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Abstract. Pulsars are modeled as neutron stars originated from the collapse of a progenitor
one. In the canonical model they are described by spherical magnetized dipoles that rotate
with the magnetic axis usually misaligned relative to the rotation axis, and such misalignment
would explain the observation of radiation emitted in pulses in a certain direction rendering the
typical observational characteristic of this kind of star. The frequency of such pulses decays
with time and it can be quantified by the braking index (n). In the canonical model n = 3 for
all pulsars but observational data show that n 6= 3. In this work we present a model for the
understanding of the frequency decay of the rotation of a pulsar adapting the canonical one.
We consider the pulsar a star that rotates in vacuum and has a strong magnetic field but, in
contrast to the canonical model, we assume that its moment of inertia changes in time due to
a uniform variation of a displacement parameter in time. We found that the old pulsars that
present high values of the braking index tend to present smaller internal displacements of mass,
in particular the superfluid neutron matter in the core. We relate this trend to neutron vortices’
creep in rotating superfluids, indicating a possible reason for this coincidence.

1. Introduction
Pulsars are considered neutron stars that emit electromagnetic radiation in well-defined time
intervals, rotate rapidly and are highly magnetized. The observed magnetic radiation is
generated from its magnetosphere and is emitted due to the misalignment of the axis of rotation
with respect to the magnetic axis of the star in the pattern from a rotating beacon [1].

The model to explain the frequency of the neutron stars’ pulses [2], which we will call the
canonical model, predicts a gradual deceleration of the rotation of these stars, quantified by
a dimensionless parameter known as braking index, represented by “n”. In that model this
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parameter has a theoretical value equal to 3 [3], but results derived from the observation are
different from that predicted in the theoretical model, indicating that the canonical model needs
improvement.

To this end the pulsar wind model [4] was presented in recent times yielding n = 1 such
that, when combined with the contribution due to the magnetic dipole (n = 3), has presented
interesting results although insufficient. A similar reasoning is followed in the work by [5].

In another investigation a phenomenological function was proposed in the energy conservation
formula with the introduction of parameters which, although unrelated to known physical
variables, allowed the prediction of ranges for braking indices [6]. A different approach by
[7] proposed an increase in the angle between the magnetic moment and rotation axis as the
cause of the evolution of the torque, while[8] investigated the possibility of an effective force
acting on the star which varies with the first power of the tangential velocity of the crust of the
pulsar.

In this work we focus on the internal dynamics of the pulsar: the interior of these stars
present a significant amount of matter in the form of superfluid neutrons [9] and it is also
expected that the coupling and decoupling of this matter alter the long-term dynamics that
leads to the measurement of the braking index and therefore producing changes in the pure
dipole model or deviations in the “normal” dipolar deceleration [10].

We present an approach to investigate the decay of the rotational frequency of pulsars that
leads to the star’s core and its evolution modifying an assumption of the canonical model.
We introduce a time-varying parameter that accounts for an increasing moment of inertia in the
pulsar core and relate it to the motion of superfluid vortices. Details on the results reported here
can be found elsewhere, as a longer paper was accepted for publication during the preparation
of this article [11].

2. Pulsar as a rotating magnetized conducting sphere: summary of the canonical
model
For a rotating sphere the kinetic energy of rotation is equal to [12]:

Erot =
1

2
IΩ2, (1)

whose time derivative is
Ėrot = IΩΩ̇, (2)

where Ω is the star’s angular velocity and I is its moment of inertia.
The star’a magnetic radiation energy is believed to originate from the rotating magnetic

dipole [12]

Ėmr =
2

3c3
|m̈|2, (3)

with the magnetic dipole moment being given by

~m =
BPR

3

2
(cosαk̂ + sinα cos(Ω · t)̂i+ sinα sin(Ω · t)ĵ), (4)

where BP is the magnetic dipole field in the pole, R is the radius of the pulsar and α is the
angle between the magnetic dipole axis and the rotation axis.

The angular velocity of the pulsar varies with time, as shown in Table 1. This could reflect on
the behavior of the magnetic field with time since in this model it has the following expression
when sinα = 1 [3]:

BP =

√
12c3M

5R4
0

√
−Ω̇

Ω3
. (5)
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Table 1. Rotation frequency (ν) and its first and second time derivatives for the sample of
pulsars.

