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Abstract In this study, we investigate the motion of magne-
tized particles around a Bocharova–Bronnikov–Melnikov–
Bekenstein (BBMB) black hole in an external magnetic field,
emphasizing the effects of an external magnetic field and
a conformally coupled scalar field. We analyze the prop-
erties of circular orbits, the innermost stable circular orbit
(ISCO), and the dynamics of high-energy particle collisions,
focusing on the center-of-mass energy (CME) of colliding
particles. We derive the equations governing the motion of
magnetized particles in the BBMB spacetime and explore
how the scalar coupling and the magnetic-dipole interaction
parameters influence orbital stability and collision energet-
ics. Our findings reveal that the ISCO radius is significantly
modified by both scalar and magnetic interactions, leading
to shifts in stability conditions and variations in the angu-
lar momentum requirements. The study also demonstrates
that the critical angular momentum, which determines the
transition between bound and unbound motion, is reduced
compared to the Schwarzschild case due to the influence of
the conformal scalar field. One key result is that the CME of
colliding magnetized particles can be significantly enhanced
in the BBMB spacetime. Increasing magnetic interaction and
a stronger attractive scalar field lead to higher CME values,
making the BBMB black hole a potential site for high-energy
astrophysical processes. This suggests that external magnetic
fields and scalar interactions play a crucial role in energy
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extraction mechanisms and the formation of ultrarelativistic
particles.

1 Introduction

The BBMB black hole is a unique solution of the Einstein
field equations with a conformally coupled scalar field [1,2].
Unlike standard black holes, such as Schwarzschild and
Reissner–Nordström (RN), the BBMB solution exhibits a
nontrivial scalar field that influences the surrounding space-
time and affects the properties of test particles and radiation.
One of the key features of this spacetime is the scalar hair,
which represents a deviation from the no-hair theorem, a
fundamental aspect of classical black hole physics [2]. The
BBMB solution is particularly interesting because it can be
viewed as an extremal limit of a charged black hole with
an additional scalar charge. However, a notable issue is the
divergence of the scalar field at the event horizon, which
raises questions about its physical interpretation and stabil-
ity. Some studies suggest that this divergence may indicate
an instability under perturbations, while others propose that
it could be resolved by considering modified gravity frame-
works or additional boundary conditions [3,4].

Several studies have investigated the geodesic structure of
BBMB black holes, analyzing the behavior of test particles,
photons, and accretion disks in the close vicinity of such cen-
tral objects. The motion of test particles around such black
holes has been extensively studied, revealing deviations from
Schwarzschild-like orbits due to the influence of the confor-
mal scalar field [5]. The ISCOs, which play a crucial role in
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accretion physics and QPO analysis, are significantly modi-
fied in the presence of the scalar field. This affects the energy
efficiency of the accretion disks and changes the electromag-
netic signatures observed from black hole accretion systems
[6,7]. In addition, the behavior of massive and massless scalar
fields represented by the covariant Klein–Gordon equation
with BBMB spacetime is explored in Ref. [8]. The effect
of the scalar field on shadow and quasinormal modes has
also been explored, showing that deviations from general
relativistic predictions could serve as a test for alternative
theories of gravity [9,10].

The thermodynamic properties of BBMB black holes have
also been another area of active research, particularly in
the context of black hole entropy and temperature [11,12].
Unlike classical black holes, the presence of a scalar field
requires modifications to the first law of thermodynamics,
leading to corrections in entropy and Hawking radiation
emission spectra. Some studies suggest that the BBMB solu-
tion may suffer from thermodynamic instability, while others
propose ways to regularize its behavior by introducing addi-
tional constraints on the scalar field [8].

Thin and ionized accretion disks around a BBMB black
hole have been studied in Ref. [13] using the Novikov–
Thorne model, considering the presence of an external
asymptotically uniform magnetic field. The motion of charged
particles near a weakly magnetized black hole was analyzed,
and it was found that the magnetic field shifts the marginally
stable circular orbit closer to the event horizon. The four-
acceleration of charged particles is also derived, and the radi-
ation intensity emitted by their relativistic motion is calcu-
lated, showing that the magnetic field enhances high-energy
emission.

Geodesic motion in the BBMB spacetime was analyzed to
explore its gravitational features. The thermodynamic prop-
erties were examined in Ref. [14], revealing that the Hawk-
ing temperature vanishes. The motion of both massive and
massless particles was studied, with characteristic radii and
energy efficiency up to 8% determined for massive parti-
cles. The capture cross sections, pericentric precession, light
deflection, and gravitational lensing were derived, showing
that gravitational effects in the BBMB spacetime are weaker
than those in the Schwarzschild case.

In addition to theoretical studies, potential astrophysical
applications of BBMB black holes have also been explored
in the literature, particularly in black hole mergers, accre-
tion physics, and high-energy phenomena. The interaction
of BBMB black holes with matter and radiation is a key area
where deviations from general relativity can be tested. For
example, the dynamics of hotspot motion in accretion disks
around BBMB black holes exhibit deviations from standard
models, which can be used for very-long-baseline interfer-
ometry (VLBI) observations [6]. The study of high-energy
particle collisions near the BBMB black hole horizon has

revealed that the Banados–Silk–West (BSW) process is sig-
nificantly enhanced in this spacetime, leading to the possi-
bility of producing ultrahigh-energy cosmic rays in astro-
physical environments [5]. Additionally, gravitational wave
signatures from perturbed BBMB black holes exhibit mod-
ifications in their quasinormal mode spectra, providing an
avenue for testing alternative gravity models using gravita-
tional wave observatories such as LIGO, Virgo, and LISA
[15,16]. The role of BBMB black holes in braneworld grav-
ity and teleparallel gravity has also been explored, demon-
strating that modifications to general relativity can lead to
novel predictions for astrophysical observations [17]. Future
studies using next-generation X-ray and radio telescopes
could further refine our understanding of BBMB black holes,
potentially distinguishing them from Kerr black holes.

