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Abstract
Quantum many-body phenomena at a macroscopic scale, such as superfluidity and su-
perconductivity, are rooted in the interplay between microscopic particles, governed by
the laws of quantum mechanics. Exploring how this interplay leads to quantum behavior
at a large scale allows us to gain a deeper understanding of nature and to discover new
quantum phases. An elusive quantum phase in which the frictionless flow of superfluids
and the crystal structure of solids coexists – the supersolid – was recently realized with
quantum droplets in dipolar Bose-Einstein condensates.

In this thesis we investigate self-organized structures, their formation mechanism, and
excitations in dipolar quantum fluids created from such Bose-Einstein condensates. We
show that the supersolid formation mechanism is driven by density fluctuations due to
low-energy roton excitations, leading to a crystal structure of quantum droplets that are
immersed in a superfluid background. These roton excitations split into a Goldstone mode
and a Higgs amplitude mode, associated to the broken translational symmetry in the
supersolid. We investigate the symmetry breaking of dipolar quantum fluids in a range of
confinement geometries and establish a comprehensive description of elementary excitations
across the superfluid to supersolid droplet phase transition. The droplets are stabilized
by an interplay between interactions and the presence of quantum fluctuations. We show
how this interplay can be used to find regimes where droplets are immersed in a high
superfluid background, allowing for frictionless flow throughout the crystal. Moreover we
show that towards higher densities beyond the quantum droplet phase, this interplay leads
to several new self-organized structures in the phase diagram of dipolar quantum fluids. We
theoretically predict new supersolid honeycomb, amorphous labyrinth, and other phases
in oblate dipolar quantum fluids. Finally, we present a new experimental setup for the
exploration of self-organized phases in dipolar quantum fluids and which also lays the
foundation for the implementation of a quantum gas microscope.

The results of this thesis present a complete framework for understanding and creating
exotic phases in dipolar quantum fluids. The versatile structure formation, governed
by a competition of controllable interactions and the presence of quantum fluctuations,
positions dipolar quantum fluids as a model system for exploring self-organized equilibrium
in weakly-interacting quantum many-body systems.
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Zusammenfassung

Spontane Symmetriebrechung liegt vielen Aspekten unseres aktuellen Verständnisses
der Natur zugrunde, von der Entstehung elementarer Teilchen bis zur Charakterisierung
von Phasenübergängen in kondensierter Materie [10, 11]. Eine Symmetrie wird spontan
gebrochen wenn die Gesetze, welche das Verhalten eines Systems bestimmen, eine bestimme
Symmetrie aufweisen und ein Zustand entsteht welcher die Symmetrie mit diesen Gesetzen
nicht teilt. Dieser Prozess ist gleichermaßen fundamental wie auch üblich in der Natur: Wenn
ein ausreichend dichtes und wechselwirkendes Fluid (Gas oder Flüssigkeit) abgekühlt wird
friert es schließlich und geht in einen Festkörper über, in welchem die Translationssymmetrie
spontan gebrochen wurde. Die Unterscheidung verschiedener Phasen basierend auf deren
Symmetrie geht auf L. Landau zurück [12]. Auch wenn nur ein externer Parameter, die
Temperatur, geändert wurde um einen Festkörper aus einem Fluid zu erhalten, verhalten
sich diese beiden Phasen drastisch unterschiedlich. Wenn diese in einem Behälter platziert
werden nehmen Fluide die Form des Behälters an, während Festkörper steif bleiben
und sich weniger leicht deformieren. Dieser emergente qualitative Unterschied hat mit
dem Wettbewerb von Wechselwirkungen im System zu tun. In einem Festkörper ist das
Verhalten seiner Bestandteile durch Wechselwirkungen zwischen Teilchen dominiert. In
Gasen dominiert die kinetische Energie über Wechselwirkungen zwischen Teilchen und in
Flüssigkeiten ist keine der beiden Energiebeiträge vernachlässigbar.

Der Wettbewerb von Wechselwirkungen zwischen Teilchen treibt nicht nur die Selbstorga-
nisation der klassischen Phasen bei endlicher Temperatur. Alan Turing hat 1952 einen Satz
an Reaktionsdiffusionsgleichungen vorgeschlagen, um den Ursprung von Musterbildung
in der Entwicklungsbiologie, basierend auf dem Wettbewerb chemischer Reaktanten, zu
erklären [13]. Die dynamisch selbstorganisierten Strukturen, welche als Lösungen aus diesen
Gleichungen hervorgehen, sind seitdem als Turing Muster bekannt. Turing Muster sind
allgegenwärtig in der Natur [14], von chemischen Mischungen [15, 16] über biologische
Pigmentierungen [17] bis hin zu Vegetationsmustern [18–20]. Solche Muster sind in einem
möglicherweise noch einfacheren und formalen System wieder auffindbar – einem Aktivator-
Inhibitor zellularen Automaten [21]. Dieser besteht aus einem Gitter an Feldern, welche
entweder aus oder an (tot oder lebendig), basierend auf ihrer direkten Umgebung, sind [22].
Diese Beispiele illustrieren, dass komplexes Verhalten aus relativ einfachen Bestandteilen
hervorgehen kann, wie beispielsweise aus dem Wettbewerb zwischen eines aktivierenden
und eines hemmenden Mechanismus für Selbstorganisation und dass die gleichen Muster in
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Zusammenfassung

weitgehend unterschiedlichen Systemen auftreten, unabhängig von ihren mikroskopischen
Bestandteilen. Die hervorgehenden Phasen benötigen oft neue Gesetze, Konzepte, und
Verallgemeinerungen um ihr Verhalten zu Beschreiben [10].

Bei niedrigen Temperaturen wird die Quantenmechanik entscheidend um emergentes
Verhalten zu verstehen. Während die Temperatur erniedrigt wird, verringert sich die
kinetische Energie und thermische Fluktuationen, welche klassische Phasenübergänge
treiben, werden abgeschwächt. Die Wichtigkeit der relativen Wechselwirkungsstärken und
der Quantenfluktuationen steigt. Deren Wechselwirkung treibt, am Temperaturnullpunkt,
Quantenphasenübergänge zwischen Quantenphasen. Suprafluidität, der reibungsfreie Fluss
von Teilchen, und Supraleitung, der Stromfluss ohne Widerstand, sind Grundpfeiler der
faszinierenden Verhaltensweisen von Quantenphasen. Die erste Supraflüssigkeit wurde von
K. Onnes in 1908 erzeugt indem er verflüssigtes Helium-4 unter den Lambda-Punkt Tλ =
2.2 K abkühlte ohne von dessen supraflüssigen Eigenschaften zu wissen. Er benutzte es im
Jahre 1911 um Quecksilber auf die Temperatur Tc = 4.2 K zu bringen und stellte fest, dass
der Widerstand auf nicht messbare Werte absank, womit er den ersten Supraleiter herstellte
[23]. Kapitza [24], Allen und Misener [25] entdeckten den reibungsfreien Fluss von Helium-4
im Jahre 1938 und schlugen den Namen Supraflüssigkeit in Analogie zum supraleitenden
Zustand vor [26]. Es dauerte mehrere Jahrzehnte um herauszufinden, dass diese beiden
Phänomene ihren Ursprung in Bose-Einstein Kondensation haben [26–28]. Bose-Einstein-
Kondensate (BEKs) wurden für lange Zeit als ein theoretisches Konstrukt angesehen,
erstmals durch Bose und Einstein beschrieben [29–31] als eine makroskopische Besetzung des
Quantenmechanischen Grundzustands eines bosonischen Mehrteilchensystem aufgrund von
bosonischer Quantenstatistik. Die erfolgreichen phänomenologischen Zwei-Fluid Modelle
der Supraflüssigkeiten und Tieftemperatur-Supraleitern, welche einen thermischen und
einen weiteren Komponenten beschreiben, konnten trotzdem miteinander verbunden werden
indem die nicht-thermische Komponente beschrieben wurde als BEK von bosonischen
Teilchen für Supraflüssigkeiten und als BEK von Fermion-Paaren (Cooper-Paare) für
Supraleiter nach Bardeen, Cooper und Schrieffer (BCS) Theorie [32].

Laserkühlungstechniken hin zu ultrakalten atomaren Gasen [33] und kontrollierbare
Wechselwirkungen mit Feshbach Resonanzen [34, 35] haben ultrakalte Atome als Modellsys-
teme für Quanten-Vielteilchen Phänomene etabliert. Ein fundamentaler Durchbruch ist im
Jahre 1995 gelungen durch die Realisierung von BEKs mit ultrakalten und ultraverdünnten
atomaren Gasen in den Gruppen von C. Wieman & E. Cornell und W. Ketterle [36, 37].
Durch die Verwendung von ultrakalten Gasen mit Temperaturen unter 1 µK und Dichten
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von 1020 m−3 (acht Größenordnungen niedriger als die Dichte von Helium-4 bei Tλ) wurde
eine Modellsystem für Studien von reinen BEKs realisiert. Atome bei ultrakalten Tempera-
turen entwickeln eine de-Broglie Wellenlänge auf der Größenordnung des Teilchenabstands
und überlappen durch die Abkühlung der Atome zunehmend. Das BEK ist dann durch eine
makroskopische Wellenfunktion beschrieben, welche das kollektive Verhalten der Atome
als Ganzes beschreibt. Die Atome erwerben eine gemeinsame konstante globale Phase,
was die U(1) Symmetrie bricht. Das kollektive Verhalten des BEKs ist genau durch eine
Molekularfeldtheorie beschrieben wobei Quantenfluktuationen und starke Korrelationen
vernachlässigbar sind [27]. Die supraflüssigkeit von BEKs mit endlichen Wechselwirkungs-
stärken wurde bemerkenswert durch das Auftreten von Vortices demonstriert als das BEK
in rotation gebracht wurde [38–40].

Modellsysteme spielen eine wichtige Rolle für das Verstehen und Vorhersagen von kom-
plexen Vielteilchenphänomenen in heutiger Physik. Um R. Feynman’s Vorschlag [41] von
Quantensimulation – gut kontrollierbare Quanten-Vielteilchensysteme zu verwenden um
das Verhalten von weniger gut kontrollierbaren Quanten-Vielteilchensystemen zu simulieren
– zu realisieren ist die Komplexität vieler Plattformen mit ulrakalten Atomen gestiegen.
Experimente wurden entwickelt zur Realisierung des BEK zu BCS Crossovers [28, 42], des
Übergangs von Supraflüssigkeit zu Mott-Isolator [43, 44] und topologischer Zustände [45–47]
in optischen Gittern, von Quantencomputern mit Dutzenden logischen Qubits [48–50] und
von Hubbard-Modellen zur Quantensimulation von Festkörpern [44, 51–53]. Zum Beispiel
erlaubt das unitäre Fermigas die Zustandsgleichung für das Suprafluid, welches im Kern
von Neutronensternen vermutet wird, zu beschränken [54, 55] und es wird vermutet, dass
das Fermi-Hubbard Modell wichtig für den Mechanismus der Hochtemperatursupraleitung
[56–59] ist, wie zum Beispiel realisiert durch die Cuprate [60]. Um eine Größenordnung
an Komplexität wie in ungewöhnlichen Supraleitern zu verstehen wurde ein interessanter
Ansatz im Feld der kondensierten Materie mit dem Aufstieg der Twistronik verfolgt [61, 62].
Verglichen mit Verbindungen wie Cupraten erscheinen Materialien wie verdrehtes zweilagi-
ges Graphen weniger strukturell komplex [61–63]. Dennoch etablierten diese Materialien ein
Modellsystem für stark korrelierte Vielteilchenzustände in kondensierter Materie. Mit der
Realisierung von verdrehtem zweilagigem Graphen und verdrehten mehrlagigen Strukturen
[61, 62, 64] wurden einstellbare unkonventionelle Supraleitung [61, 62, 65], der fraktionale
Quanten-Hall-Effekt und der fraktionale anomale Quanten-Hall-Effekt beobachtet [66, 67].

Ein exotischer Materiezustand, welcher vor über 60 Jahren im Kontext von flüssigem
Helium vorhergesagt wurde, ist der Suprafestkörper [68–77]. In diesem Materiezustand
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Zusammenfassung

sind reibungsfreier Fluss einer Supraflüssigkeit und die Kristallstruktur eines Festkörpers
gleichzeitig vorhanden [78]. Intensive und frühe theoretische Arbeit etablierte, dass ein
Suprafestkörper möglich ist [75, 78–89], aber eindeutige experimentelle Beobachtungen
eines Suprafestkörpers mit Helium konnten bis heute nicht festgemacht werden [83, 90–92].
Suprafestkörper wurden zuerst realisiert im Kontext von ultrakalten Gasen mit BEKs mit
Spin-Orbit Kopplung [93, 94], in mehrmodigen optischen Resonatoren [95] und vor kurzem
in dipolaren Quantengasen [9, 96, 97]. Diese Suprafestkörper erlauben Phonon-Anregungen
weil die Kristallstruktur durch Wechselwirkungen bestimmt ist und nicht extern eingeprägt
wird wie in Experimenten welche Atome in optischen Gittern gefangen halten [43, 51,
98–100].

Die Suche nach dem Suprafestkörper in dipolaren Quantengasen wurde ursprünglich
Motiviert durch die Präsenz eines rotonischen Anregungsspektrums wenn diese Gase ge-
fangen sind. Das rotonische Anregungsspektrum ist charakterisiert durch ein Minimum bei
einem endlichen Wellenvektor, welcher eine charakteristische Längenskala für Selbstorgani-
sation darstellt. Rotonische Anregungsspektra sind auch vorhanden in flüssigem Helium
[101–105] und in klassischen Ferrofluiden [106–108]. Diese klassischen Ferrofluide, welche
aus feinen magnetischen Partikeln, suspendiert in einer Flüssigkeit, bestehen, werden als
ein Modellsystem für selbstorganisierte Musterbildung im Gleichgewicht betrachtet [106,
109–111]. Daher spielen sie eine vergleichbare Rolle wie das Aktivator-Inhibitor System,
welches Turing für dynamische Musterbildung vorschlug. In dipolaren Quantengasen kön-
nen die Wechselwirkungen so kontrolliert werden, dass das Roton-Minimum nahezu Null
Anregungsenergie kostet. Wenn in einem BEK mit einer endlichen Wechselwirkungsstärke,
welches eine gut kontrollierbare Supraflüssigkeit ist, spontan die Translationssymmetrie
gebrochen werden würde und sich eine Kristallstruktur selbstorganisieren würde, dann
wäre der Zustand ein Kandidat für einen Suprafestkörper.

Dipolare Quantengase wurden zuerst mit bosonischem Chromium [112], später mit
bosonischem und fermionischem Dysprosium [113, 114] und Erbium [115, 116], und zuletzt
mit Europium [117] realisiert. Diese atomaren Spezies außer Chromium sind Lanthanoide
welche Größenordnungen höhere dipolare Wechselwirkungsstärken für dipolare BEKs
bieten. Dysprosium, mit Terbium zusammen, hat die stärkste dipolare Wechselwirkung.
Studien dipolarer Quantengase haben sich in ein eigenständiges Feld entwickelt seit der
Kondensation von Chromium. Diese Studien beinhalten unter anderem Beobachtungen
des d-Wellen Kollapses [118, 119] und Spinor-Physik in Chromium [120, 121], und mit
Lanthanoiden wurden chaotische Streuung, erweiterte Bose-Hubbard Physik [51, 100],
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Quanten-Hall Systeme [122, 123], und die rotonische Dispersionsrelation untersucht [4,
5, 104, 124–129]. Wenn die Wechselwirkungen in den Bereich kontrolliert wurden in wel-
chem Chromium einen d-Wellen Kollaps unterging [118, 119], welcher sich gut durch
eine Molekularfeldtheorie beschreiben lässt, ist das Dysprosium BEK anstatt dessen in
mehrere, individuell stabilisierte Quantentröpfchen aufgebrochen [130]. Diese Beobachtung
konnte nicht mit derselben Molekularfeldtheorie erklärt werden. Die Stabilisierung der
Tröpfchen war derzeit nicht klar bis Experimente [131, 132] zeigten, dass Korrekturen
über Molekularfeldtheorie hinausgehend wichtig sind [133–136]. Der Wettbewerb zwi-
schen Wechselwirkungen beim Beginn der Tröpfchenbildung führt dazu, dass sich die
Molekularfeldtheorie-Terme nahezu aufheben und machen die Korrekturen wichtig. Es
wurde gezeigt, dass die Tröpfchen Quantenflüssige Eigenschaften besitzen [133, 137–139]
und dass sie selbstgebunden sind, womit keine Notwendigkeit für ein Fallenpotential für
ihre Stabilität besteht. Die Tröpfchen wurden darauffolgend hin als eine neue Art schwach
wechselwirkende Quantenflüssigkeit studiert [140–145]. Erste Studien, welche mögliche
Suprafestkörper-Eigenschaften in Tröpfchenanordnungen entlang einer Dimension unter-
suchten, fanden keine globale Phasenkohärenz über die Anordnung hinweg [146]. Diese
Kohärenz ist eine Voraussetzung für supraflüssigkeit über die Anordnung hinweg ist. Eine
theoretische Arbeit schlug einen Parameterbereich vor, in welchem diese Tröpfchenan-
ordnungen in einem supraflüssigen Hintergrund liegend auftreten sollen [147]. Schnell
konnten unsere und ähnliche Experimente zeigen, dass eine globale Phasenkohärenz in
einem kleinen Wechselwirkungsstärkebereich aufrechterhalten werden kann [9, 96, 97]. Diese
Beobachtungen haben den Ausgangspunkt für weitere Untersuchungen der phasenkohären-
ten Tröpfchenanordnungen markiert und die supraflüssigkeit des Systems konnte bewiesen
werden indem die Existenz eines energetisch niedrig liegenden Goldstone Phonons [8],
welches reibungsfreien Fluss von Teilchen durch den Tröpfchenkristall voraussetzt, gezeigt
wurde. Zudem wurden höhere Kompressionsmoden beobachtet [96, 148]. Die Realisierung
der dipolaren Suprafestkörper wurde somit in unserer Gruppe mit Dysprosium [9] und in
zwei Gruppen in Pisa und Innsbruck mit Dysprosium und Erbium [96, 97] direkt vor dem
Beginn dieser Dissertation erreicht.

In dieser Dissertation untersuchen wir selbstorganisierte Strukturen in dipolaren Quan-
tenfluiden, indem wir stark dipolare BEKs in Bereichen betrachten in welchen der Wettbe-
werb zwischen Wechselwirkungen und Quantenfluktuationen Suprafestkörper und andere
exotische Quantenphasen hervorbringen. Zuerst betrachten wir eindimensionale Anord-
nungen an Tröpfchen-Suprafestkörpern und untersuchen ihr Anregungssprektrum, welches
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Zusammenfassung

Goldstone-Moden und Higgs-Amplitudenmoden beinhaltet, und wir untersuchen den
Strukturbildungsmechanismus. Wir schlagen theoretisch einen Suprafestkörper in einer
Torusfalle vor, in welcher Anregungen entkoppelt sind und Ähnlichkeiten zu unendlich
großen Suprafestkörpern und Analogien zu den Anregungen in Helium hervorgehen. Zwei-
tens diskutieren wir den Strukturbildungsmechanismus in oblaten Fallengeometrien, in
welchen die Tröpfchenkristallstrukturen in zwei Dimensionen auftreten. Wir zeigen, dass
die dominanten Fluktuationen, welche den Übergang treiben, Roton-Anregungen mit einer
winkelabhängigen Struktur entsprechen. Unsere theoretische Erweiterung dieser Studie
zeigt welche Parameter angepasst werden müssen um einen Suprafestkörper mit einer
zweidimensionalen Kristallstruktur zu erhalten. Wir diskutieren den dynamischen Forma-
tionsprozess des Suprafestkörpers sowie die Goldstone-Mode und Higgs-Amplitudenmode
in zweidimensionalen Suprafestkörpern. Diese Studien und die meisten vorhergehende
Studien zu dipolaren Suprafestkörpern haben sich auf den Fall konzentriert, bei dem die
Kristallgitterplätze Quantentröpfchen entsprechen, welche sich in einer Kristallstruktur
selbstorganisieren. Wir zeigen, dass andere Suprafestkörper und amorphe Zustände mit
dipolaren Quantenfluiden bei größeren Dichten möglich sind. Diese Zustände selbstorgani-
sieren eine Bienenwabenstruktur, Labyrinthstruktur, und weitere räumliche Strukturen,
welche bisher nicht mit dipolaren Quantenfluiden experimentell beobachtet wurden. Gleich-
zeitig zu diesen Untersuchungen haben wir einen neues Quantengasexperiment entworfen
und konstruiert, welches auf die Anspruchsvollen Dichten der neuen selbstorganisierten
Phasen abzielt und mit modernen Ansätzen zur Experimentsteuerung ausgerüstet ist.

Die Ergebnisse und Techniken, welche in dieser Dissertation präsentiert sind, legen
den Grundstein für das Verständis und die Erzeugung exotischer Phasen in dipolaren
Quantenfluiden. Unsere Untersuchungen etablieren die Vielseitigkeit des stark dipolaren
BEKs um mehrere selbstorganisierte Muster im ultrakalten und ultraverdünnten Regime zu
bilden, was eine Quanten-Version des klassischen Ferrofluids darstellt – ein Modellsystem
für selbstorganisiertes Gleichgewicht in schwach wechselwirkenden Quanten-Vielteilchen
Systemen.
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“More is different.”
– Philip Anderson

Chapter 1
Introduction

Spontaneous symmetry breaking underlies many aspects of our current understanding
of nature, from the emergence of elementary particles to the characterization of phase
transitions in condensed matter [10, 11]. A symmetry is spontaneously broken when the
laws governing a system exhibit a certain symmetry and a state arises that does not share
that symmetry with those laws. The process is as fundamental as it is common throughout
nature: When a sufficiently dense and interacting fluid (gas or liquid) is cooled, eventually
it freezes into a solid in which translational symmetry has been spontaneously broken. The
distinction of different phases of matter based on their symmetry goes back to Landau
[12]. Although only one external parameter, the temperature, has been changed to obtain
a solid out of a fluid, the two phases have drastically different behavior. When they are
placed in a container, fluids acquire the shape of the container while solids remain rigid and
do not deform as easily. This emergent qualitative difference relates to the competition of
interactions in the system. In a solid, interparticle interactions dominate the constituents’
behavior and the kinetic energy is negligible. In gases, the kinetic energy dominates over
the interparticle interaction and in liquids neither energy contribution is negligible.

This theme of competing interactions giving rise to self-organized structures is not
limited to the classical phases at finite temperature. In 1952 A. Turing suggested a set of
reaction-diffusion equations to explain the origin of patterns observed in developmental
biology based on the competition of chemical reactants [13]. The dynamical self-organized
spatial patterns emerging as solutions to these equations have since become known as
Turing patterns which are ubiquitous throughout nature [14] from chemical mixtures [15,
16] and biological pigmentations [17] to vegetation patterns [18–20]. Such patterns can be
recreated in an arguably even simpler and formal system, which is an activator-inhibitor
cellular automaton [21], consisting of a grid of fields that are either off or on (dead or
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alive) depending on their immediate environment [22]. These examples illustrate that
complex behavior can emerge from relatively simple components, like the competition
between activation and inhibition mechanisms of self-organizing systems and that the same
patterns occur in vastly different systems irrespective of their microscopic constituents.
The emergent phases often require new laws, concepts, and generalizations for a description
of their behavior [10].

At low temperature, quantum mechanics is key for understanding emergent behavior.
As the temperature is lowered, the kinetic energy decreases and thermal fluctuations,
which drive classical phase transitions, are diminished. The importance of the relative
interaction strength and quantum fluctuations then increases. Their competition drives, at
zero temperature, quantum phase transitions between quantum phases. Superfluidity, that
is the frictionless flow of particles, and superconductivity, that is the flow of current without
resistance, are cornerstones of the fascinating emergent behaviors of quantum phases. The
first superfluid was produced by K. Onnes in 1908 by cooling liquefied helium-4 below
the lambda point Tλ = 2.2 K whilst not knowing of its superfluid properties at the time.
He used it as a coolant to bring mercury to the temperature Tc = 4.2 K in 1911, noting
that the resistivity drops to non-measurable values, and thus the first superconductor was
created [23]. Kapitza [24], Allen and Misener [25] discovered the frictionless flow of helium-4
in 1938 and suggested the name superfluid in analogy to the superconducting state [26]. It
took several decades to discover that these two phenomena are rooted in Bose-Einstein
condensation [26–28]. For a long time, Bose-Einstein condensates (BECs) were a theoretical
construct initially described by Bose and Einstein [29–31] as a macroscopic occupation of
the quantum mechanical ground state of a bosonic many-body system due to its bosonic
quantum statistics. The successful phenomenological two-fluid models describing a thermal
and a non-thermal component of superfluids and low-temperature superconductors could
nonetheless be related by describing the non-thermal components as a BEC of bosonic
particles for superfluids and as a BEC of fermion pairs (Cooper pairs) for superconductors
described by Bardeen-Cooper-Schrieffer (BCS) theory [32].

Ultracold atoms were established via laser cooling techniques [33] and pristine control
over their interactions using Feshbach resonances [34, 35] as model systems for studying
quantum-many body phenomena. A fundamental breakthrough occurred in 1995 with the
realization of BECs with ultracold and ultradilute atomic gases in the groups of C. Wieman
& E. Cornell, and W. Ketterle [36, 37]. Using ultracold gases at temperatures below 1 µK and
densities of 1020 m−3 (eight orders of magnitude lower than the density of helium-4 at Tλ), a
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model system for studies of pure BECs on their own terms was realized. Atoms at ultracold
temperature develop a de-Broglie wavelength comparable to the interparticle spacing,
leading to increasing overlap as the atoms are cooled. The BEC is then characterized
by a macroscopic wavefunction that governs the collective behavior of the atoms as a
whole. The atoms acquire a common constant global phase, spontaneously breaking the
U(1) symmetry. The collective behavior of the BEC is accurately described within a
mean-field theory where quantum fluctuations and strong correlations are neglected [27].
The superfluidity of BECs with finite interaction strengths was remarkably demonstrated
by the appearance of vortices when the BEC is stirred, signaling irrotational flow [38–40].

Model systems play a crucial role in understanding and predicting complex many-body
phenomena in contemporary physics. In the spirit of R. Feynman’s proposal [41] of quantum
simulation – using well-controlled quantum many-body systems to simulate the behavior of
less well-controllable and -measurable quantum-many body systems – many ultracold atom
platforms are increasing in complexity for studying many-body correlations starting with
individual atoms. Experiments have been devised to achieve the BEC to BCS crossover
[28, 42], to explore the superfluid to Mott insulator transition [43, 44] and topological
states [45–47] in optical lattices. Additionally, quantum computers with tens of logical
qubits [48–50] and Hubbard models for the quantum simulation of solids [44, 51–53] were
realized. The unitary Fermi gas allows to constrain the equation of state for the superfluid
that is believed to be hosted in the core of neutron stars [54, 55] and the Fermi-Hubbard
model is believed to be important for the mechanism of unconventional high-temperature
superconductors [56–59] as realized for example with the cuprates [60]. To understand a level
of complexity as observed with unconventional superconductors, an interesting approach
was taken in the field of condensed matter with the rise of twistronics [61, 62]. Compared
to compounds like cuprates, materials like twisted bilayer graphene [61–63] appear less
complex structurally. Yet these materials have established a model system for the study of
strongly correlated many-body states in condensed matter. Using twisted bilayer graphene
and twisted multilayered structures [61, 62, 64], tunable unconventional superconductivity
[61, 62, 65], the fractional quantum Hall effect, and the fractional anomalous quantum
Hall effect have been observed [66, 67].

An exotic state of matter predicted over 60 years ago in the context of liquid helium is the
supersolid [68–77], which combines the frictionless flow of a superfluid and the crystalline
structure of a solid [78]. Intense and early theoretical work established that the supersolid
is a possibility [75, 78–89]. Yet, experimental observations of the supersolid in liquid helium
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have remained elusive to this day [83, 90–92]. Supersolids have been realized in ultracold
gases using BECs with spin-orbit coupling [93, 94], in multimode optical cavities [95], as
well as most recently in dipolar quantum gases [9, 96, 97]. These supersolids host phonon
excitations since the crystal structure is predominantly determined by interactions and is
not externally imposed like in experiments considering atoms in optical lattices [43, 51,
98–100].

The motivation for realizing supersolids with dipolar quantum gases originated from
the rotonic excitation spectrum which develops when these gases are trapped. The roton
excitation spectrum is characterized by a minimum at a finite wave vector, providing a
characteristic length scale for self-organization. Rotonic excitation spectra are also present
in liquid helium [101–105] and classical ferrofluids [106–108]. These classical ferrofluids,
consisting of fine magnetic particles suspended in a fluid, are considered a model system
for self-organized equilibrium [106, 109–111], similar to the dynamical activator-inhibitor
system Turing suggested for dynamical pattern formation. In dipolar quantum gases,
the interactions can be tuned such that the roton minimum approaches zero excitation
energy. A supersolid could potentially form if spontaneous translational symmetry breaking
occurs in this process and the interacting BEC, which forms a well-controlled superfluid,
self-organizes into a crystal structure.

Dipolar quantum gases were first realized with bosonic chromium [112, 149], later with
bosonic and fermionic dysprosium [113, 114] and erbium [115, 116] and most recently
with europium [117]. The latter three atomic species are lanthanides, offering orders of
magnitude stronger dipolar interaction for BECs than alkali atoms. Dysprosium has the
strongest dipolar interaction in the periodic table, matched only by terbium. The study of
dipolar quantum gases has advanced into a distinct field ever since the condensation of
chromium. These studies include but are not limited to observations of a d-wave collapse
[118, 119] and spinor physics [120, 121] in chromium, chaotic scattering in lanthanides
[150, 151], extended Bose-Hubbard physics [51, 100], quantum Hall systems [122, 123], and
the roton dispersion relation [4, 5, 104, 124–129]. When the interactions were tuned into a
regime where chromium BECs underwent the d-wave collapse [118, 119] that is accurately
described at a mean-field level, the dysprosium BEC instead fractured into an array of
individually stable dipolar quantum droplets [130]. This observation could not be explained
by a standard mean-field theory. The stabilization mechanism of these droplets was not
clear at the time until experiments [131, 132] have demonstrated that quantum fluctuations
beyond the mean-field have to be taken into account [133–136]. The competing interactions
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at the onset of the droplet formation leads to a near-cancellation of the mean-field terms and
make the quantum fluctuation correction important. The droplets were shown to exhibit
quantum liquid properties [133, 137–139] and that they can be self-bound with no need of
an external confinement to stabilize them. The droplets were subsequently investigated as
a new form of weakly-interacting quantum liquids [140–145]. First studies investigating
potential supersolid properties in dipolar quantum droplet arrays arranged along one
dimension found no global phase coherence across the droplet array [146], a prerequisite
for superfluidity throughout the array. A theoretical study suggested a parameter range in
which these quantum droplets would be found in a superfluid background [147] and rapidly
our and related experiments showed that a global phase coherence can be maintained in
a narrow interaction regime [9, 96, 97]. The superfluidity of the system was proved by
showing the existence of a low-energy Goldstone phonon [8], which requires the superfluid
flow of particles throughout the droplet crystal, and higher-lying compressional modes
related were observed [96, 148]. The realization of the dipolar supersolids in our group
with dysprosium [9] and two groups in Pisa and Innsbruck with dysprosium and erbium
[96, 97] occurred right before the start of this thesis.

In this thesis, we investigate self-organized structures and excitations in dipolar quantum
fluids by considering strongly dipolar BECs of dysprosium in regimes where the competition
between interactions and quantum fluctuations gives rise to supersolids and other exotic
quantum phases. First, we consider one-dimensional supersolid arrays of quantum droplets
and investigate their excitation spectrum, including Goldstone and Higgs amplitude modes,
as well as the their structure formation mechanism. We propose theoretically a supersolid in
a toroidal trap, in which excitations are decoupled, similarities to infinite dipolar supersolids
arise, and analogies to excitations in helium are emerging. Second, we discuss the structure
formation mechanism in oblate trapping geometries, where crystal structures of droplets
arrange in two dimensions. We show that the dominant fluctuations driving the transition
correspond to roton excitations with an angular structure. Our theoretical extension of
this work shows how parameters need to be adjusted to establish a supersolid with a two-
dimensional crystal structure and we discuss the supersolid dynamical formation process
as well as the Goldstone and Higgs amplitude modes in two-dimensional supersolids. These
studies and most previous studies on dipolar supersolids have focused on the case where
the crystal sites correspond to individual quantum droplets that self-organize in a crystal
structure. We further show that other supersolid and amorphous states are possible in
dipolar quantum fluids towards higher densities. These states self-organize in honeycomb,
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labyrinthine, and other spatial patterns, which have so far not been observed with dipolar
quantum fluids. Simultaneously to these investigations we have designed and constructed a
new quantum gas experimental setup for dysprosium that is geared towards the challenging
density regimes required for the observation of the new predicted self-organized phases
and is equipped with modern approaches to experimental control.