Name J name ν ν̇ ν̈ n Refs.
(s−1) (×10−10 s−2) (×10−21 s−3)

B 0531+21 J0534+2200 29.946923 -3.77535 11.147 2.342(1) [13]
B 0540-69 J0540-6919 19.7746860321 -1.8727175 3.772 2.13(1) [14]
B0833-45 J0835-4510 11.200 -0.15375 0.036 1.7(2) [15]

J1119-6127 J1119-6127 2.4512027814 -0.2415507 0.6389 2.684(2)a [16]
J1208-6238 J1208-6238 2.26968010518 -1.6842733 0.33 2.598(1) [17]
B1509-58 J1513-5908 6.611515243850 -0.6694371307 1.9185594 2.832(3) [18]

J1734-3333 J1734-3333 0.855182765 -0.0166702 0.0028 0.9(2) [19]
J1833-1034 J1833-1034 16.15935711336 -0.52751130 0.3197 1.857(1) [20]
J1846-0258 J1846-0258 3.059040903 -0.665131 3.17 2.64(1)b [21]

Notes. Besides these references, information regarding associations and most rotational parameters were
taken from the ATNF Pulsar catalogue (http://www.atnf.csiro.au/research/pulsar/psrcat/; Manchester

et al. 2005). Uncertainties (1σ) on the last quoted digit are shown between parentheses.
a A possible reduction of about 15% is observed after a large glitch [22].

b The braking index was found to decrease to n = 2.19 after a large glitch [23, 24].

In the canonical model, its rotating energy changes into electromagnetic energy:

Ėrot = −Ėmr, (6)

implying
Ω̇ = −kΩ3, (7)

where k a positive constant.
The canonical model predicts a gradual slowdown of the star’s rotation, which can be

quantified by a dimensionless parameter, the the braking index n, defined by:

n ≡ ΩΩ̈

Ω̇2
. (8)

In the canonical model this parameter assumes a single value (n = 3) for all pulsars. However,
all the observational values for n are different from the one given by the canonical model (see
table 1).

3. Inside a neutron star: summary of the dynamics of superfluid cores
3.1. Motion of neutron vortices
In order to characterize the flow type of a fluid it is important to analyze the circulation, defined
as the line integral along a path C that surrounds the vortex circulation [25]:

κ =

∮
C
~vs · d~l, (9)

where vs is the fluid velocity and dl is the line element along κ.
The polar decomposition ansatz for the condensate wave function allows us to describe the

general shape of the Cooper pair [26], from which the velocity of the fluid can be found:

ψ(~R) = |ψ|eiθ(~R), (10)
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where |ψ| is a thermodynamic state variable and the phase θ is a scalar.
Consequently the superfluid velocity is [27]

~vs =
h̄

2mn

~∇θ, (11)

with 2mn being the mass of a pair of neutrons and h̄ being Planck’s constant divided by 2π.
A velocity field described by the gradient of a function is called the potential flow, and it is

found that the flow of a superfluid is irrotational:

~∇× ~vs =
h̄

2mn

~∇× (~∇θ) = 0. (12)

This indicates that the condensate cannot withstand a circulation except at certain points
(singularities) within the fluid [26], generating an isolated configuration of singularities known
as vortex lines, where the circulation does not need to disappear [27]. In this configuration with
non-zero circulation the vortex lines carry angular momentum.

3.2. Dynamics of fluid rotation inside neutron stars
The angular velocity Ω of a rotating superfluid is determined by distribution of quantized vortex
lines in relation to an azimuthal symmetry about the rotation axis. In this case the linear velocity

vs(r) ≡ rΩ(r) (13)

at distance r from the rotation axis is determined from equation 9 as∮
~v · d~l = 2πΩ(Rn)R2

n = κ0

∫ Rn

0
2πr′n(r′)dr′, (14)

being κ0 the vorticity quantum carried by each vortex line.
In fluid mechanics the mass conservation analog for vortices is called the vortex conservation

law [27]:
∂nv
∂t

+ ~∇ · (nvvRr̂) = 0, (15)

where nv is the density of vortices and vR is the radial velocity in relation to the rotation axis
of the neutron star. When this law is associated to other superfluid properties [26, 28] one finds
an expression for the brake in the superfluid rotation, Ω̇s:

Ω̇s = −κ0nvvR
Rn

. (16)

Therefore, when the superfluid rotation decays in time the vortices move outward with velocity
vR. One can show that [29] nvκ0 = 2Ωs, allowing the above equation to be rewritten as

Ω̇s

Ωs
= −2vR

Rn
. (17)

It is expected that the star’s core and crust reach the same angular velocity at large time
scales [30].On such scales the magnetic torque about the crust is then transmitted to the core,
implying Ω̇s ≡ Ω̇. Therefore the equation 17 can be rewriten as

Ω̇

Ω
= −2vR

Rn
. (18)
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We assume that the crust of a pulsar is thin, with the core occupying approximately 80% of
its radius, allowing for 1.4 M� stars with physical equations of state. Then for a total radius of
10 km the core’s radius is Rn ≈ 8 km.

In the next section we will use this physical mechanism and the radiation due to the rotating
magnetic dipole to present a new model to vR that allows the calculation of the radial velocity of
the flow of the superfluid vortices without using vortex conservation hypotheses. In particular,
this variation is of the order of neutron vortices creep in rotating superfluids.