The study of magnetized particle motion around black
holes has been an important area of research, which pro-
vides an interplay between gravitational and electromagnetic
forces in extreme astrophysical environments. In the foun-
dational work of Petterson (1974), this field has evolved
significantly and explored the influence of magnetic fields
on accretion disks around rotating black holes, highlight-
ing the perturbations induced by misaligned magnetic fields
on disk structures [18]. De Felice and Sorge (2003) further
extended this study by analyzing the dynamics of magne-
tized particles near a Schwarzschild black hole immersed in
a strong, asymptotically uniform magnetic field. Their study
demonstrates that such magnetic fields substantially modify
the effective potential that governs particle motion, leading
to changes in stable circular orbits and the emergence of
novel equilibrium configurations [19]. Building upon these
insights, subsequent research has led to various black hole
spacetimes and magnetic field configurations to understand
their collective impact on magnetized particle trajectories. In
recent years, the focus has expanded to encompass the com-
bined effects of particle spin and magnetic dipole moments in
black hole spacetimes. Utilizing the Mathisson–Papapetrou–
Dixon equations, an interplay between gravitational and elec-
tromagnetic interactions has been demonstrated [20]. These
studies underscore the necessity of incorporating both grav-
itational and electromagnetic interactions in modeling parti-
cle dynamics around black holes, offering a more compre-
hensive framework for exploring high-energy astrophysical
processes.

The study of energetic processes around black holes, par-
ticularly those involving collisions of particles, has attracted
significant attention due to its implications in high-energy
astrophysics and potential energy extraction mechanisms.
The collisional Penrose process, first proposed by Penrose
in 1969, uses the ergosphere of a rotating black hole to
extract rotational energy through particle interactions [21].
Subsequent studies have expanded this concept, notably with
the mechanism BSW, which demonstrates that the CME of
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two colliding particles near an extremal Kerr black hole can
become arbitrarily large if one particle has a critical angu-
lar momentum [22]. This process has been extensively ana-
lyzed in various black hole spacetimes, including Kerr and
RN, revealing that fine-tuning particle trajectories enhances
efficiency [23,24]. For particles with magnetic dipoles, the
dynamics become more intricate due to interactions with
external magnetic fields, often present around astrophysi-
cal black holes due to accretion disks [25,26]. Studies, such
as those by Bejger et al. and Leiderschneider et al., have
numerically and analytically explored how these collisions
amplify CME, with efficiencies reaching up to 14 times the
initial energy under idealized conditions [27,28]. A mag-
netic dipole moment introduces additional forces, altering
the effective potential and ISCOs, as demonstrated in stud-
ies of magnetized particles around Kerr black holes [29].
These investigations highlight that magnetic interactions can
enhance or suppress energy extraction depending on the field
strength and orientation [30]. Furthermore, as explored in
braneworld black hole scenarios, collisions involving spin-
ning particles show increased efficiencies with decreasing
charge parameters, exceeding Kerr limits in some cases [31].
Numerical simulations like those by East and Pretorius have
revisited high-energy head-on collisions, estimating gravi-
tational radiation and confirming that black hole formation
thresholds are lower than previously thought [32]. The inter-
play between gravitational lensing and magnetic effects in
these collisions has been shown to concentrate energy, facil-
itating black hole formation [33]. In the context of super-
massive black holes, where Hawking radiation is negligi-
ble, astrophysical mechanisms like cosmic microwave back-
ground interactions limit spin. Yet, dark matter annihilation
via the Penrose process remains a promising avenue [34].
These studies underscore the complexity of energetic pro-
cesses around black holes, with CME as a critical metric for
understanding particle dynamics and energy release.

The CME of particles with magnetic dipoles in black
hole spacetimes provides a unique lens into the physics of
high-energy collisions and their astrophysical implications.
Analytical and numerical studies have shown that the CME
can diverge near the horizons of extremal black holes, par-
ticularly when magnetic dipole interactions are considered
[35–38]. For instance, the circular motion of magnetized and
charged particles around Kerr black holes immersed in exter-
nal magnetic fields find that the CME increases with mag-
netic coupling parameters, impacting ISCO radii and energy
efficiency [39]. Magnetized particle dynamics and collision
have been studied and shown that magnetic dipoles enhance
CME near rotating black holes in Horndeski gravity [40].
The inclusion of magnetic dipoles introduces a Lorentz-like
force, modifying geodesic motion and amplifying energy
release in collisions, as seen in studies of Schwarzschild
and Kerr spacetime geometries [30,38]. The circular motion

and collisions of particles in the ergoregion of a rotating
and twisting charged black holes are studied [41]. Numer-
ical calculations, such as those by Williams, have expanded
the parameter space, incorporating reactions like Compton
scattering and pair production, revealing that magnetic fields
can modulate energy spectra [42]. In rotating spacetimes,
the ergosphere facilitates negative energy states, allowing
the Penrose process to extract rotational energy, with mag-
netic dipoles further boosting this effect [43]. Patel et al.
demonstrated that electromagnetic extensions of the Penrose
process in Kerr black holes with ambient magnetic fields
lead to higher CMEs, particularly for near-horizon collisions
[44]. Conversely, gravitational radiation and backreaction
can limit efficiency, as noted in non-linear collisional Pen-
rose studies [45]. For non-Kerr geometries, such as those in
Rastall gravity, the CME of magnetized particles increases
with electric and magnetic charges yet remains finite unless
extremal conditions are met [46]. High-energy collision belts
around accelerating black holes show that CME depends on
the acceleration of parameters, with magnetic dipoles altering
collision zones [47]. The astrophysical relevance is evident
in studies linking these processes to jet formation via the
Blandford–Znajek mechanism, where magnetic fields play a
pivotal role [25].

In this study, we use the signature (−,+,+,+) to rep-
resent the spacetime and unit system, with the unit system
G = c = 1. However, for an astrophysical application, we
explicitly include the speed of light in our formulations. The
range of Latin indices spans from 1 to 3, whereas Greek
indices range from 0 to 3.

