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Ja, niżej podpisany, Dániel NÉMETH, (nr indeksu: 1159847), doktorant Wydziału
Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego oświad-
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może spowodować unieważnienie stopnia nabytego na podstawie tej rozprawy.

Kraków, ............................... ..........................................................
(data) (podpis doktoranta)





v

JAGIELLONIAN UNIVERSITY

Abstract
Faculty of Phyiscs, Astronomy and Applied Computer Science

Jagiellonian University

Doctor of Philosophy

Studies of Critical Phenomena in Causal Dynamical Triangulations on a Torus

by Dániel NÉMETH

This document contains my publications and results based on research done as a
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CDT, which is a lattice regularization of the theory of quantum gravity, based on the
formalism of Regge Calculus and Feynman path integrals. Due to mathematical
complexity, analytical solutions to the model exists only in two dimensions. The
four-dimensional theory is analyzed by numerical simulations. Earlier discover-
ies include dynamically emergent quantum de Sitter universes with emergent four-
dimensional properties, scale-dependent spectral dimensions and a complex phase
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Niniejszy dokument zawiera moje publikacje i wyniki oparte na badaniach prowad-
zonych jako członek grupy Causal Dynamical Triangulations (CDT) na Uniwersyte-
cie Jagiellońskim podczas studiów doktoranckich. Obszarem moich badań był czte-
rowymiarowy model CDT, który stanowi sieciową regularyzację teorii kwantowej
grawitacji, opartą na formalizmach rachunku Regge i całek po trajektoriach Feyn-
mana. Ze względu na złożoność matematyczną, rozwiązania analityczne tego mod-
elu istnieją tylko w dwóch wymiarach. Czterowymiarowa teoria jest analizowana
przez symulacje numeryczne. Wcześniejsze odkrycia obejmują dynamicznie po-
jawiające się kwantowe wszechświaty de Sittera z emergentnymi właściwościami
czterowymiarowymi, zależne od skali wymiary spektralne oraz skomplikowaną struk-
turę fazową, w której istnieją przejścia fazowe pierwszego i wyższego rzędu. Doku-
ment zawiera opis natury nie analizowanych dotychczas przejść fazowych, nowych
sposobów analizy triangulacji oraz wpływu klasycznych i dynamicznych (kwan-
towych) pól skalarnych w czterowymiarowym CDT o toroidalnej topologii przestrzen-
nej. Głównymi wynikami rozprawy jest sześć publikacji załączonych w ostatnim
rozdziale. Dokument ten ma na celu wprowadzenie do CDT i stanowi przewodnik
po artykułach składających się na rozprawę doktorską.
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Chapter 1

Motivation to the study of
parallels, random geometry and
quantum gravity

"You must not attempt this approach to the parallels. I know this way to the very end. I have
traversed this bottomless night, which extinguished all light and joy of my life. I entreat
you, leave the science of parallels alone. For God’s sake, please give it up. Fear it no less
than the sensual passion, because it, too, may take up all your time and deprive you of your
health, peace of mind and happiness in life. I thought I would sacrifice myself for the sake of
truth. I was ready to become a martyr who would remove the flaw from geometry and return
it purified to mankind. I accomplished monstrous, enormous labours: my creations are far
better than those of others and yet I have not achieved complete satisfaction. I turned back
when I saw no man can reach the bottom of this night. I turned back unconsolidated , pitying
myself and all mankind. Learn from my example: I wanted to know about parallels. I remain
ignorant, this has taken all the flowers of my life and all my time from me...." - A letter of
Bolyai Farkas to his son Bolyai János

Geometry, the mathematical study of shapes, always interested humans. From
the ancient Greeks till today’s science various topics related to geometry are key as-
pects to mathematics and natural sciences. Euclid laid down five axioms, which be-
came the foundations of mathematics. At that time, mathematics was postulated in
terms of words and rarely graphics, but not equations. The postulates of Euclid [7],
based on his axioms, defined geometry until the 19th century. His postulates were:

• A straight line segment may be drawn from any given point to any other.

• A straight line may be extended to any finite length.

• A circle may be described with any given point as its center and any distance
as its radius.

• All right angles are congruent.

• If a straight line intersects two other straight lines, and so makes the two inte-
rior angles on one side of it together less than two right angles, then the other
straight lines will meet at a point if extended far enough on the side on which
the angles are less than two right angles.

None dared to question the truth of these postulates as any sane person could
check their truths by drawing those lines and not finding any which doesn’t fit. This
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was true until some questioned whether it is possible to draw triangles on vari-
ous non-flat shapes such that the sum of their inner angles is different than that of
π
2 . This is exactly what Bolyai Farkas is talking about in his letter to his son. He
discovered that parallels can meet sometimes, but did not manage to describe the
phenomena in its entirety even though he worked on that field for his whole life.
Thus he warned his son not to pursue geometry and the parallels. But his son, János
had his own ideas, and years later he constructed the basics of non-Euclidean geom-
etry. Had he listened to his father, the topic of my doctoral thesis would be probably
significantly different. Bolyai pursued a non-mainstream topic of mathematics, and
reached success with it. Later Riemann based his work on the work of Bolyai (and
others), which was then used by Einstein when he worked out the general theory of
relativity. The science of fundamental physics brings forth our knowledge of nature,
if we wouldn’t walk off-road in the theory space, but only follow the mainstreams,
we wouldn’t be able to solve the hardest problems of science.

In the beginning of the twentieth century the appearance of two theories gave
us an enormous leap towards understanding nature. The paradigm shift which is
related from one hand to the curving relativistic four dimensional spacetime de-
scribed by general relativity (GR) and from the other hand to the discreteness of the
nature as it is seen by quantum mechanics turned science into science-fiction in the
eye of the scientifically not educated people. The math and physics, needed in or-
der to understand it, started to be so complex and demanding, that scientific results
became non-trivial. Many physical theories are validated or falsified via mathemat-
ical derivations and many cannot be accessed because of their mathematical com-
plexity. The work presented in this thesis belongs to a similar off-road field, which
is strongly related to parallels and geometry. Quantum gravity is the field where
quantum mechanics and general relativity meets. Quantum mechanics is the theory
which describes the smallest scales, the tiny fluctuations of matter, the rules of na-
ture that escape every-day’s experience, and gravity is the theory which describes
the physics of the largest scales, the orbiting of planets and even the earliest history
of the Universe. Their intersection should be the theory of quantum gravity, the
theory which describes how the attraction between bodies behaves on the smallest
scales, on the scales where other forces of nature dominate and bodies fall apart to
their components. As we advanced in our understanding of the world and the Uni-
verse it turned out that quantum gravity could potentially explain also the largest
scales and the earliest moments of history. It could tell us why do we have such a
large-scale structure of galaxies that we see, could explain why visible matter con-
stitutes only four percent of everything, could hint at whether we live in a closed or
an open Universe, and foreshadow a potential cold-death at the end of times. The
quantum theory of gravity has the potential to explain the nature and the structure
of space-time, to resolve singularities of GR and furthermore to explain or disprove
the theories regarding dark matter and dark energy.

After Einstein introduced GR many scientist tried to find the theory of quantum
gravity without success. The first attempt to describe quantum gravity was a naive
application of perturbative methods of QFT to GR, but it failed. The treatment of
infinities by perturbative renormalization techniques, which can be used in case of
the standard model physics, cannot be applied to gravity, which turned out pertur-
batively non-renormalizable [8]. However S. Weinberg conjectured that gravity may
adhere to an Asymptotic Safety (AS) scenario [9, 10, 11], where using Renormaliza-
tion Group Flow (RG) techniques one may find a fixed point, where there exist only a
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finite number of coupling constants needed to describe the full quantum theory in a
non-perturbative way. In a lattice formulation of a quantum theory fixed points are
typically connected to phase transitions, and the hypothesis is that there is at least
one non-trivial fixed point for gravity related to the ultraviolet (UV) regime, which
necessarily requires the existence of a higher order phase transition. Such a phase
transition can be typically recognised from the diverging correlation length and re-
lated scaling exponents.

By the end of the 20th century, with the increasing available computational power,
numerical algorithms became widely used. One of the most notable computer based
techniques in physics is related to Lattice Quantum Chronodynamics (LQCD) [12,
13], which was developed in parallel with the physical experiments. The basic idea
is to discretize the continuum theory such that the field variables are located at the
vertices of a regular D-dimensional lattice (D depends on the dimensionality of the
discussed model). The lattice spacing a, which is the length between two adjacent
vertices of the lattice, should be sent to zero while keeping the relevant physical
observables constant, in order to reach the continuum limit within the numerical
simulations. Since the beginning of the development of lattice theories, many physi-
cally relevant observations were derived from numerical simulations, e.g., related to
phase transitions [14], physical masses of particles [15] and many other phenomena.
In contrast to the LQCD, lattice quantum gravity is special in a sense that the lattice
connectivity itself encodes the geometric degrees of freedom and therefore provides
information about the distinct features of gravitational physics on the quantum level.
In order to create a physically relevant model of lattice quantum gravity one also has
to be able to include matter fields, e.g., scalar fields or gauge fields [16, 17].

This document is a guide to a collection of articles published in the past years
and constituting my doctoral thesis. All of the publications were published in peer-
reviewed journals.

The structure of this document is as follows: The introduction to Causal Dy-
namical Triangulations (CDT), which is a non-perturbative approach in the quest
of quantizing gravity, is the topic of chapter two. In chapter three, I discuss some
details of numerical implementation and Monte Carlo simulation methods used to
study CDT. The forth and fifth chapters discuss respectively the results of my stud-
ies obtained for empty Universes (pure gravity) and Universes with matter content
(gravity coupled to scalar fields). Afterwards, all publications which constitute my
thesis are briefly discussed in chapter six, together with information about my con-
tribution to them. The published papers are attached at the very end in chapter
seven in the following order:

[1] J. Ambjorn G. Czelusta et al. “The higher-order phase transition in toroidal
CDT”. In: J. of High Energ. Phys. 2020 (5), p. 30.
DOI: 10.1007/JHEP05(2020)030

[2] J. Ambjorn et al. “Towards an UV fixed point in CDT gravity”. In: Journal of
High Energy Physics 2019 (7), p. 166.
DOI: 10.1007/JHEP07(2019)166

[3] J. Ambjorn et al. “Topology induced first-order phase transitions in lattice
quantum gravity”. In: Journal of High Energy Physics 2022 (4), p. 103.
DOI: 10.1007/JHEP04(2022)103.
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[4] J.Ambjorn et al. “Cosmic voids and filaments from quantum gravity”. In: The
European Physical Journal C 81 (8 2021), p. 708.
DOI: 10.1140/epjc/s10052-021-09468-z

[5] J. Ambjorn et al. “Matter-Driven Change of Spacetime Topology”. In: Phys.
Rev. Lett. 127 (16 Oct. 2021), p. 161301.
DOI: 10.1103/PhysRevLett.127161301

[6] J. Ambjorn et al. “Scalar fields in causal dynamical triangulations”. In: Classi-
cal and Quantum Gravity 38 (19 Sept. 2021), p. 195030.
DOI: 10.1088/1361-6382/ac2135
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Chapter 2

Causal Dynamical Triangulations

2.1 Introduction to Quantum Gravity

"The beauty and clearness of the dynamical theory, which asserts heat and light to be modes
of motion, is at present obscured by two clouds..." - Lord Kelvin

Lord Kelvin wrongly predicted the end of physics in the late nineteenth century.
The two clouds mentioned were the problem of heat and radiation, more precisely
the theorised material which fills everything called "ether" and the black body radi-
ation. When we mention modern physics, we refer to the time when the solutions
to these two "clouds" were presented in the form of special relativity and quantum
mechanics. The start of the twentieth century brought us an explosion of physical
theories, as special relativity led to general relativity, which is extensively studied
today in relation to astrophysical and cosmological models or technologies, such as
GPS tracking devices. In the same time, quantum mechanics evolved into quantum
field theory, and later our technological advancements led to the ability to measure
properties of particles. The standard model of particle physics is one of the greatest
achievements in physics, as it gives an explanation to the fundamental nature of mat-
ter. The biggest problem of modern physics is that the theory of matter and the the-
ory of gravity cannot be matched into a unified framework together. Many physicist
tried in the past hundred years to describe the theory of quantum gravity, which led
to many different research projects, such as Loop Quantum Gravity (LQG), String
Theory (ST), Causal Sets (CS), Group Field Theory (GFT), Non-Commutative Geom-
etry (NCG), Canonical Quantum Gravity (CQG), Hořava–Lifshitz Gravity (HLG),
Asymptotic Safety (AS), Euclidean Dynamical Triangulations (EDT), Causal Dynam-
ical Triangulations (CDT) and many other approaches.

2.1.1 (Non-)renormalizability of quantum gravity and the need for non-
perturbative approaches

Merging the quantum theory with gravity is not a trivial task. Quantum field theory
(QFT) predicts fluctuations of fields, and according to GR and Einstein’s field equa-
tions, where there is energy density, there is curvature. These fluctuations can at very
high energies produce such a large energy density in a small volume that the naive
application of Einstein’s equations would predict the appearance of black holes[18,
19]. The problems with UV-completion of quantum gravity become apparent in the
perturbative expansion of a QFT based on GR. Such a formulation is perturbatively
non-renormalizable [20], which means, that the naive application of the perturbation
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theory would result in infinitely many parameters and coupling constants appear-
ing in the theory, that cannot be eliminated via renormalization thus yielding the
theory to be un-predictive.

It is well known, that the couplings appearing in QFTs are scale dependent, this
scale dependence is referred to as "running of the couplings". In the case of the full
theory, where one integrates from zero to infinite momenta (or alternatively zero dis-
tances) many models exhibit infinite divergences, the solution to which is provided
by some cutoff Λ introduced to the high energy regime. Up to this cutoff the theory
is predictive, and the aim is to remove the cutoff and avoid the appearance of infini-
ties. The UV completeness of a QFT is provided by the existence of fixed points of
the renormalization group flow in the coupling constant space: as the energy scale
changes, the running coupling constants approach some fixed point value. The mi-
croscopic theory is defined in such fixed points, thus finding them is a crucial part of
any theory based on QFT language. Let g be a coupling constant of a given theory,
then the so-called "beta function" β(g) will define the scale dependence, or running
of the coupling. The fixed points are defined by zeros of β(g), which can result in a
free or an interactive theory. The free theory is achieved when the zero of the beta
function corresponds to zero values of the couplings, which is called "asymptotic
freedom" and such a fixed point is called trivial or Gaussian. If instead zeros of
the beta function are achieved for a finite number of non-zero couplings, it is called
"asymptotic safety", where one has non-trivial fixed points corresponding to an in-
teractive theory [21]. A fixed point corresponding to high energy, or short scale, is
called the "ultraviolet" (UV) fixed point, while the "infrared " (IR) fixed point will
correspond to the low energy, or large scale theory.

A QFT description of GR means, that one treats the metric tensor gµν as the field
of gravitation and defines an action in terms of geometric invariants obtained from
the metric tensor, such as, e.g., R, R2, RµνRµν, etc. The most important couplings
in case of gravity are the Newton’s coupling G, and the cosmological constant Λ.
The theory of gravity is perturbatively non-renormalizable, as applying perturba-
tion theory in every order one has to introduce infinitely many counter-terms and
the corresponding new couplings, which renders the theory to be non-predictive.
Nevertheless, according to the "asymptotic safety" conjecture, formulated by Steven
Weinberg [9], most of the (potentially infinitely many) couplings appearing in such
a theory become irrelevant at the non-trivial UV fixed point, and there will be only a
finite number of relevant couplings rendering the theory non-perturbatively renor-
malizable, i.e., UV-complete and predictive to arbitrarily large energy scale. There-
fore a non-perturbative description of quantum gravity is needed which can be done
with the help of numerical simulations. The non-perturbative approach discussed in
this thesis is called Causal Dynamical Triangulations (CDT) and it is based on Regge
calculus and Feynman path integral formulation.

2.1.2 Regge calculus

Before jumping into the description of CDT, it is necessary to discuss the mathe-
matical formulation that led to it. This formulation was introduced by Regge, and
is called Regge calculus [22]. The aim of Regge was to approximate space-times,
which are solutions to the Einstein field equations, via piecewise-flat manifolds.1

1Often the name piecewise-linear manifold instead of piecewise-flat manifold is used.
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The approximation is done with the help of internally flat triangular building blocks
(simplices) glued together in a non-trivial way, hence the name "triangulation". The
simplices in a 2-dimensional triangulation are triangles, in 3-dimensions are tetrahe-
dra and in 4-dimensions are pentachora. All simplices in a triangulation are glued
to each other via their (d↓ 1) dimensional faces (links for d = 2, triangles for d = 3
and tetrahedra for d = 4). These (d ↓ 1) dimensional sub-simplices are also con-
nected via "hinges", also called "bones", which are (d↓ 2) dimensional objects. The
hinges play a crucial role, as curvature can be defined there locally. The curvature
is related to the angular difference (deficit angle) at a given bone. Let’s imagine a
triangulation consisting of n equilateral triangles glued together along edges (links)
around a single point (vertex). If n = 6 then one can place it on a flat 2-dimensional
surface . If n = 5 then one can place it only if it is cut along one edge, and it will be
visible that a triangle is "missing". The angle associated to the missing (or for n > 6
extra) triangles is the deficit angle.

Let us consider the simplest (nontrivial) case of a three-dimensional Rieman-
nian manifold which is well approximated by a fine triangulation. Following the
approach of Regge [23], the discretized curvature is obtained by considering par-
allel transport of a vector around a bone. Many simplices (in this case tetrahedra)
touch each other at the bone forming a bundle p. One can associate the number of
simplices in the bundle with bone density ρ at p, which is equal to the number of
simplices divided by a unit area. The deficit angle (εp) associated with the bone is a
measure of a dihedral angle:

εp = 2π ↓∑
n

θn, (2.1)

θn being the dihedral angle of the n-th simplex at the bone. One can alternatively
define ε = 1

N εp, which is the deficit angle of the bone smeared on its simplices. Now,
let’s take a loop a with area Σ around the bundle and parallel transport a vector ~A
around the loop. If nΣ is a unit vector orthogonal to Σ, then one can define:

~Σ = ΣnΣ, (2.2)

which is an area vector associated with the loop. Parallel transporting a vector
around the bundle will rotate ~A by an angle σ due to the process of the parallel
transport. One can associate a vector of length σ to the rotation, and let this vector
be parallel to the bone, so it will be defined by:

~σ = σn, (2.3)

where n is the unit vector parallel to the bone. Rotating ~A by an angle σ will produce
the vector ~A′ = ~A + δ~A. The infinitesimal change δ~A will be equal to the product
δ~A = ~σ × ~A. The rotation angle σ is proportional to the number of simplices (N)
visited by the loop a circumventing the bone p, thus :

σ = Nε, (2.4)

where N can be expressed in terms of the bone density ρ, the oriented area vector Σ
and the unit vector parallel to the bone n:

N = ρ n ·~Σ. (2.5)
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Putting all the expressions together the infinitesimal change δ~A is given by:

δ~A = ρε(n~Σ) · (n× ~A). (2.6)

Using coordinate (vector component) notation:

δAµ = ρε(nνΣν)(εµαβnα Aβ), (2.7)

where: εµαβ is the Levi-Civita symbol. Now, one can express the n and ~Σ vectors in
the dual space, i.e., the space of two-forms:

nν =
1
2

ενρσnρσ, (2.8)

and
Σν =

1
2

εναβΣαβ. (2.9)

Using the fact that nνλ = ↓nλν, the infinitesimal change δ~A can be now written as:

δAµ =
1
4

ρε(ενρσnρσ 1
2

εναβΣαβ)(2nγµ)Aγ =
1
2
(ρεnαβnγµ)Σαβ Aγ. (2.10)

Using the continuous counterpart of the same equation with the help of the Riemann
tensor one can write:

δAµ =
1
2

Rγ
µαβΣαβ Aγ. (2.11)

Comparing the the two equations one can recognise the discretized Riemann curva-
ture tensor. The Ricci tensor can be then defined by index contraction:

Rα
µαν = Rµν = ρε(δµν ↓ nµnν), (2.12)

where we switched back to the unit vector n. And with further index contraction
one can get the Ricci scalar:

R = Rα
α = ρε(δα

α ↓ nαnα) = 2ρε, (2.13)

which gives a direct connection between curvature of continuous Riemannian man-
ifolds and their discretized approximations. The above formula can be generalized
to more dimensions as well as to pseudo-Riemannian manifolds.

Using Regge calculus, the Regge action SR, i.e., the gravitational action for a
piecewise-flat triangulation, can be formulated. The starting point of this is the
Einstein-Hilbert action:

1
16πG

∫
ddx
√
↓g(R↓ 2Λ), (2.14)

where G is the Newton’s constant, R is the scalar curvature and Λ is the cosmological
constant. Writing the curvature in terms of Regge calculus one gets the form:

1
16πG

∫
ddx
√
↓gR =

1
8πG

∫
ddx
√
↓gρε = κ ∑

n(d↓2)

knεn, (2.15)

where κ = (8πG)↓1 is the (inverse) bare gravitational constant, kn denotes the vol-
ume of the (d ↓ 2)-dimensional hinge, εn is the deficit angle associated with the
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hinge and the summation is over (d↓ 2)-dimensional simplices, denoted by n(d↓2).
The term including cosmological constant reads:

1
16πG

∫
ddx
√
↓g(↓2Λ) =

↓2Λ
16πG

∫
ddx
√
↓g = λ ∑

nd

Vnd , (2.16)

where λ = ↓Λκ is the bare cosmological constant, Vnd is the volume of the d-
dimensional simplices building up the triangulation and the summation is over d-
dimensional simplices. This leads to the full Regge action:

SR = κ ∑
n(d↓2)

knεn + λ ∑
nd

Vn, (2.17)

which holds in any dimension. One should note that the Regge form of the gravi-
tational action (2.17) is not expressed in terms of the metric tensor, but in terms of
numbers of simplices and sub-simplices. Expressing the Regge action for a particular
triangulation can lead to a complicated form, however applying certain constraints
one can simplify the expressions.

2.2 Causal Dynamical Triangulations

"The more success the quantum theory has, the sillier it looks. How nonphysicists would
scoff if they were able to follow the odd course of developments!" - Albert Einstein

Following the ideas of Weinberg and assuming the existence of an UV fixed
point for gravity the properties of quantum gravity can be analyzed using non-
perturbative methods. As fixed points were found in other QFT based theories, such
as Quantum Chronodynamics (QCD) [24], theorists turned towards lattice formula-
tions (e.g. Lattice Quantum Chronodynamics (LQCD)). The simplest lattice theory
of GR is called Dynamical Triangulations (DT). In DT, one can use the Regge ac-
tion straight away. The spacetime is constructed by gluing d-dimensional simplicial
building-blocks: triangles, tetrahedra and pentachora. The triangulation does not
play a role in the physics of the model, as it serves for the purpose of regulariza-
tion, providing a UV cutoff related to lattice spacing a, which should be removed in
the continuum limit, if it exists. A huge difference of the DT approach from other
techniques based on the Regge calculus, such as Quantum Regge Calculus [25] or
some versions of LQG [26], is that the edge length (a) of all the simplices is kept
fixed and thus piecewise-flat manifolds are constructed from identical equilateral
simplices. Transforming the metric signature with the Wick rotation one gets an Eu-
clidean description which allows to study the (regularized) path integral of quantum
gravity using statistical methods. In the DT there is no difference between space and
time, however CDT twists the picture via the introduction of a foliation and thus the
notion of time is restored as the causal evolution of the leafs of the foliation. The
decomposition of the four-dimensional space-time into space and time is similar to
that of the Arnowitt-Deser-Misner (ADM) formalism [27]. Thus, the 4-dimensional
space-time is assumed to be globally hyperbolic and each (d ↓ 1)-dimensional hy-
persurface ("leaf" of the foliation) has the same fixed topology. The word "causal"
in the name of CDT refers to the time-slicing of the triangulation, as opposed to
usual DT, and "dynamical" points at the difference between CDT and traditional lat-
tice approaches, as in CDT the lattice connectivity is not fixed and it encodes the
gravitational degrees of freedom. For example, in LQCD there is a fixed and regular
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lattice, on which the theory is defined, but in CDT the different lattice configurations
correspond to the different trajectories (histories) in the gravitational path integral.
Therefore a single configuration (single trajectory) is non-physical, and one has to
compute a suitable average over an ensemble of such configurations.

In a d-dimensional CDT triangulation, by construction, every (sub-)simplex lies
in a d-dimensional slab (part of the triangulation) between lattice (discrete) time t
and t + 1. Different types of simplicial building blocks (simplices) sαβ can be defined
through indicating the number α of their vertices in t and the number β of vertices
in t + 1. In 2 dimensions there are two types of building blocks, i.e., triangles: s21
and s12. In 3 dimensions there are three different types of building blocks , i.e.,
tetrahedra: s22, s31 and the mirror reflection s13. Finally, in 4 dimensions there are
4 types of such simplices: s41 with its mirror-reflection s14 and s32 with its mirror-
reflection s23. Due to this construction and the symmetry of the action, as we will
see, CDT exhibits a time reflection symmetry as well. Thanks to a small number
of different categories of simplices appearing in the four-dimensional CDT and due
to topological constraints of the triangulated manifolds, see Appendix B, the Regge
action (2.17), which governs the dynamics of the model, can be expressed in terms
of these 4-dimensional simplices and vertices in a triangulation T [28]:

SR = ↓(κ0 + 6∆)N0 + κ4(N41 + N32) + ∆N41, (2.18)

where N0 = ∑ s10 is the total number of vertices, while N41 = ∑(s41 + s14) and
N32 = ∑(s32 + s23) are the total numbers of the the various types of simplices in the
triangulation T . The three bare coupling constants are κ0, the bare inverse Newton
constant, κ4, the bare cosmological constant, and ∆, related to the asymmetry be-
tween lengths of space-like and time-like links in the lattice. From now on we will
refer to N0, N41 and N32 as global numbers.

The path integral of quantum gravity is formally defined as:

ZQG =
∫

D[gµν]eiSEH [gµν] →reg→∑
T

1
CT

eiSR[T ] = Za, (2.19)

where D is the measure term, which enables one to integrate over geometries, i.e.,
diffeomorphism invariant equivalence classes of smooth metrics gµν, and SEH is the
Einstein - Hilbert action. After the lattice regularization (→reg) the path integral is
replaced by a sum over all possible triangulations with a measure 1/CT , the size
of the automorphism group of T . The index a in Za refers to the lattice regulator,
which is the edge length of the simplices and SR is the Regge action (2.18), which is
the lattice-regularized version of the Einstein-Hilbert action. The distinction of space
and time introduced by the foliation is also present in the edge lengths, as the time-
like edge lengths at and the space-like edge lengths as are not necessarily the same,
which gives rise to a degree of freedom, called the asymmetry parameter α, where
↓αa2

t = a2
s in the Lorentzian setting. The aim of CDT is to define the gravitational

path integral, or at least approximate it as close as it gets. All possible triangulations
T include only such triangulations which respect the foliation structure and some
additional topological constraints. To be able to treat the model with methods of sta-
tistical physics a Wick rotation has to be applied to the partition function to change
the metrics from Lorentzian to Euclidean signature. Due to the imposed global folia-
tion the "Euclideanization" of the path integral via the Wick rotation is well defined,
and is related to the analytic continuation of the Regge action to negative values of
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α in the lower half of the complex α plane. Performing it one turns the path integral
into the partition function:

ZR = ∑
T

1
CT

e↓SR[T ], (2.20)

where, for a simpler notation, we kept the same symbol SR for the (now) Euclidean
Regge action. The Wick rotation allows for the application of statistical physics
methods on the model, for example one can compute the expectation values of ob-
servables as:

〈O〉 = 1
Z ∑
T

1
CT
Oe↓SR[T ]. (2.21)

One of the benefits of the Wick rotation is that the model became suitable for
numerical Monte Carlo (MC) simulations, where the partition function can be ap-
proximated by an ensemble of configurations generated in such simulations. The
past twenty years of numerical studies of the 4-dimensional CDT model led to many
interesting and important results.

2.2.1 Most important previous results of CDT

CDT was formulated in the beginning of the 21st century and became recognized
by the quantum gravity community in the following years. The introduction of the
foliation to the triangulation allowed for the addition of the asymmetry parameter
between space and time, which was promoted to a new coupling constant ∆ in the
action (2.18). This particular change had a huge impact on the properties of the CDT
model, compared to DT, as due to the enforced causality constraint the ensemble
of triangulations present in the partition function (defined by eq. (2.20)) became
significantly reduced. In the same time the third coupling constant (∆) allowed
for an extended view on the phase-diagram of simplical quantum gravity. There
were only two phases in DT, one phase where a link of the generic triangulation
gathered a significant number of simplices around itself, and its end vertices expe-
rienced a huge coordination number2,comparable to the system size, thus the name
"collapsed phase". The generic geometries of the other phase could be described by
the, so-called, branched polymers [29], hence the name "branched polymer phase".
The analogues of these phases [30] are present in CDT3, however the topological
restriction related to the foliation resulted in the appearance of two new phases [31,
32, 33]. This became apparent when new observables were used related to the newly
introduced time-foliation. The number of spatial tetrahedra at a given CDT foliation
leaf (with integer lattice time t) can be computed and it is, by definition, proportional
to the spatial three-volume at t, which defines the, so-called, volume profile V3(t),
shown in Fig. 2.1.

Apart from a "collapsed" volume profile of phase B (where all three-volume is
concentrated in one spatial "slice", i.e., the 3-dimensional foliation leaf of integer t),
and the heavily fluctuating volume profile of the "branched polymer" phase A (in-
dependent number of tetrahedra in each spatial slice) there are new phases where
the volume profiles averaged over MC configurations follow a particular smooth
function. The most interesting new phase is phase C ,where, in the case of the fixed

2The coordination number of a vertex is defined as the number of four-simplices which share the
vertex.

3Phase B is the collapsed phase and phase A is the branched polymer phase
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FIGURE 2.1: Spatial volume profiles of generic CDT configurations in
different phases. Top: Spherical CDT: A, B, Cb, C; Bottom: Toroidal

CDT: A, B, Cb, C, respectively.

spherical topology of spatial slices, the resulting average volume profile behaves as
cos3(t), which corresponds to the (Euclidean) de Sitter solution of GR [34]. There-
fore phase C is also called the de Sitter or the semi-classical phase and it is related
to the IR limit of quantum gravity. The fourth phase, which is called the bifurcation
phase (Cb), exhibits a smooth volume profile in case of large-enough fixed total vol-
umes (lattice sizes). The volume profile in phase Cb is similar to the volume profile
in phase C measured for the spherical spatial topology, however it scales in a non-
canonical way when the lattice volume is increased. Furthermore, in phase Cb every
second spatial slice of integer lattice time coordinate contains a vertex with macro-
scopically large coordination number, similar to "high-order" vertices encountered
in phase B.

By analyzing fluctuations of the spatial volume it was possible to derive an ef-
fective action[35] of CDT parametrized by the spatial volume, or alternatively by
the scale factor. The effective action in the de Sitter phase (C) [36] turned out to be
consistent with the Hartle-Hawking minisuperspace model [37, 38, 39]. This result
is non-trivial, as in the case of CDT the scale factor is obtained after "integrating out"
all other geometric degrees of freedom present in the lattice, while in the minisu-
perspace model, where spacetime isotropy and homogeneity is put in by hand, the
scale factor is the only degree of freedom. Therefore, this feature of CDT is fully
emergent. One could also show that the notion of effective dimension of spacetime
first measured in case of 2D CDT[40] and also in the case of Locally Causal Dynam-
ical Triangulations (LCDT) [41] was extended to higher dimensions. In the case of
4-dim CDT in phase C it was measured to be consistent with the topological dimen-
sion four. This was not so obvious as the effective dimension measured in other
phases of CDT (and earlier in DT) was different than four[42]. Both the, so-called,
Hausdorff dimension [43], related to the scaling of an area and volume and the spec-
tral dimension [44], defined by a heat kernel of the Laplace operator, were measured.
Additionally, the spectral dimension was shown to exhibit a non-trivial scale depen-
dence changing from four in large scales (comparable to the configurations size) to
approximately two in short scales and also in the presence of matter fields[45] it can
deviate from the classical values. The above phenomenon of "dimensional reduc-
tion" was also confirmed in many other approaches to quantum gravity (e.g., in ST
[46], NCG [47], HLG [48], AS [49, 50, 51] and LQG [52]).
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Most of the phase transitions present in the CDT model with spherical spatial
topology were analyzed, and the A↓ C phase transition was found to be first-order
[53, 54, 30], while the B ↓ Cb and the C ↓ Cb turned out to be continuous [54, 32].
The existence of higher order (continuous) phase transitions is an important results
in view of the perspective existence of the UV fixed point of quantum gravity4, how-
ever the first study of the RG trajectories in CDT [55, 56] did not show a convincing
evidence for the existence of the UV fixed point. One of the issues was that a part
of the phase-diagram was out of reach due to computational difficulties, thus the
analysis of some phase transitions was not possible. Also at that time the avail-
able computational power was significantly smaller than presently. With the help
of modern technology much larger system sizes can be analyzed nowadays within
available computational resources.

Most of the results presented above were obtained for the CDT model with fixed
spherical topology of the spatial slices. As the spatial topology choice is one of
the free parameters of the model, in the past few years the main focus of the 4-
dimensional CDT research was on models with toroidal spatial topology. It was
found that the phase-diagram is almost invariant under the change of the topology,
as all observed phases were present in both cases [57]. A huge difference between
the spherical and the toroidal case is visible in the volume-profile of phase C, see
Fig. 2.1, and it is related to the potential term appearing in the effective action of
CDT, which is different in the two cases [35]. In the spherical case the potential term
can be interpreted as coming from GR and it is consistent with the minisuperspace
model, which also contains such a potential term for the scale factor. However, in
the case of the toroidal CDT, one does not have a classical analogue of the measured
potential, thus it can be interpreted as a quantum correction. Using the spatial topol-
ogy of a three-torus allowed for an introduction of many new methods of analysing
the lattice-regularized quantum geometries, as it will be presented in Chapter 5. It
was also possible to investigate the region of the phase-diagram which was thought
to be not available in the spherical CDT, see Chapter 4.

In this thesis we will present results related to the toroidal CDT: the study of the
remaining phase transitions, including critical phenomena at the phase-transition
lines. Then we will also discuss how to add scalar fields to the model of CDT, and
either use them as semi-classical maps defining a coordinate system on the geometry,
or couple them to the geometry and analyse the effects of their back-reaction. But
first, let us turn our attention to the numerical implementation of the CDT model,
which is the topic of the next chapter.

4As explained in Chapter 4, such a fixed point should appear as a higher order transition point in
CDT.
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Chapter 3

Numerical Simulations

3.1 The Numerical Setup

"The student should not lose any opportunity of exercising himself in numerical calcula-
tion and particularly in the use of logarithmic tables. His power of applying mathematics
to questions of practical utility is in direct proportion to the facility which he possesses in
computation." - Augustus De Morgan

In the case of the four-dimensional CDT there is no analytical solution, however
certain numerical methods provide useful tools in the quest to find out more about
the nature of the model. One of those tools is a Monte Carlo (MC) simulation [58].
In a MC simulation one attempts to numerically approximate the path integral or
rather, in the Euclidean formulation, the partition function of eq. (2.20), and esti-
mate expectation values or correlators of various observables based on a sample of
independent configurations generated with a probability proportional to the Boltz-
mann weight: exp(↓S). There are various algorithms enabling to realize this goal.
In this discussion we will present the Metropolis Algorithm, as this is the one that
is used in the case of four-dimensional CDT. One starts from any initial state of the
model (in the CDT case any allowed triangulation with a given fixed topology1), and
applies a set of local changes (moves) transforming state A to B. In order to ensure
that the probability of generating a state converges to the required equilibrium prob-
ability ∝ exp(↓S), the probability of performing the move has to satisfy the detailed
balance condition:

P(A)W(A→ B) = P(B)W(B→ A), (3.1)

where P ∝ e↓S is the probability distribution of a state and W is the transition
probability from one state to another. Additionally, the moves have to be selected in
such a way, that all possible states can be reached with a finite number of performed
moves, in other words, the configuration space should be closed with respect to
the selected moves. This condition provides ergodicity, which is crucial to ensure
a meaningful statistics. In the Metropolis algorithm the transition probabilityW is
chosen to be

W(A→ B) = min{1, e↓∆S}, (3.2)

1In practice one usually uses an initial configuration which is easy to be constructed "by hand".
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where ∆S = S(B) ↓ S(A) is the change of the action by the move.2 As already
mentioned, after the so-called thermalization period, the probability distribution of
configurations generated by the Metropolis algorithm reaches an equilibrium de-
fined by the partition function (the action S). This is the point, when one can start
collecting a sample of configurations, which has to be large enough to ensure good
statistics of the measured observables.

CDT is perfectly suitable for numerical simulations due to its relatively simple
construction. The foliated space-times (MC states) are constructed by gluing the
four-dimensional simplicial building blocks, presented in Fig. 3.1, to each other,
fulfilling some global and local constraints (discussed later in detail).

FIGURE 3.1: Two building blocks of the triangulation. The left sim-
plex is s41 and the right one is s32. The other two types, s14 and s23,

are mirrored-symmetric versions of them.

Due to the nature of the triangulation every simplex has exactly five neighbors,
thus the local neighborhood of a hinge (i.e. a triangle in the four-dimensional CDT)
can be simply discussed. The MC moves used in CDT are based on the so-called
Pachner (or Alexander) moves [59], modified in such a way that, as shown later,
the foliation structure with fixed topology of each spatial slice is conserved. Within
our simulation code we keep track of the vertices forming the 4-simplices and ad-
jacency relations between the simplices. This information is enough to reconstruct
the whole triangulation. Nevertheless, in order to optimize and speed up the code,
we also keep track of some additional information, e.g., some specific types of sub-
simplices or their coordination numbers.3 When we perform a measurement we
usually have to calculate observables from the actual adjacency relations or other
data that we store. As Fig. 3.1 shows, the graphical representation of simplices on
a 2-dimensional figure is difficult. Due to this reason, we will present the idea of
the moves of 4-dimensional CDT by showing how they impact the triangulation at
the t + 1

2 plane. Technically the t + 1
2 plane describes the connectivity structure of

2In the case of CDT the transition probabilityW depends also on a "geometric" factor related to the
number of possible locations in a triangulation where the move and its inverse can be performed.

3The coordination number measures how many 4-dimensional simplices meet at a given vertex,
link or triangle.
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the triangulation in a slab, defined by all simplices between spatial slices at (integer)
lattice time t and t + 1. This treatment simplifies the discussion as it reduces the
dimensionality of the problem by one, because on the t + 1

2 plane a slab of the 4-
dimensional triangulation is mapped to a 3-dimensional graph decorated by colors.
The construction of the building-blocks of this 3- dimensional graph is analogous to
the method used in [60] in the case of three-dimensional CDT. Specifically, the color
or, with other words, the type of the links (solid black/grey or dashed) is important,
as only links of the same type can be connected. When referring to the links of such
a graph, the words "color" or "type" will be used interchangeably.

FIGURE 3.2: The figure shows the representations of s41 (left) and s32
(right) simplices in the t + 1

2 plane. The simplex s41 is a single colored
tetrahedron, s32 is a bi-colored prism with two triangular and three
rectangular faces. The other two types of simplices s14 and s23 are

mirror-reflections.

In the t+ 1
2 plane, instead of the 4-simplices, we now have 3-dimensional objects:

tetrahedra and prisms, see Fig. 3.2. In order to distinguish between the s41 and the
s14 simplices we attribute colors to the tetraedra, such that a tetrahedron belonging
to the s41 simplex will have all black (triangular) faces, and all triangles of a tetra-
hedron belonging to the s14 simplex will be grey. Even though each 4-simplex has
formally 5 neighbors, the tetrahedra have only four, which means that (for better
clarity of the graphs) we omit the neighbors belonging to the previous/next slab.
The prisms with black / grey triangular faces and transparent rectangular sides rep-
resent the s32/s23 simplices, respectively. Due to the topological constraints imposed
on the CDT triangulations (the fixed spatial topology must be preserved in all layers
interpolating between the spatial slices at t and t+ 1) the discretized geometry of the
t + 1

2 layer must be also connected in a specific way, meaning that a black triangle
can be glued only to a black triangle, a grey triangle to a grey triangle, and a trans-
parent rectangle to a transparent rectangle. It reflects the fact that the s41 simplex can
be adjacent only to s41 or s32 simplices4, the s32 simplex can be adjacent only to s41,
s32 or s23 simplices, etc.

In order to simplify notation we will represent the black / grey tetrahedra by
the black / grey dots, and the prisms by the blue / red dots, such that a blue dot

4Here we disregard the connections to the s14 simplices of the previous slab.
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FIGURE 3.3: The figure presents the 3-dimensional elements of the
t + 1/2 plane. The prism with triangular bases and rectangular sides
(left panel) comes from a s32 simplex. In the graphical representation
it will be a blue dot with two solid black and three dashed legs. The
tetrahedron (right panel) comes from a s41 simplex. In the graphical
representation it will be a black dot with four solid black legs (con-
nections to neighboring slabs are omitted). Similarly, one has a red
dot with two solid grey and three dashed legs, and a grey dot with
four solid grey legs, coming from the mirror-reflected s23 and s14 sim-

plices, respectively, which are not shown in the plot.

represents a prism with two black triangles (and three transparent rectangles) and a
red dot is a prism with two grey triangles (and also three transparent rectangles). In
the 4-dimensional context the black / grey dots will correspond to the s41 / s14 sim-
plices in the slab, and the blue / red dots will correspond to the s32 / s23 simplices,
respectively. The dots will be connected by "legs" of various type, representing the
different type of connections (through colored triangles or rectangles) in the t + 1

2
plane. Thus a solid black / grey leg will represent a black / grey triangle, and the
dashed leg will be a transparent rectangle, see Fig. 3.3. In order to preserve the
topological restrictions, only the legs of the same color / type can be connected. All
possible connections between colored dots are presented in Fig 3.4 (up to mirror-
reflections). As, by definition, the manifold-constraints of the original triangulation

FIGURE 3.4: The figure presents possible connections between var-
ious objects of the t + 1

2 plane. Black dots (tetrahedra) can be con-
nected to each other and to blue dots (prisms) via solid black legs
(triangles). Similarly, blue dots can be connected to black and blue
dots via solid black legs, but they can be also connected to blue and
red dots via dashed legs (rectangles). The red dots have two solid
grey legs, which can be connected to other red or grey dots, which

are not shown in the figure.

are not violated, and the description of the triangulation in the t + 1
2 plane is still

a manifold (a three-dimensional one), it is in one-to-one correspondence with the
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transition tensor of the triangulation from slice t to t + 1. An example (part of the)
t + 1

2 slice of a CDT triangulation and the corresponding graph with colored dots
and various types of legs is presented in Fig. 3.5.

FIGURE 3.5: An example of a possible connection between four s41,
three s32 and one s23 simplices in the t + 1

2 plane (left panel) and the
corresponding graphical representation (right panel). A solid black
loop in the graphical representation is a spatial link in the CDT trian-
gulation. I deleted here a sentence with "red triangles" - you did not

introduce such triangles in the description - it becomes a mess

One should note that if, in the original CDT triangulation, two s41 simplices are
connected to the same vertex at t + 1 then these simplices correspond necessarily
to two adjacent tetrahedra in the t + 1

2 plane, or in the graphical representation two
black dots connected by a solid black line. The same is of course true for the mirror-
reflected s14 simplices and thus the grey dots connected by a solid grey line. Addi-
tionally, using the graphical representation one can recognise the links of the original
CDT triangulation as closed loops in the colored dot graphs. Closed solid loops are
spatial links (black on slice t and grey on slice t + 1), while closed dashed loops are
time-like links of the original triangulation. Then, the coordination number of a link
in the original triangulation is related to the number of dots along that loop. Another
important feature of this graphical representation is, that the vertices of the original
triangulation are represented as 3-dimensional objects defined by the surrounding
colored dots and closed loops. As it was already mentioned, the above graphical
representation contains only elements of the t + 1

2 plane of a slab, therefore the true
coordination number of spatial links will actually also depend on a similar graph in
the adjacent slab.

As the CDT moves are local, i.e., they change only the interior of a small region
in a CDT triangulation, the connection to the outside region of the triangulation is
preserved, which, in the graphical representation, manifests itself by the fact that the
type and number of external legs remain unchanged when the move is performed.

Now, we are ready to discuss the moves with the graphical representation de-
fined above. In the following discussion, if only black or black-and-blue dots are
shown, then recoloring black to grey and blue to red will lead to the mirror-reflected
version of the move.
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3.1.1 Move-2

FIGURE 3.6: Move-2: version-1 (left) and version-2 (right). In the CDT
triangulation it replaces a (tetrahedral) interface between 4-simplices

with a link, creating additional three 4-simplices.

"Move-2" is a move that changes the interface between two (black-blue or blue-
red) dots and increases the number of dots by two. It exists in two versions. Version
one can be done between a black and a blue dot. The move removes two dots and
replaces it by four, see Fig. 3.6. After the move, the black dot will be connected to
the external leg, which was earlier connected to the blue dot, and, in the same time,
all of the original black dot’s external legs will become external legs of the three new
blue dots. These blue dots are also connected via dashed legs. The second version of
the move can be done between a blue and a red dot. The move replaces the dashed
line between the original blue and red dots by four dashed lines between the blue
and red dots. These new blue and red dots are connected to the external dashed legs
of the original configuration.

3.1.2 Move-3

FIGURE 3.7: Move-3: version 1 (left) and version 2 (right). In the CDT
triangulation it replaces the triangular interface with a dual one.

The next move is "move-3", shown in Fig. 3.7, which is an analogue of the "flip"
move used in the two-dimensional CDT. It also comes in two versions. In version
one it replaces one blue and two red dots with one red and two blue dots, which
corresponds to replacing an s12 triangle with an s21 in the CDT triangulation. The
second version removes two adjacent blue dots connected with the black dot and
places them to the other side, i.e. connects them to two external legs of the orig-
inal black dot. At the same time the black dot gets connected to the two external
legs originally connected to blue dots. The move does not change any of the global
numbers in the triangulation.
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3.1.3 Move-4

The "move-4" is one of the simplest ones, and is shown in Fig. 3.8. Move-4 and its
inverse are effectively a special case of a "split-merge" move. It removes a black dot
and replaces it by a fully connected set of four black dots. The four dots are also
connected to the external legs of the original configuration, one by one.

FIGURE 3.8: Move-4 replaces a black dot with four fully connected
black dots, connecting each of them to the external link of the original
configuration. In the CDT triangulation it adds a vertex inside an s41

simplex, replacing the simplex with four new s41 simplices.

