a ferromagnet. The interfaces between the domains are

then the defects (Fig. 1.6). As high-energy phenomena, Higgs-type defects are

difficult to produce in the lab (although see Burgess [87] for some novel discus-

sions of such analysis via the AdS/CFT correspondence) but can in principle be

observed astronomically. In cosmological terms, one would expect that spon-

taneous symmetry-breaking would occur in different parts of the universe and

spread relativistically, leading to the formation of networks of defects.

Since different theories break different symmetries, one can have a range of de-

fects. For example, the breaking of a discrete mirror symmetry creates domain

walls, infinitesimally thin planar surfaces with intense mass-energy densities.

Other such defects are the famous cosmic strings, which are 1-dimensional struc-

tures with no loose ends in order that the phases of regions with different field

configurations do not get mixed up — this means they come in only 2 flavours,

loops or infinitely long strings. Again, the masses of these objects are usually

large, and they radiate their energy away via the production of gravitational

waves. Finally, textures were once thought to be a valid seed of structure forma-

tion; these are global field configurations, with no core. Since they are unstable

to collapse, texture knots collapse to a microscopic size, unwind and radiate via

gravitational waves — the generated gravitational field was supposed to be able

to produce structure. Whilst defects are no longer expected to exist in numbers

relevant to the large-scale structure of the universe almost all reasonable GUTs

predict their existence. Of course, topological defects have as yet remained unde-

tected bar for tantalising claims [88].

Upon settling in the new true vacuum, inflation stops. Thus symmetry-breaking

provides the required graceful exit from the inflationary phase as the inflaton

settles on the true vacuum. However, the field does not necessarily stop in an im-

mediate manner — it may oscillate about the minimum for a time, thus releasing

enough energy with which to produce the abundance of particles in the universe.

This effect is known as reheating.

For inflation, the type of phase transition induced by spontaneous symmetry-

breaking is also important. First-order transitions (with a discontinuity in first

derivative of the Gibbs’ free energy i.e., the transition of liquid water to steam)

result in bubble nucleations, whilst second-order transitions like the ferromag-

netic transition often result in divergent correlation lengths. Guth’s early work

found that bubble collisions in a first-order-type transition would lead to a highly
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granular universe in contrast with observations.

Figure 1.6: Formation of topological defects (from Gangui [85]). Two regions
occupy different true vacuum states following spontaneous symmetry-breaking
(left diagram). The physical boundary between the configurations is a high-
energy defect (centre and right diagram).

Whilst inflation dilutes the density of defects following a spontaneous symmetry-

breaking it would be useful if the Higgs field that breaks electroweak symmetry

could itself be the inflaton. Brandenberger [89] showed why this is not in fact

the case — a Higgs inflaton does not generate enough inflation to remove the

Higgs-generated defects. In fact, preheating physics can lead to an onset of new

defect generation via energy transfer to other fields. This has been explored by

numerical simulations [90, 91].

It is, of course, not impossible that we live in a horizon which features one of

these defects. This being the case it can be asked what the general observational

effects of, say, cosmic strings are. Spacetime around a cosmic string is conical;

this results in a tiny deficit angle which would show up by the deflection of pho-

tons, giving a double image of the photon source. Secondly, anisotropies in the

CMB from primordial strings would induce a Doppler shift due to the conical

geometry they create; a difference between the photon redshifts either side of the

string results in a discontinuity, known as the Kaiser-Stebbins [92] effect. String

oscillations tend to lead to cusp singularities (a singular point on a curve), which

decay by emitting gravitational radiation. Since defects actively seed perturba-

tions, they can produce both vector and tensor modes, leading to a characteristic

polarization signature. Much of the numerical work involving cosmic strings has

been focused on evolving the string networks formed from symmetry-breaking,

which should permeate the entire universe if such entities exist; active structure

formation via defects are predominantly of isocurvature type, which has been so

far been ruled out by WMAP as the major source of structure formation.
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The observational effects of strings are mostly dependent on the dimensionless

string tension Gµ. Currently, this sets the best limit on string detection with

Gµ . 10−6 [93]. Curiously, B-mode detections may further limit the influence of

defects such as strings. It has been shown [94] that even if defects contribute 1%

or less in the CMB temperature anisotropy spectrum, their signature in the local

B-mode polarization correlation function at angular scales of tens of arc minutes

is much larger than that due to gravitational waves from inflation, even if the lat-

ter contribute with a ratio as large as r ∼ 0.1 to the temperature anisotropies.

Of course, defects are also likely to induce non-Gaussianity in the CMB tempera-

ture field. This is turned to next.

Non-Gaussianity

One further way of discriminating inflation models or searching for defect sig-

nals, particularly as a degeneracy-breaker when combined with polarization

measurements, is non-Gaussianity in the CMB [95, 96]. Inflation generically pre-

dicts nearly-Gaussian CMB fluctuations; however, non-linearity in inflation can

produce weakly non-Gaussian fluctuations in the CMB. The simplest models of

inflation predict a level of local non-Gaussianity (∼ 10−6 [97]) far below the de-

tection threshold of foreseeable CMB experiments. A large non-Gaussian sig-

nal would then significantly rule against simple single-field-type inflation mod-

els. Non-Gaussianity can also be provided by astrophysical sources that have

avoided removal during CMB map synthesis, by nonlinearity in the Einstein-

Boltzmann equations, or by topological defects.

For a Gaussian signal, all odd n-point correlation functions vanish and all even

n-point correlation functions can be completely expressed as the combination of

two-point correlation functions. This means that a non-Gaussian signal can be

characterized by the degree to which it violates these correlation function charac-

teristics, often expressed by forming a ratio between the particular non-Gaussian

correlation function and an appropriate combination of two-point correlation

functions. The theoretical non-Gaussianity, given that one requires more informa-

tion than the 2-point correlation function, is also studied in terms of correlation

shapes — triangles on the sky. This comes from the fact that the Fourier modes

of the 3-point correlation form a closed triangle. These shapes include the ‘local’,

‘equilateral’ and ‘folded’ types (Fig. 1.7), appended most recently by studies of

the ’orthogonal’ type; the local shape is typical of multi-field models, while the

equilateral one is typical of single field models; the orthogonal type peaks for

both equilateral and flat-triangle configurations.
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Starting with the perturbation expansion of the temperature anisotropy field

T ≈ gT (φ+ fφφ
2 + · · · ) (1.66)

and restricting the analysis to the linear theory gives a linear relation between the

curvature pertubations φ and T

T ≈ gTφ, (1.67)

where g is the radiative transfer function; T is Gaussian if φ is Gaussian.

Conversely, at higher order T can be non-Gaussian for a Gaussian φ. Higher-

order corrections to the inflaton also yield non-Gaussian fluctuations δφ

φ ≈M−1
Pl gφ(δφ+M−1

Pl fδφδφ
2). (1.68)

Interaction terms in the inflationary harmonic oscillator equation or a non-linear

coupling between long-wavelength classical fluctuations and short-wavelength

quantum fluctuations in the context of chaotic inflation can produce a non-

Gaussian δφ. This imprints on the scalar perturbations by [99]

T ≈ gT
[
φL + (fφ + g−1

φ fδφ + g−1
φ g−1

δφ fn)φ
2
L

]
≡ gT

[
φL + fNLφ

2
L

]
(1.69)

where φL is an auxiliary Gaussian curvature perturbation. This gives

φ(x) = φL(x) + fNL
[
φ2
L(x)−

〈
φ2
L(x)

〉]
+ gNLφ

3
L(x) + · · · (1.70)

where the fNL and gNL terms characterize the lowest-order departures from

Gaussianity. The Fourier transform of the 3-point correlation function relates to

fNL by

〈φk1φk2φk3〉 = (2π)3δ3(k1 + k2 + k3)F

F local = 2f local
NL ∆2

Φ

(
1

k4−ns

1 k4−ns

2

+
1

k4−ns

1 k4−ns

3

+
1

k4−ns

2 k4−ns

3

)

F equil = 6f equil
NL ∆2

Φ

(

− 1

k4−ns

1 k4−ns

2

+ (2 perm.)− 2

(k1k2k3)
2− 2

3
(ns−1)

+
1

k
1− 1

3
(ns−1)

1 k
1− 2

3
(ns−1)

2 k4−ns

3

)

(1.71)

where ∆Φ is the amplitude of the primordial power spectrum.
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Figure 1.7: Triangular shapes used in CMB non-Gaussianity studies (from Bau-
mann [98]), where x2 ∝ k2/k1 and x3 ∝ k3/k1. A contour plot of the bispectrum
shows that the local shape is configured towards squeezed states, while the equi-
lateral is obviously named for its equilateral shape.

It has been shown that one can relate [100] the inflationary potential to the pri-

mordial non-Gaussian terms via

f local
NL = −5

6

[lnV (φ)]′′

8πG

glocalNL =
25

54

2 [lnV (φ)]′′2 − [lnV (φ)]′′′ [lnV (φ)]′

(8πG)2
,

(1.72)

using the δN formalism in single-field inflation models.

To measure the non-Gaussianity of the CMB anisotropies, it is necessary to use

higher-order statistics. For example, using the skewness of the one-point proba-

bility density distribution function, one can measure down to |f local
NL | ∼ 60, whilst

using the bispectrum this limit reduces to |f local
NL | ∼ 3. Further options such as

Minkowski functionals and wavelets have also been proposed. In this thesis, the

3-point spectra Bl1l2l3 bear some relevance; an estimator for the non-Gaussian

measure, in the full-sky coverage and homogeneous noise regime, can be given

by

f̂ local
NL =

1

N

∑

li,mi

(

l1 l2 l3

m1 m2 m3

)

Bl1l2l3

Cl1Cl2Cl3
al1m1

al2m2
al3m3

, (1.73)
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where N is a normalization term which can be calculated to ensure that the esti-

mator is unbiased. The 7-year WMAP constraints currently set the values of fNL

to f local
NL = 32 ± 21, f equil

NL = 26 ± 140 and f orthog
NL = −202 ± 104 all at 1σ. Con-

versely, detections of non-Gaussianity have been claimed by a number of authors

[101, 102], which may or may not be biased by systematics; a possible systematic

in the WMAP data will be exposed in Chapter 4.

The determination of the bispectrum is further complicated by not only fore-

ground statistics and the sheer storage size and computation time (not to mention

numerical overflow issues) of the computation at large li due to evaluations of the

Wigner 3jm-symbol, but also from the fact that higher-order recombination calcu-

lations can produce a small non-Gaussian signal [103] along with the non-linear

evolution of higher-order terms in the gravitational interaction [104].

To append all the success of inflation one should wish to get a better handle on

the form of the inflationary potential and CMB non-Gaussianity in order to con-

strain which inflation models are viable, which should lead to the correct links

with fundamental physics. This would be doubly enhanced by measuring the

non-Gaussianity of the e and b fields. With this in mind the next subsection dis-

cusses the physics which can generate B-modes.

1.2.3 Gravitational Waves

The final aspect of underlying physical theory that has relevance to this thesis is a

revisit of the final statement in the section about CMB polarization: polarization

B-modes can be created from tensor perturbations. Since the only accepted tensor

field theory is GR, then these correspond to gravitational waves.

In linearized tensor perturbation theory, one usually starts with a flat Minkowski

metric ηµν , and perturbs it slightly

gµν = ηµν + hµν , (1.74)

where ηµν is the unperturbed metric and hµν is an infinitesimal perturbation. Us-

ing this approach one can find the process for generating gravitational radiation.

To solve the wave equations of gravity, one starts by specifying the gauge; in a

coordinate shift x′α = xα + ζα where the prime no longer specifies differentiation

with respect to φ, the linear perturbation transforms as

h′µν = hµν − ∂µζν − ∂νζµ. (1.75)
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One can also construct the Einstein tensor:

Gαβ =
1

2
[∂α∂

µhµβ + ∂β∂
µhµα − ∂αβh−2hαβ + ηαβ2h− ηαβ∂

µ∂νhµν ] (1.76)

where h ≡ ηµνhµν . By using the Lorenz gauge ∂µh̄µν which is manifestly Lorentz-

invariant, then applying the Green’s function for the box operator it can be found

that

h̄αβ = hαβ −
ηαβ
2
h = 4πG

∫
Tαβ(x

′, t− |x− x
′|)

|x− x′| d3x′. (1.77)

Only the spatial, transverse and traceless components of h, which shall now take

on the use of the term h exclusively, encode radiation in a gauge-invariant man-

ner. The solution for spatial components for a distant infinitesimal source is:

h̄ij =
4πG

r

∫

Tij(t− r,x′)d3x′. (1.78)

Using this, one can project out the quadrupole component

Iij =

∫

ρx′ix
′
jd

3x′, h̄ij =
2G

r

d2Iij
dt2

(1.79)

and the other components via the projector

Pij = δij − ninj ⇒ hij = h̄kl(PkiPlj −
1

2
PklPij), (1.80)

with ni a unit vector pointing from the source to the observer, and higher mo-

ments suppressed by further factor of the internal velocity ∼ vl. So by analogy

to the electric and magnetic multipoles in Maxwell’s theory, there are mass and

current moments in gravity:

hMl ∼ G

r

dlMl

dtl
, hSl ∼ G

r

dlSl
dtl

. (1.81)

For a linearly perturbed metric, one can consider each multipole individually.

First the mass monopole, mass dipole and current dipole: hM0 is merely the New-

tonian potential, and not a source for radiation. hM1 is proportional to the total

linear momentum of the system, so is a purely gauge term and hence not a radi-

ation source. For hS1 conservation of angular momentum requires that this is no

source for radiation. The mass quadrupole is then the first term which is not con-

served — hence the mass quadrupole is the first term that generates gravitational

radiation. Gravitational waves are oscillatory fields, where h describes the tidal
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strain; the energy flux for gravitational waves is then dE/dt ∼ |dh/dt|2. For the

CMB, the source would be an ultra-low frequency one, i.e., 10−5H−1
0 < λ < H−1

0

— corresponding to the limits between the angular resolution that can be probed

and the size of the Universe. Currently, only indirect detections of gravitational

waves have been achieved, most famously with the Hulse-Taylor observations of

the orbital decay of the binary system containing the pulsar PSR B1913+16 — the

decay rate being in precise agreement with that of the energy loss to the system

due to gravitational radiation. Direct attempts at detection, such as LIGO, have

only given upper bounds — it is expected that the ambitious LISA space inter-

ferometer should be able to detect the characteristic ‘chirp’ from coalescing black

holes, potentially ushering in an era of gravitational wave astronomy.

Looking at gravity waves in an inflationary setting makes use of the most gen-

eral first-order perturbation of the metric (equation (1.57)). It is also necessary

to define the perturbed stress tensor where Σij is the anisotropic stress, and a

dimensionless counterpart to this, Π, via

Tij = pδij + Σij, Πij =
Σij

p
. (1.82)

By working out the perturbation in the left-hand side of the Einstein equation and

equating with 8πGδT µν , the resulting equations can be broken into scalar, vector

and tensor parts

vi = vSi + vVi Πij = ΠS
ij +ΠV

ij +ΠT
ij

Bi = BS
i +BV

i Eij = ES
ij + EV

ij + ET
ij .

(1.83)

Utilizing the metric for space-space tensor perturbations gives

ËT
ij + 2aHĖT

ij + k2ET
ij = 8πGa2pΠT

ij. (1.84)

The anisotropic stress after matter-domination can be neglected, and after Eij

enters the horizon it is represented by gravitational waves hij = aET
ij , so the

evolution of the Fourier component of h is

ḧij + 3Hḣij +

(
k

a

)2

hij = 0, (1.85)

which is the same equation as for a massless scalar field. The Fourier components

have the form

hij = h+e
+
ij + h×e

×
ij (1.86)
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where the eij are polarization tensors. The action for the tensor modes

S =
M2

Pl

2

∫

d4x
√−g1

2
∂σhij∂

σhij (1.87)

yields a harmonic equation for the gauge-invariant tensor amplitude: vk =

hkaMPl/
√
2

v′′
k
+

(

k2 +
a′′

a

)

vk = 0 ⇒ |vk| ≈
(
H

2π

)(
k

aH

)ǫ

, (1.88)

where the prime momentarily represents differentiation with respect to confor-

mal time η =
∫
dt/a(t). So, for

• k2 > a′′

a
, vk is oscillatory hence hk falls off as a increases;

• k2 < a′′

a
, vk grows with the scale factor;

hence gravitational modes hk inside the horizon die, and outside the horizon

they remain approximately constant. This means that during inflation the scale

of the perturbations is significantly amplified. Like the scalar case, the tensor

perturbation is almost scale-invariant:

PT (k) =
8

M2
Pl

(
H

2π

)2(
k

aH

)nT

, nT =
d lnPT
d ln k

= 3− 2vT = −2ǫ. (1.89)

Since the amplitude depends on H during inflation, which depends on the in-

flaton potential, detection of gravitational waves from inflation will measure the

energy scale of inflation.

If the energy density of the gravitational waves is non-zero, they will influence

the temperature anisotropies. This being the case, one desires a particular ob-

servational quantity which is only non-zero for a non-zero gravitational wave

background — given by the ratio of gravitational waves to adiabatic density per-

turbations, the tensor-to-scalar ratio r. The literature for measuring r has focused

on three definitions [105]:

rR =
P2
T (k0)

P2
R(k0)

rΦ =
P2
T (k0)

P2
Φ(k0)

rQ =
CT

2

CS
2

(1.90)

which preclude any running of r [106]. For single-field inflation models, there is

a consistency relation for the tensor spectral tilt:

nT = −r
8
. (1.91)
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Meanwhile, it can be shown generically that the tensor-to-scalar ratio is related to

the primordial non-Gaussian signal by the inequality τNL . r/50 [107].

For 2-dimensional STF tensors, the decomposition theorem

Pab = ∇〈a∇ b〉PE − ǫc(a∇b)∇cPB (1.92)

exists, where the first term is the trace-free gradient and the second is the curl.

Similarly for vectors the Helmholtz decomposition theorem is

Vi = ∇iΦ + ǫji∇jχ (1.93)

with Φ and χ the scalar gradient and curl potentials. In order to verify that a de-

tection of a low-l BB signal uniquely implies tensor modes, one needs to show

that vector modes from inflation are negligible. From the Einstein equations, in

the absence of a constant physical source for vector modes, one sets ΠV = 0. Con-

servation of angular momentum then implies a non-growing vorticity if c2s ≤ 1
3
,

where cs is the speed of sound. Vector perturbations created in the early universe

on super-horizon scales will then decay exponentially14; the main point is that

any vector modes need a constant source in order to be detectable in the modern

sky. Furthermore, there is no model-independent way to geometrically separate

vector and tensor-curl modes on the sphere so if the modes are of similar power

in a given band they will be difficult to distinguish.

The coupling of the inflaton with other fields beside gravity may also impact

inflationary observables; a good example is the axion, a particle suggested in

studies of the charge-parity (CP) problem of the strong interactions. The axion is

motivated from the Goldstone theorem: when any global symmetry is broken, a

massless field is always produced. In the standard model Lagrangian, a term θ

violates CP in the strong force sector. This is a small fine-tuning term that must

be put in by hand. Alternatively, one can postulate a particle for its causation, by

promoting the CP-violating term to a field, such that its VEV is at a CP-conserving

point. So θ(x) is the Nambu-Goldstone field of a U(1) ‘Peccei-Quinn’ symmetry,

named after its inventors. Since every light field becomes inhomogeneous due to

amplification of vacuum fluctuations via inflation, the fluctuations of the axion

14More strictly, it has been shown that with some contrived models [108], one can produce
vector modes in the CMB which could be confused for an r ∼ 10−6 signal; meanwhile it has also
been shown [109] that the higher-order vorticity equations create vorticity sourced by density
gradients. These degeneracies with the tensor signal, if large enough, may require either (or
both) an understanding of the model-dependent running of r or a method to decompose the
tensor/vector components on the spherical surface.
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field before inflation must have 〈(δθ)2〉 ∝ H2 which stays time-independent until

the QCD epoch. The axion oscillations then produce isocurvature perturbations,

which must be (via WMAP) at least 10 times smaller than the adiabatic pertur-

bations. If fPQ ∼ 1012 GeV then the inflation scale is low, at Minfl . 1013 GeV

(r ∼ O(10−10)), from which gravity waves cannot be measured in the foreseeable

future [110].

Recall the argument for the existence of primoridal tensor modes: a scalar field

with quantum fluctuations induced in it is coupled to a classical metric which is

‘dragged along’ with the expansion of the density perturbation of the scalar field.

However, if one considers the so-called Planck scale and that the number of e-

folds for inflation is typically of order 60 it might not be impossible that quantum

gravitational effects could manifest in the B-mode sky.

The full inflaton is not without its own theoretical issues — for hybrid models, the

‘η problem’ describes the difficulties of trans-Planckian calculations: UV correc-

tions to the effective inflaton potential tend to give a slow-roll parameter of η ∼ 1

which rules out the inflationary phenomenology. Meanwhile, difficulties exist

related to more fundamental issues such as moduli stabilization in the string the-

ories that many such inflationary scenarios are based on. Also, inflaton models

generically require that the inflaton potential be artificially flat, when compared

to the vacuum energy. The range of values for the tensor-to-scalar ratio from

inflationary models include chaotic inflation with r & 2 × 10−2, and natural in-

flation with an expected r & 10−3 [111]; single-field models scale anywhere up

to r ∼ 0.3. On the other hand, it has been shown that of the inflationary models

that can be derived from more fundamental (i.e., string theoretical/supergravity)

physics, very few yield an appreciable r — with brane-type models being es-

sentially tensor-mode-free, this phenomena being related to the issue of moduli

stabilization. Finally, there is perhaps the deepest outstanding remaining issue of

the inflationary formalism, the question of how the quantum fluctuations in the

inflaton become classical perturbations in the density field. This is related to the

measurement problem in quantum mechanics. Since in the inflationary scenario

the collapse of the wavefunction cannot be brought about by measurement be-

fore observers exist then decoherence is a necessary condition for the continued

acceptance of the Copenhagen interpretation. For Mukhanov [28], it appears that

decoherence is necessary but not sufficient. The choice of a Bunch-Davies state

in which quantization is performed is itself not immune to criticism [112]. Other

authors have argued that cosmological implications must alter the standard set-

up in quantum mechanics [113, 114], whilst others still have taken the obverse
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stance by championing the potential that primordial perturbations may have for

discriminating interpretations of quantum mechanics [115].

Tensor Perturbations & Exotic Physics

Beyond the inflationary paradigm there are further, more exotic, links between

tensor perturbations and fundamental physics that a positive B-mode detection

may shed light on. It can be shown [116] that the statistical properties of a stochas-

tic gravitational wave background are independent of the basis if |h+|2 = |h×|2.
For parity considerations, it is more convenient to use circular polarization states

hL, hR. Parity-symmetry is then violated unless |hL|2 = |hR|2; if parity is con-

served in the electromagnetic Lagrangian and in gravity (and foregrounds have

not yet been considered) then CTB
l = CEB

l = 0.

Generally, parity-odd terms in the effective Lagrangian lead to a rotation of the

polarization axis of the radiation. So long as one can postulate some reason for

aVlm 6= 0, ‘cosmological birefringence’ [117] (double refraction) can be produced.

This could typically be spotted as some sort of polarization basis rotation between

the surface of last scattering, and Earth; one can show that the rotation of the (Q,

U ) basis by an angle α implies a mixing between E- and B-modes:

(

a′Elm
a′Blm

)

=

(

cos(2α) sin(2α)

− sin(2α) cos(2α)

)(

aElm
aBlm

)

. (1.94)

In such a case, the correlation relations become

C
′TE
l = CTE

l cos(2α)

C
′TB
l = CTE

l sin(2α)

C
′EB
l =

1

2
(CEE

l − CBB
l ) sin(4α)

C
′EE
l = CEE

l cos2(2α) + CBB
l sin2(2α)

C
′BB
l = CBB

l cos2(2α) + CEE
l sin2(2α).

(1.95)

One can break parity-invariance by for example introducing a parity-odd Chern-

Simons15 term into the electromagnetic field equations [118], yielding a massive

photon. This then leads to a modified photon dispersion relation. If the pho-

tons travel for a time interval δη, they obtain a differential rotation (birefringence)

whose rotation rate δθ is determined by the Chern-Simons term and the variation

15Chern-Simons theory is a topological quantum field theory. In condensed matter studies, it
describes topological order in fractional quantum Hall states.
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in H over the time slice δη. The latter term also gives rise to a change in the pho-

ton energy. Therefore, the differential rotation is correlated to the change in the

photon energy. This effect is purely due to the time dependence of H . Thus, the

resulting optical birefringence can become a function of the frequency change.

Another possibility is that gravity could be chiral on some small scale. Contaldi

et al [119] provide a general formalism by replacing the linearized action with

S ∼ sR + sL leading to power spectra for left- and right-handed gravitons. This

sort of behaviour has been realised as a generic consequence of tensor pertur-

bations in a loop quantum universe [120]. If parity is violated in either of these

ways, a non-zero CTB
l is produced. In the same way that TE correlations are

easier to measure than EE ones, this is the property that one would measure

(rather than CEB
l ) to constrain the effect since one is correlating a large quantity

with a small quantity as opposed to two small quantities. Similarly, string-type

inflationary models (such as shown in Staoh et al [121]) or a fundamental pseudo-

scalar field [122] may also provide parity-breaking phenomenology.

Another potentially fundamental reason Faraday rotation may be detectable is if

there exists some kind of primordial magnetic field [123]B0. This has been specu-

lated as an explanation for cluster magnetic fields of order 1 µG. A perfect knowl-

edge of foregrounds would allow some future experiments to constrain such a

field to σB0
∼ 10−11 Gauss [124], complicated in reality by the further problem

that from beam systematics the fractional bias in the TB cross-correlations will

be larger than the the corresponding fractional bias in the BB power spectrum

[125].

1.3 Foregrounds and Secondary Anisotropies

Ignoring systematic errors, one of the major problems in CMB polarization obser-

vations are the secondary anisotropies — between the LSS and Earth, there are a

range of processes which serve to introduce noise into the signal that is desired

— and foreground material [126, 127]. Beside the scattering of CMB photons off

cluster gas electrons along the line-of-sight and cluster magnetic fields which may

also affect the polarization signal, the other main culprits are weak lensing and

reionization:

• Weak lensing: The presence of any mass bends the path of light passing near

it. The Universe as a whole experiences statistical weak lensing, or cosmic

shear, wherein a single background source cannot be determined. Nonethe-
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less, there is usually stronger shear in the direction of clusters and other ex-

tended massive bodies; the important thing about gravitational lensing is

that it makes no statements about the astrophysical conditions occurring —

only the intervening mass matters.

Lensing distorts the direction of incident light, so a pure E-mode signal at

the LSS will be observed to include B-modes after lensing. The lensing sig-

nal modifies the CMB damping tail via transfer of power from large to small

scales. Since the effect is non-Gaussian, higher-order statistics can be used

for the detection of CMB lensing. One way to deal with this might be to re-

construct the lensing by the mass distribution. Unfortunately there are sec-

ondary effects which are prominent at the same frequency as lensing, such

as the kinetic Sunyaev-Zel’dovich effect or residual foreground contami-

nations, so this is far from trivial for an accurate reconstruction. Density

fluctuations distort E-modes [128, 129]; on the lower l scales, these modifi-

cations will be swallowed up by the cosmic variance errors, but on smaller

angular scales these corrections become important for maps with other fore-

ground and systematic noise removed.

The weak lensing of the CMB could also cause problems regarding infla-

tion model elimination via cross-analysis of the tensor-to-scalar ratio with

signals of non-Gaussianity. Again, this is because the lensed CMB is not

Gaussian.

• Reionization: After recombination at the LSS, the Universe entered its ‘dark

ages’, when it was mostly populated by neutral hydrogen. At some point,

reionization would have began as the first ionizing sources formed, likely

to be the first stars. It is the second of two major phase changes of hydrogen

gas in the universe.

Reionization [130] affects the E-mode polarization by producing a charac-

teristic polarization bump on large scales. Evidence from the IGM, such as

quasar absorption lines, suggests that reionization needs to have occurred

before z ∼ 6; the convention is now accepted at a redshift between 7 and

20. The most popular candidates for reionization sources are Population III

stars and miniquasars, since the ionizing sources cannot be normal galaxies

or known quasars due to luminosity function constraints.

On small scales, the additional polarization signal from reionization is

caused by coupling between primary quadrupole and electron density fluc-

tuations at the region where scattering of CMB photons off the reionized

gas occurs. As yet models are still indecisive as to whether the universe
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reionized homogeneously, with fluctuations from the electron position or

inhomogeneously, with fluctuations of the ionizing fraction.

The probability that a photon has avoided re-scattering is P (t) = e−τ(t),

where τ is the optical depth. For instantaneous reionization at zrec ≫
zreion ≫ 1 for a flat universe (where zrec is the redshift at recombination

and zreion the redshift at reionization), the optical depth at reionization is

τ(zreion) ∼ 0.03
Ωbh

2
75

√

Ωmh275
z
3/2
reion (1.96)

i.e., for zreion ∼ 5 → τ = 0.02 the effect on fluctuations is no greater than 2

per cent. Hence the power spectra are modified by

CTT
l,obs =

{

CTT
l l ≪ lreion

exp[−2τ ]CTT
l l ≫ lion

lreion ∼ z
1/2
reionΩ

0.09
m . (1.97)

Beside using information from CMB polarization, reionization can be

probed by another promising frontier in observational cosmology: the 21cm

hydrogen line background at between 9 and 200 MHz [131, 132, 133], which

should yield not only an accurate account of the matter power spectrum in

the period after recombination but also a precise picture of how the Uni-

verse was reionized, since neutral hydrogen which has been ionized by ra-

diation from stars or quasars will appear as holes in the 21cm background.

These known physical foreground effects are further muddled by galactic fore-

grounds, such as dust effects. Examples include spinning dust models (rapid

rotation of grain dipole moments) and models that use grains with a strong mag-

netic response (via thermal vibrations of magnetic dipoles [134]), which would

make for small-scale noise although this is generally more of a problem at fre-

quencies greater than ∼ 100 GHz. Galactic synchrotron [135] is expected to dom-

inate at low frequencies, motivating projects such as S-PASS [136] to complete an

accurate galactic polarization profile.

Further to these, larger bodies such as cluster magnetic fields may act to produce

Faraday rotation, producing mixing between the primordial E and B-modes

[137] as previously mentioned. Studies of a potential primordial magnetic field at

the recombination epoch, or after the Universe was reionized, also realize Fara-

day rotation. This modifies the evolution equations for the polarization Fourier

modes. The rotated B-mode polarization from these potential phenomena in-

cludes dependences on all of the plasma frequencies and Larmor frequencies
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(precession of the magnetic moment of particles in a magnetic field). Fortunately,

this means that if the frequency channels of a given experiment are larger than the

magnetic field pseudo-scalar rotation rate one can attribute B-mode autocorrela-

tions to Faraday rotation from these phenomena [138]. For B-mode-less models,

it is possible to perform a de-rotation in the linear polarization (detector) frame

[139]. How one might de-rotate the polarization in the more general scenario of

both E- and B-modes present has yet to be established.

1.4 Experimental Status

Here the typical observational strategies, instrumentation types and potential ex-

perimental errors are briefly summarized, with a discussion of current and ongo-

ing experiments and their implications for polarization cosmology.

1.4.1 Systematics

Many factors go into designing a CMB observing mission; the main characters are

observing frequency, survey type and beam size. The most obvious initial factor

is of ground- versus balloon- versus space-based missions. These define the inte-

gration time necessary to make a statistically significant detection of polarization;

balloon-type experiments and high-altitude observing stations offer low column

density observations and a heightened ability to understand the instrument sys-

tematics due to the ready accessibility of the instrumentation. This is contrasted

with the atmosphere-free but largely expensive method of space-based observa-

tions.

The path from experimental read-out data to cosmological observations is fraught

with inferential danger. The process (as shown on Tegmark’s website16) of

sky → measurement → raw data → cleaning → time− ordered data

→ mapmaking → multi− frequency maps → foreground removal → sky map

is not usually straight-forward. Calibration and cleaning provide the lengthiest of

tasks, requiring the removal of foregrounds, a good understanding of the beam,

leakage between observables from systematic effects in the underlying technical

satellite equipment and more besides.

For example [140], errors on E/B mode power spectrum estimation can depend

16http://space.mit.edu/home/tegmark/
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on the type of polarization instrument used. Miscalibration of the polarization

reference is another systematic [141], which would effect both the self- and cross-

polarization spectra; the potential for a false positive detection of gravitational

waves being greater on the large scales corresponding to a primordial signal than

for the smaller foreground scales. Data reduction also has to deal with semi-

arbitrary physics such as cosmic ray hits and instrument scanning issues; usually

the entire reduction technique is completely experiment-specific. Photon noise

from quantum fluctuations in the environment, amplifier noise and thermal fluc-

tuations in the detectors also play their part in contaminating data.

Yadav et al [142, 143] show how one can describe the line-of-sight distortion of

the polarization signal in terms of a finite number of fields, leaving a distinctive

signal in the other zero 〈EB〉 and 〈TB〉 correlations: these include distortions in

a single perfectly known direction n̂, mixing of the polarization fields in a local

region of length scale σ around n̂, modulation in the amplitude of the fields, ro-

tation of the plane of polarization, coupling between two spin states (spin-flip),

leakage from the temperature to polarization and change in the photon direction

amongst others. One can then attempt to construct an estimator for the distortion

field D, whose effect can also be used to reveal signals of non-standard cosmo-

logical physics such as cosmological rotation and patchy reionization.

The required beam size is usually determined by the experimental goals; optical

systems at CMB wavelengths produce large diffraction-limited beams. Polariza-

tion detectors usually consist of either half-wave plates which modulate the in-

coming polarization pattern, wire grids or polarization sensitive detectors which

analyze the polarization of two separate beams, wherein differences in the side-

lobe and off-axis detector responses need to be accounted for; bolometers are an

alternative which measure both senses of linear polarization in a single beam.

For the rotation of a cryogenic half-wave plate [144] in front of the primary optics

of each telescope, the linear polarization is found by combining the signals mea-

sured by several detectors, whose planes of polarization are rotated with respect

to each other in multiples of π/4. Many polarization analyzers (such as half-wave

plates) display chromatic aberration; this is a result of the devices having different

refractive indices for different wavelengths. The atmospheric emission and ab-

sorption typical of ground-based observations varies strongly with wavelength;

longer wavelengths reduce background detector loading from sky temperature

but increase sensitivity to galactic synchrotron emission, which can be highly

polarized. The combination of these effects with the unknown characteristics

of foreground polarized emission make multi-frequency observations important
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for analysis. This has its own set of caveats since multi-frequency, multi-pixel fo-

cal planes require off-axis pixels, which can introduce polarization offsets. Beam

asymmetry [145] can produce signals which would masquerade as a non-zero

polarization rotation angle.

Furthermore, there are typical issues arising from other aspects of the survey and

the underlying physics: 1/f noise is induced in the polarization measurements

by gain and noise temperature fluctuations in the amplifiers, whilst incomplete

sky coverage increase sample variance by ∼(area covered)−1/2, and smears out

power spectrum features.

1.4.2 Current Constraints & Future Surveys

A number of experiments contribute to the state-of-art CMB measurements; fore-

most are probably WMAP’s 7-year observations. WMAP, launched in 2001, was

the space telescope which succeeded the COBE satellite. It has provided many

fundamental observations, most spectacularly the excellent agreement of the ac-

curate temperature anisotropy power spectrum with the ΛCDM expectations;

the WMAP satellite has only recently concluded its operations, and the scien-

tific community await its final 9-year data analysis. Whilst the WMAP satellite

does not contain a direct polarimeter, polarization data (albeit highly noisy) is ob-

tained by differential temperature analysis via the differential radiometers [146];

the differencing of signals from the horns approximately cancels the systematic

1/f signal drift in order to reveal the cosmological signal. In comparison with the

temperature-polarization correlation data, the WMAP polarization autocorrela-

tion data are much more prone to systematic error [147]; the Q and U maps are

noise-dominated.

Figure 1.8 shows the tensor-to-scalar ratio computed by Komatsu et al [148], with

uniform Bayesian priors for ns and dns/d ln k. The upper limit on r is obtained

via a Monte Carlo Markov Chain likelihood analysis, yielding r < 0.43 (95 per-

cent confidence limit (CL)). Since there is a degeneracy with ns, it is important to

perform a multi-survey analysis. Data from baryonic acoustic oscillations (BAO)

and supernovae (SN) constrains the distance scale and hence matter density bet-

ter, thus a determination of r < 0.20 (95 percent CL, no running spectral index)

or −0.256 < 1− ns < 0.025 and r < 0.54 (running spectral index) are obtained.

The anti-correlation of CTE
l with CTT

l at l ∼ 50 found by WMAP is consistent

with superhorizon adiabatic fluctuations rather than active perturbations such

as topological defects, which predict a correlation instead. Since all the values
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for r are only upper limits, more accurate future observations are required. In-

triguingly, the 7-year analysis also shows the tangential and radial polarization

patterns around hot and cold spots of temperature fluctuations, consistent with

the concordance cosmological physics.

Figure 1.8: Top-left diagram: WMAP 5-year r - τ plane, from Komatsu et al [148].
Bottom-left and mid-left diagrams: WMAP 5-year constraints [148] on inflation
models; it can be seen for example, that flat-potential hybrid inflation models
are unlikely to account for the data. The 7-year results are essentially unchanged
[149]. Right diagram: Combined EE measurements across a range of surveys
(from Samtleben [150]).

A number of experiments have been led purely for the polarization data. The

first to unambiguously detect the E-mode spectrum was DASI (Degree Angular

Scale Interferometer [151, 63]), a ground-based interferometric array at the South

Pole; with 13 feed horns fitted with broadband achromatic polarizers DASI op-

erated in 10 1-GHz bins across the 26 - 36 GHz bandrange, and sampling points

equivalent to the multipole range l ∼ 140 to l ∼ 900. Unlike the WMAP case, the

Stokes parameters were derived from ‘Stokes states’, related to the response of

the interferometer on a given baseline. The observation of two 3.4◦ FWHM fields

separated by one hour RA resulted in a detection of E-mode polarization at 4.9σ,

and a B-mode amplitude upper-limit of 0.59 times that of the temperature ampli-
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tude.

Following the first positive detection by DASI, further significant detection was

made by Boomerang in 2003 [152, 153], again situated at the South Pole but in-

stead a balloon-borne experiment. Boomerang combined the utility of polariza-

tion bolometers at 145 GHz with polarizing grids at 245 and 345 GHz to measure

the EE spectrum, yielding a 4.8σ detection in the 100 < l < 1000 range and 2σ

upper limits of 8.6µK2 and 7.0µK2 on the BB and EB signals respectively. This

was further complemented by CBI’s measurements [154], which revealed the de-

tail in the EE spectrum.

An important later experiment was QUaD, a ground-based polarimeter making

use of the DASI infrastructure, whose third and final data release was in June

2009 [155, 156]. QUaD’s array of 62 polarization bolometers, sensitive at 100 and

150 GHz resulted in values of r < 0.33 at 95% CL (when combined with WMAP)

and most importantly constrained the B-mode amplitude to less than 0.57µK2,

all extracted from observations of a ∼ 100 square degree sky area.

There are a range of planned further probes of CMB polarization, with only really

the space-based missions able to map the full CMB sky. However, Earth-based

missions are not without their own charms: recall that ground- and balloon-based

experiments are considerably cheaper than space-based ones — balloon experi-

ments have the added advantage of being above most of the atmosphere (and

hence absorption is negligible). The most prominent of the space-based missions

is ESA’s Planck satellite.

Planck (launched in 2009 [157]) is an ambitious all-sky survey to measure the re-

maining information in the CMB temperature anisotropies, with 3 times the an-

gular resolution of WMAP, an order of magnitude lower noise at the optimal fre-

quency bands around 100 GHz and frequency coverage from 30 - 857 GHz, which

will allow improved separation of the primordial signal from foregrounds. It is

also expected to improve by 16 times the number of modes measured with signal-

to-noise ratio of around unity. Some details of the expected yield from the Planck

instruments are given in Fig. 1.9; the two main instruments, the LFI and HFI,

are HEMT (high-electron-mobility transistors) and bolometer arrays respectively.