2 Magnetization of BBMB black holes

The action of Einstein’s gravity coupled to a conformally
invariant scalar field � is given by:

S =
∫

d4x
√−g

[
R

16πG
− 1

2
gμν�,μ�,ν − R

12
�2

]
, (1)

where R is the Ricci scalar, g = det(gμν) is the determinant
of the metric tensor, the scalar field � is conformally coupled
to gravity via the term 1

12 R�2. The stress-energy tensor for
the conformally coupled scalar field is:

Tμν = �,μ�,ν − 1

2
gμνg

αβ�,α�,β

+1

6

(
gμν� − ∇μ∇ν + Gμν

)
�2. (2)

The black hole solution can be obtained for the conformal
scalar field �(r) = M/(r − M) in the following form [2]:

ds2 =− f (r)dt2+ dr2

f (r)
dr2+r2

(
dθ2+sin2 θdφ2

)
, (3)
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where f (r) = (
1 − M

r

)2
. We assume that the black hole is

immersed in an external magnetic field that is asymptotically
uniform and weak enough that it does not affect the black
hole’s geometry. The Maxwell equations,

1√−g
∂μ(

√−gFμν) = 0, (4)

where Fμν = Aν,μ − Aμ,ν is electromagnetic field (antisym-
metric) tensor. The expression for the vector potential in the
standard form is,

Aφ = B

2
r2ψ(r) sin2 θ, (5)

where B0 represents the asymptotic value of the magnetic
field. In the provided context, ψ(r) is a radial function that
is determined as a solution to the Maxwell equation, (4).

The Maxwell’s equations are:

∂r

(
r2 sin θFrφ

)
+ ∂θ

(
r2 sin θFθφ

)
= 0, (6)

∂r

[
r2 sin θgrr gφφFrφ

]
+ ∂θ

[
gθθgφφr2 sin θFθφ

]
= 0.

(7)

Since this must vanish separately, we focus on the equation
for the radial component only:

∂

∂r

[
r2

(
1 − M

r

)2 (
2rψ + r2 ∂ψ

∂r

)]
− 2ψ = 0. (8)

Solving this differential equation, we get the general solu-
tion given by,

ψ(r) = 1 − M2

r2 . (9)

Accordingly, the final solution for Aφ becomes:

Aφ = B

2
r2

(
1 − M2

r2

)
sin2 θ. (10)

The strength of the external magnetic field in the curved
spacetime background is calculated using the expression

Bα = 1

2
ηαβσμFβσ wμ (11)

where wμ is the four-velocity of an observer, Fβσ is elec-
tromagnetic field tensor. The symbol ηαβσγ is the pseudo-
tensorial representation of the Levi-Civita symbol, denoted
by εαβσγ and is characterized by the following form:

ηαβσγ = √−gεαβσγ ηαβσγ = − 1√−g
εαβσγ . (12)

The magnetic field’s components in an orthonormal coor-
dinate system can be represented by utilizing the electromag-
netic field tensor in the following form:

Bî = 1

2
εi jk

√
g j j gkk F

jk = 1

2
εi jk

√
g j j gkk Fjk . (13)

Consequently, the non-zero components of the external
magnetic field, as observed by a proper observer with the
four-velocity w

μ
proper = (1/

√−gtt , 0, 0, 0), can be obtained
as,

Br̂ = B

(
1 − M2

r2

)
cos θ B θ̂ = B

(
1 − M

r

)
sin θ. (14)

3 Motion of Magnetized particles

The Hamilton-Jacobi equation that takes into account both
interactions between the magnetized particles with confor-
mal scalar and magnetic fields has the form

gμν ∂S

∂xμ

∂S

∂xν
= −m2 (1 + gs�(r))2

(
1 − U

2m

)2

, (15)

where gs is the conformal scalar field coupling parameter
responsible for interaction between the scalar field and mag-
netized particles. The scalar product U = DμνFμν corre-
sponds to the magnetic interaction between the field and the
particles, with Dμν representing the polarization tensor.

The Lagrangian of the magnetized particles in curved
spacetime has a form [48],

L = 1

2
(m(1 + gs�(r)) + U) gμνu

μuν − 1

2
U . (16)

The interaction term has been calculated in Refs. [49–
60] as U = μα̂B

α̂ . In our further analyses, we consider the
magnetic dipole of the particles to be perpendicular to the
equatorial plane (so it has components μα̂ = (0, 0, μ, 0))
and restricted the particle’s motion in that plane. Thus, the

interaction term takes U = μ
θ̂
B θ̂ = μB

√
f (r).

One may easily find integrals of motion of magnetized
particles (pφ = L = muφ and pt = −E = mut denoting
the total angular momentum and total energy of the particle,
respectively) using the above Lagrangian in the following
form,

ṫ = E
−gtt

(
1 + gs�(r) + β

√
f (r)

) , (17)

φ̇ = L
gφφ

(
1 + gs�(r) + β

√
f (r)

) , (18)

where β = μB/m is the magnetic interaction parameter.
Compact objects with dipole magnetic moment, in partic-
ular, neutron stars (NSs) and white dwarfs (WDs) can be
treated as a magnetized test particle, orbiting supermas-
sive or intermediate-mass black holes (MWD < MNS �
MBH) immersed in an external magnetic field. Magne-
tized NSs and WDs with magnetic dipole moment μNS =
(1/2)BNSR3

NS and μWD = (1/2)BWDR3
WD, respectively.

The magnetic coupling parameter β is estimated using obser-
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vational parameters:

{
βNS, βWD

}
� 44

104

B1

M1

{
B12R

3
6, B4R

3
9

}
(19)

where B12 = BNS/(1012G), B4 = BWD/(104G) and B1 =
B0/(10 G) are dimensionless surface magnetic fields of the
NS and WD normalized to 1012G, 104G and 10G, respec-
tively, R6 = RNS/(106cm) and R9 = RWD/(109cm) are
normalized values of the NS and WD radii to 10 km and 104

km, respectively, and the masses of the stars are normalized
to the solar mass, M1 = m(NS/WD)/M�.

