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Abstract. The neutron Time-of-Flight (TOF) research facility at CERN, 
n_TOF, has been a pioneering platform for neutron cross-section 
measurements since its inception in 2001. It boasts three distinct 
experimental areas, each tailored to address a specific range of neutron 
energies. This paper delves into the intricacies of the n_TOF facility, 
including its recent upgrade during the Long Shutdown 2 (LS2) at CERN. 
Additionally, it highlights the key characteristics of the detectors employed 
for capture and fission cross-section measurements, paving the way for 
future research endeavors.  

1 Introduction

Emerging from the proposal of Carlo Rubbia [1], the n_TOF facility stands as a 
groundbreaking platform for neutron cross-section measurements. Driven by 20 GeV/c 
protons colliding with a lead target, it generates a cascade of neutrons spanning from 
thermal energies to several GeVs. This exceptional range, coupled with its high 
instantaneous neutron flux, low duty cycle, remarkable resolution, and minimal 
background, renders n_TOF unrivaled in its capacity for high-precision and high-resolution 
cross-section measurements pertinent to nuclear astrophysics, nuclear technology, and 
fundamental nuclear physics. Its unique features make it particularly well-suited for 
probing radioactive isotopes, including those crucial to the branching of the s-process 
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nucleosynthesis, as well as for supporting projects involving nuclear waste incineration and 
the design of Generation IV nuclear reactors. 
Since its inception in 2001, n_TOF has undergone a series of substantial upgrades, 
culminating in a transformative overhaul during the second long shutdown of the CERN 
accelerator complex (LS2). These enhancements have expanded the facility's performance 
and capabilities, solidifying its position as a leading neutron cross-section measurement 
resource. 

The subsequent sections delve into the n_TOF facility's intricate design, its recent upgrade, 
and the characteristics of its detectors, providing a comprehensive overview of the facility's 
capabilities. Finally, we conclude with a glimpse into some of the facility's current and 
future research endeavors, showcasing its continued relevance and innovation in the realm 
of neutron cross-section measurements.  

2 The n_TOF facility 

The n_TOF facility, situated at CERN, is a state-of-the-art pulsed neutron source that 
utilizes a high-intensity proton beam generated by the Proton Synchrotron (PS) accelerator. 
This pulsed proton beam is directed through the FTN beamline towards the facility's 
nitrogen-cooled lead target, where spallation reactions occur, producing a copious flux of 
neutrons spanning a wide energy range from thermal to GeV energies. The proton beam has 
a nominal intensity of approximately 8.5 × 10^12 protons per pulse, and each proton 
generates approximately 300 neutrons upon impact with the lead target. The facility's pulse 
repetition rate is 0.8 Hz, with each pulse exhibiting a temporal width of 7 ns (rms), enabling 
exceptional energy resolution for the produced neutron beam. 
The n_TOF facility comprises two dedicated experimental areas, each designed to 
accommodate specific neutron reaction measurements. The first experimental area (EAR1), 
commissioned in 2001, is situated 185 meters from the spallation target and is specifically 
optimized for neutron capture and fission measurements demanding high neutron energy 
resolution. The second experimental area (EAR2), commissioned in 2014, is located above 
ground level, positioned 20 meters from the spallation target perpendicular to the incoming 
proton beam. EAR2's unique features enable the measurement of small and/or radioactive 
samples, even when sample mass is as low as a tenth of a milligram. 
To ensure precise neutron measurements, both experimental areas employ advanced beam 
manipulation techniques, including "sweeping magnets" to remove charged particles from 
the beam and collimators and shielding elements to define the beam aperture. The final 
diameter of the beams, in both areas, is precisely controlled by downstream shaping 
collimators positioned just before the experimental areas. Two beam aperture options are 
available for each area, and the beam optical elements meticulously shape the neutron beams, 
resulting in well-defined and sharp spatial profiles that minimize background interference.  
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Fig. 1. Schematic view of the n_TOF facility

. To complement the neutron beam characteristics, the n_TOF facility is equipped with state-
of-the-art detectors and data acquisition systems. A variety of detectors are employed to 
measure the neutron beam and the products of neutron-induced reactions, with the choice of 
detector depending on the specific experiment and the type of measurement being made. For 
neutron capture reactions, a high-performance 4 Total Absorption Calorimeter (TAC), 
constructed from 42 BaF2 crystals, has been extensively utilized (Figure 2). Innovative gas 
detectors, such as the Fast Ion Chamber (FIC) [2], Parallel Plate Avalanche Chambers 
(PPACs, Figure 2), and fission detectors, such as the MICRO-Mesh-Gaseous Structure 
(Micromegas)[3,4], have been developed for measurements of fission cross-sections 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 n_TOF facility upgrade

During CERN's Long Shutdown 2 (LS2), a comprehensive upgrade campaign was 
undertaken at the n_TOF facility, encompassing the construction of a third-generation 
spallation target [5,6], the enhancement of neutron collimation systems, a complete 
overhaul of the target pit shielding, and the establishment of a new experimental area, the 
NEAR station [7], situated in close proximity to the neutron spallation target. 
The NEAR station comprises two substations: the irradiation station (i-NEAR), positioned 
adjacent to the target, and the activation station (a-NEAR), located outside the shielding at a 
distance of approximately 3 meters from the target [8], in Fig 3 a schematic view of the 
NEAR station. 