The HEMT are differential receivers that provide a significant improvement on

WMAP’s, with improved sensitivity due to their being cooled on the LFI. Mean-

while, the 52 bolometers in the HFI are split into channels aimed at optimizing

detections of signals of cosmological relevance. For the E-modes, it is expected

that Planck will accurately map the spectrum out to l ∼ 1000; meanwhile, if r

is greater than ∼ 0.01 Planck should be able to directly detect B-modes which
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would be the first detection of its kind. The scale at which B-modes are detected

(if at all) deeply affects the kind of models of inflation that are viable, and indeed

the type of techniques that are useful to understanding inflation. Similarly, there

is continued competition to make a first BB detection before Planck. Balloon-

and ground-based experiments such as the ongoing Q/U Imaging ExperimenT

(QUIET [150]) — designed specifically with the CMB polarization in mind, and

observing since late 2008 — is one such example. QUIET is a ground-based tele-

scope in Chile detecting at 40 and 90 GHz via coherent correlation polarimeters,

with proposed extensions expected to detect a B-mode signal correpsonding to

an r down to 10−2. As it is in the process an order-of-magnitude upgrade of its

detector facilities, then beside Planck it can be seen as a major competitor for the

first detection of B-modes.

Figure 1.9: Top diagram: Planck B-mode spectrum forecasts with 1σ errors, from
the Planck Blue Book [23]; the primordial signal above l ∼ 150 is dominated by
the weak lensing component. Bottom diagram: Planck instrumental limits for
the LFI (Low Frequency Instrument) and HFI (High Frequency Instrument).
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Further along, plans are afoot for more advanced studies. On the terrestrial front,

EBEX17 is a balloon-based polarimeter (main flight due in 2011) designed to mea-

sure the polarization sky with a resolution of less than 8 arcminutes at frequency

bands centered at 150, 250, 350, and 450 GHz. The sky patch covered by the

∼ 1300-detector instrument is ∼ 350 square degrees, allowing EBEX to probe on

scales of 20 < l < 1000 for a B-mode signal induced by a scalar-to-tensor ratio

r ∼ 0.035. Other future balloon experiments include Spider ([158], also due in

2011) with a larger sky coverage than EBEX and frequency bands located at 90,

145 and 280 GHz; the ground-based QUBIC (due 2012 [159]) and Polarbear [160];

and the CMBPol [161] program working on the next generation (post-Planck)

CMB space satellite, for example EPIC-IM, designed to go after precisely the ten-

sor modes from inflation and plausibly bring the detection limit down to an r of

10−3 or less.

The prospects for a full characterization of the EE spectrum and a first detection

ofB-modes this decade — either from lensing or gravity waves — are strong. The

range of experiments should provide a nigh-full understanding of contaminants

when survey data are combined.

1.5 Summary

The use of CMB data, particularly the temperature power spectrum, has allowed

for the construction of a standard cosmological model featuring an expanding

universe that is ∼ 73% dark energy, ∼ 23% cold dark matter and ∼ 4% bary-

onic matter. This standard model suffers from problems that can be resolved by

appending the inflationary universe hypothesis to the standard Big Bang. The

field powering inflation features quantum fluctuations that seed the formation

of structure as described by the matter power spectrum, whilst also generating a

stochastic background of gravitational waves which could be detected by analyz-

ing the polarization characteristics of the CMB, notably the large-scale B-modes.

The detection of B-modes could not only determine the energy scale of inflation

but could also determine more exotic physics such as chiral gravity by utilizing

the EB cross-spectrum and cosmic defects from the large-l BB spectrum, which

also leave a signal in the non-Gaussianity of the CMB. Ambitious experimental

efforts such as EBEX and Planck are underway to make a first detection of these

B-modes, expected to be a mere fraction of the magnitude of the E-mode polar-

17EBEX website: http://groups.physics.umn.edu/cosmology/ebex/
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ization. These efforts need to deal with difficult systematic and foreground issues

in order to make a clear detection, but the cosmology community is up to the task.
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Chapter 2

Local Methods for the CMB

In the previous chapter, a context was set up within which to discuss some techo-

logical problems in CMB cosmology and methods by which these can be solved.

These methods are focused on locally-calculated properties (i.e., sampling in a

small region about the focal pixel, in real space) as opposed to the more usual

global methods (such as harmonic-type analyses, which sample from every point

on the map).

Real-space methods in the cosmological literature have mostly been limited to

statistical analyses of the sky maps generated by the likes of WMAP, rather than

the development of analytical methods which take advantage of the localized

properties of real-space maps themselves or utilize localized mathematical con-

structs. For example, much of the current real-space CMB technology is limited

to the correlation function between two fields X and Y

CXY (θ) = 〈X(n̂)Y (n̂′)〉
n̂·n̂=cos θ , (2.1)

which determines the probability for two points on the sky to have the same

value. This can then expose signals of the causal horizon and shock waves from

point sources.

Particularly, the prime motivation of this thesis was originally a solution for the

ambiguous modes problem of separating out the E and B polarization modes. The

favoured method in this thesis requires the use of finite-difference schemes. Later,

it transpired that it should be possible to modify the use of the finite-difference

method in order to detect discontinuities in the microwave sky. This is geared

towards another unsolved problem in cosmology — the detection of topolog-

ical defects arising from (inflationary or otherwise) symmetry-breaking. The

enhanced-discontinuity maps that shall be developed can be studied in a num-

73
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ber of ways, including by-eye-detection of anomalies, needlet decomposition and

non-Gaussianity tests. Whilst the first two can be used without further alter-

ation of the underlying sky map, the third method motivates the need to define

an apodization scheme for the map since one is calculating spectra, discussed in

chapter 3.

Further, the methods presented may eventually provide some use for more exotic

phenomena. As an example, the phenomenology for a fundamental resolution of

the CMB is developed. This is of course, likely an unphysical realization — but

with Planck-scale-limited volumes and applications of the holographic princi-

ple implying that there may be signals from quantized spacetimes in the CMB

sky maps, this is a first step in developing real-space signals for the more exotic

physics typical of such spacetimes. Beside which, an actual detection of such a

fundamental resolution would provide a highly unexpected challenge for theo-

rists.

This chapter then describes techniques used for solving problems in cosmol-

ogy, which are then implemented in the remaining chapters. Proceedings begin

with an account of the general inferential calculus, Bayesian inference (section

2.1), with which one may make statements about the implications of data. This

method is actually standard fare in cosmology; the new developments begin with

a description of the ambiguous modes problem in CMB polarization and its so-

lution (section 2.2) using the local method of finite differences (constructed in

section 2.3). Following this, modifications of standard harmonic technology are

discussed in order to make statements about non-Gaussianity in the tempera-

ture and polarization fields (section 2.4). Section 2.5 then considers the problem

of detecting anomalies by combining local and global (harmonic) methods. Fi-

nally, potential uses for the discontinuity-detecting technology in the scenario of

a finite-resolution sky map are speculated on in section 2.6.

2.1 Likelihoods and the Like

In order that later expositions on detection make sense, the dominant epistemic

paradigm in modern cosmology, Bayesian statistics, is described. It is with this

tool that cosmologists can go from a raw dataset to rigorous testing of the avail-

able theories, despite only having one universe to observe. The key characteristic

of Bayesian methods which allows for single-sample inference is the likelihood

function, allowing one to stipulate the degree of belief in a theory given the data.

Bayesian statistics incurs the laws of probability as the calculus of inference; if
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one wishes to have a general inferential formalism, as opposed to the disjointed

toolkit more familiar to the frequentist approach, it is in some sense inevitable

that one might follow the Bayesian approach. Indeed, it has been shown [162]

that a small set of reasonable assumptions about degrees of belief necessarily im-

plies the laws of probability. Given that one cannot reproduce the Universe in a

laboratory it is then unsurprising that Bayesianism has quickly become dominant

in the community of cosmologists. This next section describes the calculus; none

of this section contains any new developments, but much of its content is both

relevant and harnessed in later analyses.

2.1.1 Model Comparison: Bayes’ Method

Bayesian statistics [163, 164, 165], a measure-theoretic probability theory, is a

now-standard tool for CMB analysis. The formalism is set up from the very sim-

ple mathematical foundations of a partially-ordered lattice whose measure obeys

addition, multiplication, commutativity and associativity [166]. Fundamental to

the Bayesian approach is the focus on information theory, which was given its

modern form by Shannon [167, 168]. One can define information in terms of the

measures of the lattice and thus develop the rules of probability theory:

P (A) ≥ 0 Positivity
∫
P (A)dA = 1 Sum rule

P (A ∩ B) = P (A|B)P (B) Product rule.

(2.2)

From the product rule for the probability of event A and B, one can find Bayes’

theorem:

P (H|D, I) = P (D|H, I)P (H|I)
P (D|I) (2.3)

where H is the hypothesis, D the data and I the information.

The elements of this equation are given particular names in the literature: P (H|I)
is called the prior (current state of knowledge, or the assumptions therein such as

known physics), P (D|H, I) the likelihood L, whilst P (D|I) is the evidence. Bayesian

statistics then states explicitly one’s assumptions in contrast to the frequentist ap-

proach; this defines a degree of belief in a given theory. The underlying Bayesian

philosophy is that probability is subjective, unlike the almost Platonic realism of

probabilities for frequentists. This can be summed up by Jaynes’ robot argument

[169]: given a robot which can track precisely the fall of a tossed unbiased coin,

from the point of view of the robot the initial heads/tails probability is 50:50,
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whilst the probability is vanishingly small for one or the other just before the coin

rests. It is this prior information which shows that probabilities are psychologi-

cal phenomena which betray how much ignorance of a situation one has, rather

than a property of an infinite ensemble. For a physical world with an uncertainty

principle, this has interesting implications for claims of inherently probabilistic

ontologies.

Furthermore, the Bayesian approach penalises extra parameters in a theory

— and so automatically incorporates a form of Occam’s razor. The posterior

P (H|D, I) is the thing one is after, yielding statistics for the parameter under anal-

ysis, in response to data available. By finding the peak likelihood and its shape

around the peak it is possible to find the shape of the posterior. Since the infor-

mation is defined as the difference between the prior and the posterior then in

the presence of background knowledge one can modify the prior by minimizing

the information. According to Shannon [168], this is equivalent to maximizing

the entropy of a system, and is thus known as the maximum entropy or ‘MaxEnt’

approach. In the absence of any constraints, one would use a normalized uniform

prior

P (Hi|I) =
1

K

K∑

i=1

P (Hi|I) = 1, (2.4)

equivalent to ‘maximum ignorance’ since this has nothing to say about any of the

theories in the calculation. Bayesian inference is no technique for saying whether

a given theory is correct; all one can do is make comparisons of the suitability of

a set of two or more competing theories. For example, one could use the Bayes

factor

Bij ≡
P (Hi|I)
P (Hj|I)

(2.5)

as the discriminant. The remaining problem is to calculate the evidence; by re-

defining the evidence via a probability density p

P (D|Hi)λ =

∫

P λ(D|θi, Hi)dpi dpi = P (θi|Hi)dθi, (2.6)

one can integrate over the likelihood L(θi) = P (D|θi, Hi)
1.

It can also be asked how Bayesian statistical inference incorporates Occam’s Ra-

1One of the more interesting aspects of Bayesian inference is that one can use this form to relate
thermodynamic and Bayesian inference:

d logP (D|Hi)λ
dλ

=

∫
dpiL

λ logL
∫
dpiLλ

≡ 〈logL〉λ ⇔
∫
dpiEe−E/T

∫
dpie−E/T

= 〈E〉T .
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zor. If the parameters θ (or the hypothesis) are marginalized over the data

P (θ|D, I) =
∫

P (θ, φ|D, I)dφ (2.7)

then the Occam factor can be defined via:

P (D|Hi) =

∫

p(θi|H)L(θi)dθi ≈ L(θ̂i)
δθi
∆θi

= Maximum likelihood × Occam factor.

(2.8)

where ∆θ is the prior range and δθ is the likelihood width. Since a model with

more parameters can always fit the data, the Occam factor penalizes models for

wasted volume of parameter space; predictive probabilities favour simpler mod-

els.

If the CMB is assumed to be fully Gaussian, then its likelihood can be well ap-

proximated by a multi-variate Gaussian

L =
1

(2π)n/2|Det[C]|1/2 exp
[

−1

2

∑

i,j

(D − D̄)iC
−1
ij (D − D̄)j

]

, (2.9)

where Cij is the correlation matrix of the data D. For large numbers of parame-

ters, finding the likelihood (or posterior) surface becomes computationally diffi-

cult. One can use Markov Chain Monte Carlo (MCMC) simulations to circumvent

this problem, which scales linearly with parameter numbers, now a standard ap-

proach for CMB analyses; the MCMC generates a random sample from the pos-

terior distribution, from which one can estimate the required parameters.

When making statements about degrees of belief in the values of parameters,

confidence intervals are useful. Confidence intervals are regions R in the space of

models (theories) with a volume such that the integrated posterior
∫

R
P (θ|D)dθ

is, say, 0.68 — this then corresponds to a 68 percent confidence; the confidence

interval gives the probability that the interval contains the true value for the pa-

rameter. This encloses the prior information. To report results independently of

the prior the likelihood ratio is used; the likelihood at a particular point in model

space L(θ) is compared with the maximum likelihood Lmax. A model is said to be

where one can see an interesting analogy between the log likelihood of an inferential set-up and
the energy E of a physical system. See Jaynes [169] or MacKay [170] for further detail on this
connection.
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acceptable if

−2 ln

(L(θ)
Lmax

)

≤ threshold (2.10)

with the threshold calibrated by calculating the distribution of the likelihood ratio

in the case where a particular model is the true model.

Ideally, one wants to answer the question of how accurately one can measure

model parameters from a given data set (without simulating the data set). For a

data set given by m real numbers x1 · · · xm arranged in a vector and x a random

variable with probability distribution which depends in some way on the vector

of model parameters θ, the Fisher information matrix can be defined by

Fij =

〈
∂2L

∂θi∂θj

〉

, L = − lnL, (2.11)

which is taken from the Taylor expansion of the likelihood function around its

maximum. This gives the minimum possible variance with which a parameter

can be measured, and is of utility for forecasting the expected performance of

future CMB experiments. The parameter covariance matrix Cij is then just the

inverse of the Fisher matrix, where one can identify the maximum likelihood

value of the parameter with the parameter mean. One can then compute the

Fisher matrix for some fiducial model. For example if the likelihood is a Gaussian

L = (θ − θ0)
2/2σ2

α, then by expansion

∆L =
d2L

2dθ2
(θ − θ0)

2. (2.12)

Setting 2∆L = 1, the 68 per cent (1 sigma) case is equivalent to 1/
√

d2L/dθ2. For

many parameters, one usually inverts the Fisher matrix, takes the minors and

inverts again in order to plot joint 2D contours. For high-l CMB analyses, the

Fisher matrix is approximately

Fij =
∑

l

2l + 1

2

∂Cl
∂θi

∂Cl
∂θj

(Cl +N eσ
2l2)−2 (2.13)

where N is the noise model and σ the beam size. For low-l CMB analyses, errors

are dominated by cosmic variance and equation (2.13) over-estimates the errors

by a factor of 2 or so. More generally, the Fisher matrix for all TT , EE, TE and
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BB spectra is [105, 171]

Fij =
∑

l,X,Y

∂CX
l

∂θi

[
CXY (θ)

]−1 ∂CY
l

∂θj
, (2.14)

where X , Y = {TT,EE, TE,BB}. Of course, the Fisher method is not the only

way to get at the parameters; one can instead attempt to find unbiased estimators

for the required parameters; the least-variance estimator out of any set of estima-

tors usually being the optimal choice.

One may wonder whether classical field-theoretical techniques can be applied to

inference, and indeed they can [166, 172]. By analyzing the infinitesimal variation

in measures across a field of information, it is possible to import all the machin-

ery of differential geometry into the inferential calculus; the only problem with

this being that the priors developed from such geometric considerations tend to

be strictly of the ‘deep ignorance’ variety, which is far too restrictive for inference

on physical systems.

The frequentist equivalent for measuring one’s confidence in data is to determine

how close to the Cramer-Rao bound the error bars of a statistic are. For an unbi-

ased estimator θ̂ of the parameter θ, the Cramer-Rao inequality is [173]

Var(θ̂) ≥ 1

F (θ)
(2.15)

where F (θ) is the Fisher information. If more accuracy than the Fisher matrix

estimate is required, it is necessary to turn to numerical methods for computing

likelihoods. The dominant numerical method in cosmology is the Markov chain

Monte Carlo method.

2.1.2 Monte Carlo Methods

In order to calculate the likelihood distribution in a large-dimensional space cor-

responding to many cosmological parameters, one can take advantage of Monte

Carlo integration utilized with Markov chains [174]. Monte Carlo integration is

the process of picking random, uniformly distributed points in the parameter

space volume and then estimating the integral by

∫

fdV ≈ V 〈f〉 (2.16)
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where 〈f〉 is the arithmetic mean over the sampled points of the function. The

Markov property requires that the method of estimation is memoryless, i.e., in-

dependent of past and future states. This means that the points in a Markov

chain are locally correlated but visit every point in the distribution in proportion

to some density function; each step in the chain is only influenced by the step

immediately preceding it.

In such large parameter spaces as in cosmological studies or if the posterior is

mostly unknown, one wants a method that converges quicker than the uniform

random sampling of Monte Carlo integration. Instead one may use Monte Carlo

Markov chains (MCMC), which similarly samples randomly but this time from

a non-uniform distribution; the process visits a point x with probability propor-

tional to some given distribution function p(x). The posterior probability of a

model is proportional to the distribution function, allowing one to calculate the

likelihood surface by sampling from the distribution function. This method of

biasing the probability space sampling can lead to huge savings in computation

time. In this thesis, use is made of the CosmoMC package [175] for performing

such MCMC computations, as suggested by Christensen et al [176].

The MCMC process is to produce a chain of samples that will allow convergence

to the correct posterior distribution. One iterates from an initial proposal ma-

trix and halts the program after some convergance criterion A has been met. For

an unknown posterior distribution, a Gaussian proposal density is a reasonable

choice. The choice of convergence criteria is fundamental in ensuring conver-

gence to the correct posterior; specifically, CosmoMC makes use of the Metropolis-

Hastings (MH) [177, 178] algorithm for this purpose by default. For a Markov

chain moving from parameter space positions θ1 to θ2, the transition probability

kernel T (θ1, θ2) can be set to ensure that the Markov chain has a stable asymp-

totic distribution equivalent to the posterior distribution by use of an arbitrary

proposal density distribution q and the MH acceptance probability α:

T (θn, θn+1) = α(θn, θn+1)q(θn, θn+1)

α(θn, θn+1) = min

{

1,
P (θn+1)q(θn+1, θn)

P (θn)q(θn, θn+1)

}

.
(2.17)

In CosmoMC, the chain starts at a random position in parameter space and equi-

librates (‘burns in’), after which posterior sampling begins. This burn-in period

is set to allow the chain to settle into a sequence that has no dependence on the

randomly-seeded starting point. Thinning the chain can help protect against pro-

ducing correlated chains. If such information is available, it is often best that the
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proposal density is a similar shape to that of the posterior, allowing faster con-

vergence. This is the case for known cosmological parameters. The proposal is

the probability density function; one can tune it in such a way that it fills the

parameter space but usually it is preferable to centre it on the current known pa-

rameters set. By setting the proposal’s geometry close to the expected posterior,

the speed at which the likely parts of the parameter space are explored is en-

hanced; in advance of this, a burn-in chain is produced to yield a crude estimate

of the shape, commonly using a Gaussian as the start shape since it is a common

posterior. The proposal choice then amounts to being a trade-off between a small

proposal width with a high acceptance rate and a large width with a quicker con-

vergence/exploration rate.

Figure 2.1: Example posterior distribution sampling (left diagram) and resulting
confidence intervals (right diagram), from Lewis & Bridle [175], calculated from a
combination of WMAP, HST and supernova data. From the peak contour on the
right diagram, it can be seen that Bayesian methods currently favour a ΛCDM
cosmological model.

The criteria for convergence is defined by the nearness of the approximate poste-

rior to the actual posterior; the computation time is proportional to the number of

parameters in the distribution. Various methods exist which check for bias in the

converged distribution due to factors such as stepsize [179, 180]. In particular,

CosmoMC provides a convergence ratio, with which one may compare statis-

tics for multiple sequences of chains. In order to compare CMB data with CMB

theory, CosmoMC takes power spectra from CAMB (a variant of CMBFAST) cal-
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culations, resulting in plots like Fig. 2.1 when combined with other survey data.

2.1.3 Bayesianism & Non-Gaussianity

In the previous chapter it was seen that non-Gaussianity is an important aspect of

CMB studies with regard to inflation and cosmic defects. For example, a signif-

icant primordial non-Gaussian signal may be able to rule out the simplest slow-

rolling inflationary scenarios. Often the approach for calculating non-Gaussianity

involves the use of cubic combinations of filtered CMB sky maps [181] by looking

for specific bispectrum signatures. The bispectral estimator in chapter 1 (equa-

tion (1.73) ) is optimal [173], but only for small non-Gaussianity [182]. Fuller

Bayesian methods instead of the frequentist estimator-type analysis have proven

more challenging, but have been pursued in Elsner et al [183] by deriving a joint

posterior for fNL and the curvature perturbation, and an implementation in El-

sner er al [184] using Hamiltonian MC sampling (a hybrid of Gibbs and Metropo-

lis sampling methods).

In order to make more general statements about non-Gaussianity, one can use

the Edgeworth expansion [185, 186, 187, 188], essentially an expansion of a prob-

ability density function in terms of Hermite polynomials. The Edgeworth series

is an asymptotic expansion which approximates a given probability distribution

in terms of its cumulants. In this sense it is then possible to use the Edgeworth

expansion to define a non-Gaussian likelihood function. The expansion contains

a number of undesirable properties such as the series truncation not in general

being a density (truncation necessarily precludes asymptoticity), although such

problems can be bypassed. Alternatively, one can adopt a harmonic oscillator ap-

proach [188] to set up an exact likelihood function, dependent on the power spec-

trum and on a set of parameters, which vanishes if the signal is fully Gaussian.

This then does not suffer from the truncation issues of the standard Edgeworth

approach. Another suggested alternative is to make use of the Gamma distribu-

tion [189].

The Bayesian formalism is the gold standard for cosmological inference. How-

ever, for reasons of computation time some use of frequentist estimators will

be made instead. An estimator, whilst lacking the foundational rigour of the

Bayesian formalism, can give a first approximation to the correct form of the

power spectra, which can then be used as a prior with which to speed up the

convergence of the MCMC calculations.
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2.2 SeparatingE- &B-modes: The Ambiguous Modes

Problem

In chapter 1, the use of studying the polarization of the CMB for detecting the

cosmic gravitional wave background produced by cosmological inflation was

touched upon. The standard methods for performing this analysis come in two

flavours: the tensor-harmonic formalism and the spin-weighted-harmonic for-

malism, both of which are equivalent. In the tensor harmonic approach the po-

larization tensor can be expanded in terms of tensor spherical harmonics [61]

Pab(Ω) =
∑

lm

(
aElmY

E
(lm) ab(Ω) + aBlmY

B
(lm) ab(Ω)

)
, (2.18)

where the polarization tensor has been decomposed into E and B components2

and the explicit coordinate-dependence Ω is dropped for convenience, with

aXlm =

∫

PabY
Xab∗
(lm) dΩ, aX∗

lm = (−1)maXl,−m (2.19)

where X = (E,B) and the Y Xab
(lm) are the E- and B-type decomposed tensor

spherical harmonics (see Appendix). Equivalently, one can make use of the spin-

weighted operators of Newman & Penrose [190]:

ðs = −(∂θ + i csc θ∂φ − s cot θ), ð̄s = −(∂θ − i csc θ∂φ + s cot θ), (2.20)

where for clarity in spin-counting of entities operated on, the standard operator

definitions are appended with the spin-weight of the operator. These operators

are ‘square roots’ of the Laplacian operator on a spherical surface (∇2
sf = ð̄ðsf )

and act to raise and lower the integer spin-weight s of a function sf well-defined

in s-space, by creating and annihilating spinors o and their conjugates ô:

ð 1
2
oA = 0 ð̄ 1

2
oA = −ôA ð− 1

2
ôA = oA ð̄− 1

2
ôA = 0, (2.21)

with the integer spin-weight s defined by the transformation o → o′ = eisψo

about the pole of a tangent space defined at every point on the sphere. It can

be demonstrated that the operation of ð with the wrong spin-s value leads to

2Any symmetric trace-free tensor can be decomposed into the sum of A;ab− gabA
c

;c

2
and B;acǫ

c
b+

B;bcǫ
c
a.
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entitities with an ambiguous spin-weight: first one chooses a spinor basis

oA =

(

e−
iφ

2 cos θ
2

e
iφ

2 sin θ
2

)

ôA =

(

−e− iφ

2 sin θ
2

e
iφ

2 cos θ
2

)

(2.22)

and then calculates

ð s
2
oA =

s− 1

4
cos θΛA ð̄ s

2
ôA =

s+ 1

4
cos θΛ̂A

ð̄ s
2
oA =

ΛA±
2

− s+ 1

4
cos θΛA ð s

2
ôA =

Λ̂A±
2

− s+ 1

4
cos θΛ̂A

ΛA =

(

e−iφ/2 csc θ
2

eiφ/2 sec θ
2

)

Λ̂A =

(

−eiφ/2 sec θ
2

eiφ/2 csc θ
2

)

ΛA± =

(

e−iφ/2 csc θ
2

−eiφ/2 sec θ
2

)

Λ̂A± =

(

e−iφ/2 sec θ
2

eiφ/2 csc θ
2

)

.

(2.23)

The resulting vectors from operation of incorrect spin-weight derivatives cannot

be written in terms of spinors, so do not transform as such. The spin-weighted

spherical harmonics of order (s, l, m) can be constructed by combining (l + m)

spinors and (l − m) conjugate spinors, of which one uses the first element from

(l + s) spinors and the second element from (l − s) spinors:

Nslm sYlm =

l+m
︷ ︸︸ ︷

oA1oA2 · · · oA2

︸ ︷︷ ︸

s+m

l−m
︷ ︸︸ ︷

ôB1 · · · ôB2

︸ ︷︷ ︸

l−s

(2.24)

where the summation convention is not used and Nslm is a normalization factor.

Alternatively, it can be shown that

ðssYlm =
√

(l − s)(l + s+ 1)s+1Ylm, ð̄ssYlm = −
√

(l + s)(l − s+ 1)s−1Ylm.

(2.25)

Since

Q′ ± iU ′ = e∓2iθ(Q± iU) ⇒ Q± iU =
∑

lm

±2alm±2Ylm, (2.26)
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then the orthogonal Stokes parameters can be described in terms of s = ±2 spin-

weighted spherical harmonics:

Q = Re

[

−1

2

∑

lm

aElm(2Ylm + −2Ylm) + iaBlm(2Ylm − −2Ylm)

]

U = Re

[

−1

2

∑

lm

aBlm(2Ylm + −2Ylm)− iaElm(2Ylm − −2Ylm)

] (2.27)

where the E and B harmonic coefficients are defined via

aElm = −2alm + −2alm
2

aBlm =
i(2alm − −2alm)

2
±2alm = −(aElm ± iaBlm). (2.28)

One of the remaining problems in the analysis of the polarization of the CMB, be-

sides foregrounds, is the ‘ambiguous modes’ problem. Since one usually works in

harmonic space, any obscured parts of the sky will contain missing information

(for example, the galactic plane of the Milky Way). For an unbounded manifold,

the polarization field can be decomposed uniquely into an E and a B field. An

obscured sky has a necessarily bounded information sampling region, so that the

decomposition is not unique — in other words, on a cut sky there are modes

that simultaneously satisfy the conditions for both E-mode and B-modes. This

is why the problem is called the ambiguous mode problem — it is ambiguous

as to whether such modes correspond to either E or B signals or some mixture.

For a low magnitude B-mode signal this will become more cumbersome when

one wishes to determine the inflationary potential since leakage from the larger

E-modes would dominate the B-mode signal (Fig. 2.2). An easy way to visual-

ize this is the analogous vector field decomposition in real space [191] given by

equation (1.93). From this, one can calculate ∇2Φ = ∇iVi and ∇2χ = −∇iǫjiVj . On

the full sky, the Laplacian inversion may be achieved uniquely. This is not true

with masking; one can always think of adding charged sources for the potentials

outside of the patch on which V is measured, which alter the potentials with-

out changing V . Additionally [192], for the mode-mixing due to pixellization

a Fourier space decomposition implies that due to the Heisenberg Uncertainty

Principle and the limiting resolution on the sky, the directions of the estimated

and actual modes on the sky in a region about some wavevector will differ, lead-

ing to E/B mixing.
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Figure 2.2: Leakage from a tensor-modes-less model; E-mode (blue line), B-
mode leakage due to map pixellization (solid red line) and B-mode leakage due
to a WMAP polarization mask (dashed red line). The black line is a typical r =
0.1 tensor-mode spectrum. The area per pixel is 4π/Npix, with Npix = 12× 5122.

2.2.1 Derivative Method of Excluding Leakage

In general, since the E-mode signal is expected to be at least an order of mag-

nitude larger than the B-mode signal, full-sky analysis of a masked sphere will

produce signal leakage from theE-modes that may swamp a primordialB-signal.

Alternatively then, instead of using harmonic space techniques, one might con-

sider real-space techniques. Starting with real-space scalar analogues of the E−
and B-modes

e(Ω) =
∑

lm

√

(l − 2)!

(l + 2)!
aElmYlm(Ω), b(Ω) =

∑

lm

√

(l − 2)!

(l + 2)!
aBlmYlm(Ω), (2.29)



2.2. SEPARATING E- & B-MODES: THE AMBIGUOUS MODES PROBLEM 87

one can then relate the spherical surface bi-Laplacians ∇4 ≡ ∇2(∇2 + 2) of these

e and b fields to the Stokes parameters (where ðn =

×n
︷ ︸︸ ︷

ð · · · ð and ð̄n =

×n
︷ ︸︸ ︷

ð̄ · · · ð̄):

∇4e = −1

2
[ð̄2(Q+ iU) + ð

2(Q− iU)] = −D+
∓2Q−D−

∓2U

∇4b =
i

2
[ð̄2(Q+ iU)− ð

2(Q− iU)] = D−
∓2Q−D+

∓2U.
(2.30)

The ‘inverse’ relations for forming Stokes fields from the underlying e and b fields

are

Q = −D+
0 e+D−

0 b, U = −D+
0 b−D−

0 e, (2.31)

where the bi-Laplacian can be written ∇4 = D−
∓2D

−
0 +D+

∓2D
+
0 and on the sphere

D+
0 =

ð1ð0 + ð̄−1ð̄0

2
= ∂θθ − csc2 θ∂φφ − cot θ∂θ

D−
0 =

ð1ð0 − ð̄−1ð̄0

2i
= 2 csc θ(∂θφ − cot θ∂φ),

(2.32)

hence

D+
0 Ylm =

1

2

√

(l + 2)!

(l − 2)!
(2Ylm + −2Ylm), D−

0 Ylm =
1

2i

√

(l + 2)!

(l − 2)!
(2Ylm − −2Ylm).

(2.33)

The operators acting on Q and U to obtain the bi-Laplacians of the scalar and

pseudo-scalar fields are

D+
∓2 =

ð−1ð−2 + ð̄1ð̄2

2
= −2− csc2 θ∂φφ + 3 cot θ∂θ + ∂θθ

D−
∓2 =

ð−1ð−2 − ð̄1ð̄2

2i
= 2 csc θ(cot θ∂φ + ∂θφ).

(2.34)

By keeping account of the spin-weights of the E and B terms produced by the

combinations of each of the four operators, one can show that the ambiguous-

spin terms cancel, hence

D+
∓2(2Ylm + −2Ylm) = 2

√

(l + 2)!

(l − 2)!
Ylm, D−

∓2(2Ylm − −2Ylm) = 2i

√

(l + 2)!

(l − 2)!
Ylm.

(2.35)
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One can then work in harmonic space to integrate a boundary-condition-less

function via

∇4flm = ∇2(∇2 + 2)flm =
(l + 2)!

(l − 2)!
flm, (2.36)

thus relating the power spectra of the scalar and pseudo-scalar fields to that of

the E- and B-modes is trivially

C∇4e
l =

(l + 2)!

(l − 2)!
CE
l , C∇4b

l =
(l + 2)!

(l − 2)!
CB
l . (2.37)

In the small-angle (flat sky) limit,

ð → −(∂x + i∂y) ð̄ → −(∂x − i∂y)

D±
∓2 → D±

0 D+
0 → ∂xx − ∂yy D−

0 → 2∂xy,
(2.38)

where the spin-weight-dependence of the operators vanishes. One should notice

that merely taking the θ → π/2 limit of (2.34) does not yield the flat-sky limit; one

needs to specify s = 0 before constructing the operators. This is a general artefact

of second-order covariant differentiation, related to the fact that Christoffel terms

do not transform as tensors. An example can illustrate this; on the metric of the

spherical surface gab = Diag(1, sin2 θ), one can construct [61]

Mab
;ab =M θθ

,θθ + 2M θφ
,θφ +Mφφ

,φφ − sin θ cos θMφφ
,θ + 2 cot θM θθ

,θ + 4 cot θM θφ
,φ

+(1− 3 cos2 θ)Mφφ −M θθ
(2.39)

where the standard comma notation for covariant derivatives is used. In the θ →
π/2 limit, where θ → x, φ→ y this yields

Mab
;ab =Mxx

,xx + 2Mxy
,xy +Myy

,yy +Mxx −Myy (2.40)

which is inequivalent to computing Mab
;ab from a flat metric gab = Diag(1, 1):

Mab
;ab =Mxx

,xx + 2Mxy
,xy +Myy

,yy. (2.41)

The important thing about the use of real-space derivatives is that by not sam-

pling in masked regions of the sky, there are no leakage contributions from the am-

biguous modes. Of course, the implementation may yield leakage of its own due

to pixellization; aliasing of harmonic modes in a pixellated scheme is the result of

harmonic decomposition of components of the map at a frequency greater than

the Shannon-Nyquist limit for the map. This results in power being transfered to



2.2. SEPARATING E- & B-MODES: THE AMBIGUOUS MODES PROBLEM 89

lower modes (since the power has to fit into the harmonic space binning avail-

able); the new sets of modes being mapped to have no requirement to be consis-

tent with the aliased modes, which in a polarization context means mixing of E

and B-modes. The only realistic way around this issue is to sample one’s map at

a resolution where the effect of aliasing on the required mode range l is minimal.

2.2.2 Alternative Methods

Of course, alternative methods have been proposed to ameliorate the effect of

mode-mixing. MCMC methods would be able to tackle this problem, but with

the large datasets coming from projects such as Planck such a method would be

hugely computationally expensive; the full Fisher matrix utilizes the covariance

matrix [105]

C(θ) =









ζTT,TTl ζTT,EEl ζTT,TEl 0

ζTT,EEl ζEE,EEl ζEE,TEl 0

ζTT,TEl ζEE,TEl ζTE,TEl 0

0 0 0 ζBB,BBl









ζxyx
′y′ =

1

(2l + 1)fsky∆l

×
[

(Cxy′

l +Nxy′

l )(Cyx′

l +Nyx′

l ) + (Cxx′

l +Nxx′

l )(Cyy′

l +Nyy′

l )
]

.

(2.42)

for an observed sky fraction fsky, with bandwidth ∆l and noise spectrum Nl.

The quadratic maximum likelihood (QML) approach [193] is an approximate

method which specifies the full covariance matrix by

C(θ) =






CTT CTQ CTU

CQT CQQ CQU

CUT CUQ CUU




 (2.43)

to yield the optimal QML power spectrum

Cr,QML
l = xixjE

rl
ij , Erl =

1

2
C−1 ∂C

∂Cr
l

C−1 (2.44)

where x = (∆T,Q, U) and r = (T,X,E,B). For a survey that is not noise-free,

one needs to subtract the noise bias and then renormalize. In order to avoid con-

tamination of power spectrum estimates by the systematic errors in the T mea-
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surements, one reshapes the matrix via

Erl → Êrl =
1

2
Ĉ−1 ∂C

∂Cr
l

Ĉ−1 (2.45)

to

Ĉ =






CTT 0 0

0 CQQ CQU

0 CUQ CUU




 . (2.46)

The estimator from this reshaped covariance matrix is no longer minimum vari-

ance; one then defines a Fisher matrix

F̂ r,sig
ll′ =

1

2
Tr

[

∂C

∂Csig
l′

Ĉ−1 ∂C

∂Cr
l

Ĉ−1

]

,
〈

Cr,QML
l

〉

= F̂ r,sig
ll′ Csig

l′ (2.47)

and follows the likelihood analysis method as described in section 2.1.

A number of cheaper alternatives exist, which have been adapted to the e and

b formalism where appropriate. The Pseudo-Cl attempt [194], with which the

derivative method in subsection 2.2.1 has some overlap, works by taking linear

combinations of the measured Cl’s to eliminate the E-mode contribution in order

to reveal the cosmological B-modes. In other words, a weight function is used;

for a trivial weight function identical to the galaxy mask, the noise-free QML and

pseudo-Cl estimators are statistically equivalent. The idea is to make the B-mode

power spectrum estimator independent of E on average, a limit of the derivative

method where the full b map is created. However, estimator variance for a given

polarization mode will still have a dominant contribution from leaked signals

from the other mode. The measured harmonic coefficients are computed using a

cut-sky-dependent weighting scheme W to produce pseudo-bandpowers in the

band β

C̄β ≡
∑

l∈β

l(l + 1)

2π

l∑

m=−l

b̃∗lmb̃lm

b̃lm ≡ 1
√

(l − 1)l(l + 1)(l + 2)

∫

b(x)W (x)Y ∗
lm(x)d

2x.

(2.48)
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The expectation values of the pseudo-bandpowers are related to the true spec-

trum by the transfer tensor





〈

C̃EE
l

〉

〈

C̃BB
l

〉



 =
∑

l′

(

K+
ll′ K−

ll′

K−
ll′ K+

ll′

)(

CEE
l′

CBB
l′

)

+

(

ÑEE
l′

ÑBB
l′

)

, (2.49)

which can be solved by inversion:

(

ĈEE
l

ĈBB
l

)

=
∑

l′

(

K+
ll′ K−

ll′

K−
ll′ K+

ll′

)−1(

C̃EE
l′ − ÑEE

l′

C̃BB
l′ − ÑBB

l′

)

. (2.50)

Equation (2.48) is by construction pure; instead of performing the derivatives

necessary to construct b, counterweights which perform a ‘purification’ of E- and

B-modes are determined by solving

blm =
i

2

∫

dΩ(Q+iU)

(

W 2Y
∗
lm +

21W
∗
1Y

∗
lm

√

(l − 1)(l + 2)
+

2W
∗Y ∗

lm
√

(l − 1)l(l + 1)(l + 2)
+ c.c.

)

(2.51)

where spin-weighted apodization weights are defined by operating on the scalar

mask W (Ω)

sW = ðs−1 · · · ð0W. (2.52)

The apodization weights are then determined in a minimum-variance fashion as

described later in chapter 3, in a manner that relates to the E/B transfer ten-

sor. The expansion shows that taking the analytic derivatives is equivalent to the

pseudo-Cl counterterms method. Currently this method has only been used in a

flat-sky, small-angle approximation. However for wide surveys (such as Planck),

curvature may begin to introduce notable errors; this is particularly important

given the possibility of a small B-mode signal at low-l.

Zhao & Baskaran [195] solve the mode-mixing problem in a similar fashion to

the derivative method by explicitly calculating the correction terms which come

from the ambiguous modes. Defining

P±(Ω) = Q(Ω)± iU(Ω)

∇4ẽ = −1

2

(
ð̄
2(P+W ) + ð

2(P−W )
)

∇4b̃ = − 1

2i

(
ð̄
2(P+W )− ð

2(P−W )
)
,

(2.53)
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one has

ð̄
2P+ = −∇4(e+ ib), ð̄

2(P+W ) = −∇4(ẽ+ ib̃). (2.54)

This shows that the pseudo- and full e and b fields can be related by studying

how ð̄2(P+W ) and ð̄2P+ relate, arriving at

∇4(e+ ib)W 2 = ∇4(ẽ+ ib̃)W + α, (2.55)

where the correction term is

α = (ð̄W )(ð̄(P+W )− P+ð̄W − 2 cot θP+W )

+(ð̄W )(ð̄(P+W )− P+ð̄W − cot θP+W )

+P+W (ð̄2W ) + cot θð̄(P+W ) + 2W 2P+ + 2W cot θð̄(P+W ),

(2.56)

so the pure-field recontruction is achieved via

∇4(e+ ib) = ∇4(ẽ+ ib̃)W−1 + αW−2. (2.57)

The W−1 and W−2 utilized were found to be ill-behaved at the edge of observed

region due to their discontinuous form, forcing edge (and thus information) re-

moval of the constructed polarization maps.