The Hamilton-Jacobi action for the motion of magnetized
particles in the equatorial plane (θ = π/2) can be separated
as follows:

S = −Et + Lφ + Sr (r). (20)

Using the Hamilton-Jacobi equation (15), we can obtain the
equation of radial motion of the magnetized particles given
by,

grr
(

∂Sr
∂r

)2

+ gttE2 + gφφL2

= (1 + gs�(r))2
(

1 − β
√

f (r)
)2

. (21)

After some lengthy calculations, we obtain the following:

Veff = f (r)

[
(1 + gs�(r))2

(
1 − β

√
f (r)

)2 + L2

r2

]
.

(22)

Figure 1 illustrates the radial dependence of the effective
potential Vef f for magnetized particles orbiting a BBMB
black hole. The potential is plotted as a function of the dimen-
sionless radial coordinate r/M and for different values of the
scalar coupling parameter gs and the magnetic dipole interac-
tion parameter β, with a fixed angular momentum L = 4 M
typical for circular orbits. The solid curve represents the case
with gs = β = 0 (no scalar or magnetic interactions), show-
ing a baseline potential dominated by gravitational effects.
The dashed curve corresponds to gs = 0.1 and β = 0, high-
lighting the enhancement of the potential barrier due to the
conformal scalar field � = M/(r − M). The dotted curve,
with gs = 0 and β = 0.2, demonstrates the modification
induced by the magnetic dipole moment, reducing the poten-
tial near the horizon due to the term which is proportional
to 1 − β

√
f (r). The combined effect (gs = 0.1, β = 0.2)

reveals a complex interaction, changing the positions of the
potential’s minima and maxima, corresponding to stable and
unstable circular orbits. The vertical line at r = M marks the
event horizon, beyond which the potential diverges due to the
singularity of the scalar field potential �(r) = M/(r − M).
This figure underscores how scalar and magnetic interactions
alter the dynamics of magnetized particles, influencing the

Fig. 1 Radial dependence of the effective potential for magnetized
particles around BBMB BHs

innermost stable circular orbit (ISCO) and collision energet-
ics near the BBMB black hole.

3.1 Circular orbits of magnetized particles

The minima of the effective potential correspond to stable
circular orbits, where a small radial perturbation results in
bounded oscillations around an equilibrium position. The
orbits where the affective potential reaches a maximum indi-
cate unstable circular orbits. A slight perturbation can cause
the particle to fall into the central object or escape to infin-
ity. The steepness and shape of the potential provide insights
into the gravitational well and the forces which govern orbital
motion. For circular orbits, the following conditions must be
satisfied:

dVeff

dr
= 0,

d2Veff

dr2 > 0. (23)

From ∂r Veff = 0, we derive the angular momentum L and
energy E for circular orbits.

L2 = Mr
(
1 − β(1 − M

r )
)
(M(gs − 1) + r)

(r − M)
(
2M2 − 3Mr + r2

)
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×
[
gs

{
2βM2 + r2

(
β + 1 − M

r

)
− 3βMr

}

−2β(M − r)2 − r(M − r)
]

(24)

and

E2 =
(

1−M

r

)2 {
1 −

(
1+β

(
1−M

r

))2 (
1 + Mgs

r − M

)2

−M((β − 1)r − βM) (Mgs − M + r)

r2
(
2M2 − 3Mr + r2

)
× (gs(−2βM + βr + r) + 2βM − 2βr + r)

}
.

(25)

Figure 2 shows the relationships between energy E and
angular momentum L (top panels) and radial dependence of
energy (bottom panels) for particles with magnetic dipole
moment in circular orbits around a magnetized BBMB black
hole. This figure also examines magnetized particles’ ener-
getics and orbital dynamics in the BBMB spacetime, charac-
terized by the metric function f (r) = (1−M/r)2 and scalar
field, with the event horizon at r = M . The top panels display
the energy E(normalized by particle mass m) as a function of
angular momentum L/M for circular orbits in the equatorial
plane (θ = π/2), derived from the Hamilton-Jacobi equa-
tion and effective potential Vef f . Plots in the bottom panels
demonstrate the dependence of E versus radial distance r/M
for these orbits, highlighting the radial variation influenced
by gravitational, scalar, and magnetic interactions.

The left top panel shows E versus L/M for varying scalar
coupling gs with fixed magnetic dipole parameter β = 0.
The solid curve (gs = 0) represents the baseline BBMB
case, where the energy exhibits a minimum at L/M � 4,
corresponding to the innermost stable circular orbit (ISCO)
without scalar effects. As the scalar field interaction increases
(dashed and dotted curves), the conformal scalar field ampli-
fies the potential term (1 + gs�(r))2, shifting the minimum
energy to higher angular momentum and reducing the ISCO
radius, reflecting stronger binding due to scalar-gravity cou-
pling. The right top panel varies β with gs = 0. The mag-
netic dipole interaction via (1 − β

√
f (r)) lowers the energy

at fixed values of the angular momentum, as the Lorentz-like
force opposes gravitational attraction, pushing the ISCO out-
ward and flattening the curve near the horizon. The energy
minimum broadens for large values of β, indicating a wider
range of stable angular momentum. These graphs reveal crit-
ical values L where ∂r Vef f = 0 (circular orbit condition) and
∂rr Vef f > 0 (stability), modified by the scalar and magnetic
interactions. The left bottom panel plots illustrate E(r) for
circular orbits with fixed L/M = 4, varying gs for β=0.
The solid curve (gs=0) shows a monotonic decrease in E
toward r = M , with a minimum near the ISCO (r � 1.5M),
beyond which orbits become unstable. With increasing gs ,

the scalar field’s divergence near r = M steepens the poten-
tial, reducing E at smaller radii and shifting the ISCO inward,
consistent with enhanced gravitational attraction. The right
bottom panel varies β (for example, β = 0,0.1,0.3, gs = 0)
for the fixed value of L. The magnetic dipole reduces E near
the horizon, as the term 1 − β

√
f (r) weakens the effective

binding energy, pushing the ISCO to larger r (from 1.5M to
2M as β rises). The vertical dashed line at r = M marks the
horizon, where E approaches a finite value for stable orbits
but diverges for plunging trajectories due to �(r).