 

Fig. 2 Left panel the Total Absorption Calorimeter (TAC) , Right panel Parallel Plate 
Avalanche Chamber PPAC
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Fig. 3. A schematic view of the 3rd n_TOF experimental area 

 
 

Commissioned in 2021, the NEAR experimental area was conceived to investigate the 
impact of radiation on materials and electronics, as well as facilitate cross-section 
measurements utilizing the activation technique. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During the LS2 period, the n_TOF collaboration spearheaded the development, 
characterization, and deployment of novel detection setups, enabling the execution of 
groundbreaking measurement series and the exploration of previously uncharted scientific 
domains. One such innovation is the imaging-Total Energy Detector (i-TED) setup, depicted 
in Figure 4, right panel [9,10,11]. i-TED is a γ-ray detection system that employs the 
Compton imaging technique. This approach enables the selective identification and isolation 
of γ-rays emitted from neutron capture events within the sample volume. Consequently, the 
signal-to-noise ratio is significantly enhanced (see Figure 4 left panel), facilitating 
measurements with minimal sample masses [12]. 
 
 
 

Fig. 4. Right panel : photograph of the i-TED array. Left panel : Capture-spectra for 197Au(n, γ ) 
measured with two conventional C6D6 detectors and with an i-TED  array
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While the high instantaneous flux of EAR2 is advantageous for neutron capture 
measurements, it simultaneously leads to elevated counting rates and intense pile-up events 
in the detection systems. To address these challenges, small-volume segmented Total Energy 
Detectors (sTED, Figure 5, left panel) were implemented [9,13], arranged in a compact 
configuration surrounding the capture sample. The high segmentation of these low-volume 
detectors enabled the reduction of the sample-to-detector distance, resulting in an improved 
signal-to-background ratio (Figure 5, right panel) while maintaining manageable counting 
rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 n_TOF perspective

The combination of neutron-TOF with activation measurements, when feasible, may 
deliver complementary and more accurate information on specific cross section. When 
applicable, the activation technique shows an unsurpassed sensitivity for the measurement 
of minuscule sample quantities, as for samples of only ∼1014 to 1015 atoms. 
With the new future of the  n_TOF facility, it may become possible to access also direct 
neutron-capture measurements on several unstable nuclei of interest for the study of s-
process branchings, and also for the more exotic intermediate i-process of nucleosynthesis 
[14]. The i process involves neutron capture at neutron densities of 1013−1016 cm−3, in 
between the s and r processes. Recently, the i process attracted significant interest because 
it might explain the abundance pattern of a special kind of Carbon-Enhanced Metal-Poor 
stars (CEMPs), called CEMP-s/r [15]. The site of the i-process has been identified as the 
very late thermal pulse H-ingestion of post-AGB stars. Recent studies show also the 
relevance of this mechanism for the early generation of stars [16,17]. One case of interest in 
astrophysics is neutron capture on 135Cs (t1/2 = 2 Myr). The stellar neutron-capture rate 
of 135Cs is relevant for the interpretation of the s-process branching at 134Cs (t1/2 = 2 yr) 
[18] and also for i-process nucleosynthesis. 
 

5 Conclusion 

The upgrade of the facility and the development of innovative detection setups during LS2, 
have opened new avenues for experimental exploration in previously uncharted scientific 
domains. This advancement has enabled the investigation of previously inaccessible 
physical cases, such as the measurement of the 79Se(n,γ) reaction cross-section. 

Fig. 5. Photograph of the capture setup based on an array of small-volume C6D6 detectors (left panel) 
Capture-spectra for 197Au(n, γ ) measured with a conventional large C6D6 detector and with a small 
volume C6D6 detectors (right panel) 
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A substantial portion of the available beam time is dedicated to further detector 
development and testing, demonstrating the n_TOF facility's capacity to pioneer novel 
measurement methodologies in the near future. 
The n_TOF collaboration has ambitious plans for future experimental campaigns, with a 
physics program focused primarily on nuclear astrophysics studies, fission reaction studies, 
and detector development and proof-of-principle. 
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