Kim & Naselsky [196] looked at the pixel-space properties of the leakage prob-

lem, producing E/B decomposed maps by convolving polarization maps with

certain filter functions. First, they identified

e = −1

2

(∫

F+(Q− iU)dΩ +

∫

F−(Q+ iU)dΩ

)

b =
i

2

(∫

F+(Q− iU)dΩ−
∫

F−(Q+ iU)dΩ

)

,

(2.58)

where

F± =
∑

lm

√

(l + 2)!

(l − 2)!
±2YlmY

∗
lm (2.59)

is a pixel-space filter for the decomposition. This is used to define the expected

leakage power
〈

B̃2
E(n̂)

〉

in terms of the operation of such filters on the Stokes

parameters. By retaining only the pixels which satisfy the constraint

〈

B̃2
E(n̂)

〉

〈

B̃2
B(n̂)

〉 <
rtheory
rMC

, (2.60)
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implying that the sky fraction kept scales with rtheory (where rMC is the assumed

Monte Carlo simulation value for r), an optimal rtheory which minimizes estima-

tion error is then derived.

It was found that E/B mixing due to incomplete sky is localized in pixel-space,

and negligible in the regions far away from the masked area. The diagnosis of

the expected local leakage power and expected pure mode power defines the

ambiguous pixels to be excluded, by solving ∂∆Cl/∂rtheory = 0 and obtaining the

optimal rtheory, which minimizes the estimation error given a foreground mask

and noise level. Simulations showed that leakage power is subdominant in com-

parison with unlensed B-mode power spectrum of r ∼ 10−3 at a wide range of

multipoles (50 . l . 2000), while a sky fraction of 0.48 is retained. It is claimed

that the leakage in their method does not bias the B-mode power spectrum es-

timation but increases the variance when the estimation is made by a pseudo-Cl

method and leakage is taken care of. However, the removal of pixels necessar-

ily removes potentially useful information. Recently, Kim [197] has attempted to

combat leakage by observing that ringing artifacts can be reduced using smooth-

ing filters. By utilizing a widened Gaussian smoothing kernel ringing artifacts

are minimized, informed by a spectral reconstruction of the processing mask.

Bunn [198], meanwhile, runs the following algorithm on P+:

• Calculate E and B from P+ while disregarding purity issues, by finding a

pair of potentials pE and pB such that

P+ = DEpE +DBpB, (2.61)

which are related to the derivatives in subsection 2.2.1 by

DE = (D+
0 , D

−
0 ), DB = (−D−

0 , D
+
0 ) (2.62)

in the flat-sky regime.

• Find the biharmonic functions αE and αB, i.e., under the condition that

∇4αE = 0, ∇4αB = 0 (2.63)

with boundary conditions

αE|∂Ω = pE|∂Ω, n̂ · ∇αE|∂Ω = n̂ · ∇pE|∂Ω
αB|∂Ω = pB|∂Ω, n̂ · ∇αB|∂Ω = n̂ · ∇pB|∂Ω.

(2.64)
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• ‘Purify’ the potentials by defining

ppure,E = pE − αE, ppure,B = pB − αB (2.65)

• Apply the differential operators to obtain the pure E, pure B, and ambigu-

ous polarization fields:

Ppure,E = DEppure,E Ppure,B = DBppure,B Pa = DEαE+DBαB (2.66)

where the differential operators are applied in harmonic space. The advantage

of this method is that it computes directly the polarization map components, and

finds the ambiguous modes. The ambiguous modes are removed via a hard cut-

off near the boundary; since the distance an ambiguous mode persists into the

interior of a map depends on the frequency of the source function on the bound-

ary [196], the Bunn method determines how far from the border the ambiguous

modes persist. One possible limitation of this method is that the polarization

field is extended into the unobserved patch, with Gaussianity assumed and the

observed and unobserved patches forced to match over some boundary region

of thickness t; it is reasonable to assume for the purpose of just detecting pure

B-modes that the field in the unobserved patch is Gaussian, but this will neces-

sarily bias any calculations of non-Gaussianity in the polarization modes across

the sphere. By contrast, the local derivative method requires no such assumptions

about the unobserved region since it is not removing leakage by estimating the

ambiguous mode contributions. Further, the Laplacian-difference method for de-

tecting discontinuities proposed in section 2.5 as applied to this proposal would

be a useful check for smoothness across such a boundary region.

Wavelet-type methods such as the wavelet-Galerkin method of Cao & Fang [199]

and the spin needlet approach of Geller et al [200] complete this overview of the

types of analyses proposed. These usually involve dropping modes located about

the boundary, since the majority of ambiguous leakage contributes from such re-

gions. Much like the derivative method, the locality of the wavelet approaches

allows the recovery of the spatial structures of theE- andB-mode fields. But note

again, like the Kim & Naselsky method and unlike the local derivative method,

that the signal is purified by removing information (an operation which is by ne-

cessity biased toward a zero B-mode signal). It remains to be seen which of the

methods proposed, or combination thereof, may be optimal for unambiguously

detecting B-modes or setting their upper limit.
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2.3 Discrete Derivatives

Since in any real-space computation of derivatives one can only calculate on a dis-

crete grid, it is necessary to calculate discrete derivatives. This can be achieved

using the finite-difference method, wherein the value of the derivative of a func-

tion at a given point is taken to be some weighted function of the values of the

function at surrounding pixels,

∂F → ∂̃F + Err (2.67)

where the ∼ indicates a discrete derivative. In the limit of an infinite resolution,

the error term should vanish; the uncertainty due to the pixellization will need to

be estimated.

Standard finite-difference schemes for regularly-spaced grids are well-known; in

anticipation of chapter 3 it will be necessary to generalize this to irregular grids.

2.3.1 Basic Idea

A derivative (of order m) of a function at a given pixel i can be computed as the

sum of weighted values of the function at a surrounding sample of pixels j (the

pixel ‘stencil’):

∂xmfi ≈
pixels
∑

j

w
(m)
ij fj (2.68)

where w is the weight matrix. For example, the canonical finite-difference

schemes with uniform spacing can be derived starting with a 1-dimensional Tay-

lor expansion on an infinite regular grid with separation ∆

fi±1 =
∞∑

r=0

(±∆)r∂xrfi
r!

, (2.69)

to yield for the first- and second-order derivatives

∂xfi ≈
fi+1 − fi−1

2∆
+O(∆2) ∂xxfi ≈

fi+1 + fi−1 − 2fi
∆2

+O(∆2) (2.70)
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corresponding to weight matrices

w
(1)
ij =







− 1
2∆

0 1
2∆

− 1
2∆

0 1
2∆

...
...

...






, w

(2)
ij =







1
∆2 − 2

∆2
1
∆2

1
∆2 − 2

∆2
1
∆2

...
...

...






. (2.71)

Since the focal pixel in this case is the central pixel fi between fi±1, this is usually

referred to as the ‘second-order central difference scheme’. If the grid is finite,

the first and last rows in the weight matrix must correspond to ‘forward’ and

‘backward’ difference schemes respectively, where the focal pixel is fi∓1 in the

second-order case. Such schemes can be constructed using the same Taylor anal-

ysis as in the central difference case.

The second derivative shall now be used as an example in which to construct a

method of solution to a differential equation. The most general form for the 1d

differential function is

f ′′
i = αif

′
i + βifi + γi. (2.72)

The discrete derivatives can then be used to yield

(

−∆

2
αi − 1

)

fi−1 +

(
∆

2
αi − 1

)

fi+1 + (2 + ∆2βi)fi = −∆2γi. (2.73)

This equation can be solved in the form of a tri-diagonal matrix, soluble through

the use of boundary conditions: equation (2.73) is of the form

aiui−1 + biui + ciui+1 = di; (2.74)

which can be solved by constructing a matrix equation of the form












b1 c1 0

a1 b2 c2
. . . . . . . . .

cn−1

0 an bn























u1

u2
...

un−1

un












=












d1 − a1u1

d2
...

dn−1

dn − cnun












. (2.75)
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In the case of equation (2.72) this manifests as












2 + ∆2β1
∆
2
α1 − 1 0

−∆
2
α2 − 1 2 + ∆2β2

∆
2
α2 − 1

. . . . . . . . .
∆
2
αn−1 − 1

0 −∆
2
αn − 1 2 + ∆2βn












×












f1

f2
...

fn−1

fn












=












−∆2γ1 + e1

−∆2γ2
...

−∆2γn−1

−∆2γn + en












(2.76)

where the e1 and en terms determine the boundary conditions. This equation is

then solved by either direct or iterative methods, i.e., the Gauss-Seidel technique.

Since finite-difference methods are used for solving partial differential equations,

then in this sense there are a range of potential uses for finite differences in cos-

mology and related areas, ranging from quantum gravitational field equations

[201, 202, 203] to numerical relativity [204, 205, 206, 207] to studies of cosmo-

logical magnetohydrodynamics [208, 209] and beyond; anywhere that a partial

differential equation is featured, when there are boundary conditions available

and the solution can be made stable. In the e and b case, it is necessary instead to

perform the inverse operation, that of applying derivative operators to fields. It

is with this in mind that a more general finite-difference scheme is developed.

2.3.2 A General Finite-Difference Scheme

The following more general formalism shall be constructed to approximate the

derivatives at a single pixel (many of the results synthesized here come from pre-

vious expositions on finite differences [210, 211, 212, 213, 214]); in that sense the

weight vector wj (at fixed but unlabelled pixel i) shall be utilized instead of wij .

For the set of all pixels on a pixellated grid, the weight vector wj corresponds to

rows of wij .

A general finite-difference method, for any number of regular or irregular pixel

schemes can be derived using interpolating polynomials. In the Lagrange basis,
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a 1d polynomial interpolating a set of n datapoints can be written as

f(x) ≈
n∑

i=1

fiLi(x) (2.77)

where the fi are the datavalues at each point xi and the Lagrange basis polyno-

mial is

Li(x) =
∏

1≤j≤n;j 6=i

x− xj
xi − xj

, (2.78)

such that on a sample of n pixels







L1(x1) · · · Ln(x1)
...

...

Ln(x1) · · · Ln(xn)













f1
...

fn







=







f1
...

fn







(2.79)

where clearly Li(xj) = δij . It can be shown that for a given nondegenerate dis-

tribution of points, the Lagrange basis polynomial both exists and is unique. In-

terpolation problems over n pixels arranged on a 1d grid can often be expressed

using a geometric progression matrix, also called the ‘Vandermonde’ matrix:

v =







x01 · · · xn−1
1

...
...

x0n · · · xn−1
n







(2.80)

which is constructed by rewriting the interpolating polynomial in the monomial

basis, by a simple rearrangement of terms in equation (2.78):

Li = c1 + c2xi + · · · =
n∑

r=1

crx
r−1
i (2.81)

and then filling the rows of the matrix v as appropriate, such that







x01 · · · xn−1
1

...
...

x0n · · · xn−1
n













c1
...

cn







=







L1

...

Ln






. (2.82)

Using this, a scheme for approximating the derivatives of the interpolating poly-

nomial can be constructed; if equation (2.82) is written in the compact form

vc = L, noting that the positive definiteness of v implies that (v−1)T = (vT )−1,
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one can define a unique unspecified array α which solves the transpose equation

vTα = L, (2.83)

corresponding to the summation

Li =
∑

r=1

αrx
i
r. (2.84)

The linear equation for these interpolation weights is then







x01 · · · x0n
...

...

xn−1
1 · · · xn−1

n













α1

...

αn







=







L1

...

Ln






. (2.85)

By isolating a single pixel of interest, with position x, and replacing the positions

of the surrounding pixels xi with the position difference

∆i = xi − x (2.86)

one is led to an equation (with an unspecified array W )

v′ = WL′ (2.87)

defined in powers of ∆i







∆0
1 · · · ∆0

n
...

...

∆n−1
1 · · · ∆n−1

n













W1

...

Wn







=







0!L1

...

(n− 1)!L
(n−1)
1







(2.88)

which can be modified for calculating the differencing weights (where L
(n)
i is a

shorthand for the nth derivative of Li). The array v′ is referred here as the ‘dif-

ferenced Vandermonde’ array. Now consider a Taylor series more general than

equation (2.69) for the polynomial function L in order to modify equation (2.88)

for calculating differencing weights:

Li±n =
∞∑

r=0

(±∆n)
rL

(r)
i

r!
. (2.89)
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In a matrix format, since the summation is realistically limited to the (n − 1)th

derivative this is none other than







(±∆1)0

0!
· · · (±∆1)n−1

(n−1)!
...

...
(±∆n)0

0!
· · · (±∆n)n−1

(n−1)!













L
(0)
i
...

L
(n−1)
i







=







Li±1

...

Li±n






. (2.90)

By inverting this matrix equation, one can calculate each of the derivatives of the

polynomial L. It is then clear that in order to isolate a particular derivativem, one

must append the left-hand-side of the inverted equation with a Kronecker delta

thus:







0!L
(0)
i δ0,m
...

(n− 1)!L
(n−1)
i δn−1,m







=







(±∆1)
0 · · · (±∆1)

n−1

...
...

(±∆n)
0 · · · (±∆n)

n−1







−1





Li±1

...

Li±n







(2.91)

where the array (±v′T )−1 has been made use of. Correspondingly, equation (2.88)

is modified for the same purpose:







∆0
1 · · · ∆0

n
...

...

∆n−1
1 · · · ∆n−1

n













w
(m)
1
...

w
(m)
n







=







L1δm,0
...

(n− 1)!L
(n−1)
1 δm,n−1







(2.92)

in order to separate out the derivative of interest. By extension, replacing the

Kronecker term via δm,r → δm||m′,r which evaluates to 1 if either m or m′ is equal

to r, will calculate the weights required to compute the summed derivative L(m)+

L(m′). Thus the array W is related to the vector weights w(m) by

Wi =
n−1∑

j=0

w
(j)
i . (2.93)

One can then solve for the weight vector by isolating the derivative polynomial of

choice. For example, the central difference system for a regular grid where ∆ = 1

can be obtained from






1 1 1

−1 0 1

1 0 1











w
(1)
0

w
(1)
1

w
(1)
2




 =






0

1

0




 (2.94)
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or a backward difference equation for the second derivative via






1 1 1

0 1 2

0 1 4











w
(2)
0

w
(2)
1

w
(2)
2




 =






0

0

2




 (2.95)

with results in agreement with the known results. A range of standard regular

finite-difference weights is displayed in Table 2.1.

Table 2.1: 2-, 3-, and 4-point equidistant first-order difference equations.

Points 2-step 1-step Central 1-step 2-step
backward backward forward forward

2 — Fi−Fi−1

∆
— Fi+1−Fi

∆
—

3 −3Fi−2+4Fi−1−Fi

2∆
— Fi+1−Fi−1

2∆
— Fi−4Fi+1+3fi+2

2∆

4 −2Fi−2−3Fi−1+6Fi−Fi+1

6∆
— — — Fi−1−6Fi+3Fi+1+2Fi+2

6∆

The extension of this to an irregular grid merely requires the reparameterization

∆ij = xj − xi. (2.96)

So for the derivatives at a pixel i one solves







∆0
i,1 · · · ∆0

i,n
...

...

∆n−1
i,1 · · · ∆n−1

i,n













w
(m)
i,1
...

w
(m)
i,n







=







0!δm,0
...

(n− 1)!δm,n−1






. (2.97)

A general solution to this set-up for a derivative of order m can be determined

by constructing the LU decomposition (see section 3.2) of the inverse of the trace

of the Vandermonde matrix into lower- and upper-triangular arrays Λ and Υ re-

spectively:

(vT )−1 = ΛΥ (2.98)
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where

Λ =









1 −x1 x1x2 −x1x2x3 . . .

0 1 −(x1 + x2) x1x2 + x2x3 + x3x1 . . .

0 0 1 −(x1 + x2 + x3) . . .
...

...
...

...
. . .









Υ =









1 0 0 . . .
1

x1−x2
1

x2−x1
0 . . .

1
(x1−x2)(x1−x3)

1
(x2−x1)(x2−x3)

1
(x3−x1)(x3−x2)

. . .
...

...
...

. . .









.

(2.99)

The analogous decomposition for the differenced Vandermonde matrix leads to

the general solution for an n-point finite-difference scheme in 1 dimension

w
(m)
ij =

(∂∆)
m
[
∏n

l=1,pl 6=i
∆p1j · · ·∆plj

]

∏n
k=1,k 6=i(∆ij −∆kj)

(2.100)

where i is the focal pixel and j denotes weights applied to the stencil pixels and

the following operator has been defined:

∂∆ =
n∑

j=1

∂∆ij
(2.101)

yielding for example

∂xx,4−ptf
i =

2(∆i2 +∆i3 +∆i4)

(∆i1 −∆i2)(∆i1 −∆i3)(∆i1 −∆i4)
f 1

+
2(∆i1 +∆i2 +∆i4)

(∆i2 −∆i1)(∆i2 −∆i3)(∆i2 −∆i4)
f 2

+
2(∆i1 +∆i3 +∆i4)

(∆i3 −∆i1)(∆i3 −∆i2)(∆i3 −∆i4)
f 3

+
2(∆i1 +∆i2 +∆i3)

(∆i4 −∆i1)(∆i4 −∆i2)(∆i4 −∆i3)
f 4.

(2.102)

If the determinant of an n-point Vandermonde array is labelled Det[v]n, then by

utilizing standard linear algebra techniques it can be shown that

Det[v]n =
n∏

j=2

(xj − x1)Det[v]n−1. (2.103)
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By iteration, the determinant of the Vandermonde array is then

Det[v]n =
n∏

1≤i<j≤n

(xj − xi) (2.104)

which, for a given unknown xj , with positions xi known, is precisely the fac-

torised interpolating polynomial. It can then be seen that the Lagrange polynomi-

als can be identified with the determinants for Vandermonde arrays determined

by the pixel sample surrounding pixel j (where the n has been dropped):

Li(xj) =
Det[vi]

Det[v]

∣
∣
∣
∣
j

, (2.105)

where the subscripts on v indicate that the Vandermonde matrix defined at pixel

j has the column i replaced by a column of undetermined values for x, i.e., for

the 1-dimensional case

v2 =










x01 x0 x03 · · · x0n
...

...
...

. . .
...

...
...

...
. . .

...

xn−1
1 xn−1 xn−1

3 · · · xn−1
n










, (2.106)

since the Lagrange polynomial is merely the weighted sum of the unique polyno-

mials at each point on the grid. Thus in the d-dimensional case, one would also

have

fj ≈
n∑

i

fi
Det[v

(d)
i ]

Det[v(d)]

∣
∣
∣
∣
∣
j

(2.107)

where the correct form of the d-dimensional geometric array has yet to be speci-

fied. One corollary of the interpolating polynomial being in the form of a geomet-

ric array is that one can immediately test for the existence of a unique polynomial

(in the powers that have been specified in the geometric array) with roots at each

pixel. Such a polynomial does not exist if the geometric array is singular. The con-

struction of higher-dimensional geometric arrays can start with the construction

of the regular d-dimensional array using the tensor product

v(d)reg =

d
︷ ︸︸ ︷
vreg ⊗ · · · ⊗ vreg (2.108)

and then following the generalizations to irregular grids equivalent to those con-
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structed for the 1-dimensional case. Since one can define the solutions to the

geometric array equations in terms of the determinants and minors of the geo-

metric arrays, the general solutions for the construction of the derivative weights

in d dimensions as functions of the determinant of v′ can be written as

w
(ma)
ij =

(∂∆a)maP
(d)
ij

Det[v′(d)]
, (2.109)

where the derivative operator is

(∂∆a)ma =

×m1
︷︸︸︷

∂∆e1
· · ·

×md
︷︸︸︷

∂∆ed
(2.110)

with ∆a = (∆e1 ,∆e2 , · · · ,∆ed) the vector of position differences in each of the

dimensions ei, m
a the vector enumerating the derivative orders in each dimen-

sion and P (d) is a multinomial of ∆ which can be constructed from the (n − 1)th

minors of the n × n geometric array. The determinant is highly dependent on

the geometry specified by the geometric array; meanwhile, the polynomial P (d)

is determined from the minors as previously stated. The general solution is non-

trivial, and so has been left open in this text.

It is also necessary to determine the error on the terms. From the standard 1d

Taylor expansion, one has at truncation order n

Li±n =
n∑

r=0

(±∆n)
rL

(r)
i

r!
+Rn+1 |Rn+1| ≈

∆n+1
n L

(n+1)
i

(n+ 1)!
(2.111)

which can be generalized to d dimensions by utilizing the Hessian form of the

Taylor expansion

Li±1 = Li ±∆a∂aLi +
∆a∆b∂abLi

Nab

+ · · · (2.112)

where the summation convention is assumed, ∂ab··· are the partial derivative ten-

sors of Hessian type i.e., in 2 dimensions

∂a =

(

∂x

∂y

)

∂ab =

(

∂xx ∂xy

∂yx ∂yy

)

, (2.113)

and Nab··· is a numerical factor corresponding to the factorial terms in the expan-
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sion. It can then be shown that the leading order error is

Rn ∼ ∆a1···ad
n+1 ∂a1···adn+1 f(ζ)

Na1···ad
n+1

(2.114)

where ∆ is the difference tensor (in powers of its elements which mimic the Hes-

sian). From the 1d monomial expansion fi = cjv
ji, the differenced monomial

equation is

f
(i)
1 =

∞∑

n=0

Cn∆
n
i1

n!
(2.115)

with which can be yielded [212]

Rn ∼ detVik
(n+ 1)!

n∑

j

f (n+1)(ζ)∆n+1
ij

detVjk
(2.116)

with its d-dimensional generalization

Rn ∼ detVik
Na1···ad
n+1

n∑

j

∂a1···adn+1 f(ζ)∆a1···ad
n+1

detVjk
. (2.117)

From geometric and matrix-conditioning considerations the optimal error amongst

stencil arrangements is that for a regular grid, which on the general d-dimensional

finite-difference scheme for a square array is of order

δfdiff,i ∼ O
(

(
∏

i 6=j

∆ij)
1/d

)

, (2.118)

where O(∆2) is recovered for 1-point radius regular central schemes in d-

dimensions, or O(∆2n) for n-point radius regular central schemes. For non-

pathological functions such as polynomials, the accuracy of the differencing

scheme generally improves with the number of points used (Fig. 2.3).

Finally, there may yet be some value in using geometric arrays featuring inverse

powers. Whilst the Taylor series does not permit negative powers in the expan-

sion, the Laurent expansion [215] of a complex function

f(x) =
∞∑

n=−∞

an(x− b)n (2.119)

(where the an terms are constants and b is a point on the complex plane) does,

suggesting that one can deal with a pixel at a coordinate singularity by applying
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Figure 2.3: Accuracy δf(x) = fexact(x) − fcalc(x) of 2-, 3-, and 4-point finite-
difference schemes on regular and irregular 1d grids (positions on the grid are
denoted x0 ≤ x1 ≤ x2 ≤ x3, assuming existence), for a first-order derivative. The
test function f(x) = x5 is used, since there are less datapoints available in these
schemes than can specify the function exactly. The differences blow up only as
the coordinate variation produces degeneracy in the datapoints.

the hyperbolic part of the interpolation at that pixel. This would, for example,

correspond to the following algorithm for the differencing weights to approxi-

mate the first-order derivative on a 1d grid:






∆−1
1 ∆−1

2 ∆−1
3

1 1 1

∆1 ∆2 ∆3











w
(1)
0

w
(1)
1

w
(1)
2




 =






0

0

1




 . (2.120)

One might consider whether a more general method can be found, or whether

one can improve on the accuracy by utilizing a different method. More general

methods are constrained by the uniqueness theorem; this means that it is indeed

necessary to go beyond Lagrange interpolating polynomials if greater generality
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is required. Looking at the issue of accuracy, then of course at a given point one

can define a set of numerical weights which compute the derivative at that point

only, exactly. On a regular unbounded grid, the set of weights at each point on

the grid have to be identical to the set of weights at every other grid point if

the weights are dependent on the geometry alone. Again since the interpolating

polynomial is unique, then there can be no other general function-independent

weighting scheme in the Lagrange regime.

2.4 Departures from Gaussianity and Statistical

Isotropy in the e, b Approach

Inflation generically predicts large-scale B-modes, and scalar non-Gaussianity at

low levels. Non-Gaussianity in the CMB can be described by any number of

higher n-point statistics where n > 2, as discussed in the previous chapter. Since

density perturbations also invoke perturbations in the metric which manifest as

a primordial B-mode signal, one might expect to find non-Gaussianity in the

B-mode signal too. This would manifest itself in the real pseudo-scalar b-field.

Further, if an anomalous sky signal is detected one also may wish to continue the

analysis having removed the anomaly, by applying a further mask to what may

already be limited sky coverage. These considerations suggest it is necessary to

produce a method of studying non-Gaussianity on the masked sky, without the

internal (self-coupled) mode-mixing that masking entails.

The non-linear sources in inflation are often expressed in terms of the quantity

fNL. Since a primordial non-Gaussian signal is expected to be small compared

with the Gaussian signal, it will be necessary to deal with mode-mixing in the

higher n-point spectra.

Later it will be necessary to consider how to optimize the detection of any pri-

mordial B-mode signal. This also requires understanding the transfer of power

between multipoles due to the presence of the mask when taking the harmonic

transform. It can be shown that, in the regime where noise, instrumental and data

processing issues are negligible, the masked observed temperature spectrum and

underlying theoretical spectrum are related in the ensemble average by the trans-

fer matrix K [216]
〈

C̃l

〉

=
∑

l′

Kll′Cl′ (2.121)
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where Cl is the theoretical power spectum. The inverse of K can then be used to

invert the mode-coupling induced by a mask, which gives a quick method of esti-

mating the power spectrum; such an estimation provides a useful prior to speed

up the full MCMC calculations. In the next chapter, further comment will be

made on how to define an apodization scheme (a smoothing of the mask) which

yields a power spectrum which is as close as possible to the optimal spectrum.

First, Smith & Zaldarriaga [217] is followed to construct the transfer matrix for

the scalar fields, using the temperature anisotropy field as an analogue.

2.4.1 Scalar Mode-Transfer

In the pseudo-Cl formalism, the pseudo-multipoles are defined as

T̃lm =
∑

x

T (x)W (x)Y ∗
lm(x) (2.122)

for a mask W , with consequent pseudo-power spectrum

C̃TT
l =

1

2l + 1

∑

m

T̃ ∗
lmT̃lm. (2.123)

By adding noise, the expectation values of the pseudo spectra are given by

〈

C̃TT
l

〉

=
∑

l′

Kll′C
TT
l′ + ÑTT

l (2.124)

where the transfer matrix K will be calculated shortly. Adding noise is particu-

larly important in the polarization case, since the derivative operation biases the

noise by a factor ∼ l4 in harmonic space, leading to a blue noise spectrum which

dominates power at large l, unlike a white noise spectrum. The noise bias can

be computed exactly in cases where the noise is uncorrelated between pixels, or

by Monte Carlo in the general case. Unbiased power spectrum estimators can

be obtained from the pseudo-power spectra by simply subtracting the noise bias

and applying the inverse of the transfer matrix:

ĈTT
l ≡ K−1

ll′ (C̃
TT
l′ − ÑTT

l′ ). (2.125)

The preceding construction has assumed that the power spectrum is estimated

at every multipole l. For reasons of sky coverage and signal-to-noise ratios, it is

often necessary to bin multipoles into bandpowers with ∆l > 1. In this case, for
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each band β, one defines pseudo-bandpowers

C̃TT
β =

∑

l

PβlC̃
TT
l (2.126)

where the matrix P defines the l weighting within each bandpower estimator.

One can also introduce a matrix P̄lβ , which defines an interpolation scheme by

which the signal power spectra depend on the bandpowers:

CTT
l =

∑

β

P̃lβC
TT
β . (2.127)

The binned analogues are then

〈

C̃TT
β

〉

= Kββ′CTT
β′ + ÑTT

β′ ĈTT
β = K−1

ββ′(C̃
TT
β′ − ÑTT

β′ ). (2.128)

where Kββ′ is the transfer matric for the binned spectra. Now to construct the

standard transfer matrix. Starting from the unbinned estimator and utilizing the

following results for the correlation function and the Legendre polynomial

〈T (x)T (x′)〉 =
∑

l′

2l′ + 1

4π
Pl′(z)Cl′ , Pl(z) =

4π

2l + 1

∑

m

Y ∗
lm(x)Ylm(x

′) (2.129)

gives

1

4π

〈

C̃TT
l

〉

=
∑

x,x′,l′

(
2l′ + 1

4π

)

Pl′(z)Pl(z)W (x)W (x′)Cl′ . (2.130)

This is of the form

S =
∑

x,x′

W (x)F (z = x · x′)W (x′) (2.131)

which can be evaluated using F (z) =
∑

l FlPl(z):

S =
∑

l,x,x′

W (x)W (x′)FlPl(z) = 8π2

∫ 1

−1

ζWW (z)F (z) (2.132)

where

ζWW (z) =
1

4π

∑

l,m

|Wlm|2Pl(z). (2.133)
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Thus the transfer matrix is

Kll′ = 2π

∫ 1

−1

dzζWW (z)Pl(z)

(
2l′ + 1

4π

)

Pl′(z), (2.134)

which can also be written as

Kll′ =
2l′ + 1

4π

∑

l′′m′′

|Wl′′m′′ |2
(

l l′ l′′

0 0 0

)2

. (2.135)

2.4.2 E/B-Unmixing Counterterms

In the e/b formalism, the scalar fields obey the same transfer matrix for mode-

mixing as the temperature anisotropy. These fields are by construction pure. For

future discussion, and as an illustration of the mode-mixing issues, it will also

be instructive to calculate the transfer matrices for the E/B case. This is done in

the tensor formalism, which can be shown to be equivalent to the spin-weight

formalism — Smith [194] is followed in the construction of these terms. For E

and B mode estimators, the mode-transfer equation becomes





〈

C̃EE
l

〉

〈

C̃BB
l

〉



 =
∑

l′

(

K+
ll′ K−

ll′

K−
ll′ K+

ll′

)(

CEE
l′

CBB
l′

)

+

(

ÑEE
l′

ÑBB
l′

)

. (2.136)

In order to yield pure B-modes (without worrying about the purity in E), one

inverts thus:

(

ĈEE
l

ĈBB,pure
l

)

=
∑

l′

(

K+
ll′ K−

ll′

K−,pure
ll′ K+,pure

ll′

)−1(

C̃EE
l′ − ÑEE

l′

C̃BB
l′ − ÑBB,pure

l′

)

. (2.137)

To compute K±,pure
ll′ one extends the scalar formalism; this includes the following

vector and tensor weight components computed as the sum of combinations of
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terms denoted with (α, β) ∈ {W,X, Y,Q, U}:

S = 8π2

∫ 1

−1

dz

combins∑

α,β

ζαβfαβ

=
∑

xx′

(

W (x) W a(x) W bc(x)
)

F (x, x′)






W (x)

W a′(x′)

W b′c′(x′)






=
∑

lm

(

Wlm WG
lm WE

lm

)






FWW
l FWG

l FWE
l

FWG
l FGG

l FGE
l

FWE
l FGE

l FEE
l











W ∗
lm

WG∗
lm

WE∗
lm






+
(

WC
lm WB

lm

)
(

FCC
l FCB

l

FCB
l FBB

l

)(

WC∗
lm

WB∗
lm

)

(2.138)

where parity-invariance is assumed and

Wa = ∇aW, Wab =
(

∇a∇b −
gab
2
∇2
)

W. (2.139)

In the tensor formalism, the pure pseudo-B modes are

√

(l + 2)!

(l − 2)!
b̃lm =

∑

x

2P ab(x)W (x)Y B∗
(lm)ab(x)

+N ′
l

∑

x

2T abcdPab(x)Wc(x)Y
C∗
(lm)d(x)

+Nl

∑

x

2T abcdPab(x)Wcd(x)Y
∗
lm(x)

(2.140)

with Tabcd = (ǫacgbd + ǫadgbc + ǫbcgad + ǫbdgac)/4, normalization terms Nl =

1/
√

(l − 1)l(l + 1)(l + 2) and N ′
l = 2/

√

(l − 1)(l + 2), and similarly the pure E-

modes are defined by replacing the harmonic terms in the above equation using

B → E and C → G. The grad and curl decompositions of the tensor spherical

harmonics are

Y E
(lm)ab =

(−∇a∇b +
gab
2
∇2)Ylm

√

(l − 1)l(l + 1)(l + 2)
Y B
(lm)ab =

( ǫac
2
∇c∇b +

ǫbc
2
∇c∇a)Ylm

√

(l − 1)l(l + 1)(l + 2)

Y G
(lm)a =

∇aYlm
√

l(l + 1)
Y C
(lm)a = − ǫab∇bYlm

√

l(l + 1)
.

(2.141)
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Computing the F -matrix

F (x, x′) =
2l′ + 1

π(2l + 1)

(

R22
l′ (z)Q

deQ′d′e′ +Q22
l′ (z)U

deU ′d′e′
)

×
∑

m






Y B∗
(lm)de

N ′
lT

f
deaY

G∗
(lm)f

NlTdebcY
∗
lm






(

Y ′B
(lm)d′e′ N ′

lT
f ′

d′e′a′Y
G
(lm)f ′ NlTd′e′b′c′Ylm

)

(2.142)

yields for the transfer arrays

K+,pure
ll′ = 2π

∫ 1

−1

dz

(
2l′ + 1

4π

)

(AlQ
22
l′ (z) + BlR

22
l′ (z))

K−,pure
ll′ = 2π

∫ 1

−1

dz

(
2l′ + 1

4π

)

(AlR
22
l′ (z) + BlQ

22
l′ (z)),

(2.143)

where the K−,pure
ll′ term is non-zero since we are not purifying both E and B, and

Al = ζWWQ22
l 2Nlζ

WQP 02
l +N ′2

l (ζ
XXQ11

l + ζY YR11
l )

−2N ′
lζ
WXQ12

l +−2NlN
′
lζ
XQP 01

l +N2
l ζ

QQP 00
l

Bl = ζWWR22
l +N ′2

l (ζ
XXR11

l + ζY YQ11
l )

−2N ′
lζ
WXR12

l − 2NlN
′
lζ
Y UP 01

l +N2
l ζ

UUP 00
l .

(2.144)

The exact form of the ζ , Ql, Rl, Q
ab and Uab terms given are not of great impor-

tance in this chapter (they can be found in section 3.5), but do highlight that the

calculation of the mode-transfer matrices directly from the tensor fields is much

more involved than the scalar case. Finally, the noise is given by

ÑEE
l =

∑

x

σ2(x)

4π
W (x)2

ÑBB,pure
l =

∑

x

σ2(x)

4π

(
W (x)2 +N ′2

l Wa(x)W
a(x) + 2N2

l Wbc(x)W
bc(x)

)
.

(2.145)

To take a more general approach, the transfer matrices can be written thus:






C̃TT
l

C̃EE
l

C̃BB
l




 =

∑

l′






KTT
ll′ 0 0

0 K++
ll′ K−−

ll′

0 K−−
ll′ K++

ll′











CTT
l′

CEE
l′

CBB
l′




 (2.146)
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where the notation has been altered slightly, using K+
ll′ → K++

ll′ and K−
ll′ → K−−

ll′ ;

this set of arrays is actually part of a 3-dimensional linear equation where another

non-zero slice is given by






C̃EB
l

C̃TE
l

C̃TB
l




 =

∑

l′






K+−
ll′ 0 0

0 KT+
ll′ KT−

ll′

0 KT−
ll′ KT+

ll′











CEB
l′

CTE
l′

CTB
l′




 . (2.147)

with couplings between the EE, BB and EB terms also non-zero. The pure

scalar-field formalism then moves to a diagonalized basis






C̃TT
l

C̃ee
l

C̃bb
l




 =

∑

l′






KTT
ll′ 0 0

0 KTT
ll′ 0

0 0 KTT
ll′











CTT
l′

Cee
l′

Cbb
l′











C̃eb
l

C̃Te
l

C̃Tb
l




 =

∑

l′






KTT
ll′ 0 0

0 KTT
ll′ 0

0 0 KTT
ll′











Ceb
l′

CTe
l′

CTb
l′




 ,

(2.148)

meaning that there is no need to perform the tedious calculation of the spin-

mixing terms for the cross-spectra, trivializing mode-mixing issues in the case

of the TB modes that would betray chirality in the gravitational sector.

2.4.3 Higher-Order Spectra

Having constructed a set of real scalar and pseudo-scalar fields analogous to the

pure E- and B-modes, one is in the unique position of being able to consider

constructing optimal estimators for the higher n-point polarization spectra, since

phase information is no longer automatically discarded unlike the Smith & Zal-

darriaga method. Starting with the bispectrum, an unbiased estimator is given

by [218]

B̂ll′l′′ =
∑

all m

(

l l′ l′′

m m′ m′′

)

almal′m′al′′m′′ . (2.149)

Analogously to the angular power spectrum, one can postulate a rank-6 tensor

that maps in the average between pseudo- and full-sky bispectra. It is then neces-

sary to perform the same mode-transfer analysis on the bispectrum, if one wishes

to avoid ambiguity in the sensitive results for 3-point non-Gaussianity. In partic-
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ular, one wishes to calculate the transfer tensor K used in

〈

B̃ll′l′′

〉

=
∑

LL′L′′

KTT
ll′l′′LL′L′′BLL′L′′ (2.150)

and then optimize. In fact, the formalism is readily generalizable to any n-point

correlation function in harmonic space. By extension, for the pseudo-n-spectrum

Ñl1···ln , the harmonic transform of the n-point correlation function, mode-mixing

between polarization modes of one type can be given by

(

ÑE···E
l1···ln

ÑB···B
l1···ln

)

=
∑

l′

(

K++
l1···lnl′1···l

′
n

K−−
l1···lnl′1···l

′
n

K−−
l1···lnl′1···l

′
n

K++
l1···lnl′1···l

′
n

)(

NE···E
l′1···l

′
n

NB···B
l′1···l

′
n

)

, (2.151)

where the number of elements in li depends on the points n in the n-point spec-

trum. By including polarization, a general estimator for the temperature and

polarization bispectrum signal can then be written as [219]

Ŝ =
∑

ijk

∑

{lm}

W ijk
{lm}a

i
l1m1

ajl2m2
akl3m3

(2.152)

where the i, j, k indices refer to the T , E, B parameters and W is some well-

chosen weight function, defined in terms of the covariance matrix of the possible

bispectra. This quantity S is the radial integral of a cubic combination of the

scalar potentials. Further analysis provided by [220] yields an unbiased estimator

for the local fNL, linearly related to Ŝ. Meanwhile, Shiraishi et al [221] provide

the theoretical bispectra for the CMB temperature and polarization sourced from

non-Gaussianity in the vector and tensor modes.