The top panels illustrate how gs tightens orbital stabil-
ity, requiring a higher value of L to counter the scalar field,
while β relaxes this constraint, enabling stable orbits at lower
energies. The bottom panels show the radial sensitivity of
E , with gs enhancing near-horizon binding and β counter-
acting it, affecting collision energetics (refer to section V).
These dependencies highlight the BBMB black hole’s unique
interplay of conformal scalar and magnetic effects which are
distinct from Kerr or Schwarzschild spacetimes. This has
implications for energy extraction and particle acceleration
near the horizon.

4 ISCO of magnetized particles

The second derivative of the effective potential determines
the stability of circular orbits: ∂2

r Veff > 0.

When this condition is not met, unstable circular orbits
occur, indicating that the particle will spiral inward toward
the BH or outward into escape trajectories. Circular orbits
occur at radii where the radial component of the particle’s
motion vanishes. Mathematically, this is given by: ∂r Veff =
0. This condition provides the radius of the circular orbit,
rc, as a function of the central object’s parameters, includ-
ing environments, such as the BH mass and the coupling
parameters [61]. By numerically solving the conditions for
∂r Veff = 0 and ∂2

r Veff > 0, one can map out the stability
regions in the parameter space. The ISCO is determined by
solving the following equations simultaneously:

∂r Veff = 0, ∂2
r Veff = 0. (26)

Figure 3 illustrates the dependence of the ISCO radius
rISCO, along with the corresponding angular momentum
LISCO and energy EISCO for magnetized particles around a
BBMB black hole. It highlights how the combined effects of
an external magnetic field and a conformally coupled scalar
field modify the ISCO and its associated parameters. The left
panels show variations with the magnetic coupling parameter
β, while the right panels display variations with the scalar
coupling parameter gs . The top row of the figure depicts
the dependence of the ISCO radius rISCO on β (left) and gs
(right): as β increases from 0 to 0.04, rISCO shifts outward.
This is due to the additional Lorentz force resulting from
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Fig. 2 The relationships between the energy E and angular momentum L (top panels) and radial dependence of energy (bottom panels) of particles
with magnetic dipole moment at circular orbits around magnetized BBMB black hole

the interaction between the external magnetic field and the
particle’s dipole moment. A positive gs enhances gravita-
tional attraction, pulling the ISCO inward, while a negative
gs weakens the gravitational potential, causing the ISCO to
shift outward. The middle row illustrates the variation of
the angular momentum required for ISCO: as β increases,
LISCO also increases. The added magnetic interaction neces-
sitates higher angular momentum to counteract the magnetic
repulsion. For positive gs , a stronger gravitational attraction
requires more significant angular momentum for stability,
whereas negative gs leads to a decrease in LISCO. The bot-
tom row of Fig. 3 presents the energy EISCO at ISCO: as β

increases, there is a slight increase in EISCO, indicating that
particles need more energy to reach and maintain stable cir-
cular orbits. A positive gs increases the gravitational poten-
tial depth, leading to higher energy requirements, whereas
a negative gs lowers EISCO. These findings carry significant
astrophysical implications. Since the ISCO establishes the
inner edge of the accretion disk, the observed luminosity and
spectral features of black hole systems will be influenced by
β and gs . If rISCO shifts outward due to magnetic interactions,

the structure of the accretion disk will become less compact.
Variations in EISCO affect particle acceleration and the for-
mation of relativistic jets. The influence of the scalar field
in altering ISCO properties can serve as an observational
test for deviations from general relativity. These modifica-
tions directly impact astrophysical observables, including the
properties of black hole accretion disks and high-energy pro-
cesses near compact objects.

5 Magnetized particle collisions near BBMB BHs

The Penrose process effectively extracts rotational energy
from a Kerr black hole by leveraging its ergosphere [21]. A
particle entering the ergosphere splits into two parts, with
one carrying negative energy falling into the black hole,
reducing its angular momentum, while the other escapes with
increased energy, potentially exceeding the initial energy by
up to 20–30% [23]. This process has been extensively studied
in rotating black hole spacetimes, with works by Blandford
and Znajek extending it to electromagnetic extraction via
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Fig. 3 Dependence of ISCO
radius on β and gs for
magnetized
Bocharova–Bronnikov–
Melnikov–Bekenstein black
hole

magnetic fields, crucial for powering astrophysical jets [25].
Magnetic fields can enhance energy extraction efficiency
near Kerr black holes, particularly for particles with electric
charges and/or dipole moments [62]. Numerical simulations
by East and Pretorius demonstrate that high-energy collisions
within the ergosphere can amplify energy release, though
gravitational radiation limits efficiency [32]. The process’s
astrophysical relevance lies in its potential to explain jet for-
mation in active galactic nuclei (AGN), with COM energies
playing a key role in determining extraction rates [24]. How-
ever, challenges like particle fine-tuning and backreaction

effects, as noted by Nakao, Okawa and Maeda, suggest that
realistic efficiencies are lower than theoretical maxima [45].
These studies highlight the Penrose process’s foundational
impact on understanding black hole energetics, with COM
energy serving as a critical parameter for assessing energy
release in spacetimes of rotating objects.