As every solid loop in the graphical representation corresponds to a spatial link,
and as it is visible in the right panel of the Fig. 3.8 there are four such solid loops, thus
in the real triangulation four new spatial links are created. As all the four black dots
are adjacent to each other, it can happen only if they share a vertex, thus the move
creates a vertex in the original triangulation, this vertex has coordination number
four.5

3.1.4 Move-5

The last move is "move-5", shown in Fig. 3.9.

FIGURE 3.9: Move-5 replaces two adjacent black dots with three black
dots. In the CDT triangulation it creates a spatial link with coordina-
tion number three. The link is signaled by a solid black loop in the

graphical representation.

The move takes two adjacent black dots (tetrahedra) and replaces the triangular-
interface formed by the three common vertices with a link that connects the remain-
ing two vertices. The move creates a link with coordination number three6, signaled
by the solid black loop connecting the three black dots on the right panel in Fig. 3.9.

5In fact, the coordination number is eight, as there are additional s14 simplices in the previous slab.
6In fact, the coordination number is six, as there are additional s14 simplices in the previous slab.
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The inverse move requires a link with coordination number three.

One should also note, that in the CDT code we use the full four-dimensional tri-
angulation. In the graphical representation it could be achieved by adding a single
solid external leg to each black / grey dot. This way each black (grey) dot of the t+ 1

2
plane would be connected to a grey (black) dot of the previous (next) slab, defined
by the plane at t + 1

2 ↓ 1 (t + 1
2 + 1). Move-4 and move-5 are the only moves which

are affected by the neighboring slabs, and the connected grey / black dots of the
adjacent slabs would behave exactly the same way as the black / grey dots behave
in the above graphical representation description.

So far we discussed the moves which are currently used in the MC simulations of
the four-dimensional CDT. In principle one could try to define some new moves, but
doing so is a hard task as they must be efficient numerically and their required com-
ponents (a vertex/link/triangle with a given coordination number) must be easy to
be tracked during the simulations, e.g., a vertex with a given coordination number
is easy to track, but it is not the case for more complex structures. In appendix A we
discuss some proposals of new moves with the help of the graphical representation
defined above.



23

Chapter 4

Empty Universes

This chapter gives a brief summary of the following articles: [1, 2, 3] which are presented as
publications in the last chapter.

4.1 About criticality at phase transitions

"My memory for figures, otherwise tolerably accurate, always lets me down when I am count-
ing beer glasses” - Ludwig Boltzmann

Transitions between phases can typically be described by simple models. The
general idea is that one has to find some (macroscopic) properties of a given physical
system that characterize the phases, and track their changes by varying the coupling
constants of a given theory. For finite size systems, as the ones observed in numerical
MC simulations, one cannot observe true phase transitions but only pseudo phase
transitions, i.e. cross-overs, as finite size systems have finite thermodynamic poten-
tials and also all derivatives of such potentials are finite. Anyway, one can observe
that order parameters, related to some derivatives of the thermodynamic potential,
become more and more singular with increasing system size (lattice volume), and
by taking the volume to infinity one encounters a true phase transition. There are
several phase transitions that exhibit similar behavior and can be characterized the
same way, thus they will belong to the same universality class. Phase transitions
belonging to the same universality class will show the same type of finite volume
scaling properties. It manifests itself by universal values of scaling exponents, which
can be used to measure the order of a phase transition. The notion of an order of a
phase transition was introduced by Ehrenfest, who characterized phase transitions
using derivatives of thermodynamic potentials (e.g. free energy, entropy, chemical
potential... etc). If the nth order derivative diverges at the transition point then one
has an nth order phase transition. This picture was refined by Landau by introduc-
ing the notion of local order parameters (OP) (in the context of the Ising model),
and Ginzburg [61] improved Landau’s theory by adding fluctuations to the model.
Since then the classification of phase transitions shifted towards distinguishing be-
tween two types of phase transitions: first-order, which has a divergent first-order
derivative of the thermodynamic potential, and higher-order (also called continu-
ous), where the second- or higher-order derivative diverges. Furthermore, in the
above classification, there is a relation between the order of a transition and the
correlation length. For a first-order transition one typically has finite correlation
lengths, while divergent correlation length signals a continuous phase transition.
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In the lattice approach, as those discussed in the thesis, finding a phase transition
where the correlation length diverges is crucial as only then can the lattice spacing
be taken to zero to reach the continuum limit, while keeping the physical quantities
fixed. One should also note, that recent models of solid state physics revealed, that
the Landau-Ginzburg characterization can also fail, when a phase cannot be char-
acterized by a local order parameter, but rather by long-range entanglement, called
topological order [62]. If the nature itself exhibits such phenomena where the tradi-
tional description of phase transitions fails then we cannot take it for granted that
such a description works for a model of quantum gravity. Nevertheless, in this chap-
ter we will stick to the Landau approach. As we will later see, most CDT transitions
falls in this category, however some of them show atypical features having relation
to phase transitions involving the topology of the underlying manifold.

We will present the idea of critical exponents by taking an example of the Ising
model [63]. The Ising model is one of the simplest lattice models of spin chains with
nearest-neighbor interactions. In one dimension it is literally a chain of spins, in two
dimensions the spins are placed in vertices of a regular lattice. The Hamiltonian of
the model is:

HI = ↓J ∑
i↔j

σiσj, (4.1)

where J is a coupling constant, σi = ±1 is a spin and the sum is over nearest neigh-
bors in the lattice. Including an external magnetic field h one may write the partition
function including the magnetization (M = ∑i σi) as

Z(T, h) = ∑
{σi}

e↓β(HI↓hM), (4.2)

where β = 1
kbT is the inverse temperature and the sum is over all possible spin

configurations. An example order parameter isM, the average magnetization:

〈M〉 = ∂Z
∂(βh)

=
1
Z ∑
{σi}

Me↓β(HI↓hM). (4.3)

The susceptibility (χ) is the first-order derivative of the magnetization:

χ(T, h) =
1
V

∂〈M〉
∂h

, (4.4)

where V is the volume of the system. The relation which follows from this is then:

Vχ

β
= 〈M2〉 ↓ 〈M〉2, (4.5)

so the susceptibility χ is related to the magnetization variance. Taking the contin-
uum limit, i.e., the lattice spacing a → 0 and the lattice size N → ∞ such that the
physical volume V = adN (where d is the dimension of the system) remains con-
stant, one can compute a two-point correlation function, where the susceptibility
will depend on the spatial distance of two points in the following way

kbTχ =
1
V

∫
dx
∫

dx′[〈m(x)m(x′)〉 ↓ 〈m(x)〉〈m(x′)〉] =
∫

dx〈m(x)m(0)〉c, (4.6)
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where 〈m(x)m(0)〉c denotes the connected correlator Gc, which typically decays ex-
ponentially with some characteristic correlation length ξ. In case of |x| < ξ the
susceptibility will behave as:

kBTχ < gξd, (4.7)

where g is a constant, yielding the correlation length divergent in case of the diver-
gent susceptibility. The correlation function can be measured with respect to the
change of the temperature yielding

ξ(T, H = 0) ∝ |T ↓ Tcrit|↓ν, (4.8)

which means that the correlation length scales with the critical exponent ν as T ap-
proaches the critical temperature Tcrit.

In the lattice MC measurements, the largest available correlation length is con-
trolled by the lattice size N, i.e., ξ(N) ∼ V1/d = aN1/d. Using equation (4.8) it
follows that the (pseudo-) critical temperature, or in the general the (pseudo-) crit-
ical coupling constant, which triggers the phase transition, will show the following
finite-size scaling dependence:

Tcrit(N) = Tcrit(∞) + const× N↓
1
γ , (4.9)

where Tcrit(∞) = Tcrit is the (true) critical temperature in the thermodynamical limit
(N → ∞), and γ = νd is the critical scaling exponent. The above scaling relation was
used in the studies presented in this chapter. One should note that for a higher-order
transition one expects the scaling exponent γ > 1, while for a first-order transition
one typically has γ = 1.

4.2 Order parameters and the internal structure of the config-
urations

"Einfach wie möglich aber nicht einfacher." / "Everything should be made as simple as pos-
sible, but not simpler. " - Albert Einstein

The idea behind Monte Carlo numerical simulations is quite simple. As dis-
cussed in the Chapter 3, one can generate a set of (almost) statistically independent
configurations using a Markov chain of "moves" applied randomly with a proper
transition probability, and then use it to estimate expectation values or correlators
of observables, such as order parameters related to phase transitions. The Regge
action of CDT, see eq. (2.18), contains a linear combination of the total number of
vertices and simplices of various types, weighted by the bare coupling constants.
When changing the couplings the (averaged) values of the above mentioned global
numbers, and also other characteristics of the triangulations, change as well. There-
fore, these observables can be used to define the order parameters of CDT.

In the four-dimensional pure gravity CDT model we have three coupling con-
stants, thus we can use them to parametrize the phase-diagram. As we will see
in this section, the numerical MC simulations used in CDT reveal four distinct re-
gions (phases) in the CDT parameter space. In order to be able to perform the MC
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simulations we fix the (average) lattice volume N̄41. The volume fixing means that,
throughout the MC simulation, the observed lattice volume N41 will perform fluc-
tuations around the fixed value N̄41, also restricting the values of related quantities,
such as coordination numbers of various sub-simplices. It also corresponds to fixing
the total spatial volume ∑t V3(t) = 1

2 N41 (total number of spatial tetrahedra in slices
with integer lattice time coordinate t). Using different values of N̄41 one is able to
perform the finite volume scaling analysis, where the change in the order parameters
(OPs) can be related to the change in the lattice size, as discussed in the previous sec-
tion. This way one can track the approach to the thermodynamical limit. In order to
enforce fluctuations of the lattice volume N41 around N̄41 it is also necessary to tune
the bare cosmological coupling constant κ4 → κc

4(κ0, ∆, N̄41). This way one trades
the κ4 coupling for the N̄41 volume fixing. The fixing slices-off a two-dimensional
hyper-surface κ4(κ0, ∆) from the full parameter space for fixed N̄41.

Already, before starting any deeper analysis, one can look at the freedom of the
global numbers characterizing a CDT triangulation and appearing in the bare Regge
action (2.18), i.e., N0, N41 and N32. A single triangulation (a path in the path integral)
is itself physically not meaningful, however if some features of a given triangula-
tion repeat in the ensemble of generic triangulations observed in a given phase, then
in such a case it makes sense to discuss these features of a particular triangulation,
as they will also appear in the expectation values (averages) of the measured ob-
servables. As all global numbers (N0, N41 and N32) are independent of each other1,
a configuration with a given fixed N41 can have small or high number of vertices
or other (higher-dimensional) sub-simplices, which will result in a significantly dif-
ferent distribution of these numbers in different phases. One can also imagine that
even if all global numbers N0, N41 and N32 were constant, the local distribution of
vertices and (sub-)simplices within a configuration can be not homogeneous. Even
though every simplex has exactly 5 neighbors, every vertex has a different number
of simplices connected to it, which gives rise to the possibility of non-trivial vertex
coordination number distributions, where some vertices are shared by only a few
simplices, but some other vertices will have a large coordination number.

The (ratios of) global numbers of a configuration are natural OPs as they are the
simplest degrees of freedom in our geometric setup. Thus the first two OPs can be
defined as:

O1 =
N0

N41
, O2 =

N32

N41
. (4.10)

There are also some OPs which are not global in the sense that they are related to
a local distribution of (sub-)simplices in a triangulation. For example, as we have a
foliation, we can measure the distribution of vertices as a function of the lattice time
coordinate N0(t). We can also measure similar distributions for the 4-simplices, but,
as the above simplices are four-dimensional objects, instead of talking about fixed t
we rather talk about the four-dimensional slab (part of the triangulation between t
and t + 1), and denote the number of 4-simplices in the slab by N41(t) and N32(t),
respectively. For example, the (three-dimensional) volume profile, introduced in
Chapter 2, is simply given by: V3(t) = 1

2 N41(t). If the adjacent spatial slices contain
similar number of tetrahedra, then N41(t) will be a flat function but if the volume

1Although there are theoretical lower and upper limits, which in itself features an unsolved mathe-
matical problem.
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profile has a non-trivial shape, then the difference between the adjacent slices will
be larger. Therefore, one can define the third OP which quantifies this:

O3 =
1

N41
∑

t
(N41(t)↓ N41(t + 1))2. (4.11)

The shape function 〈V3(t)〉 (the volume profile) could potentially be also used as an
order parameter. For example, in the case of spherical CDT the 〈V3(t)〉 ≈ cos3 (t)
[64] and in the toroidal CDT it is 〈V3(t)〉 = N̄41 in the semi-classical phase (C), while
it has a completely different shape in other phases. An example of a local OP is O4,
defined by the highest vertex coordination number among the set of vertices:

O4 =
1

N41
argmax

v
(coord(v)), (4.12)

where v is a set of all vertices in a triangulation. One can as well measure the distri-
bution of this quantity in the lattice time t.

Additional OPs can also be useful. For example, one can measure the total num-
ber of type1-type of simplices neighboring type2-type of simplices in a triangulation,
where type refers to a general 4-simplex. The various types of these numbers are
summarized in Table 4.1.

s41 s32 s23 s14 sums to
s41 A1 C1 0 E → 5 · N41
s32 C1 B1a + B1b D 0 → 5 · N32
s23 0 D B2a + B2b C2 → 5 · N23
s14 E 0 C2 A2 → 5 · N14

TABLE 4.1: The table summarizes the numbers related to the adja-
cency relations of 4-simplices. All rows and columns sum up to the

global numbers N41 or N32.

The rows and columns of Table 4.1 denote the adjacent type1 and type2 simplices,
e.g., A1 is the total number of common faces (tetrahedra) between two s41 simplices
in a given triangulation, while C1 counts the total number of tetrahedra connect-
ing the s41 and s32 simplices. The parameter B1 (and B2), which measures the self
connectivity between the s32 (or respectively s23) simplices, can additionally be split
into two sub-categories, depending on the type of a connection between the sub-
simplices.2 Subscript a denotes the connectivity via a spatial tetrahedron (s31) and
subscript b via a time-like tetrahedron (s22). Even though Table 4.1 contains in gen-
eral 10 different additional parameters characterizing a CDT triangulation, one can
show that only some of these parameters are independent, but surprisingly not all
can be expressed via the global numbers. Taking also into account all different types
of sub-simplices in a triangulation (e.g. vertices, space-like links, time-like links,
spatial triangles, time-like triangles,..., etc.) the topological constraints of the CDT
manifolds restrict the total number of independent parameters (including the ele-
ments of Table 4.1.) to 8. The derivation of the relations is presented in Appendix B.

During a Monte Carlo simulation, the topology of the triangulations, i.e., their
Euler characteristic χ, is fixed and to perform a simulation one also fixes the coupling

2See discussion in Chapter 3.
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constants ∆ and κ0, and tunes κ4 to the critical value corresponding to a given lat-
tice volume N̄41. There are then two independent global parameters that can change
freely3: the total number of vertices N0 and the total number of s32 plus s23 simplices
N32. Apart from the above mentioned global parameters, there are still three inde-
pendent parameters left, one can choose, e.g., C1, C2 and D. Statistically 〈C1〉 ≈ 〈C2〉,
therefore one can effectively increase the number of order parameters by two, defin-
ing:

O5 =
C1 + C2

N41
=

C
N41

, (4.13)

and
O6 =

D
N41

. (4.14)

In next section we will show how to use the OPs to analyze the phase-diagram
of the CDT model.

4.3 Phase transitions

"God does not play dice with the Universe!" - Albert Einstein

Albert Einstein once criticized quantum mechanics and he said: "God does not
play dice with the Universe!", maybe Gods don’t but we do within our numerical
simulations. As it was discussed in Chapters 2 and 3, CDT aims to study the lattice
regularized path integral of quantum gravity using numerical MC methods. In the
simplest case one deals with triangulated empty "universes", i.e., pure gravity mod-
els, without additional matter fields. The properties of CDT emerge as a result of
interplay between the bare Regge action:

SR = ↓(κ0 + 6∆)N0 + κ4(N41 + N32) + ∆N41, (4.15)

and the entropy of states, i.e., the number of triangulations with the same value of
the bare action in the partition function (2.20). Due to this entropic nature there are
several phases which can be visualized in the two-dimensional parameter space4

(κ0, ∆). As we have a two-dimensional coupling-constant space (κ0, ∆), sometimes
we will refer to the coupling constants as coordinates in the phase-diagram. The
four phases of CDT are presented in Fig. 4.1.

Even though the CDT model is simple in its construction, the resulting complex-
ity arises in the variety of possible configurations. For very large (inverse) bare grav-
itational coupling κ0 one recovers phase A, which is characterised by a vanishing
kinetic term in the effective action of CDT, parametrized by the spatial volume V3(t)
(or alternatively by the scale factor) [36]. The internal dynamics between the sim-
plices results in an emerging geometry with a branched-polymer structure. For low
enough asymmetry parameter ∆ phase B can be observed. It is characterized by the
vanishing time-extent of the generic geometric configurations. All spatial tetrahedra
(3↓volume) gather in one spatial slice, and each of the two adjacent slices features

3Strictly speaking, N41 also changes as it fluctuates around the fixed N̄41.
4As explained above, the third coupling constant κ4 is tuned to κc

4(κ0, ∆, N̄41) corresponding to the
fixed lattice volume N̄41 of a MC simulation.
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FIGURE 4.1: The phase-diagram of CDT, which shows four different
phases: A (branched polymer), B (collapsed), C (de Sitter) and Cb

(bifurcation).

a vertex with an almost full connectivity to the 4-simplices containing these tetrahe-
dra. The occurrence of this phase is understandable in the context of the, so-called,
balls-in-boxes model [65, 66]. The most interesting region of the phase-diagram is
phase C, also called the de Sitter5 [34] or the semi-classical phase, which can be
mostly observed for positive ∆ and medium range of κ0. In the case of toroidal CDT,
the spatial volume profile V3(t) of generic phase C triangulations is constant while
in the case of the spherical CDT a de Sitter-like blob with the shape V3(t) ≈ cos3(t)
forms. Last but not least, the remaining phase is the, so-called, bifurcation phase
or shortly phase Cb. The phase is characterized by the appearance of vertices of
high coordination number in every second spatial slice and the formation of a blob
(different from that of phase C) in the volume profile both in the spherical and the
toroidal CDT. As the de Sitter phase is physically the most interesting one, the phase
transitions surrounding this region were studied the most, especially as the perspec-
tive UV fixed point of quantum gravity should lie at the border of this region. It was
found, that the lattice spacing decreases with increasing κ0 and slightly decreases
with decreasing ∆ [67], thus the part of the phase-diagram nearby the C ↓ B phase
transition is of great interest, as the two "triple" points where the phase transition
lines meet, are natural candidates to be the UVFP of the theory. Due to this it is very
important to analyze the scaling exponents related to the phase transitions around
the triple points. This is the reason why in this section we will present results related
to the three phase transitions: A↓ B, C↓ B and Cb↓ B. If any of them turns out to be
higher-order then it will support a possibility of existence of the UVFP. However it
is also known, that first-order phase transition lines may end at a higher-order point
(e.g., in the phase diagram of water).

5Technically the name "de Sitter" should be used only for the spherical CDT case, as the toroidal
CDT volume profile is constant and does not resemble any de Sitter-like solution.
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FIGURE 4.2: Values of κ4 in the function of κ0. Slight discontinuities in
the function κ4(κ0) signal the phase transitions, which is related to the
change in entropy of the configurations on the two sides of the phase
transitions. Between the vertical lines the corresponding phases are

shown.

The typical way to find a phase transition is to fix one coupling constant, which
will be either κ0 or ∆ in the case of 4-dimensional CDT, and then start a set of MC
simulations for various values of the other coupling constant. To show the behav-
ior of the order parameters, defined in Section, 4.2., we present Fig. 4.3 and Fig.
4.4, where the OPs were measured in CDT with toroidal spatial topology for fixed
∆ = 0.02, total lattice volume N̄41 = 160k and length of the (periodic) lattice time
coordinate (number of spatial slices) T = 4. One of the parameters that strongly
depend on the volume is the bare cosmological coupling constant, that have to be
tuned for each N̄41, however its value also depends on the selected average volume.
κ4(κ0, ∆) is a function of the other coupling constants, thus fixing one of it one may
find how it changes in the function of the other (see Fig. 4.2).
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FIGURE 4.3: Example of the measured OPs from O1 (top left) to O4
(bottom rigt). The most left region on the plots is phase B (collapsed),
next to it is phase Cb (bifurcation), then phase C (de Sitter) and next

to it phase A (branched polymer).

Red vertical lines visible in figures Fig. 4.2 - 4.3 show locations where behav-
ior of (at least some) OPs changes, thus they signal the phase transitions. In Fig.
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4.2 between the vertical red lines each corresponding phase is written. The slight
discontinuities in the function κ4(κ0, ∆ = f ix) signal the locations of the phase tran-
sitions, which originates from the different entropy on the two sides.

Not every OP signals all of the phase transitions, but using different OPs one
can find them. For example, O1, O2 and O3 distinguish seemingly three different
regions, while O4 seems to be sensitive to all four phases. The behavior of the two
new OPs, O5 and O6, is similar to O2, however their crossing point additionally sig-
nals the Cb ↓ C phase-transition, as presented in Fig. 4.4. This becomes apparent
when one looks at the susceptibility of (O6 ↓O5), as shown in Fig. 4.5. In the figure
we plot the susceptibility χ(O6↓O5), i.e., the variance of (O6↓O5), normalized by
its expectation value 〈O6 ↓O5〉, which shows a clear peak at the Cb ↓ C transition
point. Fig. 4.4 shows the two new OPs, and their difference, which is close to zero
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FIGURE 4.4: The new OPsO5 andO6 are shown in the left plot. Their
behavior is similar to O2, but the crossing point additionally signals
the Cb ↓ C phase-transition. The difference O6 ↓O5 is presented in

the right plot, where the dashed horizontal line is at value zero.

in phase A and B, positive in phase Cb and negative in phase C, and thus is useful
in recognizing all four phases of CDT. The above observations show, that it is not
enough to look at one OP but rather a set of OPs should be used while analyzing
phase transitions.
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FIGURE 4.5: The figure shows the (normalized) susceptibility χ̄(O6↓
O5)/〈O6 ↓ O5〉. The peak of the susceptibility, i.e., the variance of
(O6 ↓O5), at the Cb ↓ C transition is a clear signal of the phase tran-

sition.

Similar plots can be drawn if one measures the OPs in the function of the cou-
pling constant ∆ for fixed κ0, or even when choosing both (κ0, ∆) values on some
straight but not vertical nor horizontal line in the CDT phase-diagram.
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4.3.1 Finite volume scaling analysis

Even though, as explained in Section 4.2., CDT phase transition signals observed for
any fixed lattice volume N̄41 are not real phase transitions, as for any finite volume
the free energy is finite and formally one just observes a cross-over, nevertheless us-
ing finite-size scaling analysis one can investigate the (real) phase transitions and
draw conclusions about critical exponents in the thermodynamical limit. By extrap-
olating the scaling relations to N̄41 → ∞ one can as well find the (infinite volume)
critical values of the coupling constants κ∞

0 and ∆∞ and of the order parameters
OP∞. Thus a typical finite-size scaling relation of a coupling C corresponding to the
transition point will be described by a function

Ccrit(N̄41) = C∞ ↓ αN̄
↓ 1

γ

41 , (4.16)

where γ is the critical exponent, whose value may be used to distinguish between
the first-order (γ = 1) and the higher-order (γ > 1) phase transition.

At the thermodynamical limit of the higher-order phase transition one can per-
spectively find an UVFP, however doing so in lattice simulations is not an easy task
as it was shown in [55, 56]. Previous findings did not give a convincing evidence
for the existence of the UVFP of CDT, however since these measurements there were
many improvements both in the CDT code (making the MC simulations more effi-
cient) and computer technology. Therefore now, using the new possibilities, one can
try to re-investigate this issue in more detail.

4.3.2 A↓ B phase-transition

This subsection is based on the publication [3].

Since the appearance of the path integral formalism of Feynman, we know that
not only those paths should be taken into account which can be imagined classically
but also non-classical ones too. In the formalism, for example, a point particle takes
all possible paths when travelling from point A to B including also classically for-
bidden paths, when it tunnels through potential walls or simply goes outside of the
light-cone. The contribution of most such paths however cancels out and the clas-
sical trajectory can be computed as an average of all paths. A generic triangulation
of phase B is characterized by the following pattern: there is a vertex with almost
maximal coordination number in a spatial slice with time coordinate t ↓ 1, almost
all spatial tetrahedra (3-volume) is gathered in slice t and again there is a vertex
with almost maximal coordination number in slice t + 1. All spatial slices with the
time coordinate different than t have spatial volume close to the minimal allowed
cutoff. As the configurations of phase A are characteristically different, i.e., they
can be characterized by branched-polymers, there is a difference in entropy of the
configurations between the two phases, which results in a phase-transition between
them.

The fist-order nature of the A-B transition is obvious when one looks at the finite-
size scaling of the critical coupling ∆crit in the function of the lattice volume N̄41
presented in Fig. 4.6. Using eq. (4.16) one can fit the critical exponent γ. The best
fits resulted with critical exponent values γ4.5 = 1.151± 0.379, γ4.6 = 1.029± 0.178
and γ4.8 = 1.088± 0.101 for three independent series of measurements with fixed
κ0 = 4.5, 4.6 and 4.8, respectively. All three scaling exponents are in agreement with
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γ = 1 characteristic for the first-order transition. The same conclusion can be drawn
if one looks at finite size scaling ofO2. The fits of such scaling relations are presented
in Fig. 4.7. The value of O2 is very small in both phases. In the infinite volume limit
it approaches zero in phase B and for higher κ0 also in phase A.
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FIGURE 4.7: The running of O2 for κ0 = 4.8, κ0 = 4.6 and κ0 = 4.5.
Blue colors correspond to data measured in phase B and red in phase
A closest to the phase transition point, and the darker the color the
lower the corresponding κ0 coupling, i.e., the closer to the A↓B↓C
triple point. The error bars are smaller than the size of the data-points.
The solid curves correspond to the fits of a relation similar to eq. (4.16)

with the critical exponent fixed to be γ = 1 for all data sets.

The conclusion is that phases A and B are thought to be non-physical in the
sense of an emergent semi-classical geometry. It is well explained by the fact of the
decreasing connectivity between two adjacent spatial geometries, represented by the
vanishing O2 parameter, although this phenomenon may be possibly related to the,
so-called, "asymptotic silence" [68].
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4.3.3 Cb ↓ B phase-transition

This subsection is based on the publication [1].

The B and Cb phases are not that different from each other, as in both phases
there are vertices which connect to almost every tetrahedron on the adjacent spa-
tial slices, and such high connectivity structure makes these phases to be effectively
infinite-dimensional. Both spectral and Hausdorff dimensions differ from the topo-
logical value 4, thus these phases do not describe a four-dimensional Universe. Even
though their seemingly non-physical nature the phase transition becomes important
to be studied as its endpoint leads to a candidate of the UVFP of the theory, to the
B↓ C↓ Cb triple-point.

The volume profile of the bifurcation phase is presented in Fig. 4.8. It looks the
same in the spherical and the toroidal version of CDT.
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FIGURE 4.8: The (re-scaled) average spatial volume profiles 〈V3(t)〉
observed in the bifurcation phase Cb in the spherical (left plot) and
the toroidal (right plot) CDT. In both plots the spatial volume profiles
were presented with respect to the centre of volume, set at t = 0,
and shifted by a (constant V0

3 ) volume measured in the stalk range
(|t| >∼ 10), V0

3 being different for each volume profile (in general V0
3

is bigger in the toroidal CDT where discretization effects are larger).
Data measured for various total N̄41 lattice volumes and different T
were rescaled by V4 = ∑t(〈V3(t)〉 ↓ V0

3 ), i.e., in agreement with the
Hausdorff dimension dH = ∞.

The Cb ↓ B transition was analyzed for fixed κ0 = 2.0. Starting in phase Cb and
decreasing ∆ close to ∆crit ≈ 0 one finds the transition to phase B. The main differ-
ence between the two phases is the time extent of phase Cb, where the volume profile
V3(t) resembles that of the spherical CDT in phase C, while in phase B it is mostly
collapsed to a single spatial slice. Although, as already mentioned, there are also
many similarities between the two phases, for example, the Hausdorff dimension of
generic geometries is very large or even infinite in the large volume limit. Probably
due to these similarities the Cb↓ B phase transition was found to be the higher-order
transition. Not only the fits to the finite size scaling relation of eq. (4.16) yielded a
solution which was in disagreement with γ = 1 (as shown in Fig. 4.9) but also the or-
der parameters showed a smooth transition between the two phases. Furthermore,
the Binder cumulants tend to vanish with increasing lattice volume, which is also
characteristic for a higher-order transition [69].
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fixed κ0 = 2.2 together with the fit of the finite-size scaling relation
(4.16) with critical exponent γ = 2.51± 0.03 (orange solid line) and

the same fit with a forced value of γ = 1 (blue dashed line).

Summing up, in publication [1], the Cb ↓ B transition was shown to be a higher-
order phase transition in CDT with the toroidal spatial topology. This is an impor-
tant result in quest for the UVFP of CDT. Due to the strong hysteresis observed in
the toroidal CDT, the Cb ↓ C transition bordering the semi-classical phase was clas-
sified to be a first order transition [57].6 The finding that the Cb ↓ B transition is
higher-order provides a hope that its endpoint (i.e., the B ↓ C ↓ Cb triple point) is
also higher-order, yielding it a possible candidate for the UVFP of the theory.

4.3.4 C↓ B phase-transition

This subsection is based on the publications [2] and [3].

Fixing the value of κ0 in range [3.5 : 4.5] and changing ∆ one can cross the C↓ B
phase transition. In the case of toroidal spatial topology the volume profile V3(t)
of phase C is almost constant, and thus invariant under the translation in time, but
crossing to phase B this symmetry of the generic configurations is broken to a "col-
lapsed" volume profile. Phase C is also characterized by quite homogeneous and
isotropic geometry in sufficiently large scales, but as one traverses to phase B one
can immediately observe that vertices with very high coordination number appear,
which breaks the above homogeneity and isotropy. As a result one observes a strong
hysteresis around the phase transition line, as presented in Fig. 4.10.

In order to encounter the C↓ B transition, instead of fixing κ0 in range [3.5 : 4.5]
and changing ∆, one can as well fix ∆ in range [↓0.04 : 0.00] and change κ0. There-
fore, the phase transition study, including the finite-volume scaling analysis, was
performed for two different fixed κ0 values (κ0 = 4.0 and 4.2) and for two different
fixed ∆ values (∆ = 0 and↓0.02). The transition was determined to be the first-order
phase transition, but a rather atypical one. Although the values of order parameters

6In contrast to this, in the spherical CDT model the Cb ↓ C transition was shown to be a higher
order transition [32].



36 Chapter 4. Empty Universes

1.095

1.1

1.105

1.11

1.115

−0.035 −0.03 −0.025

B CK
4

∆

From B to C
From C to B

FIGURE 4.10: The plot illustrates the hysteresis measured during sim-
ulations for the lattice volume N̄41 = 160k. The green and blue dots
correspond to the location of the phase C side of the phase-transition,
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measured at both sides of the hysteresis region do not converge to a common value,
which itself signals a first order transition, the size of the hysteresis region shrinks
when the lattice volume N̄41 is increased, which can signal a higher-order transition
in the thermodynamical limit. In order to resolve this inconsistency, in publication
[2] we measured the critical exponent resulting from the scaling relation of eq. (4.16),
which turned out to be γ = 1.62± 0.25, suggesting a higher-order transition. Nev-
ertheless, in publication [3] we repeated the finite-size scaling analysis using much
bigger data statistics and also additional locations in the phase-diagram. We also
used a slightly modified finite-size scaling relation in the form:

Ccrit(N̄41) = C∞ ↓ α(N̄41 ↓ c)↓
1
γ , (4.17)

where c is a discretization correction. We found that the critical exponents are
consistent with γ = 1, see Fig. 4.11, which signals the first-order transition. We
therefore concluded that the C ↓ B phase transition is a first-order transition in the
case of toroidal CDT.

4.3.5 Summary

The three phase transitions discussed in this chapter were the A↓ B, C↓ B and the
Cb ↓ B transitions, out of which only the last one turned out to be a higher-order
(continuous) phase transition in CDT with the toroidal spatial topology. The A↓ B
and C↓ B phase transitions were not yet analyzed in case of the spherical CDT. What
is more, the existence of the direct C↓ B transition was not even known before the
article [57] was published. The reason was that the region of the phase-diagram an-
alyzed in detail in this thesis was at that time thought to be unreachable via MC
simulations. In theory, the phase-diagram of the CDT model does not have to be the
same for different spatial topologies, thus a future analysis may potentially find that
the C↓ B transition is continuous in the spherical CDT. An argument for this phase
transition being continuous in the spherical CDT is related to the effective topology of
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the phases. In the case when the topology of the spatial slices is chosen to be S3 and
the time direction is compactified to S1, which is the case in the MC simulations, the
full topology of the triangulations is S3 × S1. However, in the semi-classical phase
C, the emergent (Eucledean) de Sitter-like geometry, i.e., the four-sphere, transforms
the effective topology to S4. To clarify the notion of the effective topology, let us ex-
plain that, by definition, the imposed S3 × S1 topology of the triangulations is not
changed in the MC simulations, thus the two furthest (time-like) points (poles) of
the four- sphere are connected by a thin stalk of cutoff size, which can be treated as a
lattice artifact. The stalk is necessary to preserve the imposed topological conditions
numerically, but if only it was allowed by the MC algorithm it would completely
disappear, yielding the change of topology from S3 × S1 to S4. It illustrates the fact
that not only the space-time effective dimensionality but also the effective topology
are emergent concepts on the quantum level. Thus our conjecture, formulated in [3],
is the following:

phase transitions which involve a change in effective topology will be first-order transitions.

The argument is that if there are two adjacent phases separated by a phase transi-
tion, and these phases have different genera then the phase transition cannot happen
smoothly resulting in the first-order transition.

In the case of CDT with toroidal spatial slices, the phase Cb has, similarly to phase
C in the spherical CDT case, an effective topology S4. At the same time, the semi-
classical phase C has the toroidal effective topology T4. As a result of the phase
transition the effective topology changes, yielding the C ↓ B transition first-order.
Contrary to that, as explained above, in CDT with spherical spatial slices the effec-
tive topology of the semi-classical phase is S4, so it does not change under the phase
transition, potentially making the C↓ B transition higher-order.

So far all analysis was done in the case of empty Universes (pure gravity models).
In the next chapter we will discuss how the CDT model changes in the presence of
matter fields.
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Chapter 5

Universes with matter fields

This chapter gives a brief summary of the following articles: [4, 5, 6].

5.1 Scalar fields as coordinates

"If people do not believe that mathematics is simple, it is only because they do not realize how
complicated life is." - Neumann János

This section is based on the publications [4, 5].

Life (the actual physical phenomenon) is indeed complicated, much more com-
plicated than any model designed in order to describe it. However, usually simple
models are the only ones that can be solved. Also in most physical theories vacuum
solutions are the simplest, easiest and first ones to be found. The same is true in
GR as most of known solutions of Einstein’s field equations are vacuum solutions.
It is also the case of CDT, where the first twenty years of studies were dominated
by pure gravity models (empty Universes) discussed above. As it was mentioned in
Chapters 2 and 3, CDT is formulated in a coordinate-free way, except from the time
direction where one has a natural global proper-time coordinate t, consistent with
the introduced foliation. It would be therefore beneficial to introduce some notion
of coordinates, making contact with other gravitational research.

The simplest extension of the CDT model is the addition of massless scalar fields.
As will be shown, such scalar fields can also play role of "clocks" and "rods", enabling
one to define a coordinate system in the triangulated manifold, being an analogue
of the harmonic (de Donder) gauge fixing in GR. As we will discuss below, in order
to apply this method of defining coordinates in CDT one also has to make a proper
choice of the target space of the scalar fields. As an example, take a (smooth) Rie-
mannian manifold M equipped with a metric tensor gµν and another Riemannian
manifold N with a trivial flat metric hαβ. A harmonic map M → N can be de-
fined with the help of a four-component scalar field φα, with α = 1, 2, 3, 4. In case of
our setup, ifM has a topology of the four-torus T4, then we also choose N to have
the same toroidal topology, and each component φα(x) is a map M → S1, which
minimizes the action

SM[φ] =
1
2

∫
d4x

√
g(x) gµν(x) hαβ(φ

γ(x)) ∂µφα(x)∂νφβ(x). (5.1)
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Due to our choice of the trivial metric hαβ on N , the four-component scalar field
can be decomposed into four independent components, later denoted φx, φy, φz, and
φt. Due to this, it is enough to discuss the case of a single component (let’s call it φ).
The Euler-Lagrange equations for the field resulting from eq. (5.1) give rise to the
Laplace equation:

∆xφ(x) = 0, ∆x =
1√
g(x)

∂

∂xµ

(√
g(x) gµν(x)

) ∂

∂xν
, φ(x) ∈ S1. (5.2)

In the case whenM is closed, if we chose the target space of the scalar field φ to
be R then the constant zero-mode of the Laplacian would be the only solution to the
equation ∆xφ(x) = 0. If instead, as we do, one chooses a nontrivial target space of
the field to be S1 (with circumference δ) then one can obtain a nontrivial solution for
the scalar field. Technically, the condition φ(x) ∈ S1 can be obtained by considering
a scalar field with the target space R and identifying

φ(x) ≡ φ(x) + n δ, n ∈ Z. (5.3)

The situation of interest is when we have the toroidal manifold M which can be
thought of as an elementary cell periodically repeating in all four directions. In
such a case one can define four non-equivalent boundaries of the elementary cell,
i.e. 3-dimensional connected hypersurfaces H(α), α = {x, y, z, t}. Let us consider
the case when each component of the field φα ∈ S1 winds around the circle once as
we go around any non-contractible loop inM that crosses a boundary in direction
α. In that case the field φ is a continuous function except when one crosses the
hypersurface H(α), where a jump of the field with amplitude δ happens, and the
Laplace equation (5.2) acquires a nontrivial boundary term leading to a non-trivial
solution for the field φ. A corresponding function that is continuous despite the
jump, will be a map

φ→ ψ =
δ

2π
e2πiφ/δ, (5.4)

which maps the scalar field φ to a circle in the complex plane. The interesting point
is that, for a given direction α, the map ψ does not depend on the exact choice of the
boundary H(α) of the elementary cell.1

In CDT we consider a discretization of the action (5.1) and the corresponding
Laplace equation (5.2), where the field is localized in the center of simplices. We
therefore consider a (discretized) Laplacian defined on the dual lattice, i.e., the graph
whose vertices represent the 4-simplices of the original CDT triangulation, and links
represent the common interfaces between the 4-simplices in the triangulation. The
Laplacian on the dual lattice can be defined via the adjacency matrix Aij:

Aij =

{
1 if (the link i↔ j) ∈ dual lattice,
0 otherwise,

(5.5)

where↔ refers to the adjacency relation of simplex i and j. The discrete Laplacian
can be defined as:

L = D↓ A, (5.6)

1Formally it depends only trivially, i.e., a continuous deformation (a "shift") of the boundary H(α)
will only cause a shift of the phase in the complex function ψ by some constant.
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where A is the adjacency matrix and D is a diagonal matrix with i-th diagonal el-
ement containing the number of neighbors of a simplex labelled i. As, in the four-
dimensional CDT, each simplex in the triangulation has exactly 5 neighbors, the dual
lattice of any triangulation is a five-valent graph, and therefore

D = 5 · I, (5.7)

with I being the identity matrix of size N4 × N4, where N4 is the number of all 4-
simplices in the triangulation. The discretized form of the scalar field action is then
given by:

SCDT
M [{φ}, T ] = 1

2 ∑
i↔j

(φi ↓ φj)
2 = ∑

i,j
φiLijφj ≡ φT Lφ, (5.8)

where T underlines the impact of the triangulation on the Laplacian matrix L. The
discrete analogue of the Laplace eq. (5.2) is then:

Lφ = 0. (5.9)

The above equation has the same issue as before, i.e., if the target space of the field
was chosen to be R then it would only have a trivial solution φ = const. Non-trivial
solutions can be found by choosing the field to take values in S1 with circumference
δ, which winds around the circle once as one goes around any non-contractible loop
in the dual lattice. In order to do that one identifies:

φi ≡ φi + n · δ, n ∈ Z. (5.10)

This can be achieved by adding a jump condition when crossing a boundary hyper-
surface H(α) in direction, α. The way of introducing such boundary hypersurfaces
to CDT was proposed in [70]. As already mentioned, the exact position of the (four
non-equivalent) boundaries H(α) in the triangulation is not important as it has only
a trivial impact on our solutions, thus the boundaries are non-physical. Technically,
one can define the "jump" condition by introducing the boundary jump matrix Bij:

Bij =





+1 if the dual link i→ j crosses the boundary H(α) in the positive direction,
↓1 if the dual link i→ j crosses the boundary H(α) in the negative direction,
0 otherwise

(5.11)
and defining

V =
1
2 ∑

ij
B2

ij =
1
2 ∑

i
|bi|, (5.12)

where bi = ∑j Bij is the boundary jump vector, and it measures the occasions when
a tetrahedral face of a simplex i appears on the boundary. To accommodate to the
jump condition we modify the discretized matter action

SCDT
M [{φ}, T ] = 1

2 ∑
i↔j

(φi ↓ φj ↓ δBij)
2 = ∑

i,j
φiLijφj ↓ 2δ ∑

i
φibi + δ2V

≡ φT Lφ↓ 2δφTb + δ2V. (5.13)

Now, the Euler-Lagrange equation for the field φ yields:
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Lφ = δ b, (5.14)

so it acquires a non-trivial boundary term: δ b. The classical solution to the scalar
field distribution is formally given by

φclassical = δ L↓1b. (5.15)

The practical problem is that the Laplacian has zero modes but, fortunately, one can
find a solution in the subspace orthogonal to the zero modes. The solution strongly
depends on the underlying triangulated geometry and it smoothly interpolates be-
tween the boundaries of the (toroidal) elementary cell. In the publication [4] we pro-
posed to treat the harmonic map φclassical , or rather the resulting map ψclassical , see
eq. (5.4), as a coordinate in the direction α. This way one can introduce a coordinate
system for every triangulation generated in the MC simulations. The coordinates
can be used to visualize the differences between generic triangulations of different
CDT phases. It is worth to mention that the harmonic maps (coordinates) described
above have a very good property of smoothly interpolating between the 4-simplices
in the geometric outgrowths, which commonly appear in the CDT triangulations
forming fractal structures. Imagine such an outgrowth consisting of many simplices
and linked to the rest of the triangulation by only a few simplices. Due to properties
of harmonic maps all simplices in the outgrowth will have almost the same value of
the field φα

i in all α-directions. Therefore the outgrowths should appear as the field
condensations in the harmonic maps.

FIGURE 5.1: The 4-volume density map projected on two spatial ("x"
and "y") directions measured in phase C (κ0 = 4.0, ∆ = 0.2, T =
20, N̄41 = 720k). Each point on the plot represents a 4-simplex hav-
ing the scalar field values (coordinates) (φx, φy). The colors encode
the time coordinate t of the original CDT foliation. The dense regions
are geometric fractal outgrowths in the triangulation. The outgrows
structure resembles cosmic voids and filaments of the real Universe.

A typical map (projected on two spatial directions: "x" and "y") measured in
the semi-classical phase C of the toroidal CDT is presented in Fig. 5.1. Looking
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at Fig. 5.1 it becomes apparent that the phase C generic triangulations represent
a homogeneous and isotropic geometry on macroscopic scales. However, exactly
as it is observed in the real Universe, there are local density fluctuations (geomet-
ric outgrows in case of CDT) showing very non-trivial voids and filaments struc-
ture. One should note that in this context this is the emerging feature of the pure
quantum gravity, as the scalar fields discussed above do not have any impact (back-
reaction) on the geometry, and are simply introduced for visualization purposes.
Similar maps, obtained for generic triangulations of other CDT phases have com-
pletely different shapes, as discussed in publication [6].

Using the scalar fields as coordinates one can also measure the scaling of 4-
volume in a triangulation by picking a (random) center and following a diffusion
wave from that center and observing the growth in the volume of the diffusion
shell. Looking at the scaling of the volume with radius one can measure the, so-
called, Hausdorff dimension, associated with the harmonic coordinates. This was
measured for the following fixed lattice volumes N̄41 = {80k, 160k, 200k, 240k, 300k,
360k, 400k, 480k, 560k, 600k, 720k}. The 4-volume contained in a box (window) of size
∆φx × ∆φy × ∆φz × ∆φt, denoted ∆Nwin, normalized by the total volume Ntot can be
used to measure the Hausdorff dimension. It was found that in phase C one obtains
a universal behaviour, as presented in Fig. 5.2. The fitted Hausdorff dimension is
consistent with dH = 4.
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FIGURE 5.2: The figure shows the ratio of ∆Nwin (4-volume inside
the box of size ∆φx ×∆φy ×∆φz ×∆φt) and Ntot (total volume) in the
function of the normalized size of the box (Radius). This function was
measured in measured in phase C (κ0 = 4.0, ∆ = 0.2, T = 20). The
various thin lines denotes measurements for different lattice volumes

N̄41, the solid blue line is a fit of the function arb to their average.
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5.2 Dynamical scalar fields

"The effort to understand the Universe is one of the very few things that lifts human life a
little above the level of farce, and gives it some of the grace of tragedy." - Steven Weinberg

This section is based on the publications [5, 6].

So far the back-reaction of the matter field on the purely geometric degrees of
freedom was not taken into account. Including back-reaction of quantum (later also
called dynamical) scalar fields can lead to nontrivial changes of the geometry. In
the results presented below, the scalar fields are massless scalar fields with the (dis-
cretized) action (5.13), minimally coupled to the geometric (Regge) action (2.18). In-
cluding such fields in the MC simulations means that not only the field values have
to be generated - in the MC simulations the heat bath method [71, 72] was used - but
also that the matter action will affect the probability of performing the purely geo-
metric moves. Depending on the parameters of a simulation, either the geometric
or the matter part of the action dominates, thus one can expect a phase-transition of
some sort when moving in the parameter space, now also including a new coupling
constant corresponding to the circumference δ of the S1 target space (or alternatively
the jump amplitude) of the scalar field.

FIGURE 5.3: The volume profile in the presence of one field winding
around the time direction (left) and three fields winding around the

non-equivalent spatial directions (right).

