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ABSTRACT 

We have developed a matrix formalism that provides an accurate way 

of evaluating the degree of spin polarization built up through the process 

of synchrotron radiation under a wide variety of storage ring operation 

conditions. 

I. Introduction 

The value of an electron storage ring as a high energy physics 

research tool increased considerably since it was realized l-7 that the 

spin polarization of a stored electron beam can potentially reach a level 

of 92% within a practical time scale. The mechanism for this polarization 

build-up is that, in a magnetic field, the spin transition rate from the 

up state to the down state is not equal to that from the down state to 

the up state during the process of synchrotron radiation. The beam 

accumulates a net polarization as a result. 
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The existence of radiative spin polarization was soon confirmed 

experimentally in several existing electron storage rings. 4,8,9,10 The 

degree of polarization, however, was often found to be lower than the 

expected 92% due to depolarization effects. It turns out that the very 

mechanism that gives rise to polarization, namely the synchrotron radi- 

ation, 
4-7,ll 

is also the main cause for depolarization. As an electron 

emits a photon during synchrotron radiation, it receives a recoil perturb- 

ation which excites its subsequent oscillatory orbital motions. The 

electron then sees a perturbing electromagnetic field, which is modulated 

by these orbital oscillations, causing its spin to precess accordingly. 

summing over the uncorrelated photon-emission events results in a dif- 

fusion of spin direction which becomes serious when the spin motion 

couples strongly to the oscillatory orbital motion. 

The achieved level of polarization is determined by an equilibrium 

between the polarizing and the depolarizing effects of synchrotron 

1-3 radiation. The strength of the polarizing effect is already well-known. 

The depolarization strength, on the other hand, depends on details of 

the storage ring operation and is often difficult to calculate with 

accuracy. For a perfect storage ring with planar geometry, the spin-orbit 

coupling vanishes and the ideal 92% polarization is ensured. 

In the presence of imperfections or in storage rings designed with non- 

planar geometry, depolarization strength must be known accurately in 

order to estimate the achievable polarization. In this paper, we present 

a matrix formalism that fulfills this purpose for a wide variety of 

storage ring designs and operation conditions. 
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11. The Matrix Formalism 

Here we briefly describe the basic idea of the matrix formalism. 

Detailed analyses are given in the following sections. 

In order to calculate the depolarization strength, one needs to 

know how the spin and orbital degrees of freedom of an electron couple 

among themselves:. It is well known that in order to fully describe the 

orbital motion of an electron, one needs six canonical coordinates (x, x', 

y, Y’, z, 61, where x, y and z are the horizontal, vertical and long- 

itudinal displacements of a particle relative to the beam trajectory; 

6 = AE/E, is the relative energy error. In the linear approximation, the 

transformations of the six-dimensional vector are described by 6 x 6 trans- 

port matices. 12,13 Spin motion can be conveniently included by adding two 

more spin coordinates (a,P) to form 8-dimensional vectors, X = (x 1' x2' 

x3' x4' x5' x6, x7' x8) = cx, x', y, y', z, 6, a, 81, and by generalizing 

the 6 x 6 transformations to 8 x 8. 

The 8 x 8 matrix, T, which transforms X for one revolution of the 

storage ring, has four eigenstates: three orbital x, y, z-states and one 

spin state; each eigenstate being defined by a complex conjugate pair of 

eigenvectors of T. Any perturbation to the vector X, such as the recoil 

perturbation resulted from emitting a synchrotron photon, can be projected 

onto the four eigenstates. The projections onto the x, y, z-states give 

the contribution of this perturbation to the corresponding x, y, z-emit- 

tances, while the projection onto the spin state gives the contribution 

to spin diffusion. Since the same physical process of quantum emissions 

drives both the spin diffusion and the beam emittances of the electron 

beam, the matrix formalism offers the possibility of obtaining the spin dif- 
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fusion rate and the 21 beam distribution parameters <xixj>,i,j=l,+.+~6~ 
in one concise package, 

One disadvantage of the matrix method is that nonlinear depolariz- 

ation effects such as -those caused by the .perturbation of the beam-beam 

collisions or those associated with spreads in the orbital frequencies-can 

not be included. Due to the intrinsic complexity involved, the nonlinear 
14 

depolarization effects-can only be evaluated very roughly by other methods. 