The BSW mechanism, introduced in 2009, proposes that
collisions near the horizon of an extremal Kerr black hole
can achieve arbitrarily high CME in case one particle has
critical angular momentum [22]. This process, distinct from
the Penrose process, relies on the spacetime’s geometry near
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ISCOs, where relativistic effects amplify particle interactions
[35]. BSW collisions in magnetized Kerr spacetimes have
been potentially studied and found that interactions between
magnetic fields and charged particles cause an increase in
the CME, potentially reaching efficiencies orders of mag-
nitude higher than standard astrophysical processes [39].
These studies have extended to spinning particles, show-
ing efficiencies up to 14 times the initial energy under cer-
tain idealized conditions, though realistic astrophysical envi-
ronments limit this [28]. The BSW mechanism’s impact on
astrophysics includes potential signatures in γ -ray bursts and
ultra-high-energy cosmic rays as a model of particle acceler-
ation near black holes [34]. However, constraints like gravi-
tational radiation and horizon proximity suggest finite CME
in non-extremal cases [63]. The mechanism’s ability to probe
quantum gravity effects near horizons underscores its theo-
retical significance. CME is a diagnostic for extreme astro-
physical environments, influencing black hole accretion and
jet dynamics.

Collisional processes around black holes, including head-
on collisions and scattering, drive significant energy release,
with CME determining astrophysical outcomes. Head-on
collision cases near Kerr black holes can produce CME
exceeding theoretical limits, potentially powering relativis-
tic jets and gamma-ray emissions [27]. Collisions of mag-
netized and charged particles in Kerr and non-Kerr space-
times show that magnetic dipole moments enhance the CME,
affecting the ISCO radii and energy extraction efficiency
[64]. Numerical simulations have revisited high-energy col-
lisions, estimating gravitational wave emissions and black
hole formation thresholds, revealing that CME influences
merger dynamics [32,42]. These collisions, often occurring
in dense accretion disks, contribute to black hole growth and
jet launching as effects of magnetic fields on particle accel-
eration [65]. The astrophysical impact includes signatures
in GW events detected by LIGO-Virgo, with CME shaping
merger rates and spin distributions [66]. However, backreac-
tion and energy loss via radiation are essential in constraining
efficiency, particularly in magnetized spacetimes [30]. High
CME near-horizons also probe fundamental physics, poten-
tially revealing quantum gravity effects [67]. These studies
underscore the role of CME in driving black hole energetics,
jet formation, and observable astrophysical phenomena.

The probability of magnetized particles in astrophysi-
cal accretion disks around black holes is high, driven by
the strong magnetic fields generated by dynamo processes
and plasma dynamics. Magnetic fields, often on the order
of 104 − 108 Gauss, permeate accretion disks, influencing
particle orbits and enhancing magnetized particle popula-
tions [65]. Particles with magnetic dipole moments, such as
those in magnetized plasmas, are trapped or accelerated near
black holes. This may increase their likelihood in dense disk
regions due to Lorentz forces [62]. The energy of the magne-

Fig. 4 Radial dependence of the square of radial velocity for different
values of angular momentum

tized Kerr black hole can be extracted through the Blandford–
Znajek mechanism due to the magnetic field interaction
and charged particles near the horizon [25]. Also, magnetic
reconnection events within disks further boost magnetized
particle densities, with probabilities peaking near the ISCO
[68]. Observational evidence from X-ray binaries and AGN
supports this, with magnetized particle signatures detected
in disk emissions, suggesting a near-certain presence in such
environments [34].

5.1 Critical angular momentum for magnetized particles
orbiting black holes

The critical angular momentum Lcr represents the thresh-
old between bounded and unbounded motion. It determines
whether a magnetized particle remains in a stable orbit,
plunges into the black hole, or escapes to infinity. Under-
standing Lcr is essential for:

• Predicting the structure and stability of accretion disks.
• Determining the efficiency of high-energy particle colli-

sions.
• Exploring astrophysical processes such as energy extrac-

tion and jet formation.

It is crucial to acknowledge a captivating occurrence asso-
ciated with angular momentum, a “critical value” necessary
for approaching a black hole. Two conditions can determine
the critical value of the angular momentum: (i) ṙ = 0 and
(ii) dṙ/dr = 0.

Figure 4 presents the radial dependence of the squared
radial velocity ṙ2 for magnetized particles orbiting a BBMB
black hole in an external magnetic field. The figure exam-
ines different values of the particle’s angular momentum L,
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highlighting how the scalar field and the magnetic dipole
interaction modify particle dynamics.

In the Schwarzschild metric, the critical angular momen-
tum required for a particle to be in an unstable circular orbit at
the photon sphere (r = 3M) is Lcr = 4M in Schwarzschild
limit.

There are no stable circular orbits for particles with L <

4 M , and the particle will inevitably fall into the black hole.
In contrast, in the BBMB spacetime, the conformally cou-
pled scalar field and the external magnetic field significantly
modify this behavior, affecting both the location and stability
of circular orbits.

The figure illustrates how the radial velocity ṙ2 varies
with the radial coordinate r/M for different values of the
angular momentum L under fixed values of the scalar cou-
pling parameter gs = 0.2 and the magnetic dipole interaction
parameter β = 0.04. It is observed that when L < Lcr, the
radial velocity remains positive across all r , meaning the par-
ticle is in a plunging trajectory and will inevitably fall into
the black hole. Near Lcr, there exists a turning point where
ṙ2 momentarily vanishes, corresponding to the location of an
unstable circular orbit. In the case of L > Lcr, the particle
can remain in a stable orbit at some radial distance or even
escape if perturbed.

Unlike the Schwarzschild case, where Lcr = 4M at r =
3M , the BBMB case shows a shift in both the critical angular
momentum and the radial location of unstable orbits. This
shift occurs due to the presence of the scalar field enhancing
gravitational attraction, reducing the requiredLcr and also the
magnetic dipole interaction, which introduces an additional
Lorentz-like force modifying particle motion.

These effects imply that particles in BBMB spacetime
require less angular momentum to achieve a critical orbit
than Schwarzschild spacetime, meaning that the black hole’s
gravitational potential is effectively deeper due to the influ-
ence of additional fields.

Figure 5 illustrates the dependence of the critical angular
momentum Lcr on the magnetic dipole interaction parameter
β (top panel) and the scalar coupling parameter gs (bottom
panel) for magnetized particles moving in the vicinity of a
BBMB black hole. The critical angular momentum plays a
fundamental role in determining the stability of orbits of the
particles and their possible trajectories under the combined
influence of gravitational, scalar, and magnetic interactions.