The results and techniques presented in this thesis lay the foundation for understanding
and creating exotic phases in dipolar quantum fluids. Our work establishes the versatility
of the strongly dipolar BEC to realize several self-organized patterns in the ultracold and
ultradilute regime, suggesting it as a quantum version of the classical ferrofluid – a model
system for self-organized equilibrium in weakly interacting quantum many-body systems.

Outline of the thesis

This thesis contains both theoretical and experimental results. Chapters 3-4 report on
experimental results from our previous dysprosium setup combined with theoretical studies
while chapter 5 focuses on the design, construction, and results of our new experimental
setup. Therefore we focus in chapters 3-4 on the physics starting from dipolar BECs while
the setup has been described in previous theses [152] including the last changes on this
machine [129, 153] before its deconstruction.

• Chapter 2 introduces theoretical background, concepts, and intuition useful for
understanding the following chapters and puts them into a theoretical framework.
Additionally, numerical methods are introduced in this chapter which are employed
throughout the subsequent chapters.

• Chapter 3 focuses on supersolids created by the self-organization of dipolar quantum
droplets in one direction. We discuss the ground state phase diagram, the excitations,
and the density fluctuations leading to the supersolid formation in this chapter.

• Chapter 4 focuses on structures that form in oblate trapping geometries. We discuss
the crystal structure formation mechanism of two-dimensional arrays of quantum
droplets by considering the elementary excitations of dipolar quantum fluids. We
explain theoretically how parameters are adapted to realize supersolids with two-
dimensional crystal structures and discuss the modifications of the excitation spec-
trum as well as the supersolid formation dynamics. We also show the emergence
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of supersolid honeycomb and amorphous labyrinthine states in these trapping ge-
ometries, discuss their properties and the relevance of these structures for future
experiments with dipolar quantum fluids.

• Chapter 5 details the design and construction of a dysprosium quantum gas exper-
imental setup and first results. A vacuum system was assembled that overcomes
limitations of the previous experimental setup, a new experimental control software
was devised, and we achieved magneto-optical traps (MOTs) and BECs of dysprosium
with the new setup.

• Chapter 6 concludes this thesis and gives an outlook regarding the new self-organized
quantum phases and experimental setup.
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“If I have seen further it is by standing on
the shoulders of giants.”
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This chapter introduces the theoretical background used to understand and model self-
organized structures and excitations in dipolar quantum fluids. Due to the breadth of
topics involved we refer to several references for further discussion. The purpose of this
chapter is to comprehensively assemble essential concepts underlying the rest of this thesis.

9



Chapter 2. Theoretical background

2.1. Phases and symmetry

Here we introduce a minimal model of Ginzburg-Landau theory and review non-exhaustively
the connections between spontaneous symmetry breaking, ordered phases, the order pa-
rameter, and the emergence of Goldstone and Higgs amplitude modes. The supersolid
phase, which is a major focus in this thesis, is highlighted in this context.

2.1.1. Ginzburg-Landau theory

Ordered phases1 are distinguished by their symmetry [10, 154]. Established by Landau [12]
this viewpoint describes phases as classes of distinct symmetry which states of matter can
be grouped into. Consequently at a phase transition the symmetry of a physical system
changes. For example sufficiently dense fluids, including gases and liquids, have no periodic
spatial order and eventually undergo a phase transition to a solid when they are cooled to
lower temperatures [155]. The continuous translational symmetry of the fluid is broken
and a crystal with discrete translational symmetry or an amorphous solid emerges.

Such a classification of phases entails an intimate connection to the concept of sponta-
neous symmetry breaking [156] describing the situation where the Hamiltonian of a system
is invariant with respect to a symmetry operation while the ground state is not [157]. As
the symmetry is spontaneously broken, the newly emerged state has a higher degree of
order and correspondingly lower symmetry. The appearance of the order is described by
an order parameter that is zero in the disordered (higher symmetry) phase and acquires
a finite value in the ordered (lower symmetry) phase. With these concepts in mind a
general understanding of phase transitions can be gained by considering the free energy of
the system and expanding the energy in terms of its order parameter. To illustrate the
generality we consider the generic Ginzburg-Landau free energy functional

F [Φ] = α(λ)|Φ|2 + β(λ)|Φ|4,

↪→ F (A,φ) = α(λ)A2 + β(λ)A4,
(2.1)

where terms of higher order in A = |Φ| of the order parameter Φ = Aeiφ are neglected and
β > 0. This expansion is valid near the phase transition point where the order parameter
is small. The control parameter λ and the choice of the order parameter depends on the

1 Or symmetry broken phases, as opposed to phases with no broken symmetry characterized by topological
order or other symmetry constraints [154].
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Figure 2.1.: Sombrero potential and excitations. (a) Free energy F (Eq. (2.1)) across a
second order phase transition controlled by λ for α/β = 0, −1.5, −3 from yellow to purple.
Across the transition the order parameter minimizing the energy continuously grows, attaining
a finite value in the ordered phase. (b) The free energy in the ordered phase as a function of
(A,φ) has the shape of a sombrero hat, allowing for gapless (zero-energy) phase excitations δφ
along the brim of the hat and gapped (finite-energy) excitations δA along the curved direction
orthogonal to ϕ corresponding to gapless Goldstone and gapped Higgs modes, respectively. (c)-(d)
Schematic of a supersolid ground state density (grey) as a function of position and schematic of
possible gapless Goldstone (c) and gapped Higgs (d) excitations.

physical system. For example in superconductors described by Bardeen-Cooper-Schrieffer
theory [32, 158] |Φ|2 and φ correspond to the superconducting density and phase of the
wavefunction, respectively, and the control parameter corresponds to the temperature.
The terms appearing in the expansion Eq. (2.1) inform about the symmetry of the system.
The absence of a term ∝ A3 implies that the energy is independent of the sign of the
order parameter which we assume here for the discussion. When the control parameter λ
is tuned in such a way that α becomes negative, Eq. (2.1) is minimized at a finite order
parameter modulus A = A0 =

√
−α/2β with F (A0, φ) = −α2/4β for any φ (Fig. 2.1(a)).

The ground state acquires some φ, spontaneously breaking the symmetry in the emergent
phase. Time dependent Ginzburg-Landau theory [11, 153, 159, 160] extends the expansion
in Eq. (2.1) with time dependent fluctuations of the order parameter, allowing to study
excitations of the ground state. We focus on a main result from this extension, namely that
the symmetry broken state has two new characteristic excitations known as Goldstone
[161–163] and Higgs modes (Fig. 2.1(b)).

The Goldstone mode corresponds to a gapless2 phase excitation of the order parameter
along the brim of the hat and the Higgs mode is an amplitude excitation of the order

2 Except for the case where the symmetry is explicitly broken or when the matter is charged, which
pushes the Goldstone energy to the plasma frequency [11, 164].
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Chapter 2. Theoretical background

parameter and gapped away from the transition point. The Higgs mode we discuss here
is a collective excitation as discussed in the context of condensed matter [11, 164] and
distinct from the Higgs boson in elementary particle physics [165]. Due to the generality
of the form for the energy (2.1) the Goldstone mode and Higgs amplitude modes appear
in several systems. Goldstone modes arise necessarily when a symmetry is spontaneously
broken [166] but a distinct Higgs amplitude requires the underlying theory giving rise
to Eq. (2.1) to have equal orders in space and time derivatives (Lorentz invariance) [11,
164]. Galilean invariant theories such as the Gross-Pitaevskii theory for homogeneous
superfluids have no Goldstone and Higgs modes with a distinct dispersion [11, 153, 159].
If the Galilean invariance is broken, for example through translational symmetry breaking,
the existence of a stable Higgs mode cannot be ruled out [7, 167–169]. As these modes are
excitations of the order parameter in a generic situation of spontaneous symmetry breaking,
investigating the Higgs mode plays a central role in understanding the phase transition to
various ordered phases. For example the Higgs amplitude mode has been discussed in a
supersolid formed by mode populations in a crossed optical cavity [170] where the order
parameter is a combination of the cavity field populations, in superconductors [171, 172],
with quantum gases in optical lattices for the superfluid to Mott insulator transition [173]
and in strongly interacting quantum gases [174, 175]. In these cases the Higgs mode is
either stabilized by particle-hole symmetry giving rise to effective Lorentz invariance [11,
159] or a damped Higgs mode could be observed. Another stabilization mechanism was
discussed for a confined Fermi system [176] where the confinement decouples the Higgs
mode from other excitations.

We have shown the existence of a Higgs amplitude mode in harmonically trapped dipolar
supersolids which is decoupled from other modes due to a finite trapping potential in a
narrow range of interaction strengths [7]. This Higgs amplitude mode together with the
corresponding Goldstone mode will be discussed as part of section 3.2 and these collective
supersolid excitations play a role throughout chapters 3-4.

2.1.2. Supersolid

In this section the supersolid as part of the self-organized phases we study in this thesis
will be put into the context of the concepts introduced in the previous section.

Supersolids are characterized by the simultaneous presence of the frictionless flow of
superfluids and the crystal structure of solids. Formally this corresponds to the simultaneous
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2.2. Bose-Einstein condensation

presence of off-diagonal and diagonal order in the system’s density matrix [78]. The
supersolids we consider throughout this thesis arise from interacting BECs which self-
organize into states of matter that exhibit crystal or other spatial structures. Interacting
BECs are superfluids with a broken U(1) symmetry and as their density self-organizes into
specific shapes, the translational or rotational symmetry is broken. In Fig. 2.1(c)-(d) this
situation is schematically shown for a broken translational symmetry along one direction,
where the Goldstone mode (Higgs amplitude mode) represents a phase shift (amplitude
modulation) of the density modulation. This density modulation is the order parameter Φ
of the supersolid and is directly connected to the superfluid fraction (section 3.1). The
supersolids are described at zero temperature in a Gross-Pitaevskii framework (section 2.4)
whose mean-field energy functional density corresponds to the free energy [177, 178]
introduced in the last section and contains higher-order and nonlocal terms in Φ.

2.2. Bose-Einstein condensation

Bose-Einstein statistics were the basis for an alternative derivation of Planck’s law for
photons provided by S. Bose in 1924 [29]. Einstein generalized Bose’s results to particles
with finite mass M [30] and predicted that below a critical temperature Tc, a macroscopic
fraction of bosons would occupy the same quantum state [31]. This quantum state is now
known as Bose-Einstein condensate (BEC).

In the absence of interactions the phase transition from thermal gas to BEC is dictated
only by quantum statistics. The state j with single-particle energy ϵj is occupied by
non-interacting bosons at a temperature T on average by

⟨nj⟩ = 1
exp(β(ϵj − µ)) − 1 (2.2)

particles, which is determined by β = 1/kBT with the Boltzmann constant kB, the chemical
potential µ, and the total atom number N = ∑

j ⟨nj⟩. For a given T the ground state
occupancy N0 = ⟨n0⟩ at the lowest energy ϵ0 grows at a higher rate with µ than all higher
occupancies ⟨nj>0⟩ individually. For large particle numbers µ approaches ϵ0 and the ground
state becomes macroscopically occupied, which means that N0 becomes on the order of N
[27]. The condensate fraction N0/N then depends on T . Qualitatively Tc can be estimated
using the density n related to the mean inter-particle spacing d = n−1/3, and the thermal
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de-Broglie wavelength

λT =
√

2πℏ2

MkBT
(2.3)

describing the spatial extent of the individual particle’s wavefunction with the reduced
Planck constant ℏ. Quantum effects become important when d and λT become comparable
nλ3

T ≈ 1 and one estimates3

kBTc ≈ 2πℏ2n2/3

M
. (2.4)

This estimate is closely connected to the notion that a condensate can be described by
a single, macroscopic, coherent matter wave as λT increases and bosons enter a single
quantum state.

The density and critical temperature of a Bose gas confined in an external potential
depend on the shape of the confinement. We consider now the case of a trapped Bose
gas in a spherical harmonic potential Vext(r) = Mω2|r|2/2 where M is the atomic mass, r
the position, and ω is the trap frequency. This situation arises often in experiments with
atoms trapped in optical potentials created by laser light [181]. At zero temperature the
ground state of the particle exchange symmetric many-body wavefunction in this harmonic
confinement is

ψ(r1, r2, . . . , rN) =
∏
j

ϕ0(rj) (2.5)

with the single-particle ground state wavefunction ϕ0(r) = exp(−r2/2x2
0)/π3/4x

3/2
0 and

the harmonic oscillator length x0 =
√
ℏ/Mω, resulting in a density of n(r) = N |ϕ0(r)|2.

Taking into account the shape of the density allows to calculate the condensate fraction4

N0

N
= 1 −

(
T

Tc

)3
(2.6)

and the critical temperature
kBTc ≈ 0.94ℏωN1/3 (2.7)

in a harmonic trap [27, 182]. Typical experimental conditions result in critical temperatures
Tc ≲ 1 µK and at half the critical temperature the condensate fraction is about 90 %.

Interactions between particles yield further quantitative corrections to the critical

3 An exact calculation shows kBTc = ζ(3/2)−2/32πℏ2n2/3/M with ζ(3/2)−2/3 ≈ 0.53 for a homogeneous
Bose gas in a box, where ζ is the Riemann-Zeta function [179, 180]

4 The exponent in Eq. (2.6)-(2.7) is characteristic of the harmonic confinement and depends on the
density of states [182].
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temperature [183–185] of trapped BECs but also qualitatively change their fundamental
properties and behavior. For example BECs without atomic interactions have a vanishing
Landau critical velocity while a finite interaction strength lifts the critical velocity to a
finite value, which is the superfluid speed of sound of BECs [27, 180]. Further, interactions
provide the basis for self-organization of structures in BECs that we study in later chapters.
In the presence of interactions the many-body wavefunction does not factorize into a
product of single-particle states as in Eq. (2.5) and a formal definition of BECs is desirable.
The density matrix formalism addresses this demand [180]. In this formalism the bosonic5

field operators ψ̂(r)† (ψ̂(r)) creating (annihilating) a particle at point r define with their
expectation value the one-body density matrix

n(1)(r, r′) = ⟨ψ̂†(r)ψ̂(r′)⟩ . (2.8)

The diagonal components correspond to the density distribution n(r) = n(1)(r, r). The
coherence properties of the condensate are investigated using the off-diagonal com-
ponents by introducing the relative coordinate s = |r − r′|. For homogeneous BECs
lims→∞ n(1)(r, r′) = n0 tends to a finite value, which is the density in the zero momentum
or condensate state, and describes the existence of off-diagonal long range order [27].
Considering the case of a trapped condensate [180] the density matrix

n(1)(r, r′) = N0χ0(r)∗χ0(r′) +
∑
j ̸=0

njχj(r)∗χj(r′) (2.9)

is expanded in its eigenfunctions χj where nj are the eigenvalues of the one-body density
matrix. This expression for the one-body density matrix characterizes BEC as a state
where N0 becomes of order N and as s → ∞, the contribution ∝ N0 remains finite due to
the condensate coherence while the sum over other momentum states tends to zero due
to destructive interference. The coherence property of the condensate has been observed
experimentally [186, 187].

An order parameter for the condensate can be defined by separating the field operator

ψ̂(r) = χ0(r)â0 +
∑
j ̸=0

χj(r)âj (2.10)

5 Bosonic field operators obey the commutation relations [ψ̂(r), ψ̂†(r)] = δ(r − r′) and [ψ̂(r), ψ̂(r)] =
[ψ̂†(r), ψ̂†(r)] = 0.
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into condensate and other components, where âj (â†
j) are the bosonic6 annihilation (cre-

ation) operators of a particle in state χj. For a macroscopic ground state occupation
N0 = ⟨â†

0â0⟩ ≫ 1, Eq. (2.10) is the starting point for the Bogoliubov approximation which
allows to describe the condensate as a combination of a classical field and quantum fluctu-
ations. In this approximation â0 and â†

0 are replaced by
√
N0 and their commutator being

unity is neglected. One obtains

ψ̂(r) = ψ(r) + δψ̂(r), (2.11)

where we have defined the condensate wavefunction

ψ(r) =
√
N0χ0(r) =

√
N0|χ0(r)|eiϕ(r) (2.12)

and the fluctuation operator for the non-condensed component

δψ̂(r) =
∑
k ̸=0

χj(r)aj. (2.13)

The condensate wavefunction Eq. (2.12) plays the role of an order parameter for the
BEC and encapsulates the coherence property of the condensate by the global phase ϕ.
The condensate wavefunction can be multiplied by eiα with any constant global phase
factor α without changing any physical quantity (U(1) symmetry). This reflects the gauge
symmetry of all equations describing the condensate wavefunction. The bosons entering the
condensate acquire a common global phase, corresponding to the spontaneous symmetry
breaking of the U(1) symmetry [157, 188–191].

Equations (2.11)-(2.13) lay the foundation for developing the extended Gross-Pitaeskii
(eGPE) theory discussed in section 2.4. The field operator for the condensate is replaced
by a classical field ψ = ⟨ψ̂⟩ in Eq. (2.12) yielding a mean-field Gross-Pitaevskii equation
and Eq. (2.13) describes beyond mean-field quantum fluctuations of particles out of the
condensate even at zero temperature.

6 Bosonic operators obey the commutation relations [âi, â
†
j ] = δij and [âi, âj ] = [â†

i , â
†
j ] = 0.
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2.3. Interactions in ultracold dipolar quantum fluids

In this thesis we focus on dipolar BECs made of dysprosium. These BECs have typical
densities of 1019–1021 m−3 and critical temperatures on the order of Tc ≃ 100 nK, which is
ultradilute and ultracold in comparison to many other systems. For example an ideal gas
at room temperature has a density of 1025 m−3 and liquid 4He at its superfluid transition
temperature Tλ = 2.2 K has a density of 1028 m−3 [129, 192].

The low density and temperature of dipolar BECs allows to describe them accurately
using a zero-temperature mean-field theory based on Eq. (2.11). Interestingly the competi-
tion of interactions in dipolar BECs makes the first order quantum fluctuation correction
to this mean-field theory relevant, and allows dipolar BECs to behave as a quantum liquid
for certain interaction strengths and as a quantum gas for others. The description for these
regimes is introduced in section 2.4 within an extended mean-field theory. Remarkably this
theory relies only on the use of pseudopotentials which encapsulate microscopic details
between individual scattering events of atoms in analytic expressions that recover the
low-energy scattering behavior of the true potential.

In this section we introduce the contact and dipolar interactions present in dipolar
BECs and focus on the pseudopotenials relevant for the extended mean-field description.
We briefly mention the underlying scattering phenomena but refer to a more detailed
description within the framework of scattering theory to Refs. [180, 193, 194] and previous
theses [107, 146, 152, 195–197].

2.3.1. Contact interaction

The interaction potential between atoms features a repulsive behavior at very short
distances due to electrostatic repulsion and an attractive long-range behavior scaling as
−r−6 due to van der Waals interactions7. The typical inter-particle interaction range r0

defined by this potential is much smaller than the inter-particle spacing at low densities
r0 ≪ n−1/3 = d and reduces the probability for three-body and higher order interactions.
The low temperature limits the momentum p = ℏk = 2πℏ/λT to low collisional energies
with kr0 ≪ 1. The atoms are typically prepared in internal states that do not scatter
inelastically but only elastically. High angular momentum states (l > 0) in the scattering
process are suppressed at low temperatures due to the centrifugal barrier in the center

7 The Lennard-Jones potential is a pseudopotential incorporating these properties.
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of mass (COM) frame of the two-body problem and only spherically symmetric s-wave
scattering processes occur for bosons [193, 196]. The low-energy behavior of the scattering
process depends on a single parameter, which is the s-wave scattering length as [180,
193]. The effect on the outgoing s-wave at large interparticle distance is a phase shift
proportional to as.

The pseudopotential describing this low-energy scattering process is the contact interac-
tion [27, 180, 193]

Vs(r) = gsδ(r) (2.14)

where
gs = 4πℏ2as

M
(2.15)

is the contact interaction strength. This is the typical interaction also present in weakly
or non-dipolar condensates as realized for example with alkali atoms [188]. The contact
interaction strength is experimentally tunable using Feshbach resonances [34, 35, 198].
This resonance phenomenon occurs when the energy of a bound molecular state in the
molecular potential of a closed channel between two atoms approaches the energy of the
scattering state in the open channel [35]. The relative energy between the bound state and
the scattering state can be brought into resonance using light or magnetic shifts. In the
latter case the dependence between as and the magnetic field B for a Feshbach resonance
can be expressed in the form

as(B) = abg

(
1 − ∆

B −B0

)
(2.16)

where ∆ (B0) describes the width (position) of the resonance and abg is the background
scattering length far from resonances. The Feshbach resonances of dysprosium are briefly
discussed in section 5.1. Feshbach resonances allow to tune the interaction in Eq. (2.14)
from attractive (as < 0) to zero and to repulsive (as > 0). We consider the case as > 0 in
this thesis since the dipolar interaction provides an attractive contribution to the total
interaction energy and it is the competition between repulsive and attractive interactions
that leads to the self-organization of phases we are most interested in. Magnetic fields at
Feshbach resonances and negative scattering lengths lead to three-body recombination
and atom loss [138, 152].
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2.3.2. Dipolar interaction

To create a dipolar BEC, atoms are trapped in an external confinement and are cooled to
quantum degeneracy in the presence of a magnetic field B that polarizes the atoms with
magnetic moment µm ∥ B. The interaction between two particles separated by a distance
|r| and polarized along the magnetic field direction is given by

Vdd(r) = 3gdd

4π Udd(r) = 3gdd

4π
1 − 3 cos2(θ)

|r|3
, (2.17)

where θ∢(µm, r) is the angle between the spin polarization direction and the relative
position r and we introduced the dipolar interaction strength

gdd = 4πℏ2add

M
(2.18)

with the dipolar length
add = µ0µ

2
mM

12πℏ2 (2.19)

for convenience in later notation. Here µ0 is the magnetic constant.
The dipolar interaction is long range8 and anisotropic. The angle dependence introduces

anisotropy (Fig. 2.2). Particles in a side-by-side (head-to-tail) configuration repel (attract)
each other and the interaction vanishes at the magic angle θm = arccos

(
1/

√
3
)

≈ 54.7◦.
The relevant interaction strength in the presence of both contact and dipolar interaction
is the relative dipolar strength

ϵdd = gdd

gs

= add

as

, (2.20)

comparing dipolar to contact interaction strength. The dipolar length determines the overall
dipolar interaction strength add ∝ Mµ2

m which reaches the highest value add ≃ 130 a0 with
µm ≃ 10µB (a0 is the Bohr radius and µB the Bohr magneton) in the periodic table for
dysprosium (see section 5.1).

In general all partial waves l > 0 contribute to the scattering process for dipolar particles
and the question arises which pseudopotential reproduces the low-energy scattering behavior
of the potential including all partial waves [199, 200]. It was shown that for low collisional
energies compared to the dipolar interaction energy the scattering processes involve only
s-wave channels [199, 201–203]. This regime is reached for dysprosium at collisional energies

8 An interaction described by a r−n potential is considered as long-range in d dimensions if
∫∞

rc
r−nddr

diverges with a small cut-off rc, yielding the condition n ≤ d [190, 197].
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Figure 2.2.: Dipolar interaction. Two particles polarized along the magnetic field direction B
at a distance r = |r| with an angle θ between the relative position and the polarization direction
interact with the dipolar potential Eq. (2.17). The orange (blue) color indicates an attractive
(repulsive) interaction Vdd < 0 (Vdd > 0) for a head-to-tail (side-by-side) configuration and the
interaction vanishes Vdd = 0 at the magic angle θ = θm ≈ 54.7◦ shown as dashed lines. The
dipolar interaction is anisotropic due to the θ-dependence and long-ranged due to the radial r−3

decay.

on the order of 10 µK [197] such that dipolar BECs of dysprosium fall into the regime
where contact and dipolar scattering amplitudes can be added. The total effective potential
is

V (r) = Vs(r) + Vdd(r)

= gsδ(r) + 3gdd

4π
1 − 3 cos2(θ)

|r|3
.

(2.21)

The Fourier transform of the dipolar potential

Ṽdd(k) = gdd
(
3 cos2(α) − 1

)
(2.22)

is obtained after regularizing it at the origin [200, 204, 205] and is used in later sections for
the Bogoliubov excitation spectrum of homogeneous dipolar quantum gases, the quantum
fluctuation corrections, and the numerical simulations. Here α is the angle between the
magnetic moment µm ∥ B and the wave vector k in momentum space.

In conclusion the total effective interaction of dipolar quantum gases can be described
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by Eq. 2.21 and in momentum space by

Ṽ (k) = gs + gdd
(
3 cos2(α) − 1

)
. (2.23)

2.4. Gross-Pitaevskii framework

In this section we introduce an extended mean-field description for dipolar quantum fluids.
The mean-field description for trapped quantum gases of section 2.4.1 is extended to
include a beyond-mean field correction in section 2.4.2. This extended Gross-Pitaevskii
equation is the main theoretical basis and the basis for the numerical description of the self-
organized phases described in chapters 3-4. The extended Gross-Pitaevskii framework in
dimensionless units reveals useful scaling relations, presented in section 2.4.3. A framework
to investigate excitations and fluctutations of dipolar quantum fluids building on this
extended Gross-Pitaevskii equation is introduced in section 2.4.4.

2.4.1. Gross-Pitaevskii equation

In the framework of second quantization [27, 206, 207], the Hamiltonian H of an interacting
system of N particles9 in an external potential Vext can be written as

H =
∫

d3r

[
ψ̂†(r)

(
−ℏ2∇2

2M + Vext(r)
)
ψ̂(r)

]

+ 1
2

∫
d3r d3r′ ψ̂†(r)ψ̂†(r′)V (r, r′)ψ̂(r′)ψ̂(r)

(2.24)

where V (r, r′) is the potential of the two-body interaction and ψ̂†(r), ψ̂(r) are the field
operators introduced in section 2.2. The time dependence of the field operator is given
in the Heisenberg picture by ∂tψ̂(r, t) = i

ℏ [H, ψ̂(r, t)] and results in the field equation of
motion [206]

iℏ∂tψ̂(r, t) =
(

−ℏ2∇2

2M + Vext(r)
)
ψ̂(r, t)

+
(∫

d3r′ ψ̂†(r′, t)V (r, r′)ψ̂(r′, t)
)
ψ̂(r, t).

(2.25)

9 We restrict ourselves to two-body interactions and neglect three-body interactions or more generally,
terms that contain more than two field operators. As we outlined in the previous section this is justified
for dilute and ultracold BECs.
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To move to a mean-field description we use the Bogoliubov approximation and Eq. (2.11)
where we first keep the classical field ψ̂ ≈ ⟨ψ̂⟩ = ψ(r, t) and neglect quantum fluctuations
(2.13). We use the two-body interaction potential described in section 2.3 and obtain the
dipolar Gross-Pitaevskii equation (dGPE)

iℏ∂tψ =
(

−ℏ2∇2

2M + Vext + gs|ψ|2 + gdd

∫
d3r′Udd(r − r′)|ψ(r′, t)|2

)
ψ. (2.26)

The dynamics of the condensate wavefunction is described by this nonlocal nonlinear
integro-differential equation [133, 208, 209]. Without the dipolar interaction term, this
equation reduces to the Gross-Pitaevskii or nonlinear Schrödinger equation which appears
in various fields from nondipolar BECs to nonlinear optics [210] to pure mathematics [211].

Early experiments with dysprosium condensates showed that below a critical scattering
length the condensate fractures into quantum droplets which are themselves smaller
individual condensates and live up to hundreds of milliseconds [130]. These observations
could not be explained with Eq. (2.26) as this theory predicts the dipolar collapse observed
with more weakly dipolar chromium10 condensates [119, 200]. It was found that the
description of strongly dipolar condensates using Eq. (2.26) is incomplete and that the
droplet stabilization is explained by taking beyond mean-field quantum fluctuations δψ̂
into account [131, 133].

2.4.2. Extended Gross-Pitaevskii equation

Here we introduce the first order correction to the dGPE, leading to an extended mean-field
description that forms the basis of the numerical results in this thesis.

The starting point is to take the quantum fluctuation operator Eq. (2.13) into account.
The first order correction is obtained by applying Bogoliubov theory to a homogeneous gas at
zero temperature with density n = N/V and expand the field operator ψ̂ = V −1/2∑

k âke
ikr

[27, 197], keeping terms up to quadratic order of the operators âk in the Hamiltonian. The
Hamiltonian is diagonalized using a Bogoliubov transformation [206, 212] and one obtains
[206, 213, 214]

H = E0 +
∑
k ̸=0

ℏωkα̂
†
kα̂k (2.27)

10 52Cr has a magnetic moment of µm = 6µB and a dipolar length of add ≃ 15 a0. See also section 5.1.
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2.4. Gross-Pitaevskii framework

where E0 is the ground state energy,

ℏωk =
√
τ 2
k + 2τknṼ (k) (2.28)

is the Bogoliubov excitation spectrum, and α̂k are related to âk by the Bogoliubov trans-
formation. Here Ṽ (k) is the two-body potential in momentum space and τk = ℏ2k2/2M
is the free particle kinetic energy. The Hamiltonian including two-body interactions has
been split up into a ground state energy and a set of non-interacting quasiparticles with
creation and annihiliation operators α̂†

k, α̂k and the dispersion relation in Eq. (2.28). Due to
interactions there is a finite population in the excited quasiparticle states. These particles
are removed from the ground state, which leads to a quantum depletion ∆n of the ground
state density. The change in density is connected to a shift of the ground state energy
and the chemical potential µ = ∂NE0 is modified. These modifications are known as
Lee-Huang-Yang (LHY) corrections

∆n
n

= 8
3
√
π

√
na3

s (2.29a)

∆µ = 32
3
√
π
gsn

√
na3

s (2.29b)

first derived by Lee, Huang, and Yang in 1957 [215] for a contact-interacting gas. A
next order correction µ ∝ na3

s ln(na3
s) considering three-particle interactions is known for

contact-interacting gases, derived by Wu in 1959 [216].

The gas parameter η = na3
s quantifies weakly interacting systems with η ≪ 1 [27]

corresponding to small quantum depletions (2.29a). At a typical scattering length of
as = 100 a0 even the highest densities on the order of 1021 m−3 for quantum droplets and
other structures we investigate in this thesis fall into the regime η < 10−3 with quantum
depletion ∆n/n < 5 %. By tuning the scattering length near a Feshbach resonance the
effect of a finite quantum depletion due to quantum fluctuations could be observed with
an alkali gas in a box potential [217]. In comparison, strong interactions in 4He result in
a high quantum depletion leaving less than 10 % condensate fraction [218, 219]. These
values underline that the mean-field Gross-Pitaevskii framework is suitable for the weakly
interacting bose gases while strong correlations in systems such as 4He require quantum
Monte Carlo techniques for an accurate description [218–220].

The results (2.29) have been generalized for homogeneous systems with dipolar interac-
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tions [134–136, 221] to

∆n
n

= 8
3
√
π

√
na3

sQ3(ϵdd) (2.30a)

∆µ = 32
3
√
π
gsn

√
na3

sQ5(ϵdd) (2.30b)

with Ql(ϵdd) = 1
2
∫ π

0 dα sin(α) [1 + ϵdd(3 cos2(α) − 1)]l/2. Q3 and Q5 develop a small imagi-
nary part for ϵdd > 1 which is an artifact due to the use of the local density approximation
in the derivation of Eq. (2.30) as a three-dimensional dipolar gas exhibits a phonon insta-
bility at ϵdd > 1 [169, 222]. The imaginary parts are negligible for the regimes investigated
in this thesis and the series expansion for the relevant function Q5(ϵdd) ≈ 1 + 3ϵ2

dd/2 is an
excellent approximation [136, 144, 223]. Nonetheless the artifact indicates that quantum
fluctuation corrections of inhomogeneous dipolar BECs are desirable [222]. In lack of such
a theory the state-of-the art description for quantum fluctuations in weakly-interacting
dipolar BECs is given by Eq. (2.30).

We incorporate these results into the dGPE within the the local density approximation
[130, 136] where n is identified with |ψ(r)|2. The chemical potential shift ∆µ(r) = gqf |ψ(r)|3

for the dGPE leads to the extended dipolar Gross-Pitaevskii equation (eGPE)

iℏ∂tψ =
(

−ℏ2∇2

2M + Vext + gs|ψ|2 + gdd

∫
d3r′Udd(r − r′)|ψ(r′, t)|2 + gqf |ψ|3

)
ψ, (2.31)

with
gqf = 32

3
√
π
gsa

3/2
s

(
1 + 3

2ϵ
2
dd

)
. (2.32)

Importantly compared to the dGPE, the eGPE includes the cubic quantum fluctuation
term ∝ gqf |ψ|3 which has a stronger density scaling compared to the quadratic mean-field
terms ∝ |ψ|2. The quantum fluctuation term is positive, providing a repulsive contribution
which prevents dipolar collapse and allows for the stabilization of quantum droplets [130,
131, 133]. The validity of the extended mean-field description to describe such droplets
stabilized by quantum fluctuations was shown using a path-integral Monte Carlo method
[224]. The adaptation of the beyond mean-field corrections to different dimensions [169,
225, 226] and developing more accurate density functionals [227] are subjects of active
research.
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2.4. Gross-Pitaevskii framework

We define the operator

HGP[ψ] = −ℏ2∇2

2M + Vext + gs|ψ|2 + gddUdd ∗ |ψ|2 + gqf |ψ|3 (2.33)

with the dipolar mean-field potential

Φ(r, t) = gdd

∫
d3r′Udd(r − r′)|ψ(r′, t)|2

= gddUdd ∗ |ψ|2,
(2.34)

where ∗ indicates convolution. Then the eGPE can be cast in the form

iℏ∂tψ = HGP[ψ]ψ. (2.35)

The wavefunction11 is normalized to the atom number N = ⟨ψ|ψ⟩. The dynamics of the
dipolar quantum fluids we describe in this thesis are described by Eq. (2.35) and their
ground states ψ0(r) correspond to the stationary solutions of Eq. (2.35). The chemical
potential for a ground state is given by µ = ⟨ψ0|HGP[ψ0]ψ0⟩ / ⟨ψ0|ψ0⟩.