The choice of the δ value is not the only additional parameter, as one can also
choose the number of φ-fields, as well as the number and type (time- or space-like) of
non-equivalent winding directions for the scalar field(s). Adding a field with δ = 0
has already a visible but small effect, as it shifts some characteristics of generic trian-
gulations appearing in the path integral, for example it lowers the ratio of N32/N41,
and adding more fields the effect is larger. Much stronger effect is observed for large
jump magnitude δ. As already discussed, if no scalar fields are added, the measured
volume profile of the toroidal CDT model in the semi-classical phase C is a constant
function. This is also the case of CDT coupled to the scalar fields with zero or small
jump magnitude δ, but for large δ one observes a dramatic change in the volume pro-
file, as it is shown in Fig. 5.3. In the case with one scalar field winding around the
time direction, using a simple minisuperspace-like model presented in Appendix 3
of [6], one can expect to observe a "pinched" volume profile, turning the constant
function into a cos(t) function, as seen in the left panel of Fig. 5.3. On the other
hand, as can be seen on the right panel of Fig. 5.3, the jump condition introduced
only in the spatial directions will also trigger, for large-enough δ values, a kind of
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"pinched" volume profile, however the reason behind it is different. In that case the
fitted volume profile is given by a cos3(t) function, which corresponds to the volume
profile of the (Eucledean) de Sitter sphere.

FIGURE 5.4: The 4-volume density map projected on two spatial ("x"
and "y") directions measured in phase C (κ0 = 2.2∆ = 0.6, T =
4, N̄41 = 160k) in the presence of 3 scalar fields winding around non-
equivalent spatial directions (δ = 1.0). Each point on the plot repre-
sents a 4-simplex having the scalar field values (coordinates) (φx, φy).
The 4-volume is concentrated in the center of the plot, and the low-
density region around it shows the "pinching" effect, leading to the

effective spatial topology change.

Qualitatively, the same kind of "pinching" happens in the spatial directions, lead-
ing to the effective topology change from toroidal to spherical. By the effective topol-
ogy change we mean a situation where there is still a remnant of the original CDT
topology (which by definition cannot change in the MC simulations), but, due to
the "pinching", the toroidal part is of cutoff size, and the dominating geometry has
(almost) spherical topology. So effectively, the triangulations start to behave as if the
topology of spatial slices was spherical instead of toroidal. It triggers an additional
effect, also observed in the spherical CDT, leading to the non-trivial de Sitter-like
volume profile of cos3(t), i.e., it causes a "pinching" in the time direction, chang-
ing the effective topology to that of S4. Consequently, the toroidal CDT model with
scalar fields winding around spatial directions behaves effectively as the spherical
CDT model.

Summarizing, the presence of the dynamical scalar fields with a non-trivial jump
condition (or alternatively a nontrivial target space S1) can trigger a phase transition,
which effectively changes the topology of the CDT configurations. Fig. 5.4 shows
the 4-volume density map (projected to the "x" and "y" spatial directions) of a generic
triangulation in phase C in the presence of 3 scalar fields with large jump magnitude
(δ = 1.0) winding around 3 non-equivalent spatial directions. Most simplices are
concentrated in the center of the plot and at the edge of the plot the density becomes
much smaller. This is exactly the "pinching" effect, leading to a formation of a single
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large geometric outgrowth, where almost all 4-volume is concentrated, and therefore
changing the effective topology from the toroidal to the spherical one. The geometry
looks considerably different than that of the pure gravity model, presented in Fig.
5.1, where the scalar fields were used only as maps and did not have any back-
reaction impact on the underlying manifold.
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Chapter 6

Conclusions

This chapter contains a summary and a description of my contribution to the publications
included in Chapter 7.

In this section we will summarize the discussion presented in the previous chap-
ters. This thesis is supposed to be a collection of publications done during my PhD
studies and a guide to the presented articles together with some theoretical introduc-
tion and some additional thoughts that cannot be found elsewhere. This includes
the discussion of the MC moves using a "colored dots" graph representing the dis-
cretized geometry of the t + 1

2 foliation leaf, the possibility of introducing new MC
moves presented in the Appendix B, the discussion of topological relations between
the triangulation parameters in the Appendix A, and the results related to the Haus-
dorff dimension calculated from the scalar field distribution. All other figures and
results were taken from the publications.

For all of the works presented in the previous chapters I performed a significant
amount of numerical simulations and did a large part of the numerical data-analysis.
The phase transition studies were challenging as they required simulations which
lasted for several months, due to the prolonged thermalization time related to the
nature of the problem. Furthermore, many measurements had to be repeated due to
various technical difficulties.

In Chapter 4 (section 4.3.2) I discussed the study of the A↓ B phase transition,
presented in the publication [3]. In the case of this phase transition I was the main
contributor to the study. I decided on the analysis of this particular part of the CDT
phase-diagram and selected the methods and the MC simulation parameters neces-
sary to perform the study (e.g., values of the coupling constants, values of N̄41, etc.).
Data coming from the simulations was shared between the members of the CDT
group and the conclusions and results were discussed on regular group meetings.
Finally, I had a large contribution to editing of the text of the publication [3].

In case of the publication [1], described in Chapter 4 (section 4.3.3), my main con-
tribution was the finding that the volume profile V3(t) of the Cb phase in the case of
toroidal spatial topology contains an emergent blob, seemingly similar to that ob-
served for the case of the spherical CDT. I collected evidence for that behavior and
performed analysis to calculate the Hausdorff dimension of the observed triangula-
tions.

After the finding that there is a direct phase transition between the B and C
phases [57], the study of the C↓ B phase transition, discussed in Chapter 4 (section
4.3.4) became one of the priorities of my PhD research. The analysis of the C ↓ B
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phase transition (presented in [2, 3]) was one of the most demanding works of my
PhD. It required a large amount of computer simulations (several hundreds of MC
runs) which had to be performed in order to achieve the published results. Each of
these simulations had to be overseen one-by-one on a regular basis and then data
had to be analyzed. I had also an important contribution to editing the text of the
publications [2] and [3]. The findings of [2] were unclear, as signals of the phase tran-
sition were mixed and one couldn’t find its order with 100% accuracy. Performing
numerical simulations in additional locations in the phase diagram and increasing
the statistics yielded similar result [3], however we managed to show that introduc-
ing a discretization correction to scaling relations gives the fits compatible with the
scaling exponent corresponding to a first-order transition. The description of the
nature of this phase transition, and as we understand it now also other CDT phase
transitions, was facilitated by another study related to the scalar fields (publications
[4, 5, 6]), where the notion of emergent topology became apparent. Similarly to the
effective dimensionality, discussed throughout the thesis, the effective topology of
the quantum universe seems to be an emergent phenomenon, and according to our
conjecture, for which we seem to find evidence, whenever a phase transition occurs
between phases of different effective topology then it should be a first-order transi-
tion.

All the phase transitions mentioned above were analyzed in case of empty CDT
universes, which means that there were no additional matter content, only the grav-
itational degrees of freedom. As discussed in Chapter 5, the simplest form of a mat-
ter field which can be included in our model is a massless scalar field. For all of the
scalar field related publications [4, 5, 6] I contributed by performing MC simulations,
data analysis, result interpretation and co-editing the articles. Additionally, I was
the corresponding author of publication [4]. The classical scalar fields, described in
publications [4, 6], were used as a tool to introduce a coordinate system to the CDT
triangulations. Such coordinates are a (quantum) analogue of the harmonic (de Don-
der) gauge fixing in GR. The massless scalar fields are harmonic maps, enabling one
to visualize the non-trivial fractal structure of the underlying quantum geometries.
Using the mapping, the regions of the triangulation with under- and over- 4-volume
density are visible, which makes it possible to observe structures resembling cosmic
voids and filaments similar to the large scale structure of the Universe. One may
think of these structures, coming from the quantum fluctuations of pure gravity, as
the source of initial inhomogeneities in the matter content of the early Universe, but
this idea requires further studies. These maps can be measured in all CDT phases
and they reveal important differences in the geometric structures of generic trian-
gulations observed in each phase. This observation, in particular, lead to the notion
of the effective topology discussed above. The back-reaction of the scalar fields was
added to the simulations and discussed in publications [5, 6], where I contributed by
performing the MC simulations and data analysis. Adding scalar fields with non-
trivial "jump" conditions resulted in a phase transition observed for some value of
the jump amplitude, see Chapter 5. In the case where the field was winding around
the time direction, the phase transition led to the volume profile V3(t) consistent
with a cos(t) function, resulting from the minisuperspace-type approximation dis-
cussed in Appendix 3. of [6]. In the case where three scalar fields were winding
around spatial directions the phase transition led to the "pinching" of the geometry
in these directions and consequently to the effective spatial topology change from
the toroidal to the spherical one. This in turn resulted in the de Sitter type, i.e.,
cos3(t), volume profile, leading to further effective topology change to that of the
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four-sphere.

There is still a lot to be investigated in the CDT phase-diagram. Especially, the
open question remains if there exists the UVFP of CDT. Without such a UVFP CDT
can be at most treated as some effective quantum gravity model, valid only to some
energy scale, but not a fundamental non-perturbatively renormalizable theory of
quantum gravity. Potentially some kind of extension of the model is needed to
be able to obtain such a UVFP. An extension may come from the introduction of
new parameters to the bare Regge action SR, discussed in Appendix A, although
such a change should be well motivated, and some physical quantities related to the
new parameters have to be found. Another extension, which may possibly yield the
UVFP, can potentially come by adding various matter content. For example, adding
gauge fields is currently the topic of an ongoing study, but it is at a preliminary stage
and therefore it will not be discussed in this thesis.

Summing up, there is still plenty of directions which future research of CDT can
follow in the quest for understanding quantum gravity. All I can say is that I am
proud that, with the results presented in this thesis, I could participate in the devel-
opment of the theory which has the potential to become widely accepted theory of
quantum gravity.
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Chapter 7

Publications

This chapter contains publications constituting the main part of the PhD thesis. The order
of publications, as it was mentioned in Chapter 1., is as follows:

[1] J. Ambjorn G. Czelusta et al. “The higher-order phase transition in toroidal
CDT”. In: J. of High Energ. Phys. 2020 (5), p. 30.
DOI: 10.1007/JHEP05(2020)030

[2] J. Ambjorn et al. “Towards an UV fixed point in CDT gravity”. In: Journal of
High Energy Physics 2019 (7), p. 166.
DOI: 10.1007/JHEP07(2019)166

[3] J. Ambjorn et al. “Topology induced first-order phase transitions in lattice
quantum gravity”. In: Journal of High Energy Physics 2022 (4), p. 103.
DOI: 10.1007/JHEP04(2022)103.

[4] J.Ambjorn et al. “Cosmic voids and filaments from quantum gravity”. In: The
European Physical Journal C 81 (8 2021), p. 708.
DOI: 10.1140/epjc/s10052-021-09468-z

[5] J. Ambjorn et al. “Matter-Driven Change of Spacetime Topology”. In: Phys.
Rev. Lett. 127 (16 Oct. 2021), p. 161301.
DOI: 10.1103/PhysRevLett.127161301

[6] J. Ambjorn et al. “Scalar fields in causal dynamical triangulations”. In: Classi-
cal and Quantum Gravity 38 (19 Sept. 2021), p. 195030.
DOI: 10.1088/1361-6382/ac2135

Pub. [1]: Discovery of a scientific result published in the paper. Performing nu-
merical simulations, analyzing the data and discussing the results. Estimated con-
tribution: 20%.

Pub. [2]: Conducting the main research, including the maintenance of numerical
simulations, performing the analysis of the data, discussing the results, writing the
initial version of the publication. Estimated contribution: 70%.

Pub. [3]: Conducting the main research, including the maintenance of numerical
simulations, performing the analysis of the data, discussing the results, writing the
the publication together with coauthors. Estimated contribution: 75%.
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Pub. [4]: Performing numerical simulations, providing data to the collaborators,
discussing the results, writing the initial version of the publication. I was the corre-
sponding author of the paper. Estimated contribution: 20%.

Pub. [5]: Performing numerical simulations, providing data to the collaborators,
doing some part of the data analysis, discussing the results. Estimated contribution:
30%.

Pub [6]: Performing numerical simulations, providing data to the collaborators,
doing some part of the data analysis, discussing the results. Estimated contribution:
30%.

7.1 Publications
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1 Introduction

Numerical Monte Carlo simulations applied to lattice field theories became an important

tool of contemporary physics. The famous example is Lattice Quantum Chromodynam-

ics (QCD) which has grown up from its childhood and now goes hand-by-hand with ex-

periments and beyond, e.g. by investigating the very non-trivial QCD phase diagram in

the regime of coupling constants non-tractable by perturbative calculus. Despite many

open questions, QCD has a well defined ultraviolet limit, where it becomes non-interacting

asymptotically free theory and thus the high energy behaviour can be investigated pertur-

batively. The opposite thing happens when one tries to formulate a quantum theory of

gravity (QG) by applying standard quantum field theory techniques to Einstein’s General

Relativity (GR). In that case the perturbative expansion around any fixed classical metric

field fails at high energies due to the perturbative non-renormalizability of such a formula-

tion [1, 2]. However, as conjectured by Steven Weinberg in his seminal paper [3], QG can

be asymptotically safe, i.e. it can admit a well behaved non-perturbative high energy limit

defined in the vicinity of a non-trivial fixed point of the renormalization group flow, where

quantum gravity becomes scale-invariant and thus can be extrapolated to arbitrarily large

energy scale. If the asymptotic safety scenario is valid1 then (in the ultraviolet regime)

QG must be formulated in a background-independent non-perturbative way making lattice

approaches well suited to tackle this problem. In such formulations one discretizes geo-

metric degrees of freedom on the lattice with (4-dimensional) lattice ‘volume’ N4 and with

a minimal (cut-off) spacing a, and in the ultraviolet regime one would like to get rid of

the discretization by taking a continuum limit of a → 0 and N4 → ∞ such that N
1/4
4 · a

is related to some physical length. In order to obtain non-trivial physical observables in

the continuum limit, where a→ 0 and N4 →∞, one would also like to have appropriately

divergent correlation lengths `c ∼ N
1/4
4 . Thus in a lattice approach the continuum limit

1There is growing evidence for the existence of a fixed point suitable for asymptotic safety coming from

functional renormalization group studies [4–9], however a rigorous proof of its existence is still lacking.

– 1 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
0

should be associated with a higher order (continuous) phase transition. Therefore studies

of the phase structure and orders of phase transitions are important steps towards defining

an ultraviolet limit in a lattice formulation and thus testing the asymptotic safety scenario

for gravity.

One of the most successful attempts of the lattice formulation of quantum gravity is

that of Causal Dynamical Triangulations (CDT) (for reviews see [10, 11]), in the sense

that it has a rich phase structure, where some of the transitions are higher order, which

potentially can be used to define continuum limit and that it additionally has a well behaved

low energy limit consistent with GR. CDT is based on the path integral formalism and

makes only a few assumptions on the geometry of quantum space-time, namely it requires

that the geometry can be globally foliated into space-like hypersurfaces, each with the

same fixed topology Σ. The model is using the discretization of space-time following the

method proposed by Regge [12]. The three-dimensional spatial states are constructed by

gluing together in all possible ways regular tetrahedra with a common link length as to

form a triangulation of a three-dimensional space with a (closed) topology Σ. The topology

of states is fixed during the evolution of geometry in time, being the origin of the name

causality in the model. To join states at different times t we need two types of 4-dimensional

simplices. Tetrahedra become bases of 4-dimensional simplices {4, 1} (and {1, 4}) with four

vertices at a time layer t and one at t+ 1 (resp. t− 1). In our notation the simplex {i, j}
has i vertices at a time t and j vertices at a time t + 1. The time links are assumed to

have a common link length at which may be different than as. To complete the manifold

structure two additional simplex structures are necessary. These are {3, 2} and {2, 3}
simplices. Pairs of simplices share a common three-dimensional face (tetrahedron). The

construction works both for systems with Lorentzian signature and, after Wick rotation,

for systems with Euclidean signature. Each space-time configuration can be interpreted

as Lorentzian or Euclidean. The possibility of performing Wick rotation is crucial if we

want to use numerical methods to analyze the properties of the model. In the following, we

assume the Euclidean formulation is used. The discretization described above means that

the four-dimensional volume of all {i, j} simplices depends only on the type of a simplex.

Similarly other geometric properties, like the angles, are universal for all simplices of a

particular type.

The studied object is the Feynman amplitude Z, which is expressed as a weighted sum

over manifolds T joining the initial and final geometric states separated by time T . The

weight is assumed to be expressed as a discretized version of the Hilbert-Einstein action

SEH(T )

Z =
∑

T

1

C(T )
e−SEH , (1.1)

where C(T ) is the symmetry factor of a graph representing the manifold. In practice the

choice of the initial and final states is replaced by assuming the system to be periodic with

the period T . The discretized version of the Hilbert-Einstein action takes the form [13]

SEH = − (κ0 + 6∆)N0 + κ4 (N4,1 +N3,2) + ∆N4,1, (1.2)

– 2 –
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Figure 1. The phase structure of 4-dimensional CDT.

where Ni,j denotes the number of 4-dimensional simplicial building blocks with i vertices

on hypersurface t and j vertices on hypersurface t ± 1, and N0 is the number of vertices

in the triangulation. κ0, ∆ and κ4 are bare coupling constants. κ0 and κ4 are related to

Newton’s constant and the cosmological constant, respectively, and ∆ depends on the ratio

of the length of space-like and time-like links in the lattice. In the Monte Carlo simulations

of CDT the parameter κ4, which is proportional to the cosmological constant, is tuned

such that one can take infinite-volume limit. As will be explained later, in numerical

simulations we perform a series of measurements for systems with increasing (fixed) volume

N4,1 and try to determine the limiting behaviour for N4,1 → ∞. In the consequence the

phase diagram presented in figure 1 depends only on two bare couplings κ0 and ∆. It

is remarkable that such a simple model has a rich phase structure with four phases with

very different physical properties. The analysis of the phase structure and, in particular,

the order of phase transitions is fundamental to relate the model to a possible theory of

quantum gravity.

2 Phase transitions in MC simulations of lattice field theories

According to Ehrenfest’s classification, the order of a phase transition depends on the

behaviour of the thermodynamic free energy. If all first n − 1 order derivatives of the

free energy are continuous functions of some thermodynamic variable, e.g. the coupling

constant of the lattice theory, and the n-th order derivative exhibits a discontinuity at

the transition point then the transition is the n-th order phase transition. Here we are

especially interested to distinguish between the first- and the higher-order phase transitions,

as the continuous limit of the lattice field theory should be associated with the latter type.

The derivatives of free energy are related to order parameters, which capture differ-

ences of thermodynamic properties of the system in two different phases separated by the

transition point. For a first-order transition one should observe a discontinuity of the

order parameter at the transition point and for the higher-order transition the order pa-

rameter should be continuous but its derivatives, e.g. its susceptibility, should diverge.

Unfortunately measuring the (dis-)continuity of the (derivatives) of an order parameter in

– 3 –
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numerical simulations is a tedious task. Actually, in numerical Monte Carlo simulations,

which are always performed for a finite lattice size N4, one does not even observe phase

transitions per se. The finite lattice size and the finite lattice spacing make all thermody-

namic functions and their derivatives finite, even though they can become arbitrarily large

for large lattice sizes. One should therefore carefully analyze finite (lattice) size effects and,

if possible, take the infinite (lattice) volume limit N4 →∞.

As phase transitions are usually related to breaking some symmetries of the studied

lattice field theory, one can define order parameter(s) OP which capture these symmetry

differences between various phases of the theory in question. One then usually performs

numerical Monte Carlo (MC) simulations for some fixed lattice volume N4 in many points

of the theory parameter space (see e.g. the CDT phase diagram in figure 1) to find regions

where the order parameter rapidly changes, see e.g. figure 4 where we show the mean value

〈OP〉 of the four order parameters (for their definitions see equation (4.2)) used in CDT

phase transition studies measured in the B −Cb transition region. The precise position of

the phase transition is signaled by a peak of the susceptibility of an order parameter

χOP ≡ 〈OP2〉 − 〈OP〉2 (2.1)

related to its first-order derivative with respect to some thermodynamic variable, see e.g.

figure 5. For a finite lattice volume N4 one can only determine a position of the (volume

dependent) pseudo-critical point. Positions of such points may in general depend on the

order parameter or the method used. Only in N4 → ∞ limit they must coincide. Let

∆c(N4) be the pseudo-critical value of the thermodynamic variable ∆, e.g. the coupling

constant, measured for a given phase transition for the lattice volume N4. The typical

(large) volume dependence is

∆c(N4) = ∆c(∞)− C

N
1/ν
4

, (2.2)

where the critical exponent ν is one for a first-order transition and larger than one for a

higher-order transition. Thus by making a series of measurements of ∆c(N4) for differ-

ent lattice volumes N4 one can establish a value of the critical exponent ν and in effect

determine the order of the phase transition.

Another way of distinguishing between the first- and the higher-order phase transitions

in numerical Monte Carlo studies is to analyze the behaviour of the order parameter(s)

measured precisely at (or in practice as close as possible to) the transition point. For a

first-order transition the discontinuity of an order parameter can appear in its MC history

as jumps between two different states. In such a case, the histogram of the order parameter

measured at the pseudo-critical point should show two separate peaks centered around the

values generic for the two different phases. Here one should also carefully analyze finite

size effects related to the finite lattice volume N4 fixed in the numerical studies. The

separation of the peaks in the MC history histogram can either increase or decrease with

the lattice volume which can imply the first- or the higher-order transition, respectively.

If the separation of the states, generic for the first-order transition, is large enough one

– 4 –
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Figure 2. Thermalization check of Monte Carlo data series. The plot shows the OP1 order

parameter (for definition see equation (4.2)) measured in two independent MC simulations of CDT

with toroidal spatial topology with exactly the same parameters, i.e. N4,1 = 300k, T = 4, κ0 = 2.2,

∆ = 0.048. One simulation was initiated with a configuration from phase B (blue line) and the

other one started from a configuration from phase Cb (orange line). Both data series statistically

agree from ca 40000 sweeps (1 sweep = 107 attempted MC moves). Data from earlier MC time

history, called the thermalization period, are excluded from final measurements.

typically observes a hysteresis at the transition region. In order to check that, one can run

two separate series of Monte Carlo simulations, one initiated with configurations generic

for one phase and the other one initiated with configurations generic for the other phase.

If hysteresis is present then one can observe a (statistically) different behaviour of the two

series in the transition region, e.g. the pseudo-critical points measured in the two different

series could be shifted versus each other. If hysteresis is absent the results of the two series

should (statistically) agree. Running two independent series initiated with different staring

configurations is also a good way of checking thermalization of the Monte Carlo data, i.e.

checking if the MC simulation has run for long enough to reach the proper statistical

equilibrium and thus if measurement data can be collected, see e.g. figure 2.

Another quantity of interest is the Binder cumulant2

BOP ≡
1

3

(
1− 〈OP4〉
〈OP2〉2

)
= −1

3

〈(OP2)2〉 − 〈OP2〉2
〈OP2〉2 , (2.3)

which is always non-positive because 〈(OP2)2〉 − 〈OP2〉2 ≥ 0, and it reaches a minimum

at the pseudo-critical point ∆c(N4), because there fluctuations are maximal. In the nu-

merical MC simulations one can measure the (volume dependent) value of the Binder

2Note that here we use a definition of the Binder cumulant which is shifted (by a −2/3 constant) versus

the original Binder’s formulation [14–16]: Bx = 1− 1
3

〈x4〉
〈x2〉2 . The definition (2.3) was used in previous CDT

phase transition studies [17–19] and thus we keep it in order to ease comparison with these results. The

virtue of using our definition is that, as explained in the text, the deviation of (critical) BOP from zero with

rising lattice volume may signal a first order transition, while the convergence to zero is characteristic of

a higher order transition. One could as well use the original Binder’s definition and look at the deviation

from 2/3.
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OBSERVABLE First-order transition Higher-order transition

Critical exponent ν in ν ν

scaling of ∆c(N4), eq. (2.2) = 1 > 1

OP histograms measured at double peaks single peak or

pseudo-critical points ∆c(N4) peak separation ↑ with N4 →∞ peak separation ↓ with N4 →∞
Hysteresis of MC data near YES NO

pseudo-critical points ∆c(N4) hysteresis ↑ with N4 →∞ or hysteresis ↓ with N4 →∞
Binder cumulant (2.3) Bmin

OP (N4 →∞) Bmin
OP (N4 →∞)

minima for N4 →∞ < 0 = 0

Table 1. Characteristics of the first- and the higher-order phase transitions in MC studies.

cumulant minimum

Bmin
OP (N4) = BOP(∆c(N4)) (2.4)

for different (fixed) lattice sizes N4 and then analyze its behaviour in the large volume limit

N4 →∞. In the case of a higher-order phase transition the probability distribution of the

order parameter OP approaches a Dirac delta around 〈OP〉 in the infinite volume limit. And

then Bmin
OP (∞) should equal 0. In the case of the first-order transition the distribution of the

parameter OP is a sum of two distributions centered at expectation values characteristic

for the two different phases. In the infinite volume limit, when these distributions approach

Dirac delta functions, the minimum of the Binder cumulant becomes:

Bmin
OP (∞) = −〈OPB〉2 + 〈OPCb

〉2
12〈OPB〉2〈OPCb

〉2 (2.5)

where 〈OPB〉 and 〈OPCb
〉 are expectation values of the observable OP at two different

phases, say “B” and “Cb”, and the relative strength of Dirac delta functions is assumed to

be 〈OPB〉2
〈OPB〉2+〈OPCb

〉2 and
〈OPCb

〉2
〈OPB〉2+〈OPCb

〉2 , respectively.

In table 1 we summarize methods used in numerical MC simulations of lattice field

theories to distinguish between the first- and the higher-order phase transitions. We will

then apply these methods in section 4 to analyze the B − Cb transition in CDT with the

toroidal topology of spatial slices.

3 The properties of the bifurcation phase Cb

The existence of the bifurcation phase in the CDT model with a spherical spatial topology

was discovered relatively late [20–22]. The reason why in the early studies only three phases

were discussed was that the basic observable used in these approaches was the (average)

spatial volume profile of configurations. A typical setup for numerical experiments was to

use systems periodic in time, with a period T usually in the range 40–80. Using the spatial

volume observable, the three phases, A, B and C, were characterized by completely different

qualitative behavior. The phase A was characterized by large fluctuations of the spatial

volume in the neighboring time slices. The observed average volume distribution in time

corresponded to the unbroken symmetry of the time translations. In the phase B almost all
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spatial volume (except for the stalk, necessary to satisfy the periodic boundary conditions)

was concentrated at a single time slice. This meant that for typical states in this phase the

symmetry of the time translations was fully broken. The physically most interesting was

the phase C, where the volume profile contained the blob and the stalk, again meaning

that for a typical configuration the symmetry of the time translations was broken. Average

volume distribution in the blob and its fluctuations could be very accurately explained using

the effective mini-superspace model for the isotropic four-dimensional Euclidean space-

time [23–25]. Most results were obtained for a particular point in the coupling constant

space with κ0 = 2.2 and ∆ = 0.6, where it was shown that volume distribution scaled with

the total N4,1 lattice volume in a way consistent with the Hausdorff dimension dH = 4.

Similar measurements performed for decreasing values of ∆ showed that, although

qualitatively the volume profile still contained a blob and the stalk, the scaling properties

did not follow those determined in the de Sitter phase C. It was observed that the scaling

was consistent with that predicted for systems with the Hausdorff dimension dH =∞. The

name bifurcation phase Cb appeared to describe the additional property observed in the

volume profile: a different behavior in the even and odd time slices when the time period

T was sufficiently small [20]. It was soon realized that the reason for the observed behavior

came from the breaking of the isotropy of the spatial volume distribution in the new phase.

For the time slices separated by two units in time, vertices with very high coordination

numbers appeared, leading to a formation of highly nontrivial geometric objects, forming

a chain in the time direction. A physical interpretation of these objects was conjectured to

be a result of a local signature change from Euclidean to Lorentzian [21], producing objects

with some qualitative similarity to a black hole or rather a series of black points. A detailed

description of the microscopic mechanism producing such effects will be the subject of a

separate paper.

As can be seen in figure 1, for decreasing values of ∆ and a fixed value of κ0, one

observes a phase transition between the Cb and B phases. The properties of this phase

transition were very accurately measured in the case of a spherical spatial topology [17,

18, 22], although originally the phase Cb was interpreted as being a part of the de Sitter

phase C. Results indicated that the phase transition was higher order, a very important

property from a theoretical point of view, as explained earlier. The purpose of the present

analysis is to check if the position and properties of the phase transition remain the same

for systems with the spatial topology Σ of a sphere S3 and of a three-torus T 3.

The first question to be asked is: are the qualitative properties in the Cb phase similar

or different when we consider systems with a different spatial topology. Again we may look

at the simplest object, a volume profile for systems with the periodicity T of the same

order as the one used in the spherical case. This is the observable which was found to

behave differently in the C phase. The observed volume profile, in this case, was found

to be flat rather than containing a blob [26, 27]. The reason of such a behavior could be

explained using a mini-superspace spatially isotropic model for a system with the spatial

topology of a three-torus. The averaged volume profile is flat since in the toroidal case the

time translation symmetry remains unbroken [26, 27].

Investigations show that this is not the case in the bifurcation phase Cb. The volume
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Figure 3. The (rescaled) average spatial volume profiles 〈V3(t)〉 observed in the bifurcation phase

Cb in the spherical (left plot) and the toroidal (right plot) CDT. In both plots the spatial volume

profiles were presented with respect to the centre of volume, set at t = 0, and shifted by a (constant

V 0
3 ) volume measured in the stalk range (|t| >∼ 10), V 0

3 being different for each volume profile (in

general V 0
3 is bigger in the toroidal CDT where discretization effects are larger). Data measured

for various total N4,1 lattice volumes and different T were rescaled by V4 =
∑

t(〈V3(t)〉 − V 0
3 ), i.e.

in agreement with the Hausdorff dimension dH =∞.

profile observed for the point in the coupling constant space, typical for the bifurcation

phase (κ0 = 2.0 and ∆ = 0.2) shows the appearance of a blob and the stalk, see figure 3,

the same way as it was observed in the spherical case. Also the scaling of the volume profile

with the total N4,1 lattice volume is consistent with the Hausdorff dimension dH =∞, the

same as in the spherical CDT. The analysis of the geometric properties of configurations

in the bifurcation phase Cb shows that also from a microscopic point of view the toroidal

and spherical cases are very similar. In both topologies, we observe the high-order vertices,

separated in time by two steps. The shape of the blob observed for periodicity T large

enough (T ≥ 20) again scales consistently with the infinite Hausdorff dimension. The

difference is observed in the stalk, which has a much larger volume for a torus than that

for a sphere. This is well understood and results from the fact that a minimal 3D spatial

configuration depends strongly on the topology (see [26]).

As a conclusion, one may expect the critical properties of the phase transition between

the Cb and B phases to be very similar in both topologically different realizations of the

model. Below we show that this is indeed the case. The measurement of the critical

behavior on the boundary between Cb and C phases may, on the other hand, be different,

or at least difficult to be determined numerically.

4 The B − Cb phase transition in the toroidal CDT

Below, we present the results of the B − Cb phase transition study in CDT with the

toroidal spatial topology. The B−Cb transition was earlier studied in the spherical spatial

topology [17, 18, 22] where it was classified to be the higher order transition. As explained

in section 2 in order to investigate the phase transition one has to make a series of Monte
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Carlo simulations for various points in the CDT (κ0,∆) parameter space,3 around the

phase transition point. In this study all measurements were taken for one fixed value of

κ0 = 2.2 and for a sequence of ∆ values.4 In each simulation the N4,1 lattice volume of the

system (i.e. the total number of {4, 1} and {1, 4} simplices) is fixed or, more precisely, it

fluctuates around the target value N̄4,1. The lattice volume is controlled by a volume-fixing

potential

δV = ε(N4,1 − N̄4,1)
2 (4.1)

added to the bare Einstein-Hilbert-Regge action of CDT (1.2) such that the volume is

sharply peaked around a chosen value of N̄4,1, with a well-defined amplitude of fluctuations

∝ 1/ε. In the CDT Monte Carlo simulations one also has to set the length of the (periodic)

time axis, i.e. the number of (integer) time slices T . In our case the number of time slices was

equal T = 4, the numerical constant governing the magnitude of volume fluctuations was

fixed at ε = 0.00002 and measurements were performed every 107 attempted Monte Carlo

moves (such that the measured N4,1 volume could differ from the target N̄4,1 volume).5

In our analysis we will focus on the behaviour of four order parameters which have

previously been successfully used in phase transition studies both in the spherical [18, 28, 29]

and the toroidal [19, 30, 31] CDT,6

OP1 = N0/N4,1, OP2 = N3,2/N4,1,

OP3 =
∑

t

(V3(t+ 1)− V3(t))2, OP4 = max
v
O(v),

(4.2)

where V3(t) is the spatial volume7 in the time slice t and O(v) is the vertex coordination

number, i.e. the number of simplices sharing a given vertex v. The behaviour of the order

parameters in all CDT phases has been summarized in table 2. Specifically when changing

from the phase B to the phase Cb the OP1, OP2 and OP4 increase in value while the

OP3 decreases, see figure 4. The MC simulations were performed for nine different (fixed)

lattice volumes, i.e. for N̄4,1 = 40k, 60k, 80k, 100k, 120k, 140k, 160k, 300k, 400k. For each

lattice volume N̄4,1 the approximate location of the B − Cb phase transition point was

found and then a series of precise measurement was performed for ∆ in the range around

the expected critical value ∆c with a resolution of 0.001. Each measurement series was

performed twice, each time for a different initial triangulation: one from phase B and one

from phase Cb, and the two data series were compared in order to check thermalization

3In each Monte Carlo simulations the κ4 is fine-tuned to the critical value, which depends on κ0 and ∆

and also on the lattice volume N4,1.
4The same κ0 value was earlier used in the B − Cb transition studies in the spherical CDT.
5In principle MC simulation results could depend on the set of parameters used, such as the volume

fixing method (one could e.g. fix the total N4 volume instead of the N4,1 volume) or the number of time

slices T but as advocated in [19] the order of CDT phase transitions does not depend on that.
6Here we use a slightly different definition of OP1 than in previous CDT phase transition studies, where

it was: OP1 ≡ N0/N4. Current definition is more natural when N4,1 volume is fixed (see equation (4.1))

which was the case in all MC simulations described herein.
7To ensure consistency with our earlier publications we define V3(t) as twice the number of spatial

tetrahedra with the integer time coordinate t.
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Phase A Phase B Phase C Phase Cb

OP1 large small medium medium

OP2 small small large large

OP3 medium large small medium

OP4 small large small large

Table 2. Order parameters used in CDT phase transition studies.

and possible hysteresis, see e.g. figure 2. For each lattice volume N̄4,1 and each of the two

measurement series (s = B,Cb) and each of the four order parameters OPi (i = 1, 2, 3, 4) the

precise position of the (volume dependent) pseudo-critical point ∆c
i,s(N4,1) was established

based on the peak of the OPi,s susceptibility χOPi,s , see figure 5 where we present the results

of measurements for the lattice volume N̄4,1 = 100k. The values of ∆c
i,s(N4,1) measured for

different OPi and in the two data series in general coincide up to the used ∆ resolution. If

the results for various OPi or for various data series are different, usually shifted not more

than by the ∆ difference of 0.001, we simply take the arithmetic mean

∆c(N4,1) =
1

8

∑

s∈{B,Cb}

4∑

i=1

∆c
i,s(N4,1) (4.3)

and assign a correspondingly larger measurement error, e.g. for the lattice volume N̄4,1 =

100k one has ∆c(N4,1 = 100k) = 0.0376± 0.0016.

Then we fit the finite size scaling relation (2.2) to the measured ∆c(N4,1) values. The

best fit of the true (infinite volume) critical point is ∆c(∞) = 0.073± 0.004, and the best

fit of the critical scaling exponent is ν = 2.7± 0.4 which supports the higher-order nature

of the B−Cb phase transition, see also figure 6 where we plot the measured data together

with the best fit of the scaling relation (2.2) and compare it to the fit with a forced value

of ν = 1 (typical for a first-order transition) showing that the quality of the latter fit

is much worse. The measured values of the true critical point and the critical exponent

also agree with ∆c(∞) = 0.077 ± 0.004 and ν = 2.51 ± 0.03 measured in CDT with the

spherical spatial topology [18], giving strong evidence that the results are independent of

the topology chosen (at least for the toroidal and the spherical one).

In order to corroborate this result, we have performed the detailed Monte Carlo history

analysis of all order parameters at (and in the vicinity) of the measured pseudo-critical

points, see figure 7 where we plot the MC history histograms of the OP1 measured for

the example N4,1 = 100k volume and for ∆ = 0.037 (peak of χOP1,B
) and ∆ = 0.038

(peak of χOP1,Cb
). In none of the cases have we observed the double peaks in the measured

histograms nor the hysteresis of the measured data series. These results support the higher-

order B − Cb transition.

Finally, we have analyzed the behaviour of the Binder cumulants (2.3) in search of

minima, see figure 8 where we plot data measured for N4,1 = 100k. The value of pseudo-

critical ∆̃c
i,s(N4,1) defined by the minimum of the Binder cumulants BOPi,s in general

coincides with the ∆c
i,s(N4,1) value defined by the maximum of susceptibility χOPi,s , the
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Figure 4. Mean values of the four order parameters (4.2) 〈OP1〉, . . . , 〈OP4〉 as a function of ∆ in

the B−Cb phase transition region in CDT with toroidal spatial topology for fixed κ0 = 2.2 and the

lattice volume N4,1 = 100k. Blue data points are for the MC series started from a triangulation in

phase B while orange data points were started from a triangulation in phase Cb. Error bars were

estimated using a single-elimination (binned) jackknife procedure, where the bin sizes were selected

in such a way that the statistical errors are maximized.
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Figure 5. Susceptibilities (2.1) of the four order parameters (4.2) χOP1 , . . . , χOP4 as a function of

∆ in the B−Cb phase transition region in CDT with toroidal spatial topology for fixed κ0 = 2.2 and

the lattice volume N4,1 = 100k. Blue data points are for the MC series started from a triangulation

in phase B while orange data points were started from a triangulation in phase Cb. Error bars were

estimated using a single-elimination (binned) jackknife procedure, where the bin sizes were selected

in such a way that the statistical errors are maximized.
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Figure 6. Lattice volume dependence of the pseudo-critical ∆c(N4,1) values in CDT with toroidal

spatial topology and for fixed κ0 = 2.2 together with the fit of the finite size scaling relation (2.2)

with critical exponent ν = 2.7 (orange solid line) and the same fit with a forced value of ν = 1 (blue

dashed line).

Figure 7. Histograms of the MC history of the OP1 order parameter (4.2) measured in CDT with

toroidal spatial topology for fixed κ0 = 2.2 and the lattice volume N4,1 = 100k. The left plot is

for data series started from configuration in phase B and ∆ = 0.037 (i.e. the peak of susceptibility

χOP1
measured for this data series, see figure 5) while the right plot is for data series initiated in

phase Cb and ∆ = 0.038 (peak of χOP1 for this data series).

possible shift is usually up to ∆ difference of 0.001. In figure 9 we plot the measured values

of Bmin
OPi,s

(N4,1) ≡ BOPi,s(∆̃
c
i,s(N4,1)) as the function of the lattice volume N4,1.

8 All Binder

cumulants measured for OP1,. . . , OP4 visibly grow towards zero when N4,1 is increased,

which again favours the higher-order nature of the B − Cb transition.

5 Summary and conclusions

Applying phase transition analysis methods described in section 2 to the B−CB transition

in CDT with the toroidal spatial topology we have shown that the transition is most likely

the higher-order phase transition. This result is supported both by the finite size scaling

analysis of equation (2.2) showing the best fit scaling exponent ν = 2.7 > 1, by the large

8In the plot we skip data measured for N4,1 = 400k which can be not accurate enough as these systems

did not thermalize completely resulting in large measurements errors.
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Figure 8. Binder cumulants (2.3) of the four order parameters (4.2) BOP1 , . . . , BOP4 as a function

of ∆ in the B − Cb phase transition region in CDT with toroidal spatial topology for fixed κ0 =

2.2 and the lattice volume N4,1 = 100k. Blue data points are for the MC series started from a

triangulation in phase B while orange data points were started from a triangulation in phase Cb.

Error bars were estimated using a single-elimination (binned) jackknife procedure, where the bin

sizes were selected in such a way that the statistical errors are maximized.
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Figure 9. Lattice volume dependence of the Binder cumulant (2.3) minima Bmin
OPi

(N4,1) (i =

1, . . . , 4) in CDT with toroidal spatial topology and for fixed κ0 = 2.2. Blue data points are for the

MC series started from a triangulation in phase B while orange data points were started from a

triangulation in phase Cb. Error bars were estimated using a single-elimination (binned) jackknife

procedure, where the bin sizes were selected in such a way that the statistical errors are maximized.
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Figure 10. Rescaled order parameters 〈OP1〉, . . . , 〈OP4〉 in CDT with the toroidal spatial topology

measured for the (target) lattice volume N̄4,1 = 120k and T = 4 time slices. Data were measured

for many different starting triangulations for each ∆ (κ0 = 2.0 is kept fixed), the number of starting

configurations being different for various ∆. Each data point denotes 〈OPi〉 (i = 1, 2, 3, 4) measured

from last 100k sweeps (1 sweep = 107 attempted MC moves), data from initial thermalization

period were skipped. Shaded regions between the dashed lines denote the range of the measured

data. Hysteresis is clearly visible for ∆ ≥ 0.38, especially for the OP4 parameter which is the

most sensitive to the C −Cb transition. This is not the case for the higher-order B −Cb transition

(described herein) observed around ∆ ≈ 0.05.

volume behaviour of the Binder cumulant minima (2.4): Bmin
OPi

(N4,1 → ∞) → 0 and by

the lack of hysteresis/two-state jumping of the order parameters measured at the (pseudo)

critical points.

The above result and also numerical values of the critical scaling exponent ν = 2.7±0.4

and the true critical point ∆c(∞) = 0.073 ± 0.004 are also consistent with the B − Cb
transition measured in CDT with the spherical spatial topology for the same fixed value of

the κ0 = 2.2 parameter, where ∆c(∞) = 0.077±0.004 and ν = 2.51±0.03, respectively [18].

Thus the B−Cb transition properties are the same in both spatial topologies. This is also

the case for the A − C transition which was found to be the first-order phase transition

in both topologies — the detailed analysis of the A − C transition in the spherical and

the toroidal CDT for various Monte Carlo simulations’ parameters (lattice volume fixing

methods and lengths of the (integer) time period T ) can be found in [19]. One can therefore

formulate a conjecture that CDT results including the phase structure and the order of

phase transitions are independent of the spatial topology choice, which is a parameter put

in “by hand”.

The question mark remains for the C−Cb transition which was found to be the higher-

order phase transition in the spherical CDT [28, 29]9 and has not been yet investigated in

detail in the toroidal CDT. The reason is that in the toroidal CDT case one observes a

very strong hysteresis in the C −Cb transition region10 (see figure 10) and therefore one is

9Recent studies based on spectral properties of three-dimensional time slices in the spherical CDT [32, 33]

also indicate that the C − Cb transition is most likely the higher-order phase transition.
10The hysteresis is observed for sufficiently large (target) lattice volumes N̄4,1 such that the the three-

volume of each (integer) time slice ∼ N̄4,1/T is big enough to allow for creation of high-order vertices, for

small N̄4,1 the bifurcation phase is not observed which is a finite-volume/discretization artifact.
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not able to perform precise MC measurements which would enable one to make finite size

scaling analysis as it was explained in section 2. The very strong hysteresis would suggest

that the C − Cb transition is most likely the first-order transition in the toroidal CDT,

i.e. the order of the transition would change due to the different spatial topology. But

this can be as well an algorithmic issue of the MC code used in the CDT simulations and

more advanced methods should be used in order to resolve this problem.11 In the toroidal

CDT one was also able to make MC simulations in the most interesting region of the CDT

parameter space, namely in the vicinity of the two “triple” points where the A − B − C
and the B − C − Cb phases meet (see the CDT phase diagram in figure 1), which was not

possible in the spherical CDT where MC simulations got effectively “frozen” in this region

of the phase diagram. As a result in the toroidal CDT one observes the direct B − C

transition which was classified to be the first-order transition, albeit with some atypical

properties suggesting a possible higher-order transition [31]. Summing up, we have shown

that the B − Cb transition is the higher order transition which most likely makes the

B − C − Cb “triple” point the higher order transition point even though the B − C and

the C − Cb transitions are possibly the first-order transitions. The above “triple” point is

thus a natural candidate for an UV fixed point for QG [34, 35].
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1 Introduction

Since the middle of last century physicists have been pursuing the idea of unifying the four

fundamental interactions, the strong, the weak, the electromagnetic and the gravitational

interactions. The framework of Quantum Field Theory (QFT) unified the first three of

them in the so-called Standard Model. Including gravity remains an unsolved problem in

a QFT context.1 Difficulties appear when one tries to formulate a quantum version of

Einstein’s theory of General Relativity. The naive quantization leads to a perturbatively

non-renormalizable theory which cannot be simply included in the unified model of all

interactions. The idea of asymptotic safety introduced by Weinberg [1] is an attempt to

formulate a non-perturbative QFT of gravity. It assumes that the renormalization group

flow in the bare coupling constant space leads to a non-trivial finite-dimensional ultraviolet

fixed point around which a new perturbative expansion can be constructed which leads

to a predictive quantum theory of gravity. The so-called Exact Renormalization Group

program [2–6] has tried to establish the existence of such a fixed point with a fair amount

of success, but relies in the end, despite the name, on truncation of the renormalization

group equations. Thus it would be reassuring if other non-perturbative QFT approaches

could confirm the exact renormalization group results.

Lattice QFT is such a non-perturbative framework and it is well suited to deal pre-

cisely with the situation where one identifies fixed points, since these are where one wants

to reach continuum physics by scaling the lattice spacing to zero in a way which keeps

physics fixed. It has been very successful providing us with results for QCD which are not

accessible via perturbation theory. There exists a number of lattice QFT of gravity. One of

them, the so-called Dynamical Triangulation (DT) formalism [7–12] has provided us with a

“proof of concept”, in the sense that it has shown us, in the case of two-dimensional quan-

tum gravity [13–16], that the continuum limit of the lattice theory of gravity coupled to

conformal field theories agree with the corresponding continuum theories. Of course there

are no propagating gravitational degrees of freedom in two dimensions, but the main issue

1Going beyond conventional QFT, string theory provides us with a theory unifying the interaction of

matter and gravity. Likewise loop quantum gravity uses concepts beyond conventional QFT.