The top panel of the figure shows the variation of Lcr as a
function of the magnetic dipole interaction parameter β while
keeping the scalar coupling parameter fixed at gs = 0.0. The
results indicate that increasing β leads to an overall increase
in Lcr, meaning that stronger magnetic dipole interactions
require higher angular momentum for a particle to remain
in orbit. The increase in Lcr is more pronounced at smaller
radii, where the magnetic force significantly alters the effec-
tive potential. The effect is due to the interaction between

Fig. 5 Dependence of the critical angular momentum on β (top panels)
and gs (bottom panels)

the particle’s magnetic dipole moment and the external mag-
netic field, which introduces an additional repulsive force
that counteracts gravitational attraction, thereby shifting the
stability conditions.

The bottom one examines the variation of Lcr with the
scalar coupling parameter gs for a fixed value of the mag-
netic dipole parameter β = 0.05. One can observe from
the results demonstrated that for the case gs < 0 (repulsive
scalar field), Lcr decreases, meaning that particles require
less angular momentum to maintain stable orbits. For gs = 0,
Lcr follows the baseline BBMB behavior, providing a refer-
ence for comparison. For gs > 0 (attractive scalar field), Lcr

increases significantly, suggesting that the additional grav-
itational pull strengthens orbital binding, requiring higher
angular momentum to counterbalance the increased attrac-
tion.

This trend aligns with previous studies [69,70], where
an attractive scalar field enhances the effective gravitational
pull, leading to deeper potential wells and increasing the
angular momentum required for stable orbits. These depen-
dencies have essential implications for accretion disk stabil-
ity, as the critical angular momentum determines the ISCO’s
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location and influences the accretion systems’ luminosity and
energy release. These findings are particularly relevant for
understanding the evolution of magnetized plasmas around
black holes and their role in high-energy astrophysical pro-
cesses such as relativistic jets and energetic particle colli-
sions.

5.2 Center of mass energy of colliding magnetized particles

Here, we study the center of mass of the two colliding magne-
tized particles involved in the collision for the center-of-mass
frame of reference. We consider these particles to have ini-
tial energies E1 and E2 at infinity. We assume two particles of
masses m1 and m2 moving along geodesics in the spacetime
of the BBMB black hole. Then, their energy in the center of
the mass frame can be determined as follows [71]:

{Ecm, 0, 0, 0} = pμ
1 + pμ

2 . (27)

Using the four-momentum pα
1 = m1uα

1 and pα
2 = m2uα

2 ,
which represent the moments of the two colliding particles,
where uα is the momentum per mass. It is straightforward to
compute the square of the CME, as defined in Eq. (27). This
calculation yields the desired result:

E2
cm = m2

1 + m2
2 − 2m1m2gμνu

μuν (28)

or

E2
cm

m1m2
= m1

m2
+ m2

m1
− 2gμνu

μ
1 u

ν
2. (29)

In case the masses of the colliding particles are m1 = Xm
and m2 = Ym, we have

E2
cm

m2 = X2 + Y 2 − 2gμνu
μ
1 u

ν
2. (30)

Subsequently, we examine the collision between particles
with equal masses m1 = m2 = m (X = Y = 1) and ini-
tial energies E1 = E2 = m. We also explore the acceleration
of magnetized particles near a magnetized BBMB black hole
by employing the conventional equation for the textcolorred-
CME of two colliding particles with equal masses. Conse-
quently, the expression for the textcolorredCME is derived:

E2
cm = E2

cm

2m2 = 1 − gαβu
α
1u

β
2 . (31)

To simplify calculations, we use the assumption that both
particles possess identical mass (m1 = m2 = m0) and equal
energy (E1 = E2 = 1) while they are at an infinite distance
from each other. This assumption allows for a focus on the
intrinsic properties of the collision process while eliminating
the complications that arise from different starting circum-
stances. We can formulate the expressions and conditions
for the CME using the parameters provided. This derivation
includes examining the collective impact of the particles’ rest
mass and kinetic energy as they approach and interact with

the gravitational field of the BBMB black hole. This study
aims to understand the potential outcomes of high-energy
collisions and the subsequent formation of new particles in
this extreme BH environment. Hence, by using Eqs. (17) and
(21), the final representation for the collision energy in the
center of the mass frame can be derived as stated in Refs.
[72] as

E2
cm = 1 + 1(

1 + gs�(r) + β
√

f (r)
)2

[E1E2

f (r)
− L1L2

r2 sin2 θ0

]

− 1

f (r)

√√√√E2
1 − f (r)

[
(1 + gs�(r))2

(
1 − β

√
f (r)

)2 + L2
1

r2 sin2 θ0

]

×
√√√√E2

2 − f (r)

[
(1 + gs�(r))2

(
1 − β

√
f (r)

)2 + L2
2

r2 sin2 θ0

]
,

(32)

Below, we analyze CME in the equatorial plane. It is worth
noting that the CME measures the total energy available in
the center-of-mass frame of two colliding particles at the
equatorial plane θ0 = π/2. In astrophysical scenarios, an
enhanced CME near a black hole can be a mechanism for
high-energy particle acceleration, which may convert to:

• the production of ultra-high-energy cosmic rays;
• energy extraction mechanisms such as the BSW process;
• the generation of high-energy radiation detectable in

active galactic nuclei (AGN) or gamma-ray bursts.

In the context of BBMB black holes, the interplay between
the conformal scalar field and magnetic interactions modifies
the dynamics of charged and magnetized particles, leading
to unique CME signatures.