As an alternative estimator for 3-point functions, one may consider [100, 222] the

skew-spectrum estimator

CXY,Z
l =

∑

l1l2

BXY Z
l1l2l

√

(2l1 + 1)(2l2 + 1)

4π(2l + 1)

(

l1 l2 l

x+ y 0 −(x+ y)

)

, (2.153)

where x, y and z enumerate the spins of the fields X , Y and Z. This is then

a two-point statistic for correlations between 2-point and 1-point anisotropies,

containing compressed information from the bispectrum with the advantage of

ease of calculation. Again, the advantage of the scalar field formalism will be the

simplicity in which the mode-mixing arrays can be constructed. The basis for this

compact spectrum is to consider that the bispectrum will be related to the power

spectrum of the products of two fields with a third, i.e., by utilizing the integrated



2.4. DEPARTURES FROM GAUSSIANITY AND STATISTICAL

ISOTROPY IN THE E, B APPROACH 115

product for spin-weighted harmonics, or spin-weighted Gaunt integral

s1s2s3Gm1m2m3

l1l2l3
=

∫

s1Yl1m1
(Ω)s2Yl2m2

(Ω)s3Yl3m3
(Ω)dΩ

=

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3

−s1 −s2 −s3

)(

l1 l2 l3

m1 m2 m3

)

(2.154)

and the addition properties of spin-weight

aA = bBcC ⇒ a = b+ c (2.155)

one can express the harmonic coefficients of the products of the fields A, B and C

(with spin-weights a, b and c) in terms of the 2-to-1, or skew, spectrum

CAB,C
l =

1

2l + 1

∑

m

(AB)lmC
∗
lm (2.156)

which clearly involves averages over three-point correlations. In the presence of

a mask, these results generalize to

(ABw)lm =
∑

limi

(−1)l
′

Al1m1
Bl2m2

wl3m3

√

(2l1 + 1)(2l2 + 1)(2l + 1)

4π

×
(

l1 l2 l′

a b −(a+ b)

)(

l1 l2 l′

m1 m2 −m

)

−(a+b),0,a+bGm
′m3m

l′l3l

(Cw)lm =
∑

limi

Cl1m1
wl2m2−c0cGm1m2m

l1l2l

(2.157)

such that the pseudo-skew-spectrum is

ĈAB,C
l =

1

2l + 1

∑

m

(ABw)lm(Cw)
∗
lm =

∑

l′

Kab,c
ll′ CAB,C

l′ (2.158)

which relates to the full-sky spectrum by the mode-coupling term K. The mode-

coupling matrix with spin-mixing discounted is then given by

Kab,c
ll′ =

1

4π

∑

l′′

(2l′+1)(2l+1)

(

l l′′ l′

a+ b 0 −(a+ b)

)(

l l′′ l′

c 0 −c

)

wl′′ . (2.159)
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Similarly, analogous calculations for the bispectrum can be performed. The ex-

pectation value of the angle-averaged pseudo-bispectrum can be defined as

〈

B̃l1l2l3

〉

=
∑

all m

(

l1 l2 l3

m1 m2 m3

)
〈

T̃l1m1
T̃l2m2

T̃l3m3

〉

, (2.160)

which describes triangular associations in the sky. For l . 50 with 32-bit accuracy

this can be calculated exactly; beyond that numerical errors creep in requiring

that one instead calculates

B̃l1l2l3 =

(

l1 l2 l3

0 0 0

)−1 ∫

ẽl1 ẽl2 ẽl3dΩ, (2.161)

where

el(n̂) =

√

4π

2l + 1

∑

m

almYlm(n̂) (2.162)

is the azimuthally-averaged harmonic transform. It is also possible to utilize the

reduced bispectrum bl1l2l3 , which is related to the full and angle-averaged bispec-

tra by:

Bm1m2m3

l1l2l3
= Gm1m2m3

l1l2l3
bl1l2l3

Bl1l2l3 =

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3

0 0 0

)

bl1l2l3 .
(2.163)

In some sense, the reduced bispectrum is more useful than the angle-averaged

bispectrum since it is approximately equal to the theoretical bispectrum in the

flat-sky limit. However, this is not a concern here since moving between for-

malisms is trivial. Since the expectation value of the angle-averaged pseudo-term

is related to the true values by equation (2.150), it is necessary to calculate the har-

monic correlation term; expanding harmonic coefficients gives

T̃l1m1
T̃l2m2

T̃l3m3
=

∫ ∫ ∫

T (Ω)T (Ω′)T (Ω′′)W (Ω)W (Ω′)W (Ω′′)

×Y ∗
l1m1

(Ω)Y ∗
l2m2

(Ω′)Y ∗
l3m3

(Ω′′)dΩdΩ′dΩ′′,

(2.164)

and expanding the T and W terms into harmonic coefficients again gives

〈

T̃l1m1
T̃l2m2

T̃l3m3

〉

=
∑

all LMlm

(

l l′ l′′

m m′ m′′

)

WMM ′M ′′

LL′L′′ Bll′l′′GMmm1

Lll1
GM ′m′m2

L′l′l2
GM ′′m′′m3

L′′l′′l3

(2.165)
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where WMM ′M ′′

LL′L′′ is the bispectrum of the mask. The transfer tensor is then

Kl1l2l3ll′l′′ =
∑

all LMm

(

l l′ l′′

m m′ m′′

)

WMM ′M ′′

LL′L′′ GMmm1

Lll1
GM ′m′m2

L′l′l2
GM ′′m′′m3

L′′l′′l3
. (2.166)

As with the bispectrum, the trispectrum can be decomposed into ‘two-to-two’

and ‘three-to-one’ power spectra, where mode-coupling must be determined for

each. Calculation of 2n-point spectra should be carefully analysed, since Gaus-

sianity imprints a signal on them that it does not on the 2n + 1-point spectra.

General estimators for the full trispectrum have been proposed in Regan et al

[223]; the identification of shapes with which to measure higher-order non-linear

perturbations such as gNL, τNL follows the same flavour of problems as finding

an optimal shape for measuring fNL; Kamionkowski et al [224] provide an argu-

ment that the trispectrum can contribute additional information on fNL, which

by extension may imply the usefulness of arbitrarily higher order estimators.

In this sense, it should be possible to exclude masking leakage between polar-

ization n-point spectra which would further rigorize detection methods for non-

Gaussian signals (and allow for a more accurate statement on the nature of that

non-Gaussianity). The full wealth of inflation-model-discriminating data could

be harnessed by a clean combination of harmonic n-point spectra across all tem-

perature and polarization variables.

A general account of scalar mode-coupling matrices for (α + β)-to-1 spectra

(where points on the sky have been compacted to correlation spectra between

α coupled points and β coupled points)

〈A1 · · ·Aα, B1 · · ·Bβ〉 , (2.167)

and extended to multipolar spectra, is now provided. It should be clear that all

bi- and trispectra (and higher combinations) are a subset of the (α+ β + · · · )-to-n

spectra since one can reduce a given n-point spectrum to a variety of combina-

tions of lower-order point-correlation spectra. To perform the calculation one also

needs the n-point integral

Gm1···mn

l1···ln
=

∫

Yl1m1
· · ·Ylnmn

dΩ (2.168)
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which is evaluated by reduction of the integral to products of a smaller number

of harmonics using the Clebsch-Gordon expansion

Yl1m1
· · ·Ylnmn

=
∑

Ln

BLn
YLnMn

BLn
=

√
4π

2Ln + 1

∑

L1···Ln−1,M1···Mn−1

n∏

i=1

(√

2li + 1

4π
CLi0
Li−10li0

CLiMi

Li−1Mi−1limi

)

,

(2.169)

where the Clebsch-Gordon coefficients are related to the Wigner 3lm symbols by

C l3m3

l1m1l2m2
= (−1)l1−l2+m3

√

2l3 + 1

(

l1 l2 l3

m1 m2 −m3

)

, (2.170)

and a slight variation on the integral by making a substitution

Ylnmn
→ Y ∗

lnmn
Gm1···mn

l1···ln
→ Gm1···m∗

n

l1···l∗n
Y ∗
lnmn

= (−1)mYl1,−m1
(2.171)

where the star indicates in G which harmonic term has been conjugated. The

harmonic expansion of n coupled scalar fields is then

(A1 · · ·An)lm =
∑

li

A
(1)
l1m1

· · ·A(n)
lnmn

Gm1···mnm∗

l1···lnl∗
(2.172)

which, when in the presence of a mask W is

(A1 · · ·AnW )lm =
∑

li

A
(1)
l1m1

· · ·A(n)
lnmn

Wlnmn
Gm1···mn+1m∗

l1···ln+1l∗
. (2.173)

The (α + β)-point pseudo-power spectrum is then

〈

C̃
A1···Aα,B1···Bβ

l

〉

=
1

2l + 1

∑

m

(A1 · · ·AαW )lm (B1 · · ·BβW )∗lm

=
∑

l′

K
A1···Aα,B1···Bβ

ll′ C
A1···Aα,B1···Bβ

l

(2.174)

where the (α + β)-point theoretical power spectrum is

C
A1···Aα,B1···Bβ

l =
1

2l + 1

∑

m

(A1 · · ·Aα)lm (B1 · · ·Bβ)
∗
lm (2.175)



2.4. DEPARTURES FROM GAUSSIANITY AND STATISTICAL

ISOTROPY IN THE E, B APPROACH 119

and, from the spin-weight addition theorem, the transfer matrix is

K
A1···Aα,B1···Bβ

ll′ =
1

4π

∑

l′′

(2l′ + 1)(2l′′ + 1)

(

l l′′ l′

0 0 0

)2
∑

m′′

|Wl′′m′′ |2 (2.176)

which is the same as for the standard power spectrum. The same spin-addition

properties will mean that all the scalar decompositions of n-point spectra into

bispectral (and trispectral and so on) compactifications will also have the same

form as their standard temperature n-point counterpart.

It now makes sense to generalize the mode-coupling matrices for the standard

bispectra, trispectra and other n-point spectra. For the scalar n-spectra Nl1···ln , by

following the derivation as for the scalar bispectrum it can be shown that

〈

T̃l1m1
· · · T̃lnmn

〉

=
∑

LMΛµ

NΛ1···Λn
Rµ1···µn

Λ1···Λn
WM1···Mn

L1···Ln
GM1µ1m1

L1Λ1l1
· · · GMnµnmn

LnΛnln
, (2.177)

where the rotation-coupling term Rµ1···µn
Λ1···Λn

can be calculated from the product of

n Wigner D-functions using the generalized Clebsch-Gordan expansion (p.85,

[225]), such that the mode-coupling tensor is

Kl1···lnΛ1···Λn
=

∑

LMΛµm

Rµ1···µn
Λ1···Λn

WM1···Mn

L1···Ln
GM1µ1m1

L1Λ1l1
· · · GMnµnmn

LnΛnln
. (2.178)

These are then the tools for calculating the mode-coupling for almost any given

type of scalar spectrum, with any given type of compactification. What remains

are the multipolar harmonics for the tensor product of p 2-spheres S2, starting

with the bipolar (p = 2) harmonics. The bipolar harmonics

Υl1l2
LM(Ω1,Ω2) ≡ {Yl1(Ω1)⊗ Yl2(Ω2)}LM =

∑

mi

CLM
l1m1l2m2

Yl1m1
(Ω1)Yl2m2

(Ω2) (2.179)

can be used to constrain deviations from statistical isotropy [226, 227] since they

provide a fuller description of the correlation matrix between fields A and B

CAB(Ω1,Ω2) =
∑

l1l2LM

(AB)LMl1l2 Υ
l1l2
LM(Ω1,Ω2) (2.180)

where the harmonic coefficients are given by

(AB)LMl1l2 =

∫ ∫

CAB(Ω1,Ω2)Υ
l1l2∗
LM (Ω1,Ω2)dΩ1dΩ2 (2.181)
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which then define the bipolar power spectrum:

κABCDL =
∑

l1l2M

(AB)LMl1l2 (CD)LM∗
l1l2

. (2.182)

These harmonics obey the following orthogonality relation:

∫ ∫

Υl1l2
LM(Ω1,Ω2)Υ

l′1l
′

2∗

L′M ′(Ω1,Ω2)dΩ1dΩ2 = δl1l′1δl2l′2δLL′δMM ′ . (2.183)

The pseudo-bipolar spectrum is then

κ̃ABCDL =
∑

l1l2M

(ÃB)LMl1l2 (C̃D)LM∗
l1l2

(2.184)

where the mask is introduced via

(ÃB)LMl1l2 =

∫ ∫

CAB(Ω1,Ω2)W
AB(Ω1,Ω2)Υ

l1l2∗
LM (Ω1,Ω2)dΩ1dΩ2 (2.185)

since the full correlation mask is the pixelwise product of the masks used on both

spheres. This yields

κ̃ABCDL =
∑

l1l2M

∫ ∫ ∫ ∫

CAB(Ω1,Ω2)W
AB(Ω1,Ω2)Υ

l1l2∗
LM (Ω1,Ω2)

×CCD(Ω3,Ω4)W
CD(Ω3,Ω4)Υ

l1l2
LM(Ω3,Ω4)dΩ1dΩ2dΩ3dΩ4.

(2.186)

Again, taking the pixelwise product of the mask (where Ω′ is the pixelwise prod-

uct of Ω1 and Ω2, and Ω′′ is the pixelwise product of Ω3 and Ω4) and then decom-

posing it into harmonics

WABCD(Ω′,Ω′′) ≡ WAB(Ω1,Ω2)W
CD(Ω3,Ω4) =

∑

l′1l
′

2L
′M ′

WL′M ′

l′1l
′

2
Υ
l′1l

′

2

LM(Ω′,Ω′′) (2.187)

allows one to separate out the mask term by integrating the harmonics using the

Clebsch-Gordon series for bipolar harmonics:

Υ
l′1l

′

2

L′M ′(Ω1,Ω2)Υ
l′′1 l

′′

2

L′′M ′′(Ω1,Ω2) =
∑

LM

CLM
L′M ′L′′M ′′

∑

l1l2

Bl1l2L
l′1l

′

2L
′l′′1 l

′′

2L
′′Υ

l1l2
LM(Ω1,Ω2) (2.188)
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with

Bl1l2L
l′1l

′

2L
′l′′1 l

′′

2L
′′ =

√

(2l′1 + 1)(2l′2 + 1)(2l′′1 + 1)(2l′′2 + 1)

(4π)2

×
√

(2L′ + 1)(2L′′ + 1)C l10
l′10l

′′

1 0
C l20
l′20l

′′

2 0







l′1 l′′1 l1

l′2 l′′2 l2

L′ L′′ L







,

(2.189)

where use has been made use of the Wigner 9j-symbol. The multipolar harmonics

are formed from the nested irreducible tensor product

{Yl1(Ω1)⊗ {· · · ⊗ Ylp(Ωp)}lp−1,p
}LM

=
∑

mi

CLM
l1m1lXmX

· · ·C lX lX
lp−1mp−1lpmp

Yl1m1
(Ω1) · · ·Ylpmp

(Ωp)
(2.190)

and allow a variety of coupling schemes; these have not yet found a use

within cosmology but could be used for enumerating the violation of statistical

anisotropy within each non-Gaussian term, and are included for completeness.

The construction of coupling matrices is identical to that of the bispectrum, with

the decomposition requiring only larger products of 9j-symbols. For example, for

the tripolar harmonics Υl1l2l3
ΛLM(Ω1,Ω2,Ω3) ≡ {Yl1(Ω1)⊗ {Yl2(Ω2)⊗ Yl3(Ω3)}Λ}LM the

decomposition is

Υ
l′1l

′

2l
′

3

Λ′L′M ′(Ω1,Ω2,Ω3)Υ
l′′1 l

′′

2 l
′′

3

Λ′′L′′M ′′(Ω1,Ω2,Ω3)

=
∑

LM

CLM
L′M ′L′′M ′′

∑

l1l2l3Λ

Bl1l2l3ΛL
l′1l

′

2l
′

3Λ
′L′l′′1 l

′′

2 l
′′

3Λ
′′L′′Υ

l1l2l3
ΛLM(Ω1,Ω2,Ω3)

(2.191)

with

Bl1l2l3ΛL
l′1l

′

2l
′

3Λ
′L′l′′1 l

′′

2 l
′′

3Λ
′′L′′ = (4π)−3/2

√

(2l′1 + 1)(2l′2 + 1)(2l′′1 + 1)(2l′′2 + 1)(2l′′3 + 1)

×
√

(2l′′3 + 1)(2L′ + 1)(2L′′ + 1)(2Λ + 1)(2Λ′ + 1)(2Λ′′ + 1)

×C l10
l′10l

′′

1 0
C l20
l′20l

′′

2 0
C l30
l′30l

′′

3 0







l′1 l′′1 l1

Λ′ Λ′′ Λ

L′ L′′ L













l′2 l′′2 l2

l′3 l′′3 l3

Λ′ Λ′′ Λ







.

(2.192)

It should also be clear how coupling matrices for the variety of possible nestings

and compactifications of all of the spectra summarised thus far could be con-

structed.
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2.5 Where are the Defects?

In discussing the elegant symmetry-breaking phenomena ubiquitous in quantum

fields, short work was made of the appearance of cosmic defects. If spontaneous

symmetry-breaking really is the driving force behind the observed cosmology

then all of its consequences must be expected. In this sense it can be viewed

as surprising that, to date, nothing bar some tentative claims of defect detection

have been made [88]. In the following a new method shall be presented with

which one may attempt to detect such defects, complementary to the methods in

the previous section for studying non-Gaussianity in maps.

2.5.1 The Laplacian-Difference Method for Detecting Defects

In chapter 1, it was discussed how defects were seen initially as a viable agent for

cosmic structure; the crucial difference between defect-dominated structure for-

mation and inflation-dominated structure formation is in the difference between

adiabatic and isocurvature modes in the fluctuation spectrum. The WMAP-

measured TE spectrum (Fig. 1.1) essentially rules out defects as the key compo-

nent of structure formation, favouring inflation. Ignoring the caveats in reheat-

ing, inflation is an excellent mechanism for why no defects have been detected

at all, by diluting them away. Despite dilution by inflation it is not unreasonable

to expect to be able to detect at least one defect, such as a cosmic string, if they

exist. The various phenomena which contribute to the formulation of detection

methods are recounted; the focus is on those provided by cosmic strings.

First, defects could be revealed in the gravitational wave spectra as they radiate

away their energy. This is a task forE/B decomposition at high-l, and will be cou-

pled to the lensing properties of the strings. Since it was previously mentioned

that for polarization scalar modes only generateE-modes, vector fluctuations cre-

ate a strong B field and tensor fluctuations create E- and B-modes of a similar

magnitude, it can be seen that small-scale B-modes from strings would be much

larger than those from inflationary models. Second, strings should contribute to

non-Gaussianity in the microwave sky via the Kaiser-Stebbins effect. The Kaiser-

Stebbins effect [92], the cosmological manifestation of a discontinuous tempera-

ture gradient, is a well-known result of the presence of defects in the CMB such as

cosmic strings; line discontinuities in the CMB temperature anisotropy field form

from photons passing on opposite sides of a moving long string (Fig. 2.4). On suf-

ficiently small scales the signal from string networks would be non-Gaussian, but

on scales larger than the characteristic inter-string separation at radiation-matter
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equality, those CMB temperature perturbations resulting from superposition of

effects of many strings would be Gaussian.

For cosmic strings, the Kaiser-Stebbins temperature decrement is given by

δT

T
= 8πGµγsvs · (s× k) (2.193)

where γs is the Lorentz factor for the string segment, vs is the string segment ve-

locity, s the segment orientation and k the line of sight vector. The string tension is

described by the dimensionless term Gµ, which encodes much of the interesting

string physics.

Figure 2.4: The Kaiser-Stebbins decrement [85]; a discontinuity in the microwave
sky (left-hand diagram, discontinuous patch scaled up in the right-hand dia-
gram) can be created by the redshift effect of a cosmic string.

One method of detecting such a discontinuity is by looking for characteristic sig-

nals in the derivatives of the CMB temperature field. Discontinuities have a char-

acteristic delta-gradient. Recall that the finite-difference method is designed to

calculate derivatives, i.e., gradients; due to Runge’s phenomenon [228] it per-

forms poorly for discontinuities and pathologies (anything that cannot be well-

modelled by a polynomial). Runge’s phenomenon is the observation of polyno-

mial oscillation at an edge interval. Specifically, if a discontinuous function is

interpolated with a polynomial Pn at n points, it can be shown that [228]

lim
n→∞

(max |f(x)− Pn(x)|) = ∞. (2.194)



2.5. WHERE ARE THE DEFECTS? 124

The errors for a discontinuous function are related to the validity of Taylor ex-

panding such a function; Taylor expansions are only valid for an infinitely dif-

ferentiable function, i.e., the series is convergent only if the function is analytic.

It is necessary to ask what really defines a discontinuity in the context of a 2d

pixelized map (since any pixelized map can be viewed as a collection of discon-

tinuities) and confirm the phenomenology of finite differences in their vicinity.

In order to answer this question, the derivatives of a step function are studied.

Figure 2.5 shows the error for differencing on a unit step function; the crucial dif-

ference between this discontinuity and the standard pixelized analysis is that in

the unit step scheme, the regions outside the step are relatively flat; for the 2d

pixelized maps this behaviour does not necessarily occur.

Figure 2.5: Errors δf(x) for the derivatives of the Heaviside step function U(x).
Analytically, the derivative is defined as

U ′(x) =

{
Indeterminate x = 0

0 otherwise

The above considerations suggest it might be possible to use the errors of an

interpolation-based finite-difference scheme as a crude discontinuity detector.

This shall be referred to as the ‘Laplacian-difference’ method, which shall be de-

veloped in a slightly more refined form. In particular the method to be used is the

following: calculate the Laplacian map reconstructed from a spectral decompo-
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sition, and the finite-differenced Laplacian map. The spectral map is constructed

by calculating

∇2F =
∑

lm

−l(l + 1)flmYlm (2.195)

where flm are the harmonic coefficients of the original map F , or using the equiva-

lent harmonic basis and coefficients in a coordinate basis n̂ if one wishes to extend

the method to a non-spherical analysis. The construction of the finite-differenced

map can be achieved by recalling that the Laplace-Beltrami theorem shows that

the Laplacian of a scalar field on a given metric can be calculated from

∇2F =
1√
g
∂i
(√

ggij∂jF
)

(2.196)

which can be generalized to operations on higher-rank (rank greater than zero)

tensors using the spin-weighted operators ð

s∇2
sF = ð̄s+1ðs sF (2.197)

and thus to Laplacians of order n by

s∇2n
sF = ð̄s+1 · · · ð̄s+2nðs+2n−1 · · · ðs sF, (2.198)

or in harmonic space

s∇2n ⇌ (−1)n
2n−1∏

i=0

(l − s− i)(l + s+ i+ 1)

⇌ −(l − s)(1 + l + s)
Γ(s− l + 2n)Γ(1 + s+ l + 2n)

Γ(1 + s− l)Γ(2 + s+ l)
.

(2.199)

Since the interpolating polynomial and the spherical harmonic bases are not iden-

tical, the discontinuity should be enhanced compared to smooth regions by cal-

culating the map of differences between the finite-difference Laplacian and the

spectrally-reconstructed Laplacian. This is then particularly useful when the dis-

continuity is subtle compared with the continuous signal. In order to estimate the

results of this calculation, it can be noted that the differencing error for a function

F (Ωi) at pixel i given in equation (2.111) yields for the full scalar Laplacian

δ(∇2F )diff,i ∼
(

csc2 θ
F (1,3)(ζ)

3!
+ cot θ

F (2,1)(ζ)

2!
+
F (3,1)(ζ)

3!

)

Det[v′] (2.200)
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where ζ is some position in the sampling region. Meanwhile, the function re-

construction error from the Gibbs’ phenomenon receives contributions from two

sources: First, if the function is pathological (i.e., not defined everywhere) then

the harmonic sum in the limit of l → ∞ will reconstruct the signal everywhere ex-

cept at the discontinuity (regularization). Secondly (and more relevantly), trunca-

tion creates overshoot (ringing, Fig. 2.6) in the vicinity of the discontinuity, which

approaches a finite limit.

Figure 2.6: Gibbs’ phenomenon: the incremental summation of harmonic terms
for a discontinuous signal leads to increased convergence away from the step
region but increased overshoot near to the step as the harmonic summation ac-
cumulates.

Three contributors of the numerical error to a harmonic reconstruction of a map

can then be specified: truncation error (due to frequency limits):

δFtrunc,i =

∣
∣
∣
∣
∣

n∑

lm

(aflm − aglm)Ylm(θ, φ))

∣
∣
∣
∣
∣
, (2.201)

convergence error

δFconv,i =

∣
∣
∣
∣
∣
F (θ, φ)−

∞∑

lm

aFlmYlm(θ, φ)

∣
∣
∣
∣
∣
, (2.202)
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and the numerical error δFnum,i implicit in any software package used. For a more

detailed understanding of Gibbs’ phenomenon in flat harmonic space, one can

follow Carslaw [229]; an analysis of this type on the sphere has been implemented

for longitudinal ringing via the Gegenbauer polynomials in Gelb [230].

Since the harmonic and interpolating bases are non-identical, one can show that

the differences between the two reconstructions are largest where there exists a

discontinuity — this is implicit in the differences between equation (2.111) and

(2.194). For practical purposes, one may want to enhance this difference in order

to isolate any particularly subtle signals. More generally, since the n-harmonic

operators correspond to boosting the harmonic power by a factor

∇2n ⇌∼ l2n, (2.203)

one should calculate the n-Laplacian-difference maps to pull out such a signal.

Specifically, in the present case the calculations shall be limited to the spherical

surface Laplacian-difference and bi-Laplacian-difference, using

∇2 = csc θ∂θ(sin θ∂θ) + csc2 θ∂φφ

∇4 = 4 csc4 θ∂φφ + csc4 θ∂φ4 + (2 cot θ + cot θ csc2 θ)∂θ − 2 cot θ csc2 θ∂θφφ

−∂θθ + (csc2 θ − 2 cot2 θ)∂θθ + 2 csc2 θ∂θθφφ + 2 cot θ∂θ3 + ∂θ4 .

(2.204)

One should also note that there is a minimum number of pixel samplings required

for calculating these quantities, which increases with n, making the calculation of

higher-order Laplacians more costly; furthermore, numerical noise will append a

limit on the usefulness of scaling n to large values. The full error from this map

can be estimated as:

δ(∇2nF )i ∼ δ(∇2nF )diff,i −∇2n (δFconv,i + δFtrunc,i + δFnum,i) . (2.205)

One might also wish to calculate the gradient map

∇ = (∂θ, csc θ∂φ) (2.206)

in order to look for directional anomalies. By use of the spin-weighted harmonics,

the harmonic decomposition of each term in the gradient can be found

∇F =
∑

lm

−
√

l(l + 1)flm1Ylm. (2.207)
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Other useful derivatives and their harmonic expansions can be calculated via

[225]

∂θ =
1

2

(
e−iφL+ − eiφL−

)

L±Ylm =
√

(l ±m+ 1)(l ∓m)Yl,m±1

∂φ = 2Lz LzYlm = mYlm

(2.208)

and the relations

e−iφ sin θYl,m+1 =

√

(l −m)(l −m+ 1)

(2l + 1)(2l + 3)
Yl+1,m −

√

(l +m)(l +m+ 1)

(2l − 1)(2l + 3)
Yl−1,m

eiφ sin θYl,m−1 =

√

(l +m)(l +m+ 1)

(2l + 1)(2l + 3)
Yl+1,m −

√

(l −m)(l −m+ 1)

(2l − 1)(2l + 3)
Yl−1,m

cos θYlm =

√

(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
Yl+1,m +

√

(l +m)(l −m)

(2l + 1)(2l − 1)
Yl−1,m.

(2.209)

The importance of the gradient terms is that they allow one to probe the question

of error cancellation.

For firm statistical analysis (eschewing any by-eye method), the needlet approach

[231] is particularly suitable to decomposing a discontinuity into power. Alter-

natively, one might utilize an edge-detection mechanism such as the Canny algo-

rithm [232, 233]. The Canny algorithm is an edge-detection method that proceeds

by the following:

• Convolve the map with a Gaussian filter to reduce pixel-scale noise.

• Determine the gradient and directional derivatives of the map.

• Isolate local maxima in the gradient maps.

• Trace the edges using hysteresis thresholding.

For the Laplacian-difference method, one might ask whether the harmonic basis

is the optimal comparison basis for performing the map differencing. A basis

with better localization properties, like the needlet approach, might enhance the

discontinuity power more effectively; by contrast, since there is a small trade-off

with global properties it may be more difficult to detect a subtle discontinuity

against a smooth background. In any case, the harmonic method is both quick

and simple to implement, making it an excellent choice of basis with which to
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get a handle on how the method performs in practice. Further, it should be noted

that there may be correlations with the StokesQ and U parameters at the anomaly

boundary, since cosmic strings have a vector B-mode signal [234] in real space

analogous to the Kaiser-Stebbins effect in the temperature case.

Behaviour of the Laplacian-Difference Maps

It is important to estimate the expected behaviour of the Laplacian-differenced

maps. The full field being operated on (making no statements about underlying

discontinuities) can be denoted as

F (θ, φ) = F̃sh(θ, φ) + δsh(θ, φ) = F̃ip(θ, φ) + δip(θ, φ) (2.210)

where F̃ denotes the spherical harmonic (sh) or interpolating polynomial (ip)

reconstructions of the original data, and δ corresponds to the error in the recon-

struction. By linearity, the field being calculated is

∇2nλ(θ, φ) ≡ |∇2n(F̃sh(θ, φ)− F̃ip(θ, φ))| = |∇2n(δip(θ, φ)− δsh(θ, φ))|. (2.211)

Since the polynomials overshoot in the region of a discontinuity it can be stated

that, in the coordinates (ζ1, ζ2) ∈ (θ, φ) covering any discontinuity

λ(ζ1, ζ2) = max[λ(θ, φ)]. (2.212)

If λ is then separated into two regions

λ(θ, φ) = λ(θ − ζ1, φ− ζ2) + λ(ζ1, ζ2) (2.213)

and defining the harmonic expansions

Alm =

∫

λ(θ − ζ1, φ− ζ2)Y
∗
lm(θ, φ)dΩ

Blm =

∫

λ(ζ1, ζ2)Y
∗
lm(θ, φ)dΩ,

(2.214)

then since
∑

mBlm >
∑

mAlm over some bandwidth β ∈ l corresponding to the

discontinuity scale, the n-Laplacian-difference maps correspond to

∇2nλ(θ, φ) =
∑

lm

(l2nAlm + l2nBlm)Ylm. (2.215)
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If λ increases with stencil size, then the power ofBlm in the bandwidth β will scale

up accordingly, leaving a more prominent discontinuity signal. Secondly, as one

moves up the n-Laplacia, the smaller scales will receive larger and larger boosts in

power. This implies that there is a nearest-to-equilibrium n-Laplacian-difference

map, wherein ‘equilibrium’ refers to equal real-space contributions from the n-

Laplacian-difference maps of λ(θ− ζ1, φ− ζ2) and λ(ζ1, ζ2). Away from this value

of n, the difference maps should yield either a more conspicuous dominance of

the discontinuous region or a more conspicuous absence of the discontinuous

region as one evaluates to more extremal values of n (toward 0 or ∞). A natural

corollary of this is that the n = 0 calculation is special — not merely since for n = 0

one need not construct any derivatives at all, utilizing just the standard geometric

array to reconstruct the map — but also since the original map as given can be

taken as the comparison map, rather than using a reconstruction. In the limit of

large n one also expects floating-point noise to begin to dominate. It will later

be seen that performing derivatives on the HEALPix sphere yields a polar signal

blow-up related to the existence of csc-type terms in the Laplacian. In this case,

the standard Laplacian minimizes that problem, since its terms have a maximum

power of 2 in the csc terms.

2.5.2 Wavelet Types

Analysis of enhanced-discontinuity maps requires the use of methods which can

highlight the discontinuity, such as the edge-detection methods of the Canny

algorithm, or the localized-power decomposition typical of wavelet schemes.

Wavelets are important tools for signal analysis; as an alternative, more local-

ized, set of transforms to the standard harmonic transforms, they have found

a range of applications for CMB data analyses. Wavelets allow for a mixture

of the advantages of frequency-type analysis (isolated multipole behaviour) and

the contrasted real-space issues (partial sky coverage). As yet, there is no widely

agreed-upon standard or optimal wavelet basis for CMB analysis.

The wavelet transform decomposes a signal into combinations of scalings of a

template (or ‘Mother’) wavelet ψ. In flat space, the wavelet transform Fw of a

function F at a frequency ω is defined by the shift b and scaling a parameters

Fw(a, b) =
1√
a

∫ ∞

−∞

F (x)ψ∗

(
x− b

a

)

dx (2.216)
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with an inverse procedure

F (x) =

∫ ∞

0

∫ ∞

−∞

Fw(a, b)

a2
1
√

|a|
ψ

(
x− b

a

)

dbda. (2.217)

For example, the Mexican hat wavelet is defined by [235]

ψ(x,R) =
1√
2πR

(

2− x2

R2

)

e−
x2

2R2 . (2.218)

Working on the sphere makes it necessary to use a spherical analogue, given by

the more general wavelet transform

Fw(R, b) =

∫

f(Ω)ψ(R, b)dΩ (2.219)

where w is the wavelet coefficient associated to the scale R at the point with co-

ordinates b. One can in fact go a step better in localization than the Mexican

hat wavelet by using a wavelet type referred to as a needlet; the spin-weighted

spherical needlets are given by

sβjk =

∫

S2
sF (Ω)sψ

∗
jk(Ω)dΩ sF (Ω) =

∑

jk

sβjksψjk(Ω), (2.220)

where the needlet function is defined for each pixel k in a map of resolution j by

sψjk(Ω) =
√

λjk
∑

l

W

[
l

Bj

]
∑

m

sYlm(Ω)sY
∗
lm(ζjk), (2.221)

where λjk is a weight term and the needlet coefficients are

sβjk =
√

λjk
∑

l

W

[
l

Bj

]
∑

m

salmsY
∗
lm(ζjk) (2.222)

with flexibility in the choice of the window function W [x]; by considering the

wavelengths of interest, an appropriate choice of the frequency-band term B and

resolution scaling j can produce an optimal shape for W [x].

The transform rules are much the same as for the harmonics; for example, the

rotation of these coefficients can be formulated — for spherical harmonics this is

given by

R(δΩ)F (Ω) =
∑

lm

flm
∑

m′

Dl
m′m(δΩ)Ylm′(Ω) (2.223)
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where the Dl
m′m is the Wigner D-function (the harmonic basis for rotations in

SO(3)), whilst for the needlets this is

R(δΩ)F (Ω) =
∑

jk

βjk
√

λjk
∑

l

W

[
l

Bj

]
∑

mm′

Dl
m′m(δΩ)a

F
lm′(Ω)Y ∗

lm(ζjk). (2.224)

Figure 2.7: Construction functions (top diagram - the dotted line is φ and the
thick line is W 2, for B = 2) and resulting needlets (bottom diagram - the dotted
line is a Fourier wave for comparison of localization properties.), from Baldi et al
[236]

A number of other interesting transforms such as ridgelets [237] and curvelets ex-

ist in the literature; these were developed specifically for dealing with smooth im-

ages with edges i.e., singularities along smooth curves. These retain the required

localization properties of standard wavelets whilst incorporating direction-sensitivity.

The transforms mentioned are then amongst the only widely used transforms,

other than the harmonic transforms, in cosmology. However, one can of course

construct a given transform for a given task. The needlet approach has a number

of useful qualities [231] that single their use out for the purposes of this thesis:

• Not reliant on any plane wave approximations, unlike many wavelet trans-
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forms on the sphere.

• Computationally convenient and can be incorporated easily into the HEALPix

software package, which is used in the next chapter.

• The reconstruction formula in equation (2.220) is designed such that one

need only compute the needlet function at each resolution once, with coef-

ficients stored for later use.

• They are quasi-exponentially localized; this localization is described by

|ψjk(γ̂)| ≤
ckB

j

(1 + Bj arccos(〈γ̂, ζjk〉)k)

where ck is a positive constant. Since arccos(〈γ̂, ζjk〉) is the distance between

two points on the sphere, it can be seen that for a fixed angular distance

ψ goes to zero in the parameter B. The multipole support can be exactly

calculated, allowing a decrease in computations.

• Random needlet coefficients are asymptotically uncorrelated.

The needlets shall be used in the discontinuity analysis due to their localization

properties. The recipe in Marinucci [231] to construct the needlets (Fig. 2.7) is

followed:

• Construct the function

f(t) =

{

exp
(
− 1

1−t2

)
−1 ≤ t ≤ 1

0 otherwise

which imports the quasi-exponentiality into the needlet structure.

• Then construct

Ψ(u) =

∫ u

−1
f(t)dt

∫ 1

−1
f(t)dt

which is normalized such that Ψ(−1) = 0 and Ψ(1) = 1.

• Construct next the frequency-dependence:

φ =







1 if 0 ≤ t ≤ 1
B

Ψ
(
1− 2B

B−1

(
1− 1

B

))
if 1

B
≤ t ≤ 1

0 if t > 1

.
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• Finally, construct

W 2[ζ] = φ

(
ζ

B

)

− φ(ζ)

yielding the window function of the transform.

The needlet basis is not orthonormal. However it is the next best thing, called a

tight frame; a tight frame is a norm-preserving set of functions, i.e.,

∑

j

〈f, ej〉2 ≡
∫

S2

f(γ̂)2dΩ (2.225)

but does not qualify as a basis since there exist redundant elements within the

set. How does this then affect the statistics of a needlet decomposition? Follow-

ing Baldi et al [236, 238], one can analyse the needlet expansion of an isotropic

field and prove that the needlet coefficients at any finite distance are asymptot-

ically uncorrelated. By extension, one can construct a central limit theorem for

needlet statistics — this is absolutely vital if one wishes to perform CMB analysis

using needlets.

As previously mentioned, it might be wondered whether the needlet approach

does not provide a better basis for comparison with the interpolation basis in the

method of differencing Laplacian fields. After all, using wavelet-type approaches

among others (i.e., Fejér summation, Riesz summation or via the Lanczos sigma

factor) is one way of ameliorating the Gibbs’ phenomenon. This is a valid pro-

posal and it would be interesting to see how the statistics of such a field change

compared to the harmonic approach, both local to the discontinuity and globally.

In the present case the speed and general ease of utility of harmonic transforms

demands their primacy.

2.6 A Finite-Resolution CMB?

This chapter ends with a speculative idea which seems like a natural extension

to the defect-detection formalism: what if the CMB has a finite resolution? It

appears that there is little literature on such a scenario, most likely because no

non-contrived theory predicts such bizarre phenomenology. One can also imag-

ine that, were any primordial, fundamental ‘blockiness’ to be imprinted in the

CMB photons, it might very easily be washed out with further interactions en

route to the observer. However, it is emphasized that this model provides a toy

example of how one might determine exotic CMB phenomena in real space. Ac-
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tual real-space phenomena from, say, an underlying lattice spacetime blown-up

by inflation would be model-dependent and may not result in this manifestation.

The concept of finite resolutions certainly already exists as applied to spacetime

in the context of quantum gravity, having arisen almost ubiquitously. Perhaps

the earliest modern call for such quanta came from Pauli (1938, [239]) in corre-

spondence with Heisenberg, despairing at the problem of regularizing QED —

now known to be soluble using the path integral of Feynman, Tomonaga and

Schwinger. This was followed by the program proposed by Regge [240] in an

early attempt at numerical GR; by decomposing the metric into triangulations it

was possible to perform calculations which evaded analytical approaches. This

approach and the Cartan formalism of GR seeded the foundation for some of the

modern attempts at a theory of quantum gravity. In modern terms, quanta of

spacetime appear from various sources: the volume quanta in Loop Quantum

Gravity [202], in the string uncertainty principle [241, 242], in noncommutative

geometries [243, 244], in causal set universes [245] and even in deformed space-

time symmetries such as the κ-Minkowski space utilized in deformed special rel-

ativity [246]. In many, if not most, modern theoretical constructs the spacetime

quanta are not of the rigid lattice sort; rather, they often arise from position un-

certainty relations such as that from the work of Snyder [247], often calling into

question whether the notion of spatial point has any operational meaning on such

tiny scales. In the presence of an inflaton, it may be possible that quantum regions

of spacetime are inflated to observable scales; certainly a generic phenomenon of

altering the underlying spacetime is that the dispersion relations for particles is

modified. Such trans-Planckian phenomena have been investigated along with

the effect of an ultraviolet cut-off (defined by a lower bound in position uncer-

tainty) in a number of papers [248, 249, 250, 251, 252].

Before speculations about potential real-space signals from a finite resolution

CMB are made, a different example shall be explored for inspiration as to how the

CMB can be affected by the phenomena of spacetime, from holographic consid-

erations. The holographic principle [253, 254] defines a limit on the information

content of spacetime regions; the number of fundamental degrees of freedom is

related to the area of surfaces in spacetime. This information has been mentioned

before, in the context of Bayesianism; it is no coincidence that Shannon infor-

mation and physical (Boltzmann) information share the same nomenclature. The

first suggestions of a holographic principle came from classical black hole entropy

bounds. The following observations are due to the insights of Hawking, Bardeen,

Bekenstein and others [255, 256]:
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• The area theorem: the area of a black hole event horizon never decreases with time

— analogous to the second law of standard thermodynamics

dA

dt
≥ 0.

• The no-hair theorem:

A full description of a stationary black hole can be arranged from its mass, angular

momentum and electric charge.