A useful formulation of the eGPE is to consider it as the solution to the variational
equation iℏ∂tψ = δE/δψ∗ [147, 178, 180, 191, 207] where δE/δψ∗ is the functional derivative
[228–230] of the energy functional

E[ψ] =
∫

d3r

 ℏ2

2M |∇ψ|2 + Vext|ψ|2 + 1
2gs|ψ|4 + 1

2gdd|ψ|2(Udd ∗ |ψ|2) + 2
5gqf |ψ|5

. (2.36)

Functions ψ minimizing the functional12 (2.36) are stationary solutions of Eq. (2.35) [228].
In general analytic solutions for the ground states are unavailable and numerical techniques
have to be used to solve Eq. (2.35) [234–236]. We have implemented several such methods,
including imaginary time evolution for Eq. (2.35) as well as a conjugate gradient algorithm
for Eq. (2.36) that we outline in section 2.6.

11 We define the inner product (Dirac notation) ⟨ψ1|ψ2⟩ =
∫

d3r ψ∗
1(r)ψ2(r) and ⟨ψ1|A|ψ2⟩ = ⟨ψ1|Aψ2⟩

with an operator A.
12 The energy functional is closely related to the chemical potential via virial relations [231–233].
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2.4.3. Scaling relations

In this section we provide general scaling relations based directly on the eGPE in dimen-
sionless units.

The ground state solution of the eGPE is determined by the energy functional in Eq.(2.36)
and is specified by the external potential parameters and the interaction parameters
(as, add, N). In most cases of this thesis, the external potential parameters correspond to
the trap frequencies of the harmonic confinement, but may be left general in case of other
external potentials. We nondimensionalize Eq. (2.36) by introducing the rescaled variables
t̃ = tω0, r̃ = r/xs, ψ̃ = ψ

√
x3

s/N [2, 3, 236–238], with an arbitrary unit of length xs on which
we base the unit of time ω−1

0 = Mx2
s/ℏ and energy ϵ = ℏω0 and define the dimensionless

energy functional per particle Ẽ = E/Nϵ. After omitting the tildes the wavefunction is
normalized to unity and we obtain E =

∫
d3r (E0 + Enl) with E0 = |∇ψ|2/2 + (Vext/ℏω0)|ψ|2

and the nonlinear and nonlocal dimensionless energy density

Enl(C,D,Q) = 1
2C|ψ|4 + 1

2D|ψ|2(Udd ∗ |ψ|2) + 2
5Q|ψ|5. (2.37)

The dimensionless interaction strengths are given by

C = 4πasN

xs

, (2.38a)

D = 4πaddN

xs

, (2.38b)

Q = 4
3π2

C5/2

N

(
1 + 3

2ϵ
2
dd

)
, (2.38c)

where ϵdd = D/C. In this formulation, the dimensionless numbers (C,D,Q), or equivalently
(C,D,N), in addition to the external trapping parameters specify distinct points in the
parameter space of the eGPE framework. The corresponding operator for Eq. (2.33) in
dimensionless units is

H̃GP[ψ] = −∇2/2 + Vext/ℏω0 + C|ψ|2 +DUdd ∗ |ψ|2 +Q|ψ|3. (2.39)

We find the most general way to reason about similarities between ground states at
different physical parameters is by thinking a patch of the ground state phase diagram
in the coordinate system (C,D,Q) that is subject to a geometric transform as a physical
parameter is changed.
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2.4. Gross-Pitaevskii framework

Both C and D are proportional to the linear density N/xs. Consequently the solutions of
the eGPE are the same along contours with N/xs = const in parameter space if quantum
fluctuations are negligible [237, 239–241]. If quantum fluctuations are not negligible their
effective strength is tunable along these contours. Let (N, xs) → (N/s, xs/s) for some
scale s, then (C,D,Q) → (C,D, sQ). A concrete application of this scaling property for a
harmonic external trap is revealed when basing the length scale xs =

√
ℏ/Mωα (α = x, y,

or z) on one of the trap frequencies ωα. Then N/xs ∝ N
√
ωα and areas in parameter space

(C,D) at (N,ωα) are similar to those at (N/s, ωαs
2) but with larger (smaller) Q towards

lower (higher) particle numbers and tighter (looser) traps. Similar scaling properties have
also proven useful for BECs interacting with an induced gravity-like interaction [242, 243]
and one-dimensional systems [244, 245], where they enabled the reduction of the parameter
space dimension by one.

In a fixed trapping geometry there are only two independent parameters describing the
phase diagram. With xs = 4πadd one has (C,D) = (ϵ−1

ddN,N) [233]. In this case (C,D,Q)
depend explicitly only on ϵdd and N . At a given particle number only different ratios ϵdd

will lead to different solutions of the eGPE.
For atomic gases where the dipolar length is fixed, the two ways to explore the phase

diagram towards higher particle numbers (higher densities) are to increase the bare atom
number or to tighten the trap. All dimensionless interaction parameters (C,D,Q) increase
monotonically in this direction. For molecular gases in the future [246, 247] the tunability
of add in addition to as allows to achieve higher (C,D,Q) at lower N by increasing both add

and as, probing regimes of dipolar quantum gases that are challenging to reach using dipolar
atoms. Considering (as, add, N) → (sas, sadd, N/s) leads to (C,D,Q) → (C,D, sQ), which
is the same geometric transformation on (C,D,Q) as for (N, xs) → (N/s, xs/s) discussed
above. Larger as and add result in the same effective interaction parameter change as if one
were to tighten the trap at lower add. Ground states at lower molecular density and higher
add are expected to be similar to higher atomic density and lower add. A lower density all
other things being equal is favorable for lower three-body loss.

2.4.4. Bogoliubov-de Gennes equations and the structure factor

To describe the collective excitations of the ground states of trapped dipolar quantum
fluids, the Bogoliubov-de Gennes (BdG) equations [177, 240, 248] have emerged as an
important tool, especially recently for dipolar quantum droplets and supersolids [7, 125,
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147, 205, 223]. We focus here on an outline of the derivation of the BdG equations while
we provided additional details in Ref. [205] and refer for to Refs. [177, 240, 248] for further
mathematical details.

Once a ground state ψ0(r) and its chemical potential µ of Eq. (2.35) is known we are
interested in studying the oscillations of the wavefunction

ψ(r, t) =
ψ0(r) +

∑
j

λj

(
uj(r)e−iωjt + v∗

j (r)eiωjt
) e−iµt/ℏ (2.40)

around its equilibrium value ψ0 with the Bogoliubov amplitudes uj and vj for small
excitation amplitudes λi. The Bogoliubov amplitudes are normalized by

∫
d3r u∗

i (r)uj(r) −
v∗

i (r)vj(r) = δij [248] and after substituting Eq. (2.40) into the eGPE and keeping linear
terms in λj we obtain the BdG equations

HGP[ψ0] − µ+ X̂ X̂

−X̂ −
(
HGP[ψ0] − µ+ X̂

)uj

vj

 = ℏωj

uj

vj

 (2.41)

with the coupling operator

X̂χ(r) = ψ0(r)
∫

d3r′[Vdd(r − r′) + gsδ(r − r′)]ψ∗
0(r′)χ(r′) + 3

2gqf |ψ0(r)|3χ(r) (2.42)

defined13 by its action on the functions χ = uj, vj. Introducing

fj = uj + vj (2.43a)
gj = vj − uj (2.43b)

the BdG equations further simplify [240] to
 0 HGP[ψ0] − µ

HGP[ψ0] − µ+ 2X̂ 0

fj

gj

 = ℏωj

fj

gj

 . (2.44)

Applying the matrix in Eq. (2.44) again to Eq. (2.44) results in two decoupled equations

13 In Eq. (2.41) we considered real-valued functions ψ0 = ψ∗
0 and X̂∗ = X̂ which applies for stationary

frames of references, such as with Eq. (2.35). For rotating or translating frames of references, the
wavefunction is complex and the BdG equations become complex [249, 250].
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2.4. Gross-Pitaevskii framework

[177, 240]

(HGP[ψ0] − µ)(HGP[ψ0] − µ+ 2X̂)fj = ℏ2ω2
j fj, (2.45a)

(HGP[ψ0] − µ+ 2X̂)(HGP[ψ0] − µ)gj = ℏ2ω2
j gj. (2.45b)

It is sufficient to solve the eigenvalue problem for one of the two functions fj, gj since the
other can be obtained using Eq. (2.44). We solve Eq. (2.45a) for fj and obtain gj for ωj ≠ 0
from Eq. (2.44) as gj = (ℏωj)−1(HGP[ψ0] − µ+ 2X̂)fj. With fj and gj, uj and vj can be
recovered14 by inverting Eq. (2.43). Equations (2.45) host what is known as the neutral
mode with gj = ψ0 and ω = 0. Its origin is a choice for the phase of the ground state
(in practice zero) in Eq. (2.40) and is not a physical degree of freedom [157]. For gj = ψ0

the expression (HGP[ψ0] − µ)gj = 0 simply means that the ground state fulfills the eGPE.
Equation (2.45a) also has a neutral mode [177].

Fluctuations and the structure factor

The BdG equations closely relate to linear response theory [27]. Equation (2.40) provides
the linear response of the wavefunction for a given mode j once the BdG functions fj, gj

have been obtained. This response is related15 to the density and phase fluctuations

δnj = fjψ0, (2.46a)
δφj = gj/ψ0, (2.46b)

respectively. The linearized time evolution of the density nj(r, t) = |ψ(r, t)|2 for a given
mode j is then given by

nj(r, t) = n0(r) + 2λjδnj(r) cos(ωjt) (2.47)

with the ground state density n0(r). The total spatial power spectrum of the density
fluctuations added to the wavefunction in Eq. (2.40) is known as the dynamic structure
factor

S(k, ω) =
∑

j

|δnj(k)|2 δ(ℏω − ℏωj) (2.48)

14 We also orthogonalize uj , vj to the condensate ψ0 [248, 251, 252].
15 In quantum hydrodynamics [205, 253, 254] the response of the wavefunction to density fluctuations δn

and phase fluctuations δφ can be written as ψ = eiδφj
√
n0 + δn ≈ √

n0 + δn/2√
n0 + i

√
n0δφ keeping

only linear order in the fluctuations.
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with
δnj(k) =

∫
d3r δn∗

j(r)eik·r. (2.49)

The dynamic structure factor (2.48) has proven indispensable in understanding the discrete
excitation spectrum [7, 8, 125, 128, 148] of trapped dipolar quantum fluids providing
evidence of the roton dispersion relation [125, 128] and describing a discretized version of
the band structure of supersolids [7, 8, 148]. The dynamic structure factor is connected
with sum rules [255, 256] that found application to describe the compressibility and the
scissors mode frequency16 in dipolar gases [197, 256–258], and the superfluid fraction [257,
259]. These sum rules make use of the moments

mp(k) = ℏp+1
∫ ∞

−∞
ωpS(k, ω) dω. (2.50)

In particular the static structure factor

S(k) = 1
N
m0(k) = 1

N

∑
j

|δnj(k)|2 (2.51)

is given by the zeroth moment. This relationship has been used to measure the density
fluctuations in ultracold gases [260–262]. We apply this relationship between the structure
factor, density fluctuations, and the excitation spectrum in sections 3.2.3, 4.1.2 to trapped
dipolar quantum fluids [4, 5] where the structure factor measured from density fluctuations
corresponds to a volume-integrated version of the two-body pair correlation function [129,
263]. Such pair-correlation functions have been measured in the Mott insulator state [264].

The dynamic structure factor (2.48) can be generalized to finite temperatures [27, 252,
265]

S(k, ω, T ) =
∑

j

|δnj(k)|2 [(n̄(ωj, T ) + 1)δ(ℏω − ℏωj) + n̄(ωj, T )δ(ℏω + ℏωj)] (2.52)

by taking into account the Bose occupation n̄(ω, T ) = (exp(ℏω/kBT ) − 1)−1. The general-
ization is valid for T ≪ Tc where the condensate fraction is near unity [27]. As a result

16 Using linear response of the angular momentum operator instead of the density fluctuations.
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the static structure factor at low temperature becomes17

S(k, T ) = 1
N

∑
j

|δnj(k)|2 coth
(

ℏωj

2kBT

)
. (2.53)

The above equations can be used in a fully trapped system including the beyond
mean-field corrections by solving the BdG equations (2.45) numerically, providing discrete
modes indexed by j and a discretized version of the excitation spectrum ℏωj and related
quantities like the structure factor components ∝ |δnj(k)|2. In homogeneous systems
or when the discretized modes approximate a continuous function like the Bogoliubov
spectrum ϵ(k) = ℏω(k) further useful relations are obtained [266, 267]. In a single-mode
approximation where the main contribution to S(k, ω, T ) occurs due to a single mode the
general inequality ε(k) ≤

√
m1(k)/m−1(k) becomes saturated, leading to [27, 267, 268]

S(k, T ) = ℏ2k2

2Mε(k) coth
(
ε(k)
2kBT

)
(2.54)

which is a generalized version of the Feynman-Bijl equation [103]

S(k) = S(k, T = 0) = ℏ2k2

2Mε(k) . (2.55)

The single mode approximation is well-fulfilled for weakly-interacting systems (η ≪ 1) and
breaks down at large momenta for k ≫ 1/as [269]. For more strongly interacting superfluids
like helium the Feynman-Bijl equation becomes less accurate [27, 270]. The fluctuation-
disspation theorem [27] also relates the structure factor to thermometric methods in
ultracold gases [271, 272].

Equation (2.54) illustrates that low-energy modes cause peaks in the structure factor
corresponding to enhanced fluctuations. In the case of dipolar quantum fluids, this is
particularly important since the spectrum can have a minimum at a finite wave vector
as we discuss in the next section. These low-energy modes with ε(k) ≪ kBT can cause
further enhancement of fluctuations by small but finite temperatures. Then18

S(k, T ) ≃ S(k, 0)2kBT

ε(k) = ℏ2k2kBT

Mε(k)2 (2.56)

17 Using coth(x/2) = (ex + 1)/(ex − 1) = (1 − e−x)−1 − (1 − ex)−1.
18 Using coth (x) ≈ 1/x for x ≪ 1.
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shows that the associated peak in the structure factor at finite temperature is enhanced
by a factor of ≃ 2kBT/∆rot and scales as ∝ T/∆2

rot. Here ∆rot is the excitation energy of
the lowest modes at a finite wave vector, which is the roton gap for sufficiently dipolar or
dense systems (section 2.5.1).

2.5. Self-organization in dipolar quantum fluids

In this section we clarify the mechanisms at the core of self-organization and pattern
formation in dipolar quantum fluids. The contact interaction is short-ranged (local) and
repulsive. The competition with the dipolar long-ranged (nonlocal) interaction leads to a
mechanism for instability at the mean-field level where quantum fluctuatiuons are neglegted.
This mechanism is understood by considering the Bogoliubov excitation spectrum of
trapped dipolar quantum fluids which features a minimum at a finite wave vector that can
reach zero excitation energy if the system is sufficiently dipolar or dense. Once exited at
this wave vector, these so called roton modes lead to a local and spatially periodic increase
in density which is a positive feedback mechanism for further population of roton modes
(section 2.5.1). An indefinite increase in density is prevented by including the effect of
beyond mean-field quantum fluctuations which add negative feedback (section 2.5.2).

With the combination of positive and negative feedback mechanisms to self-organization,
dipolar quantum fluids have the key components present in mathematical models of pattern
formation [111, 273] as proposed in 1952 by A. Turing [13] in the context of reaction-
diffusion systems [274] but also present in the Swift-Hohenberg model [14, 275, 276] and
in activator-inhibitor cellular automata [21, 22]. The attractive contribution to the dipolar
interaction provides an activating mechanism while the contact interaction and quantum
fluctuations provide an inhibiting mechanism to local density increase.

We focus here on specific regimes that can be investigated analytically, which helps to
understand the mechanisms intuitively.
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2.5. Self-organization in dipolar quantum fluids

2.5.1. Roton excitations and fluctuations

For a three-dimensional (3D) homogeneous dipolar gas with density n the Bogoliubov
dispersion (2.28) becomes

ℏω3D(k) = ℏk

√√√√( ℏk
2M

)2

+ ngs

M
[1 + ϵdd(3 cos2 α− 1)] (2.57)

where k = |k| and we have used the interaction potential in momentum space (2.23). For
an interacting system the Bogoliubov dispersion relation (2.57) behaves linear at small
k and at large k quadratic with a shift due to the mean interaction strength ngs and
other interaction parameters. Phonons are sound modes with a linear dispersion relation.
The phonon speed of sound is defined in general as cs = limk→0 ℏω(k)/k. For the dipolar
gas the speed of sound cs(α) = c(0)

s

√
1 + ϵdd(3 cos2 α− 1) is anisotropic in contrast to a

purely contact interacting gas with speed of sound c(0)
s =

√
ngs/M . The homogeneous

three-dimensional dipolar gas with ϵdd > 1 exhibits a phonon instability where cs(α)
becomes imaginary [169, 222]. The speed of sound is closely related to the Landau critical
velocity [277] vc = mink ℏω(k)/(v̂ · k) proposed first by Landau [101, 102] to describe the
superfluidity of liquid helium [24]. The critical velocity describes the lowest velocity v > vc

at which an impurity moving through a superfluid along v = vv̂ causes dissipation in the
superfluid. Fluids with vc ̸= 0 are superfluids. Contact interacting BECs (gs > 0, ϵdd = 0)
are superfluids where the speed of sound is the critical velocity c(0)

s = vc and dipolar BECs
(gs > 0, ϵdd > 0) are superfluids where the critical velocity is generally angle dependent
[146, 277, 278]. In contrast, noninteracting BECs (gs = ϵdd = 0) have a free particle
dispersion relation ℏω = ℏ2k2/2M with vc = 0 and are not superfluid.

A trapped dipolar BEC exhibits a strongly modified excitation spectrum [104, 241, 279,
280]. To investigate these modifications we consider a dipolar gas trapped harmonically
Vext = 1

2Mω2
zz

2 along the magnetic field direction z and free in the x–y-plane. The quasi two-
dimensional (2D) regime is reached for strong confinements in comparison to the chemical
potential ℏωz ≫ µ where the density distribution along the z direction assumes the form of
the harmonic oscillator ground state which is Gaussian n(r) = n(x, y) exp(−z2/l2z)/

√
πlz

with the harmonic oscillator length lz =
√
ℏ/Mωz [197, 241, 280]. In this case the z

direction of the mean-field dipolar interaction (2.36) integrates out [104, 197, 200, 280]
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Figure 2.3.: Roton excitation spectrum. (a) Excitation spectrum (2.58) develops a roton-
maxon structure for sufficiently high densities or relative dipolar interaction strengths ϵdd. The
roton minimum at the roton momentum krot marked with arrows decreases (softens) towards
higher ϵdd reaching values close to zero. For these parameters roton modes can be excited at nearly
no energy cost, providing a length scale 2π/krot for self-organization. (b) Schematic illustration
of density fluctuations induced by roton mode excitations. From low ϵdd (i) to higher values (ii)
roton modes are more easily populated and lead to a density wave where higher density regions
provide additional attraction of further particles. Figure inspired by Refs. [125, 129]. Parameters
for (a) are n0 = 1020 m−3 and ωz/2π = 250 Hz (lz ≃ 0.5 µm).

and one obtains in total the spectrum of a quasi 2D dipolar gas

ℏω2D(k⊥) = ℏk⊥

√√√√(ℏk⊥

2M

)2

+ n0gs

M

[
1 + ϵdd F⊥

(
k⊥lz√

2

)]
. (2.58)

Here k⊥ is the in-plane momentum and F⊥(x) = 2 − 3
√
π x ex2 erfc(x) is a monotonously

decreasing function from F⊥(0) = 2 to limx→∞ F⊥(x) = −1, with the complementary error
function erfc(x) and n0 = n2D/

√
2πlz is the peak density defined by the in-plane density

n2D. The spectrum remains real-valued for k⊥ → 0 if 1 + 2ϵdd > 0 showing that the dipolar
interaction prevents the phonon instability by being predominantly repulsive in-plane.

At larger momenta the spectrum develops a minimum that decreases or softens for higher
densities n0 and relative dipolar strengths ϵdd (Fig. 2.3(a)). This minimum is known as the
roton minimum and the momentum at which it occurs is the roton momentum krot. At
intermediate momenta a maximum remains, known as maxon. This roton-maxon spectrum
is known from liquid helium [101–105]. The quasiparticle excitation at the roton momentum
is known as roton, termed by Landau [101] and nowadays interpreted as a precursor to
crystallization [281]. In liquid helium the interpretation of this excitation was complicated
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due to its high density and the presence of strong correlations where the rotonic dispersion
relation is fixed with the intrinsic interactions of helium. In quantum gas experiments the
dispersion relation is tunable by changing the scattering length. The spectrum for weakly
interacting gases also allows for a straightforward interpretation of the roton as a precursor
to crystallization (Fig. 2.3(b)). At low relative dipolar interaction strengths ϵdd (i) the
system is in equilibrium with a uniform in-plane density and excitations at finite momenta
are energetically costly. Towards higher ϵdd (ii) as the roton minimum approaches zero
excitation energy, at nearly no energy cost the excitations modulate the ground state
density with a wave vector krot corresponding to the roton wavelength λrot = 2π/krot. In the
absence of a stabilization mechanism the spectrum becomes imaginary for sufficiently high
ϵdd, the magnetic particles accumulate in the high density regions (ii) and the system would
undergo a roton instability mediated collapse. What was observed instead with dysprosium
is the fracturing into individually stable quantum droplets [130, 282]. As explained in
the next section the stabilization mechanism is the increase in quantum fluctuations
towards higher densities. Several early theoretical and experimental studies have reported
evidence of the rotonic dispersion relation in trapped three-dimensional dipolar gases by
applying Bogoliubov theory [124, 126, 283], using scattering length quenches [125] or Bragg
spectroscopy [128]. The interplay between rotonic dispersion relations and stabilization
through quantum fluctuations is a main concept throughout chapters 3-4.

The mechanism of a low-energy excitation at a finite wave vector for structure formation
is not limited to dipolar quantum fluids but a general occurrence in self-organizing systems
[13, 14, 273, 284]. A direct analogy to the roton instability of dipolar quantum fluids is
the Rosensweig instability in ferrofluids where the energy of a surface wave decreases
with an externally applied magnetic field strength [106, 107, 285, 286]. As we outlined
in section 2.4.4 softening excitations are generally connected to enhanced fluctuations
within the framework of linear stability analysis [27, 273]. In essence this connection is
encapsulated by the Feynman-Bijl relation S(k) = ℏk2/2Mω(k) where the structure factor
S is a measure for the density fluctuation strength. A roton minimum results in a structure
factor peak at the roton momentum [267].

2.5.2. Density limitation, liquefaction, and quantum ferrofluids

To gain an intuitive understanding of the ground state behavior of dipolar quantum fluids
we follow a variational approach [201, 287–290]. Variational methods in short assume a
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trial wavefunction for the ground state depending on a set of parameters. The wavefunction
is substituted into the energy functional Eq. (2.36) which then becomes dependent on
these parameters and can be more directly minimized and understood than an arbitrary
three-dimensional wavefunction. For our purpose here the variational approach offers the
advantage that analytic expressions for the energy contributions can be obtained and
analyzed.

We consider a cylindrically symmetric harmonic trapping potential Vext = 1
2M(ω2

r r
2 +

ω2
z z

2) with radial and transverse trap frequencies ωr and ωz, respectively. We substitute
the Gaussian trial wavefunction

ψ(r, z) =
√

N

π3/2σ2
rσz

exp
(

− r2

2σ2
r

− z2

2σ2
z

)
(2.59)

with the two variational parameters σr, σz for the width along radial and transversal
directions in Eq. (2.36) and obtain

E(σr, σz) = 1
4N

ℏ2

M

(
2σ−2

r + σ−2
z

)
+ 1

4NM
(
2ω2

rσ
2
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2
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+ 1
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gsN

2

σ2
rσz

[
1 − εdd f

(
σr

σz

)]
+ 25/2

55/2π9/4
gqfN

5/2

(σ2
rσz)3/2

(2.60)

for the total energy of the system [139, 141, 146]. From left to right the terms correspond
to kinetic energy (quantum pressure), confinement energy, contact and dipolar interaction
mean-field energies, and beyond mean-field quantum fluctuation energy. The anisotropy of
the dipolar interaction is included in the function

f(κ) = 1 + 2κ2

1 − κ2 −
3κ2 arctanh

(√
1 − κ2

)
(1 − κ2)3/2 (2.61)

that depends on the density aspect ratio19 κ = σr/σz. Despite the simple assumption of the
wavefunction several phenomena of dipolar quantum fluids can be qualitatively understood
with this approach. By minimizing this function for σr, σz, the tendency of dipolar BECs
to elongate along the magnetic field direction (magnetostriction) [291, 292], the geometry
dependent stability diagram, and the formation of a self-bound quantum droplet and its
excitations can be understood [139, 141]. The energy minimization and above phenomena
have been explained in depth in previous publications [139, 141, 197] and theses [129, 130,
19 The dipolar interaction is mainly attractive (repulsive) for limκ→0 f(κ) = 1 ( limκ→0 f(κ) = −2).
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Figure 2.4.: Energy contributions of dipolar quantum fluids. (a) Towards high densities in
dipolar quantum fluids elongated along the magnetic field direction the competition between
repulsive contact and predominantly attractive dipolar interaction leads to an attractive mean-
field (contact+dipolar) interaction. The repulsive quantum fluctuations (QF) with a steeper
density scaling stabilize the system at a finite density n0 ≃ 1021 m−3. The values as = 85 a0,
σz = 10σr and σr = 0.3 µm and corresponding terms in Eq. (2.60) have been used. (b) The
mean-field+QF energy per particle landscape for the same parameters of (a) as a function of
as and n shows that towards smaller as the equilibrium density increases and saturates due
to a large increase in quantum fluctuation for n on the order of n0. The contours of as rise at
small n and fall with n above n0 indicating that quantum fluctuations take over the predominant
stabilization role for densities of a few n0.

152, 153, 197]. The Ansatz has also been extended to describe arrays of quantum droplets
[143, 146, 293] and quantum mixtures [294].

To understand the interplay between interactions and quantum fluctuations we primarily
focus on the scaling of the interaction terms. If we consider a dipolar gas and reduce as

the repulsion of the contact interaction strength becomes smaller and the system becomes
relatively more dipolar (larger ϵdd). The magnetic dipoles arrange increasingly in head-to-
tail configuration, attract further atoms, and lead to an increase in the local density as
shown in section 2.5.1. Eventually an elongated shape of a quantum droplet forms that
has typically σz ≳ 10σr [153, 197, 246]. If this runaway process would not be stopped the
density would continue indefinitely towards an infinitely thin cigar-shaped cloud [119] that
is precluded in the presence of three-body losses at high density leading to the d-wave
collapse observed with 52Cr atoms [118]. The dipolar length of dysprosium add ≃ 8.6aCr

dd

is significantly larger than that of chromium aCr
dd ≃ 15 a0 leading to enhanced quantum
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fluctuations (2.32). The interaction energy and quantum fluctuation contributions for
the case of a typical dysprosium quantum droplet with and an elongated density with
σz = 10σr and σr = 0.3 µm are shown in Fig. 2.4(a) for as = 85 a0. Contact and dipolar
interaction counteract one another and the indefinitely decreasing mean-field sum would
lead to dipolar collapse as the density n = N/σ2

rσz increases. The mean-field scaling ∝ n

for the energy per particle E/N is eventually overcome by the stronger scaling ∝ n3/2 of
the quantum fluctuation term. The system is stabilized by the combination of mean-field
and beyond mean-field effects at a finite density generally on the order of n0 ≃ 1021 m−3

[5, 246] allowing for stabilized quantum droplets, supersolids, and other structures that
we investigate in this thesis. The kinetic energy at these high densities can be neglected,
which is also known as the Thomas-Fermi approximation [200, 295]. In the presence of an
external trap along the z-direction there is an energy penalty for the elongation of the
quantum droplet. The dipolar interaction is sufficiently attractive at these densities for
quantum droplets to be self-bound [133, 137, 296, 297] and the trap is not necessary for
their stability. A steep increase of the total energy with n of a few n0 limits the density of
quantum droplets at which they become density saturated. Analogous to classical liquids,
these droplets are incompressible and adding particles to the system leads to a growth
in volume at fixed saturation density. These properties are similar to helium droplets
at orders of magnitude higher density [192, 298, 299] which are described as quantum
liquids [27]. In this sense the phases of dipolar quantum fluids near a saturation density
we describe in this thesis are weakly-interacting dilute quantum liquids in comparison
to liquid helium. Due to the emergence of quantum liquid properties and the analogy
to classical ferrofluids, dipolar quantum fluids can be considered quantum ferrofluids [3,
107, 130, 292]. Interestingly dipolar BECs can be tuned from its ’gaseous’ form at low
density to the ’liquid’ form near the density saturation by tuning the scattering length. A
contour plot of the energy as a function of as and n (Fig. 2.4(b)) helps with an intuitive
understanding of phase diagrams in dipolar quantum fluids presented in chapters 3-4. At
low density the contours as of constant energy rise with n up to n0 at which point the
contours begin to decrease. Additionally the lowest energy shifts to higher density for
smaller as. Such contours present candidates for critical scattering lengths separating one
phase from another in dipolar quantum fluids (sections 3.1, 4.3).

The variational approach is limited for quantitative statements in several situations such
as intermediate density regimes where the Thomas-Fermi approximation is not accurate
and for states that do not assume the Gaussian shape enforced by the trial wavefunction
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in Eq. (2.59). These situations where an interplay of multiple quantum droplets and states
with no continuous cylinder symmetry give rise to supersolids and other self-organized
structures are common in this thesis, and numerical methods supplementing the analytical
intuition developed in this section are key.

2.6. Numerical simulations

In general the nonlinear and nonlocal properties of the eGPE (2.31) complicate an analytic
understanding of its solutions. Approximations and the variational approach are limited to
specific scenarios and the form of the variational wavefunction. For these reasons numerical
simulations, allowing for the exact solution of the eGPE up to numerical errors, are an
important tool in understanding dipolar quantum fluids. Especially since the observation of
droplet arrays [130] characterized by an intricate spatial structure, dynamics, and collective
excitations, numerical methods have become indispensable in accompanying experimental
efforts and making theoretical predictions for further experiments.

Numerical simulations have played a crucial role in all our publications in this field [1–9]
both in understanding experimental observations and in theoretical proposals. Moreover
the toolbox we developed during the course of this thesis became more accessible to other
team members and contributed to significant results in previous PhD theses [129, 153]
and was a tool used in Master’s projects [300, 301] fostering further progress in the closely
related field of polar molecules [246]. The toolbox has proven useful to contribute to
theoretical [302] and experimental [117] observations external to our group and enabled a
theory collaboration with the group of S. Reimann [1].

This section outlines the methods used to solve the dynamics of the eGPE, to search
for ground states by directly minimizing the eGPE energy functional, and to solve the
BdG equations. The implementation details of the eGPE dynamics have been described in
several reviews [235, 236] and we focus on motivating the methods as well as providing an
understanding of them in section 2.6.1. The energy functional minimization is less standard
and has played a significant role in accelerating the exploration of self-organized structures
with minute energy differences (section 4.3). Therefore we provide a more detailed view of
this method in section 2.6.2. We conclude with a short description of the solution of the
BdG equations in section 2.6.3.

A starting point for the new numerical toolbox overall was a C/C++ code initially
developed by M. Wenzel [197, 205]. Our new toolbox is based on matlab [303] after
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extending the C/C++ code itself and porting parts of it to multiple programming languages
for comparisons in performance and other criteria. Appendix A provides more comments
on this initial phase.

All methods involving the solution of the eGPE and related equations that we describe
here are based on a wavefunction discretized on a three-dimensional cartesian grid20.
Fourier transforms are used to evaluate spatial derivatives and the dipolar interaction
potential, which become local in momentum space. A spherical cutoff for the dipolar
interaction in momentum space is used to avoid interaction with periodic images [197,
200, 233, 240], with the cutoff radius set to the box length [266]. This setup is a standard
starting point for the development of numerical methods for dipolar quantum fluids [197,
240, 304].