III. Describing Spin Motion By Matrices 

We assume that the 6-dimensional closed-orbit vector Xe = (xe, x:, 

6e) in the presence of various perturbations has been obtained 

around the storage ring. 13 

An ideal electron will follow the closed-orbit exactly, experienc- 

ing well defined electric and magnetic fields, g(Xe) and if(X,), in each of 

the beam-line elements. Spin precession caused by these EM fields can be 

described by 3 x 3 rotations. Explicit expressions for these 3 x 3 

matrix transformations are given in Appendix I. Knowing the storage ring 

beam-line, one multiplies all 3 x 3 matrices successively to obtain the 

total spin precession transformation Rtot for one revolution around a 

certain position defined as s = 0. A right-handed orthonormal base (f;, 

G, i) with G rotation axis of Rtot is then chosen. Successive 3 x 3 

transformations then bring this base to other positions with C > s > o, 

where C is the storage ring circumference. In one revolution, it gives 

1 = s=c r 
1 0 0 

I 0 cos 27W -sin 27-N 

0 sin 27TV cos 27-N 
1 

s=o 

(1) 
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where exp(fi2m) are the two nontrivial eigenvalues of R tot' The quantity 

v gives the spin precession wave number and i; gives the direction of the 

net beam polarization. For a storage ring with planar geometry and without 

imperfections, V is equal to y(g-2)/2 with y the Lorentz factor and g the 

gyromagnetic ratio of an electron and 3 coincides with the direction of 

the guiding magnetic field 9. In the presence of imperfections, ii deviates 

from y^ noticeably if v is close to an integer. 

Once the base vectors are defined, theclassical spin direction of 

a nearly polarized electron is written as: 

; z fi + cd? + & Ia,e\ << 1 (2) 

The quantities a and !!3 thus describe the spin to a linear approximation 

and - :( a2 + B2) specifies the degree of depolarization of this electron. 

The spin equation of motion of an electron is 
15 

2 z = ; (Xe + X) x ;, 

where the precession angular velocity Q depends on the position of the 

electron, Xe + X, with Xe the closed-orbit and X the oscillatory compon- 
3 

ents relative to Xe. In a linear approximation, R can be decomposed 

into &(Xe) -I- G(X), where 6(Xe) has already appeared in Appendix I and 

the perturbation w is small compared with R. A list of z(X) for some 

beam-line elements is given in -Table 1. We have assumed that the beam- 

line elements are short enough that X e and X do not change appreciably 

within their lengths. We have also defined v, = y(g-2)/2. 
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Table 1: Explicit Expressions of a(X) for Various Beam-Line Elements. 

B 
Horizontal Bending Magnet 
Horizontal Kicker 

Vertical Bending Magnet 
Vertical Kicker 

BX 

(BP) o 
[6 1 + VOX' ;I 

Quadrupole 

Skew Quadrupole 

RF Cavity 

Sextupole 

1 + v. 

(BP) o 2 CYf; + G] 

l+V aB 
O --IL [-x E; + y 9-j 

(BP)~ 3~ 

l-l-v 
O EZ [x' $ - y' $1 

(BP) o 

by, + YXeG + 

(xx e - YYeG I 



Noting that 6, G and ^R satisfy 

(4) 

one obtains by substituting Eq. (2) into Eq. (3) that 

d 
dsa 

= ; (X) l i 

(5) 

If we now form an 8-dimensional state vector from the components of x: 

X’ 