In order to avoid breaking the second law of thermodynamics via the no-hair

theorem, Bekenstein & Hawking were led to the Bekenstein entropy

SBH ∝ A

4
, A = 16πM2 (2.226)

with a proposal that the second law of thermodynamics holds only for the full

black hole-plus-matter system:

dStotal ≥ 0. (2.227)

The Hilbert space of a quantum-mechanical system is compatible with eS inde-

pendent states. In order to get a better understanding of black hole entropy one

takes the analogy seriously, with a ‘temperature’ (the surface gravity κ) related to

the thermal spectrum T of the particles ‘emitted’ by the black hole:

κ ∝ dM

dSBH
. (2.228)

In fact, this is an aspect of a more general phenomena whereby an accelerating

observer experiences a shower of particles. More generally, in a d-dimensional

spacetime the generalized second law implies that for any weakly gravitating

system in an asymptotically flat space the inequality Smatter ≤ 2πER holds, where

E is the total mass-energy and R the circumferential radius of the system.

In order to make the full leap to holography, it is necessary to specify how many

fundamental degrees of freedom a system may have. N is defined as the number

of degrees of freedom in terms of the dimensions N of a Hilbert space H

N = lnN = lndimH. (2.229)

This is equal to the number of bits of information (number of spins) required to

describe a state. Now recall that the Planck scale imposes an observational cut-off
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point when probing regions of a certain scale:

lPl =

√

~G

c3
tPl =

lPl
c
. (2.230)

Naively, discretizing space into a Planck grid with one oscillator per Planck re-

gion yields a discrete, bounded-from-below oscillator spectrum, giving

N ∼ V lnn ≥ V (2.231)

where V is the number of oscillators and n the number of states per oscillator.

This contrasts with the N = A/4 result from field theory; the field theory ap-

proach fails because it discounts gravity. To generalize further, one must use the

covariant entropy bound: The entropy of any light-sheet of a surface B will not

exceed the area of B

S[L(B)] ≤ A(B)

4
. (2.232)

Since a black hole is the highest entropy state attainable by any mass-energy, there

is an absolute entropy bound for a region. Following the lead from information

theory, entropy is a direct measure of information

SBoltzmann = −k
∑

i

pi ln pi SShannon = −
∑

i

pi ln pi (2.233)

where pi is the probability of the microstate i in an equilibrium ensemble or the

probability of the message i taken from the message space, respectively. Thus, as

the degrees of freedom of a particle are the product of all the degrees of freedom

of its sub-particles, then a maximal volume implies a minimal unit of information.

For the cosmos, it can be shown [257] that the observable entropy bound is Smax =

3π/Λ. Specifically, since inflation is equivalent to a de Sitter space, one gains a

bound on the observable entropy of all quantum fields during inflation: Smax =

π/H2, yielding π ln(2/H2) binary spins. One is reminded that a detection of B-

modes will set a direct limit on the value of H during inflation. More generally,

this apparent holography has roots in the AdS/CFT correspondence — an insight

which has had substantial influence on the direction of research within M-theory

— which conjectures that a string theory with gravity defined in an anti-deSitter

space can be described completely by the conformal field theory living on its

boundary.

From Hogan’s analysis [258], working in Euclidean space, it can be shown that a
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correlation

f(y) = 〈Ψ(x)Ψ∗(x+ y)〉x =
∫

e−ikyΨkΨ
∗
kdk (2.234)

when spatially bounded implies a discrete spectrum

f(y) =
N∑

n=1

e−knyfkn (2.235)

in just the same sense that bound quantum mechanical states have a discrete en-

ergy spectrum. By continuation of this line of thought, modes frozen into the

CMB should, by virtue of the horizon-scale correlation cut-off, exhibit a discrete

spectrum. This is used to derive a bound on the information density

I =
9

16π
FM2

PlH
−2. (2.236)

In Hogan’s words, “there are absolute limits on how many different things can

happen within the confines of any given region”. In reality, horizon scale modes

would be unlikely to carry anything other than a fraction of the information

bound. Hogan [259] continues to set up a simplistic toy model for this effect, but

then illustrates the observability of discreteness by interchanging discreteness in

spectra for discreteness in pixellization. This is taken as a cue to look at potential

signals for any such discrete spacetime. This can be naively considered from two

angles: an information bound per area, with the area presumably bounded by the

Planck scale; and Planck scale spacetime lattices, leading to the question: given

that inflation expands regions by 10s of orders of magnitude, what observable

consequences does an inherently pixellated CMB sky have?

Specifically, one may be able to take advantage of spherical pixelization schemes

and the discontinuity-exposing method previously proposed to produce a simple

and naive model of a finite-resolution CMB, wherein upgrading the resolution of

such a map should lead to more obvious discontinuities. As previously stated,

even if in reality the CMB contrived to have a fundamental blockiness at last-

scattering, such a feature would be smeared out by the optical and acoustic effects

at last-scattering, and by further interactions en route to the observer. Nonethe-

less, in order to make such a unusual detection one would want to cross-correlate

results of the discontinuity-detecting software with the power spectrum. The rea-

son being that whilst the signal for fundamental blockiness would be character-

istic, it might not be so very different from that of an underlying string network.

Further, whilst one would expect a drop to zero in power beneath the Nyquist
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scale for the map, this could be confused with other contrived cosmological mod-

els. A combination of the two observations would be compelling evidence for

blockiness in the CMB, since this would remove the degeneracies with strings

and other non-blocky CMB physics. A positive detection of such a strange sce-

nario would provide a challenging departure from the predictions of continuum

field theory.

2.7 Summary

Cosmological data analyses occur within one of two paradigms — either the fre-

quentist or the Bayesian approaches to statistics. While the Bayesian approach

is fully rigorous, it can be computationally expensive. These analyses are usu-

ally considered only in harmonic-space, which requires global sampling for its

full effectiveness, as opposed to local real-space approaches. CMB polarization

analyses suffer from mixing betweenE- andB-modes due to obscuration by fore-

grounds, which can be dealt with by reparameterizing in terms of scalar field ana-

logues of the E- and B-modes, constructed by performing derivative operations

on the Stokes polarization data. The method used in this thesis for performing

such operations is the finite-difference method, which samples locally.

One quick frequentist approach to measuring cosmological parameters is in the

use of estimators. It is possible to construct mode-transfer arrays which describe

the relation between the observed and the theoretical power spectrum in the

mean. The advantage of utilizing scalar field analogues is that the transfer tensors

for the self-coupled and cross-coupled spectra n-point spectra then all correspond

to those of the temperature anisotropy spectra, which is considerably easier to

compute when compared to the transfer tensors of direct E- and B-coupled spec-

tra. Since the n-point spectra are related to the standard fNL-type parameters

which describe non-Gaussianity, the scalar field approach is useful following cal-

culating non-Gaussianity in the polarization of the CMB.

The use of local methods can also be combined with harmonic methods in or-

der to detect unusual signals, such as the discontinuous effects from the presence

of cosmic strings from spontaneous symmetry-breaking or more unusual pos-

sibilities such as a finite-resolution sky. The Laplacian-difference technique con-

structed for this purpose had the novelty of utilizing errors in the finite-difference

methodology in order to reveal any such signal.
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Chapter 3

MasQU - Masked Stokes Q, U

Analysis

The previous chapter saw the development of techniques that will be used to

resolve the CMB polarization modes, amongst other CMB problems. These tech-

niques were based on the utility of local methods such as the finite-difference

scheme for calculating derivatives on a pixellated grid and the needlet decompo-

sition for quantifying localized power. In the current chapter, the technical imple-

mentation of the finite-differencing algorithm on the popular HEALPix sphere is

described — this is not without its own problems, as will be seen. The develop-

ments of the LR, QU and SVD decompositions can be found in standard textbooks

on numerical methods [174, 260].

3.1 HEALPix

HEALPix [261], a Hierarchical Equal Area isoLatitude Pixelisation scheme for the

sphere, is the most widely used software for construction and analysis of full-sky

CMB maps. The lowest-resolution partitioning is into 12 equal area pixels. Each

pixel is assigned a unique identification number (in either a ‘nested’ or ‘ringed’

numbering scheme — suited for nearest-neighbours searches and fast Fourier

transforms respectively), and is surrounded by 8 other pixels, except in the polar

cap where some of the pixels are surrounded by 6 or 7. Details can be found on

the HEALPix website1. The map resolution is specified by the parameter

Nside = 2Norder Norder ∈ |Z| (3.1)

1http://healpix.jpl.nasa.gov/index.shtml
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with each map of 12N2
side pixels composed of 4Nside − 1 isolatitude rings; at each

level higher in resolution, the pixels are subdivided into 4 equal area pixels in the

higher-resolution map. The rings immediately by either pole consist of 4 pixels

(independent of resolution), increasing by 4 pixels per ring for each ring incre-

ment toward the equator, up to a maximum 4Nside pixels in the equatorial rings.

Figure 3.1: The Healpix sphere and pixel numbering in the ringed scheme, from
Gorski et al [262]. The top diagram is an Nside = 2 resolution grid, while the
bottom diagram has Nside = 4. The nested scheme at Nside = 2 splits each of
the 12 lowest-resolution (Nside = 1) regions r into numberings 4r + pix, where
pix ∈ [0, 3] is the integer pixel number within the region. This procedure repeats
iteratively on each pixel for higher resolutions.

The structure of HEALPix is designed to facilitate the quick calculation of meth-

ods such as spherical convolution, harmonic and wavelet analysis, computing

Minkowski functionals and so on; the pixels follow a hierarchical quadratic pixel

numbering (see Fig. 3.1), hence many functional properties are computed at an

optimal RAM cost; this is important when dealing with large datasets, and the

scalability of this set-up allows for quick map recalibration at different resolu-

tions. Secondly, the grid is split into pixels of equal area hence white noise from

the signal receiver does not receive a bias in pixel space. Finally, the iso-latitudinal
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property of pixel rings allows quick computation of the likes of fast Fourier trans-

forms (FFTs) and Legendre polynomials. The HEALPix structure is unique in of-

fering all these facilities in one package; it has now appeared to have fought off

competition from such alternatives as QuadCube [263] and GLESP [264], which

can only offer a selection of the scaling and computation properties inherent in

the grid geometry.

It will be useful to describe some of the utilities provided by HEALPix:

• The anafast subroutine calculates power spectra from input temperature

and polarization maps.

• synfast is the inverse of anafast, synthesizing CMB maps from input spec-

tra or harmonic coefficients.

• alteralm rotates the input harmonic coefficients or deconvolves a specified

beam window function from the same coefficients.

• smoothing convolves the input map with a Gaussian beam.

• udgrade upgrades or downgrades the resolution of a HEALPix map, aver-

aging the higher-resolution pixel values in the process of downgrading.

The lowest-order estimator for the power spectrum calculated via the anafast sub-

routine is

Ĉl =
1

2l + 1

(

âl0 + 2
l∑

m=1

|âlm|2
)

, (3.2)

where the harmonic coefficients can be computed from

âlm =
4π

Npix

Npix−1
∑

i=0

Y ∗
lm(Ωi)F (Ωi), ±2âlm =

4π

Npix

Npix−1
∑

i=0

±2Y
∗
lm(Ωi)±2F (Ωi) (3.3)

due to the equal-area pixellization of the HEALPix grid. The calculation of the

E and B harmonics is then performed by summing the spin-weight s = ±2 har-

monics in the manner described in section 2.2. For the Stokes parameters, the
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synfast subroutine calculates

T = Re

[
∑

lm

aTlmYlm

]

Q = Re

[

−
∑

lm

aElmX1,lm + iaBlmX2,lm

]

U = Re

[

−
∑

lm

aBlmX1,lm − iaElmX2,lm

]

(3.4)

where m ≥ 0 and

X1,lm =

√

2l + 1

4π
F1,lm(θ)e

imφ

X2,lm =

√

2l + 1

4π
F2,lm(θ)e

imφ

F1,lm = Nlm[−((l −m2) csc2 θ +
l(l − 1)

2
)Plm(cos θ)

+(l +m) cos θ csc2 θPl−1,m(cos θ)
]

F2,lm = Nlmm csc2 θ

×[−(l − 1) cos θPlm(cos θ) + (l +m)Pl−1,m(cos θ)]

(3.5)

with Nlm = 2
√

(l − 2)!(l −m)!/[(l + 2)!(l +m)!].

3.2 Differencing on the HEALPix Sphere

The HEALPix sphere is an interesting case study, since it is a semi-regular dis-

tribution on a coordinate system with a pathology: the multi-valuedness of φ at

the poles — hence differences in (θ, φ) across the pole are ill-defined. It does not

matter if the pole point itself is not directly sampled — merely crossing the pole

with a differencing stencil is enough to complicate the calculations, since the in-

terpolating polynomial covers the whole region. Similarly, one must be careful

at the φ = 0/2π boundary. However, at such a boundary here one can simply re-

assign the differences to the smallest of the two possible paths across the sphere

between the points that are being differenced.

To test the software, the derivatives of harmonic functions on the sphere are com-

puted, since primordial cosmological point signals are not expected. This imple-

mentation uses LAPACK [265] at double precision and the truncated SVD tech-

nique [174] for ill-conditioned matrices (in the limit of large stencils and irregu-
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lar geometries). The geometry for each pixel stencil taken is given by a square-

geometry differenced geometric array

V =














1 · · · · · · 1

∆x1 · · · · · · ∆xn

∆y1 · · · · · · ∆yn

∆x1∆y1 · · · · · · ∆xn∆yn
... · · · · · · ...

∆xn−1
1 ∆yn−1

1 · · · · · · ∆xn−1
n ∆yn−1

n














, (3.6)

where the (θ, φ) basis has been chosen to work in for computational convenience

(one does not expect the Stokes fields to necessarily be a polynomial in this basis).

This choice is determined by issues arising from analysis at the pole; whilst the

analytic operators are necessarily covariant, discretization complicates matters at

the pole. Consider a function f(θ, φ) which is smooth in (θ, φ); at the pole there

is a coordinate singularity in (θ, φ), forbidding the use of finite differences in this

region. A change to Cartesian coordinates (x, y) would swallow the coordinate

pathology; however it can be shown that g(x, y), the Cartesian-space description

of f(θ, φ), will exhibit a functional pathology at the origin (i.e., g(0, 0) may be a

delta function or similar). This phenomenon is general for coordinate transforms

which remove the polar coordinate singularity. Since the function is being ap-

proximated with a polynomial, any functional discontinuity or pathology will be

poorly modelled by such a finite-difference scheme. The utilized alternative is

choosing the pixel stencils in (θ, φ) such that they do not cross the pole at all, but

instead progress toward an outer-difference scheme around the pole.

In the particular case of extracting E and B-modes, the pole also presents other

numerical problems; one way to deal with these problems is by ‘rotated oversam-

pling’ around the pole. This will be discussed briefly after the next subsection.

3.2.1 Structure of the Algorithm

The algorithm is as follows (see Fig. 3.2 for some visual examples):

• Construct an approximately square stencil of nearest-neighbour pixels, one

for each pixel. This is achieved by taking the unique set of nearest neigh-

bour pixels for the focal pixel, and then repeating recursively for the neigh-

bour pixels until the specified stencil radius is satisfied. If the array can-

not be filled with corresponding pixel numbers (such as in the case that a
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pixel has less than 8 neighbouring pixel), then the remaining elements are

assigned an identification value of -1. Note that since the HEALPix nearest-

neighbours-finding routine always calls the neighbour pixels in the same

geographic order, then pixels with identical surrounding geometries will

necessarily have identical stencil arrays. In other words, the code is struc-

tured in such a way that the symmetries of the HEALPix grid are preserved

also in the stack of pixel stencils taken. The notation for the stencils is as fol-

lows: a stencil of order On contains at most (existence and masking pend-

ing) precisely (n + 1)2 pixels. Since it is desirable to bias toward central

differences, each n is even, corresponding to a radius of n/2 pixels about

the central focus pixel. The stencil order n is initially the same for all pixels.

Figure 3.2: Standard sampling method, across orders, across the sphere. Top
row: iteration of the O2 calculation across a ring on the maskless sphere. The
coloured pixels populate the pixel stencil whose geometry is used in calculating
the pixel weights, which are used for approximating the value of a derivative at
the blue focal pixel. Bottom row: for a sphere with a masked pixel (in black), an
example is made of the O4 calculation. The left diagram shows the scheme when
the masked pixel is not within the pixel stencil. The centre and right diagrams
are central and outer-difference schemes; the outer-differenced scheme contains
more information than the central-differenced scheme in the case shown.

• Perform ‘re-mapping’ for pixels pi surrounded by one or more masked pix-

els — search amongst the stencils of the surrounding pixels pj for the ‘op-

timum’ stencil (the stencil with the most available pixels and closest to the
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central focus). A weight system of

W =

{

0 Pixel is missing or in a cut region

1 Otherwise

is applied. Pixels without enough information in their stencil to perform

the requisite derivatives (three available pixels with a unique position θ,

and the same for φ ) are discarded.

• Analyse the mapped difference geometries to single out a smaller number

of unique stencil geometries — these characterize a unique set of stencils

which provide all the necessary weights for calculation across the sphere,

saving computation time. In the unmasked case, there are also symme-

tries between the north and south polar regions and also the quarters of

each hemisphere which can be taken advantage of to cut down computa-

tion time.

• Find solutions to the linear equation

v′w = δ, (3.7)

whose 1d analogue is equation (2.92), corresponding to each of the deriva-

tives required — each set of weights is unique for a given stencil geometry

and derivative order (except in trivial cases). The geometric array is by

default that for a regular square array. In the case that there is not a full

square stencil available, rows (starting from the lowest row/largest differ-

ence powers) and the corresponding columns of the geometric array are

removed such that the array remains square. It is probably more rigorous

to remove rows using geometric considerations instead (i.e., an analysis of

which derivatives can be calculated from the stencil), but this has yet to be

implemented and does not significantly affect the rest of the analysis since

only the derivatives up to second order in (θ, φ) are calculated. Further-

more, the additional time cost for such a procedure might not be a good

trade-off. Solutions to the linear equations are found using LAPACK and,

depending on how deformed the stencil is, the QR decomposition or SVD

technique, depending on the pixel sample.

• Repeat until all the calculations are finished and form the bi-Laplacians.

Compute the power spectra of the corresponding ∇4e and ∇4b maps and

remove the power contributed by the bi-Laplacian operator.



3.2. DIFFERENCING ON THE HEALPIX SPHERE 148

• In the presence of a mask, one should apodize the signal since masking

redistributes signal power. An apodization subroutine is available with the

software, whilst there is an optimal method for CMB studies due to Smith

& Zaldarriaga [217].

• Output the derivative maps, the power spectra, and the weights used (these

can be recycled once calculated for the first time) in FITS format.

The above methods are very easily tweaked in the software for a given geometric

scheme (be it for alternative pixellization scheme on S2 such as GLESP, or non-

spherical schemes) and a given desired derivative. Higher-dimensional gener-

alizations have not been implemented but would be trivial. Testing the software

for accuracy follows the process of taking pre-specifiedE- andB-mode harmonic

coefficients, calculating the full-skyQ and U maps from these coefficients, operat-

ing on the sky maps to produce the bi-Laplacians, and then converting the power

spectra of the ∇4e and ∇4b fields to that of the E- and B-modes for comparison

with the original input spectra:

aE,Blm → CE,B
l → Q,U

∂Q,∂U
︷︸︸︷→ ∇4e,∇4b→ CE,B

l

where the full scalar field maps ∇4e, ∇4b are also compared, using the sum of the

original harmonic coefficients as in equation (2.29). The results of this testing will

be discussed after some further discussion of the techniques used for calculation.

Some further subroutines have also been left in the software package for their

usefulness: a number of quadrature schemes of varying accuracy and time-

complexity; a subroutine for constructing larger stencils than the base specifi-

cation, in a given region (such as the spherical pole); a RAM-economising mode

(although this increases the time complexity of each run); test modes (for com-

paring numerical and analytic results); pixel ring removal pre- or post-calculation

(this is specific to the spherical pole problem discussed later). The inverse (inte-

gration) calculation using the weights found has not been implemented, but only

requires inverting a sparse matrix.

Methods for Matrix Equations

For standard regular-geometry and low order calculations one might choose a

decomposition of the type LU or QR. The former decomposes a matrix A into

A = ΛΥ (3.8)
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where Λ is a lower triangular matrix and Υ an upper triangular matrix:









A11 A12 A13 . . .

A21 A22 A23 . . .

A31 A32 A33 . . .
...

...
...

. . .









=









Λ11 0 0 . . .

Λ21 Λ22 0 . . .

Λ31 Λ32 Λ33 . . .
...

...
...

. . .

















Υ11 Υ12 Υ13 . . .

0 Υ22 Υ23 . . .

0 0 Υ33 . . .
...

...
...

. . .









(3.9)

thus the linear equation Ax = b becomes

Ax = (ΛΥ)x = Λ(Υx) = b (3.10)

where one calculates

Λy = b, Υx = y (3.11)

using forward substitution as follows:

y1 =
b1
Λ11

, yi =
1

Λii

[

bi −
i∑

j=1

Λijyj

]

(3.12)

and then backsubstitution,

xn =
yn
Υnn

, xi =
1

Υii

[

yi −
n∑

j=i

Υijxj

]

. (3.13)

This has a computation time of order ∼ O(n3/6) compared with ∼ O(n3/2) for

elimination methods; for a given matrix one needs only decompose once, store

the Λ and Υ elements, and then apply to a given vector b.

In order to generate the triangular matrices, one can write out the components i,

j of A in terms of a summation

For







i < j : Λi1Υ1j + · · ·ΛiiΥij = Aij

i = j : Λi1Υ1j + · · ·ΛiiΥjj = Aij

i > j : Λi1Υ1j + · · ·ΛijΥjj = Aij

(3.14)

normalized by Λii = 1. The coefficients are then solved for using Crout’s algo-

rithm:

• Iterating over i, set Λii = 1.
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• Iterating over j and then i, solve for Υij :

Υij = Aij −
i∑

k=1

ΛikΥkj

and then solve for Λij :

Λij =
1

Υij

(

Aij −
j
∑

k=1

ΛikΥkj

)

.

For stability, partial pivoting — the interchange of rows (this amounts to a decom-

position of a permutation of A rather than the original LU) — is often required.

One can also construct the determinant of a matrix by the product

Det[A] =
n∏

j=1

Υjj. (3.15)

The other standard decomposition method for solving systems of linear equa-

tions is the QR decomposition

A = QR (3.16)

where R is an upper triangular matrix, while Q is instead an orthogonal matrix

(QTQ = 1). In order to solve the linear system Ax = b, one solves instead

Rx = QT b (3.17)

by backsubstitution. The computation requires iterating the sum of the inner

product

uk =
k−1∑

j=1

〈ejak〉
〈ejej〉

, ek =
uk

|uk|
(3.18)

where the vectors a are columns of the matrix A, yielding for Q and R

Qij = eij, Rij = 〈eiaj〉 δi≤j. (3.19)

This method is approximately twice as computationally expensive as the LU de-

composition, but is of greater utility in certain situations — such as when solving

a succession of linear systems where each system differs only slightly from its

predecessor. In the QR method, one can then easily update the matrix factoriza-

tion in O(n2) operations in order to solve the next linear system, unlike the LU
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case wherein complications in updating arise from pivoting.

When solving problematic linear equations, the Singular Value Decomposition

(SVD) is often useful. The SVD technique separates a matrix A into

A = α†Σβ (3.20)

(where Σ is the diagonal array of singular values and α and β are unitary matri-

ces consisting of basis vectors) and is known for yielding optimal linear solutions

in the presence of near-singular matrices; by calculating the pseudo-inverse of A

one yields the least-squares solution (i.e., with minimized norm ||Ax− b||) in the

absence of a unique solution to the linear system involving A. Near-singular ar-

rays can be diagnosed by use of a condition number ||A||||A+|| calculated from the

product of the norms of A and A+, where A+ is the pseudo-inverse of A. A large

condition number implies that round-off error will cause large fluctuations in the

solution to the linear equation.

The efficacy of the SVD technique is related to the fact that it provides a represen-

tation of the range (the set of all linear combinations of columns) and null space

(the set of all vectors which satisfy the conditionAx = 0) ofA. In the near-singular

case, the smaller singular values can be dominated by round-off error leading to

dramatic errors in the solution. For large geometric arrays, the bottom-row ele-

ments are most likely to suffer from round-off error since they are large powers

of small numbers. This means the singular value array must be truncated below

some numerical threshold in order to yield reasonable numerical results, equiva-

lent to calculating an effective rank for A, achieved by replacing the correspond-

ing inverted elements in the inverted singular value array with zero; truncation

error will contribute to any inaccuracy of the calculation. If A is a square matrix,

the singular values are related to the eigenvalues of the matrix by

A∗A = V (Σ∗Σ)V ∗, AA∗ = U(ΣΣ∗)U∗, (3.21)

implying that the singular array has in fact a left- and right-inverse.

Since the different resolutions correspond to a mere scaling of geometries on

the HEALPix sphere, the truncation threshold should be defined by the ratio

Σii/Σ11. Below this truncation threshold one discards the degenerate solutions,

potentially losing information. However, most of the information (i.e., the best-

determined/most influential) is retained in the first diagonal elements of the de-

composition, minimizing information loss through truncation. Figure 3.3 shows

the implementation of the SVD technique on the HEALPix sphere.
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Figure 3.3: O6 bi-Laplacian of an Nside = 16 test harmonic function generated
from aElm = δl2δm0, aBlm = 0 for the raw inversion of the geometric array (left
diagram) and SVD-calculated (pseudo-) inversion of the geometric array (right
diagram). The large error values in the raw map coincide with the most irregular
stencil geometry on the HEALPix sphere.

Optimal truncation may depend on some non-machine aspects: array size and ge-

ometry. Whilst this problem has not been solved generally, empirically-derived

truncation thresholds for the unmasked sphere as-a-whole (i.e., individual stencil

geometries have not been studied) which maximize the accuracy of the calcula-

tions have been implemented for the first few stencil sizes. Masking has not been

fully SVD-optimised (the same thresholds are used as for unmasked maps) since

this study requires generalization of the thresholds to any number of pixels in a

range of distributions. Some limited analysis of the error properties in the SVD

technique can be found in Wedin et al [266].

Performance Considerations

For performance considerations beside the question of accuracy, it is necessary

to consider time complexity. While it can be seen that a first-time implementa-

tion of the code is out-performed by the standard HEALPix methods in terms of

speed, one need calculate the weights only once. Web resources for calculated

weights across a range of resolutions, geometries and masks would not be dif-

ficult to maintain. For a survey like Planck, with up to 5 × 107 pixels per map,

the maximum HEALPix resolution is Nside = 2048. For the corresponding O2

calculation, an interpolating function is used to extrapolate a timescale of 1440

seconds on a low-end machine (Fig. 3.4). Further reductions in time complexity

could be achieved by an implementation of the MPI (Message Passing Interface)

procedure for parallel computations.
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Figure 3.4: Left diagram: Time complexity for a maskless calculation across
Nside. The diagram key is (O2, O4, O6) = (thick line, long-dashed line, short-
dashed line). Due to RAM limitations interpolation and extrapolation are used
for the Planck resolution timescale, tO2,Planck = 1440 s, tO4,Planck = 9024 s,
tO6,Planck = 39946 s. Masked calculations are only very marginally slower (and
the time costs display some small mask-dependency). Right diagram: By com-
parison, HEALPix calculations with default parameters. The black line is the
zeroth order calculation, with the grey line for 4 iterations of the map2alm sub-
routine. For a Planck resolution map the timescales are 534.7 s and 1823.36 s
respectively.

Finally, one might wonder what the effect of scaling the input map by some order

of magnitude has on the computations; at a certain scaling of the pixel values

for a given map the results might be effected by numerical fluctuations in the

underlying computations. As an example, the difference between the ∇4b-field

calculated from a CMBFAST simulation (Tensorless, Nside = 128, with Q and U

maps defined on a K scale) and scaled up by 106 to match a comparison map

— the ∇4b-field calculated from an identical CMBFAST simulation defined at the

µK scale — is calculated. The resultant map of differences between the two ∇4b-

fields has fluctuations of order 10−11, which is more than acceptable. However,

for safety one would ideally calculate at the micro-Kelvin scale.

3.2.2 The ‘Pole Problem’ and Rotated Sampling

For polar pixels, the algorithm is amended as follows (Fig. 3.5):

• Define polar pixel ‘re-mappings’: for each pole-crossing pixel (referred to

as ppol), perform a search among its stencil pixels for the set of pixels whose

stencils do not cross the pole. Then select from this set the subset of pixels

that satisfies the requirements that minimize their distance on the sphere

from ppol in order that the new calculation scheme is as close to a central-



3.2. DIFFERENCING ON THE HEALPIX SPHERE 154

difference scheme as possible, and from this subset choose the pixel which is

closest to the pole (referred to as pnpol). The stencil of ppol is then reassigned

from a central-difference in the ppol stencil basis to an outer-difference in the

chosen pnpol basis.

Figure 3.5: Various polar sampling methods. Left diagram: standard pole-
crossing stencils. Middle: outer-differenced stencils. Right diagram: ‘Doubled’
sampling, equivalent to φ-rotated sampling with δφ = π/2. The top and bottom
rows correspond to O2 and O4 sampling respectively.

The full array of pole problems for schemes not crossing the pole are as fol-

lows. Firstly, it can be seen from the 1-dimensional tests (Fig. 2.3) that while

the forward- and backward-difference schemes are of the same magnitude error

as the central schemes, they generally perform slightly worse than the equiva-

lent central-difference scheme. The same is true for comparisons of higher- to

lower-order derivatives. This is because higher-order derivatives require more

sampling pixels, and hence a larger basic stencil size, than lower orders. This can

also be seen in the HEALPix scheme for derivatives of the s = 0 spherical har-

monics (Fig. 3.6), where the accuracy of the software has been tested, hence the

higher errors at the poles. This is referred to as ‘outer-differencing’ error.

Secondly, the ∆φ values between sampled pixels increase toward the pole due to

the lower pixel sampling per HEALPix ring toward the pole. At its most extreme,

the pixel rings immediately surrounding either pole have only 4 pixels each, with

a separation π/2. Since the errors in the differencing scheme depend on powers

of ∆φ, then a lower accuracy is expected around the pole. This is referred to as
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the ‘polar ∆φ’ problem. It is apparent in all cases that (i) second-order deriva-

tives perform slightly worse than first-order derivatives; (ii) ∂θθ performs worst.

This is no surprise given that the polar cap pixels are only central in φ; (iii) large-

magnitude functional variation in φ about the pole seems to correlate with large

polar errors (Fig. 3.6).

A third, more drastic problem comes from the construction of the terms to be

calculated. In the continuum limit, these are

∇4e = −(−2− csc2 θ∂φφ + 3 cot θ∂θ + ∂θθ)Q− 2 csc θ(cot θ∂φ + ∂θφ)U

∇4b = 2 csc θ(cot θ∂φ + ∂θφ)Q− (−2− csc2 θ∂φφ + 3 cot θ∂θ + ∂θθ)U.
(3.22)

This is quite a delicate combination due to a number of csc θ and cot θ terms,

which clearly blow up as the pole is approached. The contributor of the largest

error is then the csc2 θ∂φφ term, which will blow up any errors in the discrete ap-

proximation to ∂φφ. This is referred to as the ‘blow-up’ problem, and accentuates

the first two problems.

Taking derivatives using larger stencils is not always advantageous. Instead, a

method for dealing with the pole is by rotated sampling; the sphere is rotated by

some small amount δφ < ∆φ and derivatives calculated on a ‘doubled’ stencil.

Figure 3.8 shows that the error is greatly reduced in this manner. There is though

the caveat that it is necessary to sample the harmonic coefficients accurately in

order to effectively remove the pole problem. The polar ∆φ problem ensures that

taking ‘discrete’ doubled sampling (calculating over a stencil which includes the

next-neighbour-in-φ’s stencil) is not nearly effective enough. Of course, for the

rotated sampling case one can always perform the rotation more than once in

order to improve the accuracy. In the case of discrete doubling, one is limited to

usingNpix−in−ring/2 adjacent stencils, so as not to have a pole-crossing calculation.

The combination of these polar effects leads to dramatic problems at the pole for

realistic (CMBFAST-generated, see Table 3.1 for maps used) sky maps: in Fig. 3.9

the operation on realistic B-mode-free maps can be seen. Even for a large stencil

the error swamps the ∇4e signal; for a non-zero ∇4b signal the problem is then

more drastic due to the ∇4b signal’s small magnitude.
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Figure 3.6: O2 and O4 accuracy (across rows) at Nside = 128 for derivatives
∂θ, ∂θθ, ∂φ, ∂φφ, ∂θφ (down columns) of Y22(θ, φ), with absolute maximum val-

ues of ∼
(

1.5× 10−3 0.1 4.5× 10−4 2.6× 10−3 3.1× 10−2

1.5× 10−2 0.8 1.5× 10−3 3.1× 10−3 9.0× 10−2

)T

. Since the

error in the polar cap is much larger than the equatorial region for all maps
bar ∂φ, the values in the equatorial regions in these maps has been limited to
(

±10−6 ±2× 10−6 ±2× 10−6 ±2× 10−6 ±10−6

±10−3 ±10−3 n/a ±10−3 ±2× 10−4

)T

, resulting in the

observed discontinuous ‘bands’ at the polar cap boundaries. The figure shows
that the accuracy improves with stencil size, and is worst at the pole (due to a
combination of outer-differencing error (for ∂θ and ∂θθ) and increased position
differences ∆). However, it is not reasonable to simply increase the stencil order
with the aim of achieving some threshold accuracy, for three reasons: 1) The time
complexity for matrix inversion goes as O(n3), where n is the number of pixels
in the matrix [174]; 2) The maximum stencil size is limited to (2Nside + 1)2. (3)
The example (l, m) given has a relatively small magnitude pole problem error for
harmonic functions (See Fig. 3.7). Thus the convergence rate with stencil size is
too slow.
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Figure 3.7: Top 2 rows: O4 accuracy maps of ∇4b-fields with Nside =
32 for a range of unit-aElm sources, with maximum absolute values of
(

5.9× 10−3 0.6 133 137
0.8 0.3 3.8 611

)

. Bottom 2 rows: Q maps corresponding to the

sources given:

aElm =

(
δl3δm0 δl3δm1 δl3δm2 δl3δm3

δl8δm8 δl16δm16 δl32δm32
∑9

l′=0

∑

m′ δll′δmm′

)

.

Whilst the absolute maximum values are of order ∼ O(1) for each Q map, the
polar errors peak for m = 2 and m = 3, and the magnitude of the polar errors
at fixed m increases with l. (l, m) = (32, 32) maps have been included to show
how error can propagate at the equator, due to variation in φ greater than that
modellable by the stencil.

Table 3.1: CMB source maps, calculated using the online CMBFAST interface.
The source spectra were generated using the online javascript form with default
inputs unless otherwise stated, including K(η)max = 3000, a cosmological con-
stant, Peebles recombination and no 5th dimension. See the online documenta-
tion (http://lambda.gsfc.nasa.gov/) for a discussion of these terms and
their implementation.

Resolutions Ωb, ΩΛ, Ωcdm, Ωhdm, Tcmb (K), Nν,massless, Tensors?
Nside generated g∗massive, H0 (kms−1Mpc−1), YHe, ns Nν,massive

32, 128 0.046, 0.73, 0.224, 0, 2.725, 3.04, No
0, 70, 0.24, 0.96 0

32, 128 0.046, 0.73, 0.224, 0, 2.725, 3.04, Yes,
0, 70, 0.24, 0.96 0 nt = ns − 1
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Figure 3.8: O2 ∇4b-fields, with Nside = 32: various oversampling techniques;
only the polar values are of interest here. From top to bottom: (i) Origi-
nal results for the source aElm = δl2δm2, aBlm = 0, (ii) with an O4 stencil
about the pole, (iii) δφ = 0.01 HEALPix-reconstructed (lmax = 2Nside) ro-
tated doubled sampling, (iv) δφ = 0.01 analytic rotated doubled sampling, (v)
discrete doubled sampling. The absolute maximum values for each map are
(
1.2× 103 116 3.0× 104 104 186

)T
. The discrete doubled sampling mode

performs better than the standard O2 but falls short of the rotated sampling; with
an accurate map reconstruction method there is nothing in principle to forbid an
n-tupled rotation sampling, which would bring the pole error down quickly.



3.2. DIFFERENCING ON THE HEALPIX SPHERE 159

Figure 3.9: Top row: O4 ∇4b map generated from CMBFAST Q and U maps, with
tensors. Bottom row: O4 ∇4b map generated from CMBFAST Q and U maps, no
tensors. The map resolution is Nside = 128, and all the other parameters are the
defaults from the LAMBDA (http://lambda.gsfc.nasa.gov/) online tool
page (see Table 3.1). Columns, left-to-right: No ring removal, 1st north & south
polar rings removed, equatorial region only. In the no-tensors scenario, at the
power spectrum level the pole problem could provide a false-positive detection;
at the level of the map, these can be distinguished by eye — inconsistency be-
tween polar and equatorial regions in a given map, as seen in the middle and
right-hand images, is a result of the differencing error dominating the calculated
map. This then amounts to a consistency criteria by which to check for a false
positive detection. The irregular geometries outside the equator induce a larger
error than at the equatorial region. For the equator, the cut-off length is defined
by the ring at which the stencil geometries become irregular, and is hence On-
dependent.

3.2.3 The ‘Pole Problem’ and Accurate Reconstruction of the

Harmonic Coefficients

It is known now that the construction of the bi-Laplacians is highly sensitive at

the pole to error in the underlying derivatives, and that rotated sampling can

solve this problem. In order to produce an adequate rotated map, one must accu-

rately calculate the harmonic coefficients alm of the map, apply the Wigner rota-

tion functions, and then sum over the new coefficients.

The HEALPix method of reconstructing the harmonic coefficients of a scalar field

is an iterative procedure [262]: one starts with a zeroth-order estimator

a
T,(0)
lm =

4π

Npix

Npix∑

i

T (Ωi)Y
∗
lm(Ωi) (3.23)
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and resums the coefficients to form a map T (0). The next step is to take the dif-

ference map δT (0) = T − T (0) and compute the zeroth order harmonic coefficients

of δT (0) in the same manner as the zeroth order of T , then iterate and sum over

coefficients to form the nth-order approximation:

aTlm ≈ 4π

Npix





Npix∑

i

T (Ωi)Y
∗
lm(Ωi) +

n−1∑

j=0

Npix∑

i

δT (j)(Ωi)Y
∗
lm(Ωi)



 . (3.24)

The optimal alm sampling scale for map reconstruction is lmax = 2Nside, with the

optimal number of iterations being 3 according to the HEALPix software recom-

mendations. While this is a quick and reasonable approximation, a numerical

analysis finds that the convergence of the limit as iterations increase is not suit-

able for the rotated sampling method.

Further, the calculation of the spherical harmonic coefficients in the HEALPix

method relies on the following algorithm (which can be found in Press et al [174]):

flm(x) =

√

2l + 1

2

(l −m)!

(l +m)!
Plm(x)

fmm(x) =
(−1)m√

2

√

(2m+ 1)!!

(2m− 1)!!
(1− x2)m/2

fm,m+1(x) = x
√
2m+ 3fmm(x)

flm(x) = x

√

4l2 − 1

l2 −m2
fl−1,m(x)−

√

2l + 1

2l − 3

(l − 1)2 −m2

l2 −m2
fl−2,m(x)

(3.25)

where the last of the relations is only quasi-stable.

GLESP is known to improve on this by (1) using Gauss-Legendre integration for

quick, accurate integrals over dθ and (2) by using also a further recurrence relation

which is stable for all (l, m), for m ≤ l:

√

(l −m− 1)(l +m+ 2)fl,m+2(x) +
2x(m+ 1)
√

(1− x2)
fl,m+1(x)

+
√

(l −m)(l +m+ 1)flm(x) = 0.

(3.26)

The HEALPix pixellization, although distributed in azimuthal rings, does not

sample at the correct points to use the Gauss-Legendre scheme. An accurate cal-

culation of the integral equation (1.15) is desired. For the HEALPix grid, the
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points in θ are described by [261]

cos θ =
4

3
− 2i

3Nside

North equatorial belt, Nside ≤ i ≤ 2Nside

cos θ = 1− i2

3N2
side

North polar cap, 1 ≤ i ≤ Nside

(3.27)

with corresponding symmetry in the southern hemisphere. Although this is glob-

ally irregular, the HEALPix θ points may be split into regular (equatorial) and

irregular (polar cap) parts. Specifically then, one should Fourier transform across

rings in φ and then integrate up the poles.

The standard tool for Fourier transforming on a discretized grid is the FFT [174].