2.6.1. Real and imaginary time evolution

The time evolution of the eGPE (2.35) is computed using the split-step Fourier21 method
[234, 236, 305]. Fourier methods to evaluate spatial derivatives as opposed to finite difference
methods have been shown to converge significantly (in typical simulation setups orders of
magnitude) better to exact solutions as a function of the spatial discretization and also
orders of magnitude faster22 in computational time [235, 308]. We have implemented both
Lie and Strang splitting for the time evolution [309] and use Strang splitting in practice due
to its higher order accuracy in time at negligible computational overhead. The split-step
method is based on splitting the operator HGP = H∇ +HI into an operator containing
all derivatives H∇ and a second one containing all other terms HI . In the limit of small
time steps the two corresponding Schrödinger equations can be solved independently, of
which the equation for HI can be integrated in time exactly and then they are combined
using the Lie or Strang expressions for the splitting [235, 309]. The split-step method also
allows to include further derivative terms in the operator H∇ corresponding to translating
or rotating frames of references [234].
20 Depending on the application with between 963 to 2563 points. A typical example would be to get a

fast solution for a range of parameters at a rougher grid size to get a qualitative understanding and
then perform numerical checks with finer grids.

21 We use the discrete Fourier transform as implemented in matlab with the fftn function using the
fftw3 library. The discrete sine transform has been proposed as a competitive alternative [234–236] in
terms of spectral accuracy, although this implementation is less standard [305–307].

22 We have compared our matlab to the previous C/C++ implementation and found a speedup of a factor
of two to three for the same numerical settings. Additionally due to the use of a spectral rather than
finite difference method, the spatial grid resolution can be reduced for the same accuracy [235, 308].
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In this framework a method to search for the ground state is obtained by changing time
to imaginary time t → −it, which is known as imaginary time evolution or gradient flow
[235, 307]. If one considers the wavefunction at time t to be composed of a superposition
of several functions, then components with higher energy decay faster in time leading to a
convergence to the ground state over time [235, 307]. In imaginary time the wavefunction
is renormalized at each step to the particle number such that it remains constant in the
ground state while higher energy components continue to decay. The convergence to the
ground state in imaginary time is monitored by tracking several quantities related to the
ground state over imaginary time and stopping the search when a specified tolerance is
reached23.

2.6.2. Energy functional minimization

Imaginary time evolution runs into limitations in convergence time when investigating
parameter regimes where many low-energy states are near-degenerate. In these cases
the decay of metastable near-degenerate excited states slows down the convergence and
eventually an exponentially long time is needed to extinguish these components from the
wavefunction ψ in the convergence to the ground state ψ0.

In such numerically challenging regimes applying conjugate gradient (CG) methods have
proven successful, for example in the context of rotating or strongly dipolar BEC [240,
310–312]. We base our implementation on the works by X. Antoine et al. [313, 314], which
provide a mathematically detailed description of the CG algorithm for nonlinear energy
functionals.

For the CG algorithm we normalize the wavefunction temporarily to unity and use the
dimensionless units introduced in section 2.4.3. We expand the wavefunction

ψ = ϕj+1(r) = cos(θj)ϕj(r) + sin(θj)γjpj(r) (2.62)

with a function pj to be determined during the iteration j of the CG algorithm and
γj = 1/||pj|| = 1/

√
⟨pj|pj⟩. Before we explain how pj is defined we first motivate the

expansion (2.62) from a viewpoint we have considered in section 2.5.2, namely the variational
approach. One can consider (2.62) a trial wavefunction for an energy functional (like

23 The quantities for imaginary time evolution are chemical potential, all energy contributions in units of
ℏω0 = 2πℏ × 100 Hz and the peak density in units of 10−19 m−3. The tolerance is typically 10−13 and
the time step is typically set to 0.5–1 × 10−3/ω0.
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Eq. (2.36)) given an arbitrary function pj. The goal of the CG algorithm is to minimize
the energy and find ϕj+1 such that E[ϕj+1] < E[ϕj]. Given pj, in general this amounts to
finding θj = arg minθ E[ϕj+1].

A number of strategies to find θj exist [313]. The simplest method is to choose a constant
and small θj that gives monotonically decreasing energies throughout the steps j. The
downside of this approach is that it is unknown prior to running the CG algorithm which
θj is sufficiently small and requires restart of the simulation until such a θj has been found.
The most general method is to consider θj a one-dimensional minimization problem, also
known as line search within the context of CG algorithms [240, 313]. For some energy
functionals (like (2.36)), all terms of E[ϕj+1] can be computed analytically and many of the
terms independent of θj can be numerically precomputed [312]. For local energy densities,
the first and second order changes are found by the first and second order derivatives
of the energy density and for nonlocal energy densities, these changes are related more
formally to the first and second order functional derivatives of the energy density functional
[313]. This general method requires the ability to evaluate these functional derivatives
analytically and to implement them symbolically in the numerical minimization procedure.
For energy functionals that are polynomial in the wavefunction (2.36) this can be done
[227, 312]. Recently proposed extensions of the energy functional for finite temperature
[315–317] involve general functions of the wavefunction where the most general approach
can become cumbersome.

The strategy in intermediate complexity we choose in the following relies on a Taylor
expansion of the energy functional up to second order [313, 314]. We find that this method
is adequate up to all terms we have included in the energy functional, including quantum
fluctuations24. Substituting (2.62) into (2.36) in dimensionless units one obtains

E(θj) = E[ϕj+1]
= E[ϕj] + 2γj Re ⟨pj|H̃GP[ϕj]ϕj⟩ θj −

[
µj − γ2

j

(
⟨pj|H̃GP[ϕj]pj⟩ + Re ⟨gj|pj⟩

)]
θ2

j

(2.63)

up to second order in θj where gj = 2(Cρj
pϕ +DUdd ∗ ρj

pϕ + (3/2)Q|ϕj|ρj
pϕ)ϕj with ρj

pϕ =
Re(ϕjp

∗
j). These expressions generalize the results obtained in Ref. [314] to include quantum

24 Incidentally also including the thermal energy functional proposed by Refs. [315–317] which we will
not consider further in the framework of this thesis.
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fluctuations. Minimizing Eq. (2.63) yields the optimal angle

θopt
j = γj Re ⟨pj|H̃GP[ϕj]ϕj⟩

µj − γ2
j

(
⟨pj|H̃GP[ϕj]pj⟩ + Re ⟨gj|pj⟩

) . (2.64)

Now we return to the definition of pj which depends on the choice of the step size available
in the general context of CG algorithms. In our case we have

pj = dj − Re ⟨dj|ϕj⟩ϕj, (2.65a)
dj = −Prj + βjpj−1, (2.65b)

βj = max
(

Re ⟨rj − rj−1|Prj⟩
⟨rj−1|Prj−1⟩

, 0
)
, (2.65c)

rj = H̃GP[ϕj]ϕj − µjϕj, (2.65d)
µj = ⟨ϕj|H̃GP[ϕj]ϕj⟩ . (2.65e)

Geometrically pj corresponds to the vector rejection of dj from ϕj , and dj is the conjugate
gradient descent direction. The step size βj corresponds to the Polak-Ribière choice with
an automatic direction reset [313, 314, 318]. P is a preconditioner that in general can be
tuned to improve convergence properties [312–314] but we do not employ preconditioning
here and P is the identity operator. The nonlinear residual rj and chemical potential
µj are obtained readily from the wavefunction ϕj. The choices for the CG quantities in
Eq. (2.65) lead to a negative first order coefficient for the energy correction for sufficiently
small θj [313, 314] and to a move in the steepest energy descent direction. By checking
that the coefficient for the second order correction is positive it can be ensured that the
neighborhood of the energy landscape in that direction is a minimum and if not, a smaller
θj is chosen. For j = 0 the algorithm begins with an initial state and one iteration is
composed of computing Eq. (2.65e) through Eq. (2.65a), evaluating Eq. (2.64), and updating
the new state with Eq. (2.62). After convergence the wavefunction can be renormalized to
the atom number.

The convergence to the ground state is monitored by tracking the energies throughout
the iterations and stopping when a specified tolerance is reached25. In comparison to
imaginary time evolution we find with the same numerical settings convergence to the
same ground state faster by a factor of three (for a simple BEC state) to 20 (for isolated or
25 Following Refs. [313, 314] we monitor the maximum difference of all energy contributions between

steps in units of ℏω0 = 2πℏ × 100 Hz and stop typically at a tolerance of 10−13.
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multiple droplet states). The better performance of the CG algorithm likely has two origins.
First, the CG algorithm takes both the first order and second order energy variation into
account to compute the next step and second, the step size is automatically adjusted based
on the energy landscape (Eq. (2.64) and Eq. (2.65c)). An adaptive time step for imaginary
time evolution can be implemented and could partially close this gap in performance [233].
Note that the CG specific formulae (2.65) do not rely on the second order energy variation
and only effectively terms in gj have to be added if HGP is extended for other terms than
those we considered here. This property allows for a concise and flexible formulation of
the CG algorithm. All steps of the algorithm rely mainly on matrix multiplication (the
matrix elements for a discretized wavefunction) and Fourier transforms, suggesting that the
algorithm could benefit strongly from graphics processing unit (GPU) acceleration. Thanks
to matlab’s gpuarray function we could straightforwardly port the algorithm to a GPU
version and we observed a typical additional speedup of a factor of 20 in convergence26.

In conclusion the development and implementation of this algorithm allowed to inves-
tigate parameter regimes where several low-energy states are near-degenerate at orders
of magnitude higher rate and the algorithm together with imaginary time evolution is a
tool allowing to check the presence of low-energy states with two independent methods.
In the future it could be interesting to leverage developments in machine learning and
automating the calculation of the first and second order variations of the energy functional
leading to the expression (2.64). Using automatic differentiation [321] where the elementary
operations needed to calculate the derivative of a function are learned within the algorithm
itself would get rid of the need to be able to calculate the expansion in Eq. 2.63 and only
the function E(θj) itself needs to be implemented.

2.6.3. Excitation spectra

The BdG equations in the form (2.41) are implemented in matlab by defining the entire
operator in Eq. (2.45a) as a function and solving Â(f) = ℏ2ω2f using matlab’s eigs
function. This function is a matrix-free iterative implementation of the Arnoldi method
[177, 240, 322, 323]. The important property of being matrix-free means that Â(f) never
26 Comparing a simulation run on a NVIDIA Tesla K80 GPU with a simulation run using typically ten

Intel Xeon E5-2699A v4 CPUs in parallel on our local cluster. With more modern GPUs offering
higher CUDA core and tensor core counts we expect the performance gap to increase further [319,
320]. On the present GPU hardware ground state searches for BECs converge for example with grids
of size 1283 points after a few seconds and droplet states or near-degenerate states as we consider in
section 4.3 can take from an hour up to a day depending on the energy landscape.
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needs to be constructed in a matrix form which would be prohibitively memory intensive,
but instead Â is defined as a function by its action on f .
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“I think I can safely say that nobody
understands quantum mechanics.”

– Richard Feynman

Chapter 3
One-dimensional supersolid
arrays of dipolar quantum
droplets
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In this chapter we first briefly discuss our observation of phase coherent dipolar droplet
arrays [9] (section 3.1). Together with the results obtained in Pisa and Innsbruck these
studies provided first experimental evidence for supersolid properties in dipolar quantum
gases [9, 96, 97]. We introduce the superfluid fraction and discuss the supersolid phase
diagram obtained both theoretically and experimentally.

While the overall shape of the supersolid droplet arrays is influenced by the trap
confinement, the droplets giving rise to the crystal structure are not spatially pinned. In
contrast to lattice supersolids where the crystal structure is externally imposed [51, 100,
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324–327], the one-dimensional dipolar supersolids self-organize due to interactions between
the droplets and allow for the propagation of phonon modes throughout the supersolid.
Superfluidity in general is intimately connected to the elementary excitation spectrum, as
we have introduced conceptually in section 2.5.1. Supersolids combine superfluidity with a
crystal structure and the spectrum reflects this bipartite nature.

We study the spectrum of elementary excitations in section 3.2 and review our studies
of Goldstone [8] and Higgs amplitude [7] modes in this system. Parts of these publications
have been included in previous theses [129, 153, 205]. These Goldstone and Higgs amplitude
modes closel relate to the density fluctuations across the superfluid to supersolid phase
transition [5], which will be our focus in section 3.2.

In section 3.3 we consider our most recent theoretical study of toroidally trapped
supersolids, allowing us to compare to the harmonically trapped cases and infinitely
extended supersolids [1].

3.1. Ground states of dipolar supersolids in tubular
traps

In this section we introduce the basic structure of the ground state phase diagram of
supersolids in harmonic traps and the superfluid fraction. Parts of this section have been
published in further detail in the theoretical and experimental study

• F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and T. Pfau,
“Transient supersolid properties in an array of dipolar quantum droplets”, Phys. Rev.
X 9, 011051 (2019).

3.1.1. Superfluid fraction

Here we introduce the concept of the superfluid fraction, its relevance for the character-
ization of the supersolid state of matter, and an approximate measure for superfluidity.
We investigate a system that is infinitely extended in one direction, which permits the
calculation of the superfluid fraction. We considerN = 100×103 162Dy atoms in a harmonic
trap with trapping frequencies ωx,y,z/2π = (0, 53, 81) Hz within a simulation box of length
Lx ≃ 12 µm and apply periodic boundary conditions along the x-direction [153, 205]. We
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3.1. Ground states of dipolar supersolids in tubular traps

apply a linear boost to the system

iℏ∂tψ = (HGP − vxp̂x)ψ, (3.1)

where vx is a small velocity and p̂x = −iℏ∂x is the momentum operator and HGP is given by
Eq. (2.33). Here and in the following we consider the eGPE theory introduced in section 2.4.
Solving for the ground state for a range of scattering lengths we find a phase transition of
an unmodulated BEC to a linear array of quantum droplets (Fig. 3.1). In the insets of
Fig. 3.1 we show the z-integrated density ñ(x, y) =

∫
dz n(x, y, z) in a logarithmic scale

(log(ñ(x, y)/n0)) normalized to the maximum density n0 across all scattering lengths. In
the limit1 vx → 0 the final states approach the ground states of the stationary system and
the superfluid fraction

fs = 1 − lim
vx→0

⟨p̂x⟩
NMvx

(3.2)

with the mass M can be evaluated. The superfluid fraction characterizes the fraction of
particles displaying superfluidity in the system [328, 329]. Equation (3.2) provides the
intuitive interpretation that fs is given by the fraction of particles that remain at rest
in the moving frame [147, 205] and allows for a rigorous identification of a superfluid to
supersolid phase transition. The superfluid is characterized by fs = 1 and in the supersolid
fs < 1 decays towards smaller scattering lengths. Qualitatively one can identify a third
regime of isolated quantum droplets with a vanishing superfluid fraction. The regime
cannot be identified rigorously within the eGPE framework as the ground state is described
with a single wavefunction leading to a finite overlap between the droplets which leads to
a finite superfluid fraction.

A drawback of this definition for fs is that the experimental realization of an infinite
system which can be set into linear motion is a priori not straightforward. In the finite
traps we consider in the following sections, a simple measure of the superfluid fraction is
needed. We define the overlap as the ratio σs = minx n(x)/maxx n(x) of a one-dimensional
density n(x) over a range x covering the droplet spacing. In the infinite system this covers
a unit cell of the droplet array and we show the obtained overlap in Fig. 3.1. The overlap

1 In practice we vary vx and identify when fs becomes independent of vx. Here we find and use
vx ≃ 1 µm/s.
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Figure 3.1.: Characterization of superfluidity in an infinite system. Superfluid fraction fs

calculated from Eq. (3.2) (blue triangles) and overlap (yellow circles) as a function of scattering
length in an infinite tube. The overlap is a simple approximate lower bound of the superfluid
fraction that can be applied to finite systems. Insets show the z-integrated density ñ(x, y) in a
logarithmic scale and arbitrary units.

in a finite trap2 will prove useful as an interpretation of the ability of particles to tunnel
from one droplet to another [205, 332–334] but has also been shown to be a lower bound
of fs in two dimensions [335, 336]. The realization of dipolar supersolids in harmonic traps
has motivated very recent developments of the characterization of the superfluid fraction
of density modulated superfluids in general [259, 330, 331, 336–339]. The rapid progress
in this direction underlines that quantifying superfluidity in realistic and experimentally
achievable systems is of central interest to the community but also a motivation to consider
geometries allowing for accurate estimates of the superfluid fraction.

Originally in the context of superfluid helium, rotating cylindrical trapping geometries
were considered that intrinsically realize periodic boundary conditions [328, 329]. In such
geometries the superfluid fraction

fs = 1 − lim
Ω→0

⟨L̂z⟩
NM ⟨r2⟩ Ω (3.3)

can be evaluated through the resistance of particles to rotational motion in a finite system
rather than to linear motion in an infinite system. The angular rotation frequency Ω and

2 Other simple measures have been defined [330] such as the contrast
C = (maxx n(x) − minx n(x))/(maxx n(x) + minx n(x)) = (1 − σs)/(1 + σs) which under specific
assumptions of the density profile n(x) can be evaluated further and related to fs [331]. These
measures are alternative and closely related to the overlap σs = (1 − C)/(1 + C).
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the angular momentum operator L̂z = xp̂y − yp̂x define the nonclassical rotational inertia
(NCRI) I = ⟨L̂z⟩ /Ω [257, 340, 341] and comparison to the classical inertia I0 = M ⟨r2⟩ gives
fs. With this context, Eq. (3.2) can be seen as a relationship between fs and nonclassical
translational inertia [147, 335, 342–344]. The NCRI can be evaluated in the rotating frame

iℏ∂tψ =
(
HGP − ΩL̂z

)
ψ, (3.4)

in systems that are rotationally symmetric around the z-axis. One important example, in
particular due to its rising experimental relevance [345, 346], is the toroidal trap which we
consider in section 3.3.

In cases where the superfluid is uniform and the translational symmetry breaking occurs
along one direction, upper and lower bounds on the superfluid fraction have been obtained
by Leggett [328, 329]. These bounds have the advantage that they can be directly obtained
from the ground state density distribution in the rest frame without having to solve
for it in the translating or rotating frame. These bounds were shown to be tight for
dipolar supersolids [331], have been used in hydrodynamic models of supersolids [342,
343], cosine-modulated and other trial wavefunctions for supersolids [169, 226, 330], and
have been extended to two-dimensional density distributions [238, 337]. For example the
upper Leggett bound is given by fs ≤ 1

n̄

(
1
L

∫ L
0 dxn(x)−1

)−1
where x is the coordinate

along which the symmetry is broken, n̄ = 1
L

∫ L
0 dxn(x) is the average of the density n(x)

and the length of the unit cell is L. This upper bound has the additional advantage that
only the density distribution along the coordinate x must be known and it becomes an
equality if the density is separable and the other two directions can be integrated out
[328, 330]. This property allowed direct measurements of the superfluid fraction of BECs
in optical lattices recently [259, 339] and studies of dipolar supersolids in toroidal traps
showed that the behvaior of fs is modified as the density modulation is not externally
induced [1, 347]. In contrast, the lower Leggett bound on fs [329, 348] requires knowledge
of the three-dimensional density distribution.

3.1.2. Phase diagram

To investigate whether arrays of dipolar quantum droplets constitute a supersolid phase we
need to show that density modulation and phase coherence coexist in an extended range
of parameters – in a phase diagram (Fig. 3.2). We consider dipolar quantum droplet states
as a function of as and N in a finite system with trapping applied along the longitudinal
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Figure 3.2.: Phase diagram of dipolar droplet arrays in a finite trap. (a) Density profiles
across the superfluid to supersolids phase transition. The z-integrated density in a logarithmic
scale is shown for three scattering lengths at N = 35 × 103 of (b). The bar in the first image
corresponds to 5 µm. (b) Theoretical phase diagram showing the droplet overlap of the ground
states in a harmonic trap with ωx,y,z/2π = (18.5, 53, 81) Hz. The gray area indicates the superfluid
regime. (c) Experimental phase diagram showing the normalized variance of the amplitude of
the first order interference fringe var(P1) in time of flight experiments in a similar trap with
ω̃x,y,z/2π = (19(1), 53(1), 87(1)) Hz. This variance is a robust measure of nearest-neighbor droplet
phase coherence [9]. In (b)-(c) the same black dashed line indicates the superfluid to supersolid
transition boundary (see main text).

direction x of the droplet array. Theoretically we consider a harmonic trap with trapping
frequencies ωx,y,z/2π = (18.5, 53, 81) Hz (ωx added to the trap of the previous section)
which is close to the trap that we experimentally realize [9, 153].

The trap limits the droplet array to a finite longitudinal extent, breaks the translational
symmetry of the BEC, and leads to a local density variation in the longitudinal direction
(Fig. 3.2(a)). Despite these differences to the infinite system (section 3.1) the same three
regimes of superfluid, overlapping droplet arrays, and isolated droplet arrays can be
identified. Although the finite trapping breaks the translational symmetry already in the
BEC, within a local density approximation it is useful to consider the droplet formation
within the BEC as (approximate) translational symmetry breaking of the (approximately)
uniform superfluid [9]. The finite trapping in the longitudinal direction has important
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implications for the elementary excitations (sections 3.2-3.3). Theoretically we find for
a wide range of atom numbers that a narrow range of scattering lengths exists in which
overlapping arrays of quantum droplets form (Fig. 3.2(b)). When the droplet number
changes towards higher atom numbers for a given scattering length in the phase diagram,
discontinuities in the overlap are observed (b).

Experimentally we prepare a quasi-pure BEC at a temperature T ≃ 20 nK withN ≃ 45×
103 atoms in a harmonic trap with trapping frequencies ω̃x,y,z/2π = (19(1), 53(1), 87(1)) Hz.
We ramp the scattering length from the BEC regime to the final scattering lengths shown in
Fig. 3.2(c) and obtain various atom numbers by binning the experimental data featuring a
distribution of atom numbers due to fluctuations in initial atom number and the dynamics
of the droplet formation process [9, 153]. In total we analyze more than 300 experimental
realizations for each scattering length. We investigated the dynamics in more detail in [9]
and found that the droplet formation process near the transition boundary maintains the
phase coherence of the superfluid. Experimentally the density modulation is characterized
through the spectral weight [9] which is the Fourier amplitude at the spatial frequency
k/2π = 1/d corresponding to droplet distance d. This measure is enabled by the in-situ
imaging capability [130]. Here we focus on the experimental evidence of phase coherence
across the droplet array (Fig. 3.2(c)) measured through time of flight (TOF) experiments
by suddenly switching off the trap. The atomic cloud expands during TOF and the droplets
interfere. If the droplets are incoherent the interference peaks occur at different positions
and with different amplitudes in the interference image in each realization [146, 153]. For
increasing droplet coherence the interference peak variance in position and amplitude
decreases [9, 153] which can be used to experimentally quantify the phase coherence of the
droplet array. As shown in Fig. 3.2 we find that the region of overlapping quantum arrays
coincides with the region in which we experimentally find phase coherence of the droplets.
While the overlap from the theory monotonically decays towards the isolated droplet
regime the experiment reveals that both the nearest-neighbor and next-nearest-neighbor
coherence peak near the phase transition boundary [9, 153].

The discontinuity of the overlap at the transition boundary and hysteretic behavior we
addionally investigated [9, 205] are consistent with a first order phase transition, as indicated
by earlier studies on supersolids [147, 344, 349–351]. In dipolar BECs the magnitude of
the discontinuity and hysteretic behavior depend on the density of the system [205] and it
was suggested that there is a density range in which the phase transition is second order
[238, 331, 338, 352–354]. This qualitative change of the phase diagram occurs at densities
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beyond the reach of current experiments and will be discussed further in section 4.3.
An Ansatz based on the Thomas-Fermi profile of the BEC and a rotonic dispersion

relation near the transition leads to the prediction that the critical scattering length scales
as as,c(N) = add −N1/β/α with two constants α, β [96, 125]. The Ansatz predicts that a
phase transition occurs when the roton gap ∆rot vanishes where β ≃ −2.32 [96]. Fitting
as,c to our theoretical ground state phase diagram (black dashed line in Fig. 3.2(b)-(c))
we obtain β = −8.8(7) and α = 0.0086(2)/a0 [153]. The applicability of simple scaling
relations and analytic equations is limited since the phase transition in harmonic traps
actually occurs at a finite roton gap as we show in the following sections. At the same
time this limitation underlines the necessity of numerical calculations and motivates a
more detailed knowledge of the excitation spectrum near the superfluid to supersolid phase
transition.
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3.2. Excitations of finite tubular supersolids

In section 3.2 we discuss the elementary excitation spectrum of supersolids in harmonic
traps and we focus on the identification of excitations driving the superfluid to supersolid
phase transition. This identification and further details on the structure factor across the
transition have been published in:

• J. Hertkorn, J.-N. Schmidt, F. Böttcher, M. Guo, M. Schmidt, K. S. H. Ng, S. D.
Graham, H. P. Büchler, T. Langen, M. Zwierlein, and T. Pfau, “Density Fluctuations
across the Superfluid-Supersolid Phase Transition in a Dipolar Quantum Gas”, Phys.
Rev. X 11, 011037 (2021).

This section also briefly introduces the properties of the low-energy Goldstone mode and
amplitude Higgs mode in the spectrum of harmonically trapped supersolids due to their
fundamental role for the supersolid behavior but also in order to compare to the spectrum
of supersolids in toroidal traps. More experimental and theoretical details of Goldstone
and Higgs modes were significant parts in theses [153, 205] and have been published in:

• M. Guo, F. Böttcher, J. Hertkorn, J.-N. Schmidt, M. Wenzel, H. P. Büchler, T. Langen,
and T. Pfau, “The low-energy Goldstone mode in a trapped dipolar supersolid”,
Nature (London) 574, 386 (2019).

• J. Hertkorn, F. Böttcher, M. Guo, J. N. Schmidt, T. Langen, H. P. Büchler, and
T. Pfau, “Fate of the Amplitude Mode in a Trapped Dipolar Supersolid”, Phys. Rev.
Lett. 123, 193002 (2019).

3.2.1. Trap and overlap

With the interpretation of an overlap between the droplets supporting phase coherence
across the droplet array, a goal for the observation of elementary excitations requiring
superfluid flow is to increase this overlap. A higher density is a direct route to achieve this
increase. Within experimental limitations of the atom number of typically N ≲ 40 × 103

an increase in density can be independently obtained by confining the available atoms in
tighter traps. In this section and the following we consider such tighter traps and focus on
the excitations across the superfluid to supersolid phase transition.

We theoretically consider N = 30 × 103 atoms confined in a harmonic trap with
trapping frequencies ωx,y,z/2π = (30, 110, 90) Hz. The geometry is consistent with the trap
we experimentally realize with trapping frequencies ω̃x,y,z/2π = (30(1), 108(2), 89(2)) Hz
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(a)

(b)

(c)

Figure 3.3.: Comparison between experiment and theory. (a) Experimental single-
shot realizations of the isolated droplet, overlapping droplet, and BEC regime at scatter-
ing lengths as ≃ (93.5, 96, 99) a0. (b) Theoretical ground states for the same regimes at
as ≃ (90, 96.5, 100) a0. (c) Droplet overlap across the transition from (b). The tigher trap
allows for a very high droplet overlap and leads to a close correspondence of the density profiles
observed in theory and experiment up to a systematic shift in scattering length [138].

in which we prepare a quasi-pure BEC (T ≃ 20 nK) with typically N ≲ 40 × 103 atoms.
In the experiments the magnetic field was tilted orthogonal to the imaging direction such
that magnetostriction occurs in the plane visible with the imaging system. This setup
allows to resolve individual droplets more easily3 [8, 153]. Using this trap geometry we find
a close correspondence between density profiles in single-shot realizations of experiment
and theory (Fig. 3.3(a)-(b)). Additionally we find a scattering length range of multiple a0

with an appreciable overlap (Fig. 3.3(c)). The shift in scattering length between theory
and experiment has been observed by multiple groups [97, 128, 138, 142, 355]. Reasons
for the shift have been suggested including deviations of quantum fluctuations from the

3 Experimentally the imaging direction stayed the same and the field was tilted along the y-direction.
We keep the notation in the text consistent with the B-field always aligned the z-direction meaning
that in this frame of reference it is as if the imaging changed to the y-direction.
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Figure 3.4.: Excitation energies across the superfluid to supersolid phase transition
in a tubular harmonic trap. Antisymmetric (symmetric) modes are shown as upward blue
(downward orange) triangles. Modes are ordered by their parity in the superfluid. Two degenerate
roton modes soften towards the critical point and trigger the phase transition to the supersolid
state where they split into the low-energy Goldstone mode and the Higgs amplitude mode
associated to the translational symmetry breaking. The points indicate the sampling of the
ground states.

LHY correction term [138, 227] and finite temperature effects [138, 316] which are not
fully resolved and still under investigation [227, 317].

3.2.2. Excitation spectrum

The substantial overlap in an extended scattering length range is a good starting point
for considering the direct observation of superfluid flow throughout the droplet array and
to prove the supersolid nature of overlapping dipolar quantum droplets. To see how such
a flow is realized in dipolar supersolids we first theoretically investigate the spectrum of
elementary excitations by solving the BdG equations (section 2.4.4) across the superfluid
to supersolid phase transition (Fig. 3.4).

Deep in the superfluid modes are alternating in parity4 as their kinetic energy increases
4 We define the symmetry of the modes with respect to the center of the trap as antisymmetric if
δn(r) = −δn(−r) and as symmetric if δn(r) = δn(−r) at y = z = 0.
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Figure 3.5.: Spatial and temporal character of elementary excitations. (a)-(b) Normalized
density profile n (blue background), density fluctuation pattern δn (orange), and phase fluctuation
pattern δφ (Eq. (2.46)) as a function of x at y = z = 0. Relevant modes near the critical point
on the superfluid side (a) and supersolid side (b) are shown for as = 98.0 a0 and as = 96.5 a0,
respectively. (c) Linearized time evolution n(t) (Eq. (2.47)) of the excited states in (b) for two
periods T = 2π/ω.

and are identified as dipole, quadrupole, and higher modes. The dipole mode is a center of
mass (COM) oscillation of the atomic cloud as a whole at the longitudinal trap frequency
ωx. Consistent with Kohn’s theorem [207, 240, 356, 357] the dipole mode is independent
of interaction parameters and remains at the trap frequency. In the superfluid a bundle of
higher energy modes decrease in energy (soften) towards the quantum critical point at
as,c ≃ 96.8 a0 which are nearly degenerate roton modes. The lowest two roton modes lose
this degeneracy at as,c where they give rise to the low-energy Goldstone mode and the
Higgs-amplitude mode associated to the broken translational symmetry of the supersolid
[7, 8].

The spatial and temporal structure of these relevant modes (Fig. 3.5) explains their
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energetic behavior as a function of as and provide intuition about their character. The
symmetric roton mode (Fig. 3.5(a)) shows three strong modulations in the center of the
trap aligned with the emerging three droplets at the critical point and develops into the
Higgs amplitude mode in the supersolid (Fig. 3.5(b)). Both roton modes have a finite
momentum krot = 2π/d corresponding to the droplet spacing d at the critical point but the
antisymmetric roton mode is spatially shifted by d/2 with respect to the symmetric roton
mode. In the superfluid where the density is approximately uniform this spatial phase
shift does not cost energy and leads to a degeneracy of the roton modes. As the density
modulation of the supersolid emerges the degeneracy is lifted and the antisymmetric roton
mode develops into the low-energy Goldstone mode in the supersolid (Fig. 3.5(a)-(b)).

Due to the finite trapping frequency in the longitudinal direction the transition occurs at
a finite Higgs gap and leads to a small but finite energy for the Goldstone mode. Towards
the thermodynamic limit of lower trapping frequencies and more elongated systems at
similar densities, this gap is expected to decrease and the Goldstone mode will be gapless
with a linear dispersion relation. We studied the Higgs and Goldstone modes in detail in
Refs. [7, 8]. Here we shortly review their most important properties and set the stage for a
comparison with the toroidal trap (section 3.3).

The Higgs mode [7] is an amplitude modulation of the superfluid fraction facilitated by
flow of atoms from the superfluid background into the droplets and vice versa (Fig. 3.5(c)).
This behavior leads to an increase of the Higgs energy away from the phase transition point
as the modulation becomes more costly towards a lower superfluid fraction (Fig. 3.4). The
Higgs amplitude mode in our system is not protected by Lorentz invariance or particle-hole
symmetry and therefore expected to be strongly damped [7, 11]. Remarkably the Higgs
amplitude mode exists nonetheless in an isolated state in a narrow range of scattering
lengths close to the phase transition as the discretization of the modes provided by
the trapping frequency separates other modes from the Higgs amplitude mode. Away
from the critical point, the Higgs mode couples to all higher-lying modes with the same
symmetry and leads to a plenitude of avoided level crossings and hybridization, which
are the corresponding phenomena to the strong damping of the Higgs amplitude mode
in the thermodynamic limit. The Higgs mode has yet to be observed experimentally and
the splitting of the roton modes as well as the strong coupling of higher-lying modes with
an energetically rising mode serve as signatures that can be used to probe this mode in
future experiments [7].