X1 

Y 

Y’ 
Z 

6 

a 

B 

(6) 

the corresponding 8 x 8 transformation matrices would look like 

(7) 

where TRANSPORT means the usual 6 x 6 transport matrices describing the 

transformation among the orbital coordinates; the upper right corner is 

a 6 x 2 matrix filled by O's; the 2 x 6 matrix D is obtained from 

Table 1 and Eq. (5). Explicit expressions of the 8 x 8 matrices, in- 

cluding the D matrices, for some beam-line elements are given in 

Appendix II. 
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One must not forget that, due to the discontinuous transition in the 

definition of the base vectors: as the electron travels across s = C 

[see Eq. ~1, an extra transformation for the spin components is required 

at an infinitesimal distance before s = C: 

Starting from any position s we multiply all transformation matrices 

successively around the beam-line to obtain a transformation matrix for 

one revolution. It will be designated as T(s). Let the eigenvalues 

and eigenvectors of T(s) be Xk and Ek(s), respectively, with 

T(s) Ek (s) = Xk Ek (s) 

Xkk = Awk (9) 

* 
Ek = Emk , k = 21, *II, *III, +Iv. 

Eigenvectors at other positions, %(s'), are obtained from Ek(s) by suc- 

cessive transformations from s to s'. The spin eigenstates EIV and 

E-IV contain only spin components and no orbital components. The IV-th 

eigenvalue is given by XI, = exp(i2m) withy v the spin tune. 

It is not necessary to normalize the spin eigenstates since they 

are not used in later calculations. The orbital eigenstates are normal- 

ized by ‘L 
e,: Sekk = 5, k = I, II, III, 
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where e k 'is the 6-dimensional vector whose components are the six orbital 

components of E k and 

-0 -1 0 0 0 0’ 

1 0 0 0 0 0 

0 0 o-1 0 0 

S= 0 010 0 0 

0 0 0 0 o-1 

-0 0 0 0 10. 

IV. Evaluation of Polarization 

(11) 

The spin polarization in -an electron storage ring approaches the 

equilibrium value.Po 'with a polarization time constant T . The polarization 
P 

of an initially unpolarized:beam is equal to Po[l - exp(-t/?p>,]. It has 

been shown that PO and,Tp 'are given by 11 

(12) 

T -l 56 r&Y5 
P =-- % 

8 m e 

where r e is the classical radius of an electron,% is Planck's 

constant divided by 27r, m is the rest mass of an electron and e 
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In Eq. (13), C is the storage ring circumference, p(s) is the bending 

radius of the magnetic field seen by the particle, G is the instantaneous 

velocity unit vector, a is the polarization direction described before. 

The crucial quantity y $/ay in Eq. (13) is, in the matrix language, the 

projection of the recoil perturbation when emitting a synchrotron photon 

onto the spin eigenstate. A propercalculation ofy Z&lay takes into 

account the spin-orbit coupling as a result of a sudden loss in particle 

energy due to emitting a synchrotron photon. In particular, the strongest 

spin-orbit coupling occurs when the spin wave number v is close to 

k+v 
X,Y,S 

for some integer k, where v are the wave numbers16 for 
X,Y,S 

the horizontal-betatron, the vertical-betatron, and the synchrotron orbital 

motions, respectively. These depolarization resonances are included only 

if the correct definition of y -%/ay is used. 

Consider a fully polarized ideal electron. Let a photon be emitted 

at s with energy deviating from the mean value by a random amount 6E. 

After emission, the electron is left in the state 

Decomposing into eigenstates, one has 

X(s) = c %Ek(.s) 
k 

=E 
k=+I, %I, 2111 

kkEk(s> + 

0 
0 
0 
0 

!I 
0 
0 

; s 

(14) 

(15) 
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where we,have used the property that the spin eigenstates E +1v contain 

no orbital coordinates. The value for Ak for k = 51, tI1, +-III can be 

obtained by equating the orbital components on both sides of Eq. (15). 