4. Magnetic dipole radiation and the displacement parameter
The possibility of the stretching of a pulsar in response to rotation [31] inspired this investigation
of the behavior of the braking index in the presence of a variation in time of a displacement
parameter, which we will argue that is the radial velocity flow discussed in the previous section.
This flow of vortices would promote the transfer of the angular momentum of the star’s core
generating the variation of the moment of inertia between the core and the crust of the neutron
star. This assumption differs from the canonical models approach [32].

As in the canonical model we assume that the pulsar changes its rotational energy (Erot) into
electromagnetic dipole radiation (Emr) as in equation 6 and that it consists of a thin, solid crust
with constant moment of inertia Ic. However, differently from that model we will consider that
its large spherical core with total constant mass, Mn, made basically of superfluid neutrons, has
moment of inertia given by

In(t) ≡ λMnR
2(t). (19)

In this expressionR is a displacement parameter that summarizes in its mathematical behavior
all physical factors that influence the moment of inertia other than the core’s total mass. We
assume that the core’s moment of inertia may change with time but not due to a change in its
total mass or physical radius; instead, any change in In will be due to internal displacements of
mass that are quantified by R(t).

We can perform a Taylor expansion of the displacement parameter and we will assume that
this expansion can be truncated after its second term due to negligible higher R derivatives:

R(t) ≈ Rn + tṘ. (20)

Physically this implies that the displacement parameter varies at a nearly constant rate in time,
Ṙ. This constant with units of speed is expected to vary from pulsar to pulsar as it informs
about the inner dynamics of the star.

Differentiating the expression for the rotational energy, equation (1), with respect to time, in
view of the assumptions of our model results in

Ėrot =
1

2

d

dt
(IcΩ

2
c + InΩ2

n). (21)

Since any changes in the angular velocity of the crust, Ωc, are rapidly transmitted to the
core, in practice the angular velocity of the latter, Ωn, will be considered equal to Ωc ≡ Ω. As
the moment of inertia of the thin crust is expected to be much less than the moment of inertia
of the large, heavy core, we approximate Ic + In ≈ In. Similarly, we consider Mn practically
equal to the total mass of the pulsar, M . We will further admit that for the duration of typical
observational time intervals, τ , the condition τṘ << Rn holds such that equation (20) yields
the typical value for R:

R = Rn

(
1 + τ

Ṙ

Rn

)
⇒ R ≈ Rn. (22)
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Finally, assuming a core that occupies the vast majority of the pulsar’s volume we have Rn ≈ R0

and the expression for the rotation power becomes

Ėrot = λMR2
0Ω2

(
Ω̇

Ω
+

Ṙ

R0

)
. (23)

The above assumptions regarding our model can be used to find the following expression for
the magnetic radiation power from equations (3) and (4)

Ėmr =
sin2 αB2

PR
6
0Ω4 + 24 sin2 αB2

PR
4
0Ṙ

2Ω2 + 36B2
PR

2
0Ṙ

4

6c3
. (24)

Therefore, we are again assuming that the quantity Ṙ, which does not correspond physically
to a change in the star’s radius, describes mathematically all unknown physical influences that
may affect the magnetic radiation power.

Substituting equations (23) and (24) in equation (6) yields

λMR2Ω2

(
Ω̇

Ω
+
Ṙ

R

)
= −sin2 αB2

PR
6Ω4

6c3

−24 sin2 αB2
PR

4Ṙ2Ω2 + 36B2
PR

2Ṙ4

6c3
, (25)

where we dropped the sub index 0 in R0 such that R henceforth corresponds to the typical star
radius.

Solving this equation for the time variation of the angular velocity, Ω̇, we can obtain the
braking index n using the definition (8):

n =
(3 sin2 αB2

PR
5Ω2)

(12λc3ṘM + sin2 αB2
PR

5Ω2)
. (26)

Solving this equation for Ṙ we find the expression for the time variation of the displacement
parameter:

Ṙ = −sin2 αB2
P (n− 3)R5Ω2

12λc3nM
. (27)

We will estimate the values of Ṙ assuming the following typical values, applied to the pulsars
given in Table 1: star radius R = 10 km; total mass M = 1.4 M� (where M� denotes one solar
mass). These values imply a moment of inertia I0 = 2MR2/5 = 56 M� km2 when the pulsars
were born.

The expression for the magnetic field for pulsars in our model is biven by

BP =

√
6λc3M

R4sin2(α)

√
−Ω̇

Ω3
− Ṙ

RΩ2
. (28)

In this expression, when Ṙ = 0 and sinα = 1 the canonical expression (5) is recovered. The
second term under the second square root of this equation, which has the contribution of the Ṙ,
will be negligible when

|Ṙ| � | Ω̇
Ω
R|. (29)
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Table 2. Time variation of the radius (Ṙ) and magnetic field at the pole according to our model
(BP ) for our sample of pulsars.