The Nyquist rate

fc =
1

2∆
(3.28)

describes the fact that if a continuous function h(t), sampled at an interval ∆,

happens to be bandwidth limited to frequencies smaller in magnitude than fc

then the function h(t) is completely determined by its samples hn, described by

h(t) = ∆
∞∑

n=−∞

hn
sin[2πfc(t− n∆)]

π(t− n∆)
. (3.29)

For sampling a continuous function that is not bandwidth limited to less than the

Nyquist critical frequency, any frequency component outside of the frequency

range (−fc, fc) is aliased into that range by the discrete sampling. This infor-

mation allows one to estimate the discrete Fourier transform of a function by a

discrete sum:

H(fj) ≈ ∆
n−1∑

k=0

hke
2πikj/n (3.30)

with discrete inverse

hk =
1

n

n−1∑

j=0

Hje
−2πikj/n. (3.31)

Similarly, a discrete form of Parseval’s theorem is obeyed:

n−1∑

k=0

|hk|2 =
1

n

n−1∑

j=0

|Hj|2. (3.32)

The discrete Fourier transform can be computed in O(n log2 n) operations by the

FFT algorithm. The algorithm splits a discrete Fourier transform into the sum
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of two discrete Fourier transforms, formed from the even numbered points and

odd-numbered points of the original distribution:

F e
k +W kF o

k (3.33)

where W relates Hj to hk by

Hj =
n−1∑

k=0

W jkhk. (3.34)

This construction then allows for a recursively-scaled computation of any data

grid of length 2n, such as that provided by the FFTW package2.

Having defined a Fourier transform across φ, one is left with a 2d partial-

transform field; in order to compute the accurate harmonic coefficients, it is nec-

essary to integrate up θ. For the semi-regular distribution of points, a first guess

might be to utilize the composite trapezoid method. The trapezoid rule approxi-

mates an integral by

∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
. (3.35)

To integrate over the entire point distribution one can decompose the full integral

into a summation of smaller integrals via the composite trapezoidal rule:

∫ b

a

f(x)dx ≈ b− a

n

[

f(a) + f(b)

2
+

n−1∑

k=1

f

(

a+ k
b− a

n

)]

, (3.36)

which for non-uniform intervals is

∫ b

a

f(x)dx ≈ 1

2

n∑

i=2

(xi − xi−1)(f(xi) + f(xi−1)). (3.37)

The trapezoid rule is the 2-point Newton-Cotes (NC) formula; using the residue

calculus, the leading error of the composite trapezoidal rule is

Err ∼ −(b− a)3

12n2
f ′′(ζ) (3.38)

with ζ some point between a and b. The accuracy of the integrals can be im-

proved; for the regular grid part one might choose a more general Newton-

2Available at http://www.fftw.org/
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Cotes method. Since the equatorial region is equally spaced, use can be made

of the composite trapezoid rule for the poles, summed with a single nequator-point

Newton-Cotes approximation at the equator.

If an integral is approximated by

∫

fdx =
∑

i

wifi∆x (3.39)

where the nodes are equally spaced, then it can be shown that the n-point

Newton-Cotes weights can be found by solving







x01 · · · x0n
...

. . .
...

xn1 · · · xnn













w1

...

wn







=







xn−x1
2
...

xn+1
n −xn+1

1

2n+1






. (3.40)

Starting with a Lagrange basis interpolation polynomial

P (x) =
∑

j

fjLj(x) Lj =
∏

i 6=j

x− xi
xj − xi

(3.41)

then one can integrate this

I =

∫ xn

x0

P (x)dx (3.42)

to form the polynomial approximation of the integral. By separating out the fac-

tors into a sum

I =
n∑

i

αi(x)f(xi), (3.43)

wi = αi can be assigned and the linear system solved







x01 · · · x0n
...

. . .
...

xn1 · · · xnn







−1





c1
...

cn







=







w1

...

wn







(3.44)

where the solution vector to this system, c, is exactly that given in equation (3.40).

Table 3.2 shows the results for this method on a regular grid, and Table 3.3 a com-

parison with Gaussian methods. While this works well for even spacing, it does

not work as well for uneven spacing due to the xn−xn−1 terms; unfortunately, this

fails to produce maps of the required accuracy even if a HEALPix-like recursive

scheme is invoked.



3.2. DIFFERENCING ON THE HEALPIX SPHERE 164

Table 3.2: Numerical test of the NC scheme; a Mathematica calculation gives
∫ 1
−1 f(x)dx ≈ 1.71125;∆ = b− a.

No. of nodes x NC scheme result
2 -1,1 ∆

2
(f1 + f2) 1.21306

3 -1,0,1 ∆
2
(f1 + 4f2 + f3) 2.60653

4 -1,-1/3,1/3,1 3∆
8
(f1 + 3f2 + 3f3 + 4f4) 2.1771

5 -1,-1/20,1/2,1 2∆
45
(7f1 + 32f2 + 12f3 + 32f4 + 7f5) 1.71047

6 -1,-3/5,-1/5, 5∆
288

(19f1 + 75f2 + 50f3 1.71082
1/5,3/5,1 +50f4 + 75f5 + 19f6)

7 -1,-4/6,-2/6,0, ∆
140

(41f1 + 216f2 + 27f3 + 272f4 1.71128
2/6,4/6,1 +27f5 + 216f6 + 41f7)

Table 3.3: 4-point results summary for various methods, for the same integral
as in Table 3.2. The Gaussian methods perform better than the Newton-Cotes
methods, but vary in their accuracy depending on the grid geometry.

Method value
Exact 1.71125

Gauss-Legendre 1.71122
Newton-Cotes (regular) 2.1771

General Gauss Method (regular) 1.7222
General Gauss Method (irregular) 1.67456

Since it is known how the regular and irregular HEALPix θ grid parts are con-

structed, then for better accuracy one can attempt a mixed NC-and-Gaussian

scheme for the regular and irregular parts respectively, or even a Gaussian

scheme for the whole sphere. Gaussian quadrature schemes approximate the

integral by the sum of certain weights at particular points which are specified by

a weight function W (x) [215]

I =

∫ b

a

f(x)W (x)dx ≈
n∑

j=1

wjf(xj); (3.45)

the freedom of choosing points allows one to attain in principal higher accuracy

for higher order calculations. This is anchored by a choice of weight function,

which is in a polynomial basis with roots at the particular points — evaluating

the integrand using those root points leads to much-improved accuracy. Given a

scalar product

〈f |g〉 =
∫ b

a

W (x)f(x)g(x)dx, (3.46)

one can find a set of polynomials (i) that includes exactly one polynomial of order
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j , called pj(x), and (ii) all of which are mutually orthogonal over W (x) via the

recurrence relation

p−1(x) = 0 p0(x) = 1

pj+1(x) = (x− aj)pj(x)− bjpj−1(x)
(3.47)

where

aj =
〈xpj|pj〉
〈pj|pj〉

, bj =
〈pj|pj〉

〈pj−1|pj−1〉
(3.48)

and pj(x) has j distinct roots in the interval (a, b) — the abscissas of the Gaus-

sian quadrature formulae are the roots of the orthogonal polynomial pn(x) for

the same interval and weighting function. Once the abscissas are determined,

weights can be determined by solving







p0(x0) · · · p0(xn−1)
...

. . .
...

pN−1(x0) · · · pn−1(xn−1)













w0

...

wn−1







=







∫ b

a
W (x)p0(x)dx

0
...







(3.49)

or via

wj =
〈pn−1|pn−1〉

pn−1(xj)p′n(xj)
. (3.50)

Gaussian quadrature (in particular Gauss-Legendre quadrature) is used in GLESP

to yield fast and highly accurate harmonic coefficients without recourse to iter-

ative methods. The HEALPix points do not follow the abscissas of the Gauss-

Legendre scheme, so it is necessary to derive the general Gaussian scheme first.

Starting from the integral (3.45) and using an interpolating polynomial Lj , one

finds

wj =

∫ b

a

Lj(x)W (x)

x− xj
dx (3.51)

such that the relevant integral to solve is

I =

∫ b

a

∏m
j=1(x− xj)W (x)

x− xj
dx. (3.52)

Using Mathematica, a general solution to the above integral with W (x) = 1 over
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n points is found to be

In = ln(x− xj)
n∏

i=1

(xj − xi) +
n−1∑

z=1

xzj

[
z∑

α=0

(−1)α
xz−α

α
Sα

]

Sα =
combins∑

y0 6=···6=yα

xy0 · · · xyα ,
(3.53)

giving for example a 3-point solution

I3 =
x3

3
+
x2

2

(

xj −
3∑

i=1

xi

)

+ x

(

x1x2 + x1x3 + x2x3 + x2j − xj

3∑

i=1

xi

)

(3.54)

where the log term disappears since one can only realistically sample at the pixel

positions i. Under certain conditions (such as f ′(x) 6= 0 in the vicinity of the

nodes), this reduces to the form given in Yakimiw [267]:

wj = −kn+1

kn

1

pn+1(xj)p′n(xj)
(3.55)

where the polynomials p are components of the interpolating polynomial:

pn(x) =
n∏

j=1

(x− xj) p′n(xj) =

[
dpn(x)

dx

]

x=xj

. (3.56)

The performance of this method is better than the NC method, and almost com-

petitive with Gauss-Legendre (see Table 3.3) — it can be shown that the general

Gaussian scheme reduces to Gauss-Legendre at those nodes.

There does however remain an important problem with this scheme: the number

of combinations to calculate for, say, an Nside = 32 HEALPix map for a mixed

Gauss-and-NC (Gaussian at the polar caps) and full Gaussian scheme respec-

tively are
∑30

α=1 31![(31 − α)!α!]−1 and
∑126

α=1 127![(127 − α)!α!]−1 which have pro-

hibitively large time complexities.

A final alternative is to rotate the underlying grid geometry by δθ = π/2 which

rotates the pole to the equator of a new coordinate system. This allows one to

calculate the rotated scalar and pseudo-scalar field pole pixels using a central-

difference scheme whilst avoiding the pole issues of the csc θ-type terms. Specifi-

cally one transforms the pixel coordinates from S2 to R3, performs the rotation R
in its matrix form, calculates the derivatives in the basis elements of R and utilizes

the Jacobian J = Xa
,b to convert back to polar form. Rotating the resulting calcu-
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lations back to the pole results in ringing from the pixel boundary, which can be

tempered by calculating a larger region of rotated pixels since ringing dies down

further from a discontinuous boundary. Performing such a method essentially

doubles the computation time of the full field calculations, but is recommended

if the polar pixels are needed. This might be ameliorable via the method of ap-

proximating the ringing response from a unit pixel; such a method is not pursued

here.

In the absence of a quick, accurate method for performing rotated sampling, one

is reduced to simply removing the offending pixel rings; for most calculations this

is recommended since the polar pixel region is negligible for large (i.e., Planck-

type) maps. This can be compared with the various oversampling techniques

(Fig. 3.8).

On a masked sphere, the methods to deal with the pole problem are more limited.

Boundary effects will contaminate the results of any harmonic transformation, so

one may have to resort to wavelet-type analysis instead for accurate enough map

reconstructions in order to control the sensitive polar ∇4b calculations.

It has been found that a pole problem exists for separating the polarization

modes; furthermore one can solve the problem of accurate reconstruction of the

harmonic coefficients on the HEALPix sphere. All this was done on an unmasked

sphere. For a sphere with masking, it is necessary to look at transform types with

better real-space localization properties. Wavelets are the canonical example; in-

deed, it is not impossible that harmonic and wavelet techniques could be com-

bined to engineer a more accurate map reconstruction. However, as can be seen

from the previous chapter, rotation of needlets relies on accurate integration, so

is out of the question around the pole using the standard HEALPix approach.

3.3 Estimators

For cosmology, it is necessary to calculate the errors on the scalar fields in har-

monic space such that one can define the accuracy of the power spectral esti-

mators. For example, on a flat 1d space one can compute the estimator for the

transform of a first-order derivative,

F (x) =
∑

k

f̂ke
ikx ⇒ ∂xF =

∑

k

ikf̂ke
ikx (3.57)
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where f̂k is the Fourier power in F for mode k. On a discrete grid, there is instead

the 1-point forward difference equation

∂̃xF =
∑

k

f̂k
i sin(k∆)eikx

∆
(3.58)

where the ∼ over the derivative operator denotes a discrete derivative, hence the

finite-differenced spectrum P̃k always underestimates the true spectrum Pk:

P̃k = sinc2(k∆)Pk. (3.59)

This is illustrated with a calculation of the signal and leakage of the Laplacian

of a signal, using a 3-point difference equation on a regular grid (Fig. 3.10). The

reader is reminded that an n-point stencil is a collection of n pixels over which

the finite-difference calculation in equation (2.68) for a given point on a grid is

made. The full flat-sky operators on a regular grid with 3-point stencils are then,

for k = (k1, k2), given by

D̃+
0 F = −

∑

k

2

∆2
(cos(k2∆)− cos(k1∆))f̂ke

ik·n

D̃−
0 F = −

∑

k

2

∆2
(sin(k1∆) sin(k2∆))f̂ke

ik·n.
(3.60)

For more general 1d derivatives, one has to start from

∂̃xFj′ =
∑

k

f̂ke
ikx
∑

j

wje
ik∆j,j′ (3.61)

and induce simplifications at this point using grid symmetries. There is then no

simple sinusoidal statement for general irregular grids but the estimator is not

difficult to calculate. The first-order derivative spectral estimator is then propor-

tional to

Pk ∝
(
∑

j

wje
ik∆j,j′

)2

, (3.62)

where the full irregular flat sky discrete operators correspond to the general solu-

tion for w discussed in section 2.3, which could be used to compute the leakage.

The 2d solution is generally more difficult since solving the geometric matrices

is much more involved, even for the case of an approximately-square stencil ge-

ometry. A more general full correction in terms of irregular 2d grids on a sphere

can be given in a sinusoidal form only with a relation between the flat space har-
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monic coefficients and the Legendre coefficients.

For the full-sky discrete estimator, whilst one can simply separate out the ∆φ

from the underlying harmonic field expansion (as in equation (3.61)), the deriva-

tive operators in the definition of the associated Legendre terms mean that one

cannot do the same with the ∆θ term, since the rotation is

Figure 3.10: 1d Laplacian accuracy (blue line) and residual (purple line); here
∆ = 1, k2 = 1 has been used.

R(0,∆θ, 0)Plm(cos θ) =
∑

m′

dlm′,m(∆θ)Plm′(cos θ)

Plm(x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x).

(3.63)

This is made more explicit from the fact that the derivative of the Legendre term

has contributions between modes [268]

∂θPlm(cos θ) =
1√

1− cos2 θ
(l cos θPlm(cos θ)− (l +m)Pl−1,m(cos θ)) , (3.64)

although the estimator can be approximated by performing low-order Taylor ex-

pansions. Instead, one can compute (by brute force) the numerical power con-

tributions for each derivative term via the Wigner 3lm-symbol by treating the wj
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elements as part of (n+ 1)2 separate fields (for the case of using square 2d grids):

(∂n)lm =
∑

j,l′,m′

4π

Npix

∑

i

w
(n)
j (Ωi)Yl′,m′(δΩj,i)Y

∗
lm(Ωi) (3.65)

where the Ωj,i refers to the rotations between the focal pixel i’s position on the

sphere and that of the given neighbouring pixel j. It is then possible to calculate

the accuracy of the power contribution by measuring the bi-Laplacian (the ‘sig-

nal’ generated by the derivatives) and the commutator (the ‘residual’ generated

by the derivatives):

Sig ⇌ ∇4 = D+
∓2D

+
0 +D−

∓2D
−
0 Res ⇌ D+

∓2D
−
0 −D−

∓2D
+
0 (3.66)

using

(D±
0 )lm ⇌

1

2(i)

∑

l′m′

√

(l′ − 1)l′(l′ + 1)(l′ + 2)

×
∑

l′′

√

4π(2l′′ + 1)

(

l′ l l′′

m −m 0

)(

l′ l l′′

−2 0 2

)

×
∫

2Yl′′,m′−m(Ω)± (−1)l+l
′+l′′

−2Yl′′,m′−m(Ω)dΩ.

(3.67)

The spin-2 harmonic integrals are only non-zero for n = 0, hence m = m′, simpli-

fying to

∫

±2Ylm(Ω)dΩ =
1

2(i)

∑

l′

fl′m
√

(l′ − 1)l′(l′ + 1)(l′ + 2)(−1)−m
∑

l′′

(

l′ l l′′

m −m 0

)

×
(

l′ l l′′

−2 0 2

)√

(2l + 1)(2l′ + 1)

4π

∫ [

2Yl′′,0(Ω)± (−1)l+l
′+l′′

−2Yl′′,0(Ω)
]

dΩ.

(3.68)

Finally, one can utilize

∫

±2Yl,0(Ω)dΩ = 2

√

π(l!)2(2l + 1)

(l + 2)!(l − 2)!

l−2∑

r=0

(

l − 2

r

)

×
(

l + 2

r + 2

)

(−1)l−r−2Γ(l − r)Γ(2 + r)

Γ(2 + l)
,

(3.69)
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which is only non-zero for l a multiple of 2, allowing a reduction in computa-

tions. Further speed-up is achieved by recognising that the D−
s operators are full

imaginary while the D+
s operators are real.

Since equation (2.30) can be written in pixel space as

∇4e =
(

D̃+
∓2D

+
0 + D̃+

∓2D
−
0

)

e+ Err(e)−
(

D̃+
∓2D

−
0 − D̃−

∓2D
+
0

)

b

∇4b =
(

D̃+
∓2D

+
0 + D̃+

∓2D
−
0

)

b+ Err(b) +
(

D̃+
∓2D

−
0 − D̃−

∓2D
+
0

)

e
(3.70)

where Err represents remaining error in the calculation from the summation of

the ‘signal’ and ‘residual’ parts, the leakage can be approximated. Whilst a simple

approximation can be taken by assuming leakage into e from b is negligible the

full calculation is clearly coupled. A calculation for the residual estimator, using

the scheme described in the next section, can be seen in Fig. 3.11. This calculation

is then equivalent to defining the pixelization leakage in terms of a convolution

operator

(∂n̂)lm =
∑

l′m′

Wll′mm′Yl′m′ (3.71)

where

Wll′mm′ =

∫
(
∑

j

wj(Ω)

)

Yl′m′(Ω)Ylm(Ω)dΩ, (3.72)

with which one can deconvolve out the pixellization leakage. When calculating

the residual for operation of discrete derivatives in different frames (such as the

Stokes tensor frame), or even for different spin-weight fields (such as if one has a

vector field) it is useful to look at the more general convolution operator

ss′Wll′mm′ =

∫

∂n̂ [s′Yl′m′(Ω)] sYlm(Ω)dΩ. (3.73)

Some of the techniques available for such a calculation are briefly expounded on,

without carrying out an in-depth example. One can first calculate the convolution

operator for the derivatives in the analytic case by utilizing the relation between

the spin-weighted harmonics and the Wigner D-functions

Dl
−m,s(φ, θ, ψ) = eimφdl−m,s(θ)e

−isψ = (−1)m
√

4π

2l + 1
sYlm(θ, φ)e

isψ (3.74)
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where the Wigner ‘little-d’ function is

dlmm′(θ) =
l+m∑

r=m′−m

(−1)r
√

(l +m′)!(l −m′)!(l +m)!(l −m)!

(l +m− r)!r!(m′ −m+ r)!(l −m′ − r)!

×
(

cos
θ

2

)2l+m−m′−2r (

sin
θ

2

)m′−m+2r
(3.75)

Figure 3.11: Left diagram: Fractional signal (black lines) and residual leakage
(red lines) of the finite-difference scheme on the HEALPix sphere at O2 calculate
from equation (3.65); the (thick lines, dashed lines) correspond to Nside = (8, 16).
There is a characteristic high point at the very low-l scale, followed by an im-
mediate dip in leakage. The first phenomenon is related to the pole problem in
the formalism on the HEALPix sphere; the signal starts to peak again at approx-
imately the Nyquist frequency for the map (∼ 2Nside). Right diagram: Residuals
from individual point Cl map generated from aElm = δll′ where l′ specifies the
point l-range. In this case, l′ = 10 for maps with Nside = (8, 16) corresponding
to (thick line, dashed line). The leakage has a steep downward gradient across l
with the leakage contribution to each multipole oscillating rapidly, the oscillation
rate scaling with resolution.

and the angular momentum operators on S2 [225] are

L̂2 = −
[
∂2θ + cot θ∂θ + csc2 θ(∂2φ − 2 cos θ∂ψθ + ∂ψ)

]

L̂z = −i∂φ L̂z′ = −i∂ψ

L̂± = − 1√
2
e±iφ (∂θ ± i cot θ∂φ) ,

(3.76)

where it should be noticed that on S2 the operator L̂2 is equivalent to D+
0 . These
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operators have the power contributions

L̂2Dl
mm′(φ, θ, ψ) = l(l + 1)Dl

mm′(φ, θ, ψ)

L̂zD
l
mm′(φ, θ, ψ) = −mDl

mm′(φ, θ, ψ)

L̂z′D
l
mm′(φ, θ, ψ) = −m′Dl

mm′(φ, θ, ψ)

L̂±D
l
mm′(φ, θ, ψ) = ±

√

l(l + 1)−m(m∓ 1)

2
Dl
m∓1,m′(φ, θ, ψ)

(3.77)

which allows one to construct the analytic derivatives of the spin-harmonics us-

ing the recurrence relations of the Wigner terms (p.90 of Varshalovich et al [225]).

As an illustrative example, the recurrence relation

sin θe±iφDl
m±1,m′(φ, θ, ψ) = ∓

√

(l ±m)(l ±m+ 1)(l2 −m′2)

l(2l + 1)
Dl−1
mm′(φ, θ, ψ)

+
m′
√

(l ±m)(l ±m+ 1)

l(l + 1)
Dl
mm′(φ, θ, ψ)

±
√

(l ±m)(l ±m+ 1)[(l + 1)2 −m′2]

(l + 1)(2l + 1)
Dl+1
mm′(φ, θ, ψ)

(3.78)

shows that the ∂θ operator redistributes power across multipoles l. To finish the

evaluation of the analytic convolution operators, it is necessary to evaluate the

integral

I =

∫

s′Yl′m′(Ω)sYlm(Ω)dΩ. (3.79)

This can be achieved by utilizing the orthogonality relations of the little-d func-

tions

∫ π

0

dlmm′(θ)dl
′

mm′(θ) sin θdθ =
2

2l + 1
δll′ (3.80)

and those of the Jacobi polynomials P
(α,β)
l (Gradshteyn & Ryzhik [268], p.806),

since

dlmm′(θ) =

√

(l +m)!(l −m)!

(l +m′)!(l −m′)!

(

sin
θ

2

)m−m′ (

cos
θ

2

)m+m′

P
(m−m′,m+m′)
l−m (cos θ).

(3.81)

For discrete derivatives on a regular grid with sampling points separated by a

length ∆, the generalized convolution operator for derivatives in φ is trivial to

compute. For the analysis of derivatives in θ, a perturbation expansion in the
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little-d functions, dlmm′(cos(θ + ∆)), can be used; by isolating the lowest order

expansions in the sinusoidal terms in equation (3.81)

(

cos

[
θ +∆

2

])2l+m−m′−2r (

sin

[
θ +∆

2

])m′−m+2r

≈
(

cos
θ

2

)2l+m−m′−2r (

sin
θ

2

)m′−m+2r

×(1 + (m′ − l −m+ 2r + l cos θ)∆ csc θ) +O(∆2)

(3.82)

it can be seen that the discrete derivatives in θ mix power across multipoles s, l

and m.

Returning from these more general considerations, the residual in the Stokes ten-

sor frame can be approximated by calculating the operators

ð−1ð−2 = ∂θθ − csc2 θ∂φφ + 2i csc θ∂θφ + 3 cos θ csc θ∂θ + 2i cos θ csc2 θ∂φ − 2

ð̄1ð̄2 = ∂θθ − csc2 θ∂φφ − 2i csc θ∂θφ + 3 cos θ csc θ∂θ − 2i cos θ csc2 θ∂φ − 2

(3.83)

which are spin-weighted in correspondence with operation on the Stokes tensor

instead of the individual Q and U fields, and their discrete analogues, given by

ð̃−1ð̃−2f(Ω) = ð−1ð−2f(Ω) +R+f(Ω) ˜̄
ð−1

˜̄
ð−2f(Ω) = ð̄−1ð̄−2f(Ω) +R−f(Ω)

(3.84)

where the operators R± are the quantities that will be approximated. By taking

the lowest order errors in the Taylor series derivation of the first and second order

derivatives in 1d

f j+1 − 2f j + f j−1

∆2
x

≈ ∂xxf
j +

∆2
x

12
∂x4f

j

f j+1 − f j−1

2∆x

≈ ∂xf
j +

∆2
x

6
∂x3f

j

f j+1
i+1 + f j−1

i−1 − f j+1
i−1 − f j−1

i+1

4∆x∆y

≈ ∂xyf
j
i +

2

3

(
∆2
x∂x3yf

j
i +∆2

y∂xy3f
j
i

)
,

(3.85)

the residual operators R± are

R± = ∆2
θ

(
1

12
∂θ4 ± i

csc θ

3
∂θ3φ +

cot θ

2
∂θ3

)

−∆2
φ

(
csc2 θ

12
∂φ4 ∓

csc θ

3
∂θφ3 ∓ 2i cos θ csc2 θ∂φ3

)

,

(3.86)
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and by substitution into

∇̃4e = ∇4e−
∑

lm

aElm
[
R+

−2Ylm +R−
2Ylm

]
+ i
∑

lm

aBlm
[
R+

−2Ylm −R−
2Ylm

]

∇̃4b = ∇4b−
∑

lm

aElm
[
R+

−2Ylm −R−
2Ylm

]
+ i
∑

lm

aBlm
[
R+

−2Ylm +R−
2Ylm

] (3.87)

the residual approximation is calculated3. For the case of HEALPix, one has

∆φ(θ, φ) ≈ ∆θ(θ, φ)/ sin θ, yielding the contribution at each point in θ:

∇̃4e = ∇4e−
∑

lm

√

(l + 4)!

(l − 4)!

[

aElm

(

1 +
csc θ

6

)

Ylm + iaBlm

(

1− csc θ

6

)

Ylm

]

∆2
θ

∇̃4b = ∇4b−
∑

lm

√

(l + 4)!

(l − 4)!

[

aElm

(

1− csc θ

6

)

Ylm + iaBlm

(

1 +
csc θ

6

)

Ylm

]

∆2
θ.

(3.88)

Alternatively, one might simply reconstruct the Q and U fields solely from the

underlying E spectra and perform the real-space commutator derivatives. The

HEALPix geometry also provides a consistency criterion for calculating ∇4b-

fields on the real-space HEALPix sphere which can help to expose whether the

calculated signal is predominantly numerical noise; since there is a significant

change in geometry and position differences between the equatorial and polar

HEALPix regions, a jump in the computed values of ∇4b across the equator-polar

cap boundary implies that the calculations are dominated by numerical error.

3.4 Masking & Noise Performance

Our analysis so far has been limited to an ideal unmasked sphere; however the

real sky is obscured by the galactic plane amongst other foreground sources and

will have various contributions of noise to it. This section is used to note the per-

formance of the software on a maskless sky against the standard methods, i.e.,

pure pixellization and finite-difference error and then show the efficacy of the

software in the presence of masking and noise. Of course, while testing against

standard methods shows that the proposed method works as required, the real

test of the software will be against alternative proposals for clean subtraction

of the B-mode leakage. In this section, unless otherwise stated the HEALPix

3This calculation is due to D. I. Novikov.
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methods shall be utilized at their optimal values for lmax and map2alm iterations:

lmax = 2Nside and 3 iterations. The CMB models used for calculation are those

appearing in Table 3.1.

Figure 3.12 compares MasQU calculations on the full unmasked sky to similar

HEALPix calculations; on the unmasked sky the harmonic space separation is

superior to calculations using the first few stencil sizes; with large sky mask-

ing the MasQU method features significantly less leakage. There should exist an

intermediate masked area, for a given MasQU calculation order and map resolu-

tion, wherein the difference between the HEALPix leakage and MasQU error is

minimized. This interesting calculation is left to future work, since for realistic

experiments the masking volume will likely exceed such an intermediate value.

Pole removal (Fig. 3.13) has the effect of lowering power across scales, with the

decrement most noticeable at low l. This was implemented by removing the

(On + 1) rings immediately outside each pole. For completeness, the difference

between operating in the full-sky and flat-sky formalisms is shown; it should not

be surprising that the errors in the flat-sky approximation are at their largest at

low l.

3.4.1 Masking

In the case of masking, analysis was performed using 3 basic types of mask (Fig.

3.14): equatorial, polar and random masks. In the masked case differences be-

tween the MasQU method and the raw (not apodized) HEALPix map2alm calcu-

lations are found as expected; the pole problem particularly affects the power at

around l = 2 by boosting it significantly. Focussing on the no-tensors maps, at

multipoles higher than l ∼ 10 MasQU performs considerably better than the raw

pseudo-Cl calculations for masked HEALPix schemes, by about 1 to 3 orders of

magnitude; in most models gravitational lensing rather than primordial modes

dominate the foreground polarization from l ∼ 150, meaning there is a large l-

range where MasQU is advantageous for calculating B-modes. The smoothness

of the masked calculations is in contrast to that of underlying functional disconti-

nuities. The effect of a shelf discontinuity itself under the operation of the full-sky

MasQU calculations is shown in Fig. 3.15. As can be expected (since the under-

lying approximation to the signal is an interpolating polynomial), the software

actually performs worse with a larger stencil when in the presence of a disconti-

nuity. For the CMB, discontinuities will mostly be contibuted by point sources on

the sky; these will need to be masked away using a source catalogue.
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Figure 3.12: Top 2 rows: B-mode Cls from the fiducial Nside = 32 B-mode-
free maps as reconstructed by the 3-iterations HEALPix method (black) or an
O2 MasQU calculation (grey), for equatorial (top-left), polar (top-right) and ran-
dom (middle) masks. Further details of these masks can be found from Figure
3.14. In all these plots, the red lines are B-mode spectra from tensor modes cor-
responding to r = 10−1, 10−2, 10−3. Bottom row: Maskless calculations, with
raw HEALPix (i.e., no special apodization used) on the left and O2 MasQU on
the right. For the HEALPix calculations, the black line is for 0 iterations while
the grey line is for 3 iterations. For the MasQU calculations, the grey line is for a
standard calculation, with the pole removed for the black line. The correspond-
ing ∇4e signal has an rms ∼ 2× 10−8K; the red lines are full-sky B-mode spectra
from tensor modes corresponding to r = 10−5, 10−7, 10−9 (left-hand diagram)
and r = 10−1, 10−3, 10−5 (right-hand diagram).



3.4. MASKING & NOISE PERFORMANCE 178

Figure 3.13: Left diagram: O2 and O4 (black, grey) maskless B-modes from the
Nside = 32, r = 0 map, with the pole removed. Right diagram: O2 calculations
with the flat-sky and full-sky operators (black, grey). In both plots, the red lines
are B-mode spectra from tensor modes corresponding to r = 10−2, 10−3, 10−4.

Figure 3.14: Rows, top-to-bottom: Masking schemes, ∇4e maps and ∇4b maps,
at O6 and Nside = 32 for aElm = δl2δm0, aBlm = 0. Left to right: the equatorial
mask (fsky ≈ 0.83), polar mask (fsky ≈ 0.96) and random mask (fsky ≈ 0.64).
The source function was chosen for the smallness of the pole problem errors, but
nonetheless the masking errors are generally smaller than the errors contributed
by the pole problem; specifically, the absolute maximum values in the ∇4b maps
are, from left to right, (∼ 6.6× 10−4,∼ 6.6× 10−4,∼ 7.5× 10−3).
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Figure 3.15: (Logarithmic) code performance in the presence of shelf discontinu-
ities; the B-modes are calculated from a Q = sin θ sinφ, U = 0 pair of Nside = 128
maps with a cut-off to Q = 0 in the southern hemisphere at the equator. With-
out a U signal, one should have no B-modes. Left-to-right: Original Q map, O2

and O4∇4b maps. The map value ranges for each image are (−1, 1), (−14.8, 1.68)
and (−14.4, 1.72) respectively. Notice that there is a blow-up in errors for cal-
culations across the discontinuity, as expected; the error actually gets worse and
effects a larger region for larger stencils, and also scales with the magnitude of
the discontinuity. This general behaviour also follows for point discontinuities.

3.4.2 Noise Performance

A number of simple noise models (white Gaussian, anisotropic uncorrelated

and pixel-to-pixel correlated) are also analysed. The Gaussian model was cal-

culated using the HEALPix random number-generating subroutine planck-rng in

harmonic space rather than pixel space, since one can then look at the effect of

the dominant noise scale on the calculations. The crude anisotopic noise map

was constructed from a pixel-level Gaussian noise map with a small functional

direction-dependence imposed on it whilst the pixel-correlated signal was con-

structed from a pixel-level Gaussian noise map with reflection symmetry im-

posed between the north and south hemispheres. Figure 3.16 presents power

spectra for the realistic B-mode-less CMB maps with Gaussian noise added,

where variations have been made in the mean value of the noise (at 10%, 1%

and 0.1% the mean signal values of the noiseless CMBFAST-generated Q and U

maps, i.e., 〈Xnoise〉 ∝ 〈Xsig〉 where X ∈ {Q,U}) and in the scaling of the noise

(via a cut-off in the number of multipoles generated for the noise maps). At high

magnitude and large l, since the noise translates to a collection of point disconti-

nuities in real space, the sum of the derivatives of the summed signal and noise

maps can be expected to feature more point source errors. The addition of the

Gaussian noise models serves to boost B-mode power fairly consistently across

l up to the lmax value that sets the smallest scale for noise; a lower-l noise mode

cut-off lmax results in a drop in signal power boosting for l > lmax, but still with

a significant contribution. The pixel-correlated power boost is almost indistin-
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guishable from the pure Gaussian boost; in contrast, the anisotropic boost is de-

pendent on the scaling of the direction-dependent noise. The MasQU method can

then be seen to be very sensitive to noise; one would want a good understanding

of the systematic and foreground noise properties in order to effectively purify

the B-modes.

Figure 3.16: Left diagram: O2 maskless B-modes from the r = 0 map with res-
olution Nside = 32, with Gaussian noise added to the underlying Q, U maps
and the pole removed. The Gaussian noise models in Q and U are calculated
from a Gaussian distribution of harmonic coefficients and normalized such that
its mean is some proportion of the signal mean, i.e., 〈N〉 = α 〈S〉. The thick black
line is the noiseless model, whilst the scaling for the dashed black, dotted black,
and dashed grey lines are α = 0.1, 0.01 and 0.001 respectively. Right diagram:
The thick black line is the noiseless model, with the dashed black, dotted black,
and dashed grey lines for Gaussian, anisotropic, and pixel-correlated noise mod-
els respectively, all with α = 0.1. In both plots, the red lines are B-mode spectra
from tensor modes corresponding to r = 10−2, 10−3, 10−4.

3.4.3 Leakage from Realistic Surveys

In order to get a rough idea of the leakage improvement the software can bring to

real data, the leakage for sky coverages in a simplified model of the E and B Exper-

iment (EBEX, [269]) survey and the bounds that may be set on the tensor-to-scalar

ratio r in these simplistic cases is calculated; the algorithm is also performed on a

mask of similar area centred on the equator. In the past the signal-to-noise ratio

S/N has been too low to perform differencing on the real sky, but such projects

are designed to improve S/N , making such calculations plausible. The fiducial

model is the same as the parameters set for the previous no-tensors analysis (Ta-

ble 3.1).

The EBEX survey is a balloon-borne polarimeter for probing the sky with a reso-

lution of less than 8 arcminutes at frequency bands centered at 150, 250, 350, and
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450 GHz. The sky patch covered by the ∼1300-detector instrument corresponds

to 350 square degrees. The EBEX region is an approximately square patch, corre-

sponding to Fig. 9 in Stivoli et al [270]. In particular, MasQU calculations are per-

formed that are equal roughly to the EBEX “sky”and “ground” coverages found

in Stivoli et al, for the fiducial B-mode-free model adding uncorrelated Gaussian

noise, at the levels 3.2 µK and 0.9 µK for the sky and ground coverages respec-

tively4, in both Q and U (i.e., 〈X〉noise,“sky′′ = 3.2µK and 〈X〉noise,“ground′′ = 0.9µK

where X = {Q,U}). This is performed on an Nside = 128 resolution HEALPix

map — less than the resolution capable by EBEX, but more than enough to cap-

ture the essential low-l polarization information relevant to tensor modes. The

procedure starts by smoothing the signal + noise map with a Gaussian kernel,

and calculate the E- and B-mode spectra from the resulting smoothed map (Fig.

3.17); the noise model is approximated by performing the same derivatives on

a smoothed Gaussian field. Since the convolution of the map with a Gaussian

function smooths high-resolution variation, this amounts to a low-frequency pass

filter. On the HEALPix sphere, the decreasing resolution per ring will serve to in-

crease low-l power in the calculations. Since one is not using the full sky it is

advantageous to rotate the survey region to the equator, which would ameliorate

such a problem. This is because the pixel distributions in the polar cap and equa-

torial regions differ significantly.

Mock likelihoods for the tensor-to-scalar ratio r from Gaussian priors (centred

on r = 0 with (min,max) = (0, 0.33)) are also computed, using CosmoMC and

∼ 200, 000 likelihood space samplings: all cosmological parameters are held con-

stant5 except for varying r, the scalar and tensor spectral indices ns, nt and the

superhorizon power of the scalar perturbations logAs, centred on 0.95, 0 and 3 re-

spectively. This of course assumes that quantities such as the reionization optical

depth are known perfectly; for a realistic analysis one would have to perform the

MCMC calculations over a higher-dimensional space that includes such parame-

ters as variables. Thus if the noise model is well-known, then the MasQU method

provides an excellent improvement in the mock surveys over standard harmonic

methods. Specifically, since real-space derivatives obey linearity, one can in prin-

ciple approximate the noiseless map by removing theE- andB-modes calculated

by a full real-space noise model. Given that the noise models from projects such

as WMAP are computed initially as sky maps, this would have the advantage of

4From correspondences with the EBEX team.
5Baryon density Ωbh

2 = 0.0223, dark matter density Ωdmh2 = 0.105, optical depth τ = 0.09,
curvature Ωk = 0 and dark energy equation-of-state parameter w = −1.
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separating out point sources before smoothing of the map is performed.

Figure 3.17: Left column, top-to-bottom: Mock EBEX ground survey, rotated
ground survey, and the rotated sky survey masks. The ground and sky surveys
are imposed with a 0.9 µK and 3.2 µK smoothed Gaussian noise component,
representing detector error. Right column, B-mode spectra corresponding to the
survey regions in the left column; the black line is a HEALPix calculation, the
grey an O2 MasQU calculation. These results compare favourably with the B-
mode residual in more detailed EBEX analysis [270], although the noise model
used in the analysis here is far more simplistic. Central column: Maximum like-
lihood calculations of r for the middle row mask according to the text; the black
lines are the HEALPix calculations, with the MasQU calculations in red (solid
lines are the fully marginalized posteriors, dotted lines the relative mean likeli-
hoods).

3.5 Apodization & Signal Optimization

Leakage from E and B polarization modes into each other comes directly from

two sources: sky pixellization and sky masking. Having dealt with signal leak-

age from the coupled polarization modes into each other due to masking by con-

structing pure scalar fields, one is then left with a remaining leakage problem:

power also leaks between modes of the same scalar field when calculating the

angular power spectrum on a masked sky. This is mostly due to the edge dis-

continuities present in a mask, although aliasing (the transference of power from
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undersampled higher-resolution modes to lower modes) also has an effect. In

practice one avoids aliasing by sampling the map at a higher resolution than the

Nyquist frequency for the required l-range.

The edge discontinuities can be dealt with using apodization techniques; in the

case of sky masking one can apodize the harmonic calculation by applying a

weight function W (Ω) ∈ (0, 1) to each pixel element on the sphere during har-

monic integration

b̃lm =
(l − 2)!

(l + 2)!

∫

W (Ω)∇4b(Ω)Y ∗
lm(Ω)dΩ (3.89)

where trivially one hasW (Ω)=0 in the masked regions. This allows one to smooth

an edge at the cost of information loss. This information loss is also dependent on

the length of the apodization function, which brings with it a variable sensitivity

to different frequencies. Since the apodization term is a modified sky mask, this

technique is related to the mode-coupling described in section 2.4.