– 1 –
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with the lattice regularization is whether or not diffeomorphism invariance is recovered

when the lattice spacing goes to zero. That is the case in the DT formalism, and for the

conformal field theories living on the lattice one obtains precisely the non-trivial critical

scaling dimensions obtained also in the continuum, i.e. scaling dimensions which are differ-

ent from the ones in flat spacetime (the so-called KPZ scaling [17–19]). The DT formalism

was extended to higher dimensional gravity [20–27], but there it was less successful [28, 29].

It is not ruled out that the theory can provide us with a successful version of quantum

gravity, but if so the formulation has to be more elaborate than the first models (see [30–33]

for recent attempts). However, there is one modification of DT which seems to work in the

sense that lattice theory might have a non-trivial continuum limit, the so-called Causal Dy-

namical Triangulations model (CDT). The model is more constrained than the DT models

because one assumes global hyperbolicity, i.e. the existence of a global time foliation.

The CDT model of four-dimensional quantum gravity is realized by considering piece-

wise linear simplicial discretizations of space-time. The simplicial building blocks can be

glued together, satisfying the basic topological constraints of global hyperbolicity (as men-

tioned) and a simplicial manifold structure. The quantum model is now defined using the

Feynman path integral formalism, summing over all such geometries with a suitable action

to be defined below. The spatial Universe with a fixed topology evolves in proper time.

Geometric states at a fixed value of the (discrete) time are triangulated, using regular

three-dimensional simplices (tetrahedra) glued along triangular faces in all possible ways,

consistent with topology. The common length of the edges of spatial links is assumed to

be as. Tetrahedra are the bases of four-dimensional {4, 1} and {1, 4} simplices with four

vertices at time t connected by time links to a vertex at t± 1. All time edges are assumed

to have a universal length at. To construct a four-dimensional manifold one needs two

additional types of four-simplices: {3, 2} and {2, 3} (having three vertices at time t and

two vertices at t ± 1). The structure described above permits for every configuration the

analytic continuation between imaginary at (Lorentzian signature) and real at (Euclidean

signature). Even after Wick rotation the orientation of the time axis is remembered. The

spatial and time links may have a different length, and are related by αa2
s = a2

t . The

quantum amplitude between the initial and final geometric states separated by the integer

time T is a weighted sum over all simplicial manifolds connecting the two states. In the

Lorentzian formulation the weight is assumed to be given by a discretized version of the

Hilbert-Einstein action.

ZQG =

∫
DM[g]eiSEH [g] (1.1)

where [g] denotes an equivalent class of metrics and DM[g] is the integration measure over

nonequivalent classes of metrics. A piecewise linear manifold where we have specified the

length of links defines a geometry without the need to introduce coordinates. In the CDT

approach the integration over equivalent classes of metrics is thus replaced by a summation

over all triangulations T satisfying the constraints. After a Wick rotation the amplitude

becomes a partition function

ZCDT =
∑
T
e−SR[T ], (1.2)

– 2 –
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where SR is a suitable form of the Einstein-Hilbert action on piecewise linear geometries.

There exists such an action, which even has a nice geometric interpretation, the so-called

Regge action SR for piecewise linear geometries [34]. In our case it becomes very simple

because we have only two kinds of four-simplices which we glue together to form our

piecewise linear four-manifold:

SR = −(K0 + 6∆) ·N0 +K4 · (N41 +N32) + ∆ ·N41, (1.3)

where N0 is the number of vertices in a triangulation T , N41 and N32 are the numbers of

{4, 1} plus {1, 4} and {3, 2} plus {2, 3} simplices, respectively. The action is parametrized

by a set of three dimensionless bare coupling constants, K0, related to the inverse gravita-

tional constant, K4 — the dimensionless cosmological constant and ∆ — a function of the

parameter α, the ratio of the spatial and time edge lengths (for a detailed discussion we

refer to [35] and to the most recent review [36] and for the original literature to [37, 38]).

The amplitude is defined for K4 > Kcrit
4 and the limit K4 → Kcrit

4 corresponds to a (dis-

crete) infinite volume limit. In this limit, the properties of the model depend on values

of the two remaining coupling constants. The model was extensively studied in the case,

where the spatial topology was assumed to be spherical (S3) [39–45]. The model could not

be solved analytically and the information about its properties was obtained using Monte

Carlo simulations. It was found that the model has a surprisingly rich phase structure, with

four different phases. The most interesting among the four phases is phase C, where the

model dynamically develops a semiclassical background geometry which in some respect is

like (Euclidean) de Sitter geometry, i.e. like the geometry of S4. Both the semiclassical vol-

ume distribution and fluctuations around this distribution can be interpreted in terms of a

minisuperspace model [46–49]. For increasing K0 phase C is bounded by a first-order phase

transition to phase A, where the time correlation between the consecutive slices is absent.

For smaller ∆ phase C has a phase transition to a so-called bifurcation phase, where one

observes the appearance of local condensations of geometry around some vertices of the

triangulation [50–53]. The phase transition is in this case of second or higher order. For

still lower ∆ the bifurcation phase is linked with the fourth phase, the so-called B phase,

where one observes a spontaneous compactification of volume in the time direction, such

that effectively all volume condenses in one time slice. The phase transition between the

bifurcation phase and the B phase is also of second or higher order [44]. The behavior

of the model near continuous phase transitions is crucial if one wants to define a physical

large-volume limit (a careful discussion of this can be found in [54]). In this respect phase C

stands out, the reason being that only in this phase the large scale structure of the average

geometry is “observed” (via the Monte Carlo simulations) to be four-dimensional, isotropic

and homogeneous, and one can define an infrared semiclassical limit with a correct scaling

of the physical volume [42, 46]. Via phase C we thus want a renormalization group flow in

the bare coupling constant space towards an UV fixed point (the asymptotic safety fixed

point), while keeping physical observables fixed. The natural endpoint of such a flow would

be a point in the phase diagram where several phases meet. In the early studies it was

speculated that there could be a quadruple point, where all four phases meet. Unfortu-

nately the numerical algorithm used was not efficient in this most physically interesting

– 3 –
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Figure 1. The phase structure of CDT for a fixed number of time slices T = 4 and average lattice

volume N̄41 = 160k. Blue color represents the bifurfaction phase, black color the crumpled phase,

green color the C phase and orange color the A phase.

range in the coupling constant space. As a consequence it was not possible to analyze the

model in this range.

The present article discusses a new formulation of the model, where the spatial topology

is assumed to be that of a three-torus (T 3) [55–57], rather than that of a three-sphere, which

was the topology used in all the former studies. It was found that the four phases in this

case are the same as in the spherical model, with the position of phase boundaries shifted

a little.2 The additional, important bonus in this new formulation comes from the fact

that the physically interesting region in the bare coupling constant space mentioned above

becomes numerically accessible with the standard algorithm used in the earlier studies. We

could then observe that the speculative quadruple point, maybe not surprisingly, separates

into two triple points, connected by a phase transition line between phase C and the B

phase, and not separated by the bifurcation phase (see figure 1). An important point is

that we now have access to these triple points directly from phase C and it is thus possible

to have a renormalization group flow from the infrared to the potential UV fixed point

entirely in the “physical” C phase.

The phases of the model were identified for a system with N̄41 = 160k, analyzing

the structure of geometry at the grid of points in the coupling constant plane shown in

figure 1, the different phases represented by dots with different colors. In the presented

phase diagram the precise position of phase transitions was not determined. This requires

a careful study of the infinite volume limit and scaling of the position of phase transition

2This may be a finite-size effect. The diagram was determined by analyzing systems with only one

volume.
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lines with the lattice volume. The most interesting region is the one separating phase C

and B where we may observe two triple points. The present paper is the first step in the

analysis of this most physically interesting region. We will perform a detailed analysis of

the behavior of the model at K0 = 4.0 in the neighborhood of the phase transition line. We

will try to determine the order of the phase transition at this point. We will show that the

transition seems to be a first order transition. The results presented in this article show

that the most interesting region in the bare parameter space can successfully be analyzed

using the standard Monte Carlo algorithm used in the earlier simulations.

2 The phase structure of CDT

As mentioned, the phase diagram of the CDT model with a toroidal spatial topology per-

mits us to investigate the properties of the model in an important range of the bare coupling

constants, previously inaccessible to numerical measurements. For systems with a spherical

spatial topology a detailed analysis of the phase diagram was performed following two lines

in the bare coupling constant space. These were the vertical line with varying ∆ at K0 = 2.2

and the horizontal line at ∆ = 0.6. In the first case it was possible to analyze the phase

transition between C and bifurcation phases and between the bifurcation and B phases. In

the second case a transition between the C and A phases was studied (see [58] for recent re-

sults). The belief coming from the analysis of the spherical case was that if we decrease the

value of ∆ for a fixed value of K0 we necessarily move from C phase to the bifurcation phase

and only, for still lower ∆, to the B phase. However, changing to toroidal spatial topology

we discovered that this is not the case, probably also in the spherical topology. There exists

a range of bare coupling constants where C and B phases are directly neighboring. This

happens close to the ∆ = 0 line in the range of K0 between, approximately, 3.5 and 4.5.

One may expect the existence of two triple points (instead of the previously conjectured

quadruple point): one triple point where C, A and B phases meet, and a second triple point

where C, bifurcation and B phases meet. Finding the precise location of the triple points

may be numerically more difficult than analyzing the generic transition between phase C

and B. As a first step in the detailed analysis we have chosen to determine the position and

the order of the phase transition between C and B phases along a vertical line at K0 = 4.0.

This is approximately in the middle between the position of the two triple points. Since

the characteristic behavior in the two phases corresponds to different symmetries of the

configurations (we have translational symmetry in time in the C phase and a spontaneous

breaking of this symmetry in the B phase) we expect a relatively large hysteresis when we

cross the phase boundary. We want to find methods which make the hysteresis effect as

small as possible. We also expect relatively large finite size effects. An important point in

the analysis will be to check how the hysteresis behaves when the system size goes to infinity.

The analysis presented in the paper is based on a study of systems with a fixed time

period T = 4 and different (almost) fixed volumes N41. In the earlier studies, it was shown

that reducing the period T does not produce significant finite-size effects [58]. On the

other hand, in particular in the C phase, the average volume per time slice for a fixed total

volume gets relatively large, which is very important. In the Monte Carlo simulations we

– 5 –
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enforce the lattice volume N41 to fluctuate around a chosen value N̄41, so that the measured

〈N41〉 = N̄41. This is realized by adding to the Regge action (1.3) a volume-fixing term

SR → SR + ε(N41 − N̄41)2. (2.1)

In the thermalization process it is essential to fine-tune the value of K4 in such a way

that one gets stability of the system volume. This is realized by letting the value of K4

dynamically change by small steps, until the required stable situation is realized. If a value

of K4 is too high, we observe that system volume stabilizes below the target value N̄41.

Similarly, if we take it too small, the volume will be too large. Only for K4 ≈ Kcrit
4 (N̄41)

fluctuations of volume are centered around N̄41 with the width controlled by ε. During the

thermalization part of the Monte Carlo simulations the algorithm tries to find the optimal

value of K4 for a given fixed set of parameters K0, ∆ and N̄41. The whole process of

measurements is organized in the following way:

• We start a sequence of thermalization runs at a set of ∆ values in the neighborhood of

the expected position of the phase transition. The initial configuration of the system

is taken to be the small hyper-cubic configuration discussed in reference [55]. We

choose the target volume N̄41 and let the system size grow towards N̄41 and adapt

the K4 value from the guessed initial value. The initial K4 can be chosen either a

little below or a little above the guessed critical value.

• We find that on the grid of ∆ values we can determine ranges corresponding to the

appearance of two different phases, with a relatively sudden jump between the phases.

In general the jump is observed between two neighboring values on the grid of ∆.

The corresponding values of K4 are markedly different in the two phases. Typically

the value is smaller for the C phase than for the B phase. We can determine the

phase of the system by the measured values of the order parameters (see later for

definitions), which are very different in the different phases.

• The value of ∆ where the phase transition is observed depends on the initial value

of K4 used in the thermalization process. As a consequence, we observe in general

two values ∆crit
low(N41) and ∆crit

high(N41). Both values are determined with the accuracy

depending on the grid of ∆.

• We repeat the analysis on a finer grid, which covers the range where we observed

phase transitions. We found the most effective procedure is to restart the Monte

Carlo evolution from the same small initial configuration as before, but using as the

initial values of K4 the ones determined for the C or the B phase from earlier runs

in the neighborhood of the transitions, corresponding to ∆crit
low(N41) or ∆crit

high(N41)

respectively.

• A finer grid permits to determine the two positions of the phase transition with

better accuracy. The different position of jumps between the two phases (low or

high) can be interpreted as the hysteresis effect in a process where we slowly increase

the value of the ∆ parameter or slowly decrease its value. We observe that the size

– 6 –
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Figure 2. The plot illustrates the hysteresis measured during simulations for the target volume

N̄41 = 160k. The green and blue dots correspond to the location of the phase C side of the

phase-transition, while the red and black dots correspond to the location of the phase B side of

the phase-transition. The same colors will be used in the next plots, where we compare results for

different volumes.

of the hysteresis for a particular choice of N̄41 does not decrease within reasonable

thermalization times. By taking a finer grid in ∆ we can only determine the end

points of a hysteresis curve with a better accuracy. We illustrate the situation in

figure 2. The lines shown were obtained from the measured values of ∆ and K4 for

N̄41 = 160k.

• In the range of ∆ values between ∆crit
low(N41) and ∆crit

high(N41), depending on the initial

value of K4 a system ends either in the B or C phase. This can be interpreted

as a range of parameters, where the two phases may coexist. The distribution of

the values of the order parameters (to be defined below), characteristic for the two

phases, is very narrow. As a consequence, a tunnelling between the two phases is

never observed after we have reached a “stable” ensemble of configurations in the

thermalization stage.

The thermalization path chosen above means in practice, that in the beginning, the

system grows in a relatively random way from the initially small configuration to the desired

target volume N̄41 and the geometry evolves to a stable range in the configuration space.

The first step can be interpreted as a step in the direction typical for the phase A, where

correlations between the spatial configurations in the consecutive time slices are small or

absent. Only afterwards we reach the domains corresponding to the two phases we study.

As a consequence, we expect that the described method will be very well suited to the

future analysis of the triple point involving the A phase.
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Figure 3. The pseudo-critical value Kcrit
4 (N41) as a function of ∆crit(N41). The data points

measured for increasing lattice volume N̄41 are going from left to right. Center of the black ellipse

corresponds to the estimated position of (∆crit(∞) , Kcrit
4 (∞)) and its radii correspond to the

estimated uncertainties. Colors of the fits follow the convention used in figure 2.

The behavior of the pseudo-critical values Kcrit
4 (N41) is very similar to that of

∆crit(N41). This can be seen in figure 3, where we show the values of Kcrit
4 (N41) plotted as

a function of ∆crit(N41). On both sides of the hysteresis the dependence is approximately

linear, which means that values of both pseudo-critical parameters (Kcrit
4 and ∆crit) scale

in the same way with the lattice volume N̄41. Extrapolating the lines to a point where

they cross permits to determine values for Kcrit
4 and ∆crit in the limit N̄41 → ∞. The fit

gives Kcrit
4 (∞) = 1.095± 0.001 and ∆crit(∞) = 0.022± 0.002. The errors on this and other

plots are the estimated statistical errors and include the grid spacing for ∆.

Although the size of the hysteresis shrinks with volume N̄41, the plots indicate that

the shrinking process is relatively slow and thus in order to get rid of the hysteresis one

should use extremely large lattice volumes, not tractable numerically. The dependence of

∆crit on the lattice volume, ranging between N̄41 = 40k and N̄41 = 1600k is presented in

figure 4. As it was explained above, the plot contains four sets of data corresponding to

the four different points describing the hysteresis (see figure 2). The data points can be

fitted with the curve

∆crit(N̄41) = ∆crit(∞)−A · N̄−1/γ
41 . (2.2)

The best fit for the combined sets of data (with fixed ∆crit(∞) = 0.022 determined above)

was obtained for γ = 1.64 ± 0.18. An alternative fit with γ = 1 (and the same value of

∆crit(∞)) is excluded as can be seen in figure 4 (the dashed line). The value γ = 1 would

be a strong evidence for a first order transition. The fits were based on data measured for

volumes ranging from N̄41 = 40k to N̄41 = 720k. The largest volume N̄41 =1600k was used

only for checking consistency with the extrapolations The analogous plot presenting the

four sets of the pseudo-critical Kcrit
4 (N̄41) values for the same range of volumes is shown in

– 8 –



J
H
E
P
0
7
(
2
0
1
9
)
1
6
6

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

.40 2 4 6 8 10 12 14 16

∆
cr
it

N̄41 [100k]

Figure 4. The pseudo-critical value ∆crit as a function of N̄41. The solid lines are (one parameter)

fits of formula (2.2) with fixed common values of γ = 1.64 and ∆crit(∞) = 0.022. Colors of the fits

follow the convention used in figure 2. The dashed line shows a common fit of all data points to

the scaling function (2.2) with enforced value of γ = 1 and ∆crit(∞) = 0.022.

figure 5. The experimental points are again well fitted by the formula

Kcrit
4 (N̄41) = Kcrit

4 (∞)−B · N̄−1/γ
41 , (2.3)

where the measured value of γ = 1.62± 0.25 agrees well with the result obtained for ∆crit.

The fits are represented by curves with different colors, which again follow the convention

used in figure 2. On the scale used in this plot the green and blue curves practically overlap.

3 Order parameters

To identify the phases of CDT with toroidal spatial topology we follow methods used in

the previous studies. These are based on the analysis of order parameters which have a

different behavior in the different phases. We use order parameters which characterize both

global and local properties of the simplicial manifolds. The global order parameters were

called O1 and O2, where

O1 =
N0

N41
, O2 =

N32

N41
. (3.1)

In each phase the distributions of N0 and N32 are very narrow, and practically Gaussian.

Phases B and C are characterized by very different average values for the two distributions.

The dependence of the order parameters O1 andO2 on N̄41 at the endpoints of the hysteresis

is presented in figure 6. The colors follow the convention used in figure 2.

The data presented on the plots correspond for each N̄41 to the four values of the

∆crit(N41) points, following again the notation of figure 2. It is seen that although both

pseudo-critical values Kcrit
4 (N41) and ∆crit(N41) become very close for increasing N̄41, this

is not the case for the order parameters, which in fact behave in a way similar to that

– 9 –
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Figure 5. The pseudo-critical value Kcrit
4 as a function of N̄41. The solid lines are (one parameter)

fits of formula (2.3) with fixed common values of γ = 1.62 and Kcrit
4 (∞) = 1.095. Colors of the fits

follow the convention used in figure 2.

characterizing the first order transition. It means that a transition between the B and

C phases becomes very rapid. On the other hand, due to the observed hysteresis, the

method used in this analysis chooses a position of measured values for the order parameters

slightly away from the true transition point (located inside the hysteresis region) and thus

in fact we were not able to perform stable simulations exactly at Kcrit
4 (N41) and ∆crit(N41)

corresponding to such a transition point.3

A similar behavior is observed for the set of local order parameters O3 and O4 defined

by

O3 =
∑
t

(nt+1 − nt)2, O4 = max op. (3.2)

Here nt is the number of tetrahedra shared by {4, 1} and {1, 4} four-simplices with bases

at time t and
∑

t nt =
∑

t
1
2N41(t) = 1

2N41. max op is the maximal order of a vertex in

a triangulation. The typical behavior of these two order parameters is expected to be

different in phases B and C. Phase B is characterized by having a macroscopic fraction of

the four-volume concentrated at a single spatial slice corresponding to some time t (in the

sense that almost all {4, 1} and {1, 4} four-simplices have four vertices at this spatial slice).

This is accompanied by the appearance of two singular vertices located at times t± 1 and

shared by a macroscopic number of four-simplices in a triangulation. As a consequence, in

phase B O3

N̄2
41

and O4

N̄41
should be of order one. In phase C there is no such degeneracy and

for large N̄41 both O3

N̄2
41

and O4

N̄41
should approach zero. The behavior of these two order

parameters is presented in figure 7.

3We are currently working on the numerical algorithm which would enable tunneling between both sides

of the hysteresis region in a single Monte Carlo run and thus enable to define a more precise position of the

transition point.
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Figure 6. The order-parameters O1 and O2 as a function of N̄41 at the endpoints of the hysteresis.

The colors correspond to the convention used in figure 2.
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4 Conclusion and discussion

In the present article we made a detailed study of the phase transition observed between

the phase C and the phase B at the value of the dimensionless gravitational coupling

constant K0 = 4.0. The transition appears to be located close to ∆ = 0. The identification

of this region, and the possibility that one can move all the way to the triple points of

the phase diagram, staying entirely inside the “physical” C phase, is a good news for

the renormalization group program started in [54] (and temporarily put on hold by the

discovery of the bifurcation phase). The renormalization group analysis is probably the

cleanest way to connect CDT lattice gravity approach to asymptotic safety. The analysis

of the relevant coupling constant region was made possible by switching from spherical

spatial topology to toroidal spatial topology. In this first study of the interesting region we

positioned ourselves in the middle of the B-C phase transition line, between the two triple

endpoints and from the analysis of the Monte Carlo data we conclude that the transition is

most likely of first order. Since endpoints of phase transition lines often are of higher order,

the triple points might well be of second order and one of them could then serve as a UV

fixed point for a quantum theory of gravity. We are actively pursuing this line of research.

Let us end by some remarks about our quantum gravity model, viewed as a statistical

system of four-dimensional geometries. Despite the almost trivial action (1.3), the model

has an amazingly rich phase structure, with four different phases, each characterized by

very different dominating geometries. In addition, some of the phase transitions have quite

unusual characteristics. The transition between phase B and the bifurcation phase is a

second order transition [44], but superficially, for a finite volume, it looked like a first order

transition. However, analyzing the behavior as a function of the increasing lattice volume

the first order nature faded away. Moving towards larger values of K0, i.e. towards the

region we have been investigating in this article, the transition became more and more like

a first order transition. With the spherical spatial topology used in [44] one could not get

to the region investigated in the present article, but it is natural to conjecture that passing

the triple point moving from the bifurcation-B line to the C-B line, the transition changes

from second order to first order. However, this first order transition is still somewhat

unusual. Firstly, it has kept the characteristics of the second order bifurcation-B transition

that the finite size behavior of the pseudo-critical points, given by eqs. (2.2) and (2.3) have

non-trivial exponents γ. Secondly, the hysteresis gap goes to zero with increasing volume,

which is a non-standard behavior in the case of a first order transition. However, the

jumps of the order parameters seem volume independent and that is the main reason that

we classify the transition as being a first order transition. The large finite size effects we

observe might be related to the global changes of dominant configurations which take place

between phase C and phase B, and these global rearrangements might, for finite volumes,

have a different “phase-space” in the case of spherical and toroidal topologies. That might

explain why our Monte Carlo algorithm can access the B-C transition only in the case of

toroidal topology. The statistical theory of geometries is a fascinating area which is almost

unexplored for spacetime dimensions larger than two.
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Abstract: Causal Dynamical Triangulations (CDT) is a lattice formulation of quantum
gravity, suitable for Monte-Carlo simulations which have been used to study the phase
diagram of the model. It has four phases characterized by different dominant geometries,
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1 Introduction

1.1 Causal Dynamical Triangulations

Causal Dynamical Triangulations (CDT) is a lattice formulation of quantum gravity [1, 2]
based on the path integral approach of Feynman, where certain piecewise linear geometries
provide the lattice structure and the UV cut-off. The action used is the Einstein-Hilbert
action provided for such geometries by Regge [3]. It is the hope that it can be as successful
as Lattice QCD has been in regard to testing non-perturbative aspects of the theory via
numerical simulations. The difference between CDT and Lattice QCD is that in the latter
case the lattice structure is fixed and is just representing the underlying flat spacetime,
while in CDT the geometry is encoded in the lattice connectivity. Since we want to inte-
grate over geometries in the path integral, we have to use lattices with different connectivity
structure. More precisely, within the framework of CDT, the formal path integral of quan-
tum gravity is defined as a sum over geometries constructed by gluing together simplicial
building blocks satisfying certain topological constraints. The most important constraint
is that the quantum geometries admit a global time-foliation into spatial slices of fixed
topology which is conserved in the time evolution. In all cases studied before, the topology
of the spatial slices was chosen to be either spherical (S3) or toroidal (T 3). Even though
the formulation seems to be discrete in nature, it is important to stress that the lengths of
links (i.e., the edges of the simplicial building blocks) play a role of the UV cut-off, which is
supposed to be removed in the continuum limit, if it exists. In 3+1 dimensional spacetime
the simplicial manifolds are constructed from two types of building blocks: the {4, 1} and
the {3, 2} simplices, where the first number denotes the number of vertices at the (dis-
crete) lattice time t and the second one is the number of vertices at time t±1. Within each
four-simplex, all vertices with the same time coordinate are connected by space-like links
and vertices at the neighboring time layers are connected by time-like links. The lengths
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of all spatial links are fixed to be as and of all time-like links to be a2
t = −αa2

s, where the
asymmetry parameter α > 0 if the signature of spacetime is Lorentzian. The simplices are
then glued together along their three-dimensional faces (tetrahedra) in such a way that
no topological defects are introduced and the assumed spatial topology and time-foliation
structure of the simplicial manifolds are preserved. The imposed global time-foliation al-
lows for a well-defined analytic continuation between Lorentzian and Euclidean signatures.
The quantum amplitude can be calculated as a weighted sum over all such discretized four-
dimensional geometries, later called triangulations or configurations, joining two geometric
states. In practice, one usually identifies the initial and final states and thus assumes
time-periodic boundary conditions, leading to the global topology of the CDT manifolds
being either T 1×S3 or T 4, in what we call the spherical or the toroidal CDT, respectively,
depending on the (fixed) spatial topology choice. In the continuum formulation, the path
integral is formally defined as:

ZQG =
∫
DM[g]eiSEH [g] (1.1)

where [g] denotes the equivalence class of metrics with respect to diffeomorphisms and
DM[g] is the integration measure over nonequivalent classes of metrics. This expression
becomes meaningful only if one introduces a regularization. In CDT we make a partic-
ular choice by introducing the piecewise linear regularization described above, and when
performing the Wick rotation from Lorentzian to Euclidean signature, the path integral
becomes a partition function:

ZCDT =
∑

T
e−SR[T ] (1.2)

with the Regge action [4]:

SR = −(κ0 + 6∆) ·N0 + κ4 · (N41 +N32) + ∆ ·N41, (1.3)

where N0 is the number of vertices in a triangulation T , N41 and N32 are the numbers
of {4, 1} and {3, 2} simplices, respectively. The action is parametrized by a set of three
dimensionless bare coupling constants, κ0, κ4 and ∆ corresponding respectively to the in-
verse gravitational bare coupling constant, the dimensionless cosmological constant and a
function of the asymmetry parameter α. The model is analytically solvable in 1+1 dimen-
sions [5] and the 2+1 dimensional model can be associated with matrix models [6–8]. The
3+1 dimensional model discussed here can be analyzed via Monte Carlo simulations.

1.2 Phase transition methodology

The phase structure is such that for given κ0 and ∆ there exists a κcrit
4 such that for

κ4 > κcrit
4 the average value of N4 = N41 + N32 will be finite, while for κ4 < κcrit

4 the
partition function is not well defined. We are interested in the limit where N4 → ∞.
In order to obtain that in a controlled way, in the numerical simulations where N4 will
fluctuate, we add to the action (1.3) a quadratic volume fixing term: ε (N41− N̄41)2. Then,
to achieve that N41 actually fluctuates around N̄41 in the large-volume limit, one has to add
the volume fixing term and fine-tune the bare cosmological constant κ4 to its pseudo-critical
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value κcrit
4 (N̄41). Only for N̄41 → ∞ will κcrit

4 (N̄41) approach the true critical value κcrit
4 .

The nontrivial behavior of κ4 near κcrit
4 is transferred to the volume dependence of κ4 on

N̄41. It means that for each N̄41 we effectively fix the pseudo-critical value of the coupling
constant κcrit

4 (N̄41) and we study the properties of the model parametrized by the two
remaining coupling constants: κ0 and ∆. Observing the geometric structures of individual
triangulations and their extracted averaged properties, one may find regions where these
properties differ from one another. In this way the two-dimensional phase diagram of
the model can be determined, and it reveals a rich structure with many phase transition
lines, see figure 1. The phase transitions in CDT have so far been analyzed using standard
techniques. It has been shown that the peak in the variance of an order parameter typically
designates, with high accuracy, the location of the phase transitions, and also the Binder
cumulant can be used to predict the value of the infinite volume limit of a given coupling
constant using finite volume scaling measurements [9–13]. Typically, one selects a value of
a coupling constant (κ0 or ∆) and creates a set of configurations with fixed values of one
coupling (e.g., κ0) and changed values of the other coupling (e.g., ∆) with step-size δκ0 or
δ∆. After thermalizing these configurations one collects statistics of various observables for
different geometries. Collecting large enough statistics is necessary to calculate averages of
these observables with high accuracy. Each line (or grid) of measurements gives information
about the location of the phase transition and the pseudo-critical value of the observed
quantities for fixed N̄41.1 Taking the limit N̄41 → ∞ gives the continuum behavior of the
chosen observable, and the critical exponents can be extracted. The finite size dependence
of the observables (which are functions of ∆ and κ0) is non-trivial. In this paper we try
to use this dependence to determine the properties of the CDT phase transitions in the
infinite volume limit, i.e., when N̄41 →∞ and κ4 → κcrit

4 .
One should also note that in the phase transition studies described herein, we have

tested and used a new method of finding locations of the phase transition points based on
machine learning techniques, namely the so-called logistic regression method which turned
out to be very efficient. More details can be found in the appendix.

2 The phase diagram of CDT

The geometry of a CDT triangulation can be investigated by analyzing various observables.2
They can be general quantities characterizing global properties of a triangulation, e.g., the
ratios: O1 ≡ N0/N41 or O2 ≡ N32/N41. They can be as well more local quantities, e.g.,
the distribution of the spatial three-volume as a function of the (lattice) time coordinate,
which can be measured both in the spherical and the toroidal version of CDT, as it is
presented in figure 2. Other examples of local observables are the recently introduced
space-time coordinates [14], which map a triangulation onto four scalar fields, enabling one

1Note that in a lattice formulation for any finite lattice size N̄41 the free energy is finite and thus one
has a cross-over rather than a true phase transition, thus we talk about pseudo-criticality. Only in the limit
where N̄41 →∞ one recovers a true phase transition.

2Here what we call observable is a quantity which can be measured in numerical simulations. It does
not have to be a gauge / diffeomorphism invariant observable.
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Figure 1. Phase-diagram of CDT with the four phases. The plot shows the position of phase
transitions measured for fixed lattice volume N̄41 = 160k in the toroidal CDT. In the spherical
CDT case the phase structure is similar, although the phase transition between C and B phases
(denoted by the green solid line) was inaccessible by numerical simulations.

to measure and visualize four-volume density distribution in all spacetime directions within
the toroidal version of CDT, see figure 3.

Geometric properties of generic triangulations dominating the path integral (1.2), and
thus the typical behavior of the above-mentioned observables, will vary depending on the
choice of the bare coupling constants: κ0 and ∆.3 Even though the bare action of CDT (1.3)
is very simple, the 3 + 1-dimensional model reveals a surprisingly rich phase structure, see
figure 1, which seems to be universal, independent of the spatial topology choice [15]. So
far, four phases with distinct geometric properties were discovered — called A, B, C and
Cb, respectively.

For large values of the bare inverse gravitational constant κ0 one encounters phase A.
This phase is characterized by the spatial volumes at different (lattice) time layers being
uncorrelated [16], which is seen clearly in the upper left panel in figure 2. Approaching
phase A from the phase C, where one has an effective minisuperspace action [17] (see
below), the coefficient in front of the kinetic term, which couples spatial volume in the
neighboring time layers, vanishes reflecting the lack of correlation between spatial volumes.
On the A-side the system is described by an effective action without kinetic term. On the
other hand, the generic geometry of the spatial slices themselves seems to be isotropic and
homogeneous, see figure 3, left upper panel.

For small or negative values of the asymmetry parameter ∆ one observes phase B,
where the typical spatial volume distribution is collapsed into a single time layer with the
three-volume distribution pinched to the cut-off size in the remaining part of a generic

3As explained above the κ4 is fine tuned to the pseudo-critical value κcrit
4 (N̄41) dependent on the fixed

lattice volume N̄41.
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Figure 2. Spatial volume profiles of generic CDT configurations in different phases. Top: Spherical
CDT: A, B, Cb, C; Bottom: Toroidal CDT: A, B, Cb, C, respectively.

Figure 3. The structure of the geometry of phase A (top left), B (top right), Cb (bottom left), and
C (bottom right), respectively, using the scalar field mapping method defined in [14]. The plots
show four-volume density distribution of generic CDT configurations in each phase projected on
two spatial directions.
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triangulation, see figure 2. Thus, the four-dimensional geometry is effectively reduced to
a three-dimensional geometry, in the sense that all four-volume is contained in a thin slab
surrounding a single time layer. Moreover, in such a generic configuration, the isotropy
and homogeneity of three-dimensional space is itself maximally broken, in the sense that
the whole volume is concentrated around a few vertices. This is illustrated in figure 3, top
right panel.

For not too large κ0, increasing ∆ one moves from the B phase to the so-called bi-
furcation phase, Cb. In this phase the number of constant time layers where the spatial
volume is significantly different from the minimal value starts to increase and forms a blob,
see figure 2. However, when one increases the four-volume N41 sufficiently, the extension
of this blob ceases to increase as N1/4

41 . This implies that in the limit where N41 → ∞,
the stalk, where the spatial volumes are of cut-off scale, will dominate if we allow the time
direction to be of order at least N1/4

41 . In addition, if we look at the spatial geometry inside
time layers belonging to the blob, it shows the same characteristics as the spatial geometry
in the B phase: isotropy and homogeneity are broken for a generic configuration by the
presence of a few high-order vertices. These high-order vertices are correlated from slice to
slice within the blob. As we continue to increase ∆ or κ0 this effect becomes less and less
pronounced [18]: the order of the high-order vertices decreases and the blob broadens but
it does not disappear. A stalk will remain. The lower left panel in figure 3 shows that not
only in the time direction, but also in the spacial directions, the geometry is more extended
than in the B phase, but still inhomogeneous. Increasing ∆ or κ0 even further bring us
into phase C.

In phase C, which is also denoted the de Sitter phase or the semiclassical phase, the
spatial volume profiles seem to depend on the choice of spatial topology, as illustrated in
the right panels in figure 2. In the case where the spatial topology is S3 the volume profiles
form a blob, like in the bifurcation phase. The crucial difference is that the extension of
the blob scales as N1/4

41 and a typical spatial volume in the blob scales as N3/4
41 . Thus, one

might obtain a semiclassical geometry of the blob in the limit N41 → ∞. Similarly, the
generic spatial slices seem to be isotropic and homogeneous without the high-order vertices
of phase B and phase Cb. In the case where the spatial topology is T 3 we do not observe
a blob, but rather a constant volume profile with superimposed (small) fluctuations. In
both cases, the spatial geometries (except for the geometry in the stalk in the case where
the spatial topology is S3) of generic configurations seem to be isotropic and homogeneous
on large scales while on shorter scales one can observe volume density fluctuations forming
voids-and-filaments [14, 19], surprisingly similar to structures formed by matter content
of the real Universe, as illustrated in the lower right panel in figure 3. In accordance
with this, the volume profiles are well described by minisuperspace actions similar to the
Hartle-Hawking minisuperspace action [20–24], and the kinetic term in the minisuperspace
actions has the same coefficient in the two cases.

The A−C transition has been determined to be a first-order transition [9, 12], while
the B−Cb transition has been determined to be a second-order transition [9, 13] in both
S3 and T 3 spatial topology choices. The C−Cb transition was found to be a second-order
transition in the case where the spatial topology was S3 [10, 11] and (seemingly) a first-
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order transition when the spatial topology was T 3 [15]. The B−C transition and the A−B
transition could be studied by MC simulations in the case where the spatial topology is
T 3. Preliminary results for the B−C transition were reported in [25], but herein we will
improve the data for the B−C transition and complete the phase diagram by measuring
the yet unexplored A−B transition. As a result, we will see an interesting pattern emerge,
to be discussed in section 5.

3 The A−B phase transition

The phase transition between phases A and B was not analyzed earlier in detail. This
transition is important because there is a point in the phase diagram which is the common
endpoint of the A−C, A−B and B−C phase transitions (the A−B−C triple point), see
figure 1, which is a potential candidate of the UV fixed point of CDT. Thus, understanding
the nature of all surrounding phase transitions is crucial. We perform a finite volume
scaling analysis and determine the order of the A−B phase transition for three different
fixed values of κ0 = 4.8, 4.6 and 4.5 (and the corresponding observables will be denoted
with their corresponding κ0 coupling as a lower right index). At this phase transition,
the time-reduced collapsed configurations on the B side of the transition compete with
time-uncorrelated configurations on the A side (see figure 2). For consistency, the scaling
exponent is measured for the three fixed values of κ0 independently by varying the values
of ∆ to find the (pseudo-)critical values ∆crit(N̄41) together with the scaling exponents γ.
We performed simulations for various volumes (ranging between N̄41 = 20k and 720k) to
find the scaling exponents for each fixed κ0 measurement set. Our assumption about the
critical behavior of ∆crit(N̄41) in the limit N̄41 → ∞ is a (standard) power function, the
same as used in the previous phase transition studies cited before:

∆crit(N̄41) = ∆∞ − C̃ · N̄−1/γ
41 , (3.1)

where C̃ is a constant, ∆∞ is the value of the asymmetry parameter corresponding to the
infinite volume limit at fixed κ0 and γ is the scaling exponent.

The best fits for the scaling exponents γ were measured to be γ4.8 = 1.088 ± 0.101,
γ4.6 = 1.029 ± 0.178, and γ4.5 = 1.151 ± 0.379 for the three κ0 values considered. As the
best fitted exponent values are all consistent with the first-order behavior, i.e., γ = 1, we
used fixed γ = 1 to fit relation (3.1) to our data, as presented in figure 4. By extrapolating
the fits to the infinite volume limits ∆crit were determined to be ∆∞4.8 = −0.110 ± 0.001,
∆∞4.6 = −0.077± 0.001 and ∆∞4.5 = −0.059± 0.001 for the three cases respectively.

In the following analysis, we will assume that near the phase transition point not only
the critical coupling(s) ∆crit(N̄41), but also other relevant order parameters scale similarly
to eq. (3.1) with the critical exponent fixed at γ = 1. This is indeed supported by our
data. In figure 5 we show the results for the O2 ≡ N32/N41 observable measured for each
side of the phase transition independently.

The fits shown in figure 5 have a close to zero value of O∞2 for all cases, but on the
A side of the transition the approach to O∞2 ≈ 0 becomes slower with decreasing κ0, i.e.,
slower when we approach the A−B−C triple point.
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4 for the A and B phases at the infinite volume limit.

A final observation corroborating the first-order nature of the A−B transition is the
fact that the values κcrit

4 (N̄41) observed in the A phase and the B phase data closest to
the transition point do not converge to a common value for N̄41 → ∞. This is shown in
figure 6 (where we have used data from figure 4 to express N̄41 in terms of ∆crit). It is seen
that when we increase N̄41, which corresponds to higher ∆crit in the plot, the gap between
κcrit

4 (A- side) and κcrit
4 (B- side) increases. This shows that the MC simulations collect very

different configurations on the A and the B phase transition side, a situation typical for a
first-order transition.

Summarizing, in this section we have analyzed the behavior of the A−B phase transition
for three different fixed values of κ0 via the scaling of the asymmetry parameter ∆crit(N̄41)
and O2 on the two sides of the phase transition. For all measured values of κ0, the fitted
values of the scaling exponent γ are consistent with the first-order behavior (γ = 1). Thus,
we conclude that the A−B phase transition is a first-order phase transition. The order of
the A−B phase transition does not exclude the possibility that exactly at the endpoint
(A−B−C triple point) the phase transition could be of higher-order.

4 Revisiting the B−C phase transition

Recently, using manifolds with toroidal spatial topology, we were able, for the first time, to
measure the properties of the B−C phase transition [25] at fixed κ0 = 4.0. This result was
important since this region of the phase diagram is between the two common endpoints of
CDT phase transition lines (the A−B−C and the Cb−B−C triple points), see figure 1.
We determined the critical behavior based on measurements for a sequence of values of
∆ approaching the phase transition from B and C sides of the phase diagram. Using the
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approach presented in [25] we established a range of coupling constants, within which, for
a given finite value of N̄41, the system jumps between the two phases. We determined
the limits of this hysteresis region and measured the (volume dependent) pseudo-critical
values of the coupling constants ∆ and κ4 as close to the phase transition as we could
get with respect to the hysteresis. We observed that, similarly to the A−B transition
case, the position of the phase transition line moves towards larger ∆ and κ0 values when
N̄41 is increased. Again, the true phase transition is observed in the infinite volume limit
N̄41 → ∞ which corresponds to κ4 → κcrit

4 (κ0,∆). In [25] we assumed the standard finite
volume scaling for ∆crit(N̄41), κcrit

0 (N̄41) and κcrit
4 (N̄41), analogous to eq. (3.1):

∆crit(N̄41) = ∆∞ −A · N̄−1/γ
41 (4.1)

κcrit
0 (N̄41) = κ∞0 −B · N̄−1/γ′

41

κcrit
4 (N̄41) = κ∞4 − C · N̄−1/γ′′

41 .

We showed that in the limit N̄41 → ∞, the hysteresis shrinks to zero. Furthermore, we
observed that on both sides of the phase transition ∆crit(N̄41) and κcrit

4 (N̄41) scale in the
same way. The scaling analysis of this behavior could be characterized by a common critical
exponent γ ≈ 1.62± 0.25, potentially signaling a higher-order phase transition. As we will
show below, an equally good fit to the data can be obtained using γ = 1 and a higher-
order correction given by a universal small constant shift of N41 for data measured on both
sides of the transition line. This indicates that the transition might be first-order, which
is supported by the analysis of the order parameters O1 ≡ N0/N41 and O2 ≡ N32/N41
showing a strong discontinuity between the two phases even in the infinite volume limit,
as already noted in [25].

Herein we have repeated the analysis for κ0 = 4.0 with much larger statistics and we
have also performed new measurements for κ0 = 4.2, which is closer to the A−B−C
triple point. The lattice volumes used ranged from N̄41 = 40k and 1600k. We denote
the measurements performed at fixed κ0 = 4.0 and 4.2 as vertical since in the (κ0,∆)
coupling-constant plane only ∆ varies. Similarly, we have performed measurements with
fixed ∆ = 0 and −0.02 varying κ0 values. We refer to these as horizontal measurements.
In the horizontal measurements, the lattice volumes ranged from N̄41 = 40k to 800k. n the
following, we will present results in pairs related to the two values of the fixed coupling
constant in the horizontal and the vertical measurement, respectively. Even though we now
have much better statistics than in [25] and have measured the B−C phase transition at
various bare coupling constant locations, approaching the transition line in different ways
(vertically and horizontally), a fit to eq. (4.1) still does not allow a very good determination
of the scaling exponents γ, γ′ and γ′′, indicating that for the considered range of lattice
volumes the assumed functional form (4.1) might not be optimal. Typically, we could only
determine γ to be between 1.6 and 2.6, but on the other hand γ = 1 does not seem to be
a good fit. This leads to the conclusion that higher-order corrections should be included
as they can be important for smaller volumes. Below we propose a very simple finite size
correction of the kind considered in [26], namely we perform a shift N̄41 → N̄41 − const.
Thus, instead of using eq. (4.1), we will use a slightly modified scaling relation, which can
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Fit χ2
κ0=4.0 χ2

κ0=4.2 χ2
∆=0 χ2

∆=−0.02

free γ 1.3e-04 6.4e-05 2.3e-02 3.6e-02
γ = 1 1.7e-05 4.6e-05 1.9e-02 4.7e-02

Table 1. The χ2 values related to the individual fits of eq. (4.1) (free γ) and eq. (4.2) (γ = 1)
to finite volume scaling of the coupling constants: ∆crit (vertical measurements in the left two
columns) and κcrit

0 (horizontal measurements in the right two columns).
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Figure 7. Finite volume scaling of the coupling constants ∆crit (left panel) and κcrit
0 (right panel).

The dashed and solid curves represent fits to eq. (4.1) and eq. (4.2), respectively. In the left panel
(vertical measurements), green data-points are for fixed κ0 = 4.0 and blue are for κ0 = 4.2. In
the right panel (horizontal measurements), green data-points are for fixed ∆ = −0.02 and blue are
for ∆ = 0.

be viewed as corresponding to the first-order transition (fixed γ = 1), but with a specific
form of a finite size correction:

∆crit(N̄41) = ∆∞ −A · (N̄41 − const1)−1, (4.2)
κcrit

0 (N̄41) = κ∞0 −B · (N̄41 − const2)−1,

κcrit
4 (N̄41) = κ∞4 − C · (N̄41 − const3)−1.

Both scaling relations of eq. (4.1) and eq. (4.2) have the same number of free parameters,
i.e., they require a three-parameter fit. We can now compare the two different classes of
fits. The parameters for the best fits of the critical scaling of ∆crit (vertical measurements)
and κcrit (horizontal measurements) using equations (4.1) and (4.2) were found via the
least squares method. In table 1 we show values of χ2 corresponding to the fits presented
in figure 7.

In figure 7 the vertical measurements (for fixed κ0) are in the left plot and the horizontal
ones (for fixed ∆) are in the right plot. In both cases, the dashed lines show the fits of
eq. (4.1) and solid lines are the fits of eq. (4.2). Table 1 and figure 7 clearly show that the
two classes of fits are really close to each other in all cases; thus, using this information
alone, it is hard to distinguish the order of the B−C transition. Additional hint comes
from analysis of the κcrit

4 parameter measured on both sides of the transition, i.e., using
data on both sides of the hysteresis region as close to the transition as one can get. This
is presented in figure 8 where we compare fits of eq. (4.1) and eq. (4.2) to these data. The
vertical measurements are shown in the left panel of figure 8 and the corresponding χ2
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Fit χ2
κ0=4.0,C χ2

κ0=4.0,B χ2
κ0=4.2,C χ2

κ0=4.2,B

free γ 1.15e-06 5.2e-05 1.3e-06 6.3e-06
γ = 1 1.05e-06 1.6e-05 8.1e-07 4.2e-06

Table 2. The χ2 values related to the individual fits of eq. (4.1) (free γ) and eq. (4.2) (γ = 1) to
finite volume scaling of the κcrit

4 in vertical measurements (κ0 fixed). The C or B indices indicate
which side of the phase transition the fitted data belong to.