Pulsar Ṙ BP
(cm s−1) (G)

B0531+21 1.2× 10−6 1.1× 1013

B0540-69 1.3× 10−6 1.4× 1013

B0833-45 3.0× 10−7 9.0× 1012

J1119-6127 4.4× 10−7 1.2× 1014

J1208-6238 3.8× 10−7 1.2× 1014

B1509-58 2.4× 10−7 4.8× 1013

J1734-3333 8.6× 10−7 1.1× 1014

J1833-1034 6.1× 10−7 9.8× 1012

J1846-0258 2.7× 10−6 1.4× 1014

Substituting (28) in (26) yields

n = 3
Ω̇/Ω + Ṙ/R

Ω̇/Ω− Ṙ/R
. (30)

This equation can be inverted, yielding an expression for the variation in time of the
displacement parameter:

Ṙ =
Ω̇

Ω
R
n− 3

n+ 3
. (31)

We used this equation to obtain the values of Ṙ presented in Table 2, which show that for
this sample of pulsars the condition (29) is not completely fulfilled. The values of the magnetic
field given by the canonical model have the same order of magnitude of the values obtained with
our model from equation (28). Nevertheless, canonical values of the magnetic field should not
be used in equations (26) and (27), as they would yield canonical results. The small difference
between the values of the magnetic field in the two models is essential to yield observational
braking indices.

4.1. When angular momentum is conserved
From the angular momentum definition, L = IΩ, when angular momentum is conserved then
L̇ = İΩ + IΩ̇ = 0. In our case the moment inertia of the core (In) is changing in time and
is much larger than the crust’s moment of inertia (Ic, which is constant). Therefore, angular
momentum conservation implies:

İnΩ = −InΩ̇. (32)

As In is given by equation 19 we can rewrite this equation as:

Ω̇

Ω
=
−2Ṙ

Rn
, (33)

which allows us to identify: Ṙ = vR.
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5. Inferring age from the displacement parameter
A study that may in the future lead to an age calculation for pulsars with a nucleus of superfluid
matter different from the characteristic age may be: to estimate the order of the displacement
parameter according to the possible age of the pulsar. As there is an estimated rotation frequency
at birth of the pulsar [15] it may be possible to calculate a pulsars age from the superfluid
displacement parameter and the braking index. We will find the range of the displacement
parameter according to the age of the pulsars between 0.5 and 100 thousand years.

From the equation 31 and of the characteristic age (tc): tc = −Ω/2Ω̇, we can write:

Ṙ =
(3− n)

(3 + n)

R

2tc
, (34)

from this equation we made the figures 1, 2 and 3.

Figure 1. In the figure the displacement parameter is the axis represented by the right bar in
cms−1, while the braking index is represented by the vertical axis with “n” from 0 to 3, and the
age is on the horizontal axis of 0.5 to 20 thousand years.

Figure 2. In the figure the displacement parameter is the axis represented by the right bar in
cms−1, while the braking index is represented by the vertical axis with “n” from 0 to 3, and the
age is on the horizontal axis of 20 to 60 thousand years.
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Figure 3. In the figure the displacement parameter is the axis represented by the right bar in
cms−1, while the braking index is represented by the vertical axis with “n” from 0 to 3, and the
age is on the horizontal axis of 60 to 100 thousand years.

The figures represent the same but for different age ranges for better visualization. We
observe from the figures that when the braking index approaches the value of 3 the variation
of the parameter decreases tending to zero. We note that the greater age the values of the
displacement parameter become lower. In addition to this trend note that the higher the age
and the braking index the lower the displacement parameter values.

6. Conclusions
In this work we modified the canonical model for pulsars including changes in moment of inertia,
expecting to provide a better explanation for pulsars’ braking indices. The moment of inertia
would change due to mass motions inside the star, quantified by a displacement parameter.
We found that the displacement parameter relates to the velocity of superfluid neutron vortices
when n=1. Our model assumes that the a time-varying moment of inertia changes uniformly
in the radial direction which coincides with the direction of motion of neutron superfluid vortex
lines. In this work we introduced the displacement parameter Ṙ and its estimates were found
based on observational data.

We conjecture that the increase in moment of inertia in this model may be related to the
dynamics of superfluid vortex lines in the pulsars core due to the coincidence between the
estimated value for Ṙ and the approximate speed of travel of vortex lines in the core (less than
the cm/day).

As consequences of this study other questions are unfolding, such as calculation of pulsars’
ages and the relation between torque and the angle between magnetic moment and rotation
axis, which are under investigation.
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