13 It has been found that 

6EE 
Ak = -i Eo * (~1, k 5k = I, II, III 

with A -k =%* jk and E the j-th component of vector Ek. 

= -2 6E c’ 
EO 

k 
(17) 

S 

Equating the spin components of Eq. (15) then yields 

where C' 
k means summation with k running over I, II and III only. After 

the photon emission event, the orbital eigenstates are rapidly damped by 

the radiation damping 17 , while the spin components precess with initial 

values given by Eq. (17). The quantity y $ at position s is then simply 

(y 3): -2 F'km(E,t E7k)& + Im(E5i K8k)i] . (18) 
S 

Knowing the eigenvectors Ek(s) of the 8 x 8 transformation matrices 

around the storage ring thus allows a calculation of PO and 'I according 
P 

to Eq. (12). 

IV. Estimate for the SPEAR Storage Ring 

A computer code has been prepared for the polarization and beam 

distribution calculations for SPEAR. The thin-lens approximation has 

been used. The beam-line elements for the ideal SPEAR lattice include 

horizontal bending magnets, quadrupole magnets, sextupole magnets, rf 

cavities and drift spaces. Without field imperfections, the ideal lattice 

produces an equilibrium polarization of 92%. To simulate field imper- 
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fections, we introduce a random distribution of vertical orbit kickers. 

The resulting vertical closed orbit distortion makes sextupoles behave 

like skew quadrupoles and quadrupoles behave like additional vertical 

kickers. In the presence of these field imperfections, the degree of 

polarization PO is plotted in Fig. 1 as a function of the beam energy Eo. 

The SPEAR lattice used in Fig. 1 is specified by the lattice 

parameters: Vx = 5.28, vy = 5.18, v = .022, 13;: = 1.2 m, Bj: = .lOm and 
S 

nz = 0, where (3:, @* and n: 16 are 
Y 

the usual horizontal beta-function, 

vertical beta-function and the'energy dispersion function at the inter- 

action points. The strengths of the vertical kickers are normalized such 

that the rms closed orbit distortion after orbit correction is Ayrms = 

1.2rnm, which is typical for SPEU operation. 

Locations of the depolarization resonances are indicated by arrows 

at the top of Fig. 1. Each integer resonance, v = integer, is surrounded 

by six sideband resonances, v + v 
X,Y 9s 

= integer. The integer resonances 

and the two associated synchrotron sideband resonances overlap and are 

shown as single depolarization dips in Fig. 1. The width of the region 

covered by an integer resonance alone is typically less than 10 
-3 in V 

units. For different distributions of vertical kickers whose strengths 

are normalized so that the orbit distortion after correction has 

AY rms 
= 1.2mm, the qualitative behavior of P vs E. does not change 

0 

much from that shown in Fig. 1. 
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APPENDIX I. SPIN PRECESSION IN UNIFORM EM FIELDS 

The equation for spin precession is 

where 6 is related to EM fields by 15 

(1.1) 

(1.2) 

with v 
0 

= y(g-2)/2 and 8 = AE/E 
0’ 

For an ideal electron with trajectory Xe = (xe, XL, ye, yL,ze,Ge), 

6(Xe) for various beam-line elements are listed in Table 2. Assuming X 
e 

does not change appreciably within the length of a beam-line element, we 
+ 

regard fi(Xe) as being uniform. 

The transformation matrix which transforms the spin components as 

the particle travels through a distance s in a uniform%it field is given 

- I 
sx 
S 
Y = 

1 
sZ f . - 

a2(1 - C) + c aB(1 - C) - ys ay(l - c) + BS 

aB(1 - 0 + YS B2(1 - C) + c f3y(l - C) - as 

ay(1 - C) - f3s By(l - c) + as Y2(l - C) + c 

where a, B and y are the direction cosines R* x, R* -y and R* z; and 

C = cos (R s) S = sin (Qs). 