The low-energy Goldstone mode [8] is an out-of-phase oscillation between the droplet
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crystal structure and the superfluid background (Fig. 3.5(c)) which leads to an almost
constant COM. This behavior originates from the phase fluctuation pattern δφ shown in
Fig. 3.5(b) where the gradients on the droplet position and on the superfluid background
between the droplets have opposite sign. Alternatively the density fluctuation pattern δn

can be used to identify this behavior. The resulting dynamics show that as the crystal
structure moves to the right (left) the density of the right (left) droplet transfers to the left
(right) droplet. This anticorrelation between crystal displacement and droplet imbalance
was used to prove the existence of the Goldstone mode in our experiment [8]. The fact
that overlapping droplets constitute an extended region in parameter space and that they
support elementary excitations requiring superfluid flow and phase rigidity across the
droplet array show that they are a realization of a supersolid.

In an infinite system we expect to identify two gapless Goldstone modes with a linear
dispersion relation: the superfluid phonon associated to the broken U(1) symmetry and the
supersolid phonon associated to the broken translational symmetry. In our finite system
the dipole mode and the low-energy Goldstone mode are the corrsponding modes. The
trap fixes the energy of the superfluid phonon to the trap frequency and raises the energy
of the supersolid phonon to a finite value. The toroidal trap we investigate in section 3.3
is consistent with this picture and shows how these trapping effects can be partially
circumvented in an experimentally realizable setup. The harmonic trap furthermore divides
all modes into only two symmetries. Since all modes are limited to these two symmetries
avoided crossings between multiple modes are an inherent part of harmonically trapped
dipolar supersolids (Fig. 3.4). Nonetheless one can broadly recognize in Fig. 3.4 that on
the supersolid side certain modes stiffen (rise in energy) and others soften (fall in energy).
The coupling obscures the relationship between the different branches but as we show in
section 3.3, the rising and falling branches together with the Higgs branch correspond to
three distinct elementary excitations that are predicted in infinite supersolids and occur in
a decoupled form in toroidal traps.

3.2.3. Density fluctuations

A connection between the elementary excitations and density fluctuations in the system
is provided by the dynamic structure factor S(k, ω) (section 2.4.4). The structure factor
reveals the linear density response strength of the system due to a perturbation. Within
the BdG formalism this connection is highlighted as the eigenmodes fj correspond to
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Goldstone

Higgs

Figure 3.6.: Dynamic structure factor in the vicinity of the quantum critical point in
the superfluid (a) and supersolid (b). The roton minimum of the superfluid defines the Brillouin
zone edge of the supersolid where the low-energy Goldstone and the Higgs amplitude mode lie
while higher energy excitations split around the Brilloin zone. The red line in (a) shows the
Feynman-Bijl upper bound on the dispersion relation (Eq. (2.55)).

density fluctuations δnj = fjψ0 whose Fourier spectra are the components of the dynamic
structure factor Eq. (2.48).

The dynamic structure factor obtained at zero temperature from our BdG analysis in the
vicinity of the critical point is shown in Fig. 3.6. In this vicinity the superfluid has developed
a significant roton minimum at the roton momentum krot/2π = 0.3 µm−1 associated to
the roton modes (Fig. 3.5(a)-(b)). In the supersolid the roton modes have split up into
the low-energy Goldstone mode and the Higgs amplitude mode. The first symmetric and
antisymmetric phonon modes above the dipole mode in Fig. 3.6(b) show a splitting around
the Brillouin zone edge at krot. The momentum krot sets the quasimomentum q̃ = 0 point of
the dispersion relation folded back to the first Brillouin zone which is the quasimomentum
of the Goldstone and Higgs modes at the transition point. The phonons directly above
the dipole mode are the lowest modes with a finite quasi momentum |q̃| > 0 in the first
Brillouin zone. The finite trapping frequency along x leads to coupling of COM and linear
motion, hybridization [7] and a dependency of the mode structure on the scattering length.
The identification of a Brillouin zone and quasimomenta, despite their complication due
to a finite trap, is useful to establish analogies to an infinite system and to contrast with
the toroidal trap (section 3.3). The Feynman-Bijl approximation to the dispersion relation
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Figure 3.7.: Density fluctuations across the superfluid to supersolid phase transition
in tubular harmonic traps. Schematic of the dispersion relation ℏω(k) (a) and corresponding
static structure factor S(k) (b) of an elongated dipolar superfluid [358]. Towards the supersolid
phase transition the softening roton minimum at krot is associated to enhanced density fluctuations
δn leading to a peak in S(k). (c) Experimental observation of density fluctuations across the
superfluid to supersolid phase transition. For each as a large number of in-situ images nj(r) is
collected and density fluctuation images δnj(r) = nj(r) − ⟨nj(r)⟩ are given by the deviation
from their mean ⟨nj(r)⟩. The mean power spectrum of the fluctuations ⟨|δn(k)|2⟩ are directly
related to the amplitude of S(k). The colormap in (c) indicates the amplitude of densities, density
fluctuations, and mean power spectra, respectively normalized to each row separately. Figure
adapted from [5].

ϵ(k) = ℏ2k2/2mS(k) (Eq. (2.55)) is a meaningful continuous estimate and an upper bound
of the discrete dispersion relation (Fig. 3.6) for an excitation spectrum that is dominated
by a single mode. In the supersolid multiple modes contribute to the excitation spectrum
and the splitting into multiple branches around the Brillouin edge leads to a deviation
from the single-mode approximation towards smaller scattering lengths.

The Feynman-Bijl equation suggests which density fluctuations are predominantly
excited and consequently observable in the experiment as the superfluid to supersolid
phase transition is crossed. Lower-energy excitations of the superfluid lead to a larger
contribution to S(k) and are enhanced near the transition point as compared to higher-
energy excitations (Fig. 3.7(a)-(b)). To measure fluctuations and the structure factor
experimentally (Fig. 3.7(c)), we begin with a quasi-pure BEC at as ≃ 105 a0, linearly ramp
the scattering length to final values between this start value and as = 90 a0 within 30 ms,
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3.2. Excitations of finite tubular supersolids

and wait for 15 ms for the system to equilibrate. For each scattering length we repeat the
experiment about 200 times acquiring statistics of the density fluctuations present in the
system due to the droplet formation dynamics and finite temperature. We briefly describe
the measurement of the static structure factor and focus on the in-situ observation of
specific elementary excitations using principal component analysis (PCA) further below.
The structure factor measurement has taken a significant role in the thesis [129] to which
we refer for further details.

First we center the in-situ images nj(r) to remove residual COM excitations [8].
Subsequently we obtain the average density ⟨n(r)⟩ and the density fluctuation im-
ages δnj(r) = nj(r) − ⟨n(r)⟩. With the Fourier transform of the density fluctuations
δnj(k) =

∫
d3rδnj(r)eik·r we obtain the mean power spectrum of the fluctuations ⟨|δn(k)|2⟩.

The static structure factor in homogeneous systems is related to the density fluctuation
power spectrum by S(k) = ⟨|δn(k)|2⟩ /N , where N is the atom number [27, 260, 262]. In a
trapped system the second-order pair-correlation function that the structure factor derives
from in general depends on two coordinates rather than only the relative coordinate in
uniform systems [129, 255, 263, 359, 360]. Provided the local-density approximation is
valid the quantity S(k) = ⟨|δn(k)|2⟩ /N corresponds to a volume-integrated version of
this pair correlation function [263] and still relates to the strength of the local density
fluctuations [360–364]. Our evaluation gains access to this density fluctuation strength
simultaneously at all momenta between kmin/2π ≃ 0.08 µm−1 and kmax/2π ≃ 1 µm−1 due
to the finite system size and the finite resolution of our imaging system, respectively
[260, 360]. The imaged atomic densities are integrated along the line-of sight y which
translates to a cut through the static structure factor S(kx, ky = 0, kz) according to the
Fourier-slice theorem5 [129, 365]. The dominant structure occurs along kz = 0 in the
structure factor (Fig. 3.7(c)) consistent with mostly longitudinal excitations along x and
suppressed transverse excitations in the z-direction.

The line profiles of the structure factor S(kx, kz = 0) are shown across the transition in
Fig. 3.8. Already far in the superfluid regime a small peak at k/2π ≃ 0.25 µm−1 can be seen
indicating a finite roton population in the BEC [8] which underlines a deviation from the
dispersion relation of purely contact-interacting gases. The peak rises towards smaller as

in accordance to the Feynman-Bijl equation and the expectation that density fluctuations
rise approaching the transition. The peak position moves towards larger momenta for

5 For an arbitrary function f(x, y, z) and its projection p(x, y) =
∫

dz f(x, y, z) the Fourier-slice theorem
reads F [f ](kx, ky, 0) = F [p](kx, ky) where F is the Fourier transform.
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Chapter 3. One-dimensional supersolid arrays of dipolar quantum droplets

Figure 3.8.: Measured static structure factor across the transition. The dashed line at
kmin ≃ 0.08 µm−1 indicates the smallest physical momentum due to the finite size of the system
along the x-direction. The dash-dotted line at kx/2π ≃ 0.3 µm−1 roughly indicates the inverse
droplet spacing at the transition point. For better visibility, the lines shifted up for smaller as.
The structure factor is shown in units of Smax = 260 and the line thickness indicates the error
bars obtained by bootstrapping [366–369]. Figure adapted from [5].

smaller as consistent with predictions based on a variational theory of elongated dipolar
BECs [358, 370].

The structure factor peak amplitude attains its maximum Smax = 260 at as ≃ 98.4 a0.
This scattering length is near the center of the supersolid region as ≃ 96 − 100 a0 we
previously determined [8, 129] through interference analysis similar to the one described
in section 3.1 and measurements of the Goldstone mode correlation [8]. The magnitude
of Smax can be mainly explained by thermal enhancement of the populated low-energy
modes [5]. As the roton gap ∆rot decreases towards the transition point, the peak of the
static structure factor scales as Smax ∝ T/∆2

rot given that the roton gap is small compared
to the temperature (ℏ∆rot/kBT ≲ 1) and that the spectrum is dominated by a single
mode. At T = 0 the Feynman-Bijl equation predicts an amplitude Smax ≃ 6 for a roton
gap ∆rot ≃ 0.6ωx at krot (Fig. 3.4). We obtain a corresponding amplitude by numerically
evaluating the static structure factor within the BdG theory [129]. The corresponding
thermal enhancement factor 2kBT/∆rot assuming temperatures between 15 nK and 20 nK
is between 30 and 50 and explains the value Smax that we experimentally observe. This
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3.2. Excitations of finite tubular supersolids

large factor underlines the importance of finite temperature for the superfluid to supersolid
phase transition. For a more detailed analysis including an estimation of the excitation
spectrum based on this structure factor and its temperature dependence we refer to [5, 129].
Recent theoretical studies considering finite-temperature extensions of the GPE framework
[315–317] have shown that small finite temperatures lead to a roton softening similar to a
decrease in scattering length. The systematic shift between the critical scattering length in
experiments and the the eGPE framework that has been reported by multiple groups [125,
128, 138, 148, 371] can be partially6 explained by such finite temperature effects [316, 317].

Towards smaller scattering lengths in the supersolid and towards the isolated droplet
regime the structure factor amplitude decreases and eventually splits around the Brillouin
zone edge (Fig. 3.8). The splitting is reminiscent of the contributions of higher-lying
phonon modes from our theoretical analysis (Fig. 3.6).

To investigate which density fluctuation pattern are the most dominant in our experi-
ments, we use PCA on a dataset combining all scattering lengths. PCA is a model-free
statistical analysis method used to extract the main variance from datasets and the princi-
pal components correspond to BdG eigenmodes for small cross-pixel correlations in the
images [372]. We provide additional details in appendix B. The first principal component
(PC) has no structure and represents atom number fluctuations [372]. The subsequent PCs
(Fig. 3.9(a)-(b)) have a periodic structure and show either a clear reflection symmetry
or antisymmetry with respect to the center of the trap. The projection of the PCs onto
the x-axis (Fig. 3.9(c)-(d)) shows excellent agreement with the line profiles of the density
fluctuation patterns of the two degenerate roton modes obtained from the BdG analysis.
The weight of these PCs (Fig. 3.9(e)) increases sharply towards the supersolid region and
attains its peak within this region. In the vicinity of this peak often even single-shot in-situ
images show the characteristic spatial variance of the symmetric and antisymmetric roton
modes (Fig. 3.7(c), middle column). The weight of both PCs is similar for the considered
scattering length range which is consistent with the degneracy of the two roton modes
from BdG theory up to the critical point. The change of the density flucutation patterns
in the supersolid due to hybridization shown in BdG theory is indirectly captured by the
decay of the weight of these PCs towards smaller scattering lengths: overall more PCs are
needed to describe the spatial variance.

6 We independently implemented this finite-temperature extension of the eGPE and find that the shift
in as is not fully explained by finite temperature. Further discussion is found in Refs. [153, 197] using
a simpler model proposed in Ref. [315].
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Figure 3.9.: In-situ observation of roton modes across the transition. (a)-(b) Spatial
structure of the two most dominant PCs in the experimental dataset. (c)-(d) Projections of
(a)-(b) onto the x-axis (blue) and the density fluctuation patterns from the BdG calculation
(gray). (e) Mean of the absolute value of the weights W of the PCs (a)-(b) normalized to the
weight of (a) at the transition point, which is the maximum weight of all PCs for all as. The
gray area in(e) indicates the supersolid region previously determined [8] and error bars are the
standard error of the mean.

The next three important PCs (Fig. 3.10(a)-(c)) can be identified as phonon modes. The
superfluid or BEC phonon PC (a) correponds to the quadrupole mode density fluctuation
pattern we find with the BdG analysis. The antisymmetric (b) and symmetric (c) crystal
phonon modes are consistent with the two modes above the Higgs branch near the phase
transition (as ≃ 95.5 a0 in Fig. 3.4). These modes are also visible in the dynamic structure
factor as the two branches splitting around the Brillouin zone (Fig. 3.6). The power
spectrum of the experimentally found crystal phonon PCs (e)-(f) additionally confirms this
assignment and reveals that the emergence of these crystal phonons is the reason for the
splitting in the structure factor towards small as (Fig. 3.8). In contrast the power spectrum
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Figure 3.10.: In-situ observation of phonon modes across the transition. (a)-(c) Spatial
structure of the third to fifth most dominant PCs in the experimental dataset and (d)-(f)
corresponding spatial power spectra. With our BdG analysis (a) can be identified as the quadrupole
excitation of the superfluid and (b)-(c) as antisymmetric and symmetric phonon modes in the
supersolid near criticality. (g) Mean of the absolute value of the weights W of the PCs (a)-(c).
The normalization and gray region are the same as in Fig. 3.9 and error bars indicate the standard
error of the mean.

of the BEC phonon (d) shows that this is a low-momentum excitation. The weights of the
phonon PCs (g) show that in the supersolid phase, both superfluid and crystal phonons
coexist with appreciable weight. The superfluid phonon weight continuously decreases
from BEC to islated droplets while the crystal phonons weights rise far into the supersolid
regime. Towards the isolated droplet regime the weights decrease which can be attributed
to the hybridization of these phonons with other phonon modes and a change in the
spatial structure of the density fluctuation patterns (Fig. 3.4). Yet more PCs are required
to describe all spatial variance in the isolated droplet regime where we find that the
assignment of individual PCs to BdG modes becomes increasingly difficult and PCs can
become superpositions of BdG modes.
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Chapter 3. One-dimensional supersolid arrays of dipolar quantum droplets

3.3. Supersolids in toroidal traps

In previous sections we have explored the making, probing, and various properties of
dipolar supersolids in tubular harmonic traps. The finite trapping potential in the direction
of the density modulation has a strong influence on the behavior of such supersolids. We
have shown that the trap leads to formation of a few crystal sites at a finite roton gap,
that the corresponding Goldstone and Higgs modes have a finite energy, and that the
spectrum is characterized by multiple avoided crossings and coupling between the Higgs
mode and phonon modes of the same symmetry. These properties not only have to be
taken into account for an accurate description of trapped dipolar supersolids, but they
also obscure the correspondence to macroscopic supersolids arising through spontaneous
breaking of a continuous symmetry.

The experimental evidence for such supersolidity as first proposed to be found in helium
remains elusive [83, 91, 373] but helium has played a central role in our understanding of
superfluidity. In superfluids at zero temperature, the Goldstone mode emerges as superfluid
sound from breaking the U(1) symmetry [27, 374]. The presence of a non-superfluid
component can lead to a second sound mode through coupling to the superfluid component.
Historically this concept of second sound originates from a hydrodynamic two-fluid model
describing the out-of-phase oscillation between thermal and superfluid components of
helium [375, 376]. In a supersolid [69, 71, 78], the translational symmetry breaking of the
superfluid introduces a Goldstone mode in the supersolid which is closely connected to
the superfluid flow throughout the crystal structure (section 3.2). For the supersolid, the
crystal structure can be considered a non-superfluid component at zero temperature. This
point of view allows to draw analogies between the supersolid Goldstone mode and second
sound in finite temperature helium.

The finite trapping potential of dipolar supersolids has complicated the identification of
this Goldstone mode [8, 377] as a second sound of supersolids at zero temperature and
developing a consistent picture to describe the different sound modes has proven challenging,
both experimentally and theoretically [2, 5, 7, 8, 96, 148, 378–380]. The identification is
complicated by harmonic trap confinement, where elementary excitations couple to center
of mass (COM) modes. In addition, hydrodynamic theories which can identify the two
sound modes are unable to capture gapped modes such as the Higgs mode [347, 381–383],
which is yet to be observed experimentally in a supersolid. Even box potentials [384] that
have been recently applied to study second sound in short-range interacting ultracold
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3.3. Supersolids in toroidal traps

gases [385, 386] are no straightforward option for ultracold dipolar gases: Due to dipolar
repulsion, dipolar superfluids accumulate a significant density at the edge of the box and
rotonic density oscillations form towards the center of the box [237, 387]. Fine-tuning of
the box edge steepness is required to obtain a homogeneous dipolar superfluid [388] and
depends on the interaction strength. Here, toroidal potentials [341, 389–392] are a better
choice: The continuous rotational symmetry and periodic boundary conditions along the
azimuthal direction link experimentally achievable finite-size supersolids with those in the
bulk addressed by mean-field [338, 383] and quantum Monte Carlo methods [350, 351].

In this section we theoretically investigate the superfluid to supersolid phase transition
in a toroidal trap. Parts of this section have been published in:

• J. Hertkorn, P. Stürmer, K. Mukherjee, K. Ng, P. Uerlings, F. Hellstern, L. Lavoine,
S. Reimann, T. Pfau, and R. Klemt, “Decoupled sound and amplitude modes in
trapped dipolar supersolids”, arXiv:2404.12384 (submitted for peer review) (2024).

In section 3.3.1 we show how first sound, second sound, and the Higgs amplitude
modes emerge by following their origin from superfluid modes across the transition. The
spatial symmetries of the eigenmodes are classified using group theory and we show how
a quasimomentum q̃ is assigned to the eigenmodes. The assignment establishes a direct
correspondence between the excitations of finite-sized systems and infinite systems in which
the description using band structures becomes meaningful. The spectrum and the following
assignments can be directly compared to the trapped case (section 3.2). In section 3.3.2
we show that the second (first) sound is an out-of-phase (in-phase) oscillation between
superfluid and crystal components and that both sound modes emerge from the superfluid
sound branch near the roton momentum qrot, which defines the crystal periodicity. At the
critical point, qrot becomes the q̃ = 0 point of the emergent Brillouin zone, at which the
superfluid sound mode splits into the q̃ = 0 instance of the second sound branch – the
zero-energy Goldstone mode – and a separate isolated Higgs amplitude mode. As we show
in section 3.3.3, the analysis of these modes allows us to design experimental protocols
for the spectroscopy of toroidal supersolids, probing single elementary excitations of the
supersolid.

3.3.1. Ground states and excitation spectrum

We introduce a toroidal trap geometry by setting the external trapping potential to
Vext = Mω2

r [(ρ− ρ0)2 + λ2z2] /2. Such spatially dependent trapping potentials can be
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Figure 3.11.: Elementary excitations across the superfluid-to-supersolid phase tran-
sition. (a) Ground state density n(x, y, z = 0) and Bogoliubov mode patterns fi(x, y, z = 0) in
arbitrary units for a selection of modes in the superfluid (top row) and supersolid (bottom row)
regime in the vicinity of the transition point (ϵdd ∈ {2.090, 2.093}). Atoms flow in the direction
of the gradient of fi, where red indicates a depletion and blue an increase of atomic density. (b)
Bogoliubov excitation energies ωi as a function of ϵdd. Superfluid excitations are labelled by their
circulation quantum number m. The superfluid sound branch (dark blue) features higher m states
(purple) that soften towards the transition point, which are angular roton modes. The supersolid
has three excitation branches: two Goldstone phonon branches (first [green] and second [blue]
sound) and the Higgs amplitude branch. A lighter color corresponds to a higher quasimomentum q̃.
The q̃ = 0 instance of the second sound branch is labeled ’Goldstone’ analogous to the low-energy
Goldstone mode in harmonic traps (section 3.2). (c) Speed of sound of the phonons in units
of the superfluid sound velocity at the phase transition c0 ≃ 2.2 mm/s (colors as in (b)). The
inset shows the superfluid fraction based on the non-classical rotational inertia (Eq. (3.3)). Figure
adapted from [1].
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achieved using digital micromirror devices (DMDs) or spatial light modulators (SLMs)
[384]. We focus on parameters yielding nd = 7 droplets along the torus which we find
assuming a torus radius ρ0 = 1 µm, radial trap frequency ωr/2π = 1 kHz, aspect ratio
λ = 1.7, and particle number N = 5×103. We calculate the ground state between as = 59a0

and as = 67a0, corresponding to relative dipolar strengths ϵdd = add/as ∈ [1.95, 2.20]7.
As a function of ϵdd we find the ground state to be either superfluid (ϵdd ≲ 2.09) or

supersolid8 (Fig. 3.11). Upon further increasing ϵdd the supersolid eventually develops into
a state of nd isolated droplets. The rotational symmetry of the trap allows us to classify the
ground states based on the superfluid fraction calculated from the nonclassical rotational
inertia (Eq. (3.3))9. The superfluid fraction is unity in the superfluid and continuously
drops in the supersolid towards higher ϵdd.

The spectrum of the low energy modes across the superfluid to supersolid phase transition
is shown in Fig. 3.11(b). We focus on the low-energy behavior (ω < ωr) of longitudinal
excitations along the torus. Modes in the superfluid are labeled by the integer circulation
number m > 0 and are twofold degenerate due to the combination of the rotational
symmetry around the ẑ-axis and the mirror symmetry with respect to vertical planes
through the origin [124, 240, 283, 393, 394]. Deep in the superfluid the energy of the modes
increases monotonically with the circulation number m due to an increase in kinetic energy
analogous to the situation in harmonic traps (section 3.2). For a sufficiently large torus
radius, where the curvature of the torus is smaller than the typical length scales of the mode
patterns, we can interpret m as a quantization of the linear momentum scale qm = 2πm/Θ,
where Θ is the circumference of toroidal density distribution10. Deep in the superfluid
regime and the long-wavelength limit we expect a phononic dispersion relation ωm = csqm

with the superfluid speed of sound cs. Due to the influence of the dipolar interactions
(for the given system size) only the lowest mode (q = q1) falls into this linear regime
for the lowest ϵdd considered here. Towards higher ϵdd a number of states with higher m
decrease in energy. These modes correspond to angular roton modes [4, 5, 124, 240, 241,
283, 393–395] that have so far been mostly studied in harmonic trapping geometries.

7 In this regime, the quantum fluctuation term in the eGPE has an imaginary part that is still < 3%
of the real part. The approximation Q5(ϵdd) ≃ 1 + 3ϵ2dd/2 is still justified. One can also scale atom
number and torus radius to achieve a lower value of ϵdd at which the supersolid forms [347].

8 In this section we present results as a function of ϵdd = add/as as opposed to as in order to be easily
transferable to systems with other add as well.

9 Herein Ω = 10−7ωr.
10 Note that Θ ≈ 2π(1.1ρ0) as the dipolar interaction effectively increases the radius around which the

density distribution is centered compared to the actual trap radius [347].
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The superfluid to supersolid phase transition is triggered when the two degenerate
m = 7 modes reach zero excitation energy, defining the quantum critical point ϵcrit

dd ≃ 2.09.
Corresponding to the density fluctuation periodicity of the m = 7 modes (Fig. 3.11 (a)),
nd = 7 droplets form with a high overlap and spontaneously break the rotational symmetry
of the ground state. At the critical point towards the supersolid the two degenerate m = 7
roton modes split into a zero-energy Goldstone mode11 and Higgs amplitude mode. In
contrast to tubular harmonic traps where the translational symmetry is strictly speaking
already broken by the trap (section 3.2) the splitting in toroidal traps occurs at zero energy
due to the continuous rotational symmetry. The zero-energy Goldstone mode pattern is
spatially phase-shifted by half a period with respect to the density, while the Higgs pattern
is in phase (Fig. 3.11(a)). For the zero-energy Goldstone mode (Higgs amplitude mode) the
gradients (peaks) of the density fluctuation patterns are aligned with the droplet centers
corresponding to a rotation of the droplets along the torus (an amplitude modulation
between superfluid background and droplets). The two modes correspond to a pure phase
and amplitude mode, with striking clarity compared to supersolids in tubular harmonic
traps where the amplitude mode couples to other modes which consist of mixed phase and
amplitude character. While the finite lowest momentum available to the toroidal superfluid
q1 > 0 is given by the torus size, the vanishing roton modes define a precise momentum
q7 that becomes the quasimomentum q̃0 = 0 point of the emerging Brillouin zone as the
supersolid forms. Accordingly the so-far discussed Higgs and Goldstone modes have a
quasimomentum q̃0 = 0.

More generally, all excitations of the supersolid belong to three distinct excitation
branches (Fig. 3.11): two Goldstone phonon branches and a Higgs amplitude branch. The
periodic boundary conditions allow us to clearly identify these three branches predicted
for infinitely extended supersolids [169, 338] in finite and experimentally feasible systems.
Higher-lying q̃ > 0 instances of each branch can be seen and are indicated with a lighter
color in Fig. 3.11. We label the lower (upper) Goldstone branch in this zero-temperature
supersolid as second (first) sound in analogy to the sounds of helium at finite temperature.
The two sound modes show a weaker dependence on ϵdd, with the first sound branch rising
in energy while the second sound branch is decreasing, consistent with a smaller superfluid
fraction [347, 382]. The analogy will be detailed further below and in section 3.3.2. The
11 The zero-energy Goldstone mode numerically shows a finite energy ω/ωr < 0.01 for the spatial grid

size employed here. We have confirmed that this energy decreases for finer spatial grids and tighter
convergence criteria, consistent with a gapless Goldstone mode and with our following considerations
of the continuous rotational symmetry of the trap [1].
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zero-energy Goldstone mode corresponds to the q = 0 limit of the second sound branch.
An alternative point of view is that as the zero-energy Goldstone mode is not a physical
degree of freedom because it lies at ω = q0 = 0 and represents the degeneracy of the
ground state with respect to droplet crystal orientation. We find that the identification
of the zero-energy Goldstone mode as the first instance on the second sound branch is
nonetheless useful, in particular since this interpretation is consistent with the lowest
energy Goldstone mode as a second sound in harmonic traps, lifted to a finite energy due
to the already broken translational symmetry. Analogously a breaking of the rotational
symmetry of the torus elevates the zero-energy Goldstone mode to a finite energy and
allows exciting this mode (section 3.3.3).

Based on the structure factor (section 3.3.2) and the circulation number of modes in the
superfluid m, we can attribute the quasimomentum q̃m = 2πm/Θ, with m = 0, 1, 2, 3, to
the modes in the supersolid. The former assignment is directly related to the experimentally
measurable density response of the system. The latter method is supported by employing
group theory allowing an a priori assignment of correspondences between all modes
of the superfluid to all modes of the supersolid. The superfluid ground state has the
symmetry of the point group C∞,v, describing its invariance under rotation and reflection.
At the superfluid-supersolid transition this symmetry is broken, C∞,v → C7,v, where
C7,v contains the irreducible representations A1, A2, E1, E2, E3, with symmetries of
A1,2 corresponding to an m = 7 angular roton mode, and of Ej to one with m = j

compatible with quasimomentum q̃j . The allowed quasimomenta, purely based on symmetry
arguments, are thus q̃m for m = 0, 1, 2, 3. This analysis directly generalizes to an arbitrary
droplet number nd through subduction of C∞,v to Cnd,v. We provide more details on
this correspondence in appendix C. In short the number of two-dimensional irreducible
representations Ei in Cnd,v grows up to (nd − 1)/2 (nd odd) or nd/2 (nd even) defining
the center of the first Brilloin zone at q̃nd/2 up to which m increases and above which m

decreases in the assignment m → q̃m. An example of this compatibility between modes of
the superfluid and modes of the supersolid can be seen for the m = 6 and m = 8 modes
before and after the transition (Fig. 3.11 (a)). In the supersolid these modes give rise
to the second and first sound at quasimomentum q̃1 and show a reflection antisymmetry
described by E1.

The dispersion relation of the two supersolid phonons is expected to flatten off close
to the edge of the Brillouin zone after the initial linear rise. The flattening is reflected in
Fig. 3.11(b) as a decrease in energy spacing towards higher q̃. In contrast the Higgs mode
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energy is a convex function of the quasimomentum with an increasing energy spacing
towards higher q̃.

Using the energies of the superfluid phonon at q1 and the supersolid phonons at q̃1 = q1 we
calculate the speed of sound ci = ωi/q̃1 across the transition, where i = s, 1, 2 corresponds
to superfluid sound, first sound, and second sound. The results are shown in Fig. 3.11(c)
and agree with recent descriptions using hydrodynamic models of supersolids [338, 347,
382, 383].

In a hydrodynamic description of superfluids [27] the speed of sound can be defined
based on ground state properties of the system. The sound speed cκ = 1/

√
Mn̄κ is defined

based on the compressibility κ = (1/n̄2)∂n̄/∂µ where µ is the chemical potential and n̄ is
the average density. In the superfluid, cκ coincides with the superfluid speed of sound cs

[27, 347] providing a definition of this speed of sound independent of the BdG analysis. For
comparison we calculate cκ in the superfluid. To do so we note that n̄κ is independent of
the unit of n̄, and so is cκ. Therefore we can write n̄κ = d ln n̄/dµ12. The average azimuthal
density n̄ = N/Θ is independent of the detailed spatial dependence of the density n(x, y, z).
To estimate n̄κ we vary N by a few percent, calculate the ground state, and obtain µ(n̄).
We obtain reasonable agreement with the BdG description, with cκ typically ≃ 20% larger
compared to the BdG speed of sound. Similar deviations have been reported [347] and are
likely due to the finite torus size. Very recent hydrodynamic descriptions of supersolids
also provide expressions of the speeds of sound of supersolid phonons in terms of cκ, the
superfluid fraction fs, and the layer compressibility modulus B [347, 382, 383]. These
expressions show that ∂c1/∂fs < 0 and ∂c2/∂fs > 0 and serve as a classification of the
individual phonon modes of supersolids into first and second sound. Modes of second sound
soften and modes of first sound stiffen as the superfluid fraction decreases (Fig. 3.11(b)).

The discontinuity between the speed of superfluid sound and first sound at the phase
transition point is consistent with a second-order phase transition at intermediate densities
in the corresponding bulk system [338]13. The discontinuity can be identified by perturbing
the system and studying the available phonon modes just based on the eGPE dynamics
[347, 396]. Our BdG analysis reveals the underlying elementary excitations of the superfluid
giving rise to first and second sound (Fig. 3.11(b)). For our parameters the m = 6 and

12 We find that Θ/2π varies by less than 0.01 µm in the SF for our parameters, allowing alternatively
and to a good approximation to calculate cκ using n̄κ ≈ d lnN/dµ.

13 The speed of sound is related to a first order derivative of the chemical potential which in turn is a first
order derivative of the total energy. A discontinuity in a second order derivative of the thermodynamic
potential (the total energy at zero temperature) points to a second order phase transition [338, 383]
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3.3. Supersolids in toroidal traps

m = 8 modes give rise to the lowest quasimomentum first and second sound modes. Notably
the m = 8 mode drops below the m = 1 mode of the superfluid before the transition
point and the m = 1 mode becomes the q̃1 Higgs mode of the supersolid. This reordering
is consistent with an avoided crossing of Higgs and first sound branches described in an
infinite system [338]. As modes with the same q̃ correspond to the same symmetry these
modes can couple to each other and lead to level repulsion between second sound and first
sound at q̃1 and first sound and Higgs mode at q̃1, respectively. The apparent splitting
between first sound and second sound as a result of these symmetry properties have also
been described as bifurcation [96, 304, 397] and was suggested as a signature for the
supersolid transition.

The interpretation of excitation spectra of previously reported for finite harmonically
trapped systems [7, 8, 96, 97, 148] in terms of the three characteristic supersolid excitation
branches and the origin of the bifurcation was complicated by the absence of well-defined
quasimomenta and Brillouin zones due to the coupling of linear and COM motion. The
elongated trapping geometry permits only two distinct symmetries of the low-energy
excitations even for larger droplet numbers: either even or odd with respect to the center
of the trap. In contrast as we have shown here, toroidal supersolids increase the number
of available symmetries of the low-energy excitations with every additional droplet. As a
result less avoided crossings appear in the spectra of toroidal supersolids and allow modes
to maintain their character further away from the transition point.