Fit χ2
∆=0,C χ2

∆=0,B χ2
∆=−0.02,C χ2

∆=−0.02,B

free γ 1.2e-04 2.2e-04 1.6e-04 4.1e-04
γ = 1 1.2e-04 1.0e-04 2.1e-04 3.8e-04

Table 3. The χ2 values related to the individual fits of eq. (4.1) (free γ) and eq. (4.2) (γ = 1) to
finite volume scaling of the κcrit

4 in horizontal measurements (∆ fixed). The C or B indices indicate
which side of the phase transition the fitted data belong to.
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Figure 8. Finite volume scaling of the κcrit
4 in vertical measurements with fixed κ0 = 4.2 and 4.0

(left panel) and horizontal measurements with fixed ∆ = 0 and −0.02 (right panel). The dashed
and solid curves represent fits to eq. (4.1) and eq. (4.2), respectively. In both plots blue color
corresponds to data measured in phase B and red in phase C — closest to the phase transition
(hysteresis) region. Darker colors correspond to lower values of the fixed coupling constant.

values in table 2. The horizontal ones are in the right panel of figure 8 and the χ2 values
can be found in table 3. Again, the difference between the two classes of fits is not large,
however, our data favor slightly the first-order fits.

Summarizing, we have shown that the first-order type of critical scaling relation (with
the proposed finite size correction) fits our data at least as well or even better than the
(standard) higher-order fits. Therefore, taking into account the behavior of order param-
eters which, as already shown in [25] and discussed above, on both sides of the transition
behave discontinuously even when extrapolated to the infinite volume limit, we conclude
that the data favor a first-order B−C transition, but with the admittedly strange property
that in the limit N̄41 →∞ the region of hysteresis shrinks to zero.
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5 Discussion and conjecture

In this paper, we have analyzed the previously not measured A−B phase transition at
three different locations of fixed κ0 = 4.8, 4.6, and 4.5. The finite size scaling analysis
of ∆crit(N̄41) revealed a scaling exponent γ close to value 1, which points to a first-order
phase transition. Next, we analyzed the B−C phase transition, improving the statistics
and extending the previous research to another fixed value of the κ0 = 4.2. We also
analyzed the finite size scaling when approaching the critical line along the perpendicular
direction in the coupling constant space where ∆ was fixed at 0 and −0.02. We concluded
that the B−C phase transition was also a first-order transition, although we had to use a
slightly modified fitting function to obtain acceptable agreement with data. Let us stress
that the phase transitions considered are non-standard from the point of view of ordinary
phase transitions, since they involve changes in spacetime, rather than changes in field
configurations on a fixed spacetime. From the above and our earlier measurements, an
interesting pattern emerges, relating the order of the CDT phase transition to changes in
the topology of spacetime and it leads to the following conjecture: phase transitions which
involve a change in topology will be first-order transitions.

First, let us clarify that by topology we mean effective topology. This is exemplified by
the configurations we observe in the C phase if the topology of space is S3 and we have time-
periodic boundary conditions. Thus, from the outset the topology of the triangulations
is that of T 1 × S3. This is encoded in the initial configuration when we start our MC
simulations. By construction, any MC update of the configuration does not change the
imposed topology. However, after many MC updates, a typical generic configuration will
effectively look like an S4-triangulation where the north-pole and the south-pole of this S4

are connected by a thin stalk of cut-off scale. While technically the triangulation still has
the topology T 1 × S3, it is clear that if allowed by the updating algorithm, the preferred
configurations would have the topology of S4. Secondly, recall from the discussion of the
nature of generic configurations in section 2, that we observed a second-order transition
between phase B and phase Cb, where there is no change in the effective topology. Likewise,
in the case when the spatial topology is S3 there is no real change in topology when we
move from phase Cb to phase C and again we observe a second-order transition. All other
phase transitions observed are first-order transitions and they are related to a change of the
effective topology. In the case of toroidal spatial topology, the Cb − C transition involves
a change from S4 in phase Cb to T 4 in phase C. Similarly, the B − C transition involves
a change from S4 to T 4. The effective topology of phase A may be best characterized as
the topology of a disjoint union of spatial geometries of various extensions (see upper left
panel in figure 2). Thus, it is different from the topologies encountered in phase C and
phase B. Again, the observed phase transitions between phase C and phase A, as well as
the transition between phase B and phase A, are first-order transitions.

With hindsight, it is not surprising that a change in the topology of spacetime at the
phase transition might result in a first-order transition, since often one would need some
major rearrangements of the configurations to implement the change. In this way, a barrier
for such a change can be created and lead to pronounced hysteresis. Such phenomena are
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of course well known in field theories, where the topology of field configurations might
change. The new thing here is that we are discussing the topology of spacetime itself. We
were alerted to the relation between topology change of spacetime and phase transitions
when we studied scalar fields coupled to geometry [19, 27], but the phenomena seen there
are in fact already present in the pure theory of geometry as discussed here.

In the CDT theory, our main interest is to find a second-order phase transition where
we might be able to define a continuum limit and maybe even a UV fixed point. Since
only phase C seems to offer acceptable infrared configurations, it is natural to look for
phase transition lines in or at the border of phase C. From the results reported here, we
cannot use toroidal spatial topology in such studies, since the transitions will be first-order.
One should note that there is still a chance that even though the phase transition lines
bordering the C phase are first-order, the triple points where the lines end and meet may
be of higher-order. This may be indeed the case of the Cb−B−C triple point as the
higher-order B−Cb transition line ends in this point as well. Nevertheless, this scenario is
not very natural and it is hard to be proven numerically. However, if the spatial topology
is S3, the Cb−C transition is a second-order transition. In addition it is then possible
that the B−C transition will also be second-order and it makes the Cb−B−C triple point
an interesting candidate for a UV-fixed point. At least it would then be a point where
three second-order transition lines meet. In addition, the Cb − C transition has in that
case the simple interpretation as the phase transition related to the breaking of isotropy
and homogeneity. One could then imagine that the shadow of such a breaking could be
important for inhomogeneities in our universe.
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A Machine learning locations of the CDT phase transitions

As already noted in section 1.2, in all phase transition studies described herein we have
tested and used a new method of finding locations of the (pseudo-)critical points based on
machine learning techniques. We have tried many machine learning (ML) methods4 but the
one which turned out to be both very simple and at the same time most efficient has been
based on a logistic regression model. A detailed discussion of the logistic regression in the

4Detailed results of using Machine Learning in CDT data analysis will be published in a separate article.
Here we just focus on the Logistic Regression used in the current study.
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context of ML can be found, e.g., in [28], so below we only shortly summarise this approach
and describe most important aspects of its implementation in the context studied here.

Logistic regression is a so-called supervised ML technique which can be applied when
one has labeled training data sets. It is commonly used in classification problems, where
some new, yet unlabeled, data have to be divided into sub-classes attributed with labels of
the training set. A simple example studied here concerns data measured in Monte Carlo
simulations which can be classified as belonging to one of two different phases, labeled
P0 and P1. Each data point pj within the MC measurements is characterized by a set
of features (observables): {xi(pj)}. In the binary classification problem, where one has
only two classes, the probability that a data point pj belongs to class P1 is estimated by a
logistic function:

Pr(pj ∈ P1) = 1
1 + b−

∑
i
wixi(pj) (A.1)

and the probability that pj belongs to class P0 is then Pr(pj ∈ P0) = 1 − Pr(pj ∈ P1). In
the learning process a numerical algorithm optimises parameters of the logistic function,
i.e., b and wi (weights), by minimizing a cost function, usually defined as the cross-entropy
of the (labeled) training data set:5

cost function = − 1
N

N∑

j=1

(
lj ln Pr(pj ∈ P1) + (1− lj) ln Pr(pj ∈ P0)

)
, (A.2)

where lj = 1 if pj ∈ P1 and lj = 0 otherwise. In practice one usually adds L1 = λ1
∑
i |wi|

(Lasso regularization) or L2 = λ2
∑
iw

2
i (Ridge regularization) to the cost function, where

λ1 and λ2 are metaparameters of the model. Including non-zero λ1 or λ2 reduces the number
of non-zero weights wi which effectively acts as a penalty for the number of parameters
and thus enhances model prediction accuracy and interpretability.6

For each phase transition studied here, we create a training data set by manually
attributing phase labels to CDT data measured deep into each phase and use these data
to learn (fit) the logistic regression model. Then we use the learned model to classify
other data, measured closer to the transition region, as belonging to one of the two phases.
The phase transition point is signalled by a sudden change of the probability (A.1) of the
measured data to belong to a given phase from ∼ 0 to ∼ 1, see figure 9. We have decided
to look at data measured for each chosen value of the fixed coupling constant and each
lattice volume independently, i.e., for each such a choice we create an independent training
set, fit our model and use it to find the critical point. Take, e.g., the A−B transition
analysis done for some fixed value of κ0 and fixed N̄41 volume based on data measured for

5Often, the learning data are additionally split into the training and the test sets. Parameter optimization
(fitting) is done using the training set but model accuracy is checked using the test set.

6The metaparameters λ1 and λ2 can themselves be optimized by fitting many models with different λ1

and λ2 and choosing the one with the highest accuracy. In all cases studied here the optimal models had
very small values of these metaparameters.

– 15 –



J
H
E
P
0
4
(
2
0
2
2
)
1
0
3

different values of the ∆ coupling: ∆min,∆1, . . . ,∆k,∆max, see section 3. The procedure
to find ∆crit(N̄41) is the following:7

1. take all data measured for the highest value of ∆ = ∆max (deep in phase A) and
label it as P1 (or “phase A”),

2. take all data measured for the lowest value of ∆ = ∆min (deep in phase B) and label
it as P0 (or “phase B”),

3. take a subset of data from points 1 and 2 as a (labeled) training set,

4. learn (fit) the logistic regression model using the training set;8 this step also includes
optimizing metaparameters of the model (λ1 and λ2 regularization coefficients),

5. check accuracy of the fitted model using all data from points 1 and 2 (in all cases
analyzed the accuracy was 100%, i.e., the model was able to distinguish between the
P1 and P2 data perfectly),

6. use the fitted model to classify other, yet unlabeled, data measured for ∆: ∆1, . . . ,∆k,
i.e., closer to a phase transition region than data from points 1 and 2,

7. compute the probability of all classified data points to be in phase P1: Pr(pj ∈ P1),
see eq. (A.1),

8. compute the mean value 〈Pr(pj ∈ P1)〉∆ (and the error: standard deviation) of the
probability of all data points measured for a given ∆,

9. find the transition point ∆crit(N̄41), where 〈Pr(pj ∈ P1)〉∆ jumps from ∼ 0 to ∼ 1,
see figure 9.

Then we repeat the analysis (model learning and classification) for a different lattice volume
N̄41, and then also for each different κ0 independently.

It is important to stress that in the data analysis described above we used only geomet-
ric information about triangulations (configurations) generated in MC simulations, i.e., the
set of features used in the ML model fitting and classification does not include any informa-
tion about the values of the CDT coupling constants or other MC simulation parameters.
Therefore we can say, that the method learned to distinguish the phases purely on (some)
geometric features of the triangulations. We used a set of 30 geometric observables, in-
cluding both global parameters of the triangulations: N0, N1, N2, N4, N41, MO, i.e., the
total number of vertices, links, triangles, four-simplices, {4, 1}-simplices and maximal co-
ordination number of vertices, respectively, as well as “per-time-slab” data: N41(t), N32(t),
N23(t), N14(t), N0(t),MO(t), i.e., the number of {4, 1}, {3, 2}, {2, 3} and {1, 4}-simplices in

7For the B−C transition, see section 4, P1 denotes “phase C”, and in the vertical measurements the
procedure is exactly the same while in the horizontal measurements one fixes ∆ and changes κ0 (thus
κ0 ↔ ∆).

8During ML process we have chosen not to split the learning data into independent training and test
sets. Instead we make a global check of the model accuracy — see point 5.
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Figure 9. Machine learning analysis of the A−B transition for fixed κ0 = 4.8 and N̄41 = 100k.
Red points are the mean probabilities 〈Pr(pj ∈ P1)〉∆ that all MC measurements performed for a
given value of ∆ belong to phase A. The probabilities were computed using the logistic regression
model (A.1) learned (fitted) using only part of data measured for the lowest and the highest ∆
(denoted by empty dots). For comparison we also plot the traditional order parameters O1 (rescaled
by 5×) and O2 (rescaled by 35×).

a given slab between (lattice) time coordinate t and t+1, the number and maximal coordi-
nation number of all vertices with a time coordinate t, respectively. In all cases t = 1, 2, 3, 4
(with periodic boundary conditions). In order to increase statistics of our data set and also
to encode information about a time shift symmetry of the CDT model, we have quadru-
pled the data by performing a time shift of all “per-time-slab” features by (periodically)
changing their time coordinates t = (1, 2, 3, 4)→ (4, 1, 2, 3)→ (3, 4, 1, 2)→ (2, 3, 4, 1). The
values of the global features kept unchanged.

The above-mentioned observables also enable one to compute traditional order param-
eters, which were earlier used to distinguish between the CDT phases, e.g., O1 ≡ N0/N41
or O2 ≡ N32/N41 and thus check if the automatic ML classification algorithm is consistent
with our former results, see figure 9. We implemented the logistic regression model in
Wolfram Mathematica 12 using the built-in function:

Classify[..., Method -> "LogisticRegression"]

with standard parameters. In all cases analyzed the model classified both A−B and C−B
phase transition data correctly, with a 100% accuracy, see figure 9 as an example.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Abstract Using computer simulations, we study the geom-
etry of a typical quantum universe, i.e., the geometry one
might expect before a possible period of inflation. We dis-
play it using coordinates defined by means of four classical
scalar fields satisfying the Laplace equation with nontriv-
ial boundary conditions. They are a close analogue of the
harmonic coordinate condition used in the context of GR
(Kuchar and Torre in Phys Rev D 43:419–441, 1991). It is
highly nontrivial that these ideas can be applied to under-
stand the structures which appear in very irregular and fluc-
tuating geometries. The field configurations reveal cosmic
web structures surprisingly similar to the ones observed in
the present-day universe.

1 Introduction

One major unsolved problem in theoretical physics is how to
unite the theory of general relativity and quantum mechan-
ics. It is hoped that such a unification will allow us to under-
stand physics at the Planck scale, where the assumed quantum
nature of gravity most likely plays a dominant role. Further-
more, the idea of an inflationary period in the history of our
Universe has taught us that these quantum fluctuations at or
near the Planck scale can, owing to an exponential growth of
the size of the Universe, freeze and be expanded into the seeds
of macroscopic large-scale structures. Results presented in
this article suggest that the scenario of cosmic filaments and
voids that we observe in the Universe today might have its
source at the very early stage of cosmic evolution of quantum
geometric degrees of freedom.

a e-mail: daniel.nemeth@doctoral.uj.edu.pl (corresponding author)

2 Lattice quantum universes

To discuss universes of the size of a few Planck lengths
and their fluctuating quantum geometry, one needs a non-
perturbative model of quantum gravity. We will discuss here
a particular model called Causal Dynamical Triangulations
(abbreviated to CDT; see [2,3] for a comprehensive intro-
duction and an explanation of its somewhat technical name),
but we believe that our results are generic and will be present
in any reasonable quantum model of gravity. In CDT, space-
time is a triangulation built by joining together fixed-size
four-dimensional simplices in a way that satisfies certain
topological requirements. The edge length ε of the four-
simplices acts as an ultraviolet (UV) cutoff. Its choice also
fixes the geometry of a triangulation. The way in which sim-
plicial building blocks are connected codes the information
about the curvature of the particular configuration. A natural
geometric way of calculating the classical Einstein-Hilbert
action on such piecewise linear manifolds leads to the so-
called Regge action. The lattice regularized path integral of
quantum gravity is then given by

ZQG =
∫

DMH [gL ] ei SE H [gL ] →
∑

TE ∈TE

e−SR [TE ], (1)

where MH is a globally defined hyperbolic Lorentzian man-
ifold and DMH [gL ] denotes the integration over equivalence
classes [gL ] of Lorentzian metrics on MH . TE is a suit-
able set of Wick-rotated Euclidean triangulations. The Regge
action SR[TE ] for a triangulation TE ∈ TE contains the
bare couplings related to the cosmological and Newton con-
stants. In principle, we want to adjust the bare coupling con-
stants such that we can take the UV cutoff ε to zero while
keeping the physics unchanged (see [4] for a recent review).
In accordance with the imposed global hyperbolicity, CDT
introduces a time foliation of the four-dimensional manifolds
into three-dimensional leaves, which are three-dimensional
spatial sub-manifolds with a global time t and a fixed topol-
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ogy. The explicit CDT construction permits a Wick rota-
tion of the time coordinate t (still denoted t), whereby CDT
becomes a statistical model that can be studied using Monte-
Carlo simulations. Each configuration obtained in the simu-
lations can be viewed as the quantum evolution of a three-
dimensional quantum geometric state in the imaginary time.
This allows us inter alia, to measure the time dependence
of some global quantities such as the spatial volume. It was
shown [5–12] that, for suitable choices of the bare coupling
constants, both the average spatial volume and its fluctua-
tions can, with a large degree of accuracy, be described by
the Hartle–Hawking minisuperspace model, which assumes
isotropy and homogeneity of the Universe such that the only
dynamical variable is the scale factor a(t). It should be
emphasized that the isotropy and homogeneity are not put in
by hand in CDT but follow from integrating out all degrees of
freedom other than the scale factor, and the typical geometries
encountered in the quantum path integral are not at all close
to the classical homogeneous solution of GR. The approx-
imate agreement with the classical minisuperspace solution
is obtained from an average of an ensemble of highly fluctu-
ating geometric states and is caused by a nontrivial interplay
between the physical action and the entropy of configura-
tions.

The CDT model is background independent and, in the
spatial directions, coordinate free. There is no background
geometry in the definition of the path integral. Geometric
information provided by the model is local, in the form of the
neighborhood relations between the elements of the geom-
etry. We may determine the geodesic distance between the
simplices, but capturing the global properties of the system
without a good choice of coordinates is difficult [13–15]. It is
not a priori clear if such a choice is at all possible for a locally
highly fluctuating geometry. Below we will show that such a
choice is not only possible but can also give us a much better
understanding of the structures present in quantum geometric
configurations.

3 Boundary conditions

We will now consider a version of CDT where the piece-
wise linear manifolds are periodic both in time and space
directions. Such a toroidal topology can be viewed as being
extended to an infinite four-dimensional space, in which a
four-dimensional elementary cell, bounded by a set of four
independent non-contractible three-dimensional boundaries
is periodically repeated in all directions. These boundaries
are not physical entities, are not unique, and can be locally
deformed as long as they still form an elementary cell, and
yet they can serve as a reference frame for a coordinate sys-
tem on a given triangulation. The nontrivial fractal structure
of the encountered geometries makes it difficult to introduce

spatial coordinates in a chosen elementary cell in a construc-
tive geometric way, using only the geodesic distance from
a boundary. Below we will introduce an alternative method,
where four massless classical scalar fields, which satisfy the
Laplace equation with nontrivial boundary conditions will
be used to fully parametrize the fractal geometry. In the case
discussed in this paper, the fields depend on the geometry,
but they do not modify it, providing us, for each configura-
tion, with a system of external coordinates. One can say that
they act as a microscope which uncovers the complicated
four-dimensional structure of density fluctuations. Even for
a configuration with a very irregular geometry, such fields
allow us to define periodic pseudo-continuous coordinates
and provide generalized foliations in all space-time direc-
tions. Consequently, it becomes possible to visualize and
measure multidimensional correlations in all directions. As
will be reported below, what we see is a quantum universe
which seems surprisingly similar to our present day macro-
scopic universe.

3.1 Scalar fields as coordinates with values on S1

We want to find nontrivial harmonic maps between two Rie-
mannian manifolds M (gμν) → N (hαβ), where gμν is an
arbitrary metric and hαβ is a flat one. If N has the topol-
ogy of T 4, then it can be defined by four scalar fields φα ,
α = 1, 2, 3, 4, where φα(x) is a map M → S1, such that
the following action is minimized:

SM [φ,M ] = 1

2

∫
d4x

√
g(x) gμν(x) hρσ (φγ (x))

×∂μφρ(x)∂νφ
σ (x)). (2)

Because we have chosen the trivial metric hρσ on N , Eq. (2)
splits up into four independent equations for the four scalar
fields φσ . Minimizing Eq. (2) leads to the set of Laplace
equations:

�xφ
σ (x) = 0, �x = 1√

g(x)
∂μ

√
g(x)gμν(x)∂ν. (3)

Thus φσ becomes a harmonic map M → (S1)4 preserving
a dependence of φσ on gμν . Let us consider a trivial one-
dimensional example. In this case, let M be S1 with a unit
circumference and a positive and strictly periodic density√

g(x). We want x → φ(x) to be a non-trivial map S1 → S1

such that φ can serve as a coordinate instead of x . One way
to implement this is to find a solution satisfying

φ(x + n) = φ(x) + nδ, (4)

which maps the circle with a unit circumference to a circle
with a circumference δ. The solution to the Laplace equation
in this case satisfies

dφ(x) = δ · √
g(x) dx . (5)
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By rescaling the field, we can always enforce δ = 1. The
solution φ(x) is fixed by picking x0 where φ(x0) = 0. The
map x → φ(x) becomes a monotonically increasing invert-
ible map in the whole domain R with the geometry peri-
odically repeated with the period δ. If we parametrize the
one-dimensional manifold M in terms of φ instead of x , we
will find the volume density in the range φ to φ+dφ to be pro-
portional to

√
g(x) dx , so that effectively g(φ) = 1. We can

also consider a function ψ(x) = mod(φ(x)−φ(x1), δ). This
function satisfies the Laplace equation in the range between
x1 (where ψ(x) = 0) and x1+1 (where ψ(x) = δ). The equa-
tion satisfied by ψ(x) becomes a Poisson equation with the
extra inhomogeneous local term, producing jumps at bound-
ary points x = x1 and x = x1 + 1. It can still be considered
to be a Laplace equation with a non-trivial boundary “jump”
condition. Generalizing this to M with the topology of T 4,
we want a solution to the Laplace Eq. (3) that wraps around
S1 in a particular direction once, and, in addition, we want
the points x in M that satisfy φσ (x) = c to form hypersur-
faces Hσ (c) whose union for c varying in a range of length
1 covers the whole M .

3.2 Classical scalar fields with a jump

In CDT, the four-dimensional manifolds are represented by
regular four-dimensional triangulations constructed by glu-
ing together four-simplices so that each face is shared by
exactly two simplices. Denote the number of four-simplices
in the triangulation by N4. Each triangulation we consider
is generated by a Monte Carlo simulation, using the CDT
partition function. We call such a generated triangulation a
configuration. For each configuration, we keep information
about the position of the four boundaries of the elementary
cell. This information is non-dynamical: it does not influ-
ence the Monte Carlo process. Each boundary is a connected
set of three-dimensional faces, each of which separates two
simplices, for instance, i and j , belonging to two neigh-
boring elementary cells. The connection i → j can have
either a positive or negative orientation, depending on the
direction in which we cross the boundary. The boundary
between the neighboring elementary cells in a direction σ

can be parametrized by the N4 × N4 anti-symmetric matrix
Bσ

i j = −Bσ
j i with the elements

Bσ
i j =

{
±1 if i → j crosses the boundary,

0 otherwise.
(6)

The number of directed boundary faces of a simplex i is given
by bσ

i = ∑
j Bσ

i j , with the obvious constraints −5 < bσ
i < 5

and
∑

i bσ
i = 0. For any simplex i adjacent to a boundary, the

values Bσ
i j are all positive or zero (on one side of the bound-

ary), or all negative or zero (on the other side). We consider
four scalar fields φσ

i located in the centers of simplices and

solve the minimization problem for the following discrete
version of the continuous action in Eq. (2), for each field φσ

i :

SC DT
M [φσ , TE ] = 1

2

∑
i↔ j

(φσ
i − φσ

j − δBσ
i j )

2. (7)

The simplicity of the action does not mean that the geometric
information about the connections between simplices is lost.
Its form is purely a result of the fact that the system is built
from simplices with an equal size. In (7) the sum is over all
pairs of neighboring four-simplices in the triangulation TE

representing the manifold M (gμν) in Eq. (2). The parameter
δ plays the same role as in the one-dimensional example
considered previously, and here too, by rescaling the field,
we can always set δ = 1. The action (7) has two important
symmetries. The first one is the invariance under a constant
shift of the scalar field (the Laplacian zero mode). The second
is a local invariance under a modification of the boundary Bσ

i j
and a shift by ±1 (depending on the side of the boundary) of
the field value in a simplex i adjacent to the boundary. This
is equivalent to moving the simplex to the other side of the
boundary and compensating for the change of the field in its
center. After such a move, the number of faces belonging to
the boundary will in general be changed, but the action (7)
will remain constant. The classical field, henceforth denoted
as φσ

i , minimizes the action (7), and thus has to satisfy the
non-homogeneous Poisson-like equation

Lφσ = bσ , (8)

where L = 51−A is the N4 × N4 Laplacian matrix, and Ai j

is the adjacency matrix with entries of value 1 if simplices i
and j are neighbors and 0 otherwise. The Laplacian matrix L
has a constant zero mode but can be inverted if we fix a value
of the field φσ

i0
= 0 for an arbitrary simplex i0. Although L

is a sparse matrix, inverting it is a major numerical challenge
for a system typically of size N4 ≈ 106. After we neverthe-
less obtain the classical solution φσ , the multi-dimensional
analogue of the one-dimensional function ψ(x) is given by
ψσ

i :

ψσ
i = mod(φσ

i , 1). (9)

A new boundary is defined by b̄σ = Lψσ . This allows us
to reconstruct a new three-dimensional hypersurface H , sep-
arating the elementary cell from its copies in the direction
σ and characterized by the fact that the field jumps from 0
to 1 when crossing H . This hypersurface can be moved to
another position if we consider a family of hypersurfaces
H(ασ ) obtained from

ψσ
i (ασ ) = mod(φσ

i − ασ , 1), b̄σ (ασ ) = Lψσ (ασ ).

(10)

Changing 0 ≤ ασ < 1, we shift the position of the
hypersurface and cover the whole elementary cell defined
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Fig. 1 The projection of four-volume on the xy-plane, as defined by
(11) for a CDT configuration. Different colors correspond to different
times t of the original t-foliation

by the boundary (10), and in this way we obtain a folia-
tion in the direction σ . We may now use ψσ

i = ψσ
i (0) as

a coordinate in the σ -direction. The same construction can
be repeated in all directions σ ∈ {x, y, z, t} for any con-
figuration obtained in the numerical simulations, and in this
way every simplex i will be assigned a unique set of coor-
dinates {ψ x

i , ψ
y
i , ψ z

i , ψ t
i }, all in the range between 0 and 1.

A solution to the Laplace equation has the property that the
coordinates of each simplex are equal to the mean value of the
coordinates of its neighbors (up to the shift of the field at the
boundary), i.e., it preserves the triangulation structure. This
is the required map from our configuration with a topology of
T 4 to (S1)4 (which of course also has the topology T 4). Note
that the coordinate ψ t

i is not the same as the one coming from
the original foliation of the CDT model. The parametrization
defined above permits to analyze the distribution of the four-
volume (the number of simplices) contained in hypercubic
blocks with sizes {�ψ x

i ,�ψ
y
i ,�ψ z

i ,�ψ t
i }, which is equiv-

alent to measuring the integrated
√

g(ψ):

�N (ψ) = √
g(ψ)

∏
σ

�ψσ = N (ψ)
∏
σ

�ψσ . (11)

We can measure the full four-dimensional distribution
N (ψ). In Figs. 1 and 2 we show projections of the vol-
ume density distribution of a typical configuration on two-
dimensional parameter subspaces, the xy-plane and the t x-
plane respectively, integrating over the remaining two direc-
tions. One observes a remarkable pattern of voids and fil-
aments, which qualitatively looks quite similar to the pic-

Fig. 2 The projection of four-volume on the t x-plane for a CDT con-
figuration. There is a strong correlation between the original t-foliation
(color) and new time coordinate ψ t (horizontal axis)

tures of voids and filaments observed in our real Universe
(see e.g. [16]; the plots can be found on the web [17,18]).
Using the new coordinates, we observe a pattern of volume
concentrations in the spatial directions. The higher-density
domains tend to attract each other, forming denser clouds,
which survive in the imaginary time evolution in a quantum
trajectory (see Fig. 2). There seems to appear a sequence
of scales, characterizing a gradual condensation of gravita-
tionally interacting “objects”, but one should remember that
there is no matter in this system, only pure geometry, which
behaves as if quantum fluctuations could produce massive
interacting objects, somewhat analogous to dark matter. This
indicates that quantum geometric fluctuations are highly cor-
related, an effect which could not be easily analyzed without
introducing a global set of coordinates. Of course, we are
talking about quantum objects of Planckian size, but if a
more extended model exhibited inflation, one could imagine
that aspects of these objects would be frozen when entering
the horizon, like the standard Gaussian fluctuations in simple
inflationary models, and then would re-enter the horizon at a
later stage, after reheating, as classical densities.

4 Discussion

CDT presents us with a model of what we believe are generic
fluctuations of geometry at the Planck scale. We hope that
measurements of space-time correlations will allow us to
determine “experimentally” (i.e., using Monte Carlo data) the
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effective continuum action that governs our lattice model not
only in time, but also in spatial directions. The construction of
such an effective action will help us to understand if CDT is an
UV-complete quantum field theory of gravity, as imagined in
the so-called asymptotic safety scenario, or only an effective
quantum theory of geometries.
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Matter-Driven Change of Spacetime Topology
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Using Monte Carlo computer simulations, we study the impact of matter fields on the geometry of a
typical quantum universe in the causal dynamical triangulations (CDT) model of lattice quantum gravity.
The quantum universe has the size of a few Planck lengths and the spatial topology of a three-torus. The
matter fields are multicomponent scalar fields taking values in a torus with circumference δ in each spatial
direction, which acts as a new parameter in the CDT model. Changing δ, we observe a phase transition
caused by the scalar field. This discovery may have important consequences for quantum universes with
nontrivial topology, since the phase transition can change the topology to a simply connected one.

DOI: 10.1103/PhysRevLett.127.161301

Introduction.—The problem of merging general relativ-
ity and quantum mechanics in a theory of quantum gravity
has been approached from many directions (string theory
[1], loop quantum gravity [2], and the so-called asymptotic
safety program using conventional quantum field theory
[3], to mention some of the approaches), but no completely
satisfactory formulation has yet been found. Difficulties
occur already for the pure gravity case, but an additional
complication comes from the fact that any realistic theory
of quantum gravity should also include coupling to matter
fields. The question arises: what type of matter can be
included in a particular approach and what impact does it
have on the underlying (quantum) geometric degrees of
freedom? In this Letter we argue that the impact of matter
can be quite dramatic even leading to a change of the
topology of the Universe.
Causal dynamical triangulations.—Our attempt to

examine the above-mentioned question is via a nonpertur-
bative lattice approach to quantum gravity with the name
causal dynamical triangulations (CDT)—see [4] for its
detailed formulation and [5] for a recent review. It is an
approach which lies within the asymptotic safety program
and is only using ordinary quantum field theory concepts.
In CDT, the (formal) path integral of quantum gravity is
lattice regularized as a sum over four-dimensional simpli-
cial complexes, called triangulations, which encode
geometric degrees of freedom; crucially, they are assumed
to be endowed with a causal structure of a globally
hyperbolic manifold (i.e., spacetime is foliated into spatial

hypersurfaces of fixed and identical topology), which
allows a well-defined Wick rotation of the time coordinate.
Thus,

ZQG ¼
Z

DMH
½g�

Z
Dϕ eiSEH½g�þiSM ½ϕ;g� →

→
X
T∈T

Z
Dϕe−SR½T�−SCDTM ½ϕ;T� ¼ ZCDT; ð1Þ

where MH is a globally hyperbolic Lorentzian manifold,
DMH

½g� denotes the integration over geometries, i.e.,
equivalence classes of metrics [g] on MH with respect
to diffeomorphisms, and T is a suitable set of Wick-rotated
(now Euclidean) triangulations. The action SR½T� for a
triangulation T ∈ T is the Einstein-Hilbert action SEH
computed using Regge’s method of describing piece-
wise-linear geometries [6] and containing the bare cou-
plings related to the cosmological and Newton constants.
The second term of the action SCDTM ½ϕ; T� is the discrete
version of the continuous action SM for matter field(s) ϕ.
Quantum matter fields in CDT.—The simplest quantum

matter that can be added to the quantum geometry of CDT is
a d-component massless scalar field ϕ. In general, one can
assume that the field ϕ has a nontrivial target space, i.e., it is
a map MHðgμνÞ → N ðhαβÞ between an arbitrary manifold
MH [from the path integral (1)] with a metric gμν and a
target space N with some fixed metric hαβ and fixed
topology. The continuous (Euclidean) action SM takes the
form

SM½ϕ; g� ¼
1

2

Z
d4x

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
gμνðxÞ hρσ½ϕγðxÞ�

× ∂μϕ
ρðxÞ∂νϕ

σ ðxÞ: ð2Þ

Published by the American Physical Society under the terms of
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Here, we choose the target space N of the scalar field to
have either EuclideanRd or toroidal ðS1Þd topology, and we
fix the flat metric hρσ ¼ δρσ onN . Consequently, the action
(2) reads

SM½ϕ; g� ¼
1

2

Xd
σ¼1

Z
d4x

ffiffiffiffiffiffiffiffiffi
gðxÞ

p ∂ν ϕσ ðxÞ∂νϕ
σ ðxÞ; ð3Þ

and the various components decouple for different σ
because the target space metric is diagonal. For a particular
sample geometry [g], quantum fluctuations of ϕσ will occur
around a semiclassical solution ϕ̄σ satisfying the Laplace
equation

Δxϕ̄
σðxÞ ¼ 0; Δx ¼

1ffiffiffiffiffiffiffiffiffi
gðxÞp ∂μ

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
gμν ðxÞ∂ν: ð4Þ

Let us now start with a simple case where the target space of
the scalar field is N ¼ Rd. In CDT we consider the scalar
field as located at the centers of equilateral simplexes, and
thus the discrete counterpart of the action (3) takes a very
simple form

SCDTM ½ϕ;T�¼1

2

Xd
σ¼1

X
i↔j

ðϕσ
i −ϕσ

j Þ2¼
X
σ;i;j

ϕσ
iLijðTÞϕσ

j : ð5Þ

The sum
P

i↔j is over the five pairs of neighboring four-
simplexes of each simplex i in the triangulation T of the
manifold MHðgμνÞ and L ¼ 51 −A is the Laplacian
matrix, where Aij is the adjacency matrix with entries of
value 1 if simplexes i and j are neighbors and 0 otherwise.
The discrete version of the Laplace equation (4) for each
component of the classical scalar field is then

Lϕ̄σ ¼ 0; ð6Þ

which is solved by ϕ̄ ¼ const (the Laplacian zero mode) for
any compact simplicial manifold T. After the decomposi-
tion of the field

ϕσ ¼ ϕ̄σ þ ξσ ð7Þ

into the classical part ϕ̄σ and the quantum part ξσ and an
application of (6), the contribution from the classical field
vanishes, leaving

SCDTM ½ϕ; T� ¼ 1

2

Xd
σ¼1

X
i↔j

ðξσi − ξσj Þ2 ¼
X
σ;i;j

ξσiLijðTÞξσj : ð8Þ

The Gaussian form of the matter action (8) means that, in
principle, the field can be integrated out, contributing to the
geometric action SR½T� → SR½T� þ SeffM ½T� with a term

SeffM ½T� ¼ d
2
log det½L0ðTÞ�; ð9Þ

where L0ðTÞ is the Laplacian matrix LðTÞ in the
subspace orthogonal to the constant zero mode of L.
The dependence of Eq. (9) on the geometry rests in the
dependence ofL0ðTÞ on the adjacency matrixA defined for
a given triangulation T. Using numerical Monte Carlo
simulations we checked that the dependence of the deter-
minant SeffM ½T� on T is weak and, in practice, we can treat it
as a constant.
Quantum scalar fields with values on ðS1Þd.—The new

aspect studied here is based on two major generalizations of
the CDT model: (1) We choose the spatial topology of the
time foliation leaves to be ðS1Þ3, and for technical reasons
we assume the time boundary conditions to be periodic as
well. Thus, each triangulation has the toroidal topology
ðS1Þ4 and can equivalently be represented as an elementary
cell periodically repeated in four dimensions. There is a lot
of freedom in the selection of the elementary cell; one way
to determine it is to choose four independent noncontrac-
tible three-dimensional boundaries delimiting it. The boun-
daries are connected sets of three-dimensional faces,
each shared by two four-simplexes located in different
copies of the elementary cell. We assume each boundary to
be oriented, and we encode the information about the
position of the four boundaries (labeled by σ ¼ 1, 2, 3, 4)
in a triangulation T within four matrices Bσ, whose
elements are

Bσ
ij ¼

8<
:

�1 if the face shared by simplexes i and j

exists and belongs to the boundary

0 otherwise:

ð10Þ

The number of directed boundary faces of a simplex i is
given by bσi ¼

P
jB

σ
ij, and the boundary three-volume is

Vσ ¼ 1
2

P
ij ðBσ

ijÞ2. Despite being fictitious constructs
having no impact on the physics, the boundaries can
be used to define a coordinate system, as described
in [7,8].
(2) The d-component scalar field ϕ is assumed to take

values on a symmetric torusN ¼ ðS1Þd with circumference
δ in each direction. We require that each component of the
field ϕσ ∈ S1 winds around the circle once as we go around
any noncontractible loop in T that crosses a boundary in
direction σ. This requirement completely changes the
dynamics of the interaction between geometry and the
scalar field. For the scalar field taking values in Rd,
the classical solution is constant and does not contribute
to the matter action, which depends therefore only on
quantum fluctuations. For ϕσ ∈ S1, however, the constant
solution is not allowed, since it has winding number zero;
as we will show below, the new nontrivial classical solution
does contribute to the effective matter action. The winding
condition can technically be obtained by considering a field
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ϕσ ∈ R that jumps by δ ×Bσ
ij on any face shared by

simplexes i and j and identifying

ϕσ
i ≡ ϕσ

i þ n × δ; n ∈ Z: ð11Þ

The (discrete) matter action becomes

SCDTM ½ϕ; T� ¼ 1

2

Xd
σ¼1

X
i↔j

ðϕσ
i − ϕσ

j − δ ×Bσ
ijÞ2 ð12Þ

leading to the following equation for the classical field ϕ̄σ:

Lϕ̄σ ¼ δ × bσ; ð13Þ

which now acquires a boundary term and thus admits
nontrivial solutions for ϕ̄σ. Note that the action (12) is
invariant under a local shift of the σ-boundary with a
simultaneous change of the scalar field value ϕσ

i → ϕσ
i � δ.

Thus the choice of a specific boundary does not influence
the path integral (1) in any way. Decomposition (7) of the
field into the classical and the quantum part yields

SCDTM ½ϕ; T� ¼
X
σ;i;j

ξσiLijðTÞξσj þ SCDTM ½ϕ̄; T�: ð14Þ

Since ϕσ and ϕ̄σ have winding number one, the fluctuation
field ξσ is a scalar field with winding number zero, i.e., an
ordinary scalar field taking values in R. The action (14) is
then again Gaussian and can be integrated out, now leading
to SR½T� → SR½T� þ SeffM ½T� þ SCDTM ½ϕ̄; T�, where the deter-
minant SeffM ½T� is the same as in Eq. (9). Thus the only
difference between the impact of the scalar field in ðS1Þd
and that of the ordinary field in Rd is the dependence of the
effective matter action on the nontrivial classical solution ϕ̄;
note that the size of the jump δ fixes the scale of the
classical field. For δ ¼ 0 one recovers the Rd case where
SCDTM ½ϕ̄; T� is zero (the absolute minimum), as ϕ̄ ¼ const
for any quantum geometry T. For δ > 0 the constant
solution is not allowed, and the action SCDTM ½ϕ̄; T� depends
on the specific geometry T. By adjusting the geometry in a
rather drastic way, one is still able to reduce the matter
action almost to zero. This is illustrated in Fig. 1 in the
simple case of a two-dimensional torus with a one-
dimensional field ϕ changing in the vertical direction,
but the argument is clearly valid in higher dimensions, and
in fact it only depends on one direction being periodic. The
topology in the “transverse” directions can be anything. On
the left plot we have a torus with volume V and vertical
length LV , which is pinched to a cylinder of circumference
ε and length L. The total matter action of the field
configuration alluded to on the plot is

SCDTM ½ϕ; TL� ¼
�
δ

L

�
2

Lε ¼ δ2
ε

L
; ð15Þ

and the minimal action for a classical field configuration
SCDTM ½ϕ̄; TL� for this geometry is even lower. This can
clearly be made arbitrarily small when ε → 0, and this is
even more true in higher dimensions. On the right plot we
also have a torus with volume V and vertical length LV . For
this geometry, the action is minimal for a field changing
uniformly from 0 to δ, when we move from bottom to top,
thus obtaining an action

SCDTM ½ϕ̄;TR�¼
�

δ

LV

�
2

LVLH¼δ2
V
L2
V
; V¼LHLV; ð16Þ

which is bounded from below when V and LV are fixed. Let
us discuss the consequence of this in the full quantum
theory defined by the path integral (1). The classical action
SCDTM ½ϕ̄; T� depends in a crucial way on the triangulation T.
The triangulations that are pinched as shown in Fig. 1 will
have the smallest matter action, but the geometric Einstein-
Hilbert part of the action will be larger for such pinched
configurations than for “regular” triangulations. A simple
minisuperspace model, like the Hartle-Hawking model [9],
suggests that for small jumps δ the geometric part of the
action dominates and the generic configurations in the path
integral are quite similar to the ones which dominate when
no matter field with a jump is present. However, for large δ
the total action will be the lowest for pinched configura-
tions and the system will instead fluctuate around pinched
configurations. Thus, the system might undergo a phase
transition as a function of the jump magnitude δ.
Results for scalar fields winding around spatial

directions.—Below, using numerical Monte Carlo simula-
tions, we study a CDT model with a d ¼ 3 component
massless scalar field taking values in a symmetric torus
N ¼ ðS1Þ3 with circumference δ, i.e., ϕσ jumps by �δ
when crossing a three-dimensional boundary orthogonal to
one of three independent noncontractible loops winding
around the toroidal spatial direction σ ¼ x, y, z in a

LH

VL

Volume = VVolume = V

L/2

L/2

FIG. 1. Left: a torus (opposite sides identified) with a pinch.
The region in red is the region where ϕ changes from 0 to δ. In the
blue part it stays constant. ϕ is constant in the horizontal
direction. Right: a torus where ϕ is constant in the horizontal
direction and uniformly increases from 0 to δ from bottom to top.
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triangulation T. This type of matter system was earlier
introduced to define a semiclassical coordinate system for a
given CDT triangulation [8]. Now we want to make the
scalar field a dynamical (quantum) object and let it evolve
together with the geometry. Then, for a given geometric
configuration T, one can simply compute the expectation
value of the field hϕi ¼ ϕ̄ by solving the Laplace equa-
tion (13) and use it as spatial coordinates. The analyzed
systems were all in the same point in the CDT parameter
space inside the so-called semiclassical (or de Sitter) phase
[10–12], and the only variable parameter was the jump
magnitude δ. For each analyzed value of δ we pick a
generic quantum geometry (a triangulation T) appearing in
the path integral (1), and we use the methodology intro-
duced in [8] to assign a unique set of spatial coordinates for
each simplex i defined by the classical solution of the scalar
field ðϕ̄x

i ; ϕ̄
y
i ; ϕ̄

z
i Þ computed for that geometric

configuration. Note that in CDT one has the time coordinate
“for free” as the classical solution of the field ϕ̄t

i can be
computed using the imposed proper-time foliation. In order
to visualize changes in a typical quantum geometry
triggered by the increasing jump magnitude, we measure
the four-volume density distribution Nðϕ̄Þ, i.e., the number
of simplexes contained in hypercubic blocks with sizes
ðΔϕ̄x

i ;Δϕ̄
y
i ;Δϕ̄

z
i ;Δϕ̄t

iÞ, which is equivalent to measuring

the integrated
ffiffiffiffiffiffiffiffiffi
gðϕ̄Þ

p
:

ΔNðϕ̄Þ ¼
ffiffiffiffiffiffiffiffiffi
gðϕ̄Þ

q Y
σ

Δϕ̄σ ¼ Nðϕ̄Þ
Y
σ

Δϕ̄σ: ð17Þ

In Figs. 2 and 4 we plot projections of the volume density
distribution Nðϕ̄Þ in a typical toroidal CDT configuration on
one spatial direction (x, y, or z), and in Figs. 3 and 5 the
projections on two-dimensional (x-y directions) parameter

FIG. 2. The projection of four-volume, as defined by (17), on
one spatial direction (x, y, or z) for a typical CDT configuration
with small jump magnitude (δ ¼ 0.1). The horizontal axis is ϕ̄=δ.

FIG. 3. The projection of four-volume, as defined by (17), on
the xy plane for a typical CDT configuration with small jump
magnitude (δ ¼ 0.1). Different colors correspond to different
times t of the original (lattice) time foliation.

FIG. 4. The projection of four-volume, as defined by (17), on
one spatial direction (x, y, or z) for a typical CDT configuration
with large jump magnitude (δ ¼ 1.0). The horizontal axis is ϕ̄=δ.