The choice of kernel W usually requires careful consideration; many standard

apodization schemes exist in the literature such as Gaussian, Hamming and oth-

ers, which differ in their redistribution properties such as dynamic range against

sensitivity. Specifically though, there are a few standard constraints one requires

— that the kernel starts at a value W = 1 from some radius within the bounded

region and smoothly evolves toW = 0 at the boundary. How far in the region this

graduation starts affects how much power is lost versus how smooth the transi-

tion is. Smoothness is important in the same sense that the discontinuous mask

cut-off is important; there are therefore a number of necessary trade-offs when

choosing an apodization scheme.

Figure 3.18 shows the performances of apodizations on a unit-Cl temperature

map for 3 classes of mask: equatorial, polar and random, for a Gaussian apodiza-

tion scheme. This scheme is varied in length according to pixel radius of up to

3, providing a visual information on the effects of apodization; the information

lost by apodization is in proportion with the summed perimeter of the masked

regions in a given masking scheme.

Smith and Zaldarriaga [217] showed that apodizing the pure scalar fields is

equivalent to finding the weights in the ‘pseudo-Cl-with-counterterms’ method
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(from now on referred to merely as the ‘counterterms’ method)

b̃lm =
i

2

∫

dΩ(Q+iU)

(

W 2Y
∗
lm +

21W
∗
1Y

∗
lm

√

(l − 1)(l + 2)
+

2W
∗Y ∗

lm
√

(l − 1)l(l + 1)(l + 2)
+ c.c.

)

(3.90)

with an analogous expression for the e-field, where the conditions W = 0 and

ðW = 0 are assumed to be satisfied at the mask boundary. The spin-weighted

apodization weights with s > 0 serve to purify the calculation, whilst the s = 0

weight acts in much the same way as the weight in equation (3.89).

Figure 3.18: HEALPix scalar harmonic calculations with various masks and a
Gaussian apodization scheme, from an underlying map constructed from a unit-
step power spectrum Cl = U(l − 2)U(18 − l) where U(l) is a Heaviside step
function. Left-to-right: equatorial, polar and random masks. Red corresponds to
a 1-pixel apodization radius, blue to a 3-pixel apodization radius.

Further, one wishes to take account of the noise properties in a systematic way.

The method provided by Smith and Zaldarriaga is just such a consistent, unified

method. One wishes (as in the MASTER technique [216]) to solve for C∇4b
l in

〈

Ĉ∇4b
l

〉

=

∫
d2l′

4π2
||W̃ (l − l′)||2C∇4b

l′ . (3.91)

By operating on the the apodization weights with the spin-weighted operators,

one yields

ẽlm =
1

2

∫

(Q+ iU)(NlY
∗
lm−2W −N ′

l−1Y
∗
lm−1W + 2Y

∗
lmW )

+(Q− iU)(NlY
∗
lm2W +N ′

l 1Y
∗
lm1W + 2Y

∗
lmW )dΩ

b̃lm =
i

2

∫

(Q+ iU)(NlY
∗
lm−2W −N ′

l−1Y
∗
lm−1W + 2Y

∗
lmW )

−(Q− iU)(NlY
∗
lm2W +N ′

l 1Y
∗
lm1W + 2Y

∗
lmW )dΩ

(3.92)
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where

Nl =
1

√

(l − 1)l(l + 1)(l + 2)
, N ′

l =
2

√

(l − 1)(l + 2)
(3.93)

with the conditions ∫

WdΩ = 4π,
∑

s

sW = 1. (3.94)

The apodization, which is required for correcting for mask leakage, can be calcu-

lated optimally with a scheme given by

Wopt = [Cβ ∗ C]−1
1 (3.95)

where C is the Npix ×Npix (signal-and-noise) covariance, Cβ the Npix ×Npix band-

limited signal covariance

Cβ =
∂C

∂Cl(β)
, (3.96)

β the index over l bands and the ∗ operation signifies element-wise matrix mul-

tiplication. For the scalar and pseudo-scalar e and b fields, this relates to the

signal/noise decomposition in the pixel (i, j) basis by

Cij = Sij +Nij Sij =
∑

l

2l + 1

4π
ClPl ⇒ Cβ =

2l + 1

4π
Pl(β) (3.97)

which could alternatively be analysed in the spin-2 field approach using

Saa
′

ij =

〈(

QiQj QiUj

UiQj UiUj

)〉

. (3.98)

The sky mask is incorporated at this stage, by removing elements of the covari-

ance matrix. The optimal weights scheme is derived by requiring W to minimize

the expectation value

〈

C̃β

〉

=

〈
∑

ij

diWiC
β
ijWjdj

〉

=
∑

ij

WiWjCijC
β
ij (3.99)

where d is a length-Npix data vector. The normalization condition
∑

iWi = const.

comes from differentiating with respect to the weights:

d
〈

C̃β

〉

dWi

=
∑

j

CijC
β
ijWj = 1 ⇒ W = (C ∗ Cβ)−1

1. (3.100)
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As an analytic example, in the flat-sky approach on a disk of radius R with co-

variance C given by an l2 spectrum, the covariance terms are

Cij = −∇2δ2(x− y), Cβ,ij = j0(l0‖x− y‖) (3.101)

which yields

(−∇2 + l20)W = 1 ⇒ W = 1− I0(l0r)

I0(l0R)
(3.102)

where I0 is a Bessel function, the stated Laplacian is just the radial part of the 2d

circular Laplacian and the boundary conditions are W ′(0) = 0, W (R) = 0. Simi-

larly, for C = δ2(x− y) one yields the expected uniform weights everywhere.

Since the counterterms method is equivalent to passing to b by taking finite dif-

ferences, then while a pseudo-Cl method for calculating the spin-weighted min-

imum variance apodization weights exists it is only necessary to calculate the

scalar weights for the scalar field. In some sense there is more information in the

scalar field method than the counterterms method; one is not limited to taking

the power spectrum of the field, but has the phase information available. On

the other hand, the use of 5 different weights means that there are more degrees

of freedom available in the counterterms method. The method is by construc-

tion pure; the counterterms method is (almost) pure but close to optimal, since

the Dirichlet boundary conditions on the spin-weighted W terms are never fully

satisfied. By recalling the transfer array in equation (2.134), one can calculate

the unbiased estimator. One calculates the pseudo power spectrum and then the

transfer matrix (using the same weights as in the pseudo spectrum); finally, the

inversion is performed.

One can define an optimal estimator from Fisher analysis [59]; for a lossless

quadratic method which is unbiased, one is lead to

El =
1

2Fll
C−1PlC

−1 (3.103)

which can be rewritten in band-limited form as

Eβ = di(C
−1CβC−1)ijdj. (3.104)

The ansatz for finding W is such that the pseudo-Cl estimator

C̃β =
∑

ij

diWiC
β
ijWjdj (3.105)
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is as close to the optimal estimator as possible, where theNpix×Npix signal covari-

ance in the bandpower that is being estimated is denoted Cβ and the Npix × Npix

matrix C represents the total covariance (signal plus noise). In other words, the

optimized weight function minimizes the total expectation value
〈

C̃β

〉

.

Numerically, this can be achieved in the following way: since

〈

C̃β
〉

=
〈

C̃β
〉

sig
+
〈

C̃β
〉

noise

= wTQsw + wTQnw =
∑

lm

aW∗
lm CWW

l aWlm + aN∗
lmC

NN
l aNlm

(3.106)

and the signal and noise contributions are computed from

〈

C̃β
〉

noise
=

1

4π

∑

lx

Wlσ
2(x)W (x)2

CWW
l =

∫ 1

−1

dz
∑

l′l′′

(
2l′′ + 1

16π

)

Wl′′d
l
00(z)d

l′

00(z)d
l′′

00(z)C
TT
l′ ,

(3.107)

then one can calculate the weight spectra, perform the transform to the correla-

tion matrix, and solve for the real-space weights using conjugate gradient inver-

sion. In this set-up, the Wl term represents a band-limiting function valued at

l(l + 1)/2π within the band and 0 outside it, whilst the masking is implicit in re-

moving zero-element rows from the covariance matrix.

The standard Conjugate Gradient (CG) method [271] is a popular iterative

method used to solve a linear system Ax = b without having to directly invert

the symmetric and positive-definite A; this makes it useful when the array size is

large and the array is sparse, precisely the case for the correlation matrices in the

apodization scenario presented. One can use this procedure to approximate A−1

quickly. The aim is to find the two non-zero vectors u and v where

uTAv = 0. (3.108)

This is simplified by expanding the solution to the linear equation as

x =
n∑

i=1

αipi (3.109)

for some vector p; then one can utilize the summations

b =
n∑

i=1

αiApi, αi =
pTi b

pTi Api
(3.110)
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to construct an iterative method of finding x. The CG method can be applied to

matrices thus:

ATAx = AT b (3.111)

where it can be seen that if

S = pTAp ⇒ A−1 = pS−1pT . (3.112)

One can build intuition for this seemingly ‘black-box’-type calculation by consid-

ering some of the geometry. By constructing a quadratic form

f(x) =
1

2
xTAx− bTx+ c (3.113)

in terms of the linear system, then taking the gradient shows that the solution to

the linear equation is a critical (saddle) point in f(x), to be found by minimiza-

tion. The iterative method is then equivalent to the method of steepest descent; if

the error term is an eigenvector of the matrix A then the convergence is immedi-

ate.

Particularly, it is more useful to employ the biconjugate gradient method; this is a

subtle modification using the residual vector r, which satisfies the biorthogonal-

ity and biconjugacy conditions

r̄irj = rir̄j = 0, p̄iApj = piA
T p̄j = 0 (3.114)

wherein with modified recurrence relations one can solve for linear equations

which are not necessarily symmetric positive-definite. The rate of convergence of

these methods can be improved with the use of a preconditioning matrix, which

allows one to set the initial state of the computation closer to the solution of the

system. Of course, this requires some intuition about the kind of system that is

being solved.

For theE/B-unmixing counterterms equivalent to apodizing e and b, the optimal

apodization set-up is more involved. The transfer arrays are given in equation

(2.143). In order to satisfy the optimization ansatz, the correlation function to be
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inverted is

C(θ) = F (x, x′) =
∑

lm






CWW
l Y ∗

lmY
′
lm CWG

l Y ∗
lmY

′G
(lm)a′ CWE

l Y ∗
lmY

′E
(lm)b′c′

CWG
l Y G∗

(lm)aY
′
lm CGG

l Y G∗
(lm)aY

′G
(lm)a′ CGE

l Y G∗
(lm)aY

′E
(lm)b′c′

CWE
l Y E∗

(lm)bcY
′
lm CGE

l Y E∗
(lm)bcY

′G
(lm)a′ CEE

l Y E∗
(lm)bcY

′E
(lm)b′c′






+






0 0 0

0 CCC
l Y C∗

(lm)aY
′C
(lm)a′ CCB

l Y C∗
(lm)aY

′B
(lm)b′c′

0 CCB
l Y B∗

(lm)bcY
′C
(lm)a′ CBB

l Y B∗
(lm)bcY

′B
(lm)b′c′






(3.115)

which can be calculated using the spin-s Legendre functions

P ss′

l =
4π

2l + 1

∑

m

sY
∗
lms′Y

′
lm

Qss′

l =
P ss′

l + (−1)s
′

P s,−s′

l

2

Rss′

l =
P ss′

l − (−1)s
′

P s,−s′

l

2
,

(3.116)

with summation relations for symmetric and antisymmetric tensors S of rank s

∑

m

Y ∗
lmY

′S
(lm)b′1···b

′
s
= −2l + 1

4π
P 0s
l X ′

b′1···b
′
s

∑

m

Y S∗
(lm)b1···bs

Y ′S′

(lm)b′1···b
′

s′
=

2l + 1

4π
(Qss′

l Xb1···bsX ′
b′1···b

′
s
+Rss′

l Yb1···bsY ′
b′1···b

′
s
)

(3.117)

where the X and Y tensor basis fields correspond to, for tensor ranks 1 and 2,

Qab =
XaXb − YaYb

2
Uab =

XaYb + YaXb

2

Xa = ( 1 0 ) Ya = ( 0 sin θ )
(3.118)

are tensor and vector basis fields, and similarly for antisymmetric tensors A of

rank a. It will be useful to transfer between the tensor and spin-weighted for-

malisms; one can use the relation between spin- and tensor-harmonics via the

null vectors ma

Y S
(lm)b1···bs

= −sYlmmb1 · · ·mbs − sYlmm̄b1 · · · m̄bs , m =
ê1 + iê2

2
(3.119)
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with the correlation functions

〈TX〉 = −
∑

l

2l + 1

4π
CTS
l P 0s

l , 〈TY〉 = −
∑

l

2l + 1

4π
CTA
l P 0a

l (3.120)

and

〈XX ′〉 =
∑

l

2l + 1

4π
(CSS′

l Qss′

l + CAA′

l Raa′

l )

〈YY ′〉 =
∑

l

2l + 1

4π
(CSS′

l Rss′

l + CAA′

l Qaa′

l )

〈XY ′〉 =
∑

l

2l + 1

4π
(CSA′

l Qsa′

l − CAS′

l Rsa′

l )

(3.121)

where the full polarization tensor correlation is

〈

P deP d′e′
〉

=

(
2l′ + 1

4π

)

(R22
l′ Q

deQ′d′e′ +Q22
l′ U

deU ′d′e′) (3.122)

to yield, for the BB spectrum, the scalar weight power spectrum

CWW
l =

∫ 1

−1

dz
∑

l′l′′

(
2l′′ + 1

16π

)

Wl′′d
l
00(z)

[

C+
l′ d

l′

22(z)d
l′′

22(z)− C−
l′ d

l′

2,−2(z)d
l′′

2,−2(z)
]

(3.123)

and its corresponding self-coupled spin-mixing spectra

CGG
l =

∫ 1

−1

dz
∑

l′l′′

βl′′Wl′′(N
′
l′′)

2
[

C+
l′ d

l
11(z)d

l′

22(z)d
l′′

11(z)− C−
l′ d

l
1,−1(z)d

l′

2,−2(z)d
l′′

1,−1(z)
]

CCC
l =

∫ 1

−1

dz
∑

l′l′′

βl′′Wl′′(N
′
l′′)

2
[

C+
l′ d

l
11(z)d

l′

22(z)d
l′′

11(z) + C−
l′ d

l
1,−1(z)d

l′

2,−2(z)d
l′′

1,−1(z)
]

CEE
l =

∫ 1

−1

dz
∑

l′l′′

βl′′Wl′′N
2
l′′

[

C+
l′ d

l
22(z)d

l′

22(z)− C−
l′ d

l
2,−2(z)d

l′

2,−2(z)
]

dl
′′

00(z)

CBB
l =

∫ 1

−1

dz
∑

l′l′′

βl′′Wl′′N
2
l′′

[

C+
l′ d

l
22(z)d

l′

22(z) + C−
l′ d

l
2,−2(z)d

l′

2,−2(z)
]

dl
′′

00(z)

(3.124)
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and cross-coupled spectra

CWG
l =

∫ 1

−1

dz
∑

l′l′′

βl′′Wl′′N
′
l′′d

l
01(z)

[

−C+
l′ d

l′

22(z)d
l′′

12(z) + C−
l′ d

l′

2,−2(z)d
l′′

1,−2(z)
]

CWE
l =

∫ 1

−1

dz
∑

l′l′′

βl′′Wl′′Nl′′d
l
02(z)

[

−C+
l′ d

l′

22(z)d
l′′

02(z) + C−
l′ d

l′

2,−2(z)d
l′′

02(z)
]

CGE
l =

∫ 1

−1

dz
∑

l′l′′

βl′′
Wl′′

2
(N ′

l′′)
2Nl′′

[

C+
l′ d

l
12(z)d

l′

22(z)− C−
l′ d

l
1,−2(z)d

l′

2,−2(z)
]

dl
′′

01(z)

CCB
l =

∫ 1

−1

dz
∑

l′l′′

βl′′
Wl′′

2
(N ′

l′′)
2Nl′′

[

C+
l′ d

l
12(z)d

l′

22(z) + C−
l′ d

l
1,−2(z)d

l′

2,−2(z)
]

dl
′′

01(z)

CCB
l =

∫ 1

−1

dz
∑

l′l′′

βl′′
Wl′′

2
(N ′

l′′)
2Nl′′

[

C+
l′ d

l
12(z)d

l′

22(z) + C−
l′ d

l
1,−2(z)d

l′

2,−2(z)
]

dl
′′

01(z)

(3.125)

where βl = (2l + 1)/16π, C±
l = CEE

l ± CBB
l and noting that the superscript XY

on the Cl in equation (3.125) refers not to the gradient- and curl-type parts of the

cosmological signal but of the mode-unmixing weights, and

∫ 1

−1

dls,±s′(z)d
l′

2,±2(z)d
l′′

2−s,±2∓s′(z) = 2

(

l l′ l′′

s −2 2− s

)(

l l′ l′′

s′ ∓2 ±2∓ s′

)

.

(3.126)

The EE spectrum employs similar unmixing terms. As before, one should mini-

mize
〈

C̃α

〉

= wTQw = aT Q̃a which, from the ansatz given, means solving one of

the linear systems

Qw = v Q̃a = ṽ (3.127)

since v is a unit spin-weight vector. The harmonic components of the weights are

aWlm =
∑

x

W (x)Y ∗
lm(x)

aSlm = −
∑

x

Ws(x)

(

sY
∗
lm(x)− −sY

∗
lm(x)

2

)

aAlm = i
∑

x

Wa(x)

(

aY
∗
lm(x) + −aY

∗
lm(x)

2

)

(3.128)
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so

C full
l =











CWW
l CWG

l CWE
l 0 0

CWG
l CGG

l CGE
l 0 0

CWE
l CGE

l CEE
l 0 0

0 0 0 CCC
l CCB

l

0 0 0 CCB
l CBB

l











. (3.129)

The correlation matrix in the spin basis is then

C(θ)full =











CW0W0 CW0W1 CW0W2 CW0W−1 CW0W−2

CW1W0 CW1W1 CW1W2 CW1W−1 CW1W−2

CW2W0 CW2W1 CW2W2 CW2W−1 CW2W−2

CW−1W0 CW−1W1 CW−1W2 CW−1W−1 CW−1W−2

CW−2W0 CW−2W1 CW−2W2 CW−2W−1 CW−2W−2











(3.130)

where the harmonic transforms are given by

CW0W0 =
∑

l

2l + 1

4π
CWW
l Pl(cos θ)

CW0Ws = −
∑

lm

2l + 1

4π
CWS
l P s0

l (cos θ)

CW0W−s = −
∑

lm

2l + 1

4π
CWS
l (−1)ls

′

P−s,0
l (cos θ)

CWsWs′ = CW−sW−s′ =
∑

lm

2l + 1

4π
(CSS′

l + CAA′

l )P s′s
l (cos θ)

CWsW−s′ =
∑

lm

2l + 1

4π
(CSS′

l − CAA′

l )(−1)l+sP ss′

l (cos θ)

(3.131)

again assuming no correlation between parities. Similarly, one can take a quick

look at optimality with the higher-order spectra. The full optimal estimator for

fNL from the bispectrum is given by

f̂NL =
1

N

∑

limi

(

l1 l2 l3

m1 m2 m3

)

Bl1l2l3

×
[
(C−1a)l1m1

(C−1a)l2m2
(C−1a)l3m3

+ C−1
l1m1,l2m2

(C−1a)l3m3
)
]

(3.132)

where N =
∑

li
B2
l1l2l3

/(Cl1Cl2Cl3) for an isotropic survey. The optimal estimator

for the non-Gaussianity from the two-to-one spectrum can be found in Munshi et

al [100]. Since the Fisher matrix encodes the covariance and errors of the estima-

tor, then one can utilize this to minimize the variance of the estimator. The use
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of Fisher analysis then represents a robust and straightforward method of opti-

mizing the higher-order spectra; it will be useful in the future to generalize the

optimal estimators for the general spectra given in Chapter 2.

Alternatively, in the original power spectrum approach, the band-limited spectra

are given by

Cβ[d] =

β
∑

l

∑

m

|ãlm|2 =
∑

ij

diWiC
β
ijWjdj. (3.133)

This was constructed by simply expanding the harmonic terms into integrals,

and then following through the summation of multipoles in the limit of statistical

isotropy. A similar calculation may be performed for the bispectrum, giving:

Bβ1β2β3 [d] =
∑

ijk

didjdkWiWjWkB
β1β2β3
ijk (3.134)

where Bβ1β2β3 is the bandwidth-limited 3-point real-space correlation function; in

practice, the 3 band-limits would be taken as β1 = β2 = β3. The general band-

limited n-point spectrum is then giving by

Nβ1···βn [d] =
∑

i1···in,j1···jn

di1 · · · dinWi1 · · ·WinN
β1···βn
i1···inj1···jn

Wj1 · · ·Wjndj1 · · · djn (3.135)

from which one solves

W T
i1
· · ·W T

inQi1···inWi1 · · ·Win (3.136)

by stacking slices of the respective tensors into respective matrices and utilizing

the conjugate gradient method as before. Obviously, this is computationally re-

strictive for all but the lowest-order cumulants. This method, whilst optimizing

the higher-order spectra, is not very useful since the non-Gaussian signal is small,

hence the summation into the single number fNL is preferred.

3.6 Defect Detection

Previously, a method has been developed with which to detect discontinuities in

the underlying CMB Stokes maps. This was motivated physically by the need to

probe exotic physics such as topological defects. In chapter 4, its use as a check for

systematics is shown, exposing a smoothing issue within the WMAP ILC temper-
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ature map. In this section, the theoretical approach (section 2.5) is complemented

with analysis of the defect detection method on the HEALPix sphere, in order to

understand how useful the Laplacian-difference maps are for defects, and what

geometric imprint the HEALPix sphere will have on them.

To perform this, various statistics of Gaussian CMB simulation maps and maps of

CMB simulations with a range of toy defects imposed on them are computed. The

toy defects are produced in the naive sense of merely adding a Heaviside unitstep

U(x) function multiplied by some visibility parameter g to a single CMB simula-

tion; a more realistic method such as the evolution of a cosmic string network

would require considerable computation resources. In this sense the calculations

are ‘proof-of-principle’ calculations.

To analyze the produced maps, the localized needlet power is looked at, the

power spectra of the Laplacian-difference maps and their skew-spectra, and a

brief application of an edge-detection method. If discontinuities exist on all of

the T , e and b maps, which might be expected if there were a cosmic string in

the microwave sky, then in addition one might reasonably expect position-space

correlations between the Laplacian-difference maps of T , Q, U , e and b. Further,

since this is in a sense convolving a discontinuity with a polynomial and the form

of the polynomial can be computed it may be possible to reconstruct the discon-

tinuity. This would form the basis of a further analysis; the analysis in this thesis

is limited mostly to temperature discontinuities using a range of toy models.

3.6.1 Toy Defects

In order to study the utility of the Laplacian-difference method, a number of

toy defects will be created and imprinted on a simulated CMB map. The

method is implemented by performing the difference of two maps: the spectrally-

constructed Laplacian map, created by calculating the harmonic coefficients us-

ing themap2alm facility, multiplying these coefficients by −l(l+1) and then form-

ing the harmonic sum via the alm2map facility, and the finite-differenced Lapla-

cian map created by MasQU. As has been seen, there will be overshoot caused

by the use of an interpolating polynomial (Runge’s phenomenon). Similarly, the

limited l-sampling of the map2alm subroutine will produce ringing in the region

of any discontinuity (Gibbs’ phenomenon). In both cases the exact error can only

be calculated in the case that the underlying functional description of the discon-

tinuity is known.

For the special cases such as the toy models, one can calculate the error in both
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harmonic and polynomial approximations in order to give a rough estimate as to

how noticable the discontinuity could be. This calculation is sketched only for

the temperature case of an equatorial step rather than the more complicated po-

larization case, utilizing the analytic Fourier transform F of a unit step such as

the 1d form

F(U(x)) =
i

k
√
2π

+

√
π

2
δ(k). (3.137)

This allows the construction of the exact Laplacian map of the scalar field (sub-

ject to summation truncation in l); by linearity, the effect of the discontinuous

injection can be isolated

F(Acmb + gAdis) = F(Acmb) + gF(Adis) (3.138)

in terms of the visibility function g. Given the full analytic map and the ana-

lytic truncated harmonic reconstruction one can calculate the difference δFsh. By

similarly constructing the finite-difference error and then applying the derivative

operator to the difference of the two maps one can observe the effectiveness of

different n-Laplacians for exposing a particular toy model; an analytic calcula-

tion could in principle yield an error bound on the difference map that must be

saturated if one wishes to take an edge detection seriously.

There may also be interesting signals in the power spectra of such models. Partic-

ularly, one should try to get a handle on the scaling properties of noise. By look-

ing at both the differences between the power spectra of the respective Laplacians

and the power spectrum of the ∇2λ map one can get a feel for the typical char-

acteristics (Fig. 3.19). Note that these two are not the same since it can be shown

that the power spectrum is not linear in addition:

CA
l + CB

l 6= CA+B
l (3.139)

specifically, comparison of the terms

CA
l − CB

l =
1

2l + 1

∑

m

aAlma
A∗
lm − aBlma

B∗
lm

C
|A−B|
l =

1

2l + 1

∑

m

|aAlm − aBlm||aAlm − aBlm|∗
(3.140)

is being made.
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Figure 3.19: Thick line: power spectrum for the O2 absolute difference map
|∇2Tspec − ∇2TF.D.| calculated over a map synthesized from a Gaussian ran-
dom sample of harmonic coefficients provided by the (σ = 1µK) HEALPix ran-
dom number generator facility. The dashed and dotted lines are the spectra
for the spectrally-calculated and O2 finite-differenced Laplacian maps respec-
tively. The discrepancy between the dashed and dotted lines decreases with an
increased number of sampling points in the finite-differencing calculations. The

power spectrum C
|∇2Tspec−∇2TF.D.|
l of the map differences has a white spectrum

on small-scales due to the strong correlation of noise between the maps and a
boost on large scales due to the HEALPix geometry in the polar cap.

Starting the analysis with the equatorial step model, the equatorial step is defined

by

F (θ, φ) = U(θ − π/2) (3.141)

with its harmonic coefficients nonzero only for (l, m)= (0, 0) and (l, m)= (odd, 0).

The first few coefficients, calculated in Mathematica, are given by:

f00 =
√
π f10 = −

√
3π

2
f30 =

√
7π

8
f50 = −11π

16
(3.142)

This allows one to construct the ringing map analytically for the step function

and then the harmonic error map. In HEALPix, this is only approximate since

there will feature some errors from the following:

• The pixel borders are not at the pixel centres specified.

• The HEALPix border has a zigzag-type geometry rather than a flat line ge-

ometry.
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• The use of the map2alm and alm2map subroutines introduces numerical

errors.

To estimate the overshoot of the interpolating polynomial one can assume that

the polynomial is exact outside a small radius of the discontinuity meaning that

the full calculation is only performed in the discontinuity region. An estimation

of the full Laplacian-difference map for the equatorial discontinuity can be seen

in (Fig. 3.20).

Now, assuming linearity in the reconstructions, the Laplacian-difference map

with n = 0 is

∇0λ = λ = (Tcmb,sh + Tdis,sh)− (Tcmb,ip + Tdis,ip) (3.143)

and if the difference between the polynomial expressions is small in the region

outside the discontinuity, then the calculated Laplacian-difference map is approx-

imately independent of the foreground polynomial-modelled CMB

Figure 3.20: Analytically-calculated Laplacian-difference in the restricted discon-
tinuity region from multipoles up to l = 15, approximately equivalent to the
Laplacian-difference map of the step discontinuity.

λ ∼ Adis,sh − Adis,ip (3.144)

i.e., it is approximately a difference map for the discontinuity. The differences be-

tween the spectrally-constructed and finite-differenced maps will show greater

localization of differences at lower order; one could use larger stencils about the

discontinuity to optimise the combination of accuracy and locality. By corollary

then, one could use the Kim method [197] to clean the ringing of the harmonic

map and enhance the method further.
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Figures 3.21, 3.22, 3.23 and 3.25 show a variety of results for the full MasQU dis-

continuity method; note that the best order of Laplacian-difference for enhanc-

ing the discontinuity is dependent on that discontinuity’s geometry. By utiliz-

ing the Kaiser-Stebbins relation (2.193), and by setting the dynamical proper-

ties γsvs · (s × k) = 1 (such that the string is assumed to be oriented toward

the observer), an approximation to the string tensions probed by the Laplacian-

difference method can be made. This is reasonable for string velocities 0.2 .

|vs| . 0.9. These should be resolution-independent, since a physical discontinu-

ity is infinitesimal in thickness. The by-eye limits are calculated as shown in Table

3.4; one can reconstruct δT , and hence Gµ from the map by reverse-engineering,

i.e., isolate a suspected discontinuity, throw an identically-shaped discontinuity

into a Gaussian map of identical mean and variance to the signal map (corrected

for the presence of the discontinuity), then measure what injection g achieves the

same visibility for the detected discontinuity.

Table 3.4: By-eye detection limits for string tensions via MasQU temperature
analysis.

Laplacian order Stencil order Injection limit (µK) String tension Gµ limit
2 2 40 ∼ 1.6× 10−6

2 4 15 ∼ 6× 10−7

2 6 10 ∼ 4× 10−7

One can also seek to expose the discontinuities using the needlet approach. One

can isolate the contributions of each scale to the Laplacian-difference map by con-

structing

Tj(Ω) =
∑

k

βjkψjk(Ω) (3.145)

where the full map reconstruction is

T (Ω) =
∑

j

Tj(Ω). (3.146)

Since it is already known that the discontinuity scale is at the individual-pixel

level, then the discontinuity signal should at least be apparent in the scale j cor-

responding to the pixel-level scale. Figure 3.24 shows the needlet maps for the

diamond model with some very subtle values of g; the limits in Table 3.4 can

correspondingly be reduced by ∼ 10% when utilizing the needlet maps.
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Figure 3.21: Left column: T + 100 µK discontinuity map, ∇2λT at O2, ∇2λT and
∇4λT both at O4. Unlike the diamond case (Fig. 3.22), the line is even more
enhanced by the bi-Laplacian-difference. Right column: T + 10 µK map, ∇2λT at
O2, ∇2λT and ∇4λT both at O4.
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Figure 3.22: Top, left-to-right: standard CMB temperature map with a diamond-
shaped anomaly added (+ 100 µK) and the map of the Laplacian; Bottom, left-
to-right: enhanced temperature discontinuity in the Laplacian-difference map at
O2 (left) and O4 (right). The higher order term is even more enhanced.

Figure 3.23: Top diagram: T map for a line-shaped anomaly and ∇4λT at O4.
The anomaly has been ringed in red. Unlike the diamond case, the line is even

more enhanced by the bi-Laplacian-difference. Bottom λ∇4e and λ∇4b at O2 for
the toy model imposed on the Q map.
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Figure 3.24: Top diagram: O6 ∇2λT map with a diamond-shaped 10µK injection,
at Nside = 128 with needlet frequency band term B = 2; Central diagram: iso-
lated j = 8 contribution of the top diagram. Whilst it is difficult to make out any
imprint of the anomaly in the top diagram, the discontinuity can be seen here
ringed in red. Bottom diagram: Isolated j = 8 contribution for an O6 ∇2λT map
with a 5 µK injection; this is beyond the limits of analyzing by-eye the needlet-
decomposed Laplacian-difference maps.



3.6. DEFECT DETECTION 202

Figure 3.25: CMB simulation maps of ∇2λT , ∇2λQ and ∇2λU . The large polar cap
values are from higher pixelization errors from the deformed stencil geometries;
these must be distinguished from any discontinuity or point signal, ideally by
rotating the signal about the φ coordinate.

Figures 3.26 and 3.27 show power-spectral and skew-spectral calculations for the

toy models; whilst it can be seen that the toy models inject a small amount of

power into each, there is no characteristic signal for the existence, or geometry, of

a discontinuity here. Rather, a small non-zero skew-spectrum might be a signal

to check the discontinuity maps in the first place.

The standard statistic

χ2 =
〈(Ti,map − Ti,null)

2〉
〈
T 2
i,null

〉 (3.147)

does not give any particularly useful information, beyond a departure from Gaus-

sianity already implicit in the nature of the maps. However, the pixel maps

χ2
i =

(Ti,map − Ti,null)
2

T 2
i,null

(3.148)

show some measure of the correlation in the maps without having to perform the

laborious Npix × Npix matrix analysis; indeed, this can be used to isolate the dis-

continuity more clearly (Fig. 3.28). In a real measurement, one does not have the

null map to measure against; instead this confirms that the differenced Laplacian

maps are better described as correlation-type maps than edge-type maps.

Such an observation has interesting corollaries for further developments of the

MasQU software. An interesting enhancement of this software might be to uti-

lize the Canny edge-detection algorithm developed in Danos & Brandenberger

[233] not on the CMB temperature anisotropy maps, but rather on the Laplacian-

difference maps that have been created here. This would have the advantage of

much lower storage space requirements than the needlet approach coupled to the

ease-of-use with constructing just one map to analyze. Figure 3.29 shows a first

attempt at Canny analysis utilizing Mathematica’s functionality; these results do

not show any advantage in the employment of the Canny method on the dif-

ferenced maps, although a more rigorous implementation might yield different
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results.

Figure 3.26: Fractional power-spectral differences in values of δCl between the
discontinuity and Gaussian CMB maps; Left: Equatorial step model for 100µK
(black), 10µK (blue) and 1µK (red) injections, calculated at O2. Right: 100µK
equatorial step (black), diamond (blue) and line (red) models, calculated at O2.

Figure 3.27: Skew-spectral differences in values of δCl between the discontinuity
and Gaussian CMB maps for the 100µK equatorial step (black), diamond (blue)
and line (red) models, calculated at O2.
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Figure 3.28: Left-to-right: CMB simulation, simulation + diamond model, O2

∇2λT simulation + diamond. By definition of using a Gaussian null map to
measure against, the discontinuous pattern can be separated for any given in-
jection. However, the use of these maps is not in making inferences about real
data; rather, it shows that the signal is not really of edge-type.

Figure 3.29: Canny edge maps determined using Mathematica; the left diagram
is the O2 100µK diamond, the right diagram the O6 10µK diamond. This first
attempt suggests that the Mathematica approach is not very effective, since it
operates on an image of the data rather than the raw data; this result may change
with a more in-depth custom implementation.

3.7 Signals of a Finite Resolution CMB

The final section of this chapter features an elaboration of potential signals of a

finite resolution CMB. This is explored using a not unreasonable set of approx-

imations. The first approximation used is the utility of the ud grade HEALPix

facility to simulate a finite-resolution map by upgrading the resolution of the in-

put map to that of an output map denoted Tin→out. The caveats here are that a

local lattice-type resolution (as opposed to so-called ‘fuzzy’ structures) is being

presumed and that the exact geometry of the lattice vertices is not very relevant

to this study; the vertices corresponding to the HEALPix grid vertices can be

used.

The second approximation is used in the set of comparison maps; a variety of dis-

crete injection maps, like those used for the discontinuities previously explored,
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are used to approximate a string network without having to resort to computa-

tionally expensive simulation. Since it is only the broad geometry of decrement

that is of interest here, it is expected that this is a reasonable starting point.

Figures 3.30 and 3.31 show the MasQU results for both types of map, for the tem-

perature case only. A quite characteristic signal of the finite-resolution maps can

be seen. Whilst realistically one would want the mock string network maps to

mimic the local structure of the finite-resolution maps, the variety of maps pro-

duced show (a) that this can in principle be achieved and (b) that they provide a

reasonable approximation when calculating power spectra, since local structures

are smoothed out in a harmonic transform.

It is precisely the further harmonic-type and Canny-type algorithms which can

separate the two map types; Fig. 3.32 shows that the Canny maps, as operated on

the CMB skies instead of the (not very effective) Canny analysis on the Laplacian-

difference maps, are considerably more effective for finite-resolution maps than

for the mock string networks — the finite maps unambiguously feature edge-like

structures, by definition.

Meanwhile, it is the power spectral analysis which would really unambiguously

expose the difference in the underlying physics of the maps; since there is no vari-

ation in the finite-resolution maps beyond the maximum resolution, one expects

a large drop in power beyond the Nyquist scale of the maximum resolution (Fig.

3.33) for the power spectrum — in contrast to the mock string network maps.

This simple physical result could be coupled with more exotic effects of an un-

derlying lattice structure depending on the lattice physics, such as violations of

statistical isotropy or local Lorentz invariance.

One might further expect interesting cross-correlation with the polarization sky

maps that would further differentiate a finite CMB from a string network.
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Figure 3.30: Top 2 diagrams: Laplacian-difference maps ∇2λT32→64 at O2 (top)
and ∇2λT32→128 at O4 (next diagram down). Bottom 2 diagrams: ∇4λT32→128 at O4

(above bottom diagram) and ∇2λT32→256 at O2 (bottom), with a blown-up square
region inside the red boxes. The maps contain jagged edge structures. The dis-
crete underlying structure becomes more clear at higher orders and for a larger
output map sampling resolution, characteristically different from the Gaussian
maps seen in section 3.6.
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Figure 3.31: Mock string networks defined at Nside = 32 and injected into Nside =
128 CMB simulations. Left-to-right: Injection maps, Laplacian-difference maps
∇2λ at O2.Top-to-bottom: ‘Binary’, ‘Quad’, ‘S-line’ and ‘L-line’ injections.
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Figure 3.32: Results of a Canny-algorithm detection on the T32→128 map (top dia-
gram) and CMB simulation + ‘L-line’ injection map (bottom diagram), as defined
in Fig. 3.31. The Canny algorithm performs well for the finite resolution map,
whilst the exact structure of the injection map is not entirely clear.

Figure 3.33: Power spectra for the finite CMB maps and the mock string net-
works. (Black, red, blue, green): Left diagram = (T32→32, T32→64, T32→128,
T32→256). Right diagram = (Binary, Quad, L-line, S-line), as defined in Fig. 3.31.
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3.8 Summary

The MasQU software package is a tool for calculating the derivatives of a field

by finite-differencing, useful for constructing the scalar and pseudo-scalar fields

∇4e and ∇4b. On the HEALPix sphere, the most popular pixelization for CMB

analyses, technical details related to the pole — specifically, the coordinate sin-

gularity and decreased grid resolution in its immediate vicinity — motivates the

study of rotated sampling methods. One result of this study was the construction

of a method to accurately reconstruct the harmonic spectral coefficients of an in-

put field. Since rotated sampling methods add considerable computation time to

the software, then in the limit of high-resolution maps the pole problem may be

better resolved by removing information in the troublesome regions.

On a masked sky, even at its lowest accuracy setting the MasQU software outper-

forms the raw harmonic calculation. A mock EBEX study was made which sug-

gested that certainly a crude MasQU analysis may be advantageous compared

to standard EBEX methods. In future, an improved implementation should be

tested against alternative methods for solving the E/B mixing problem, in order

to make a fair appraisal. The estimators used in the MasQU approach can be op-

timized by utilizing apodization techniques calculated from Fisher analysis and

iterative matrix inversion techniques. The scalar field approach has the advan-

tage of greatly reduced matrix sizes compared with methods that calculate the E-

and B-modes directly.

Test applications of the Laplacian-difference method were also a success. By

reverse-engineering, It is possible to obtain crude bounds on the cosmic string

tension that are competitive with alternative methods, and may be further im-

proved in combination with these methods. The Laplacian-difference method

was also used to illustrate the uniqueness of signals from a finite-resolution CMB.
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Chapter 4

Cosmology with MasQU

Having set up a number of problems which can be solved using the finite-

difference method (chapter 2), manifested in the software package MasQU (chap-

ter 3), an analysis is now made of current WMAP data and an inference of the de-

tection bounds that can be probed with the upcoming Plank data. For the WMAP

case, both the temperature anisotropy ILC map and the polarization HILC maps

are analyzed.

4.1 WMAP and Planck

The famous temperature anisotropy map created from the WMAP data is con-

structed using the Internal Linear Combination (ILC) method, a weighted sum

over the foreground-reduced maps of each frequency band. This map is not used

directly as the dataset for the construction of the power spectrum, but rather as

an approach to estimating the foreground-reduced anisotropy map. The idea is

to sum the WMAP observations over its frequency bands (K, Ka, Q, V and W cor-

responding to a frequency range of 23 to 94 GHz), each band weighted in such

a way as to keep the CMB signal response constant whilst approximately can-

celling the galactic signal distribution. This allows one to gain a first estimate on

the model-independent foreground noise; the next step is to use this as a guide for

producing a more accurate foreground analysis using known astrophysics and,

in the case of WMAP, a maximum entropy method spatial fit.