Most strikingly the Higgs branch keeps its character even relatively far away from the
transition point. This isolation allows us to evaluate the dispersion relation of this new
and stable Higgs quasipartle within the self-generated periodic structure of the supersolid.
We find that the Higgs quasiparticle has a linear dispersion relation close to the phase
transition that changes to a quadratic behavior further away. An effective band mass
M∗ = ℏ2(∂2E/∂q̃2)−1 can be assigned to this quasiparticle (Appendix D).

3.3.2. Spatial and temporal character of elementary excitations

Beyond the characterization of the sound and amplitude modes in terms of their energetic
behavior as a function of interaction strengths, the BdG approach allows us to characterize
them in terms of their spatial and temporal character (Fig. 3.12).

We define the angular spectrum of the structure factor S̃(kϕ, ω) =
∫
dϕ eikϕϕS̃(ϕ, ω),

shown in Fig. 3.12(a)-(c). The structure factor and its angular spectrum is directly
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Chapter 3. One-dimensional supersolid arrays of dipolar quantum droplets

Figure 3.12.: Spatial and temporal character of sound and amplitude modes. (a-c)
Angular spectrum of the dynamic structure factor S̃(kϕ, ω) across the phase transition. We
normalize S̃ at each ωi for visual clarity. Lines through the most prominent peaks of S̃ are
guides to the eye. (d-f) The upper panel shows cuts of the density along the torus n1D(ϕ, t) at
t/T = 0, 1/2 during the time evolution, where T = 2π/ω. The lower panels show the full density
evolution n1D(ϕ, t) for two periods T of the Higgs mode, second sound, and first sound at q̃1
from (c). The Higgs mode is an amplitude oscillation of the superfluid fraction. The second
(first) sound is an out-of-phase (in-phase) oscillation between crystal structure and superfluid
background. Figure adapted from [1].

accessible in experiments (section 3.2, 4.1). To obtain S̃ we transform the structure factor
at z = 0 to polar coordinates S(x, y, ω) → S(k, ϕ, ω), fix k to the radial momentum at
which S displays a maximum, and are left with the angular distribution of the structure
factor S̃(ϕ, ω) = S(ϕ, ω) − S where S indicates the average of S(ϕ, ω) along ϕ. A mode
with an m-fold angular symmetry, corresponding to an excitation at momentum qm, shows
up as a peak in S̃(kϕ, ω) at kϕ = 2qm/q1 = 2m. In the superfluid regime (Fig. 3.12(a)-(b)),
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3.3. Supersolids in toroidal traps

S̃ reproduces a discretized version of the known Bogoliubov dispersion relation, which
is linear at small kϕ and quadratic towards larger kϕ. Near the phase transition, a roton
minimum develops. On the supersolid side (Fig. 3.12(c)), the superfluid branch splits up
into the first sound, second sound, and Higgs branches.

In an infinite system these three characteristic excitation branches are intuitively obtained
by splitting up the dispersion relation of the superfluid at the transition point: the section
from q = 0 to q = qrot/2 becomes first sound, from q = qrot/2 to q = qrot becomes second
sound, and q > qrot becomes the Higgs branch after folding the sections back into the first
Brillouin zone [169, 338]. In a torus of finite size, the momenta are discretized and the
branches are identified by analyzing the peaks of S̃ as a function of kϕ.

For the first sound branch, the first mode shows peaks at kϕ = 2, 14, 16, the second
mode at kϕ = 4, 14, 18, and the third mode at kϕ = 6, 8, 14. The peak at kϕ = 14
corresponds to a modulation at the spatial frequency of the crystal structure and the other
peaks can be mapped to a quasimomentum of |q̃m| with m = 1, 2, 3. The excitation patterns
correspondingly displays a m−fold rotational symmetry. The second sound branch has no
peak kϕ = 14 for all modes. Instead the main peaks are at 12 (m = 1), 10 (m = 2), and
(6, 8) for m = 3. The structure of the Higgs modes similarly maps to a quasimomentum of
|q̃m| = 0, 1, 2 14.

While modes of different branches can be assigned the same symmetry and quasimomen-
tum their temporal character is strikingly different between each branch (Fig. 3.12(d)-(f)).
The Higgs mode Fig. 3.12(d) has a clear amplitude character with atoms flowing from the
superfluid brackground into the droplets and vice versa. The second (first) sound modes
are an out-of-phase (in-phase) oscillation between crystal compression and superfluid flow
(Fig. 3.12(e)-(f)). As the crystal compresses towards one node on the torus, the superfluid
density flows towards the opposite (same) direction, reducing (increasing) the density where
the droplet spacing is smaller. The crystal compression is associated with an energy cost
due to the dipolar repulsion of the droplets. The out-of-phase (in-phase) superfluid flow of
second (first) sound reduces (increases) this cost and leads to an intuitive understanding
of second sound being slower than first sound. The interplay between the superfluid flow
and the crystal structure in this zero-temperature supersolid is reminiscent of the in-
and out-of-phase oscillations between superfluid and normal fluid flow in a (non-dipolar)
14 Apart from the contributions discussed so far, there is a low-frequency contribution at kϕ = 1 which

does not correspond to a specific quasimomentum but rather a slow modulation of the envelope of the
excitation pattern most likely caused by residual coupling between the two degenerate modes within
our numerical framework.
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Chapter 3. One-dimensional supersolid arrays of dipolar quantum droplets

superfluid within the two-fluid model [376, 386, 398]. This similarity motivates our labeling
of the corresponding modes as first and second sound. Another analogy is the behavior of
the first and second sound speed as a function of the superfluid fraction. Both in finite
temperature superfluid helium and unitary Fermi gases the second sound speed decreases
towards zero as the temperature approaches the critical temperature, the superfluid fraction
decreases, and the normal component approaches unity. It is by itself remarkable that
strongly interacting superfluid helium and the unitary Fermi gas show a similar behavior
of their first and second sound velocities [386, 398, 399]. Analogously the zero-temperature
supersolids we consider here have a vanishing second sound velocity towards higher relative
dipolar strengths, the superfluid fraction decreases, and the crystal component approaches
unity. The second sound velocity can be used as a direct measure of the superfluid fraction
[347, 386, 396, 399, 400]. For dipolar supersolids fs can be directly calculated if cκ, c1, and
c2 are known [347, 396].

3.3.3. Spectroscopy of supersolids

Given that two sound modes exist, answering how these sound modes can be excited
and measured has played a central role in understanding first and second sound in both
superfluid helium and unitary Fermi gases [376, 386, 399].

The understanding of elementary excitations developed in this section helps devise
simple and experimentally feasible schemes to excite them selectively (Fig. 3.13). The
absence of strong coupling of the Higgs mode in toroidal supersolids in contrast to the
harmonically trapped counterparts suggests that the toroidal trap is a suitable platform
for pursuing a first measurement of this characteristic supersolid excitation. For selectively
exciting one of either sound mode our symmetry considerations and the energetic behavior
of the respective modes come into play.

To assess the our excitation schemes we use PCA on the time evolution after an initial
excitation procedure on the ground state ψ0 at ϵdd ≃ 2.1. The state is time evolved for
typically 100 ms (or longer for the low-energy Goldstone mode). We obtain the spatial
principal components PC(x, y) and their weights w(t) quantifying their contribution to
the spatial variance of the time evolution. The selectivity s is defined as the amount of
variance described by the time evolution for a given PC. The overlap integral between the
strongest PC and the corresponding BdG density fluctuation pattern δnj = fjψ0 is above
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3.3. Supersolids in toroidal traps

Figure 3.13.: Spectroscopy of supersolids. (a) Dominant PCs after applying an excitation
scheme (i)-(ii) (see main text) to the ground state at ϵdd ≃ 2.1. (b) Fourier spectra |Fw(ωPC)|2 of
the dominant PC weights w(t). Vertical lines in the spectra indicate BdG energies (Fig. 3.11(b)).
All modes are individually excited with > 90% selectivity and the PCs show above 99% overlap
with the density fluctuation pattern obtained from the BdG analysis (Fig. 3.11(a)) and oscillate
at frequencies corresponding to the BdG energies. Figure adapted from [1].

99% in all cases of Fig. 3.1315.
The Higgs mode (Fig. 3.13(i)) can be selectively excited by modulating the scattering

length, which can be implemented as a modulation of the magnetic offset field in the
vicinity of a Feshbach resonance. This scheme directly modulates the superfluid fraction,
couples to the (symmetric) A1 symmetry, and allows us to excite the q̃ = 0 Higgs mode with
a selectivity of > 99%. We modulate the scattering length as(t) = as(0) + as,mod sin(ωmodt)
with an amplitude of as,mod = 0.05 a0 for a duration tmod = 4Tmod with Tmod = 2π/ωmod

and the driving frequency ωmod/2π = 50 Hz. We deliberately choose a drive that does
not match the Higgs frequency, highlighting that the excitation of the q̃0 mode does
not require resonant driving. Further simulations using this modulation scheme with
different parameters confirmed that similar selectivity and spectral purity of the Higgs
mode is reached with frequencies below ωmod/2π = 100 Hz. At sufficiently high modulation
frequencies (≳ 200 Hz) multiple modes are excited. In these cases, the PCs become
superpositions of BdG modes and the corresponding (multiple) BdG frequencies show up
in the spectra of the PC weights. A similar effect is observed towards higher amplitudes
as,mod ≫ 0.1 a0.

15 The overlap with the BdG mode functions fi alone is above 95% in all cases of Fig. 3.13
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Chapter 3. One-dimensional supersolid arrays of dipolar quantum droplets

Figure 3.14.: Exciting the low-energy Goldstone mode. (a) Dominant PCs after magne-
tostirring the ground state at ϵdd ≃ 2.1. (b) Fourier spectrum |Fw(ωPC)|2 of the dominant PC
weights w(t). Figure adapted from [1].

The two sound modes at q̃1 (Fig. 3.13(ii)) share the symmetry E1. Expecting these modes
to couple to a dipole excitation pattern we modulate a linear gradient ∆V = px sin(ωt)
on top of the toroidal trap where x corresponds to the direction of a symmetry axis of the
supersolid16. The individual sound mode selectivity is accomplished by modulating17 at the
respective resonance frequency ωi = ciq̃1 with only a few percent weight in the other sound
mode. This selectivity can be further increased by optimizing duration, amplitude, and
other details of the modulation scheme. We choose an amplitude of p ≃ 6.3 × 10−3ℏωr/ρ0

(p/2πℏ = 6.3 Hz/µm). We find that the scheme is robust with respect to the specific values
chosen for modulation time tmod, ω, and p. We find that this scheme does not couple to the
modes at q̃2. Their symmetry E2 has no overlap with the symmetry E1. Coupling to E3

modes is possible in principle but here suppressed due to the frequency detuning. Similarly
a quadrupole (hexapole) excitation scheme can be used to selectively excite the q̃2 (q̃3)
sound modes with no coupling to modes at q̃1,3 (small coupling to modes at q̃1) [1]. These
observations can be generalized to a set of selection rules based on the symmetries of the
individual modes. The absence of linear and COM motion coupling ensures that a mode
retains its character over time and a range of interaction strengths providing the basis
of a such spectroscopic selection rules. Deviations of ω from ωi, of x from the symmetry
axis, and towards large p result increasingly in the excitation of superpositions of first
and second sound [347, 396]. With a misalignment of x from the symmetry axis it is also
possible to set the supersolid into rotation (excitation of the Goldstone mode).

The zero-energy Goldstone mode corresponds to a ground state degeneracy due to
16 Note that a magnetic field gradient would create a spatially varying scattering length and superfluid

fraction leading to a combination of dipole excitation pattern and supersolid amplitude mode
17 We modulate for a time tmod = 4Tmod and the frequencies are (i = 1, ω1/2π ≃ 212 Hz) for first sound

and (i = 2, ω2/2π ≃ 315 Hz) for second sound.
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3.3. Supersolids in toroidal traps

the rotational symmetry of the torus or a pure rotation in the limit q → 0. Breaking
the cylindrical symmetry elevates this mode to a finite frequency and enables imparting
angular momentum into the system. Options to directly couple to this mode are deforming
and rotating the trapping potential or using magnetostirring [401] where the magnetic
offset field is tilted from the ẑ-axis and rotated. We employ the latter technique by tilting
the field in 0.2 s to 10◦, rotate for 1 s with a rotation frequency of 2 Hz, tilt back to 0◦

in 0.2 s and time-evolve for 1 s. PCA captures the resulting slow rotation by two PCs,
identical up to rotation of 2π/14, oscillating in time π/2 out of phase (Fig. 3.14(a)). The
PCs have a mode pattern overlap with the zero-energy Goldstone mode of > 92% and
the symmetry A2. A very low frequency of the rotational mode is obtained (Fig. 3.14(b))
that can be controlled by the amount of imparted angular momentum. To further validate
this approach we have explicitly calculated the excitation spectrum for 10◦ tilt angle. For
these small tilt angles the low-energy Goldstone mode is still well isolated for all values
of ϵdd and the overall structure of the spectrum remains intact. The main qualitative
difference is that twofold degenerate modes split up as the rotational symmetry is broken
with a tilted magnetic field. The main challenge in exciting this mode through a tilted
magnetic field and time-resolving it is the requirement of a long time evolution which
is in competition with the droplet lifetime [8]. Implementing a non-destructive imaging
technique and measuring correlations between two rapid single shots of the atomic cloud
could give access to the angular velocity of the droplets.

3.3.4. Conclusion and outlook

Toroidal traps are an exceptionally clean and experimentally upcoming [345, 346] platform
suitable for the study of amplitude and sound modes of dipolar supersolids. The rotational
symmetry avoids edge effects of box traps [387, 388] and provides periodic boundary
conditions useful to establish correspondeces between finitely trapped and bulk supersolids
[338, 347, 383]. We discussed the origin of zero-temperature supersolid second sound and
Higgs amplitude modes and put the excitation spectra reported for harmonic traps [7, 8, 96,
97, 148] in a general context. Interesting extensions both theoretically and experimentally
are the study of scattering of the Higgs excitation at an obstacle, such as a weak link on
the torus and its dispersion in larger tori. Considering the dispersion relation of the Higgs
quasiparticle is the starting point for studies of massive quasiparticles in supersolids. The
analogy between second sound in supersolids at zero temperature and second sound in
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superfluids at finite temperature is that both are realized through out-of-phase oscillations
between superfluid and non-superfluid components and in both systems the speed of
second sound is a direct measure of the superfluid fraction. Future studies considering
finite temperature supersolids [315–317] in toroidal traps could provide insight into the
origin of further sound modes arising through the presence of two non-superfluid (crystal
and thermal) components.
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Chapter 3 presents investigations of supersolid structures where the crystal structure
self-organizes along one coordinate or one direction. The cigar-shaped trap geometries
have been the primary focus for studies of one-dimensional dipolar supersolids [9, 97, 147,
378] but also experiments investigating the roton spectrum in trapped dipolar superfluids
have focussed on this geometry [125, 128].

In chapter 4 we consider oblate-shaped trapping geometries. Mainly theoretical studies
informed in these geometries about the presence of the roton spectrum in the quasi 2D
regime (section 2.5.1) and of new types of angular roton modes in a variety of traps
within the mean-field framework of the GPE [124, 126, 240, 393, 394]. In section 4.1 we

83



Chapter 4. Two-dimensional structures of dipolar quantum fluids

review these excitation spectra including the beyond mean-field quantum fluctuations
and study experimentally the density fluctuations across the superfluid to droplet crystal
phase transition. Drawing from the methodology developed in the cigar-shaped trap case
(section 3.2.3) to connect the density fluctuations with the elementary excitations, we
present experimental evidence for angular roton excitations in trapped dipolar quantum
fluids.

We explain theoretically how the transition occurs for parameters allowing for two-
dimensional droplet crystals with high overlap, forming two-dimensional supersolids, in
section 4.2. Experimental evidence for phase coherence in two-dimensional droplet crystals
has since been suggested by the group in Innsbruck [402, 403].

In general the supersolids as initially proposed in the context of liquid helium [68, 69, 74,
78, 328, 373] would form in a more macroscopic and higher density system compared to the
few crystal site supersolids in dipolar quantum fluids we discussed so far. We investigate
oblate dipolar quantum fluids towards higher densities in section 4.3 and find beyond the
droplet regime that the superfluid self-organizes in honeycomb, stripe, and labyrinthine
shapes.

4.1. Roton excitations in oblate dipolar quantum
fluids

In this section we investigate the crystallization mechanism of two-dimensional droplet
crystal structures in oblate harmonic traps. First we theoretically calculate the excitation
spectrum in the superfluid regime and identify radial and angular roton excitations that
soften towards smaller scattering lengths. Experimentally in situ measurements are used to
characterize the density fluctuations in a similar trapping geometry. The static structure
factor is evaluated and used to identify radial and angular roton excitations by their
characteristic symmetries. The observed emergence of angular structure is directly linked
to softening angular roton modes presenting the first experimental evidence for angular
roton modes in trapped dipolar quantum fluids.

Parts of this section have been published in:

• J.-N. Schmidt, J. Hertkorn, M. Guo, F. Böttcher, M. Schmidt, K. S. H. Ng, S. D.
Graham, T. Langen, M. Zwierlein, and T. Pfau, “Roton Excitations in an Oblate
Dipolar Quantum Gas”, Phys. Rev. Lett. 126, 193002 (2021).
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4.1. Roton excitations in oblate dipolar quantum fluids

Here we focus on angular roton modes. For a more detailed analysis of radial excitations
and further experimental details we refer to Refs. [4, 129].

4.1.1. Structure of low-energy excitations

Our goal in this section is to review the structure of low-energy excitations of oblate
dipolar superfluids for a specific trap which we experimentally realize. In such geometries
two types of roton excitations have been predicted to play a crucial role in the crystal
structure formation towards smaller scattering lengths [124, 126, 240, 393]. These two
types are known as radial and angular roton modes. Despite the early predictions of these
modes their connection to the crystallization has remained elusive and they have not been
observed experimentally prior to Ref. [4].

We calculate the excitation spectrum of the low-lying modes for N = 15 × 103 162Dy
atoms in a harmonic trap with trapping frequencies ωx,y,z/2π = (35, 35.1, 110) Hz as a
function of the scattering length as. We focus on the superfluid regime as ∈ [77, 82] a0.
The asymmetry of 0.3 % leads to an alignment of the symmetry axes of the excitation
patterns with the principal axes x,y of the trap and has a negligible effect on their energies
and spatial structure1.

The excitation patterns corresponding to density fluctuations δn(r) are shown in the
upper row of Fig. 4.1(a). In addition to the angular roton modes we discussed in the
context of toroidal superfluids (section 3.3), cylindrically symmetric harmonically trapped
superfluids allow for low-lying radial roton modes. Radial roton modes are cylindrically
symmetric and represent ring-like density modulations at non-zero radial wave vector.
These rotons in toroidal traps correspond to radial excitations gapped to energies at or
higher than the radial trapping frequency and therefore transverse to the low-lying modes
driving the structure formation. In contrast, oblate harmonic traps allow for both radial
and angular excitations at a comparable energy. Angular rotons have an angular oscillatory
structure in addition to a ring-like radial density modulation. The angular structure is
described by cos(mϕ) where ϕ is the azimuthal angle and the integer m > 0 corresponds
to an m-fold rotational symmetry of the mode pattern. Angular roton modes are twofold
degenerate due to the rotational symmetry of the trap (see section 3.3) and radial rotons
have no degeneracy.

1 This alignment is mainly convenient to more easily distinguish and numerically analyze the excitation
patterns [340].
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Figure 4.1.: Low-lying excitations of oblate dipolar superfluids. (a) Normalized density
fluctuation patterns corresponding to elementary excitations of oblate dipolar superfluids and
their spatial power spectra in the x-y-plane at as = 77.5 a0. The lowest radial (m = 0) and
angular rotons (m = 1, 2, 3) are shown. The power spectra indicate individual contributions to
the static structure factor. (b) Excitation energies as a function of scattering length as with the
insets indicating the emergence of a blood cell shape in the ground-state density close to the
instability at as ≃ 77.1 a0. The cyan line is for an m = 4 angular roton mode and the dark red
line corresponds to an angular roton mode with m = 2, displaying an avoided crossing with the
quadrupole mode. Figure adapted from [4].

The rotational symmetry allows every density fluctuation to occur with any orientation.
To distinguishing their individual contributions to the crystallization with an experimentally
accessible quantity we calculate their individual contributions to the static structure factor
(Fig. 4.1(a), lower row). These are the spatial power spectra given by the squared modulus
of the Fourier transform of the density fluctuation patterns |F [δn]|2(k) [5, 27, 241, 404–
406]. Similar to our discussion in section 3.3 the spatial power spectrum with a 2m-fold
rotational symmetry corresponds to an angular roton mode with an m-fold rotational
symmetry. The power spectra of low-lying radial and angular roton modes have a radial
peak corresponding to the roton momentum krot. The quadrupole mode and higher-lying
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4.1. Roton excitations in oblate dipolar quantum fluids

phonon modes can share the same azimuthal symmetries with low-lying roton modes but
have a smaller radial wave vector.

The low-lying excitation energies and ground state shapes are shown in Fig. 4.1(b) as
a function of as. The excitation spectrum deep in the superfluid regime (as ≳ 81 a0) has
similarities with the one of toroidal superfluids. The excitation energy increases with m due
to the corresponding increase in kinetic energy. The lowest superfluid mode is the dipole
mode at the trap frequency [356] and next higher is the quadrople mode2. Angular and
radial roton modes soften towards lower as. The m = 2 and m = 3 angular roton modes
exhibit a steeper decrease towards the transition point than the m = 1 mode. The roton
mode ordering near the crystallization transition point as,c ≃ 77 a0 in general depends on
a nontrivial interplay between the trap aspect ratio and the interaction strength [283].
Around as,c the m = 2 mode separated only by a few Hz from the m = 3 mode and these
two modes have the lowest excitation energy. The degeneracy of multiple roton modes
near as,c translates into a complex situation on the crystal side. We find a number of
competing ground states reflecting the different symmetries of the roton precluding a
further meaningful BdG-analysis for the given parameters.

The ground states change from parabola shaped deep in the superfluid to a biconcave
blood cell-like shape near as ≃ 80.5 a0. Blood cells form as it is energetically favorable to
push part of the density to the outer rim due to dipolar repulsion of the higher density in
the center of cylindrical trap [240, 295]. Given the biconcave shape angular rotons present
modulations of the ring-shaped region of maximal density [126]. Blood cell shaped ground
states have been reported previously [124, 126, 237, 240, 241, 283, 322, 393, 394, 407]
without beyond mean-field (LHY) corrections in the GPE formalism [133]. We confirm
that the blood cell shapes are still present if we set the beyond mean-field correction to
zero in our numerical framework3.

2 The quadrupole mode exhibits an avoided crossing with the m = 2 angular roton mode [4].
3 The range of as in which blood-cell shaped ground states form with the LHY correction included is

approximately 1 a0 larger than without the LHY correction for our present parameters.
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4.1.2. Experimental structure factor

Experimentally we prepare a BEC with typically 15 × 103 162Dy atoms at a tempera-
ture T ≃ 20 nK. After evaporation at a magnetic field4 of Bz ≃ 30 G the crossed op-
tical dipole trap is adjusted to an almost cylindrical trap with trapping frequencies
ωx,y,z/2π = [35(1), 37(1), 110(1)] Hz and the magnetic field along ẑ. The scattering length
is ramped within 50 ms to its final value and after a wait time of 80 ms the atomic cloud
is imaged in situ with a resolution of 1 µm. All scattering lengths in this section are
quoted relative to a reference scattering length aref = 91(10) a0 corresponding to the
experimentally observed crystallization point (see below) due to a large uncertainty in the
width of the used Feshbach resonance [129]. The uncertainty leads to a large shift of the
absolute value of as but does not influence the accuracy of relative changes in as. The
experiment is repeated in total around 200 times for a statistical analysis of the atomic
densities and for evaluating the static structure factor. We post-select in an interval of
±15 % with respect to the mean atom number at each scattering length [129].

The static structure factor connects the spectrum of elementary excitations to the
major contributing modes in the density fluctuations [5, 27, 241, 404–406]. We show the
intermediate steps of evaluating the structure factor in oblate geometries in Fig. 4.2 for four
distinct scattering lengths: in the BEC regime, closer to the transition, in the transition
region and for a droplet crystal. The methodology is analogous to the one employed in
section 3.2.3.

The in situ densities nj(r) (Fig. 4.2(a)) are shifted to their center of mass to remove
residual excitations of the dipole mode from our analysis. The crystal structure is randomly
oriented in individual images highlighting the continuous rotational symmetry of the trap
and the spontaneous rotational symmetry breaking in the crystal phase. Consequently
azimuthal structure in the average image washes out (Fig. 4.2(b)) leading to a ring-shaped
average density distribution. To determine which angular contributions are present in
the angular structure formation we develop a rotation algorithm that lets us investigate
the angular fluctuations relative to a reference angle for every image. The individual
rotation angles θj are determined by calculating the power spectrum of the in situ density,
transforming to polar coordinates, integrating out the radial direction, and finding the angle

4 The magnetic field used here is different from the field of about ≃ 5 G used in previous chapters.
At Bz ≃ 30 G lower three-body losses lead to droplet crystal lifetimes on the order of 200 ms after
crossing the phase transition [129]. This lifetime is roughly a factor ten higher compared to previous
experiments at similar densities [9]
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Figure 4.2.: In situ observation of droplet crystal structure formation. (a) Single-shot
images in the BEC regime (+5.2 a0), near the transition point (+2.0 a0), in the transition region
(+0.0 a0), and for a droplet crystal (−4.2 a0). (b) Mean images of the unrotated images showing
the rotational symmetry of the trap. (c) Rotated images (see text) indicate the presence of
droplets in the mean image. (d) Static structure factor showing an increasing height of the peaks
at finite momentum |k| indicating the approaching transition point. The central area below
kmin/2π ≃ 0.11 µm−1 (see text) was masked out. Figure adapted from [4].

θj at which the power spectrum attains its maximum5. Rotated images nθ
j(r) are created

by rotating each image individually by −θj. If a crystal structure is present the rotation
aligns one of the droplets to the same axis ŷ across images. New mean images ⟨nθ(r)⟩ are
created revealing the emergence of angular structure in the crystal phase while the rotation
does not affect the mean image in the BEC regime Fig. 4.2(c)). From here we follow the
same methodology as in section 3.2.3 in obtaining the structure factor and connecting it
to elementary excitations [27, 260, 262, 360–364]. We calculate fluctuation patterns about
the mean image δnθ

j(r) = nθ
j(r) − ⟨nθ(r)⟩. The mean power spectrum ⟨|δnθ(k)|2⟩ from a

Fourier transform δnθ
j(k) =

∫
d2r δnθ

j(r)eik·r of these fluctuation patterns and the static
structure factor S(k) = ⟨|δnθ(k)|2⟩/N (Fig. 4.2(d)) are obtained.

We transform S(k) to polar coordinates S(kx, ky) → S(k, ϕ) allowing to analyze its
radial and angular behavior separately. The structure factor S(k) has several peaks that
lie approximately on a ring with radius k/2π = d−1 informing about the spacing d of the

5 In practice the radial direction is integrated out starting from k = kmin where the smallest momentum
kmin ≃ 0.11 µm−1 is given by the finite cloud size.
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Chapter 4. Two-dimensional structures of dipolar quantum fluids

emerging structures. Following our discussion in section 4.1.1 this momentum scale is the
roton momentum k = krot acting as a precursor to the emergence of a crystal structure in
the superfluid and determining a droplet spacing d in the crystal regime. Analogous to the
structure factor in tubular traps (section 3.2.3) krot has a weak dependence on as and the
amplitude of S(k) =

∫
dϕS(k, ϕ) is related to the density fluctuation strength [129]. We

refer to Ref. [129] for details on this radial distribution. In short, the amplitude peaks
at aref and defines together with the behavior of the spectral weight and the mean peak
density a transition region aref ± 1.5 a0 [129]. The peak of S(k) broadens and decreases for
as < aref − 1.5a0 indicating a competition between different droplet numbers and spacings
[129]. In the following we focus on the angular distribution of S(k) related to the presence
of angular roton modes.

4.1.3. Experimental evidence of angular roton modes

We obtain the angular distribution S(ϕ) by integrating S(k, ϕ) over the interval k/2π ∈
[0.2, 0.45] µm−1 encapsulating the weak change of krot for all as. This angular distribution
allows us to attribute the enhancement of the fluctuations to individual modes (Fig. 4.3).

In the BEC regime only two peaks at ϕ = 0 and ϕ = π are visible which increase for lower
as. These angles can be mainly attributed to the rotation algorithm while the increase in
their amplitude is connected to enhanced fluctuations similar to the behavior of S(k). This
behavior is reproduced by applying the same rotation algorithm to low-lying Bogoliubov
modes in cylindrically symmetric dipolar superfluids [300] such as the ones presented in
Fig. 4.1.

Four additional peaks at ϕ = ±π/3 and ϕ = ±2π/3 emerge closer to the transition region
corresponding to a discrete sixfold rotational symmetry indicative of an m = 3 angular
roton mode. In the crystal regime these intermediate peaks start to wash out presumably
due to the competition of the three- and four-droplet configurations [129].

To analyze the contributions of angular roton modes to the distribution S(ϕ) quantita-
tively we use the Fourier series expansion S(ϕ) = ∑

n αn cos(2πnϕ/p+φn) within ϕ ∈ [0, p)
where p = π is the period. The Fourier weights αn =

√
a2

n + b2
n and phase φ = arctan(bn/an)

are given by an = (2/p)
∫ p

0 dϕS(ϕ) cos(2πnϕ/p) and bn = (2/p)
∫ p

0 dϕS(ϕ) sin(2πnϕ/p).
On the BEC side, the Fourier coefficients αn give an indication of the underlying

symmetries of the fluctuations driving the crystallization transition and are connected
to the low-lying modes described with the simulation of Fig. 4.1. Corresponding to the
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Figure 4.3.: Angular structure of density fluctuations. (a) Angular distribution of the static
structure factor S(ϕ) for different relative scattering lengths. (b) Weights of a Fourier series
of S(ϕ) matching the symmetry of the lowest two angular roton modes m = 2 and m = 3 in
the superfluid. For clarity, the lines in (a) were shifted vertically for smaller scattering lengths.
The gray area in (b) indicates the transition region (see text). Error bars are obtained by
bootstrapping [366]. Figure adapted from [4].

lowest-lying angular roton modes we focus on the contributions of α2 and α3 (Fig. 4.3(b))
describing a fourfold and sixfold discrete rotational symmetry, respectively. Both α2 and
α3 increase towards the transition region in agreement with the simulation.

While α2 saturates towards the crystal regime α3 weight peaks in the transition region
and decreases towards in the crystal regime. As the m = 2 mode has a slightly lower
energy than the m = 3 mode in the simulation towards the transition point a higher α3

weight than α2 cannot be explained only based on the simulation. The experimental data
are influenced by the dynamical formation process of the droplets and the theoretical
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description assumes a beyond mean-field correction based on a homogeneous gas [134–136]
that could explain larger deviations between experiment and theory towards more isolated
crystal structures [128].

In the crystal domain the two weights approach each other again indicating that neither
of the two angular roton modes are dominant. In this domain S(k) does not measure
excitations on top of the crystalline ground state but increasingly the crystalline structure
itself because of competing crystal structures with a varying droplet number. We find that
the number of droplets increases towards smaller as starting with 3 droplets being the
most likely occurence in the transition region and most likely 4 droplets for as ≲ aref − 2
[129]. Deep in the crystal regime the similarity of the α2 and α3 weight indicates similar
probabilities to find a droplet crystal with fourfold or sixfold symmetry.

In conclusion our measurement of the static structure factor of oblate dipolar BECs
provides first evidence of angular roton modes as precursors to the droplet crystal formation.
Additionally we see that for the given trap geometry and atom number multiple nearly
degenerate angular roton modes lead to a competition between different crystal symmetries
and droplet numbers with a small droplet overlap. Such competition together with the
rotational degree of freedom, that both the BEC and droplet states possess, makes the
analysis of potential phase coherence between droplets pointing towards two-dimensional
supersolidity more challenging [129]. On the other hand these insights provide us with an
intuition of what could be optimized to produce two-dimensional supersolid structures:
choosing a trap geometry with a smoother transition from superfluid to droplet states
and studying the influence of different atom numbers on the transition in oblate dipolar
superfluids. We approach these topics in the following sections.
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4.2. Two-dimensional arrays of supersolid quantum droplets

4.2. Two-dimensional arrays of supersolid quantum
droplets

Having observed the crystallization mechanism for oblate dipolar superfluids we show in
this section theoretically how the excitation spectrum continues across the transition to two-
dimensional droplet crystals with a high overlap. We identify collective excitations such as
Goldstone and Higgs modes characteristic of the supersolid phase and show how parameter
regimes favorable for two-dimensional supersolid droplet arrays can be systematically
identified. We study the droplet formation dynamics across the transition and show that
these supersolids can be realized with standard protocols in state-of-the-art experiments.