FIG. 5. The projection of four-volume, as defined by (17), on
the xy plane for a typical CDT configuration with large jump
magnitude (δ ¼ 1.0). Different colors correspond to different
times t of the original (lattice) time foliation.
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subspace, integrating over the remaining directions.
Figures 2 and 3 are for a small (δ ¼ 0.1), while Figs. 4
and 5 for a relatively large (δ ¼ 1.0) jump magnitude,
respectively. One clearly observes that the change of the
jump magnitude causes a substantial change in a typical
CDT geometry. For a small jump (δ ¼ 0.1) one observes a
geometry which resembles the pure gravity case, see [8].
For a large jump (δ ¼ 1.0), in line with expectations, one
observes that the geometry is “pinched” in all spatial
directions (which manifests itself as the small-volume
region in Fig. 4 and the low-density region in Fig. 5).
Discussion.—We have shown that if spacetime is glob-

ally hyperbolic and has the toroidal spatial topology, i.e.,
has three nonequivalent noncontractible loops in the spatial
directions, then the three-component scalar field with
matching topological boundary conditions imposed can
have a dramatic effect on the geometries that dominate the
CDT path integral. If the spatial topology is simply con-
nected, this effect is absent. This new kind of coupling
between the topology of the matter fields and the topology
of spacetime is likely to result in a phase transition for
sufficiently strong coupling (sufficiently large δ in our
model), a transition where the path integral will be
dominated by spatial geometries with pinched regions
fluctuating close to zero sizes (but still connected due to
topological restrictions imposed by our model). This is
schematically shown in Fig. 1 and for actual configurations
in the path integral in Figs. 4 and 5, using as coordinates in
the noncontractible “directions” the classical scalar fields
with nontrivial boundary conditions in these directions, and
what is also visible using other coordinate systems, e.g., the
ones introduced in [7]. Extrapolating this result to a large
volume limit we get a picture with a small toroidal part of
cutoff size and the dominating geometry with an (almost)
spherical topology. Concluding, the effect of scalar fields
can be much more drastic than previously appreciated, with
possible implications for cosmological model building and
even in other areas of physics related to phase transitions of
topological nature.
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Abstract
A typical geometry extracted from the path integral of a quantum theory of
gravity may be quite complicated in the UV region. Even if a single configura-
tion is not physical, its properties may be of interest to understand the details
of its nature, since some universal features can be important for the physics
of the model. If the formalism describing the geometry is coordinate indepen-
dent, which is the case in the model studied here, such understanding may be
facilitated by the use of suitable coordinate systems. In this article we use scalar
fields that solve Laplace’s equation to introduce coordinates on geometrieswith
a toroidal topology. Using these coordinates we observe what we identify as the
cosmic voids and filaments structure, even if matter is only a tool to visualize
the geometry. We also show that if the scalar fields we used as coordinates are
dynamically coupled to geometry, they can change it in a dramatic way, leading
to a modification of the spatial topology.
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1. Introduction

Lattice approaches based on the path integral formalismconstitute an important toolwith which
one can investigate non-perturbative aspects of many quantum field theories. The general idea
is the following: given a continuum field theory with a classical action, one defines a quantum
theory via the (lattice regularized) path integral, where the length of lattice links provides an
ultraviolet (UV) cut-off.A continuumquantumfield theorymight then be defined if there exists
a so-called UV fixed point such that it is possible to keep the physical observables fixed while
taking the lattice spacing to zero. There is a number of practical issues and open questions
which need to be addressed, especially when trying to apply this approach to the quantization
of Einstein’s general relativity (GR):

(a) GR is perturbatively non-renormalizable. Moreover, it is not clear if GR exists as a
quantum field theory with a well-defined non-perturbative UV limit.

(b) The quantum theory of GR should be diffeomorphism invariant. It is not clear how to
obtain this, starting from a lattice theory where the concept of diffeomorphisms, if defined
at all, might be different from that defined in the continuum. In addition it is not clear how
then to relate lattice measurements to other, more analytical approaches.

(c) Studies of a lattice theory usually require the use of numerical Monte-Carlo (MC) meth-
ods, which is technically possible only in spacetimes with Euclidean signature. Although
it is known how to relate correlation functions calculated in flat spacetimes with Euclidean
and Lorentzian signatures (the so-called Osterwalder–Schrader axioms), nothing like that
is known when GR is involved4.

(d) A realistic quantum theory of gravity should also include coupling to quantum matter
fields—what types of fields can and should be included in this approach? Furthermore,
what impact do the matter fields have on the underlying geometric degrees of freedom?

Let us briefly try to answer these questions in the lattice model of quantum gravity defined
by causal dynamical triangulations (CDT).

(a) It is well known that Einstein’s gravity as a perturbative field theory is non-renormalizable
[2]. However, as suggested by Weinberg’s asymptotic safety conjecture [3], it may be
renormalizable in a non-perturbative way. A necessity for such a scenario is that the
renormalization group flow of the gravitational coupling constants can lead to a nontrivial
ultraviolet fixed point (UVFP). Some evidence of such an UVFP is provided by calcula-
tions in 2+ ε dimensions [4] and from the use of the so-called exact renormalization group
[5, 6], but none of the methods have yet provided us with a generally accepted proof that
such a fixed point exists. Thus, one of the aims of studying a lattice theory of quantum
gravity is to test the asymptotic safety conjecture.
In the lattice formulation, the UVFP should be associated with a second- or higher-order
phase transition point. In addition, it should be possible to define the renormalizationgroup
flow lines in the lattice coupling constant space leading from an infrared limit to the UVFP.
This in general requires finding a region in the lattice coupling constant space where the
semiclassical limit (consistent with the classical GR) can be defined, together with some
physical observables. These physical observables should be such that keeping their values
fixed defines a path in the lattice coupling constant space that allows the interpretation of a

4 The Osterwalder–Schrader axioms in the context of GR were discussed e.g. in [1].
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decreasing lattice spacing when moving away from the semiclassical region. If the lattice
spacing goes to zero at the endpoint of the path, this endpoint will be an UVFP.
The CDT approach (described in more detail in section 2) has at least some of the required
features of a successful lattice field theory in the sense described above, i.e. it has a semi-
classical region in the lattice coupling constant space [7–9], while some of the boundaries
of the semiclassical phase are higher order phase transition lines/points [10, 11]. One can
define and measure the renormalization group flow lines [12] in the lattice coupling con-
stant space, however it has not yet been possible to define a suitable continuum limit; it is
not ruled out that it will be possible in the future, using better observables (see [13] for a
more detailed discussion of this issue).
Although the existence of the UVFP in a lattice theory of quantum gravity is still a
conjecture, it can nevertheless be argued that even if the continuum limit were not to
exist, the lattice theory would still be useful in investigating non-perturbative aspects of
quantum gravity, treated as an effective theory valid up to some finite energy scale. A
simple example of such a situation goes all the way back to the first proof of confinement
in a gauge theory, where Polyakov showed that three-dimensional compact U(1) lattice
theory contained all the non-perturbative physics responsible for the confinement in the
Georgi–Glashow model, despite having itself no such non-perturbative continuum limit
[14].

(b) The physics of GR is invariant under diffeomorphisms. In his seminal work [15], Regge
provided a prescription for how to assign local curvature to piecewise linear (simplicial)
geometries without the use of coordinates. That formulation is manifestly coordinate free
and thus diffeomorphism invariant. In that approach, the geometry of a piecewise linear
(simplicial) manifold and the resulting Regge action SR (the Einstein–Hilbert action SEH
for the triangulated manifold) are entirely determined by geometric quantities such as the
length of edges (links) and the adjacency relations of the d-dimensional simplices glued
together to form the manifold. Regge’s idea was to describe simplicial discretizations of
classical continuously differentiable manifolds with arbitrary precision in a coordinate-
independent way. However, the classical theory of Regge is not easily transferred to the
path integral of the corresponding quantum theory [16]. A more suitable lattice path inte-
gral over Euclidean geometries is known as Euclidean dynamical triangulations (EDT)5.
In this approach, the simplicial manifolds used in the path integral are obtained by glu-
ing together identical four-simplices whose links have length a, the UV cut-off in the
lattice theory. The geometry of such a manifold is the piecewise linear geometry defined
by Regge, and the action associated with such a configuration is the Regge action asso-
ciated with the piecewise linear geometry. An important feature of the EDT formalism
is that each triangulation in the EDT ensemble corresponds to a different geometry, and
the basic assumption is that as the link distance a→ 0, the EDT ensemble of geometries
becomes dense in some suitable way in the set of continuous geometries that appears in
the continuum path integral. This seems to be true in two-dimensional quantum gravity
where both the continuum theory and the lattice theory can be solved analytically and they
agree (see [20] for a review). In higher-dimensional quantum gravity, we do not know if
this is true since the continuum path integral has not been rigorously defined and the EDT
theory of gravity can only be studied via numerical simulations.

5 The use of EDT goes back to attempts to provide a regularization of the bosonic string theory [17], which can be
viewed as 2D gravity coupled to Gaussian fields. It was first used in the context of higher dimensional gravity in
[18, 19].
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If the asymptotic safety scenario discussed above is valid, one should in principle be
able to shrink the lattice spacing (the size of the elementary simplicial building blocks)
to zero, and thus to get rid of the discretization and recover the continuum limit of the
putative quantum theory of gravity. In this limit one could in principle compute expec-
tation values of correlators of some physical observables, although they are not so easily
defined in a theory of quantum gravity without matter fields. One ‘problem’ is that the
EDT formalism is ‘coordinate free’. While this seems a major achievement from a GR
point of view, it comes with its own issues. One of these is that it makes it difficult to
relate the results obtained in the lattice theory to more analytical approaches where coor-
dinate systems are used (even if physics of course should be independent of a specific
coordinate system). The issue of reintroducing suitable coordinate systems in the lat-
tice theory of gravity has been extensively studied recently by our group [21, 22], and
in this article we will discuss a new promising way of doing it by using scalar fields—see
section 3.

(c) The formulation of the EDT lattice field theory of (Euclidean) quantum GR is simple.
The path integration over continuous Euclidean geometries is replaced by the summa-
tion over the EDT piecewise linear geometries. If we consider GR in d dimensions, each
such piecewise linear geometry is described by an abstract triangulation, and we thus
obtain a summation over abstract d-dimensional triangulations, each with the Boltzmann
weight given by the Regge action of the correspondingpiecewise linear geometry.Thuswe
write

ZQG =

∫
DM[gL] e

iSEH[gL] →
∫

DM[gE] e
−SEH[gE] →ZEDT =

∑

T
e−SR[T ], (1)

where the first path integral is over geometries with Lorentzian signature and the sec-
ond path integral is over geometries with Euclidean signature. SEH[g] denotes the Ein-
stein–Hilbert action, and SR[T ] is the Regge action of the triangulation T .
While it is easy to defineZEDT, it can be calculated analytically only in two dimensions. As
mentioned above, the very encouraging outcome is that the continuum limit can be taken,
and the resulting theory agrees with the continuum two-dimensional Euclidean quantum
gravity theory (the so-called quantum Liouville theory), which can also be solved analyt-
ically. In higher dimensions the best one can do is to study the theory using Monte Carlo
simulations. Themodel has been studied extensively in three and four dimensions [18, 19],
together with generalizations where matter fields were added to the action [24]. However,
no suitable UVFP was found [25].6

This failure led to a reformulation of the model, with the Lorentzian starting point of GR
taken more seriously [27]. In this approach, denoted CDT, the starting assumption is that
the continuum path integral should include only Lorentzian geometries that are globally
hyperbolic. To regularize the path integral, a discretization based on building blocks (d-
dimensional simplices), similar in spirit to EDT, is introduced. Now each d-dimensional
simplex has space- and timelike links. Moreover, it is possible to perform a Wick rotation
of each simplex to an ‘Euclidean’ simplex, and the triangulation built from Lorentzian
simplices is then analytically Wick-rotated to an Euclidean triangulation, with the Regge
action of the triangulation changed accordingly. The change from Lorentzian geometries

6 Recently attempts have been made to find higher order transitions in generalized EDT models [26], but so far with
no clear success.
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alluded to in (1) thus becomes a real analytical continuation, and we can write

ZQG =

∫
DMH[gL] e

iSEH[gL] →ZCDT =
∑

TL
eiSR[TL] →

∑

TE
e−SR[TE], (2)

where MH denotes globally hyperbolic geometries, TL a corresponding Lorentzian tri-
angulation, and TE the Wick-rotated Euclidean triangulation. When we talk about ZCDT

below, we will always have in mind the summation over Euclidean triangulations in (2),
but contrary to the situation in EDT shown in (1) there is now a clear relation between the
Lorentzian and the Euclidean theory. However, it comes at the price of introducing a pre-
ferred foliation of the triangulatedmanifolds, which may be incompatible with general 4D
spacetime diffeomorphism invariance7. The question remains whether introducing such a
foliation can be treated as a specific gauge choice in a quantumversion of GR or if it would
rather make CDT fall into some other universality class of quantum gravity theories, e.g.
Hořava–Lifshitz gravity [28].
Hořava–Lifshitz-gravity is indeed a natural candidate for a continuum limit of CDT,
since also in this theory there is a time foliation. One can show analytically that two-
dimensional CDT corresponds to a quantum version of two-dimensional Hořava–Lifshitz
gravity [29], but for higher-dimensional gravity the situation is much less clear since the
Hořava–Lifshitz gravity in higher dimensions contains important action terms that are
not GR-terms and are not included in the CDT action. In three dimensions there is some
evidence that the physics of the CDT model does not depend in a crucial way on the exis-
tence of a time foliation [30]. In four dimensions it has not yet been possible to address
this question. However, one step in this direction is at least to be able to talk about differ-
ent time-foliations of the same CDT four-geometry, and to check if and how the results
depend on the choice of foliation. In section 4 we make a first step toward this goal by
showing how to use scalar fields to define alternative spacetime foliations for the CDT
triangulations.

(d) Last but not least, a realistic theory of quantum gravity should not only describe the pure
gravity sector but also investigate the impact of quantum matter coupled to geometric
degrees of freedom. There are no technical problems associated with the introduction of
bosonic matter coupled to the geometry in CDT. That was done already in EDT, as men-
tioned above [24], and the same discretized prescriptions as used there can be applied in
CDT. While matter did not have a great impact in EDT, the situation is potentially much
more interesting in CDT, where there are second order phase transitions and thus proba-
bly some kind of continuum physics of geometry, which could be influenced in important
ways bymatter and vice versa. So far, interesting results were obtained for simple 2DCDT
models coupled to scalar [31] and gauge [32] fields, where matter fields seemingly have
a significant impact on the geometry. As regards the more interesting but also more com-
plicated four-dimensional CDT model, we have recently analyzed systems with (multiple
copies of) massless scalar fields coupled to the geometry [11], and we have also stud-
ied point particles (mass lines)8. Disappointingly, our previous results did not show any
substantial impact of the scalar field(s) on spacetime geometry nor the position of phase
transition lines in the CDT coupling constant space. In the present study, we investigate
the impact of introducing nontrivial boundary conditions for the scalar field(s), such that

7 In this case full 3D (spatial) diffeomorphism invariance remains, but the time direction is distinguished and treated
on a special footing.
8 Results of the mass line studies will be published in a separate article.
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the field jumps on the boundary of a periodic elementary cell, which in our setup can be
defined. Our formulation is topological, i.e. the matter action does not depend on the spe-
cific (unphysical) position of the boundary but just on the value of the jump. Such systems
seem to undergo a new type of phase transition where spacetime geometry dramatically
changes for large values of the jump vs the (almost pure gravity) geometry observed for
small values of the jump; see section 5 for details.

The remaining part of the article is organized as follows: in section 2 we outline the CDT
approach to quantum gravity; in section 3 we discuss how classical scalar fields can be used to
define coordinates in fixed simplicial geometries, and how they in turn help better to understand
the geometric structures observed in CDT triangulations; in section 4 we describe how the
classical scalar fields can serve as a tool to define alternative proper-time foliations of the CDT
manifolds; finally in section 5 we analyze the impact of dynamical scalar fields with non-trivial
boundary conditions.

2. Causal dynamical triangulations

As already mentioned in the introduction, CDT is a background-independent and
diffeomorphism-invariant lattice field theory aiming at providing a non-perturbative definition
of quantum gravity. Below we provide for completeness a short description of the actual lattice
construction of the geometries. For a complete account, we refer the reader to the review [33]
(and to [34, 35] for an update on the recent results). CDT provides a definition of the (formal)
continuum gravitational path integral appearing in (2) as a sum over an ensemble of triangu-
lations T constructed from several types of elementary simplicial building blocks. The edge
lengths of the simplices are assumed to be fixed9 and act as the UV cut-off of the lattice theory.
The geometries appearing in the formal path integral (2) are by assumption globally hyper-
bolic, and the piecewise linear geometries represented by the triangulations are constructed
to reflect it: they have spatial hypersurfaces of constant ‘lattice time’ t, and the construction is
such that it is actually possible to perform an analytic continuation in the lattice time t to piece-
wise linear geometries with Euclidean signature, as alluded to in (2) (see [33] for a detailed
discussion of the analytic continuation).

In the four-dimensional case, which is the one we are the most interested in, a spatial 3D
geometric state with a given fixed topology in a slice with integer (lattice) time coordinate t
is constructed by gluing together equilateral tetrahedra (with fixed length of all edges/lattice
links: as). Similarly, an independent 3D geometry with the same topology is constructed in the
spatial slice at time t + 1. These two 3D geometries are now connected by 4D simplices fill-
ing out the four-dimensional ‘slab’ between the two hypersurfaces. This is done by introducing
two types of 4D simplices—the (4, 1) and the (3, 2) simplices10—whose timelike edges (links)
have a fixed length at. In the Lorentzian setting, a2t = −αa2s , with the asymmetry parameter
α > 0. The rotation to an Euclidean four-simplex is performed by rotating α to the negative
real axis in the lower complex plane (for restrictions on the value of α on the negative real axis
see [33]). Since the four-dimensional simplices are glued together in such a way that no topo-
logical defects are introduced in the slab between the three-dimensional triangulations at t and

9 In computer simulations we set the length of (spatial) links to be one (in abstract lattice units), and then by performing
measurements of certain observables and relating them to a continuous theory we measure the effective lattice spacing
in physical units, say Planck lengths �Pl. For a given set of parameters (CDT bare couplings), the lattice spacing is
constant and fixed, but it does change from one point to another in the parameter space (see e.g. [36] for more details).
10 The (i, j) simplex has i vertices in a spatial slice with integer (lattice) time coordinate t and j vertices in the
neighboring spatial slice with t ± 1.
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t + 1, it is possible to assign non-integer time and piecewise linear 3D geometries to spatial
hypersurfaces between t and t + 1. This construction is analogously extended to hypersurfaces
t + 2, t + 3, etc and the corresponding slabs in between. In the path integral ZCDT in (2), the
summation is performed over all 3D geometries (of the given topology) at t = 1, 2, . . . and
all 4D slab geometries connecting them as described. All four-simplices (and their subsim-
plices) are assumed to be flat (their interior being a fragment of either Minkowski or Euclidean
spacetime, depending on whether or not we have performed the analytic continuation).

In the Regge prescription, the nontrivial spacetime curvature of the four-dimensional trian-
gulation is localized on the two-dimensional subsimplices, i.e. triangles, and depends on the
number of four-simplices sharing a given triangle. Using the Regge prescription [15], one can
derive the Einstein–Hilbert action for such simplicial geometries, the Regge action SR men-
tioned above, which for CDT takes a very simple form after the rotation to Euclidean signature
has been made (see e.g. [33]):

SR[T ] = − (κ0 + 6Δ)N0 + κ4

(
N4,1 + N3,2

)
+ΔN4,1, (3)

where Ni, j denotes the number of four-simplices of the type (i, j) (see above), and N0 is the
number of vertices in the triangulation T . κ0, Δ and κ4 are bare dimensionless coupling con-
stants, related to Newton’s constant, the cosmological constant, and the asymmetry parameter
α (see above). In principle, one could choose some fixed initial (at t = 1) and final (at t = T)
3D geometric states, but for the purpose of this article it is convenient instead to impose time-
periodic boundary conditions such that a 3D spatial geometry at time t is identified with the
geometry at time t + T .

At present, the only tool we have available to investigate four-dimensional CDT is Monte
Carlo simulations. This is a method to generate configurations with a probability distribution
in accordance with the Boltzmann distribution dictated by the action of the system. How-
ever, to function, it requires a real probability distribution. This is why we have to rotate to
geometrieswith Euclidean signatures in (2), as described.More precisely, our rotation of a con-
figuration TL →TE is such that iSR[TL]→−SR[TE], which implies that the Boltzmann weight
eiSR[TL] → e−SR[TE]. With this analytic continuation to an ensemble of geometries {TE}, we can
now view ZCDT in (2) as a statistical theory of random geometries with Euclidean signature.
A special feature of the gravity system is that the volume of spacetime is not fixed but instead
is a dynamical variable. In our simulations, this implies that the number of four-simplices is
not fixed. For a positive cosmological constant Λ, the corresponding term in Euclidean Ein-
stein–Hilbert action, Λ

∫
d4x

√
g(x), will try to force the spacetime volume to be as small as

possible. The same term is present in the discretized Regge action (3), and it will appear with
a Boltzmann weight e−κ4N4(T ), where N4(T ) = N4,1 + N3,2 is the number of four-simplices in
the triangulation T . This seems to hint that for a positive dimensionless coupling constant κ4

there should be very few four-simplices. However, there are many triangulations with a given
number N4 of four-simplices. In fact, up to the leading order, the number grows exponentially
[37], approximately like eκ

c
4N4 . In theMC simulations, we are interested in as largeN4’s as pos-

sible, and this is achieved by fine-tuning κ4 to κc4 from above. From a practical point of view,
it is convenient to keep N4 or N4,1 fixed when measuring observables and then to perform
the measurements for different values. In addition, this allows us to use powerful techniques
of finite-size scaling, borrowed from the study of critical phenomena in statistical physics, to
evaluate the behavior of systems of infinite size from those of finite size. It is such techniques
that we use to determine the phase diagram and the corresponding phase transitions (for details
we refer to the review [33]).

Below we briefly summarize the most important CDT results; for more details we direct
the reader to the review articles [33–35]. Despite the relative simplicity of its formulation and
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a small number of parameters (three coupling constants), CDT has a surprisingly rich phase
structure, which seems to be independent of the spatial topology choice [38].11 Four phases of
quantumgeometrywith distinct physical features have been observed for various combinations
of the bare coupling parameters (κ0,Δ); see the phase diagram in figure 1.12 At this point it
is worth reminding the reader that no background geometry is introduced by hand. So even if
the building blocks are four-dimensional simplices, a priori it is in no way clear what kind of
geometries will be observed. The experience from the old four-dimensional EDT simulations
was that it was close to impossible to obtain something that even vaguely resembled four-
dimensional universes. From that point of view it is non-trivial and very encouraging that in
one of the phases, the so-called C-phase (also called the semiclassical or de Sitter phase) we
observe what looks like a four-dimensional Universe where the scale factor admits a semi-
classical description [7–9]. This is different in other phases, called A, B and Cb, which most
likely do not have a good semiclassical interpretation13. The four phases are separated by first-
(A− B, A− C and B− C)14 and higher-order (B− Cb and C − Cb)15 phase transition lines
[10, 39], meeting in two triple points, which are natural candidates for the UV fixed point of
quantum gravity, if it exists. A key issue in CDT is how to define good observables, whose
expectation values or correlation functions can be measured in the Monte Carlo simulations.
One example is the spatial volume distribution in (lattice) proper time. Using this observable,
we were able to measure the effective action for the scale factor of CDT, which in phase C is
consistent with the (discretized) minisuperspace action of GR [7–9].

Some progress toward defining new coordinate-free observables in CDT has recently been
made [40], but in general it would be beneficial to have a notion of coordinates not only in
time but also in spatial directions. They would, for example, be instrumental in measuring
a more general effective action of CDT, taking into account not only the scale factor but
also the spatial degrees of freedom. They would also help better to understand properties
of the Cb phase, where spatial homogeneity is strongly broken by very nontrivial geometric
structures appearing in generic triangulations. Therefore, we have recently started a research
program aimed at restoring spatial coordinates in CDT, whose formulation is ab initio (space-
)coordinate free. The choice of a toroidal spatial topology seems convenient for this purpose. In
the toroidal CDT, conversely to the spherical case, one can define three (or four, including the
time direction) families of 3D surfaces, called boundaries, which are orthogonal to each other
and non-contractible in spatial directions; see figure 2 for a lower-dimensional visualization16.
These boundaries are nonphysical, and their position does not affect the underlying geometries
(triangulations) in any way. One of the possibilities is then to use the boundaries as reference

11 So far we have investigated only two cases, namely the spherical S3 and the toroidal T3 topologies.
12 In the Monte Carlo simulations of CDT, the parameter κ4, which is proportional to the cosmological constant, is
tuned so that the infinite-volume limit can be taken (as described above), which effectively leaves a two-dimensional
coupling constant space.
13 Phases A and Bmay be realizations of some exotic geometries not observed in the real Universe, and phase Cb, also
called the bifurcation phase, may be a realization of a quantum spacetime with a singularity, however it has not been
proven rigorously.
14 The B− C transition was examined only in CDT with toroidal spatial topology as in the spherical topology it could
not be analyzed because of technical issues. It has some properties that may indicate a higher order phase transition and
some suggesting a first order transition. This issue has not been completely resolved. The A− B transition is currently
examined in CDT with toroidal spatial topology, and it is most likely a first-order transition.
15 The order of C − Cb transition was measured only in CDT with spherical spatial topology; in the toroidal case we
observe a strong hysteresis in the transition region which may suggest that the order of the transition has changed
because of the topology change, but it can be an algorithmic issue as well.
16 In our approach we also require the volume of each such boundary to be (locally) minimal, which seems to lead to
three universal boundaries, one in each spatial direction; see [21] for details.
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Figure 1. The phase structure of four-dimensional CDT in the (κ0,Δ) parameter space.
Blue color denotes first-order and red color higher-order phase transition lines. See
footnotes 13 and 14 for additional remarks.

frames and to define coordinates by geodesic distances from them [21]. Such a proposal has
some drawbacks as the coordinates are in general dependent on the position of nonphysical
boundaries, but it led nevertheless to a better understanding of generic CDT geometries, which
in phase C can be described as a semiclassical torus with a number of quantum fractal out-
growths; see figure 3. Another way of analyzing such geometric structures was proposed in
[22], where the boundaries were used to define the shortest loops (starting at any four-simplex)
with nontrivial winding numbers in all three spatial directions and in the time direction. The
length of such loops measured in a given geometry (triangulation) is ‘topological’ as it does
not depend on the position of the boundaries. These concepts led us to the proposal introduced
in [41], and discussed in detail in section 3 below, of using scalar fields as spatial coordinates.

3. Classical scalar fields as coordinates in CDT

3.1. Classical scalar fields

The idea of introducing matter fields as coordinates (dynamical reference ‘clock-and-rods’
fields) and using them to define relational observables (as functions of the reference fields)
is already present in many approaches to gravity [42]. Now we want to use a similar concept
in CDT. Our CDT configurations come from the path integral. Usually, in the continuum, in
order to perform the path integral, we would choose a coordinate system, for instance xμ, on the
manifold defining the whole setup, and we would talk about the equivalence classes of metrics
[gμν(x)] defining the geometry, which would promote the manifold to a Riemannian manifold.
In the EDT and the CDT formalism (except for the time-coordinate in CDT), the situation is
in a way purified from the GR point of view. No coordinate system is given, only the relations
between vertices (belonging to the same link or not, belonging to the same triangle or not, etc),
and from those data one can reconstruct a coordinate system and, in addition, the geometry.
While beautiful from the GR point of view, the lack of a coordinate system has sometimes
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Figure 2. In the 2D toroidal case two orthogonal non-contractible loops can be con-
structed and used to define coordinates (top chart). This is not possible in a spherical
case, where all loops are contractible to a point (bottom chart).

Figure 3. Left: a 2D visualization of a fractal structure of a quantum manifold with
sizable outgrowths originating from the toroidal center (the boundaries of the rectangular
cell are pairwise identified, making it a topological torus). Right: a visualization of 2D
toroidal triangulation with outgrowths. In CDT all triangles are assumed to be identical,
but a triangulation can be transformed by a conformal map to the regular square lattice
with non-identical triangles. The quantum outgrowths are represented by denser regions.
For similar pictures coming from ‘real’ computer simulations of 2D quantum gravity
see [23].

been quite cumbersome and not very enlightening from the point of view of understanding the
basic characteristics of the geometries encountered in the path integral. To explore the geomet-
ric characteristics of a ‘typical’ quantum CDT configuration, i.e. a configuration coming from
the path integral, it would be beneficial to have a coordinate system which is natural for the
given geometry. This is what we want to achieve below for typical CDT configurations. The
coordinate systems will thus be different for different configurations, contrary to the situation
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described above, where xμ was given from the beginning. To discuss the general principles
going into the construction of a coordinate system using scalar fields on a given CDT configu-
ration, let us for a moment use a continuum notation. The topology of the CDT configurations
we extract from our MC simulations will be that of T4 = S1 × S1 × S1 × S1. In principle, we
know the geometry of each configuration since we view it as a piecewise linear manifoldM,
and from the knowledge of the connectivity of the graph representing the configuration we can
reconstruct all distances between points onM. Let us considerM as a Riemannian manifold
with the geometry given by some metric gμν and T4 as a Riemannian manifold N with the
trivial, flat metric hαβ . We want to use as our coordinates a ‘good’ nontrivial harmonic map
M→N . To define one, we can use four scalar fields φα, α = 1, 2, 3, 4, φα(x) being a map
M→ S1 minimizing the action

SM[φ] =
1
2

∫
d4x

√
g(x) gμν(x) hαβ(φγ(x)) ∂μφα(x)∂νφβ(x). (4)

The choice of the trivial metric hαβ onN reduces equation (4) to four decoupled equations for
the scalar fields φα, so for the moment let us concentrate on the scalar field φ(x) that minimizes
(4) and is thus a harmonic mapM→ S1. The minimization of (4) yields the Laplace equation

Δxφ(x) = 0, Δx =
1√
g(x)

∂

∂xμ

(√
g(x) gμν(x)

) ∂

∂xν
, φ(x) ∈ S1. (5)

If φ(x) were a scalar field taking values inR, then the constant modewould be the only solution
to Δxφ(x) = 0 on a compact manifold M. Thus, here it is important that φ(x) ∈ S1. Let the
circumference of S1 be δ. One way to force φ(x) ∈ S1 is to let φ(x) take values in R but to
identify φ(x) and φ(x)+ n · δ. We thus write

φ(x) ≡ φ(x)+ n δ, n ∈ Z. (6)

The map

φ→ ψ =
δ

2π
e2πiφ/δ , (7)

whichmapsφ to a circle in the complex plane, is unchanged by this equivalence.We are mainly
interested in the situation where we have a function φ(x) that is continuous except for a jump
that is a multiple of δ when x crosses a hypersurface in M. The corresponding function ψ(x)
will then be a continuous function. The constant mode is still a trivial harmonic map φ(x) from
M to S1, but that is clearly an uninteresting choice if we want φ(x) to act as a coordinate on
M. However, because φ(x) belongs to S1, we now have other possibilities. Let us illustrate this
in the simplest case whereM is also S1 with the same circumference δ as the target space for
φ. Then we are considering maps S1 → S1, and a solution to (5) which winds k times around
S1 is simply

φk(x) = k · x + c, x ∈ [0, δ], k ∈ Z. (8)

Solutions with different k cannot be deformed continuously into each other. Since M has the
topology of T4, we seek a solution to (5) with winding number one, and we want the points
x ∈ M satisfying φ(x) = c to constitute hypersurfaces H(c) ⊂ M whose union for c varying
in a range of length δ covers M. We now turn to the implementation of this program for
triangulations T that describe our piecewise linear manifoldsM.

In all our previous studies of CDT and also in all cases discussed in the present study, we
consider the field φi to be located in the four-simplices and, for the sake of simplicity, we do
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not distinguish between different simplex types. Therefore, we consider the following discrete
counterpart of the continuous action (4) or, more precisely, one of its components in a given
‘direction’:

SCDTM [{φ}, T ] =
1
2

∑

i↔ j

(φi − φ j)
2 =

∑

i, j

φiLi jφ j ≡ φTLφ, (9)

where the first sum is over all pairs of neighboring four-simplices and the second sum is over
all four-simplices in the triangulation T . L is the discrete Laplacian matrix. For every four-
dimensional triangulation, there are an associated graph and a corresponding five-valent dual
graph17 where a vertex corresponds to a four-simplex in the triangulation, and a link denotes a
connection between two adjacent four-simplices, i.e. it can be viewed as connecting the centers
of the four-simplices across the tetrahedron they share. Given such a dual graph, one can define
the N4 × N4 symmetric adjacency matrix A,

Ai j =

{
1 if(the link i↔ j) ∈ dual lattice,

0 otherwise,
(10)

whereN4 is the number of vertices in the dual lattice or, equivalently, the number of simplices in
the original triangulation.Using the dual lattice notation, the LaplacianmatrixL in equation (9)
can be expressed as

L = 5𝟙− A, (11)

where 𝟙 is the N4 × N4 unit matrix. Let us first treat φi as a field taking values in R. Then, a
field φi which minimizes the action (9) satisfies the discrete Laplace equation

Lφ = 0. (12)

For any finite triangulation of a compact manifold without boundary, there is a trivial solution:

φi = const. (13)

If we project out this zero mode, we can invert the Laplacian matrix (or, in the continuum, the
Laplace operator). Thus, if φi is a field taking values in R, the solutions (13) are the only type
of field configurations that minimize (9). However, as discussed above, we are really interested
in fields φi minimizing the action (9) under the constraint that φi ∈ S1 and that φi winds around
S1 once, which allows for new solutions examplified by (8). Of course, a concept such as the
winding number is not strictly defined in our discretized version, but as we will show, we
can obtain φi configurations that approximate it well. We thus define the discretized analogue
of (6):

φi ≡ φi + n · δ, n ∈ Z ∀ i ∈ T , (14)

where S1 has ‘circumference’ δ. In the following, for convenience we will take δ = 1, except
in section 5. With this definition, (12) has solutions φi that can serve as coordinates. There
are four independent non-contractible loops winding around the toroidal CDT triangulation T .
Let us choose one of them and a closed hypersurface that intersects the loop only once. For a

17 Each four-simplex in a four-dimensional triangulation has exactly five neighbors (CDT forbids topological defects,
and four-simplices are glued together along all their five 3D faces).
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description of how to actually choose such hypersurfaces for our CDT triangulations, we refer
to [21, 22]. Let the field φi jump by δ = 1 when crossing the hypersurface. This is precisely
what happened in the continuum solution (8), and viewed as belonging to S1 it does not jump
at all. However, to solve the equations for φi it is convenient temporarily to view it as an
ordinary scalar field in R with a jump at the hypersurface. As we will show below, this ensures
that we have a unique solution to (14) orthogonal to the constant mode, which by definition
is ‘stretched’ by δ = 1 moving around the manifold along the (or any) non-contractible loop
intersecting the hypersurface. Although it seems that we have introduced a discontinuity of
the field φi along the chosen hypersurface, we want again to emphasize that this is not the case
whenwe viewφi as a field belonging to S

1, and thus the hypersurfacedoes not have any physical
reality since we cannot identify it if we only know φi expressed as a field with values in S1.18

We want to apply this construction also to the three other independent non-contractible loops
in our triangulation T so that we have four scalar fields (φ(x)

i ,φ(y)
i ,φ(z)

i ,φ(t)
i ), which provide us

with a map from T to S1 × S1 × S1 × S1, and which we can use (with some modifications) as
coordinates for T . We now turn to the precise description of how to do that.

3.2. Scalar fields as coordinates with values on S1

The jump condition
We will now discuss how to implement the jump and solve the corresponding discretized

Laplace equation. Suppose we have a given oriented boundary or hypersurface (again, see
[21, 22] for explicit constructions), defined as a non-contractible (in a given spatial or time
direction) connected subset of 3D tetrahedral faces of four-simplices or, equivalently, as a
subset of links on the dual lattice. The field φi in a simplex i adjacent to the boundary will
perceive the value of the field φ j in a simplex j on the other side of the boundary as shifted
by ±δ (the sign depends on the orientation of the boundary); see figure 4 for a 2D illustra-
tion. Since the classical scalar field solution will trivially scale with the jump magnitude δ, in
the following we will assume δ = 1 (as already noted above), but we can always release this
assumption and change φi → δφi, depending on possible physical requirements19. One can
define an antisymmetric jump matrix

Bi j =

⎧
⎪⎪⎨
⎪⎪⎩

+1 if the dual link i→ j crosses the boundary in the positive direction,

−1 if the dual link i→ j crosses the boundary in the negative direction,

0 otherwise

(15)

and a boundary (jump) vector

bi =
∑

j

Bi j. (16)

The three-volume (i.e. the number of tetrahedra) of the boundary is then given by:

V =
1
2

∑

i j

B2
i j =

1
2

∑

i

|bi|, (17)

18 In appendix A1 we show that if we view φi as a field taking values inR rather than in S1, the hypersurface represents
indeed a physical surface. In the language of electrostatics, it is a dipole sheet with constant dipole density.
19We release this assumption in section 5 where we discuss dynamical scalar fields coupled to geometric degrees of
freedom. The jump magnitude δ will have an important impact on the underlying generic geometries.
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Figure 4. Top: an example boundary with a bubble, for which the field values do not fit
into an interval of width 1. Bottom: a step of the boundary redefinition procedure. The
black triangle is flipped to the other side of the boundary. Its field value is decreased
by 1.

as the boundary vector bi is integer-valued in the range−5 � bi � 5 and measures the number
of tetrahedral faces a particular four-simplex i has on the boundary20. To accommodate to the
jump δ = 1, we modify the scalar field action to

SCDTM [{φ}, T ] =
1
2

∑

i↔ j

(φi − φ j − Bi j)
2

=
∑

i, j

φiLi jφ j − 2
∑

i

φibi + V ≡ φTLφ− 2φTb+ V , (18)

where we used definitions (16) and (17). The action (18) is invariant under a constant shift in
the scalar field values (the Laplacian zero mode) and, as we will argue below, it is also invariant
under a shift of the boundary, provided that one also modifies the field values in a trivial way
that is compatible with the equivalence definition (14). Thus, it follows that, viewed as taking
values on S1, the field is not changed at all, and the classical solution is then independent of
the specific choice of boundaries which can be ‘continuously’ (in a sense defined suitably for
the lattice) deformed into each other.

The classical solution
A classical solution for φi that minimizes the action (18) will now satisfy the discrete

Laplace21 equation with a boundary term:

Lφ = b. (19)

20 bi will later be used to find a position of a (redefined) boundary. The sign depends on the flow of the winding number,
i.e. whether the four-simplex is on the positive or negative side of the oriented boundary.
21 Even though the equation (19) formally looks like a Poisson equation, we will call it the Laplace equation since b
is not a source term when we view the field as a field with values in S1.
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Formally, the solution to equation (19) is given by φ = L−1b. However, as already dis-
cussed, the Laplacian matrix L is not invertible as it has a zero mode (Le(0) = 0, where e(0) =
[1, 1, . . . , 1]T is a constant eigenvector). Equation (19) is still solvable since the jump vector
b is orthogonal to the zero mode (e(0) · b =

∑
i bi = 0), which is due to the translational sym-

metry of the action (the action is invariant under a constant shift of the field). For the sake of
simplicity, we shift the field values so that for some simplex (labeled i1) φi1 = 0. This can be
done by adding a term ε · φ2

i1
to the action (18), where ε is positive (not necessarily small). The

modification can then be absorbed into the Laplacian matrix,

Li j → Li j + εδii1δ ji1 , (20)

and one obtains a unique solution:

φ̄ = L−1b, φ̄i1 = 0. (21)

All other solutions to the original Laplace equation (19) with the zero mode are thus given by
translations φi = φ̄i + const. Computing the classical solution numerically is itself a technical
challenge since the Laplacian matrix is large (N4 × N4, whereN4 ∼ 105 − 106). Nevertheless,
we managed to construct numerical algorithms that solve this problem with machine precision
in relatively short computer time. Technicalities are discussed in appendix A2. The classical
solution φ̄ = L−1b has the property

φ̄i =
1
5

(
bi +

∑

j→i

φ̄ j

)
. (22)

This is just a discretized version of the mean value property of continuous harmonic functions,
where at the boundary one should view the field as taking values in S1 rather than in R. An
interesting consequence of equation (22) is that the field condensates in the fractal outgrowths
observed in CDT triangulations. This is because the (artificial) local boundary surrounding an
outgrowth is typically small in size, and therefore the field changes only a little on that local
boundary, leaving the field values almost constant in all simplices building the geometric out-
growth. The condensation is observed in all spatial and time directions and for each of the four
scalar fields (φ(x)

i ,φ(y)
i ,φ(z)

i ,φ(t)
i ). Consequently, if one represents each simplex i by a point with

coordinates (φ(x)
i ,φ(y)

i ,φ(z)
i ,φ(t)

i ), the fractal outgrowths will constitute dense clouds of points.
Examples of such maps are presented in figures 6–9. The maps (or at least 2D projections) will
therefore qualitatively resemble the conformal map in figure 3 discussed above, where dense
regions are also fractal outgrowths.

Boundary redefinition
The scalar field action with a jump at the boundary (18) is invariant under a local shift of

the boundary (such that one simplex, labeled i, is transferred from one to the other side of the
boundary) with a simultaneous change of the scalar field value φi → φi ± δ (the sign depends
on whether the simplex is shifted from the negative to the positive side of the oriented bound-
ary or vice versa). This is illustrated by a simple 2D example triangulation with a boundary
presented in figure 4. Let us consider repeated changes in the position of the boundary, which
preserve its nature as a hypersurface with the topology of T3, and at the same time the cor-
responding changes in the field φi. Clearly the field φi viewed as a field with values on S1 is
not changed at all; nevertheless, it is convenient to think about such a change of the boundary
and the field φi. The reason is that the solution φ̄i given by (21) need not be constant on the
hypersurface with the jump δ(=1) nor does it necessarily take values in the range [0, 1] (as
illustrated in figure 4), even after adjusting the global constant. Let us now argue that we can
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deform the hypersurface of the field jump and correspondingly change φ̄i so that φ̄i is zero on
one side of the modified hypersurface and takes the value 1 on its other side. We apply the
following procedure to the original classical field solution φ̄i:

(a) Shift all field values by a constant so that the smallest value is 0.
(b) Choose a simplex with the largest field value. As follows from the maximum principle for

a harmonic function, the simplex has to touch the boundary with at least one face.
(c) Modify the boundary so that the simplex is flipped to its other side and decrease the

corresponding field value by δ = 1.
(d) Repeat steps (b) and (c) until the maximal field value is below 1.

The argument above shows, using the fact that φ̄i is a discrete harmonic function, that it is
possible to find a hypersurface such that the (new) φ̄i defined by it takes values in the range
[0, 1]. One could obtain such a surface ‘in one go’ by defining a new field

φ̃i(0) = mod(φ̄i, 1). (23)

This removes the original hypersurface and replaces it with the one where φ̄i passes through
0 (or an integer n ∈ Z), at the same time ensuring that the range of φ̃i(0) is [0, 1]. Literally
mapped to a circle of circumference 1 in the complex plane,

ψi =
1
2π

exp
(
2πiφ̄i

)
=

1
2π

exp
(
2πiφ̃i(0)

)
, (24)

which illustrates again that from an S1 perspective the hypersurfaces play no role (as long as
they are ‘continuously’ deformable to each other). We have now achieved our goal of finding a
harmonic map from the triangulation T to S1 with winding number 1. The hypersurfacesH(α)
in T characterized by being mapped to a fixed point ei2πα/2π on the circle of circumference 1
cover T , and α can serve as the coordinate in T ‘orthogonal’ to these hypersurfaces. Thus,

H(α) = {i ∈ T | ψi = e2πiα/2π}. (25)

H(0) is precisely the hypersurface where φ̃i(0) jumps from 0 to 1 constructed above, and we
can generalize this construction to find H(α) explicitly. Define

φ̃i(α) = mod(φ̄i − α, 1), 0 � α < 1. (26)

Again, the original hypersurface of the jump in φ̄i is removed and replaced by the new hyper-
surface where φ̄i passes though α (or α plus an integer n ∈ Z), i.e. where φ̃i(α) jumps from 0
to 1. By construction we have

ψi = e2πiα e2πiφ̃i(α)/2π, (27)

soH(α) is indeed the hypersurfacewith the described property. Since φ̃i(α) is still a solution to
equation (19), we can explicitly find H(α) by using equation (22) to reconstruct the boundary
jump vector from φ̃i(α):

b(φ̃i(α)) = 5φ̃i(α)−
∑

j→i

φ̃ j(α) =
∑

j

Li jφ̃ j(α). (28)

As already mentioned, the (integer) value of b(φ̃i(α)) counts the number of faces (tetrahe-
dra) the simplex i shares with the boundary (the value is 0 for no boundary faces shared, or
either positive or negative depending on which side of the boundary the simplex is located, as
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described above). Thus, knowing b(φ̃i(α)), we know H(α). There are several issues related to
the hypersurfacesH(α), which we will discuss below: are they really hypersurfaces? How do
they change with α (φ̄i is a set of discrete variables, and α is a continuous parameter)? What
is the size of a typical hypersurface H(α)? Is α really a good coordinate for a typical path
integral configuration? We will address these questions in section 4. Assuming that the issues
mentioned have satisfactory answers, let us return to our original problem: for a given toroidal
triangulation we have defined in some way (see [21, 22]) four independent non-contractible
boundaries which we can label with x, y, z, t, and we want to use the corresponding classi-
cal solutions φ̄μ

i , μ = x, y, z, t as coordinates, but without any explicit reference to the chosen
boundaries and the specific range of these solutions. We have managed to do that by introduc-
ing the coordinate system (αx ,αy,αz,αt) where αμ ∈ [0, 1] and the corresponding scalar fields
φ̃μ
i (αμ) are characterized by being solutions to the Laplace equations that jump from 0 to 1 at

the αμ-hypersurface. Sometimes, it can be convenient to represent the torus as a periodic struc-
ture on R4. If we choose to let the jumps of φ̃μ

i (αμ) define the periodic structure, we can turn
the functions φ̃μ

i (αμ) into functions without a jump by adding±1 to them when they cross the
boundaries where they jump. We can also label the new regions we enter in R4 by correspond-
ing integer labels that tell us how many multiples of ±1 we should add to the corresponding
functions φ̃μ

i (αμ) in that particular region in order to ensure it is a ‘continuous’ function (i.e.
a function without the jumps) on R4. We have tried to illustrate this in figure 5, where we
show how different choices of α lead to different representations of the torus on R4. With the
choice of the coordinate system given by (αμ), we are interested in the volume density

√
g(α)

defined as

dV(α) =
√
g(α)

∏

μ

Δαμ = # simplices in volume element
∏

μ

Δαμ. (29)

The easiest way to obtain an idea of the volume density is to fix a coordinate point α0
μ and

calculate the four scalar fields φ̃μ
i (α

0
μ). If we implement φ̃μ

i (α
0
μ) on R4 as described above

(without any jumps), then by definition (since the α-hypersurfaces are the hypersurfaces of
constant φ̄i or, equivalently, of constant φ̃

μ
i (α

0
μ)) the density of simplices around a simplex i

where φ̃μ
i (α

0
μ) = αμ,22 measured using the scalar fields φ̃μ

i (α
0
μ), will agree with the density√

g(α) defined in (29). We can thus write:

dV(φ̃μ
i (α

0
μ)) =

√
g(φ̃μ

i (α0
μ))

∏

μ

Δφ̃μ
i (α

0
μ). (30)

Now we turn to the measurement of
√
g(φ̃μ

i (α0
μ)).