211



4.1. WMAP AND PLANCK 212

Figure 4.1: The WMAP map-making procedure for maps at each of the 5 fre-
quency bands, from Jarosik et al [272].

Typically the major noise sources for the temperature case are free-free, syn-

chrotron and (thermal) dust emission and point sources. Since not only is the

ILC the first point of contact of observational cosmology with analysis after the

time-ordered data analysis (see Fig. 4.1), but also a focal point for an array of

searches and claims for CMB anomalies, one should perform an analysis on this

map. It should be noted that the WMAP publications caution against the use of

the ILC for cosmology. For the purposes here, instrumental issues such as beam

profiles et cetera will not be considered. Following Hinshaw et al [273], for a

simplistic negligible noise, uniform foreground model the ILC map is given by

TILC =
∑

i

ζiTi(p) =
∑

i

ζi(Tc(p) + SiTf (p)) = Tc(p) + ΓTf (p) (4.1)

where Ti is the frequency map, Tc the CMB contribution, SiTf (p) the foreground
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contribution and Tf the spatial distribution. In the WMAP analysis, this sim-

plification is improved by splitting the sky map into 11 sections of the galactic

plane (which dominates the noise contribution) and 1 part outside the galactic

cut. There are also constraints for normalization

∑

i

ζi = 1, Γ ≡
∑

i

ζiSi (4.2)

isolating approximately only the CMB signal. One can determine the combina-

tion weights ζi by minimizing the variance of TILC:

σ2
ILC =

〈
T 2
ILC(p)

〉
− 〈TILC(p)〉2 = σ2

c + 2Γσcf + Γ2σ2
f (4.3)

with the brackets signifying an average over pixels; since each of the 12 re-

gions has a discontinuous boundary, they must be treated independently with

the boundary smoothed over at the combination phase for creating the full ILC

map. Granted, the remaining noise correlations will take a non-simple form by

definition of the simplicity of the removed noise model and due to the complica-

tions (boundary issues and non-linearity) of the map creation method. Following

Hinshaw et al [273], the ILC variance is calculated by the linearized Lagrange

method of Eriksen et al [274] by minimizing

∂σ2
ILC

∂ζi
= 2

∂Γ

∂ζi
σcf + 2Γ

∂Γ

∂ζi
σ2
f , (4.4)

so minimization gives

Γ = −σcf
σ2
f

(4.5)

hence

TILC(p) = Tc(p)−
σcf
σ2
f

Tf (p), σ2
ILC = σ2

c −
σ2
cf

σ2
f

(4.6)

This produces a bias σ2
ILC ≤ σ2

c in the CMB map, of order ∼ 10µK in the galactic

plane. For the case of non-uniform foreground noise,

σ2
ILC =

〈
T 2
c

〉
− 〈Tc〉2 + 2(〈TcΓTf〉 − 〈Tc〉 〈ΓTf〉) + (

〈
Γ2T 2

f

〉
− 〈ΓTf〉2) (4.7)

with minimum variance solution

〈ΓTf · SiTi〉 = −〈Tc · SiTf〉 ⇒
∑

j

〈SiTf · SjTf〉 ζj = −〈Tc · SiTf〉 (4.8)
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where the 11 regions of the galactic plane are chosen such that the covariance

between the CMB and the foreground is minimized (which provides the map

bias). Hence the multi-frequency analogue of (4.5) is

Γ = −
∑

ij

Si · (F−1)ij · Cj (4.9)

with

Fij ≡ 〈SiTf · SjTf〉 Ci ≡ 〈Tc · SiTf〉 . (4.10)

Without an underlying model, bias correction is limited to the use of Monte Carlo

simulations. For each region of the divided CMB map n, one finds the ζi,n by

minimizing the variance of

Tn(p) =
∑

i=1

ζn,iTi(p) (4.11)

The full map is formed by combining the Tn; the boundaries are blended with

a 1◦ Gaussian filter to minimize edge effects. The final combination is produced

using weights for pixel p and the 12 regions R

wn(p) =

{

1 p ∈ Rn

0 else
(4.12)

where the smoothing with a kernel correspondingly forms the smoothed weights

w̄n. Finally, one calculates the conjugate gradient inverse:

T (p) =

∑

n w̄n(p)T (p)∑

n w̄n
(4.13)

to form the ILC map from the combinations of the 12 different regions. For the

7-year data, the full ILC map depends on the updated calibration and beam sys-

tematics [275]. According to Gold et al [275], the variance between the ILC map

and CMB maps made with other techniques is less than 116 µK2.

Similarly, one can employ the Harmonic ILC (HILC [276]) approach for the noise-

heavy WMAP maps via the following polarization map estimator:

∑

k

wk(x)(Q(x, νk)± iU(x, νk)),
∑

k

wk(x) = 1 (4.14)



4.1. WMAP AND PLANCK 215

with variance

σ2 ≈ C2 + 2 〈Re[(Qcmb(x)± iUcmb(x))ζ(x)]〉+
〈
|ζ(x)|2

〉
(4.15)

whereC2 is the variance of the CMB polarization signal and ζ(x) =
∑

k w
k(Qfg(x)±

iUfg(x)). The linear weights can be determined by minimizing

∑

klm

αk
′k
l′m′lmw̃

k
lm + λl′m′ = λ00

∂(−
√
4π + ∂

∑

i w̄
k
00)

∂w̄k
′

l′m′

+
∂
∑

LM |a±2,LM |2
∂w̄k

′

l′m′

+
∑

l>0,m

λlm
∂
∑

i w̄
k
lm

∂w̄k
′

l′m′

(4.16)

where

wklm =

∫

wk(Ω)Y ∗
lm(Ω)dΩ

αk
′k
l′m′lm = 2Re

[
∑

LM

γ̂∗k(l
′,m′, L,M)γ∗k(l,m, L,M)

]

ak±2,lm =

∫

±2Y
∗
lm(Ω)(Q(Ω, νk)± iU(Ω, νk))dΩ

γk(l1,m1, l3,m3) =
∑

l2m2

(−1)m2

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(

l1 l2 l3

m1 m2 −m3

)(

l1 l2 l3

0 ±2 ∓2

)

ak±2,l2m2
.

(4.17)

By assuming independence of the linear weights, the variance on the E- and B-

modes signals is

σ2
EE(BB) =

〈
|QE(B)(Ω)± iUE(B)(Ω)|2

〉

QE(Ω)± iUE(Ω) = −
∑

lm

akE,lm±2Ylm(Ω)

QB(Ω)± iUB(Ω) = ∓i
∑

lm

akB,lm±2Ylm(Ω).

(4.18)

Since these weights are determined in harmonic space, one would expect that

no boundary discontinuity issues exist as opposed to the standard WMAP ILC

analysis (noting that the HILC method has simple application to the temperature

anisotropy data).

Some tests shall be performed on the WMAP data, and it will be seen how the

standard temperature ILC map necessarily has a previously unseen mask bound-
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ary contribution; masked and unmasked B-mode analysis on the HILC map is

also performed. Finally, note that the ILC-type maps are not the only possibil-

ity when it comes to the initial CMB analysis; alternative methods exist (and can

be combined with the ILC method) such as maximum entropy methods [277],

Wiener filtering, and so on. What separates the ILC approach is that there are very

few assumptions used for the separated signals; it is in a sense, self-calibrating.

For completeness, the measurement of the angular power spectra then follows

a complicated optimal combination of cross-power spectra after subtracting the

best-fit galactic foreground templates, calculated with the help of the ILC, from

each of the WMAP band-limited maps. This is approximately equal to forming

the combined sky map

T =

∑10
i=3 T

′
i/σ

2
0,i

∑10
i=3 1/σ

2
0,i

, (4.19)

where the T ′
i are the best-fit foreground-subtracted sky maps over each of the

frequencies i and σ0,i the noise per observation. Although a WMAP systematic

is determined in this chapter it is unlikely to be particularly informative at this

stage to perform the lengthy and complicated calculation of the power spectra

with a systematic-corrected ILC map.

It is also useful to make predictions on how well the software can perform on

future data; specifically the Planck mission, which the full-sky formalism is par-

ticularly suited to. Further full-sky missions such as the CMBPol EPIC mission

are still at an early development phase, and so it is not necessary to consider their

application. The main differences for the purposes of this thesis between the

WMAP and Planck missions are the resolutions (Nside = 512 versus Nside = 2048),

the scanning strategies for the full sky and the quality of polarization and temper-

ature data. As stated previously (chapter 1), the WMAP method uses differential

radiometers to infer the temperature anisotropy and polarization of the CMB; this

takes advantage of the fact that the signal drifts (1/f noise) of the WMAP horns

are approximately identical [146], allowing for a nearly white-noise spectrum.

The radiometers measure the brightness difference between two input beams

∼ 141◦ apart. The polarization-sensitive differencing assemblies (DAs), are sensi-

tive to the waveguide bands K1, Ka1, Q1, Q2, V1, V2, W1, W2, W3 and W4. Since

each of the 20 radiometers is a two-channel device, then there are 40 data channels

calibrated, combined to form the Stokes data. For a calibrated differential signal

dij from a channel j of radiometer i, the differential intensity (temperature) data

is calculated by

d =
1

2
(d13 + d14) +

1

2
(d23 + d24) (4.20)
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with the differential polarization data calculated by

p =
1

2
(d13 + d14)−

1

2
(d23 + d24). (4.21)

For the calibrated instrument gain g̃ and baseline b̃ measured in flight, and actual

gain and baseline values g and b with noise N , the calibrated differential signal is

d̃ =
g

g̃
∆T +

g

g̃
N +

b− b̃

g̃
. (4.22)

The WMAP scan pattern [278] is a compound spin and precession centered about

the Sun-WMAP line, sweeping out a line-of-sight path that is reminiscent of a

Spirograph pattern. This results in multi-angle scans of each pixel cross in order

to symmetrize the beam response and a negligible time average of the differential

data over an hourly calibration period in order to estimate the initial baseline.

The differential data at time t and pixel i is used from orthogonal polarization

channels at the polarization beam axis γ

d1 = Ti +Qi cos 2γ + Ui sin 2γ

d2 = Ti −Qi cos 2γ − Ui sin 2γ
(4.23)

to construct the Stokes maps. For uniform azimuthal coverage and constant noise

per pixel σ0, the noise in Q and U is equal, uncorrelated and given by

σQ = σU =

√

2

n
σ0 (4.24)

where n is the number of observations, implying that the polarization maps are√
2 times noisier than the temperature.

By contrast, the Planck mission consists of two main instruments: the low-

frequency instrument (LFI) and high-frequency instrument (HFI); the LFI has

a frequency range of 27 to 77 GHz [279], consisting of an array of 22 pseudo-

correlation radiometers, composed of 11 actively cooled (20 K) Front End Mod-

ules (FEMs), and 11 Back End Modules (BEMs) at 300K, each FEM and BEM set

comprising two radiometers, connected by rectangular wave guides, which pro-

vide good insulation between the FEM and the BEM sections to avoid overload-

ing the cryocooler. The scan strategy is a 1 rpm spin around an axis offset by 85

degrees from the telescope boresight (covering 1 degree of the sky per day), such

that the observed sky patch traces a large circle on the sky [280], resulting in full
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sky coverage in ∼ 6 months.

It is expected that Planck will provide 10 times the sensitivity of WMAP and 3

times the angular resolution; Planck is then predicted [281] to be able to detect,

for a standard ΛCDM model, a scalar-to-tensor r of 0.028 < r < 0.116 at 95%

CL, for an input value r = 0.04. Whether the Planck analysis follows an ILC-type

procedure remains to be seen. Dick et al [282] have shown that component sep-

aration can be influenced significantly by calibration errors in Planck’s sensitive

instruments, leading to very different behaviour between ILC-type analysis and

Independent Component Analysis (ICA)-type analysis. ICA methods are based

on the assumption that each of the available observations is a different linear mix-

ture of a number of statistically independent components and so do not typically

assume a unit CMB response of each channel. Particularly, while ILC-type meth-

ods produce lower signal extraction error, the ICA-type approaches avoid biasing

from miscalibration.

4.2 B-modes and r from WMAP and Planck

The WMAP data features a low signal-to-noise ratio S/N in theQ andU variables.

In this sense one can only make a limited analysis of the polarization modes,

by smoothing the WMAP maps with a Gaussian kernel. Figure 4.2 shows the

smoothed Stokes maps and the resulting ∇4e and ∇4b calculations at the lowest

order O2; it can be seen that there is significant noise along the galactic plane.

Since the consistency criterion of the ∇4b map is not satisfied, it can reasonably

be stated that the map is consistent with zero primordial B-modes — the central

feature in the map is a relic of the galaxy. This also suggests that for the cleaner

Planck maps, it may be necessary to calculate at higher orders to obtain a reliable

(i.e., not predominantly numerical noise) ∇4b map.

The utility of the software on the masked sky should also be tested. For this situ-

ation, the WMAP data is not smoothed, but the WMAP galaxy masks and point

source catalogues are utilized to produce the sky masks used (Fig. 4.3). Figure

4.4 shows the calculatedB-mode spectra, and the power the masked regions con-

tribute to the B-mode sky.
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Figure 4.2: Left-to-right: Smoothed Q and U HILC source maps (top diagram)
and O2 ∇4e, ∇4b maps (bottom diagram). The ∇4b-map is consistent with a
zero primordial B-mode signal due to the ‘signal’ jump at the polar/equator
boundary; the e map on the other hand has a definite non-zero component.

Figure 4.3: Combined galaxy-and-point-source WMAP-scale masks used for the
temperature (left diagram) and polarization (right diagram) maps.

By operating on B-mode-free mock data at resolutions probed by the Planck

satellite (Nside = 2048), one can obtain the best-case-scenario limits on theB-mode

sky that the software will probe, solutions to the pole problem notwithstanding.

Since the scales of interest for inflation correspond to less than that probed by

WMAP-size maps (Planck has a far greater signal-to-noise), the effect of mask-

ing can be approximated by the same differenced data obtained on the left-hand

diagram of Fig. 4.4, applied to the full B-mode Planck sky in Fig. 4.5.
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Figure 4.4: Left diagram: O2 B-mode spectra from an unmasked smoothed
HILC sky (black line), the unsmoothed galaxy masked sky (red line) and the
combined-galaxy-and-point-source mask sky (blue line). Right diagram: Differ-
ences between the unsmoothed galaxy-masked and unmasked (black line), and
combined-galaxy-and-point-source-masked and unmasked (blue line) B-mode
spectra.

Figure 4.5: Extrapolated B-mode limits for the full-sky calculations on a Planck-
resolution (Nside = 2048) B-mode-free CMB simulation map, for stencil orders
O2 (black line), O4 (red line) and O6 (blue line). The l = 4096 limit is ∼ 10−17,
∼ 10−19 and ∼ 10−21 respectively.

To further test Planck sensitivity, one could compute models of the foreground us-

ing the Planck Sky Model1, a set of programs for simulating the sky emission over

1http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/PSM/psky-en.

php
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the frequency ranges that Planck will measure. The PSM has advantages beyond

computing the expected sky measurements, allowing the testing of the analysis

pipeline. The simulation aspects of the PSM provide simulations of the CMB

signal (Gaussian and non-Gaussian, with or without lensing), and foreground

sources such as galactic emission (synchrotron, free-free, thermal dust, spinning

dust), the Sunyaev-Zel’dovich effect (thermal and kinetic), point sources (radio

point sources, infrared point sources and ultracompact H-II regions) and the in-

frared background. It would also be necessary to implement the apodization

techniques discussed in chapter 3. This would be set for future work.

4.3 Anomalies and Defects

The defect-detecting aspect of the MasQU software is now employed to analyse

the status of the 7-year WMAP ILC sky. First, the current status of anomalies

from the WMAP literature is explored, conveniently summarised in Bennett et al

[283].

4.3.1 WMAP Anomalies

Since the advent of CMB full-sky mapping there have been a number of claims of

anomalies found in the microwave sky. By ‘anomaly’ one means a signal that is

statistically unlikely, and so-called anomalies in the microwave sky could be sig-

nals of anything ranging from systematic errors to foreground or galactic sources

to more exotic entities such as the defects that have already been discussed or

signals from other universes [284].

The most famous of the alleged anomalies found so far are the cold spots [285],

the alignment of the quadrupole and the octupole [286] and the low quadrupole

moment [287], amongst other claims. Some of these can be seen in Fig. 4.6. The

latest WMAP team analysis suggests that these anomalies are likely combinations

of systematic errors and statistical insignificance; when the results of Planck are

published, its different scanning strategy, coupled with the fact that Planck mea-

sures the absolute temperature rather than temperature differences, will make it

possible to remove systematics from the contaminants.
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Figure 4.6: Top row: One of the WMAP cold spots (highlighted by the white line,
left diagram) and the angular correlation function of the full WMAP sky (black
line, right diagram; cited as evidence of a lack of large-scale power) versus 68%
and 95% CL limits determined using Monte Carlo simulations, from Bennett et
al [283]. Bottom row, left-to-right: the quadrupole ILC map and octupole ILC
map: the alignment is striking. But is it statistically significant?

In particular, the two cold spots were found to be both consistent with standard

ΛCDM CMB fluctuations, whilst the low quadrupole is acceptable within the 95%

confidence range for the standard cosmological model and the lack of large-scale

power has been attributed to the choice of statistic (exhibiting the care which must

be taken with a posteriori statistics), whilst the quadrupole-octupole alignment is

claimed to be an incidental alignment of primary and secondary anisotropies.

What this all appears to say is that, while the search for anomalies is a vital part

of checking for systematics within the standard data analysis pipeline, one must

be careful with thinking about probabilities versus the ease with which humans

pick out patterns (which is precisely a selection-pressure-driven propensity); the

example given by the WMAP team is the apparent image of Hawking’s initials

in the anisotropies. Given an infinite number of random sub-configurations of

states there will always be some states which could be viewed as unusual due

to their geometry and so forth, but which are only unusual in the sense that one

imposes meaning on them; without an a priori theory to predict a particular sta-

tistical likelihood for a particular type of pattern, it is difficult to rigorously infer

that a particular distribution is indeed anomalous.
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Conversely, as Copi et al [288] put it: “..the agreement between theory and data

is remarkable... this agreement should not be taken lightly; it shows our precise

understanding of the causal physics on the last scattering surface. Even so, the

cosmological model we arrive at is baroque, requiring the introduction at differ-

ent scales and epochs of three sources of energy density that are only detected

gravitationally — dark matter, dark energy and the inflaton. This alone should

encourage us to continuously challenge the model and probe the observations

particularly on scales larger than the horizon at the time of last scattering”.

4.3.2 Anomaly Detection with MasQU

Having previously discussed the ILC map-making techniques, the Laplacian-

difference analysis exposes the boundary of the galaxy cut very clearly; in order

to emphasize this result, one can observe the Laplacian maps themselves, which

show no such feature (Fig. 4.7). The needlet decompositions (Fig. 4.8) further en-

hance the galaxy boundary image over a number of scales. One should note the

significant amount of power generated in the triangular regions of the HEALPix

sphere featuring the most geometrically-deformed pixel stencils; this relic could

be dealt with by a rotation of the data in the φ coordinate.

It can then be asked as to whether the discontinuity power contributes anything

to the CMB anomalies. For some of the cases the method of running through the

entire WMAP calibration is too cumbersome for this thesis. However, the bound-

ary region (Fig. 4.9) can be isolated and the quadrupole and octopole power of

this region removed from the ILC quadrupole and octopole. It is not very sur-

prising that the region has a negligible effect on the orientation of these two mul-

tipoles, since the scale of the boundary is small in comparison. Figure 4.10 pro-

vides a crude calculation of the full contribution of the boundary region to the ILC

temperature power spectrum using equation (2.121), with the dip in the power-

spectral contribution corresponding to the boundary (smoothing) scale. It can be

seen that the impact of the boundary region is small; however, as cosmological

experiments probe the microwave sky with higher precision and theory discrim-

ination becomes more sensitive to subtle differences in predicted power spectra,

it may be necessary to ensure that excess power from the mask boundary does

not bias results. Secondly, given recent claims of detections of non-Gaussianity

[101, 102] it would certainly be necessary to account for the boundary region in

any calculation of the nonlinear term fNL.
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Figure 4.7: Top row: ILC log-scale Laplacian maps from the (left diagram) spec-
tral (utilizing the map2alm subroutine) method and (right diagram) the finite-
differencing method calculated at order O2. Bottom row: (left) the map of abso-
lute differences between the Laplacian maps. The galaxy mask is quite apparent,
as are a couple of signals which are likely galactic foreground sources. The trian-
gular parts in the polar cap are relics of the calculation technique and HEALPix
geometry. The bottom-right diagram is the mask map, with ILC technique cut-
tings shown.

Figure 4.8: Left-to-right: Needlet maps for the boundary detection, at scales j =
5, 6 and 7, with B = 2.
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Figure 4.9: Top row: Boundary masks used, of varying thickness. Bottom row:
quadrupole (left diagram) and octupole (right diagram) power calculated from
the smaller boundary mask. The alignment of the quadrupole and octupole is
essentially unchanged.

Figure 4.10: Differences between the boundary masked and unmasked ILC
power spectra — the lines correspond to the thickest mask (thick line), thinnest
mask (dotted line) and intermediate mask (dashed line). The dip in power at
l ∼ 180 corresponds roughly to the Gaussian smoothing scale across the galaxy
boundary in the construction of the ILC map, so the difference between ILC and
mode-uncoupled masked spectra at the mask scale is small.
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This analysis can then be repeated on the HILC-generated maps. Whilst dis-

continuous power can still be found in the noisy galactic centre (Fig. 4.11), these

maps are better-behaved. This suggests that the HILC method is preferable when

producing power spectra; on the flip side, the harmonic nature of the map con-

struction suggests that an ILC-type map, so long as smoothing of the cut mask

boundaries is performed very carefully, would be better suited for the detection

of localized anomalies such as cosmic strings. Further analysis, by removing the

galaxy boundary (via a variety of boundary mask thicknesses) pre-Laplacian-

difference calculation reveals by eye no signs of any anomalies. In the scalar

maps, it seems that the Laplacian-difference method is more sensitive to system-

atic (gluing) discontinuities than physical (injection) discontinuities.

Figure 4.11: Top-to-bottom: Temperature, Q and U HILC source maps (left, not
smoothed) and O2 Laplacian-difference maps (right). Besides the galactic plane,
the discontinuity signal is consistent with the null hypothesis.

In conclusion, the differenced-Laplacian finds no immediate evidence for anoma-

lies such as strings, with the caveat that only lower-order calculations have been

performed, coupled with by-eye detection on the needlet-decomposed maps.
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This finding may change with higher-order calculations and a more rigorous ex-

amination. Also, since the signal in a pixel is an average over signals within the

pixel area, it is possible that the results of the Planck Surveyor with an improved

resolution, or more local balloon surveys such as the EBEX, and their successors,

will test these results. The method did encounter a success: the detection of the

smoothed galaxy boundary in the ILC map. It was found that the effect of ex-

cluding the boundary from the map was negligible, but that its mere detection

might warrant added care in future surveys when performing map synthesis.

4.4 Summary

An initial utilization of MasQU suggests that it is well-suited to a clean, full-sky

determination of the large-scale B-modes relevant to inflation, which should be

provided by data from Planck and its successors. The operation of the software

on the noisy WMAP polarization data is consistent with a non-zero E-mode sig-

nal and a zero B-mode signal, as should be expected.

The WMAP map-making method involves the initial construction of a foreground-

reduced CMB map which is then used in later calibration. This map can be con-

structed using the real-space ILC method or the harmonic-space HILC method

amongst others. The choice of map-making method predetermines the type of

systematic error that may occur in analyses; systematic errors can in principle

account for many of the anomalies found in current WMAP data. The Laplacian-

difference method was able to detect the presence of a relic contaminant from the

galaxy-removal technique in the ILC temperature map, a relic which does not ex-

ist in the HILC equivalent. No discernable evidence for defects in the CMB was

found.



4.4. SUMMARY 228



Chapter 5

Conclusions

In this thesis the motivation for, and the development of, local analysis methods

for utilizing local real-space signals from the CMB in order to constrain cosmol-

ogy have been presented. Chapter 1 involved an account of the current status of

CMB studies for cosmology, and provided a whistlestop tour of the inflationary

mechanism that may generate a number of observable features in the microwave

sky: topological defects and primordial gravitational waves are the focal point

of the chapter, since these have the most direct links with fundamental issues in

physics. The use of non-Gaussianity in determining the nature of the inflationary

mechanism, which would complement the determination of the tensor-to-scalar

ratio r in probing the inflationary potential, was also discussed.

The second chapter indulged in a more explicit development of some current

(and one invented) problems in the CMB literature, and the development of real-

space methods with which to deal with them. Real-space scalar and pseudo-

scalar analogues to the cosmological E- and B-modes were constructed, utilizing

a general finite-differencing algorithm in order to avoid the mode-mixing issues

that accompany harmonic transforms on a masked sky. This has a number of

advantages over alternative methods, since it makes no assumptions about the

Gaussianity of the signal, and does not discard phase-space information. The

method also admits higher-order calculations to drive errors down. Next, the

advantage of utilizing real-space scalar and pseudo-scalar fields for dealing with

mode-transfer issues of uncoupled fields was shown. It transpired that, contrary

to approaches which perform harmonic transforms directly on the Stokes polar-

ization variables, the mode-transfer matrices for the e and b fields are the same as

that for the temperature anisotropy field — allowing not only for simple calcula-

tions of the general forms of the matrices, but also (and more importantly) for nu-

merical calculations which are less computationally expensive. It was found that
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this method of developing real-space analogues to the polarization fields opened

up an avenue for compactly calculating any number of higher n-point spectra,

all corrected for mode-mixing. The finite-difference method was then combined

with harmonic analyses to develop a method to expose discontinuous signals

via the Laplacian-difference formalism, such as would be typical of the Kaiser-

Stebbins effect from the presence of topological defects. This then motivated the

discussion of alternative transform types, such as the needlet transform, which

may be used to isolate the resultant discontinuity power. Finally, as a crude ex-

ample of the potential that considering real-space fields has for developing new

observational tests, a finite-resolution CMB scenario was invented, to be differ-

entiated from the signal of a cosmic string network.

This then motivated the introduction of the MasQU software package, a tool for

performing finite-differencing on the popular semi-regular HEALPix sphere. The

construction of the package highlighted several technical problems likely to be

repeated on other computational grids, related to the existence of poles on the

sphere. A number of methods to solve this problem were explored, which sig-

nificantly included a more exact method to calculate the harmonic coefficients

on the HEALPix sphere. The MasQU software was found to reduce mode leak-

age significantly; mock EBEX tests showed this to be effective when compared

with current methods. The issue of apodization was also explored, related to

the mode-transfer matrices in chapter 2, and the scalar apodization method was

found to have the advantage of a considerably faster computation time than the

tensor apodization method constructed previously by Smith & Zaldarriaga. Next,

the Laplacian-difference formalism was quantified through the use of toy mod-

els, finding that the method performs competitively with alternative methods

at even the lowest orders of the calculation. This set up a brief analysis of the

finite-resolution CMB scenario, which could be separated from string network

scenarios by a judicious combination of real-space analysis and interpretation of

the power spectrum features determined by the underlying physics.

Finally, the utility of MasQU on the observed sky was studied — quantifying the

B-mode detection levels that Planck may yield utilizing the software, and finding

that (to no surprise) the B-mode signal from the WMAP HILC maps is consistent

with zero. Perhaps more importantly, the Laplacian-difference method found

evidence of systematic noise in the ILC map from the galaxy boundary. Whilst

this was found not to contribute to the so-called CMB anomalies, the Laplacian-

difference method will clearly serve as a useful test for systematics in future CMB

surveys.
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The main technical development in this thesis, MasQU, and the provision of com-

petitive bounds on the potentialB-mode and defect signals from this method has

demonstrated the power of the local approach. However, local techniques have

much larger scope for producing quality scientific results. On the differencing

side, the methods provided are general enough to satisfy the production of es-

sentially any derivative field on any manifold in any number of dimensions. This

alone suggests that there may be very wide uses for the software, especially since

spherical symmetry is utilized so widely in the physics community. On the math-

ematical side, there is significant scope for extending the formalism by utilizing

Laurent expansions or even the fractional calculus — with a physical motivation

for such work yet to be discerned. This is coupled to the ease with which one can

utilize the spin-weighted harmonics to produce calculable scalar fields config-

ured to expose observables of interest. On the discontinuity-detecting side, there

are many potential uses for the software. An exotic situation, the finite-resolution

CMB, has been contructed as an example of how local techniques can be used to

check for unusual physics signals. On a level more relevant to general astronomy,

the utility of discontinuities could range from the detection of cosmic ray sources

to characterizing transits.

The focus of methods for CMB analysis is currently placed firmly on the harmonic

domain. This thesis has shown that focussing on a single analytical framework

may not be the most efficient route to scientific discovery. The development of

local, real-space methods — either in isolation, or more promisingly in combina-

tion with harmonic methods — such as presented in this thesis, should provide

an important example of such an outlook.
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A P P E N D I X A

Spinors & Spherical Harmonics

The ordinary spherical harmonics are defined as functions which satisfy the

scalar Laplace equation on the sphere. Starting from the Laplace-Beltrami equa-

tion and the metric on the 3-sphere

∇2F =
1√
g
∂i
(√

g∂jgij
)
F, gij = Diag(1, r2, r2 sin2 θ) (A.1)

yields the spherical Laplacian for a scalar function

∇2F =
1

r2
∂r(r

2∂rF ) +
1

r2 sin θ
∂θ(sin θ∂θF ) +

1

r2 sin2 θ
∂φφF. (A.2)

By separation of variables, the function F can be described as F (r, θ, φ) =

R(r)Θ(θ)Φ(φ), and taking the angular part f(θ, φ) = Θ(θ)Φ(φ) yields

Φ

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
Θ

sin2 θ

d2Φ

dφ2
+ l(l+1)ΘΦ = 0 l(l+1) =

1

R
∂r(r

2∂rR). (A.3)

These are the equations the spherical harmonics must satisfy; one can set either

of θ or φ-dependent part to a constant. Starting with the latter one then finds

1

Φ

d2Φ

dφ2
= −m2 ⇒ Φ = Ae−imφ +Beimφ. (A.4)

Substituting into the Laplacian gives

Θ(θ) = Plm(cos θ). (A.5)
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The spherical harmonics [225] are then defined as

Ylm(θ, φ) = (−1)m

√

2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ)e

imφ, (A.6)

with orthogonality relation

∫ 2π

φ=0

∫ π

θ=0

Y ∗
l1m1

(θ, φ)Yl2m2
(θ, φ) sin θdθdφ = δl1l2δm1m2

(A.7)

where Plm are the associated Legendre functions

Plm(x) = (1− x2)m/2
dm

dxm
Pl(x) (A.8)

and Pl are the Legendre polynomials

Pl(x) =

l/2
∑

r=0

(−1)r
(2l − 2r)!

2lr!(l − 2r)!
xl−2r. (A.9)

A deeper understanding of spherical harmonics and also generally rotations

comes from the mathematical entities called spinors; spinors form an irreducible

basis in the rotation and Lorentz groups, and are intrinsic to the standard for-

mulation of quantum mechanics and quantum field theory along with uses in a

wide range of mathematical fields. Spinors were developed by Cartan in 1913;

they are elements of the complex vector space of the orthogonal groups O(n) and

are in some important sense more fundamental aspects of rotations than spatial

vectors. This leads to their having unusual properties; under a rotation of angle

θ → θ + 2π, a spinor o transform as o→ −o.
Spinors are a representation of the double cover of a Lie group, called the Spin

group (p, q). For physics, the spinors in SO(3) and SO(3, 1) are of particular im-

portance; the isomorphism SL(2, C) ≡ Spin(3, 1) is responsible for the existence

of two different complex spinors in 4 dimensions. In SO(3), the isomorphism

SU(2) ∼= Spin(3) allows the construction of spinors by stereographically project-

ing the unit sphere onto the complex plane [289] (Fig. A.1).

By intersecting a sphere S2 with a complex plane C2, one can map a point P on

S2 with coordinates ( x, y, z), to a point P ′ on C2 with coordinates (X , Y , 0). Each

point on C2 is then given by a complex number

ζ = X + iY. (A.10)
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Figure A.1: Stereographic projection of S2 onto C2, from O’Donnell [290]

Using simple trigonometry it can be seen that

x

X
=

y

Y
= 1− z; (A.11)

comparing the two previous equations then implies that

ζ =
x+ iy

1− z
. (A.12)

In spherical polar coordinates this can be written as

ζ = eiφ cos
θ

2
, (A.13)

by applying the standard transformations between Cartesian and spherical polar

coordinates. The inverse relations are

x =
ζ + ζ̄

ζζ̄ + 1
, y =

i(ζ − ζ̄)

ζζ̄ + 1
, z =

ζζ̄ − 1

ζζ̄ + 1
(A.14)

where the overbar denotes conjugation. It will be preferable to represent the sin-

gle complex parameter by a pair of complex components

ζ =
ǫ

η
; (A.15)
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the reason for doing this is so as to circumvent the problem of using an infinite

coordinate to represent the north pole on the Riemann sphere. Hence one can

rewrite the inverse relations as

x =
ǫη̄ + ǭη

ǫǭ+ ηη̄
, y =

i(ǭη − ǫη̄)

ǫǭ+ ηη̄
, z =

ǫǭ− ηη̄

ǫǭ+ ηη̄
. (A.16)

A spinor can then be represented using

oA =

(

ǫ

η

)

. (A.17)

Adapting from Varshalovich [225], spin functions in S2 with 2S + 1 elements are

referred to as spin-S spin functions oAS ,

oAS =
(

oS−1, · · · , oS+1
)T

(A.18)

where the operation of the spin operator yields

Ŝ2oAs = S(S + 1)oAs , Ŝzo
A
s = AoAs . (A.19)

The vector and tensor harmonics are defined such that they satisfy the vector and

tensor Laplacians; the vector Laplacian is, for example, calculated from ∇ · (∇×
F) = 0 and ∇× (∇× F) = ∇(∇ · F)−∇2

F to give

∇2
F =

(

∇2Fr −
2Fr
r2

− 2

r2 sin2 θ
∂θ(Fθ sin θ)−

2

r2 sin2 θ
∂φFφ

)

r̂

+

(

∇2Fθ −
Fθ

r2 sin2 θ
+

2

r2
∂θFr −

2 cos θ

r2 sin2 θ
∂φFφ

)

θ̂

+

(

∇2Fφ −
Fφ

r2 sin2 θ
+

2

r2 sin2 θ
∂φFφ +

2 cos θ

r2 sin2 θ
∂φFθ

)

φ̂.

(A.20)

The tensor harmonics Y LS
JM satisfy the operator rules

Ĵ2Y LS
JM(θ, φ) = J(J + 1)Y LS

JM(θ, φ) ĴzY
LS
JM(θ, φ) =MY LS

JM(θ, φ)

L̂2Y LS
JM(θ, φ) = L(L+ 1)Y LS

JM(θ, φ) Ŝ2Y LS
JM(θ, φ) = S(S + 1)Y LS

JM(θ, φ)
(A.21)

and can be constructed from the product of the normal spherical harmonics and

spinors as follows

Y LS
JM(θ, φ) =

∑

mσ

CJM
LmSσYLM(θ, φ)oSσ (A.22)
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where the C are the Clebsch-Gordon coefficients. Particularly, the covariant

spherical components of the tensor harmonics can be written

[
Y LS
JM(θ, φ)

]

µ
= (−1)S−µCJM

L,M+µ,S−µYL,M+µ(θ, φ), (A.23)

thus any tensor can be expanded via

FS(θ, φ) =
∑

JLM

AJLMY
LS
JM(θ, φ). (A.24)

From this, one can define spinor and vector spherical harmonics

ΩL
JM(θ, φ) = Y LS

J 1
2

(θ, φ) Y L
JM(θ, φ) = Y LS

J1 (θ, φ). (A.25)

Equivalently, one can use differential geometry to define the tensor harmonics

by utilizing standard results that can be found in any textbook on differential

geometry or general relativity, such as the definition of the metric connection

Γabc =
1

2
gad (gdb,c + gdc,b − gbc,d) (A.26)

and the following covariant derivatives:

A;ab = A,ab − ΓcabA,c (A.27)

where ,ab ≡ ∂ab ≡ ∂2/∂Xa∂Xb. Using a spherical basis for the metric

gab(θ, φ) =

(

1 0

0 sin2 θ

)

, (A.28)

and since the off-diagonal elements are zero the connection becomes

Γabc =
1

2
gaa (gab,c + gac,b − gbc,a) (A.29)

where the connection elements are computed to be

Γθφφ = −1

2
(sin θ cos θ)

Γφθφ = Γφφθ = cot θ

Γφθθ = Γφφφ = Γθφθ = Γθθφ = Γθθθ = 0,

(A.30)
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one can quickly calculate the components of Y(lm)ab:

Y(lm);θθ = Y(lm),θθ

Y(lm);θφ = Y(lm);φθ = Y(lm),θφ − cot θY(lm),θ

Y(lm);φφ = Y(lm),φφ + sin θ cos θY(lm),θ

Y θ
(lm);θ = Y θ

(lm),θ

Y φ
(lm);φ = Y φ

(lm),φ + cot θY θ
(lm).

(A.31)

From the identities [291]

Y ;ab
(lm);ab = (∇2∇2 +∇2)Y(lm) = l(l + 1)(l(l + 1)− 1)Y(lm)

∫

Y(lm);abY
;ab∗
(l′m′)dΩ = l(l + 1)(l(l + 1)− 1)δll′δmm′ ,

(A.32)

the gradient and curl components of the tensor harmonics are defined in terms of

covariant derivatives of the 2-sphere via

Y E
(lm)ab = Nl

(

Y(lm);ab −
1

2
gabY

c
(lm);c

)

=
Nl

2

(

Wlm Xlm sin θ

Xlm sin θ −Wlm sin2 θ

)

Y B
(lm)ab =

Nl

2

(
Y(lm);acǫ

c
b + Y(lm);bcǫ

c
a

)

(A.33)

where Nl =
√

2(l − 2)!/(l + 2)! is a normalization constant and

Wlm = 2

(
∂2

∂θ2
− l(l + 1)

)

Ylm, Xlm = 2im csc θ(∂θ − cot θ)Ylm. (A.34)

Also, the standard permutation tensor has the following properties in two dimen-

sions:

ǫab =
√
g

(

0 1

−1 0

)

=

(

0 sin θ

− sin θ 0

)

ǫab = gacǫcb =

(

0 sin θ

− csc θ 0

) (A.35)

with g = Det[gab]. The spin-weighted spherical harmonics are an alternative basis

with which to calculate tensor properties on the sphere, initially formulated for

application to gravitational waves. A quantity is said to have a spin weight s if it
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transforms like [292, 289]

sη
′ → eisαsη. (A.36)

The spin-weighted spherical harmonics are then a generalised form of the spher-

ical harmonics for quantities with spin weight, where

sYlm =







Nslmðs−1 · · · ð0Ylm 0 ≤ s ≤ l

Nslm(−1)sð̄−s+1 · · · ð̄0Ylm −l ≤ s ≤ 0

0 l < |s|,
(A.37)

the Nslm term is a normalization factor and the operators ð and its conjugate ð̄ are

given by

ðssη = −(sin)s(∂θ + i csc θ∂φ)(sin)
−s
sη

ð̄ssη = −(sin)−s(∂θ − i csc θ∂φ)(sin)
s
sη,

(A.38)

which act to increment (or decrement for the complex conjugate) the spin-weight

s of the spherical harmonic, i.e.,

2Ylm ∝ ð1ð0Ylm, −2Ylm ∝ ð̄−1ð̄2Ylm (A.39)

with the standard spherical harmonics identical to the spin s = 0 spin-weighted

spherical harmonics. A useful explicit summation for constructing the spin-

weighted harmonics is given by

sYlm(θ, φ) = (−1)m

√

(l +m)!(l +−m)!

(l + s)!(l − s)!

[

sin

(
θ

2

)]2l

×
l−s∑

r=0

(

l − s

r

)(

l + s

r + s−m

)

(−1)l−r−seimφ
[

cot

(
θ

2

)]2r+s−m

.

(A.40)

The spin-weighted basis then allows for a complete harmonic basis that includes

the spinor-type rotations, due to the relations between the spin-weighted terms

and the spinors given in section 2.2. The equivalence between the tensor and

spin-weighted formalisms can be found in O’Donnell [290].
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