Parts of this section have been published in:

• J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H. Ng, S. D. Graham, P.
Uerlings, H. P. Büchler, T. Langen, M. Zwierlein, and T. Pfau, “Supersolidity in
Two-Dimensional Trapped Dipolar Droplet Arrays”, Phys. Rev. Lett. 127, 155301
(2021).

4.2.1. Excitation spectrum of two-dimensional supersolid
droplets

It is a priori unclear which parameters are generally favorable for the formation of two-
dimensional arrays of supersolid quantum droplets6. In this section we first present an
example of a two-dimensional supersolid featuring key collective modes in its excitation
spectrum underlining that two-dimensional supersolid ground states exist in dipolar
quantum fluids.

We consider N = 20 × 103 162Dy atoms confined in an oblate harmonic trap with
trapping frequencies ωx,y,z/2π = (125, 125.5, 250) Hz7, and aspect ratio λ ≃ 2. We map
out the ground states and the spectrum of elementary excitations across the superfluid to
two-dimensional supersolid phase transition as a function of as (Fig. 4.4).

The chosen trap geometry and atom number lead to: (1) the most elementary supersolid
with a two-dimensional crystal structure, namely nd = 3 droplets that self-organize in a

6 For the sake of brevity we refer to these arrays forming in a three-dimensional oblate harmonic trap
within this section as two-dimensional supersolids noting that we do not refer to strictly reduced
dimensions.

7 As in the previous section a small trap asymmetry is included to provide a slight preference in
orientation for the collective modes.
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Figure 4.4.: Elementary excitations across the oblate superfluid to supersolid phase
transition. (a) Ground state (GS) density and mode patterns fi in the superfluid (SF) and
supersolid (SS) near the transition point. In the supersolid, modes are labelled according to the
irreducible representation of the remaining symmetry group (here for C3,v: A1, A2, E) after the
spontaneous rotational symmetry breaking C∞,v → C3,v. Modes f1-f6 are numbered according
to their energies on the droplet side (see (b)) and normalized to 1 for visual clarity (colorbar in
arbitrary units). (b) Excitation energies of the low-lying modes across the transition. The m = 3
angular roton modes trigger the transition at as,c ≃ 87.35 a0 (dashed vertical line) giving rise to
nd = 3 droplets. (c) Ground states and droplet density overlap as a function of as. The points
show the sampling of the ground states.

triangular array (Fig. 4.4(a)), (2) isolation of a single low-lying angular roton mode near
the transition point as,c ≃ 87.35 a0 (Fig. 4.4(b)), and (3) a high density overlap8 between
the droplets near as,c (Fig. 4.4(c)).

The considered trap geometry shares the presence of linear and COM motion coupling
of tubular harmonic traps (section 3.2) and the rotational symmetry of the toroidal trap
(section 3.3) as well as the harmonic trap of the previous section (section 4.1.1). These
shared properties allow us transfer much of the understanding gained in the previous
sections and contrast with the behavior of collective modes in this section.

The rotational symmetry allows for the characterization of superfluid modes in terms

8 The overlap is determined in polar coordinates at the radius on which the droplets form.
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4.2. Two-dimensional arrays of supersolid quantum droplets

of radial (m = 0) and angular (m > 0) roton modes with the circulation number m. Our
group theoretical attribution of the compatibility between superfluid roton modes and
elementary excitations of the supersolid directly transfers from and is consistent with
our investigation of toroidal supersolids. At as,c the continuous rotational symmetry is
broken C∞,v → C3,v to a discrete threefold symmetry. The point group C3,v has two
one-dimensional irreducible representations (A1, A2) and one two-dimensional irreducible
representation E (Fig. 4.4(a)). The modes split at the superfluid to supersolid transition
according to the compatible irreducible representations of C3,v as m = 3 + 3k → (A1, A2)
for any integer k ≥ 0, m = 0 → A1 and m = 1, 2, 4, 5, ... → E (Fig. 4.4(b)). The critical
angular roton modes with m = 3 drive the transition to nd = 3 droplets and are compatible
with A1 and A2 in complete analogy to section 3.3. A relatively small jump of the droplet
overlap at the transition (Fig. 4.4(c)) is consistent with a first-order quantum phase
transition [238, 257, 350, 408, 409]. The mode compatible with A2 fixes its nodes at the
droplet positions (Fig. 4.4(a), f1), exhibits a very low energy determined by the trap
asymmetry and corresponds to a rotation of the droplet array. In a perfectly symmetric
trap this mode accounts for the rotational ground state degeneracy and represents the
long-wavelength limit q → 0 of a Goldstone mode associated to the spontaneous rotational
symmetry breaking (section 3.3). The mode compatible with A1 matches its spatial
maxima to the droplet positions (Fig. 4.4(a), f3) and rises quickly with energy. This is the
corresponding Higgs amplitude mode presenting an amplitude modulation between the
droplet density and the superfluid background [7, 170, 173].

In contrast to tubular systems this two-dimensional supersolid arises from the breaking
of a continuous (rotational) symmetry despite the presence of a trap, leading to the phase
transition when the critical roton modes reach zero energy9. This property is shared with
the exctations of toroidal systems. Contrary to toroidal systems the coupling of linear
and COM motion in the present harmonic trap leads to a strong avoided crossing and
hybridization of the Higgs mode with higher modes sharing the symmetry A1 (Fig. 4.4(b)).
Contrary to the harmonically trapped supersolid in the toroidal system the number of
available symmetries increases with increasing droplet number. Here the three droplet
supersolid limits the available symmetries to three and each two-dimensional excitation

9 The small asymmetry used in the simulation yields a small finite gap of the Higgs mode at the transition
point (Fig. 4.4(b)). The lowest mode with symmetry A2 has an energy ω/ωx ≲ 4 × 10−4 reflecting the
trap asymmetry. Another indication of the presence of the asymmetry is the lifting of the degeneracy
of the m = 1 angular roton mode which is particularly sensitive to the asymmetry. We confirmed that
these effects decrease towards perfectly symmetric traps.
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features the same symmetry E. Towards systems with more droplets in harmonic traps it is
expected that the droplet crystal assumes a hexagonal crystal structure [311] which shares
the symmetry with the three droplet crystal here and will similarly show hybridization
between two-dimensional excitations.

Similar to the tubular harmonic systems the Higgs amplitude mode exists here in a
narrow range of as in a decoupled form due to the discretization of the excitation spectrum
provided by the trap (section 3.2, [7]). The strong increase in energy and the hybridization
of the Higgs amplitude mode serve as signatures that could be probed in experiments with
the goal of observing the Higgs mode in two-dimensional supersolids for the first time.
Techniques such as Bragg spectroscopy [125, 128, 371] and direct in-situ measurements of
density fluctuations [4, 5] or dynamics [378, 410] could be used to probe these features
and would provide an indication of supersolidity in oblate traps.

The lowest-lying modes compatible with E (Fig. 4.4(a), f2 and its degenerate partner)
feature translations along x- and y-directions, with a density adjustment that keeps the
COM close to the trap center. This behavior allows these modes to have a low energy in
the droplet regime similar to the low-energy Goldstone mode in tubular traps [8].

While the above discussion about the elementary excitation spectrum is based on a
specific trap geometry our observations directly generalize to other trap geometries and
atom numbers. We consider that the transition is driven by two degenerate roton modes,
splitting at the transition point into a low-energy mode and a Higgs mode that strongly
hybridizes with higher-lying modes as general properties of two-dimensional harmonically
trapped supersolids. For instance we have computed the spectrum for N = 50 × 103 in
the same trap geometry and find a transition from superfluid to four droplets facilitated
by the softening of two degenerate m = 4 angular roton modes. After the spontaneous
rotational symmetry breaking, the remaining symmetry group is C4,v [411] and the mode
compatibility10 is consistent with the general analysis provided in section 3.3.

The two limiting cases (cylindrically symmetric harmonic trap in Fig. 4.4 and tubular
harmonic traps in section 3.2) of the BdG spectrum allow us to anticipate the behavior
throughout the intermediate regime. In this regime droplets are expected to arrange in a
zigzag geometry similar to the structures known in ion crystals [412, 413]. We consider
the behavior of a pair of degenerate angular roton modes in cylindrically symmetric trap
geometries (Fig. 4.4), when the trap is slowly deformed to a more elongated geometry.

10 m = 4 + 4k → (A1, A2), m = 2 + 4k → (B1, B2) for any integer k ≥ 0 and m = 0 → A1,
m = 1, 3, 5, ... → E.
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As the asymmetry is increased one mode rises and the other decreases in energy – their
density fluctuation pattern changes shape and the corresponding momentum distribution
becomes an increasingly elongated ellipsoid. One of the modes will eventually be associated
to density fluctuations along the tight direction (the rising mode) and the other along the
loose direction (the softening mode). If the density is sufficiently elongated the softening
occurs on top of a quasi-homogeneous density in the center of the trap allowing for a
degeneracy of the lowest-lying symmetric and antisymmetric roton modes defined by the
mirror symmetry about the center of the trap. In an intermediate ellipsoidal trap there are
low-lying modes with structure both along the long and the short direction and the mode
predominantly associated to density fluctuations along the long direction will eventually
soften close to zero, triggering the phase transition to a zigzag pattern. This transition
has been observed experimentally [293, 402].

Near the transition point the usual parabola-shaped superfluid ground state develops
into a biconcave blood cell-like shape (Fig. 4.4(c), section 4.1.1). The biconcave shape of
the ground state is dynamically mean-field unstable when one of the angular roton modes
reaches zero energy or becomes imaginary [124, 126, 237, 240, 241, 283, 322, 393, 394, 407].
With the beyond mean-field stabilizing quantum fluctuations included, we investigate in the
following whether a phase coherent ground state of these supersolids can be dynamically
approached.

4.2.2. Dynamical supersolid formation

To investigate whether the dynamical formation two-dimensional supersolids is experi-
mentally feasible we consider N = 20 × 103 atoms (cf. Fig. 4.4) and perform real-time
simulations of the eGPE following a standard experimental procedure, as shown in Fig. 4.5.

Starting from the ground state in the superfluid regime at as,1 = 99.0 a0, we ramp as

linearly in 30 ms to final scattering lengths as,2 = {87.2, 86.0, 83.0} a0 in the droplet regime.
The initial dynamics are seeded with thermal noise corresponding to a temperature of
20 nK according to the truncated Wigner description [96, 97, 143, 145, 148, 348, 414] in
order to include possible experimental imperfections11. The simulation is repeated 20 to
acquire dynamics representative of multiple experimental realizations. The droplets have

11 In this description the single-particle harmonic oscillator eigenstates are computed up to the energy
kBT and added to the initial state.
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Figure 4.5.: Dynamical scheme and droplet formation dynamics. (a) Real-time evolution
of the eGPE with a linear scattering length ramp, starting from a the superfluid ground state at
as,1 = 99.0 a0 and ending at as,2 = {87.2, 86.0, 83.0} a0 after 30 ms. Dynamics are run 20 times
with different initial noise, seeded at t = 0 ms (not shown). The images show density cuts n(x, y, 0)
color coded with the phase of the wavefunction for one realization of the time evolution.

formed in all realizations after t = 40 ms.
The phase12 difference ϕij = ϕi−ϕj and the density imbalance13 ηij = |ni−nj|/max(|ni−

nj|) are computed for t ≥ 50 ms between all pairs of droplets {i, j} (Fig. 4.6). These
quantities allows us to monitor how much the dynamic density deviates from the ground
state density after the droplet formation and whether droplets maintain or establish phase
coherence. Strongly imbalanced or incoherent droplets are far away from the ground state
[9].

Ramping the scattering length close to the transition (as,2 = 87.2 a0) where the droplets
have a high overlap results in a smooth droplet formation process with all droplets forming
at the same time (Fig. 4.4), with a minimal imbalance, and the formation process does
not lead to a loss of phase coherence (Fig. 4.6(a)). Further away from the transition point
(as,2 = 86.0 a0) the droplet formation process leads to stronger excitations of the droplet
crystal and consequently a larger imbalance (Fig. 4.6(b)). The phase difference between
droplets for all realizations is generally small and roughly bounded by |ϕij| ≲ π/8. Coherent
dynamics between the droplets after their formation can be observed, indicating that the
global phase coherence is not lost in the formation process and that a slightly excited
two-dimensional supersolid state has been obtained. The phase rigidity of the supersolid is

12 In practice we use the density weighted average of the phases
ϕi ≃ ϕ̄i =

∫
Ai
n(x, y, 0)ϕ(x, y, 0)d2r/

∫
Ai
n(x, y, 0)d2r in areas Ai around the density peak posi-

tions to avoid contributions of arbitrary phases where the density is close to zero, for example for
isolated droplets.

13 Metrics such as the euclidean distance between ground state n0(x, y, z) and dynamic densities n(x, y, z, t)
indicate similarly to the imbalance used here how the ground state is approached [2].
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(a) (c)(b)

Figure 4.6.: Density imbalance and phase difference. The droplet density imbalance ηij and
phase difference ϕij evaluated for t ≥ 50 ms between all pairs {i, j} of droplets for the dynamics
(Fig. 4.4) after ramping to as,2{87.2, 86.0} a0 (a-c). The radii of the polar plots indicating the
imbalance are scaled to maintain visibility of ϕij even for the smaller imbalances

facilitated by the high droplet overlap maintaining a coherent exchange of atoms between
the droplets. The droplet formation becomes more violent as as is ramped further into the
droplet regime, which is reflected in a larger density imbalance (Fig. 4.6(c)). In contrast
to the simulations for as,2 ≳ 86.0 a0, the droplets dephase during the dynamics and do
not reestablish a global phase coherence14. The droplets form an isolated and incoherent
crystal. In several dynamical realizations at this final scattering length the blood-cell
shaped density initially splits up into four droplets (Fig. 4.5) indicating a competition of
threefold and fourfold symmetric droplet crystals. Such dynamical effects show similarities
to the competing crystal structures found in our investigation of angular roton modes
(section 4.1, [129]) suggesting the that several low-lying roton modes are excited [300].

Longer or optimized scattering length ramp schemes could be used to counteract the more
violent droplet formation process [320, 417–419]. Another route mitigating the excitations
involved in a scattering length ramp has been suggested by evaporating directly in to the
droplet state while holding as constant [402, 403].

In this section, we have shown that two-dimensional supersolids can be dynamically
reached in a narrow region of scattering lengths. The presence of several low-lying modes
which become coupled towards smaller scattering lengths (Fig. 4.4) together with the
rotational degree of freedom suggests that the system is more susceptible to enter an
excited state due to an imperfection in the preparation process, thermal fluctuation or
asymmetries in the trap [402, 403, 410].
14 The randomness of the dynamical phases can be further quantified [2] using the circular variance
V = 1 −R [415, 416], where R =

∣∣∣∑M
k=1 zk

∣∣∣ /M with zk = eiϕk (ϕk is ϕij indexed linearly by k =
1, 2, . . . ,M). One obtains V ≃ {1.2, 3.1, 12} % for as,2 = {87.2, 86.0, 83.0} a0.
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4.2.3. Scaling droplet supersolids to other parameters

So far we have presented an example of a two-dimensional supersolid ground state, that it
can be dynamically reached and we emphasized the generality of characteristic features of its
excitation spectrum. Given a two-dimensional supersolid the question arises how parameters
favorable for similar supersolids can be systematically identified. While exploring a large
parameter space theoretically is feasible at the cost of some extra computational time,
an uninformed search for favorable parameters in the experiment can be time- and labor-
intensive. Furthermore the search could lead to parameter regions that are experimentally
inaccessible or enforce unfavorable trade-offs between parameters of the experiment.

The scaling relations introduced in section 2.4.3 help in understanding similarities
between different regions in parameter space. In particular in cylindrically symmetric
traps Vext(r) ≃ Mω2

0(x2 + y2 + λ2z2)/2 dimensionless units based on the length scale
xs =

√
ℏ/Mω0 with a wavefunction normalized to unity [236] reveal that the mean-field

interactions are controlled by the dimensionless contact and dipolar interaction strengths
C ∝ asN/xs and D ∝ addN/xs [240, 241]. The dimensionless quantum fluctuation strength
scales as Q ∝ C5/2/N . While holding N/xs constant, higher trapping frequencies and
notably lower atom numbers enhance the stabilizing quantum fluctuations. This enhanced
stabilization is expected to provide a higher droplet overlap.

We illustrate the utility of these scaling arguments in Fig. 4.7. We take a three droplet
ground state and vary Q explicitly by a few percent (Fig. 4.7(a)) which can be utilized
in experiments using the scaling N

√
ω0 = const. for different atom numbers sN and

trap geometries ω0/s
2. At small Q more atoms accumulate in the attractive head-to-tail

configuation in the droplets. For largerQ the droplet overlap grows by an expulsion of atoms
out of the droplets, facilitated by a stronger repulsive quantum fluctuation contribution
until the blood cell states are recovered. Varying confinement provides experimentally
a trade-off between optical resolution for the observation of well-separated droplets and
realizing supersolids at smaller atom numbers with enhanced quantum fluctuations.

An explicit example of this scaling is shown in Fig. 4.7(b) by reducing the trapping
frequencies by a factor of two while keeping the aspect ratio λ = 2 constant. We consider a
ground state at as = 87 a0 on the left and expect to find a similar ground state for a factor
of

√
2 higher atom number if there were no quantum fluctuations. Due to the effective

reduction of Q, a higher scattering length and atom number15 are required to obtain a
15 We need additional 11 % of

√
2N to reach a three-droplet ground state in the new trap geometry,

whereas two droplets are the ground state at as = 93 a0 and
√

2N atoms.
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Figure 4.7.: Scaling properties applied to two-dimensional droplet supersolids. (a)
Behavior of the ground state by explicitly varying the quantum fluctuations Q → sQ by an
arbitrary scale factor s, while leaving mean-field interactions constant. The ground state for
1.00 × Q was chosen with (N, ω0/2π, as) = (20 × 103, 125 Hz, 87 a0) and was recomputed for
every modified Q. (b) Ground state at as = 87 a0 (same as with 1.00 × Q in (a)) and ground
states across the superfluid to supersolid phase transition for scaled atom number and trap
geometry. The density n = |ψ|2 and the dimensionless density ñ = nx3

s/N at z = 0 are shown
shown in (a) and (b), respectively, to compare the ground states in both trapping geometries.
The light gray lines indicate similarity between states where quantum fluctuations are varied
artificially (a) and implemented through confinement and atom number (b).

similar ground state. Despite the additionally provided atoms, the system in the lower
confinement at the same scattering length as = 87 a0 has a lower droplet overlap due to
reduced quantum fluctuations. The dimensionless peak densities of the states close to the
transition (near {87, 93} a0) for both trap geometries are ñ0 ≃ 0.0183(2) and the states
have a similar droplet overlap. We have demonstrated the scaling relations here for the
case of supersolid droplets but as described in section 2.4.3, the scaling relations apply in
general to the eGPE.

Compared to the parameters in section 4.1 we have chosen a smaller aspect ratio and
higher overall trapping frequencies while keeping a comparable atom number. Smaller
aspect ratios lead to smoother transitions from superfluid to droplet states. This is a
general phenomenon not limited to supersolid droplet arrays and already observed with
variational models describing isolated single droplets [144]. Intuitively less confinement in
the magnetic field direction inhibits magnetostriction less and leads to a smaller frustration
of the system. Aspect ratios λ ≲ 1 prevent bistability in the ground state phase diagram
and lead to an elongation of the superfluid without splitting into multiple crystal sites,
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Chapter 4. Two-dimensional structures of dipolar quantum fluids

preventing studies of supersolids.
In summary this section provides a description of characteristic excitation spectra of two-

dimensional dipolar supersolids, their dynamical formation process, and scaling relations
useful to find two-dimensional supersolids for a wide range of parameters. Extending on
the two-dimensional crystal structure formation mechanism [4, 129] studies have found
indications of phase coherence [402, 403] and very recently possible presence of vortices,
indicating superfluidity in rotating dipolar supersolids [420].

Having investigated the self-organization of supersolids droplet arrays in one and two
dimensions a next step towards fully characterizing the macroscopic pattern formation of
dipolar quantum fluids is to explicitly increase the atom number yielding both enhanced
mean-field interactions and quantum fluctuations.
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4.3. Self-organized patterns of oblate quantum
ferrofluids

The first study describing the observation of quantum droplet arrays forming from a
strongly dipolar superfluid [130] pointed out an analogy to classical ferrofluids which form
droplet structures due to the Rosensweig instability [106]. As quantum droplets emerge
from a superfluid [137, 138, 142], much attention has been given to the potential of these
droplets to form supersolids [9, 96, 97].

Classical ferrofluids can develop a variety of macroscopic patterns in equilibrium beyond
the droplet structures [106, 109–111]. These patterns – also commonly referred to as
morphologies – emerge in a large variety of physical systems irrespective of their microscopic
structure and interactions [109, 110]. The morphologies notably include honeycomb (“foam”)
and labyrinthine (“stripe”) phases in addition to the droplet (“bubble”) phase [106, 109–111,
421–426]. The ubiquity of these patterns in nature has established classical ferrofluids as a
model system for self-organization. The patterns can be found in equilibrium in systems as
diverse as superfluid helium [427–429], the intermediate phase of type-I superconductors
[430–433], optically nonlinear media and optically coupled cold atoms [353, 434–447],
colloidal systems [109, 110, 448–450], biological matter [276, 451–453], nuclear pasta in ultra-
dense neutron stars [454–456] as well as in out-of-equilibrium systems [14] in convection
patterns arising from the Rayleigh-Bénard instability [457–459], and in a plenitude of
chemical mixtures displaying reaction-diffusion (“Turing”) patterns [13, 15].

The competition between repulsive and attractive interactions at different length and
density scales are key components leading to self-organization [109–111, 284]. In dipolar
superfluids the competition between attractive dipolar and repulsive contact interaction
leads to mean-field instabilities that are stabilized by the stronger density scaling of the
quantum fluctuations [6, 133, 296, 409] and gives rise to the quantum droplets of quantum
ferrofluids. In this section we show that trapped quantum ferrofluids self-organize in
honeycomb, labyrinth, and futher morphologies towards high densities.

Part of the results presented in this section have been published in:

• J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H. Ng, S. D. Graham, P.
Uerlings, T. Langen, M. Zwierlein, and T. Pfau, “Pattern formation in quantum
ferrofluids: From supersolids to superglasses”, Phys. Rev. Res. 3, 033125 (2021).

Prior to this publication the ground-state phase diagram of infinitely extended two-
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Chapter 4. Two-dimensional structures of dipolar quantum fluids

dimensional arrangements of dipolar supersolids showed honeycomb supersolid structures
[238]. Earlier studies investigating the potential 2D honeycomb and labyrinthine phases
in BECs considered more complex multi-component systems [395, 460–462] and their
dynamical (Rayleigh-Taylor) instabilities [463–465] or infinite quasi-2D geometries with
three-body interactions instead of quantum fluctuations [409].

We theoretically predicted honeycomb and labyrinth phases in trapped quantum fer-
rofluids [3], and in exchange with Y. Zhang, T. Pohl, and F. Maucher [302] we clarified
the presence of metastable states in the phase diagram.

Since then multiple theoretical studies have been motivated by the description of these
phases. Several further studies are linked to the phases. We highlight studies of the
superfluid properties of honeycombs [466], crystal field models extended to honeycomb
and labyrinth patterns [467], frustration induced by an underlying optical lattice [468], the
appearance of labyrinth structures when quantum ferrofluids are merged from multi-well
potentials [400], the potential for molecular dipolar BECs [247] to realize regimes currently
challenging for atomic gases [246], metastability of quantum ferrofluids [469], extensions
of variational theories for flattened dipolar BECs to include quantum fluctuations and
capturing honeycomb and stripe phases [336, 470, 471], the characterization of the superfluid
fraction of two-dimensional patterns [337], stripe phases in mixtures or in systems with
multiple spin components [472, 473], parallels to patterns in the grasshopper model [474,
475], and links to neutron stars [476].

We present the phase diagram and the morphologies of quantum ferrofluids in an oblate
trap geometry in section. 4.3.1. In section 4.3.2 we discuss the origin of the pattern
formation (morphogenesis). The influence of the trapping geometry on the morphologies
is discussed in section 4.3.3. Near-degeneracy and metastability between patterns is the
focus of section 4.3.4 and we conclude in section 4.3.5.

4.3.1. Morphologies

We consider the same oblate harmonic trapping geometry as in the previous section with
frequencies ωx,y,z/2π = (125, 125, 250) Hz and note that the shape of the phase diagram
will be similar at other parameters due to scaling relations (sections 2.4.3, 4.2.3).

We focus on scattering length regimes where structured states of matter emerge from
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Figure 4.8.: Phase diagram of oblate quantum ferrofluids. Top-left panel shows the N -as

phase diagram for trap frequencies ωx,y,z/2π = (125, 125, 250) Hz. Density cuts n(x, y, 0) are
shown at relevant points in the phase diagram with the corresponding markers. The density
distributions for a specific marker are ordered by N from left to right. An example of the pumpkin
state can be seen in Fig. 4.10. Dashed lines indicate crossovers between different regions. The
transition between droplets and honeycombs occurs via stripes (b2) that break up into droplets
at small as (b1) or curve and connect towards higher N and small as, forming labyrinths (b3-b6).
The field of view for the density cuts is 14 × 14 µm2.

superfluid states below a critical scattering length as,c. We set a random initial state16

for every ground state search allowing us to avoid hysteresis effects when crossing phase
boundaries in parameter space [9]. We return to the relevance of this numerical detail
in section 4.3.4. The boundaries are determined by individually searching through the
final states. If near-degenerate states occur near the boundary of two phases, such as in
a crossover from droplets to labyrinths, the drawn boundary line indicates the middle
between the regions in which only one of the phases is present.

The superfluid BEC states for as ≥ as,c are characterized by their continuous rotational
symmetry. Spontaneous rotational symmetry breaking occurs for as < as,c leading to a
variety of structured states of matter (Fig. 4.8).

Two-dimensional arrays of supersolid quantum droplets form at low atom numbers

16 In practice we choose either pixelwise uniformly distributed noise or perlin noise [477]. Here we use
perlin noise [3].
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Chapter 4. Two-dimensional structures of dipolar quantum fluids

N ≲ 100 × 103 (Fig. 4.8, ★). As we studied in depth in previous sections these structures
form from a biconcave blood-cell shaped BEC states. The phase diagram reveals that the
biconcave superfluid states are a special case of the superfluid states near as,c with a radial
substructure in the range N ≃ 60-200 × 103 (Fig. 4.8, ●). These superfluid states have a
ring of depleted density near their boundary in addition to the maximum density in the
center of the trap. Depending on the atom number and size of the condensate multiple
such radial density modulations can occur (N ≃ 200-400 × 103) until the the trap center
is filled with atoms (N ≳ 400 × 103) and a single depleted density ring near the boundary
remains (Fig. 4.8, ●, right column).

The honeycomb phase (Fig. 4.8, ◆-■) appears for as < as,c from these superfluids with a
radial substructure. High density bridges across the radial density minima form at discrete
angles leading to multiple density minima in a honeycomb pattern. The honeycomb
states are characterized by an emerging discrete rotational symmetry. A fully developed
honeycomb pattern gives rise to a discrete translational symmetry and a crystal structure.
Together with the strong density bridges facilitating superfluid flow along the honeycomb
pattern these states form a supersolid phase [409, 442, 478]. The density bridges can have
an almost uniform density along the honeycomb pattern (Fig. 4.8, ◆) poviding a very high
superfluid fraction [336, 466] even when the modulation contrast with the density minima
becomes large. A comparison between the three-, four-, six-droplet states (★) with the
three-, four-, six-minima honeycomb states (◆) suggests that there is a symmetry between
positive droplets and negative droplets on top of a background density distribution. In
the infinite quasi-2D system [238], it was shown that this is indeed a symmetry where the
honeycomb structure becomes energetically favorable over the hexagonal droplet crystal
beyond a critical density.

In a window of atom numbers where the superflid-supersolid droplet boundary changes
to the superfluid-honeycomb boundary the transition below as,c occurs via stripes (Fig. 4.8,
b2) or honeycomb patterns deforming into stripes toward smaller as. The emergence of
the stripe phase between supersolid droplets and honeycomb phases has been observed
with Quantum Monte Carlo simulations [478] and in a mean-field theory in a scenario
where three-body interactions ∝ n3 [409] take the stabilizing role instead of quantum
fluctuations ∝ n5/2 [131, 133, 296]. Since our description of this phase diagram in quantum
ferrofluids [3] multiple studies have shown the existence of an extended stripe phase in
infinitely extended systems [302, 336, 466, 471]. When as is further reduced, these stripes
break up their connections and reenter the supersolid droplet phase (b1). However, toward
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4.3. Self-organized patterns of oblate quantum ferrofluids

higher N and smaller as, these stripes can curve and form overlap with neighboring stripes,
representing a small region in the larger labyrinthine phase.

The labyrinthine phase (Fig. 4.8, b3-b6) consists of elongated and curved density stripes.
With the curvature of the density stripes their discrete translational symmetry is lost
and an amorphous spatial structure remains. The presence of an amorphous spatial
structure is characteristic of glasses [479]. A high and nearly uniform density can be
maintained along the stripes, supporting superfluid flow through a labyrinth structure.
Due to the simultaneous presence of superfluid flow and an amorphous or glassy spatial
structure the labyrinth phase can be classified as a superglass [78, 480]. Associated to the
amorphous nature of the labyrinths, we find for fixed N and as many morphologically
distinct labyrinthine patterns that are almost degenerate [409, 421, 422, 424, 460–462],
with total energy differences of a few single Hz per atom. In this regime the true ground
state by cannot be unequivocally determined by setting a random initial wavefunction
or by choosing a previously found low-energy state. We find the labyrinth states to be
robust against small perturbations [422, 424, 460, 462], be it in changes of scattering length
or trap deformations. Corresponding to the near-degeneracy of multiple morphologically
distinct states is the presence of metastability of those states as studied recently [469].

4.3.2. Morphogenesis

The emergence of honeycomb and labyrinth phases coincides with an important change
in the phase diagram of Fig. 4.8, namely that the critical scattering length as,c begins
to decrease as a function of N for N > Nc with the critical atom number Nc (here
Nc ≃ 100 × 103). Similarly other phase boundaries have a decreasing as towards higher
N . In the infinite system [238, 336, 471] the decrease happens roughly above a critical
density at which the three phases of superfluid, droplet and honeycomb are connected by
a second-order phase transition17.

The shape of the phase boundaries can be understood by noting that the energy
functional contains the three distinct scalings ∝ n (single-particle), ∝ n2 (mean-field),
and ∝ n5/2 (quantum fluctuations) [6, 131, 133]. At low atom numbers quantum pressure
(kinetic energy) dominates the phase diagram [27, 141] and the interplay between mean-

17 The authors considered either an expansion of the eGPE energy functional up to fourth order in a
density wave amplitude or a variational ansatz to describe the density in the magnetic field direction.
Generally, it cannot a priori be ruled out that the transition could still be of first order if higher orders
of the amplitude were considered.
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Figure 4.9.: Density saturation of quantum ferrofluids. Peak density in the phase diagram
shown in as a function of as at fixed N (a) and as a function of N for fixed as (b). Discontinuities
in (a) across as,c become particularly small in the vicinity of Nc, the curves converge towards
small as for N > Nc describing a density saturation function nsat(as) [246]. The curves in (b)
highlight that only deep in the superfluid regime the ground states grow in density as well as size
while for as near or below as,c density saturation occurs starting from N ≃ 100 × 103, defining
Nc. Fluctuations of the points in (a)-(b) are due convergence to one of multiple near-degenerate
ground state morphologies.

field interactions and quantum fluctuations determines where as,c rises quickly with atom
number. At Nc the stabilizing effect of quantum fluctuations is strong enough to allow for a
smaller contact repulsion with the same effective stabilization, hence the phase boundaries
(including as,c) decrease with atom number [238, 302, 336]. For N ≳ Nc the peak density
in the ground states begins to saturate (Fig. 4.9).

Density saturation of the patterns for as < as,c signals increasingly quantum liquid-like
behavior and reduced compressibility compared to the superfluid state, like for a liquid
as compared to a gas. As has been observed in the case of single and isolated quantum
droplets [6, 131, 133, 137–139, 142, 223, 233, 481, 482] the saturation leads to a flat-top
(spatially saturated) density distribution for sufficiently high N where increasing N leads
to an increase in size while the density is maintained at its saturation value. In the case of
the honeycomb and labyrinthine phases this effect can be seen in the low density variation
along the high-density regions of the patterns (Fig. 4.8). The saturation in density leads
to an intuitive understanding of the pattern formation.