3.3. Density measurements for generic geometries in various CDT phases

Below we present the results of scalar fields measurements for generic triangulations observed
in all the four phases (C, Cb, B and A) of CDT with the toroidal spatial topology and a periodic
time coordinate. The time period used was either T = 4 or T = 20, and theN4,1 volumewas set
to fluctuate around 160k and 720k simplices, respectively. In each case, we picked just one typ-
ical configuration and solved for the classical scalar fields (φ̃(x)(αx), φ̃(y)(αy), φ̃(z)(αz), φ̃(t)(αt))
in such a way that the field values are within the range [0, 1] (we put δ = 1), and the elementary

22 For clarity of presentation we have made this discussion a little imprecise, treating the simplices i as points in a
continuum so that there is locally a one-one map between i and its coordinates αμ(i).
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Figure 5. A 2D visualization of the (toroidal) periodic geometric structure. The solid
red and blue lines are drawn to guide the eye. The dashed red lines show the periodic
structure starting out with the hypersurface corresponding to, say, αx = 0. The dashed
blue lines show the periodic structure starting out with the hypersurface corresponding
to some other αx .

cell boundaries are set at φ̃μ(αμ) = 0, 1 as described above. We chose αμ such that in each
direction the field values are centered around 0.5.

3.3.1. Density maps in φ̃ coordinates. In principle, a density plot of (φ̃(x)
i (αx), φ̃

(y)
i (αy),

φ̃(z)
i (αz), φ̃

(t)
i (αt)) would provide us with the desired quantity

√
g(φ̃μ

i (αμ)). However, this dis-

tribution depends on four fields and is difficult to visualize23. We have thus opted to plot in
figures 6–9 the periodic 2D projections (in various directions), where each dot represents a
simplex with coordinates determined by the classical scalar field solution (φ̃μ(αμ), φ̃ν(αν)).
Thus, in a given small area

dAμν = Δφ̃μ(αμ)Δφ̃ν(αν) (31)

we count the total number of four-simplices i with coordinates (φ̃μ
i (αμ), φ̃ν

i (αν)) in the region
Δφ̃μ(αμ)Δφ̃ν(αν). With the (φ̃μ(αμ), φ̃ν(αν))-plane serving as a photographic plate, all points

above and below are projected on it and leave a mark. In terms of the original
√
g(φ̃μ

i (αμ)), we
can write (in continuum notation), instead of (30),

dVμν =

(∫ 1

0

∫ 1

0
dφ̃κ(αμ)dφ̃λ(αν)

√
g(φ̃ρ

i (αρ))

)
dAμν , κ,λ �= μ, ν. (32)

Since we have the original coordinate t freely at our disposal, we have chosen to include this
information in the plots by a color code. The color of each point thus depends on the position

23 Under the link: https://cs.if.uj.edu.pl/plots/10-alphaft_xyz_t_3 one can find a ‘4D’ visualization for a T = 4
configuration from phase C. Each dot in a 3D frame from the animation represents a simplex with coordinates
(φ̃(x)

i (αx), φ̃
(y)
i (αy), φ̃

(z)
i (αz), φ̃

(t)
i (αt)) where spatial coordinates are the 3D Euclidean coordinates of the dot and the

time coordinate is related to the animation time.
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Figure 6. Cosmic voids and filaments for configurations in phase C. Top: a configuration
with T = 4 (κ0 = 2.2,Δ = 0.6). Bottom: a configuration with T = 20 (κ0 = 3.0,Δ =
0.2). The left-hand side charts are projections on the t− x plane, the right-hand side
charts are projections on the x − y plane. Notice that for the two bottom plots the period
T is larger than that for the upper plots, which also explains why the observed structures
are more dense.

of a given simplex in the original proper-time foliation t. To each (4, 1) simplex with four ver-
tices (a spatial tetrahedron) in t and one vertex in t + 1 we assign an integer time coordinate
t. As going from such a simplex to a simplex of the same type in the next t + 1 layer requires
at least 4 steps: (4, 1)→ (3, 2)→ (2, 3)→ (1, 4)→ (4, 1), we assign non-integer time coordi-
nates t + 1

4 , t +
1
2 and t +

3
4 to the (3, 2), (2, 3) and (1, 4) simplices, respectively. Thus, we have

in total 4× T various time coordinates (and the corresponding colors), and we can trace the
location of each simplex in the (original) time foliation. In figure 6 we show configurations
measured in the semiclassical phase C for T = 4 (top charts) and T = 20 (bottom charts),
respectively. The left-hand side charts are projections on the t − x plane, while the right-hand
side charts are projections on the x − y plane.One can easily see that the scalar field with a jump
in the time direction follows the original time slicing (depicted by colors) quite closely, whereas
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Figure 7. Configurations in phase Cb. Top: a configuration with T = 4 (κ0 = 2.0,
Δ = 0.1). Bottom: a configuration with T = 20 (κ0 = 2.5,Δ = 0.2). The left-hand side
charts are projections on the t − x plane, the right-hand side charts are projections on
the x − y plane.

the new coordinates defined by the scalar fields are smeared around the original proper-time
slicing. The large-scale structure is quite isotropic in all spatial directions, i.e. it looks qualita-
tively the same for all x − y, x − z and y− z projections (in the plots we show just the x − y
projection). This is also the case for the time direction when both T = 20 and N4,1 = 720k are
large, i.e. the t − x (and also t − y and t − z) projection looks qualitatively similar to the x − y
projection24. For the larger triangulation, the large-scale geometry is also quite homogeneous
in all directions, in the sense that shifting all coordinates by constants will produce pictures
looking qualitatively the same. Summing up, in the semiclassical phaseC one observes a homo-
geneous and isotropic geometry on large scales. This large-scale homogeneity and isotropy is

24 For T = 4 the correlation length in the time direction is larger than the fixed time period, and thus the system is too
small to allow for the full structure formation in this direction, but this is simply a finite size effect.
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Figure 8. A configuration in phase B with T = 4 (κ0 = 4.4,Δ = −0.7). The left-hand
side chart is a projection on the t − x plane, the right-hand side chart is a projection on
x − y plane.

Figure 9. A configuration in phase A with T = 20 (κ0 = 5.0, Δ = 0.2). The left-hand
side chart is a projection on the t − x plane, the right-hand side chart is a projection on
the x − y plane.

broken on smaller scales, with sparse regions representing the ‘central’ toroidal part and dense
regions showing fractal outgrowths. The outgrowths are very non-trivially correlated, forming
the characteristic cosmic voids and filaments structure. Remarkably, even though we analyze
the pure gravity case (i.e. the classical scalar fields do not impact the CDT geometry in any
way), and the measured ‘universes’ are only a few Planck lengths in diameter [33], they qual-
itatively reproduce the basic features of the real Universe, including the large-scale cosmic
voids and filaments structure observed in nature. From this perspective, one can imagine that
the geometric fractal outgrowths serve as ‘seeds’ of some matter field condensations (this is
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indeed the case for quantum scalar fields coupled to geometry, discussed in section 5), leading
to nontrivial structure formation caused by quantum gravity effects.

Similar analysis can be performed for geometric configurations measured in the other CDT
phases. In figure 7we plot 2D projections of the densitymapsmeasured in the bifurcation phase
Cb for T = 4 (top charts) and T = 20 (bottom charts). Here again, at least for the large T = 20
and N4,1 = 720k configuration, the geometry appears quite isotropic in all directions (we will
return to this in the next subsection) but is no longer homogeneous. The lack of homogeneity
in the time direction is well explained by the nonuniform spatial volume distribution in the
proper-time coordinate as the volume profile in this phase is blob-like rather than flat as in
phase C (the effect is visible only for large T). It is equally well known that the characteristic
feature of generic phase Cb triangulations is the emergence of dense volume clusters around
high-order vertices observed in every second spatial slice, which makes the spatial volume
distribution inhomogeneous also in the spatial directions. In the Cb phase maps in figure 7,
unlike in the C phase, no nontrivial structure of fractal outgrowths can be observed as the
geometry viewed from any direction seems to concentrate in just one large outgrowth. This
effect is even more pronounced in phase B; see figure 8, showing a configuration with T = 4.
In this case, the geometry in all directions becomes effectively compactified to a point. Thus,
time and spatial homogeneity are both maximally broken. This, again, was expected from the
previous analyses of geometric configurations observed in this phase. Finally, figure 9 shows a
generic phase A configuration, with T = 20. In that case, the dense regions, i.e. the geometric
outgrowths, are separated and uncorrelated, and they do not form any nontrivial structures. This
kind of behavior was previously noticed in the time direction, but now it can also be observed
in the spatial directions. As a result, a generic configuration measured in phase A is highly
homogeneous and isotropic on both large and small scales.

3.3.2. Density maps in alternativeβ coordinates. To visualize and analyze in detail the inter-
nal structure of geometric outgrowths, i.e. of the dense clouds of points in figures 6–9, another
parametrization might be more suitable. It can be introduced by first sorting all φ̃ field values
so that

0 � φ̃i1 � φ̃i2 � · · · � φ̃iN4 < 1, (33)

and then defining the map

φ̃→ β : βi =
i
N4

, (34)

where i is the index (field position) in the sorted list (33). β is by definition in the range. [0, 1].
Since φ̃ is a (discrete) harmonic function, β monotonically interpolates between both sides of
the elementary cell and thus can serve as a coordinate. It follows from the definition that the new
β coordinateswill be stretched in the rangewhere φ̃ is dense and compressedwhere φ̃ is sparse.
As a result, the fractal geometric outgrowths get magnified relative to the ‘central’ part of a
triangulation; see figures 10–13. Interestingly, the qualitative picture of generic triangulations
does not change significantly in the semiclassical phase C, which suggests that the geometric
outgrowths observed in this phase are small and shallow, as in figure 10, where the voids and
filaments structure is still visible in the β coordinates. This is not the case in the other phases, as
shown in figures 11–13, where the new coordinates reveal much finer structures inside bigger
and deeper outgrowths.

The new coordinates do not change qualitatively the results of the analysis of a phase A con-
figuration, where one still observes a number of separated and uncorrelated spacetime points
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Figure 10. A configuration in phase C with T = 20 (κ0 = 3.0, Δ = 0.2) in β coordi-
nates. The left-hand side chart is a projection on the t − x plane, the right-hand side chart
is a projection on the x − y plane.

Figure 11. A configuration in phase A with T = 20 (κ0 = 5.0, Δ = 0.2) in β coordi-
nates. The left-hand side chart is a projection on the t − x plane, the right-hand side
chart is a projection on the x − y plane.

giving rise to a quite homogeneous and isotropic geometry. The results observed in the bifur-
cation phase Cb are more interesting, and they seem to change as one goes from the C − Cb

phase transition toward theCb − B phase transition; see figure 12 where we plot configurations
for fixed Δ = 0.2 and various κ0 = 2.5 (close to phase C), κ0 = 2.0 (in the middle of phase
Cb) and κ0 = 1.5 (close to phase B). The top charts in figure 12 can be interpreted as a mag-
nification of a single fractal outgrowth observed for κ0 = 2.5 in figure 7 (bottom) in various
directions, while middle and bottom charts are magnifications of similar outgrowths observed
for κ0 = 2.0 and κ0 = 1.5, respectively. In each case, one clearly observes the time evolution
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Figure 12. Configurations in phase Cb in β coordinates for T = 20, Δ = 0.2 and
κ0 = 2.5 (top), κ0 = 2.0 (middle), κ0 = 1.5 (bottom). The left-hand side charts are pro-
jections on the t − x plane, the middle charts on the t − y plane and the right-hand side
charts on the t− z plane.

of a very compact geometric object with no clear internal fine structure. For the configura-
tion closest to phase C, the geometry is isotropic in all directions (top charts). This isotropy
is broken as one approaches phase B (middle and bottom charts). At the same time, the inter-
nal structure of the outgrowth becomes increasingly homogeneous, which manifests itself as a
‘pillow-like’ picture25. It would be tempting to interpret such configurations as quantum space-
times collapsing to a singularity, and in that case the observed anisotropy could be consistent
with the BKL scenario. Finally, in phase B the qualitative picture is quite similar, as shown
in figure 13, where no fine structure of the magnified outgrowth (i.e. the point in figure 8) is
observed, and the configuration looks quite isotropic in all directions.

25We checked very carefully that the lack of any fine structures is not a result of finite numerical precision of the
classical scalar field solution.
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Figure 13. Aconfiguration in phase B for T = 4 (κ0 = 4.4,Δ = −0.7) inβ coordinates.
The left-hand side chart is a projection on the t− x plane, the middle chart on the t − y
plane and the right-hand side chart on the t− z plane.

4. Alternative spacetime foliations

As already mentioned in sections 1 and 2, CDT introduces a preferred spacetime foliation
parametrized by the (lattice) proper-time coordinate t. As a result, the spatial slices (3D hyper-
surfaces built from tetrahedra in each integer time coordinate t) constitute a set of boundaries
orthogonal to the time direction. The new idea introduced in section 3 was to consider scalar
field(s) with nontrivial jump(s) of magnitude δ = 1 on the boundaries in the time (or in spa-
tial) direction(s). The scalar field solutions can then act as new time coordinates, with a natural
choice of

φ̃(t)
i (αt) = mod(φ̄(t)

i − αt, 1), (35)

where φ̄(t)
i is the classical solution of the scalar field with a jump on some of the time bound-

aries (spatial slices), and which can be viewed as a field taking values in S1. The solution is
parametrized by the real quantityαt (0 � αt < 1). The field φ̃(t)

i (αt) is by definition in the range
[0, 1] and is periodic in αt with period one. As already explained, one can consider an integer
quantity b(φ̃(t)

i (αt)), defined in equation (28), which measures the position of the jump of the
scalar field (35), i.e. the position of the new boundary H(αt) orthogonal to the time direction.
The nonzero (integer) values of b(φ̃(t)

i (αt)) indicate the number of new boundary faces (depend-
ing on αt) of a particular simplex. For a particular value of αt there is a set of simplices for
which b(φ̃(t)

i (αt)) > 0 and a set where b(φ̃(t)
i (αt)) < 0. These simplices lie on two opposite sides

of the (αt-dependent) boundary. Note that in general b(φ̃(t)
i (αt)) and b(φ̄

(t)
i ) are not the same,

and thus the new 3D boundary H(αt) is different than the original one, i.e. the spatial slice in
t. The three-volume (the number of tetrahedra) of the H(αt) hypersurface is

V(αt) =
1
2

∑

i

|b(φ̃(t)
i (αt))|. (36)

We can determine the vertices of the boundary tetrahedra by considering a simplex with
b(φ̃(t)

i (αt)) > 0 and checking the neighboringsimplices j to find those forwhich b(φ̃(t)
i (αt)) < 0.

Each such case defines a boundary face (tetrahedron). We repeat the same procedure for all
simplices with b(φ̃(t)

i (αt)) > 0 to obtain a list of all boundary tetrahedra. Once the list is con-
structed, we check the neighborhood relations between the tetrahedra. Finally, we obtain a list
of boundary tetrahedra where for each element the first four entries are the vertex labels of
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Figure 14. N(t) denotes the number of simplices at the original proper-time coordinate
t adjacent to the new boundary H(αt) defined by the jump of the scalar field (35) for
αt = 0 (green), 0.25 (red), 0.5 (blue) and 0.75 (orange). The data were measured for a
generic triangulation in phase C. The time position of the simplices, and thus also the
boundary, shifts with αt. In the histograms we used non-integer t coordinates, depending
on the simplex type, as explained in section 3.3.

the tetrahedron, and the remaining four are the indices of tetrahedra opposite to the vertices
(similar to the way we code 4D simplices in a CDT triangulation). The list is the analogue of
a 3D foliation we used before to describe spatial slices, but now it is parametrized by αt. In all
cases described here, the systems were periodic in time with the period T = 4. The new 3D
hypersurfacesH(αt) shift with αt as expected and are smeared along the original proper-time
coordinate, as illustrated in figure 14.

Obviously, in the toroidal spatial topology case examined here, a similar analysis can be per-
formed also in the spatial directions. One can introduce a set of four fields φ̃μ, μ = x, y, z, t and
the corresponding boundariesH(αμ) in the way already discussed, and then the hypersurfaces
will be parametrized (shifted) by αx , αy, αz and αt, respectively.

4.1. The topology of the hypersurfaces H(α)

The first question to be asked is whether the 3D hypersurfaces obtained by the new foliation
method outlined above are connected.This can easily be checked.We start from a random tetra-
hedron belonging to the hypersurface and move out measuring the volume distribution at the
geodesic distance r and, eventually, the total volume of the connected part of the hypersurface.
We know the total volume V(αt) defined by equation (36) and can check if all tetrahedra were
visited. In all studied cases, they were all visited, and all hypersurfaces in the time direction
(and similar hypersurfaces in all spatial directions) were fully connected. The studied cases
were configurations from various CDT phases, and we checked the connectivity for many val-
ues ofα in each spacetime direction. The conclusion is that in the case of CDTwith the toroidal
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Figure 15. Histograms of the order of links (related to 3D curvature) for αt = 0 (blue)
and αt = 0.5 (orange) for a generic configuration in theC phase (κ0 = 2.2,Δ = 0.6 and
T = 4).

spatial topology26 the proposed method permits to define a set of connected 3D hypersurfaces
in all spacetime directions. In each direction, these can be viewed as spacetime foliations, sim-
ilar to those studied in a standard approach with the t time foliation and 3D geometric states
formed by tetrahedra. The second question is whether the 3D hypersurfaces satisfy the regular
manifold conditions and thus preserve the 3D toroidal topology of the original spatial slices.
This implies, for instance, that each triangle belonging to a hypersurface is a face of exactly two
tetrahedra. In other words, each tetrahedron should have exactly four neighbors. We analyzed
the neighborhood relations between tetrahedra belonging to the hypersurfaces and found that
across a triangular face a tetrahedron could have 1, 3, 5 or a larger odd number of neighbors.
This means that a triangle could belong, respectively, to 2, 4, 6 or more tetrahedra. Conse-
quently, tetrahedra could have more than four neighbors. Their numbers are always even, and
we found cases where the number of neighborswas 14, but larger even values are not excluded.
We checked hypersurfaces in the C phase for αt = 0 and αt = 0.5. In both cases we measured
the Euler characteristic

χ = N3 − N2 + N1 − N0, (37)

(here N0,N1,N2,N3 are the numbers of vertices, links, faces and tetrahedra forming a given
hypersurfaceH(α)) which was large and negative (−208 and −142 respectively). In figure 15
we show distributions of the order of links in the two cases. We also checked the order of
vertices. They range up to approximately 1200, see figure 16.

The conclusion at this point is that the new 3D foliation leaves H(αt) are not regular mani-
folds and thatmultiple realizations of a sub-simplexwith the same set of vertex labels do appear.

26 Here we consider systems with the toroidal spatial topology, so one can also define boundaries orthogonal to all three
spatial directions, but one can study in the described way the scalar field coordinates and foliations in time direction
for systems with a spherical or any other spatial topology.
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Figure 16. Histograms of the order of vertices for αt = 0 (blue) and αt = 0.5 (orange)
for a generic configuration in the C phase (κ0 = 2.2,Δ = 0.6 and T = 4).

However, the connectivity condition is still satisfied. In our Monte Carlo algorithm, we explic-
itly check the manifold (topology) conditions for the original time foliation into spatial slices.
This is apparently not controlled by the Laplace solution of the classical scalar field. Looking
also at the spatial directions, one may ask whether the original (locally minimal) boundaries
used in our code are free of the topological defects described above. As already said, this is
obviously true for the original time foliation, but checking the properties of spatial boundaries
one finds that the algorithmswe use produce geometric irregularities on boundaries of a similar
nature as the α-hypersurfaces. In the code we do not check if such irregularities appear, and
indeed they may be produced.

Finally, one may ask the question whether our interpretation of using αt hypersurfaces (and
similar hypersurfaces for αx, αy and αz) as boundaries separating elementary cells is valid?
What we mean is that irregularities of such hypersurfaces may lead to a situation where a part
of a 4D elementary cell gets disconnected from the bulk by the irregular outgrowth on the
hypersurface. We explicitly checked that such a situation never happens, i.e. each elementary
cell is fully connected by 4D dual links, which do not cross the hypersurface. In the next
subsection we will explain these observations.

4.2. The hypersurfaces H(α) evolved via 3D Pachner moves

Superficially, one may think that the variable α is continuous and that by varying it we get a
continuous evolution of the three-hypersurfaceH(α) defined by the jump of the classical scalar
field solution (35). On a discretized manifold this is however not the case. Suppose we analyze
the hypersurfaceH(α) obtained for a particular value of α in one of the four directions, and the
range of values for the field for this α is ε � φ̃i(α) < 1, where ε > 0 is the minimal value of
the field distribution observed at some (single) simplex imin. If then we change α to α+Δα,
whereΔα < ε, it is clear that

b(φ̃i(α+Δα)) = b(φ̃i(α)), (38)
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and, consequently, the two hypersurfaces H(α) and H(α+Δα) are identical. Only if Δα
becomes a little larger than ε, the value of b(φ̃imin (α+Δα)) changes, and the simplex imin

is moved to the other side of the boundary. The two hypersurfaces differ only by the posi-
tion of this single simplex. Let us analyze what it means for the hypersurface H(α). The
effect can be viewed as performing one of the so-called 3D Pachner moves on the hyper-
surface. Let us here recall that for triangulations in d dimensions the Pachner moves are
local changes described as follows: consider n d-dimensional simplices in the triangulations,
n = 1, . . . , d + 1, which are glued together in such a way that they form a part of the boundary
of a d + 1-dimensional simplex. The (closed) boundary of the d + 1-dimensional simplex has
d + 2− n other d-dimensional simplices, which are also glued together. These two sets of d-
dimensional simplices share a boundary consisting of d − 1-dimensional simplices. Thus, one
can replace the n d-dimensional simplices in the original triangulationwith the other d + 2− n
simplices from the boundary of the d + 1-dimensional simplex. There are d + 1 types of such
moves, one for each n. It is clear that this is precisely the situation we have in our case. We
are given a hypersurfaceH(α), i.e. a three-dimensional triangulation. The way we change it is
by ‘moving’ a four-dimensional simplex that contains a certain number of three-simplices of
the hypersurface to the other side of the boundary. In other words, we declare that the original
three-simpliceswhich belonged both to the hypersurfaceH(α) and to the given four-simplex do
not belong to the hypersurfaceH(α+Δα); instead, it is the other three-simplices of the four-
simplex that belong to the new hypersurfaceH(α+Δα): we have moved the four-simplex to
the other side of the (new) hypersurface. There are only two problems with this: the Pachner
moves can lead to degenerate triangulations (but with the same topology), and they may not
lead to a three-dimensional manifold as viewed from the perspective of the embedding space
of a given four-dimensional triangulation, as is the situation here. The situation is generic and
occurs in any dimension d and the reason is very simple: when performing the Pachner moves,
new indices are assigned to the new vertices which were not part of the original d-dimensional
simplicial complex. However, if the vertices are already part of a given d + 1-dimensional
triangulation, and have some labels there, which we do keep, there is a chance that while per-
forming the Pachner move we meet a vertex with the same label several times. This results
in a situation where the d-dimensional triangulation may have self-intersections when viewed
from the d + 1-dimensional triangulation perspective, while from the point of view of Pachner
moves in d-dimensions, the self-intersection vertices would have gotten different indices with
no reference to an embedding space. This is precisely what we have observed, and we have
illustrated the situation in the simplest of all cases, namely d = 1, in figure 17.

Consequently, one can conclude that:

• The evolution of a hypersurfaceH(α) is not continuous inα but can be viewed as a discrete
series of modifications of a boundary hypersurface. In each step, one or more simplices of
the manifold are moved to the other side of the boundary. This happens only for a discrete
set of values of α, which is an effect of the finite system size and of the discreteness of
geometry.

• Each shift of the boundaryH(α) can be viewed as a result of performing a number of 3D
Pachner moves of the boundary.

• H(α) hypersurfaces, viewed as embedded in a 4DCDTmanifold, will in general not be 3D
manifolds, but they are almostmanifolds in some sense, since a suitable additional labeling
can turn them into 3D manifolds with the topology of three-torus. A lower-dimensional
analogy is a crumpled piece of paper smeared with glue, which causes the folding points
to stick together.
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Figure 17. Shown is a part of a triangulation of a two-dimensional torus and a non-
contractible boundary. First, we perform a Pachner move to transfer a blue triangle to
the other side of the boundary. We thereby create an outgrowth, as seen from the two-
dimensional triangulation. The Euler characteristics χ decreases from 0 (the value for
a closed curve) to −1, unless (as we would do if we viewed the Pachner move entirely
from a one-dimensional point of view) we assign two vertices to the pinching point (or
the intersection). In the next move, we create another outgrowth and another pinching
point, and the Euler characteristics changes to −2. Finally, the last move removes an
outgrowth, but there still remains one outgrowth and the Euler characteristics is −1.

• Our algorithm to modify a (locally minimal) boundary in the 4D setup can also be
interpreted in this setting.

To summarize, the interpretation of the change of the hypersurfaces H(α) with α as a
sequence of Pachner moves explains the properties of the surfaces that we have observed in
subsection 4.1 above27.

4.3. The spatial volume distribution of the H(α)-hypersurfaces

Varying αt in the range between 0 and 1, for each configuration, one can measure the distri-
bution of V(αt), defined by equation (36), called here the αt-profile. Below we illustrate the
shape of αt-profiles for generic configurations in different CDT phases, starting with the semi-
classical phase C, see figure 18. Values of α in each plot were taken in 100 steps of .01 (so
αiμ ≡ (i− 1)/100, i = 1, . . . , 100). All measured systems were single configurations with the
proper-time coordinate period T = 4. In the plots we also show the volume profiles in the orig-
inal proper-time coordinate (rescaled to fit the [0, 1] range), the t-profiles. We use generalized
t coordinates, in which we assign integer t to each (4, 1) simplex and non-integer time coordi-
nates t + 1

4 , t +
1
2 and t + 3

4 to the (3, 2), (2, 3) and (1, 4) simplices, respectively, as discussed
in section 3.3. The original proper-time foliation (t-profile) volume structure is also apparent
in the new αt-profile function.

One can also measure the covariance function

C(Δαμ) =
1
N

∑

i

(V(αiμ)− V̄)(V(mod(αiμ +Δαμ , 1))− V̄). (39)

27 It should be noted that in the EDT simulations one usually uses the Pachner moves in a more restricted way, requiring
that the moves should only create new triangulations where simplices are uniquely defined by their vertices. That will
in general not be the case in an unrestricted use of the Pachner moves. However, even with their unrestricted use the
underlying topology of the triangulation is not changed. The spurious change in topology we observe comes entirely
from the embedding, as explained above.
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Figure 18. The volumes of αt and βt profiles in a single configuration in phase C(κ0 =
2.2,Δ = 0.6) with T = 4, and the corresponding t-profile. The t-profile V(t) was shifted
to match the time values corresponding to the maxima of the αt profile (see figure 14).
Note that t variable changes in discrete steps but αt and βt change in much smaller steps.

Figure 19. Covariance of the αt-profile as a function of Δαt (normalized by C(0) = 1)
in a single configuration in phase C(κ0 = 2.2,Δ = 0.6) with T = 4. Averaging over all
initial points produces a relatively smooth curve even for a single configuration.

C(Δαt), normalized to be 1 atΔαt = 0, for a single configuration in the C phase is plotted in
figure 19. In this plot, the four layers are even more visible. Remember that the steps of αt are
.01, and one has all possible layers ((4, 1), (3, 2), (2, 3) and (1, 4)).
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Figure 20. The volumes of αx ,αy and αz-profiles in a generic configuration in phase C.
The plots were shifted in such a way that the maxima are approximately at α = 0.5.

Figure 21. Covariance functions in the x, y, z directions in a generic configuration in
phase C, normalized by C(0) = 1. Averaging over all initial points produces a relatively
smooth curve even for a single configuration.

For the toroidal CDT, the α volume and covariance functions can also be measured in all
spatial directions. For illustration, in figure 20 we show (volume) α-profiles and in figure 21
the covariance functions in the three spatial directions for the same configuration in phase C.
The profiles can be averaged over many measured configurations, which may eventually lead
to the reconstruction of the effective CDT action, now not only in time (as it was done for the
original t coordinate) but also in the spatial directions.
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Figure 22. The volumes of αt and β t profiles in a single configuration in phase B(κ0 =
4.4,Δ = −0.07) with T = 4, and the corresponding t-profile. Both profiles were shifted
to place the maxima in the center of the plot. The t-profile V(t) was additionally scaled by
a factor 0.15. Superficially, the t-profile looks wider than the αt-profile, but this simply
results from a low ‘resolution’ of the t-profile which takes only 4× T = 16 values in
the time direction.

As can be seen from the volume α-profile functions, the spatial distributions are concen-
trated around a certain value of αiμ, and consequently the covariance functions in the spatial
directions look different than the one in the time direction. Interpretation of these results
requires further studies.

Similar plots for the αt-profiles in phases B and Cb are shown in figures 22 and 23. One can
see the appearance of time compactification in the B phase and the typical saw-like volume
structure in the Cb phase, although in this case the αt-profile seems distorted compared to the
t-profile. We will return to this in the next subsection.

4.4. The spatial volume distributions in the β-parametrization

By means of equations (33) and (34) in section 3.3 we introduced the β-coordinates, which,
as we will now argue, are useful for measuring distances between the different foliation leaves
H(α). Let us consider the evolution of a boundary between α = 0 and α = 1. One can see
that for increasing α, gradually all the simplices in the manifold are moved from one side
of the boundary to the other. It is tempting to define a distance between two boundaries at
different values of α as the number of transfers of simplices necessary to evolve the boundary
α into the boundary α′. For each α we may define β(α) as the number of transfers between
the α = 0 boundary (where β = 0) and the α boundary, normalized by the total number of
simplices N4. Note that this is exactly equivalent to the definition of β used in section 3.3
(equation (34)) if we set β(α) = β i, where i is the index (field position) in the sorted list (33)
of a simplex that joins theH(α) hypersurface at a given step of the boundary evolution. The new
parameter β is again in the range 0 � β < 1 and can easily be measured for any configuration
in each direction. In figure 24 we show βt as a function of αt (the index denotes again the
time direction) in a configuration in phase C. One can see that the two definitions coincide
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Figure 23. The volumes of αt and βt profiles in a single configuration in phase Cb(κ0 =
2.0,Δ = 0.1) with T = 4, and the corresponding t-profile.

Figure 24. βt as a function of αt in a configuration in phases C, B and Cb.

in this case, and in practice βt ≈ αt. Consequently, the βt-profile is almost identical to the
αt-profile, as shown in figure 18. This is different in other phases. A plot of βt as a function
of αt in a configuration in phase B is shown in figure 24. In this case, the whole change in
βt is concentrated in a very narrow neighborhood of αt ≈ 0.5, for which value we observe
a blob in the αt-profile (conf. figure 22). As a result, almost all boundary transfers happen
in this neighborhood, and the distribution of V(βt) is completely different than that of V(αt).
The difference is conspicuous in figure 22, where the narrow peak in the αt-profile is greatly
expanded in the new βt parametrization. In the Cb phase, the relation between αt and βt is
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different yet again non-trivial, as exemplified in figures 24 and 23. Both the peaks of the αt-
profile are squeezed in a part of the [0, 1) range, leaving the rest of the profile much flatter,
whereas the βt-profile is much more regular.

5. Dynamical scalar fields

The simplest quantum matter which can be added to the quantum geometry of CDT is a scalar
field. Models of this type were studied in EDT and CDT, mostly for the spherical spatial topol-
ogy but recently also for the toroidal spatial topology. For such models, the lattice regularized
path integral of quantum gravity (2) includes also an integral over scalar fields φ:

ZCDT =
∑

T

∫
D[φ]e−(SR[T ]+SM[{φ},T ]). (40)

The dynamical scalar field φ was in all cases located in the simplices, and the following action
of a massless field was considered:

SM[{φ}, T ] =
1
2

∑

i↔ j

(φi − φ j)2 =
∑

i, j

φiLi jφ j, (41)

where, in the 4D case, the discrete Laplacian is given by

Li j = 5δi j − Ai j, (42)

with Ai j = 1, 0 being the symmetric adjacency matrix on the dual lattice; see section 3 for a
discussion. The Gaussian form of the field means that in principle the field can be integrated
out using the flat measure

D[φ] =
∏ ′

i

dφi√
π
, (43)

contributing to the geometric action SR[T ]→ SR[T ]+ Seffquant[T ] a term

Seffquant[T ] =
1
2
log det(L′(T )), (44)

where L′(T ) is the Laplacian matrix L(T ) in the subspace orthogonal to the constant zero-
mode of L. In the measure we also eliminate the integration over the zero mode (hence the
‘prime’ index in equation (43)). The dependence on geometry sits in the dependence of L′(T )
on the adjacency matrixA defined for a given triangulation T , which is modified by geometric
moves. The dynamical field φ can be rescaled φ→ λφ, but this rescaling can be eliminated by
the change of measure and in effect included in the redefinition of the cosmological constant.

To summarize the results of our earlier research: the inclusion of an interaction of geometry
with the massless scalar field(s) did not change the geometric properties observed without
such fields, at most shifting values of the coupling constants by finite numbers [11]. Including
a potential (like a mass term) suppresses field fluctuations but also does not lead to a visible
change of the geometric phase structure. We also tried to increase the number of scalar fields,
considering several copies of the field

SM[{φ}, T ]→
∑

μ

SM[{φμ}, T ]. (45)

35



Class. Quantum Grav. 38 (2021) 195030 J Ambjorn et al

Figure 25. Left: a pinched torus with the opposite sides identified. Going from the bot-
tom to the top, φ increases from 0 to δ; specifically, in the lower red part it changes from
0 to δ/2, in the blue region it stays constant and equal to δ/2, and in the upper red part it
changes from δ/2 to δ. φ is constant in the horizontal direction. The volume of the red
region, the only region of the field change, is L · ε. Right: a torus where φ is constant
in the horizontal direction and uniformly increases from 0 to δ from bottom to top. The
two tori are assumed to have the same vertical length LV and the same volume V (which
for the right figure can be written as V = LVLH).

The effect was the same as with a single scalar field. We conclude that the dependence of the
determinant Seffquant[T ] on T is weak and, in practice, we can treat it as a constant.

5.1. Jumps

The new aspect introduced in [43] and studied in detail here is based on two major generaliza-
tions of the CDT model:

• The spatial topology was chosen to be toroidal T3. Effectively the topology is toroidal
T4 since we also assume periodicity in the time direction. The system can be treated as
infinite, with the elementary cell repeated periodically in four directions.

• The scalar field was defined as taking values on a circle of circumference δ rather than in
R and forced to wind around the circle when moving around a non-contractible loop in
one of the directions on T4. This can alternatively be viewed as a field taking values in R
with a jump of magnitude δ when crossing the (unphysical) boundary of an elementary
cell; see section 3 for details.

The latter modification thoroughly changes the dynamics of the geometry–matter
interaction28. Previously, for the R-valued scalar field without jumps imposed, the constant
field configuration (i.e. the classical solution) resulted in the absolute minimum (zero) of the
matter action. Now, this solution with a zero winding number is excluded, yet there is a way of
rearranging the geometry that makes the action decrease virtually to zero. For an illustration
in the simple case of a two-dimensional torus see figure 25. The argument is independent of
the number of dimensions as long as at least one direction is periodic.

28 Scalar fields with non-trivial winding numbers may arise in topological configurations of gauge and Higgs fields in
GUT theories.
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The left-hand side picture shows a torus with volume V and vertical length LV, which is
pinched to a cylinder of circumference ε and length L. The scalar field winds once around
a circle of circumference δ when we move around a non-contractible loop in the verti-
cal direction, or, equivalently, the field jumps by δ when passing a boundary between the
lower and the upper edge of the picture (the opposite sides of the picture are identified).
We consider a specific field configuration, where the field φ changes uniformly from 0 to
δ/2 over a distance L/2 in the lower red part, stays constant and equal to δ/2 in the blue
part and changes from δ/2 to δ in the upper red part. The region where the field changes
is joined smoothly to the region where it is constant. The total matter action of this field
configuration is

SM[{φ}, δ, TL] =
(
δ

L

)2

L ε = δ2
ε

L
, (46)

and the minimal action for a classical field configuration for this geometry is even lower29.
Clearly, this value can be made arbitrarily small when ε→ 0, and this is even more true in
higher dimensions. The right-hand side picture in figure 25 also shows a torus with volume V
and vertical length LV. For this geometry, the action is minimal for a field changing uniformly
from 0 to δ when we move from bottom to top, and is equal to

SM[{φ}, δ, TR] =
(

δ

LV

)2

LVLH = δ2
V
L2V

, V = LHLV, (47)

which is bounded from below when V and LV are fixed. Let us discuss the consequence of this
for the full quantum theory. We consider the action of a single scalar field,

SM[{φ}, δ, T ] =
1
2

∑

i↔ j

(φi − φ j − δBi j)2 =
∑

i, j

φiLi jφ j − 2δ
∑

i

φibi + δ2 · V.

(48)

Here Bi j = ±1, when the boundary face i→ j is crossed in the positive (negative) direction,
and Bi j = 0 otherwise; bi =

∑
j Bi j and V = 1

2

∑
i, j B

2
i j. Note that now the size of the jump δ

fixes the scale of the field φ. The action (48) is still Gaussian but with a linear term. Like
before, the field φ can be integrated out. We use the standard method to eliminate the term
linear in φ by a shift. We decompose the field into the classical part φ̄i and the quantum
part ξi:

φi = φ̄i + ξi. (49)

Since both φi and φ̄i have winding number 1, the fluctuation field ξi is a scalar field with
winding number 0, like an ordinary scalar field taking values in R. We modify the integration
measure

D[φ] = D[ξ] (50)

29 Note that the field configuration used in (46), even if smoothly joining the regions where φ changes and where φ is
constant, will in general fail to satisfy Laplace’s equation, i.e. it will not have the minimum value of the action (41).
We only use it to show that by changing geometry the actual solution to Laplace’s equation with winding number 1
can be made arbitrarily small. On the other hand, the solution φ used in (47) is the minimum for the given geometry
since it has winding number 1 and satisfies Laplace’s equation.

37



Class. Quantum Grav. 38 (2021) 195030 J Ambjorn et al

and rewrite the action (48) as

SM[{φ}, δ, T ] =
∑

i, j

ξiLi jξ j +
∑

i, j

φ̄iLi jφ̄ j − 2δ
∑

i

φ̄ibi + δ2 · V

=
∑

i, j

ξiLi jξ j + SM[{φ̄}, δ, T ]. (51)

After integrating out the quantum field, we see that now the field with a jump contributes to
the geometric action

S̃effquant[T , δ] = Seffquant[T ]+ΔSeff[T , δ], ΔSeff[T , δ] = SM[{φ̄}, δ, T ]. (52)

The extra correction termΔSeff[T , δ] is nothing else than the scalar field action (48) evaluated
at the classical solution φ̄. It can be written in many equivalent ways, e.g.

ΔSeff[T , δ] = −δ
∑

i

φ̄ibi + δ2 · V

= −δ2
∑

i, j

(
biL̃

−1
i j b j −

B2
i j

2

)

= −1
2

∑

i, j

δBi j(φ̄i − φ̄ j − δBi j), (53)

where we used the fact that the classical field φ̄ satisfies
∑

j

Li jφ̄ j = δ · bi, φ̄i = δ
∑

j

L̃−1
i j b j. (54)

It is worth mentioning that, according to (53), the action SM[{φ̄}, δ, T ] of the classical solu-
tion φ̄ can be written entirely in terms of the values of φ̄i next to the boundary with the jump,
despite the fact that the action itself is independent of the precise location of the boundary. The
purely quantum contribution Seffquant[T ] is thus exactly the same as for the case with no jump
(δ = 0) and the (purely classical) correction ΔSeff[T , δ] = SM[{φ̄}, δ, T ] is quadratic in the
jump size δ. We now have the following situation: for a given geometry, i.e. a given triangula-
tion T , the contribution from the quantum fluctuations of the scalar field is the same whether
the scalar field takes value in R (and thus just fluctuates around 0) or in a circle S1 of circum-
ference δ (and fluctuates around the classical solution φ̄i with winding number 1). However,
in the latter case the minimum of the classical action SM[{φ̄}, δ, T ] depends in a crucial way
on the triangulation T . Triangulations that are pinched as shown in figure 25 have the smallest
matter action but, in general, the geometric Regge (Einstein–Hilbert) part of the action is larger
for them than for non-pinched triangulations. Thus, there is a competition between matter and
the geometric action. In the case of a scalar field winding around the time direction, this can
easily be illustrated using a simple minisuperspace approximation. We refer to appendix A3
for details. The conclusion is that for a small jump magnitude δ < δc, the geometric part of
the action prevails, and generic triangulations in the path integral are quite similar to the ones
that dominate when no matter field with a jump is present. However, for a large jump mag-
nitude δ > δc, the total (geometric + matter) action is the lowest for pinched triangulations,
and the system fluctuates around them. Thus, we have a picture where for small δ < δc, the
effect of the scalar field is small, and we can say that the scalar field couples to and follows
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the geometry. However, when δ > δc, the scalar field pinches the geometry to a spatial volume
which is small or maybe even zero, and (almost) all changes of φ take place in this region of
very small volume. Thus, φ basically splits a spacetime with a non-trivial winding number in
the time direction into two parts: one (of cutoff size) with a nonzero winding number and one
(dominating) with a zero winding number. Therefore, for δ = δc we should observe a new type
of a phase transition caused entirely by the scalar field, a phase transition in which the effective
spacetime topology can change from toroidal to a simply connected one. This analysis is of
course based on a very simple minisuperspace action (see appendix A3), which might be a
good description in the time direction but not necessarily in the spatial directions, where there
is no minisuperspace approximation. Therefore we now turn to numerical Monte Carlo sim-
ulations. In section 5.2 we discuss the case of an S1 scalar field in the time direction in CDT
with the T3 spatial topology30. Then, in section 5.3 we investigate the case of three scalar fields
winding around spatial directions.

5.2. Results for a single scalar field with a jump in the time direction

Below we present the results obtained for one dynamical scalar field with a jump of magnitude
δ, or, in other words, a scalar field taking values in a circle of circumference δ in the time
direction. All measured systems were toroidal CDT configurations inside the semiclassical
C phase region (κ0 = 2.2, Δ = 0.6), and the Monte Carlo simulations were performed for
the lattice volume N4,1 = 160k and the proper-time periods T = 10 and T = 20. In the Monte
Carlo code, the jumpwas effectuated on the crossing between the t = T and the t = 1 (periodic)
proper-time coordinate, i.e. between the field values inside the (1, 4) simplices (with 1 vertex
in t = T and 4 vertices in t = 1) and the (4, 1) simplices (with 4 vertices in t = 1 and 1 vertex
in t = 2), so that the time-boundary was the spatial slice in the layer t = 1.31 Spatial volume
t-profiles (in the original t coordinate:V(t) = number of tetrahedra in a spatial slice t) for single
generic configurations with several different jump magnitudes δ = 1, 2, 4, 8 are presented in
figure 26. To facilitate the comparison, the profiles measured for various δ were shifted in the
(periodic) proper-time axis so that the maxima are placed at the centers of the charts.

For small jump magnitudes (δ = 1, 2) one observes flat volume profiles characteristic for
toroidal CDT in the pure gravity case (i.e. without the scalar field), while for large jump
magnitudes (δ = 4, 8) the volume profiles are completely changed, showing the blob-like con-
figurations (somewhat similar to the left-hand side picture in figure 25). The pinching becomes
more pronounced for larger T . In view of the discussion in the last subsection, this is very
understandable. With the same four-volume V , it is a larger deformation of the geometry to
perform a pinching of V(t) to small values if T is small and thus the minimal value of V(t) is
larger. Figure 26 also provides a clear illustration of the fact that the precise location of the
hypersurface where the scalar field jumps has no effect on the interaction between the scalar
field and the geometry. In the figure we have shown the location of the jump in the numerical
code, and it is clearly unrelated to the position of the region where the geometry is pinched by
the scalar field, even though when looking at equation (53) (as already mentioned there) one

30We stated above that in this situation the phenomenon of pinching should be independent of the spatial topology.
This is presumably true. However, we might fail to discern it if the spatial topology is S3 and the system is in the
semiclassical phase C. The reason is that in this case we generally already have a geometric pinching, in fact a whole
‘stalk’ of cut-off size width, even without a scalar field. In that situation there will be no problem for the scalar field to
produce a jump of δ in the stalk, and there should not be any real difference in the effect of a scalar field with values
in R and a scalar field with values in S1 and a non-trivial winding number.
31 As already discussed, the formulation is independent of the boundary position, and thus one could as well use any
other spatial layer or a more complicated boundary in time direction.
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Figure 26. Spatial volume t-profiles in single generic configurations inside the semi-
classical phase C (κ0 = 2.2,Δ = 0.6) for T = 10 (left) and T = 20 (right) with scalar
field jump magnitudes δ = 1, 2, 4, 8. For each configuration the position of a jump of the
scalar field is denoted by a dashed vertical line.

Figure 27. Spatial volume t-profiles averaged over many MC configurations inside the
semiclassical phase C (κ0 = 2.2,Δ = 0.6) for T = 10 (left) and T = 20 (right) with
scalar field jump magnitudes δ = 1, 2, 4, 8. Error bars for measured data points were
estimated using single-elimination (binned) jacknife procedure (for most points they are
below the resolution of the plots). Solid lines are fits of the function: c+ a cos(b(t − t0)).
In the left plot, the curves for δ = 1, 2, 4 overlap within the picture resolution.

could be misled to think that all physics of the classical scalar field is related to the location of
the jump.

Figure 27 presents the volume profiles averaged over many Monte Carlo configurations. In
order to get rid of the time-translation symmetry (the center of volume of each configuration
can perform a random walk around the periodic time axis), the center of volume of each indi-
vidual t-profile was shifted to a universal position t0 = T/2+ 0.5. Because of this shifting,
one can observe artificial small ‘blobs’ for small jump magnitudes (δ = 1, 2). Nevertheless, it
is easily seen that the phase transition takes place above δ = 4 for T = 10 and above δ = 2
for T = 20, respectively. Figure 27 also contains fits of the cosine relation resulting from the
minisuperspace model discussed in appendix A3. It is remarkable that despite our computer
generated data are based on the full non-perturbative model including all microscopic degrees
of freedom, the averaged profiles (obtained after integrating out all degrees of freedom but the
scale factor) are so well explained by the simple minisuperspace approximation, where the
scale factor (time dependence) is the only dynamical variable.