Using Table 2 for 6, one thus obtains the 3 x 3 matrice which transforms 

the spin components of an ideal electron through a given FM element. 
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APPENDIX II. GENERALIZED T.RANSPORT MATRICES 

The generalized transport matrices for the state vector (x, x', y, 

Y', Z¶ 6, a, [3) are listed below for various beam-line elements. Thin- 

lens approximation has been used. For the rf cavity, as is the synchron- 

ous phase 16 
and 6 is the peak voltage. 

Drift Space 

L 

lRO0 0000 
0100 0000 
OOlR 0000 
00010000 
00001000 
0000 0100 
0000 0010 
0000 0001 

Horizontal Bend Magnet or Kicker : q = B,R/(Bp) 
0 

0 0 0 0 

0 0 0 q 
1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 vo9Rz 0 qLY 
0 -vo9mz O -qmy 

Vertical Bend Magnet or Kicker : q = Bx!?,/(Bp)o 

-qVomz 

0 

0 

0 

-4 
0 

1 

qR, 
-qmx 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

(11.1) 

(11.2) 

(11.3) 



Quadrupole : q = - 
(B;lo Y&- By 

1 0 0 

-9 1 0 

0 0 1 

0 0 q 

-we 0 "e 
0 0 ‘0 

- (l+vo)qRy 

(l+Vo) qmy 

I - (l+vo) qRx -(l+vo)qRy (l+vo) 9mx 0 0 (l+vo)qmy 

Skew Quadrupole : q = 

1 0 0 

0 1 -9 
0 0 1 

-4 0 0 

-4Y, 0 -9x, 
0 0 0 

0 0 

0 0 

0 0 

1 

0 0 

0 

0 

0 0 

1 

0 0 

0 0 

0 0 

2, 
ay Y 

0 0 

0 0 

0 0 

1 0 

0 1 

0 0 

0 

qxe 
0 

-9Y, 
0 

1 

0 

0 

0 

qye 
0 

qxe 
0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

h 

I 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

RF Cavity : q = 27r e G COS$~/C E 
0 ; I: = (l+V,) e V sin@s/Eo 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 4 1 0 0 

0 -rR 0 rR 0 0 1 0 
Y X 

0 rm 0 -rm 0 0 0 1 
Y X 

(11.4) 

(11.5) 

(11.6) 
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Sextupolk : '4 
a2 

=&- 2By; r= 
0 ax 

(l+vo) q 

1 0 0 0 0 0 

-Fe 1 qye 0 0 $xyl 
0 0 1 0 0 0 

qye 0 1 0 

4(x2-y2) 

qxe WeYe 
- 2 e e 0 VeYe 0 1 0 

0 0 0 0 0 1 

-r (Y,R~+X~R~’ 0 -r(xegxwYeky) 0 0 0 

L r(yemx+xemy) 0 r(xemx-yemy) 0 0 0 0 
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Table 2:, Explicit Expression of 3 (X,) for Various Beam-Line Elements 

B 
-- (B;)o 

A 
Horizontal Bending Nagnet (v. - 6e) 9 - VoY:, z 

3 

Vertical Bending Magnet BX c, - - (Bp)o w. - 6e) x - VOX; 2 1 
Quadrupole 

l-?-V 
0 aBY Ye 

(BP)0 ax c 
E; + x,; 1 

RF Cavity 

Horizontal Kicker 

Vertical Kicker 

Sextupole 

Skew Quadrupole 
l+V aB 

0-Y 
(BP)~ ay II 

-xeE; + yei 1 
1 + v. 
(Bp)o EZ 

[ 
x;? - Y;; 1 

- & [(v. + 1 - 6e> ? - VoYL "3 

BX -- 
(BP) o c (v. + 1 - 6,)P - VOX; z^ 1 
1 + V a2B 

o--Y- 
(BP), ax2 
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Figure kaption 

Fig. 1. Polarization PO versus beam energy E. for a typical SPEAR 

Configuration. 
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