Figure 6 illustrates the radial dependence of the CME Ecm

for magnetized particle collisions in the background of a
BBMB black hole. The figure explores how variations in
the magnetic dipole interaction parameter β and the scalar
coupling parameter gs influence the energy release in high-
energy collisions near the black hole. The top panel of the
figure shows how the CME depends on the radial coordinate
r/M for different values of the magnetic dipole interaction
parameter, β, while keeping the conformal scalar coupling
gs fixed at gs = 0.2. The results indicate that increasing β

increases the CME at a smaller distance because the Lorentz
force exerted by the external magnetic field modifies the
effective potential, allowing for more energetic collisions in
the near-horizon region. For the case of β = 0, which has
no magnetic field, the CME follows a standard behavior in
BBMB without magnetic interactions, peaking just outside
the event horizon. As β increases, the CME grows more pro-
nounced near r ≈ 2 M , suggesting that magnetic interactions
can facilitate energy extraction and particle acceleration. The
trend aligns with previous studies showing that external mag-
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Fig. 6 Radial dependence of CME for different values of β (top panels)
and gs (bottom panels)

netic fields can amplify the efficiency of high-energy colli-
sions in black hole spacetimes.

The bottom panel examines the influence of the scalar cou-
pling parameter gs on the CME for a fixed magnetic dipole
parameter β = 0.04, for gs = −0.4 negative scalar interac-
tion, gs = 0.0 zero scalar interaction and gs = 0.4 positive
scalar interaction. When gs < 0, the CME is lower at all
distances, implying that a repulsive scalar field weakens the
binding energy of the system, making collisions less ener-
getic. In the zero scalar field interaction case gs = 0, the
CME follows the standard BBMB black hole behavior, act-
ing as a baseline case. Once we have positive (attractive)
scalar field interaction gs > 0, the CME increases signif-
icantly, particularly at smaller distances, suggesting that a
strong, attractive scalar field enhances the energy of the pos-
sible collisions. The enhancement in CME due to positive gs
arises because the scalar field strengthens the gravitational
attraction, forcing particles into tighter orbits and increasing
their relative velocities before collision.

The CME increases with both the magnetic dipole inter-
action β and the scalar coupling gs interactions, indicating
that both factors contribute to amplifying collision energies.
Magnetic interactions (modeled by β) primarily affect the
CME in the near-horizon region, where the Lorentz force

is strongest. Scalar interactions (modeled by gs) modify the
CME over a broader radial range, with attractive scalar fields
enhancing collision energies and reducing repulsive fields.
The interplay between gravitational, magnetic, and scalar
field effects could provide observational signatures distin-
guishing BBMB black holes from standard Schwarzschild
black holes.

These findings significantly affect the study of energetic
astrophysical processes, such as black hole accretion dynam-
ics, jet formation, and gamma-ray burst mechanisms.

6 Conclusion

In this work, we studied the dynamics of magnetized particles
in the magnetized BBMB black hole spacetime, incorporat-
ing an external magnetic field and a conformally coupled
scalar field. We derived the governing equations of motion
and analyzed how the scalar coupling parameter (gs) and the
magnetic dipole interaction parameter (β) influence particle
trajectories. Our results show that magnetic and scalar inter-
actions introduce significant modifications to the effective
potential, altering the stability conditions of circular orbits.
Compared to the Schwarzschild case, the presence of a con-
formal scalar field creates a stronger gravitational pull, shift-
ing the locations of stable orbits and changing the behavior of
test particle dynamics. These modifications impact particle
motion around compact objects, influencing accretion disk
formation and energy transport in astrophysical settings.

We also analyzed the circular orbits of magnetized parti-
cles and determined the ISCO as a function of the parameters
gs and β. Our findings indicate that increasing gs results in
a smaller ISCO radius, as the attractive nature of the scalar
field enhances gravitational binding. Conversely, larger val-
ues of β tend to shift the ISCO outward since the interaction
between the particle’s magnetic dipole moment and the exter-
nal magnetic field generates an additional repulsive effect.
Notably, in the limit of strong magnetic interaction, the ISCO
can extend well beyond its Schwarzschild counterpart. These
results highlight the interplay between gravitational, mag-
netic, and scalar fields effects in modifying orbital structures
around black holes, which could have observational impli-
cations for astrophysical accretion disks.

In addition we examined the critical angular momen-
tum (Lcr ) necessary for maintaining stable orbits. In the
Schwarzschild case, the photon sphere at r = 3M corre-
sponds to Lcr = 4M , but in BBMB spacetime, the pres-
ence of the scalar field and magnetic interaction shifts these
thresholds. Our results show that for positive scalar cou-
pling (gs >0), the effective gravitational attraction increases,
reducing Lcr and allowing orbits to remain stable at lower
angular momentum values. However, the external magnetic
field introduces a repulsive force that counteracts this effect,
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requiring a higher Lcr for stability. These findings sug-
gest that magnetic and scalar fields interactions significantly
alter the conditions for stable motion, influencing astrophys-
ical phenomena such as jet formation and plasma dynamics
around black holes.

A major outcome of our study is the impact of magnetic
and scalar interactions on high-energy collisions. We com-
puted the CME of colliding particles and found that both
stronger magnetic fields (β) and scalar fields (gs) enhance
CME values. In particular, a combination of a strong attrac-
tive scalar field and an external magnetic field leads to an
extreme amplification of CME, potentially reaching arbitrar-
ily high values under fine-tuned conditions. This suggests
that BBMB black holes could act as efficient particle accel-
erators, producing ultrarelativistic collisions in astrophysical
environments. These effects may contribute to the formation
of high-energy cosmic rays, gamma-ray bursts, and energetic
outflows in black hole systems.

Our results demonstrate that the interplay between mag-
netic and scalar interactions fundamentally alters the behav-
ior of particles in BBMB spacetimes, influencing both orbital
stability and collision energetics. These modifications could
have significant observational consequences in accretion disk
structures, black hole jet dynamics, and astrophysical tran-
sients. Future studies should explore how these effects man-
ifest in realistic astrophysical scenarios, including magne-
tized plasma dynamics and gravitational wave signatures
from extreme particle interactions. Additionally, extending
this analysis to rotating black holes and higher-dimensional
gravity theories could provide deeper insights into the role
of fundamental fields in extreme gravitational environments.
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