5.3. Results for three scalar fields with one or more jumps in spatial directions

This subsection presents the results obtained for dynamical scalar fields with jumps in spatial
directions. In each case, the system contained three scalar fields, and we could adjust the jump
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Figure 28. Spatial volume t-profiles in single generic configurations inside the semi-
classical phase C (κ0 = 2.2,Δ = 0.6) for T = 4 and with dynamical scalar fields with
jump in one spatial direction (left) and in three spatial directions (right).

magnitudes δ1, δ2, δ3. In the Monte Carlo code, the jump of each scalar field was realized
when crossing a 3D boundary orthogonal to one of three independent non-contractible loops
winding around the toroidal spatial directions. In practice, we measured systems where one,
two, or all three fields had the same jump magnitude δ, i.e. where: (1) δ1 = δ, δ2 = δ3 = 0, (2)
δ1 = δ2 = δ, δ3 = 0 or (3) δ1 = δ2 = δ3 = δ, for various choices of δ. Therefore, one can view
the systems as having n = 1, 2 or 3 scalar fields taking values on a circle of circumference δ and
having winding number 1, and the remaining 3− n fields taking values in R (with no winding
number imposed). The analyzed systems were all at the same point (κ0 = 2.2,Δ = 0.6) in the
semiclassical C phase, with the volume N4,1 = 160k and the number of time slices T = 4 (in
the end of this subsection we also present results for a larger system with N4,1 = 720k and
T = 20, obtained at the point (κ0 = 4.0,Δ = 0.2), also inside the C phase).

For the sake of order, we start our analysis with the spatial volume t-profiles for a single
generic configuration observed for the cases when the field jumps in one or three spatial direc-
tions. In this case, as can be seen in figure 28, one does not observe the pinching effect in the
volume profiles even for the largest measured scalar field jump magnitude δ, but this is most
likely due to the very small extent of the periodic time axis (fixed at T = 4), which prevents
blob-like volume profiles from forming (as we will show later, such non-trivial volume profiles
can be observed for larger T = 20).32

To extract more information about the (change in) geometric structure caused by the dynam-
ical scalar field(s) with a certain (large) jump magnitude, one can repeat the analysis of
section 3, i.e. define coordinates given by the classical scalar field solutions in all spatial and
time directions. To facilitate comparison with the results for the pure gravity case presented in
sections 3 and 4, we rescaled the obtained solutions to the classical Laplace’s equation (19)
to get the standard jump magnitude (δ = 1) independently of the actual jump magnitude of
the dynamical scalar field(s) δ. This can be interpreted as introducing new independent clas-
sical fields φ̄μ(δ = 1) on top of the dynamical fields φμ(δ) or, alternatively, as computing the
(rescaled) expected value of the dynamical field(s)

〈φμ(δ)〉 ≡ δ · φ̄μ(δ = 1). (55)

32 A similar behavior was earlier observed in the spherical CDT pure gravity case, where the blob-like volume profile
resulting from a non-trivial minisuperspace effective potential term could be observed only for large enough T . For
small T the observed volume profile was flat, but one could still measure the same effective potential term as for
large T .
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Figure 29. αx− (top), αy− (middle) and αz− (bottom) profiles in the x, y, z directions
in single generic configurations inside the semiclassical phase C (κ0 = 2.2,Δ = 0.6)
for T = 4 and with dynamical scalar fields with jump in one spatial direction (left) and
in three spatial directions (right).

This way one can, for example, measure the α-profiles not only in time but also in the spa-
tial directions (see section 4 for discussion). The α-profiles in spatial directions, presented in
figure 29, are visibly pinched for large jump magnitudes, and the effect depends on the num-
ber of fields with a jump. It is also readily seen that in the case where the jump of the field
takes place only in one spatial direction, say x, the blob-like volume profiles in the (orthogo-
nal) spatial directions y and z are also observed for a large value of the jump (δ = 1.0), as in
the left-hand side plots of figure 29. This is a strong evidence that the observed effect results
from a genuine pinching of geometry caused by the scalar field(s) winding around a circle, as
discussed above, the effect being clearly stronger for more numerous scalar fields with a jump
(conf. the right-hand side plots in figure 29).

Using the classical scalar field solutions as coordinates, one can also measure the density
maps defined in section 3.3 and observe if and how they are affected by dynamical scalar
fields. Figure 30 presents the density maps projected on the t − x plane, and figure 31 shows
the densitymaps projected on the x − y plane. The system has three scalar fields with either one
jump in the x direction only (left-hand side charts) or three jumps in all three spatial directions
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Figure 30. Density maps in φ̄ coordinates (for the definition see section 3.3) repre-
senting the effect of the spatial pinch in t − x directions for configurations in phase
C (κ0 = 2.2,Δ = 0.6) with T = 4. The left-hand side charts are for a single jump in x
direction and the right-hand side charts are for three jumps in all spatial directions. Top:
configurations with a small jump magnitude (δ = 0.1). Bottom: configurations with a
large jump magnitude (δ = 1.0).

(right-hand side charts). For small jump magnitudes (top plots), one observes in all directions
the cosmic void and filament structures, which look qualitatively the same as in the pure gravity
case (see figure 6 for comparison). For large jumpmagnitudes (bottom plots), the density maps
qualitatively change as the geometry gets effectively compressed to a single outgrowth in all
spatial directions (as already discussed, for T = 4 the time direction is not compressed), the
effect visibly increasing in strength with the number of scalar fields with a jump. These results
are easily explicable by the pinching phenomenon discussed above.

To illustrate this, let us analyze a simple 2D example, where a fractal geometry can be
compared to a toroidal balloon with outgrowths, as shown in figure 32. For the pure gravity
case (and for a small jump magnitude), the geometry typically looks like in the left plot with
a large central part and a number of relatively small outgrowths. The scalar fields with large
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Figure 31. Density maps in φ̃ coordinates (for the definition see section 3.3) projected
on the x − y plane for configurations in phase C (κ0 = 2.2,Δ = 0.6) with T = 4 and
with dynamical scalar fields with jump in one spatial direction (left) and in three spatial
directions (right). Top: configurations with a small jump magnitude (δ = 0.1). Bottom:
configurations with a large jump magnitude (δ = 1.0).

jump magnitudes compress the central part, where (almost) all change of the field occurs, and,
because of the total volume constraint, transfer the volume into one of the outgrowths, where
the field is much more uniform, leading to the picture on the right plot.

One could naïvely think that as an effect of the geometry pinching caused by the dynamical
scalar fields with (large) jumps, onewould obtain a compactified geometry similar to the geom-
etry of the bifurcation phase Cb or (for even larger jump magnitudes) to a collapsed geometry
of the B phase. Interestingly, this is not the case. As can be seen in figure 30, for sufficiently
large jump size the spherical outgrowth spreads over time, and the fine structure of the semi-
classical phase C geometry survives the pinching effect as is illustrated in figure 33, where we
show the density maps in x − y directions, now in the β-coordinates introduced in section 3.3.
In these coordinates, the field condensations get stretched and, as a consequence, the geomet-
ric outgrowths, i.e. the dense regions in figure 31, get magnified. One can clearly see the very
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Figure 32. Cartoon 2D pictures representing the generic features of CDT quantum
geometries for the pure gravity case/a small jump magnitude (left) and for a large jump
magnitude (right).

nontrivial internal structure of the outgrowths, again with the cosmic voids and filaments char-
acteristic for the phase C region. Thus, the internal geometry of the large outgrowths created
by the pinching effect of the dynamical scalar fields with jump(s) is now completely different
than the (almost) homogeneous geometry of the large outgrowths observed in phases Cb and
B (see figures 12 and 13 for the pure gravity case).

To summarize the above results, numerical MC simulations performed for N4,1 = 160k and
T = 4 suggest that coupling quantum geometry to scalar fields with non-trivial boundary con-
ditions can lead to a new type of a phase transition. If spacetime is globally hyperbolic with
a toroidal spatial topology, and if the scalar fields have matching topological boundary condi-
tions, then for a sufficiently strong coupling (sufficiently large δ in our model) one observes
a transition leading to an effective change of topology (from a toroidal to a simply connected
one). This is the natural extrapolation of what is observed in numerical data presented above
and what is schematically illustrated in figure 32, i.e. the dominating toroidal part with many
non-trivially correlated (almost) spherical outgrowths changes into the dominating spherical
part with many non-trivially correlated spherical outgrowths and a single toroidal outgrowth
of cut-off size (which is needed due to the global topological restrictions imposed). The occur-
rence of such a phase transition seems to be independent of the number of fields with a jump as
each such field pinches geometry in all spatial directions. These results are further supported
by analysis of larger systems with N4,1 = 720k, T = 20 and three scalar fields with jumps
in all spatial directions33. Contrary to configurations with small time extent, spatial volume
t-profiles are now visibly different for small and large values34 of the jump magnitude δ, as
presented in figure 34, where we plotted 〈V(t)〉, the t-profiles averaged over many MC config-
urations. It is remarkable that for δ > δc ≈ 2.0, where the pinching, i.e. the phase transition
leading to the effective change of the spatial topology from the toroidal to the spherical one,
takes place, one can observe the volume profiles with a ‘stalk’ and the ‘blob’ part, exactly as
it was observed in the pure gravity spherical CDT, where spherical spatial topology was put

33 These data were measured for a different location of CDT bare couplings in the (κ0,Δ) parameter space, but the
new location is also inside the semiclassical C phase region.
34 For the larger system, the critical value δc is now larger than for the smaller system discussed before. The terms
small/large value mean here δ < δc or δ > δc, respectively.
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Figure 33. Density maps in β coordinates (for definition see section 3.3) projected on
the x − y plane for configurations in phase C (κ0 = 2.2,Δ = 0.6) with T = 4 and with
dynamical scalar fields with jump in one spatial direction (left) and in three spatial
directions (right). Top: configurations with a small jump magnitude (δ = 0.1). Bottom:
configurations with a large jump magnitude (δ = 1.0).

in by hand. What is more, for δ � δc the averaged spatial volume t-profiles 〈V(t)〉 seem to be
quite universal, changing only a little with δ, and, even more remarkably, well fitted by the
cos3 curves characteristic for the spherical CDT de Sitter solution observed in phase C. In that
case, the difference between the pure gravity spherical CDT (with imposed spherical spatial
topology) and the toroidal CDT coupled to scalar fields with jumps (causing the effective spa-
tial topology change) lies in a different behavior of the ‘stalk’ part. In the original spherical
CDT, the three-volume of the ‘stalk’ was of the cutoff size, and now, in the toroidal CDT with
the effective topology change, it is significantly larger. This is partly explained by the size of
the minimal three-dimensional toroidal triangulation, which is much bigger than the minimal
spherical three-dimensional triangulation [9], resulting in much larger cutoff, but in the later
case the three-volume of the stalk is still two orders of magnitude larger than the minimal
possible volume of the three-dimensional torus. Probably, the very nontrivial change of the
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Figure 34. Spatial volume t-profiles (averaged over many MC configurations) inside
phase C (κ0 = 4.0,Δ = 0.2) for T = 20 and N4,1 = 720k with dynamical scalar fields
with jumps of magnitude δ in all three spatial directions. Error bars for measured data
points were estimated using single-elimination (binned) jackknife procedure. Solid lines
are fits of the function: max[c, c+ a cos3(b(t − t0))] characteristic for the spherical CDT
de Sitter solution.

effective spacetime topology: T4 → S3 × T1 requires much larger triangulations than the min-
imal possible ones. At any rate, the existence of the ‘stalk’ is a discretization/finite size effect
related to the fixed spacetime topology conditions imposed in the MC simulations, which can-
not change regardless of the effective topology change, and it becomes negligible in the large
volume limit. Therefore, the results presented above strongly support our conjecture that the
newly observed phase transition leads to an effective spatial topology change.

6. Conclusions

The size of a typical CDT Universe that can be studied on a computer is no larger than 10–20
Planck’s lengths [33]. While one could perhaps have expected that all that can be observed at
such short scales is just wild quantumfluctuations, in fact this is not the case. Themeasurement
of the spectral dimension indicates a fractal structure of the studied spacetimes [44], the scale-
dependent spectral dimension seemingly being a result of the underlying quantumfluctuations,
but the scale factor (i.e. the spatial volume profiles as a function of time) of the Universe
behaves surprisingly semiclassically [8]. Those results were obtained by averaging over many
independent field configurations. Understanding the nature of typical geometries, leading, after
performing the average in the path integral, to both semiclassical and quantum phenomena,
would be a step toward explaining the nature of quantum gravity (or at least what we can call
four-dimensional quantum geometry).

In general, a single configuration in the path integral of a quantum theory is not physical.
It can be measured on the computer but not in the real world because of the quantum nature
of the theory. What is defined in a quantum theory is a value of an observable suitably aver-
aged over the configurations of the path integral. This does not necessarily mean that a single
‘typical’ configuration of the path integral is uninteresting. On the contrary, in some situations
and for certain observables, the correct answer (up to finite-size corrections) can be obtained by
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calculating the value of the observable on a single ‘typical’ configuration provided it be suffi-
ciently large to be representative for the whole ensemble. In principle, both the scale factor and
the spectral dimension mentioned above could have been determined that way. Thus, it would
be advantageous to understand the nature of an individual configuration in the path integral:
it might be used to calculate certain observables even if it does not qualify as an observable
itself.

As already mentioned above, CDT configurations are presented to us on the computer as
geometries that are coordinate free in the spatial directions. While this seems desirable from a
GR point of view, it is well known that one should be careful what one wishes for. The reason
that we were able to construct an effective action for the scale factor was precisely that we
had at our disposal a coordinate in the time direction. Indeed, coordinates can be very useful,
and in this article we tried to construct them also along the spatial directions in order better to
understand the geometry of the configurations and to address the question of formulating an
effective action that would include all the spacetime directions.

The geometries we extract from the path integral are not regular in the spatial directions,
and it is not clear how to introduce ‘good’ coordinateswhen the topology of the space is that of
S3. However, if it is T3, then one can take advantage of the periodic structure of the piecewise
linear manifold to introduce three scalar fields satisfying Laplace’s equation and use them as
spatial coordinates35. The same can be done in the time direction if the CDT time t is made
periodic. The comparison of the time defined by the scalar field with the original t can serve
as a check of how well this prescription works.

Our starting point was a path integral triangulation T with four non-contractible hyper-
surfaces, the so-called boundaries, labeled by x, y, z and t and impossible to be continuously
deformed into each other. The t hypersurface was chosen as the spatial slice corresponding
to some value t0 of the CDT time t. Basing on these hypersurfaces, we found four harmonic
maps φ̃μ

i , μ = x, y, z, t from T onto S1. These four maps now served as our new coordinates,
and constant values of φ̃μ

i = αμ defined hypersurfacesH(αμ). Using the new αt coordinate, we
defined and measured the volume profiles V(αt), i.e. the number of tetrahedra in each hyper-
surface H(αt), and the volume-volume correlator C(Δαt) between volumes of hypersurfaces
whose αt coordinate differs by Δαt, as defined in equation (39). The important point here is
that the calculations proceed as well when using the αt coordinate as when using the original t
coordinate. The measurement of C(Δαt) is particularly promising since this correlator can be
used to reconstruct an effective action (see [33] for details). Analogously, we measured the vol-
ume profiles V(αμ), μ = x, y, z (see figure 20). The results are encouraging yet not as good as
for the V(αt) profiles. As discussed above, the accuracy is constrained to what can be obtained
from a single configuration, since in principle we introduce a new coordinate system for each
configuration, but the practicability of making superpositions coming from several configura-
tions is not precluded. This idea, which we have yet to investigate and perhaps couple with
generating even larger triangulations, would be especially useful to improve the results in the
spatial directions. Anyhow, it would be really exciting to be able to measure the correlators
C(Δαμ), μ = x, y, z with good precision.

Let us now turn to other observations made using the new harmonic coordinates. As
explained in section 3.3, the use of harmonic coordinates is well suited to record in a den-
sity plot the outgrowths of a triangulation. In the case of configurations from phase C, which
is undoubtedly the most interesting one from the physical point of view, the projections of

35 Such coordinates are a close analogue of the harmonic coordinate condition used in the context of GR, but here we
use them for non-classical and highly non-trivial geometries.
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densities to μ− ν planes (figure 6) show what we denote, because of the visual similarity to
pictures of the well-known structures in the real Universe, as cosmic voids and filaments. In our
computer-generated spacetimes, the filaments are not matter content but regions where some
of the harmonic fields φμ

i vary slowly. In terms of geometry, those regions can most likely be
associated with outgrowths sharing a small boundary with the rest of the triangulation. How-
ever, the fact that they have a filament structure instead of being randomly conglomerated
indicates structures of a certain ‘duration’ rather than what is shown in figure 3 and realized
in 2D Liouville quantum gravity [23]. This ‘duration’ is particularly pronounced in the time
direction in the upper left picture of figure 6. That this situation is nontrivial (and not fully
understood) is illustrated by plotting the same configurations in the β-coordinates rather than
the α-coordinates. As readily seen in figure 10, a filament structure persists, despite the fact
that the β-coordinates were specifically designed to be complementary to the α-coordinates
and thus sensitive to possible outgrowths.

The classical scalar fields φμ
i used as coordinates do not influence the geometry of the man-

ifold (the triangulation) on which they are defined, but their important aspect, which makes
them independent of the hypersurface used to define them, is that they were mapped to S1 and
not to R. Let us then turn to the examination of a genuine dynamical matter-gravity system,
where the scalar field can influence the geometry.Asmentioned in the introduction to section 5,
we did not observe a substantial effect on the geometry when we studied ordinary scalar fields,
taking values in R, coupled to gravity. This may be surprising since matter is supposed to have
a dramatic effect on geometry in GR, but we have to remember that the configurations are
Wick-rotated to Euclidean spacetimes, where gravity in some sense is repulsive, and also that,
e.g. black hole solutions are completely regular solutions to Einstein’s equations, and the mass
M appears in them just as a parameter. However, what we observe if we compel the scalar field
to take values in S1 and to wind around S1 when moving around a non-contractible loop on
the manifold (the triangulation) where it is defined is that the matter action is minimized if the
geometry of the manifold deforms in such a way that it is almost pinched, and the scalar field
makes all its winding just when passing the pinch, as explained in section 5. In the path integral,
there is a competition between the matter action and the geometric Regge (Einstein–Hilbert)
action, which in turn is minimized for non-pinched geometries. The result seems to be a phase
transition occurring when the change of the scalar field winding around S1 is forced to be suf-
ficiently large. In the new phase, the geometry is ‘squeezed’ in some regions. This kind of
squeezing can lead to an effective topology change from a toroidal to a simply connected one.
The precise nature of this phase transition is still unknown but clearly interesting to investigate
since it is the first phase transition in higher-dimensional CDT caused by matter.
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Appendix A

A1. Harmonic functions and dipole sheets

Let us consider n-dimensional flat space,Rn. The dipole moment of two opposite point charges
±q is defined as δμ = qdμ where dμ is the vector between the two point charges. The dipole
limit is obtained when q goes to infinity and the length of dμ goes to zero keeping δμ fixed.
A dipole sheet is a hypersurface S with a surface dipole density δ(s), i.e. to an infinitesi-
mal area dS centered at any point sμ on the surface corresponds the dipole moment given by
dδμ(s) = δ(s)nμ(s)dS. Let us write Poisson’s equation in the form

Δxφ(x) = −ρ(x), φ(x) =
∫

dny G(x, y)ρ(y), ΔxG(x, y) = −δn(x − y).

(A-1)

Here G(x, y) is defined for n > 2 as the Green function that goes to zero as |x − y| goes to
infinity. The dipole density is obtained as the limit where the charge density ρ(y) is located
in two infinitesimal sheets of charges on the opposite sides of the hypersurface S. Let sμ be a
point at the hypersurface and nμ(s) the normal to the hypersurface.Then ρ(s− εn(s)) = −ρ(s+
εn(s)), for ε infinitesimal, and in the dipole limit

dny ρ(y)G(x, y)→ dS(s) δ(s) nμ(s)
∂

∂yμ
G(x, y)

∣∣∣∣
y=s

, (A-2)

and from equation (A-1) we obtain the corresponding dipole potential

φ(x) =
∫

S
dS(s) δ(s) nμ(s)

∂

∂yμ
G(x, y)

∣∣∣∣
y=s

, (A-3)

where the integral is over the hypersurface S(s). An important property of φ(x), following from
the divergence theorem, is that it jumps by the amount δ(s) when one crosses the surface S at
the point s in the direction of the dipole, i.e. in the direction of the normal to the surface n(s).

Let us now consider the case where the space is a torus Tn with volume V , and where the
hypersurface S is connected and closed. The constant mode is a zero mode of the Laplacian,
and to invert the Laplacian it has to be projected out. ThusΔxG(x, y) = −δn(x − y)+ 1

V . Given
a dipole sheet, thisG(x, y) will produce a φ(x) orthogonal to the constant mode. However, φ(x)
itself is only determined up to the constant mode from the defining Poisson equation, (A-1),
and it is more convenient in the following to fix φ(x) not by orthogonality to the constant mode
but by being zero at a fixed point x0. With this choice, φ(x) is given by

φ(x) =
∫

S
dS(s) δ(s) nμ(s)

∂

∂yμ
(G(x, y)− G(x0, y))

∣∣∣∣
y=s

. (A-4)

Let us now assume that the dipole density δ(s) is constant. If we deform the hypersurface S
in the direction of the normals ni(s), s ∈ S, to another hypersurface S′ not intersecting S and
let V(S, S′) denote the enclosed region, then the two potentials φS(x) and φS′ (x), calculated by
(A-4) using dipole sheets S and S′, respectively, will agree or differ by ±δ, depending on how
x0 and x are located relatively to V(S, S′). More precisely, we have

x, x0 ∈ V(S, S′) or x, x0 /∈ V(S, S′) : φS(x) = φS′ (x), (A-5)
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x0 ∈ V(S, S′), x /∈ V(S, S′) : φS(x) = φS′ (x)− δ, (A-6)

x0 /∈ V(S, S′), x ∈ V(S, S′) : φS(x) = φS′ (x)+ δ. (A-7)

This follows from the divergence theorem, which leads to

φS(x)− φS′ (x)

= δ

∫

S
dS nμ∂μ (G(x, y)− G(x0, y))− δ

∫

S′
dS nμ∂μ (G(x, y)− G(x0, y))

= −δ

∫

V(S,S′ )
dnz Δz (G(x, z)−G(x0, z))

= δ

∫

V(S,S′)
dnz (δn(x−z)− δn(x0−z)) .

The relation between φS(x) and φS′(x) is not only valid in flat space but also for a compact
Riemannian manifold since it only depends on the divergence theorem, which for a Rieman-

nian manifold reads (for our purpose):
∫
S dS(s)n

μ(s) ∂
∂yμ
G(x, y)

∣∣∣
y=s

=
∫
V(S) d

nz
√
g(z) Δz(x, z),

where V(S) is the region enclosed by the hypersurface S, dS(s) is the volume element on S
induced from the metric gi j(y) on the Riemannian manifold, nμ(s) is the normal vector to the
hypersurface S at s, and Δ = 1√

g∂i
√
ggi j∂ j,ΔxG(x, y) = − 1√

gδ
n(x, y)+ 1

V . Let us now view

the field φ(x) as taking values in S1 with circumference δ rather than in R. We can implement
this in a simple way, while still keeping the R values of φ(x) by defining

φ(x) ≡ φ(x)+ n δ, n ∈ Z. (A-8)

We see from equations (A-5)–(A-7) that the redefined φ(x) is unchanged when we change
the boundary, i.e. we have the option of viewing the dipole sheet as unphysical and in fact
non-existent, and φ(x) as a harmonic map (i.e. a function which satisfies Laplace’s equation)
between our Riemannian manifold and the manifold S1. Our setup for the triangulations con-
sidered in the article is a discretization of such a dipole situation. The field φi can be viewed
as sitting in the center of each four-simplex i. We have a hypersurface S build of tetrahedra si j
shared by four-simplices i and j, and the field φi changes to φ j = δ + φi when we cross from
i to j via the hypersurface at si j. The link connecting the centers of the two four-simplices i
and j can be viewed as proportional to the normal n to S at si j, and Bi j plays the role of n dS.
Viewing the dipole associated with area element dS as two charges of opposite sign separated
by a small distance d, as in equations (A-1)–(A-3) above, we see that δ · bi = δ ·∑ j Bi j can
be viewed as the sum of charges associated with the dipoles that cross from the simplex i to
the simplices j. Then equation (15), (16) and (19) are the discretized versions of the contin-
uum equations (A-1)–(A-3), and the solution φ̄i is the discretized version of φ(x) in (A-4) on a
Riemannian manifold. It is remarkable that the discretized versions of equations (A-5)–(A-7)
are still valid on a triangulation without a need to take a continuum limit.

A2. Solution of the discrete Laplace equation

In this section, we describe the technical issues related to solving the discrete Laplace
equation (19)

Lφ = b.
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Although the computations have to be done for all four scalar fields, each field can be treated
separately. Therefore, for simplicity, we will consider a single field φ. Methods applicable for
solving (19) must be suitable for sparse matrices because of the large size of the considered
Laplacian matrix. They can be divided into two basic types: directmethods and iterativemeth-
ods. Below we describe the methods of both types. Wherever possible, all methods used gave
similar results up to the machine precision.

Following equation (22), we tested the accuracy of the computed solution by calculating
the residual sum of squares,

RSS[φ] ≡
∑

i

(
φi − φ̄i

)2
, where φ̄i ≡

1
5

(
bi +

∑

j→i

φ j

)
.

For a perfect solution, RSS[φ] = 0, by definition.

A2.1. Direct methods. The Cholesky decomposition.After the modification (20), the Lapla-
cian matrix L becomes a real positive-definite symmetric matrix and can be decomposed into
the product

L = PT ·H ·HT · P, (A-9)

where H is a lower-triangular matrix and P is a permutation matrix. This is known as the
Cholesky decomposition. The permutation increases the sparsity of H. The system of lin-
ear equation (19) can now be solved simply by forward and back substitution. We used the
CHOLMOD library to perform the sparse Cholesky decomposition [46–48].

Surprisingly, the method was too computationally and time consuming for configurations
in phases B and Cb but did particularly well in phases A and C. On the other hand, the iterative
methods described below did not work so well in the A phase.

A2.2. Iterative methods. We tested various iterative methods and obtained the best results,
both from the point of view of speed and accuracy, for a method that we called parallel
preconditioned conjugate gradient method with symmetric successive over-relaxation and
approximate inverse (PPCG-SSOR-AI).

Conjugate gradient method. The conjugate gradientmethod (CG) was designed for solv-
ing symmetric positive-definite linear systems. Theoretically, it is a direct method, however, it
is very sensitive to round-off errors and is often used as an iterative method since it provides
monotonically improving approximations to the exact solution. At each step, the approximate
solution is improved by searching for a better solution in the conjugate gradient direction,
which is L-orthogonal to all previous search directions (thus avoiding repeated searches). The
conjugate gradientmethod usually convergesmuch faster than standard iterativemethods, such
as Jacobi’s method, Gauss–Seidel method, or successive over-relaxation.

Preconditioned conjugate gradient method. Unfortunately, the problem to be solved is
ill-conditioned, i.e. the condition number of matrix L is large, κ(L) = |λmax(L)|

|λmin(L)| � 1. The idea
of preconditioning is to substitute the original problem Lφ = b with a preconditioned system

C−1Lφ = C−1b

that has the same solution and much lower condition number. A particular choice of a
preconditioner is the so-called symmetric successive overrelaxation (SSOR),

C =

(
D
ω

+H
)

ω

2− ω
D−1

(
D
ω

+HT

)
,
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where D and H are the diagonal and lower-triangular parts of L, respectively, with L = H+
D+HT. The preconditioner is chosen such that κ(C−1L) � κ(L) (i.e. C ≈ L) and Cx = b
can easily be solved. Calculating x = C−1b can be done using forward and back substitution,
hence the name successive relaxation; and sinceC has a symmetric form and ω can be different
from 1, the preconditioner is named symmetric successive overrelaxation.

Parallel preconditioned conjugate gradient method with symmetric successive over-
relaxation and approximate inverse. The preconditioned version is much more stable than
the original conjugate gradient method, but cannot easily be parallelized. To solve this issue,
the method can be further improved by approximating the inverse of the preconditioner C−1.
For D = 𝟙 (we normalize the Laplacian matrix) and ω = 1, we have

C = (𝟙+H) (𝟙+Hτ ) ,

C−1 = (𝟙+Hτ )−1(𝟙+H)−1,

C−1 ≈ K = (𝟙−Hτ ) (𝟙−H) . (A-10)

Now we solveKLφ = Kb using a slightly modified conjugate gradient method.
The PPCG-SSOR-AI method is fully parallelizable but also stable (due to preconditioning)

and fast-convergent (conjugate gradient method). It is also suitable for GPU [45]. We took
advantage of multiple CPU cores and used theOpenMP framework to gain a significant boost.

A3. Minisuperspace model with pinching

Let us consider the situation where our Universe is periodic in the time direction. With the use
of the original CDT time coordinate t, the spatial volume V(t) is now defined at discrete times
tn, and there exists a simple effective action describing the average of V(t) and its fluctuations
[7–9]. The continuum version of this action is very similar to the minisuperspace action of
Hartle and Hawking [49].

S[V] =
∫

dt

[
1
G
V̇2

V
+ αV1/3 + λV

]
, (A-11)

where V̇ denotes the time derivative of V(t). Here the discrete time has been replaced by a
continuous one. In the Hartle–Hawking minisuperspace action, because of the assumption of
homogeneity and isotropy, the scale factor a(t, x) is a function of time only. In CDT no such
assumption is made, but nevertheless the functional form of the effective action in terms of
V(t) is the same as the Hartle–Hawking minisuperspace model if we write V(t) ∝ a3(t). If the
spatial topology is S3, then the constant α is different from zero, and if the spatial topology is
T3, then α = 0. In both cases there exist corrections to the terms shown in (A-11), but they are
small, and we will ignore them. The λ in (A-11) is not really the cosmological constant but
a Lagrange multiplier ensuring that the four-volume of the Universe is fixed at V4 in order to
agreewith the computer simulationswhere the total four-volume is kept constant. Furthermore,
the time integration is from −T/2 to T/2, as the CDT time of the Universe is fixed to be T ,
and, finally, periodicity in the time direction is assumed, again to agree with the setup of the
computer simulations. G can be viewed as proportional to the gravitational constant.

We nowconsider the toroidal case, i.e.α = 0. Clearly, theminimumof the action is achieved
for the constant spatial volume profile V(t) = V4/T. Let us now couple a scalar field to the
geometry and assume, in the spirit of a minisuperspace action based on homogeneity and
isotropy, that φ only depends on t. Moreover, we assume that φ(t) has winding number one
and changes by δ when going around the Universe in the time direction. A minisuperspace
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action that takes that into account can be written as

S[V ,φ] =
∫ T/2

−T/2
dt

[
1
G
V̇2

V
+ V φ̇2 + λV + κ φ̇

]
. (A-12)

The part involving only V(t) is just the Hartle–Hawking minisuperspace action (A-11) (with
α = 0). The part involving φ(t) consists of two terms. The first term is the kinetic term for a
scalar field φ(t) coupled to the minisuperspace metric defined by ds2 = N2(t)dt2 + a2(t)dx2i ,
where we have used flat coordinates on the spatial three-torus. The second term is added with
a Lagrange multiplier κ to ensure that the constraint φ(T/2) = φ(−T/2)+ δ is satisfied. Sim-
ilarly, λ is not the cosmological constant, but a Lagrange multiplier which ensures that the
total four-volumeV4 is kept constant (as in the computer simulations). The actions (A-11) and
(A-12) are written downwith the lap functionN(t) fixed to be one, for simplicity. The equations
of motions derived below could be derived, keeping N(t) as a variable, and only gauge fixing
N(t) = 1 afterward. The Euler–Lagrange equations for (A-12) are

1
G

(
2
V̈
V

− V̇2

V2

)
− φ̇2 − λ = 0,

d
dt
(V φ̇) = 0. (A-13)

They are easily solved by introducing f (t) =
√
V(t), and the first integrals are

V φ̇ = K1,
V̇2

GV
+
K2
1

V
− λV = K2. (A-14)

The only twice differentiable periodic solutions for V(t) and φ(t) where φ(T/2) = δ +
φ(−T/2) and where V(t) > 0 for all t are of the form

V(t) =
V4

T
, φ(t) = const.+ δ · t/T, S[V ,φ] = δ2

V4

T2
, (A-15)

except for δ = 2πn/
√
G where there are additional solutions. For simplicity we consider here

only the case n = 1:

V(t) = a− b cos
(
2π t/T

)
, a =

V4

T
> |b|, (A-16)

φ(t) =
δ

π

(
arctan

[√
a+ b
a− b

tan
(πt
T

)]
+ φ(−T/2)

)
. (A-17)

For any b such that |b| � a the value of the action is

Scritical =
4π2V4

GT2
, δ =

2π√
G
, (A-18)

which is the same value one obtains when using in the action the constant solution for δ =
2π/

√
G. When δ > 2π/

√
G, (A-16) and (A-17) is no longer a solution to (A-13) for |b| < a,

but for |b| = a we have a special situation since V(t) can be zero, for b = a at t = 0 and for
b = −a at t = ±T/2. Let us consider b = a. It is seen from (A-16) and (A-17) that for b→ a
we obtain the solution

V(t) =
V4

T

(
1− cos

(
2πt/T

))
, φ(t) = δ · θ(t)+ φ(−T/2). (A-19)
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The change of φ(t) is a jump of δ at t = 0 where V(t) = 0. The constant K1 in (A-14) is zero
and the term V(t)φ̇2(t) in the action (A-12) is identical to zero for all t. What is special about
the situation a = |b| is that (A-19) is a solution for all values of δ, not only for δ = 2π/

√
G, as

for |b| < a. The reason for this is that φ is decoupled from V(t) since V(t)φ̇2(t) is identically
zero, as mentioned. Thus the action is independent of δ for the solution (A-19).

The value of the action for a given configuration (which is not necessarily a solution to
equation (A-13)) is

S[V ,φ] =
∫ T/2

T/2
dt

[
1
G
V̇2

V
+ V φ̇2

]
. (A-20)

For the solutions (A-15) and (A-19), which we denote the constant solution and the ‘blob’
solution we have

S[V ,φ]

∣∣∣∣
const.

= δ2
V4

T2
, S[V ,φ]

∣∣∣∣
blob

=
4π2V4

T2G
. (A-21)

Thus the constant solution (A-15) has the lowest action when δ < 2π/
√
G, while the blob-

solution has the lowest action (independent of δ) for δ > 2π/
√
G.

In our computer simulationswe do not allowV(t) = 0. In fact there is a cut-offVmin, which is
the minimumnumber of tetrahedra needed to build a triangulation of a spatial slice T3. Thus, to
compare with computer results we should solve the minisuperspace model with the additional
requirement thatV(t) � Vmin. For δ < 2π/

√
G (A-15) is the solution. For δ > 2π/

√
Gwe have

a generalized solution, which is a combination of the constantV(t) like in (A-15) and the ‘blob’
V(t) as in (A-16). Write

δ = δblob + δconst., δblob =
2π√
G
, δconst. = δ − δblob = δ − 2π√

G
.

(A-22)

We now use

V(t) = ã− b̃ cos

(
2π(|t| − τ/2)

T̃

)
,

τ

2
� |t| � T/2, T̃ = T − τ

(A-23)

V(t) = Vmin = ã− b̃, ãT̃ = V4 − τVmin |t| � τ

2
. (A-24)

In principle we could have used any V ∈ [Vmin,V4/T] in the ansatz (A-23) and (A-24). How-
ever as will be clear from the solution, the corresponding action will be decreasing with
decreasing V , and we have thus chosen the smallest possible V , i.e. Vmin, from the begin-
ning. The solution has a ‘stalk’ of time extent τ and spatial volume Vmin, located around t = 0.
This V(t) satisfies (A-13) except in the points t = ±τ/2 where V̈(t) jumps. However, V̇(t) is
continuous and one still has the first integrals (A-14), with different K2’s in the two regions,
but the same K1 which should then be used to calculate φ(t) and thus δblob and δconst.. We find

δblob =
K1T̃√
ã2 − b̃2

=
2π√
G
, δconst. =

K1τ

ã− b̃
=

2π√
G

√
ã+ b̃

ã− b̃

τ

T̃
. (A-25)
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We thus obtain

(
δ − 2π√

G

)2

=
4π2

G
τ 2

T̃2

ã+ b̃

ã− b̃
or δ̄2V̄ =

τ̄ 2

(1− τ̄ )3
(
2− V̄(1+ τ̄ )

)
,

(A-26)

where we have introduced the dimensionless quantities

τ̄ =
τ

T
, δ̄ =

δ − 2π√
G

2π√
G

, V̄ =
T Vmin

V4
. (A-27)

For given δ, V4, T and Vmin this is a third order equation for τ̄ , the extension of the stalk. Rather
than giving the general solution, let us just give lowest order expression in δ̄ and V̄:

τ̄ = δ̄
√
V̄/2

(
1+ O

(
V̄ , δ̄

√
V̄
))

. (A-28)

The qualitative results are thus as follows: the smaller V̄ , the smaller τ̄ and τ̄ → 0 in the limit
where V̄ → 0 and we recover (A-19). For fixed V̄ and increasing δ̄, τ̄ will increase, starting
at τ̄ = 0 for δ̄ = 0, i.e. δ = 2π/

√
G, and for δ̄ →∞ τ̄ → 1, i.e. the stalk basically covers

the whole t-range and the ‘blob’ becomes very narrow and very high. This is qualitatively
in agreement with what we observe in the actual Monte Carlo simulations.

The action of the solution (A-23) and (A-24) follows from (A-21):

S[V ,φ] = δ2blob
V4 − τVmin

T̃2
+ δ2const.

τVmin

τ 2
=

4π2

G
V4

T2

[
1+ τ̄ − 2V̄ τ̄
(1− τ̄ )3

]
,

(A-29)

where τ̄ is a function of δ̄ and V̄ given by (A-26) or (A-28). If we considerVmin as fixed S[V ,φ]
becomes a function of δ̄, and we have (to lowest order in δ̄ > 0 and also assuming V̄ � 1)

S[δ̄] = S[0]
(
1+ δ̄

)2
for− 1 � δ̄ � 0, S[0] = Scritical (A-30)

S[δ̄] = S[0]
(
1+

√
8V̄ δ̄ + O(δ̄2)

)
for δ̄ � 0. (A-31)

The behavior of S[δ̄] is shown in figure 35. First we note that for δ̄ > 0 it is an increasing
function of V̄ . As already mentioned this is the reason we, from the beginning, used the value
Vmin in the ansatz (A-23) and (A-24). While the curve for S[δ̄] looks approximately linear for
δ̄ > 0 on the plot, this ceases to be true for large δ̄ where we have

S[δ̄] =
Vmin

T
δ2 + O

(
δ4/3

)
, δ � 2π√

G
. (A-32)

The leading contribution in (A-32) comes from the stalk, which for large δ fills almost all
the t-range and is precisely of the form given in (A-15), except that V4/T has been replaced
by Vmin. Also the squeezed ‘blob’ has an action going to infinity with increasing δ, but only
as δ4/3.

The derivative of S[δ̄]/S[0] with respect to δ̄ jumps at 0 from the value 2 to the much
smaller value

√
8V̄ . Consequently the simple minisuperspacemodel predicts a first order phase

transition as a function of δ̄.
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Figure 35. S[δ̄]/S[0] plotted as a function of δ̄. The orange curve is the constant solution,
(the dashed part for δ̄ � 0), while the blue curve shows the action (A-29) for δ̄ � 0 and
V̄ = 0.02. The smaller is V̄ , the more horizontal the curve will be, and in the limit V̄ → 0
the curve is the constant 1 and the solution V(t) is precisely (A-19).
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Appendix A

Additional Moves

Moves "2", "3", "4" and "5" (and their respective inverses) are the moves that are
currently used during the MC computer simulations of CDT. The new way of visu-
alizing the moves by the "colored dots" graphs, introduced in Chapter 3, makes it
possible to find new moves relatively easily. Therefore in this appendix I propose
two new moves. These new moves are not atomic ones but could be expressed with
a smaller or larger set of combinations of our atomic moves. It makes sense to pro-
pose new moves even if they can be expressed as a sequence of other moves, because
implementing new moves may significantly reduce the MC thermalization time and
thus speed-up the numerical simulations.

FIGURE A.1: Alternative Move-4 adds a tetrahedron instead of a ver-
tex to the middle of another tetrahedron.

The first proposal is a simple extension of move-4, shown in Fig. A.1. Instead of
adding a vertex to the CDT triangulation in the middle of an s41 simplex, represented
in Fig. A.1 by a black dot splitting into four "external" black dots, one may propose
that the internal structure has four interfaces, which means that it forms another s41
simplex, i.e., an additional "internal" black dot. Thus such a move would be replac-
ing a single black dot with five black dots, instead of four. The inverse move would
require tracking such s41 simplices (black dots) which are only surrounded by other
black dots. In general such an extra move could be extended to inserting N black
dots, but the larger N the harder it is to track such a structure necessary to perform
the inverse move during the simulations.
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FIGURE A.2: The proposed move transforms three blue dots into a
bridge of black-blue-black dots.

The second proposal of the new move is much harder to be implemented, but
potentially much more useful. It is shown in Fig. A.2. The move uses a "bridge"
structure, which is a set of blue dots (s32 simplices) laying along a line connecting
two black dots (s41 simplices). In general there can be arbitrary many blue dots in
the middle (the length of the "bridge" can be arbitrarily long). The simplest version
of the move, which involves only one blue dot could be realized by first performing a
move-2 on the blue and, say, the left black dot. This would create the three connected
blue dots and would place the two black dots next to each other. Then performing a
move-5 would create three black dots out of the two. The last step, which is missing
from the current set of CDT moves, would be the merging of the two vertices of the
spatial link1 of coordination number three, in the graphical representation leading
to the "annihilation" of the black dots. Such a merging move could be achieved by
performing a series of the existing MC moves, but it strongly depends on the details
of a triangulation and it could take up even hundreds of them. This move has the
potential to create large changes in a triangulation, because it can modify very large
structures as well. However, the more massive the move is the less likely that it
will be accepted by the MC algorithm. The move embedded in a larger structure is
visualized in Fig. A.3. We did not implement this move yet, because our current
code does not store the necessary elements to track the required sub-structures.

1In the graphical representation the link would be a closed loop consisting of three black dots.
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FIGURE A.3: The figure shows the proposed new move embedded
in a larger structure. Only the relevant legs are pictured for the sake
of readability. On the top a simpler picture of Fig. A.2 is shown as a

hint.
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Appendix B

Topological relations between
parameters of a CDT triangulation

The following list sums up the topological relations valid for any CDT triangulation.
For the definition of the A, B, C, D and E parameters see Chapter 4. Note, that for
simpler notation in the appendix, contrary to the main text, we use a convention
of global numbers which distinguishes between the number of s41 and s14 simplices,
denoted N41 and N14, respectively. Similarly, we distinguish between N32 and N23.

T1.: 2A1 + C1 + E = 5 · N41

T2.: C1 + 2B1a + 2B2a + D = 5 · N32

T3.: C2 + 2B2a + 2B2b + D = 5 · N23

T4.: 2A2 + C2 + E = 5 · N14

T5.: 2A1 + C1 = 2A2 + C2 = 2(N41 + N14)

T6.: 2B1b + D = 3 · N32

T7.: 2B2b + D = 3 · N23

T8.: 2B1a + C1 = 2 · N32

T9.: 2B2a + C2 = 2 · N23

T10.: (A + B + C + D + E) = N3 = 5
2 N4

A triangulation can be characterized by the following global parameters, re-
ferring to the number of (sub-) simplices of various types, N10, N20, N11, N30, N21,
N12, N40, N31, N13, N22, N41, N32, N23, N14, χ, where the first number in the subscript
denotes the number of vertices in the spatial slice t and the second one is the num-
ber of vertices in t + 1, and χ is the Euler characteristics related to the fixed spatial
topology. These global numbers can be joined using the seven Dehn-Sommerville
relations [28]:

DS1.: N40 = N41 = 1
2 (N41 + N14)

DS2.: N30 = 2N40 = (N41 + N14)

DS3.: N4 = 2
5 (N40 + N31 + N13 + N22)

DS4.: N10 ↓ N20 + N30 ↓ N40 = 0

DS5.: N22 = 3
2 (N32 + N23)
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DS6.: 2N1 ↓ 3N2 + 4N3 ↓ 5N4 = 0

DS7.: N0 ↓ N1 + N2 ↓ N3 + N4 = χ

Using the "T" relations:

(N32 + N23) =
2
5

B +
2
5

D +
1
5

C =
2
3

Bb +
2
3

D = Ba +
1
2

C =
2
3

N22, (B.1)

and from this it follows, that D can be expressed as:

D =
3
2

Ba ↓ Bb +
3
4

C. (B.2)

Similarly, one can express the other relations for the two 4-dimensional simplices,
and using "DS" relations one obtains :

(N41 + N14) =
1
2

A +
1
4

C = N30 = 2N40. (B.3)

It also follows that:

E =
1
2

A +
1
4

C. (B.4)

Using DS3 one can find the relations fulfilled by the time-like tetrahedra:

N4 = (N41 + N14) + (N32 + N23) =
2
5
(N40 + N31 + N22 + N13), (B.5)

leading to

(N31 + N13) = 2(N41 + N14) + (N32 + N23) = A + Ba + C. (B.6)

The formula for the spatial links can be expressed with the help of DS4:

N20 = N10 +
1
2
(N41 + N14) = N10 +

1
4

A +
1
8

C. (B.7)

The remaining numbers N11 and (N21 + N12) are calculated in a bit more involved
way. Taking DS6 we can express the total number of time-like links as:

N11 =
3
2
(N30 + N21 + N12)↓

3
2

A↓ 5
2

Ba ↓ 2C↓ N0, (B.8)

which involves the number of time-like triangles. Using DS7 one can find the fol-
lowing relation:

χ = N0 ↓
1
2
(N30 + N21 + N12) + N4, (B.9)

which leads to the expression for the time-like triangles:

(N21 + N12) = 2N0 ↓ 2χ +
1
2

A + 2Ba +
3
2

C, (B.10)

which now can be used in the previous equation to get the number of the time-like
links:

N11 = 2N0 ↓ 3χ +
1
2

Ba +
1
4

C. (B.11)
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With the above mentioned relations one can check, that for any CDT triangu-
lation there are 8 independent parameters, which are enough to compute all other
global parameters. For example, one can choose the following set of independent
parameters

SetR = {N0, χ, A1, A2, B1a, B2a, C1, C2}. (B.12)

One can as well use the following set, including the currently used global numbers
N0, N41 and N32 appearing in the CDT action:

SetG = {N0, χ, N41, N32, N23, C1, C2, D}. (B.13)

These new parameters can be used not only as order parameters, but also they
can be potentially used to extend the CDT action, see eq. (2.18), to the following
form

Sext
CDT = ↓(κ0 + 6∆)N0 + κ4(N41 + N32) + ∆N41 + κCC + κDD, (B.14)

where κC and κD are the new coupling constants related to the C and D parameters,
respectively. The physical meaning of these parameters and the related coupling
constants is not straightforward and a discussion of it will not be a part of this thesis.
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