The presence of a saturation density in the vicinity of as,c leads to the single depleted
density ring near the boundary of superfluid states separating them into a core and a crust
region (Fig. 4.10(a)). The core density is close to saturation and dipolar repulsion ensures
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Figure 4.10.: Superfluid shell structure and core destabilization. Density distributions at
N = 1000 × 103 atoms as a function of as are shown (Fig. 4.8). Competition between quantum
fluctuations and mean-field interactions lead to a shell structure of the superfluid near as,c (a). The
outer high-density ring becomes unstable and breaks in for smaller as yielding the pumpkin-like
state (b). As as is reduced further the core is increasingly destabilized with density minima
wandering closer into the core region giving rise to the honeycomb phase (c-e). Eventually the
stabilization is insufficient to uphold the honeycomb density bridges – the connections break up
and yield a labyrinthine pattern (f). Top and bottom rows show 3D density distributions and 2D
density cuts n(x, y, 0), respectively.

that it is energetically favorable to expel some density from the core. This radial structure
is reminiscent of the shell structure of ultra-dense neutron stars [182, 454–456].

The core of neutron stars is believed to be a uniform superfluid at the nuclear saturation
density stabilized by degeneracy pressure from inward gravitational forces [455, 456]. The
outer crust hosts a crystal phase at densities several orders of magnitude below saturation.
In the inner crust at intermediate densities it is predicted that competition between nuclear
attraction between neutrons and protons and coulomb repulsion between protons favors
the formation of nonuniform states of matter known as nuclear pasta [454, 456].

The core of the dipolar superfluid (Fig. 4.10(a)) is stabilized by quantum fluctuations
and is density saturated, preventing (droplet) crystallization. Instead the system minimizes
its energy by depleting density toward smaller as. Towards higher N , the core region grows
and the depleted density ring shifts outwards. The superfluid to honeycomb transition is
crossed toward smaller as up to about N ≃ 700 × 103 with density minima forming in the
depleted region.

For N ≳ 700 × 103 the depleted ring is located so close to the boundary that an
instability occurs at as,c similar to the fingering instability known from classical ferrofluids
[106, 110, 421–423, 425, 426]. At these high atom numbers, the superfluid passes through an
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intermediate state when as is reduced (Fig. 4.10(b)) where density minima form sufficiently
outwards in the crust so that high density “fingers” are left. We call this the pumpkin
phase (Fig. 4.8) occurring in equilibrium in contrast to the dynamical fingering instability
of classical ferrofluids [106, 110, 421–423, 425, 426]. Toward smaller as the repulsive contact
interaction and quantum fluctuations become weaker, destabilizing the core. As the density
minima wander further into the core, transitions through honeycomb states occur until some
of its density connections break up, giving rise to the labyrinthine phase (Fig. 4.10(c)-(f)).

At lower atom numbers, special cases of the transitions from superfluid to stripe and
superfluid to droplet supersolid occur. Consistent with investigations [336, 471] subsequent
to our initial report of the phase diagram [3, 302] we find that the transition from superfluid
to stripe states around the turning point of as,c occurs more smoothly with no clear
discontinuity in peak density between N ≃ 60 × 103 and N ≃ 110 × 103 compared to the
superfluid to supersolid droplet or honeycomb phase at lower or higher atom numbers,
respectively. Stripes curve and transition smoothly to labyrinth structures towards higher
N and lower as. This observation is explained by considering that the characteristic length
scale (here the stripe spacing) rises towards higher density and lower as [302, 336] and
the harmonic trap imposes an increasing energy penalty for linear stripes as their spacing
grows. We note that this scaling of the characteristic length scale is the same as for the
roton momentum in quasi-2D trapped dipolar superfluids [104]. The morphogenesis of
supersolid droplets is explained in depth in previous sections.

4.3.3. Influence of trap shape

An overall scaling of trapping frequencies can be absorbed into the dimensionless interaction
strengths thanks to scaling relations (section 4.2.3). In contrast the aspect ratio λ = ωz/ωr

is an independent parameter. The anisotropy of the dipolar interaction causes the stability
of a phase in quantum ferrofluids to depend on λ [118, 119, 144, 282, 394]. There is a
difference between changing λ by modifying ωz with constant ωr and vice versa since
the magnetic field along ẑ breaks the symmetry between radial and axial directions.
We investigate the two arising cases, namely changes in vertical confinement or radial
confinement, in the following two sections.
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Figure 4.11.: Vertical confinement influence on morphologies. (a) Increasing ωz with
constant ωr/2π = 125 Hz yields trap geometry change induced transitions through the labyrinth,
honeycomb, pumpkin, and superfluid phase. Atom number and scattering length are fixed to
(N, as) = (500 × 103, 85 a0). Insets in the lower right corners show the spatial power spectrum
Sn(kx, ky) in arbitrary units.

Vertical confinement

Figure 4.11 shows that a change in vertical confinement leads to phase transitions from
the labyrinthine phase to increasingly macroscopically developed honeycomb phase to the
pumpkin phase and finally to the superfluid. The patterns become finer as the vertical
confinement increases, analogous to the situation in classical ferrofluids confined between
two plates [109, 422–424]. Higher vertical confinement counteracts magnetostriction and
leads to a stronger frustration of the morphologies.

The spatial power spectrum Sn(kx, ky) = |F [n(x, y, 0)](kx, ky)|2, shown in the insets of
Fig. 4.11, reveals information about how many length scales are involved in the morphologies,
the crystallinity, and the spacing (fineness) of the structures. The states have no modulation
along z so that the power spectrum of the cut suffices to analyze the structures. The
crystallinity can be seen from the diffuseness of the power spectrum along the ring with
radius |k| = k∗. Labyrinthine states have a powdered (diffuse) power spectrum at k∗,
reflecting the amorphous or glassy density distribution [483–485]. Toward honeycomb
states, the power spectrum concentrates in a triangular pattern indicating a cleaner crystal
structure. Compared to the sixfold angular symmetry of the honeycomb pattern the
pumpkin state power spectrum (λ = 3.8) shows more angular peaks at k∗ corresponding
to its higher discrete rotational symmetry.
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Figure 4.12.: Characteristic momentum throughout geometry induced phase transitions.
(a) Example power spectrum at λ = 3.7 of Fig. 4.11. The main radial peak |k| = k∗ of Sn(kx, ky)
is found in polar coordinates. (b) The characteristic momentum scales as k∗ ∝ 1/lz ∝ √

ωz

where lz =
√
ℏ/Mωz is the harmonic oscillator length along the magnetic field direction (vertical

direction). N and as are the same as in Fig. 4.11 and lr =
√
ℏ/Mωr ≃ 0.71 µm.

The concentration of the power spectrum at a single characteristic momentum k∗

throughout the phases shows that there is only a single characteristic length scale in
the morphologies, corresponding to 2π/k∗. Figure 4.12 reveals that the spacing scales
as 2π/k∗ ∝ lz, where lz =

√
ℏ/Mωz is the harmonic oscillator length along the magnetic

field direction. This scaling behavior is known from the roton momentum krot of infinitely
extended flattened dipolar superfluids [104, 470, 486]. A least-squares fit to k∗/2π = c/lz

as a function of vertical confinement yields c = 0.206(2).
Relating the domain spacing to the roton momentum suggests that the coefficient c

mostly depends on chemical potential and maximum density in the system [104, 125,
470, 486]. As the density is saturated for the labyrinthine and honeycomb phases, the
chemical potential varies weakly with atom number in these regimes. Therefore c is
expected to vary weakly with atom number and to yield a robust characterization of the
fineness of the structures for a given interaction strength and trap geometry. We repeat the
analysis shown in Fig. 4.12 with a different scattering length as = 84 a0 and atom numbers
N = {700, 1000} × 103 and find that c varies by less than than 2%. Toward lower N the
peak density and chemical potential become more sensitive to interaction parameters and
trapping frequencies and c is generally a function of these parameters. However, the scaling
k∗ ∝ 1/lz remains.

The fact that the characteristic length scale across a structural phase transition can
be interpreted to originate from softening or energetically low-lying excitations on the
higher-symmetry-side of the transition is a generic result of linear stability analysis in
nonlinearly interacting systems, such as classical ferrofluids [421, 422] or nonlinear optics
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Figure 4.13.: Radial confinement influence on morphologies. Reducing the radial con-
finement ωr with fixed vertical confinement ωz/2π = 250 Hz causes the labyrinth to transition
to the crystal phase. Atom number and scattering length (N, as) = (500 × 103, 85 a0) are fixed
as in Fig. 4.11. Across the transition the characteristic momentum k∗/2π ≃ 0.43 µm−1 stays
roughly constant up to λ = 5. Toward higher λ, k∗ weakly increases. The power spectrum (insets)
concentrates into a triangular pattern, presenting the emergence of multiple Brillouin zones of of
the macroscopic crystalline pattern with a lattice constant 2π/k∗. As labyrinthine patterns lose
some density connections they transition through a mixture of stripes and elliptical droplets for
which the power spectrum is still is diffuse on the ring with |k| = k∗ toward the pristine crystal
at larger aspect ratios (λ ≃ 5). Figure adapted from [3].

[353, 439, 440, 442, 443] and general beyond the situation in quantum ferrofluids [284, 450].
We have highlighted this point of view for the the supersolid droplet regime in previous
sections and Fig. 4.12(b) shows that the roton momentum scaling behavior persists from
the superfluid state to the honeycomb phase and throughout the multistable labyrinthine
phase.

Radial confinement

Reducing the radial confinement or increasing the vertical confinement both increase the
aspect ratio, but the effective change in the morphologies is drastically different between
the two cases. In contrast to the the previous section when radial confinement is decreased
with a fixed vertical confinement ωz/2π = 250 Hz a state initially in the labyrinth phase
transitions to a droplet crystal (Fig. 4.13). The characteristic momentum k∗ does not
change during the transition. These observations are understood as follows.

By considering the dimensionless interaction strengths C ∝ Nas/xs, D ∝ Nadd/xs, and
Q ∝ C5/2/N with xs =

√
ℏ/Mωr one finds that lower ωr lead to the reduction of (C,D,Q)

similar to lower N . In the phase diagram (Fig. 4.8) this decrease corresponds to a crossing
of the labyrinthine-droplet boundary at constant as, explaining the transition seen in
Fig. 4.13. The behavior is not exactly equivalent to a change in N because lower ωr

increase both xs ∝ 1/√ωr and λ ∝ x2
s describing a trajectory through four-dimensional

113



Chapter 4. Two-dimensional structures of dipolar quantum fluids

20

10

0

Figure 4.14.: Similar patterns between traps without parameter fine-tuning. Morphologies
in a trap with trapping frequencies ωx,y,z/2π = (83.3, 83.3, 250) Hz (λ = 3). Shown are 2D density
cuts n(x, y, 0) in a field of view of 30 × 30 µm2. Within the larger bulk density available in lower
aspect ratios, the same patterns as in traps with higher aspect ratio emerge (cf. Fig. 4.8). Figure
adapted from [3].

parameter space (C,D,Q, λ).
The spacing of the structures at constant (C,D,Q) decreases as 2π/k∗ ∝ 1/

√
λ (Fig. 4.12),

but for the case of decreasing ωr the natural length scale xs ∝
√
λ expands at the same

rate so that these two effects roughly balance and lead to a constant k∗.
We note that combined changes of aspect ratio and atom number according to λ → ∞,

N → ∞ at a constant average density correspond to systems approaching the thermody-
namic limit [104, 336, 350, 351, 408, 470, 471, 486, 487]. Accordingly one expects quantum
ferrofluids to form more macroscopic structures toward larger aspect ratios. We recalculate
the phase diagram for an aspect ratio of λ = 3 by keeping ωz/2π = 250 Hz constant and
reduce the radial trapping frequencies to ωr/2π = 83.3 Hz. The droplet, labyrinth, honey-
comb and pumpkin phases can be found in the new phase diagram as well (Fig. 4.14) and
the relative location of the phase boundaries are qualitatively similar to Fig. 4.8. The shift
of the boundaries in lower radial confinements can be intuitively understood by considering
that quantum fluctuations are reduced and therefore higher as and N are required to
reach similar patterns [3, 246, 302]. The fact that in different trap geometries the overall
structure of the phase diagram is similar and that all patterns prevail underlines that no
fine-tuning of the trap geometry or the atom number is necessary for the self-organization
of these structures.

4.3.4. Nearly degenerate patterns

This section serves to underline that the near-degeneracy of morphologically distinct
amorphous patterns is an inherent property of the labyrinth phase and we compare them
with other metastable symmetric states found in the labyrinth phase.

With a large number of nearly degenerate low-energy states the final state obtained
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Figure 4.15.: Near-degeneracy of symmetric and amorphous patterns. (a) Lowest energy
states found using an initial state of a (i) Gaussian, (ii) Gaussian modulated with a plane wave,
and (iii) pixelwise uniform random distribution. The total energy per particle of (iii) is lowest with
E/N ≈ 2πℏ × 6.3949 kHz and the energies in (ii) and (i) are just 0.35×10−2 % and 6.16×10−2 %
larger, respectively. (b) Relative energy deviation ∆E/Emin of the lowest energy states (small top
insets) found by repeating the ground state search 10 times using each time a different random
initial state created by Perlin noise. Here ∆E = Ej − Emin with the energy Ej for run j and
the minimum energy of all runs is denoted Emin = minj Ej . In (a)-(b) density cuts n(x, y, 0) are
shown in in a field of view of 14 × 14 µm2 and other parameters are the same as in Fig. 4.8 with
(N, as) = (750 × 103, 84.7 a0) fixed.

with either imaginary time evolution or conjugate gradient minimization of the energy
functional depends on the initial state (Fig. 4.15(a)). Setting initially a radially symmetric
Gaussian state converges to a ring pattern (i), a Gaussian modulated with a plane wave
converges to the stripe pattern (ii) and a completely random initial state converges to a
labyrinth (iii). Symmetric ring states compared to labyrinths have typically an order of
magnitude larger relative energy than the labyrinth states compared among each other or
to the stripe phase [3, 302, 488]. The absolute scale is extremely small with the ring state
lying energetically just ≲ 4 Hz per particle above the labyrinth state. Striped states are
particularly close in energy to labyrinth states and lie energetically within the variation
seen from labyrinth to labyrinth18. Similarly when setting a previously found low-energy
state as the initial state for the ground state search at a lower scattering length, the higher
symmetry state is maintained towards lower as than predicted by setting a random initial

18 For example at the chosen parameters the stripe in Fig. 4.15(a)(ii) is energetically above the labyrinth
(iii) and run eight of (b) but below all other runs in (b).
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wavefunction. We find these observations independent of the detailed numerical setup19.
The higher-energy symmetric states represent metastable states [469]. The metastability

is an inherent property associated to the labyrinth regime and relevant for future experi-
ments. When performing real-time simulations ramping the scattering length across the
superfluid to honeycomb or stripe transition, ring states can form that are long-lived20

on experimental timescales. Associated to the near-degeneracy of multiple states are slow
timescales for the transitions between them [469].

The degeneracy of multiple competing morphologies could already be seen in the
supersolid droplet phase at parameters at which the droplet number changes (previous
sections, [147, 300]). These parameters correspond to fine transition regions in the phase
diagram that are surrounded by larger regions in which the droplet number is constant
and ground states of different droplet numbers have an appreciable energy gap [205, 293,
300, 311]. Contrarily a generic point in the labyrinth phase is characterized by a range
of different labyrinths that are very similar in energy (Fig. 4.15(b)). In the labyrinth
regime it is neither obvious which Ansatz or initial wavefunction to choose in order to find
the true ground state, nor is it clear whether one can determine what the true ground
state is. Describing the labyrinth regime within a variational Ansatz is complicated by its
amorphous structure. Typical variational Ansätze used to describe honeycomb, droplet
or stripe phases assume the symmetry of these states by a superposition of a discrete set
of plane waves [238, 302, 336, 471]. In Fourier space this corresponds to a set of points
on a hexagon for honeycomb and droplet states and on a line for the stripe phase. The
labyrinth has a diffuse spatial power spectrum (Fig. 4.11) corresponding to a continuous
distribution of plane waves that could only partially be approximated with a superposition
of a high number of plane waves.

It is not determined yet whether labyrinth patterns in an infinite system can have a lower
energy than stripe patterns [197, 336]. The long-range nature of the dipolar interaction

19 We have varied the number of points (states in Fig. 4.15 were calculated on a grid with 1283 points
and grids with 2563 points gave similar results) and varied the numerical box size to reduce dipolar
cutoff effects and spurious periodic image interaction. We employed two separate algorithms with tight
convergence criteria and obtain the same results. For instance the state in Fig. 4.15(a)(ii) was found
in imaginary time while the other states were found using conjugate gradient minimization. For the
conjugate gradient algorithm a state is considered converged when all relative energy contributions
between steps and their second order differences change by less than 10−13 and for imaginary time the
same tolerance was employed for all relative energy contributions, the peak density, and the spatial
variances. The noise type by which the initial state is seeded also does not change these observations
(value noise was used in Fig. 4.15(a)(iii) and Perlin noise in Fig. 4.15(b)).

20 We evolved the states up to 120 ms after the ramp is complete and found them to be stable.
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makes bulk systems sensitive to boundary effects provided by confinement [387, 388].
It would be interesting to perform a sensitivity analysis of stripe states to boundary
imperfections and whether a defect at the boundary could disrupt the long-range order of
the stripe phase.

The exploration of phases beyond the supersolid droplet phase, especially of the labyrinth
regime, presents a challenge to all aspects of the study of quantum ferrofluids.

• Numerically ground states cannot be unequivocally determined as the energy land-
scape is flat enough to allow for multiple stripe and amorphous labyrinth states with
energy separations smaller than the variation seen by choosing different random
initial states [3, 302, 336, 469].

• Theoretically the shape of the phase diagram and where the honeycomb and labyrinth
phases emerge depends on the quantum fluctuation term, which has shown reasonable
agreement with past experiments but is based on assumptions that could lead to a
larger deviation between theory and experiments in the high density regimes [134–136,
138, 227].

• Experimentally reaching the required density regime is challenging [489, 490]. Yet
experiments set to explore the phase diagram will be important in deciding whether
the quantum fluctuation term is accurate enough and whether honeycomb and
labyrinth phases are observable.

4.3.5. Conclusion and outlook

We identify new phases in quantum ferrofluids beyond the supersolid droplet regime.
The general phase diagram of quantum ferrofluids in an oblate trap reveals supersolid
droplets at low densities and labyrinthine, honeycomb, and pumpkin states towards higher
densities. Quantum fluctuations play an increasingly dominant role towards higher densities
providing the underlying stabilization mechanism of these morphologies. The strength of
the stabilization can be tuned and different morphologies can be accessed by changing the
trapping geometry. Squeezing the quantum ferrofluid morphologies along the magnetic field
direction reveals that their characteristic length scale follows the same scaling behavior as
the roton wavelength known from flattened superfluid states.

The labyrinth states point towards a large degeneracy of the ground state within the
framework of an effective mean-field description. An interesting possibility is that the
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various labyrinthine morphologies we find to be degenerate in our effective description
might actually be selected upon by quantum fluctuations [491].

A linear stability analysis similar to the one employed for the superfluid to supersolid
droplet transition (sections 3.2, 4.2.1) may allow identification of modes characteristic of
the supersolid or superglass nature of these patterns [492].

Dipolar molecules [246, 493, 494] allow for dipolar interaction strengths orders of magni-
tude greater than in atomic gases. Once cooled to quantum degeneracy [247] these dipolar
condensates will have a less stringent requirement on densities for the same effective inter-
action strengths and allow exploration of honeycomb and labyrinth phases [246]. Further
interesting phases are expected in regimes where strong correlations and the granular
nature of matter play an important role [449, 450].
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In this chapter we describe the design and construction of a new quantum gas experiment
setup and present first measurements achieving strongly dipolar BECs with the setup. Our
previous experimental setup required optical transport by shifting a laser focus with a
stage from a metal chamber over 375 mm to a glass cell to perform evaporative cooling
for Bose-Einstein condensation. The optical access in the magneto-optical trap (MOT)
chamber was limited and transport towards the glass cell lead to atom loss and heating
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[152, 495].
The new setup produces MOTs and BECs without transport in one main chamber,

overcoming atom number and optical access limitations of the previous experiment. Exper-
iments with bulk dipolar quantum fluids in optical dipole traps (ODTs) [6] as presented
in the previous chapters are enabled by this stage of the setup. The setup also lays the
foundation for a second type of experiment, namely quantum gas microscopy of dipolar
atoms in optical lattices [51, 129]. The second part of the experiment is still being designed
and constructed and will be enabled by attaching a microscope chamber to our present
setup and optical transport of cold atoms from the main chamber to the microscope
chamber underneath an in-vacuum objective.

We begin with a brief summary of useful information about dysprosium related to its
cooling and trapping and compare with other dipolar species.

5.1. Dysprosium

Our choice of atomic species for the realization of strongly dipolar quantum fluids is
dysprosium. Dysprosium is an element in the group of the lanthanides with atomic number
66. Its ground state electronic configuration is [Xe]4f 106s2 with orbital angular momentum
L = 6, total spin S = 2, total angular momentum J = L+ S = 8, and the term symbol
5I8. Among seven stable isotopes [496] most of the natural abundance is accounted for by
two fermionic isotopes 161Dy (abundance 18.9 %), 163Dy(24.9 %) and two bosonic isotopes
162Dy(25.5 %), 164Dy(28.2 %). In this thesis we focus on the bosonic isotope 162Dy which has
nuclear spin I = 0. The melting (boiling) temperature is Tm,Dy = 1412 ◦C (Tb,Dy = 2567 ◦C).
Typical operating temperatures for effusion ovens as a source for atoms in dysprosium
quantum gas experiments are 1000–1300 ◦C for vapor pressures on the order of 10−3 mbar
[152, 497].

In its stretched state |mJ | = 8, dysprosium attains a magnetic moment of µm/µB =
gJmJ ≈ 10 which is the highest in the periodic table, matched only by terbium [152, 497].
Here gJ is the Landé factor for the ground state gJ ≃ 1.24 [500, 502]. Due to the open
4f -shell, multiple other lanthanide atoms such as europium and erbium have high magnetic
moments (Fig. 5.1) in comparison to alkali atoms such as rubidium. Experiments with
chromium have pioneered the field of strongly dipolar quantum gases [112]. Dysprosium
and erbium BECs [113, 116] were achieved later and very recently a BEC of europium has
been created [117]. The combination of a high mass and magnetic moment amplify the
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Figure 5.1.: Magnetic moment and optical transitions of dysprosium. (a) Comparison
of the magnetic moment of the alkali atom rubidium [498], of the transition metal chromium
[499], and of the lanthanides europium, erbium, and dysprosium [117, 500]. (b) Corresponding
dipolar lengths add ∝ Mµ2

m rise at a high rate with mass and magnetic moment. (c) Excerpt of
the optical spectrum of dysprosium [500, 501] with black (red) lines indicting even (odd) parity.
The broad 421 nm transition is used for slowing, transversal cooling, and imaging, the 626 nm
transition for magneto-optical trapping, and 1064 nm lasers are far detuned from resonances
providing optical dipole trap potentials [181].

differences between the elements and leads to a dipolar length of add ≈ 130 a0 (Fig. 5.1(b))
for dysprosium. Potential candidates to increase the dipolar interaction of quantum gases
even further are polar molecules. While they are more technically challenging to cool to
quantum degeneracy [494], they offer dipolar lengths add > 103 [266, 312] which translates,
using the scaling relations in section 2.4.3, into a relaxation of the stringent atom number
requirements in atomic dipolar quantum gases [246] for reaching the regimes discussed in
section 4.3. The first BEC of polar molecules has very recently been reported [247].

The submerged 4f shell of dysprosium also leads to a complex optical excitation spectrum
(Fig. 5.1(c)). The main transitions relevant for the cooling and trapping of dysprosum are
the 421 nm and 626 nm transition [152, 497]. The 421 nm transtion has a natural linewidth
of Γ421 = 2π × 32.2 MHz, saturation intensity Isat,421 = 56.4 mW/cm2 and the excited
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state has a Landé factor ge = 1.22. For the 626 nm transition, Γ626 = 2π × 136.6 kHz,
Isat,626 = 72 µW/cm2, and ge = 1.29 [152, 497]. The broad linewidth of the 421 nm transition
and the low wavelength are favorable for a high scattering rate and a high resolution
for optical imaging, respectively. In contrast the comparably narrow 626 nm transition
is beneficial for cooling the atoms corresponding to a low Doppler temperature of below
10 µK. Lasers with wavelengths of 1064 nm are far red detuned from the dominant 421 nm
transition and are used to trap atoms in optical dipole traps [181]. At this wavelength,
Nd:YAG lasers are available with high powers up to hundreds of watts.

In dysprosium, there are other narrow transitions including 741 nm [503] and 1001 nm
[504, 505] that are useful for further cooling and specialized imaging applications [129].
Due to the similarity of the electronic structure, other lanthanides have similar broad and
narrow transitions at comparable wavelengths [497, 506, 507].

Feshbach resonances occur in dysprosium at low fields starting from about 1 G and
are plentiful [508]. Towards higher fields many overlapping resonances lead to a chaotic
Feshbach spectrum [152, 509]. The main employed transitions for the observation of dipolar
quantum droplets and other structured states of matter were two resonances near 5 G [8]
and a resonance near 22.5 G [4]. The background scattering length far from resonances for
162Dy is abg ≃ 140(20) a0 [510–512].

Overall the high magnetic moment, high mass, low-field Feshbach resonances, and
optical transitions available for the efficient cooling, trapping, and imaging of atoms make
dysprosium a good choice in studying self-organization of quantum fluids.

5.2. Experimental setup

The initial design of the experimental setup has been partially described in previous
theses [129, 513, 514]. In particular the design and characterization measurements of
oven and magnetic field systems have been detailed in Refs. [513, 514]. We describe here
comprehensively the construction and state of the setup required for the production and
measurement of BECs.

5.2.1. Construction

The construction of the setup is shown in Fig. 5.2. We begin with an empty optical table
(a) and assemble an ultra-high vacuum system in which MOTs and BECs are created and
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Figure 5.2.: Experimental setup. (a) Image at the start of the build 07/2020. (b) Image of the
state of the setup 11/2021, producing magneto-optically trapped 162Dy clouds with the main
components built. (c) Computer assisted drawing of the setup. (i) Oven section with a dual
filament effusion cell, (ii) spectroscopy section, (iii) transverse cooling section, (iv) ion pump
(IP), gate valve (GV), and Zeeman slower (ZS) coil, (v) main chamber and compensation coils,
and (vi) in-vacuum ZS-mirror accessible through a viewport behind the GV and air-bearing
translation stage.

manipulated (b). The different sections used for the cooling and trapping of atoms are
shown in detail in (c). The oven section (i) consists of a dual filament effusion cell1 oven
attached with a bellow to the spectroscopy chamber (ii). The bellow allows alignment of the
atomic beam to the rest of the setup. The oven has a motor driven electrically controlled
mechanical shutter. The spectroscopy chamber (ii) allows to perform spectroscopy on
the oven atomic beam mainly for characterization and diagnostic purposes [514]. The
transversal cooling section (iii) uses the 421 nm transition to reduce the transversal velocity
distribution width, effectively collimating the atomic beam and leading to higher atom flux

1 DFC-40-25-285-SHE-Col by Createc Fischer [153, 513, 514]
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in the main chamber. Wide elliptical 421 nm laser beams are retroreflected and aligned
to the atomic beam [497, 514]. Section (iv) includes an ion pump, a gate valve, and
the Zeeman slower (ZS) coil. The gate valve separates the high vacuum region (i)-(iii)
(typical pressures 10−8–10−9 mbar) from the ultra-high vacuum region (v) (typical pressures
10−10–10−11 mbar). With a closed gate valve the vacuum system (i)-(iii) can be opened for
refilling the oven without influencing the vacuum condition in sections (v)-(vi). The ZS
coil is wound around a nonmagnetic 316Ti stainless steel tube with a small inner clear
aperture of 26 mm [513], acting as a differential pumping stage. The main chamber section
(v) includes MOT retroreflectors, three pairs of magnetic field compensation coils, and a
stage construction for the mounting of an objective2 on top of the main chamber [514]. The
main chamber is a spherical octagon3 made from nonmagnetic 316L steel with an enlarged
pumping port attached to a nearby ion pump in section (vi). Section (vi) also contains
an in-vacuum mirror for the ZS beam [515] separated by a gate valve from the rest of
the setup. The gate valve can be closed to exchange the ZS mirror in case dysprosium
atoms coat the mirror over time and reduce its reflectivity [129]. The stage4 carries a
cat-eye retroreflector prepared to move the focus of a transport laser for future quantum
gas microscope chamber experiments [516].

5.2.2. Main chamber and laser light

The main chamber is shown in Fig. 5.3. MOT1-2 and ODT1-2 beams are overlapped
using dichroic mirrors before the main chamber and intersect at 90◦ in the horizontal
x-y plane (Fig. 5.3(a)). The ODT1-2 beams come from two independent 1064 nm fiber
lasers5. ODT3 is a fiber laser6 that will eventually be used for the transport. We have
also employed ODT3 in assisting BEC production. Both the MOT3 beam and the vertical
imaging beam propagate along the vertical z-axis. The ZS beam propagates along y. The
horizonal MOT beams are retroreflected using a custom brass construction (Fig. 5.3(b))
holding a retroreflector with an integrated λ/4 waveplate and a dichroic. The dichroic is
reflective for 1064 nm and 421 nm but transmissive for 626 nm, allowing to separate ODT

2 Custom infinity-corrected objective by Special Optics with a numerical aperture of NA = 0.5 and
expected resolution of 520 nm at 421 nm imaging [129, 514].

3 MCF600-SphOct-F2E1C7 by Kimball physics.
4 ABL 1500-400 by Aerotech.
5 ALS-IR-1064-50-I-SF by Azurlight systems [246].
6 Initially YLR-LP 1030–1070 nm by IPG Photonics and later replaced with YLR-LP-SF 1064 nm by

IPG Photonics.
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Figure 5.3.: Main chamber. (a) Top-side view of the main chamber. The chamber design allows
imaging access from side and top and optical access for three ODTs and MOT beams in addition
to the ZS beam (see main text). (b) Side view cross section of the main chamber. Viewports are
recessed and MOT gradient and Feshbach coils are mounted in a custom brass structure. The
horizontal MOT beam retroreflector is held by a brass structure containing a dichroic separating
infrared from orange MOT light and reflecting blue light (see main text).

light from MOT light and directing the high power ODT light into beam dumps behind
the chamber. The reflectivity at 421 nm allows to send imaging light through the side
viewports, counterpropagating to the ODT light, and enables side imaging [517]. ODTs
operate far-detuned from optical transitions [181], MOT beams red-detuned from the
626 nm transition, ZS and TC beams red-detuned from the 421 nm transition, and the
imaging beam on resonance at 421 nm for absorption imaging [517] or red detuned for
phase contrast imaging [495]. The vertical MOT3 beam is not retroreflected, which is used
to realize a five-beam MOT [518] (section 5.4), allowing the top viewport to be used for
imaging. We use absorption imaging from the top in section 5.4, and both absorption and
phase contrast imaging in section 5.5, set up as described in Ref. [495] using a temporary
camera7. The viewports are recessed allowing objectives to be placed in closer proximity
to the atoms for high numerical aperture imaging. Feshbach coils and MOT gradient coils
are integrated into a custom brass mounting structure attached to the main chamber
(Fig. 5.3(b)) [514].

The 626 nm and 421 nm laser systems are described in detail in theses of the previous
experiment setup [107, 152, 197]. The light is delivered to the optical table of the new
experiment via optical fibers. Minor modifications on these laser systems have been made
related to the fiber delivery of the light. Mainly we optimized the beam shape and the

7 Machine vision camera BFS-U3-70S7M-C by FLIR
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fiber coupling of the 421 nm light to have as much power available on the experiment table
as possible. For each of the two transversal cooling beams up to 200 mW and for the ZS
beam up to 300 mW are available. While for the ZS the power is not a limiting factor,
the atom number in the MOT chamber would benefit from more power available in the
TC beams (section 5.4). We also observe that the transmission efficiency of the 421 nm
silica-based fibers degrades over time. A long term solution could be to exchange these
fibers with larger mode field diameter photonic crystal fibers or adding a 421 nm laser
system directly on the new optical table for free space 421 nm light delivery. The 626 nm
laser system remained mostly the same since Ref. [153] except for additional waveplates
installed before the incouplers to stabilize the polarization and the coupling efficiency over
time.

The ODT1-2 setups were moved to the new optical table, rebuilt and realigned [152,
497]. Acousto-optical modulators (AOMs) are used to stabilize and regulate the power of
ODT1-2 and the light is delivered onto an optical breadboard in front of the main chamber
with high-power photonic crystal fibers8. On this breadboard the beams are shaped for a
given desired waist (see section 5.5). Additionally we set up an acousto-optical deflector
(AOD) system for creating time-averaged potentials with ODT1-2 in the horizontal plane
as described in detail in Refs. [519, 520]. This system allows to increase the trapping
volume of the crossed ODT (cODT) formed by ODT1-2 provided that sufficient ODT
power is available, allowing for a better mode matching between compressed MOT (cMOT)
(section 5.4.3) and cODT. The ODT3 system is aligned to the chamber after retroreflection
off of the cat-eye on the stage without using a fiber.

We avoided magnetic materials near the main chamber as best as we could9. Our
Feshbach field has a better stability as compared to the previous experiment using highly
stable power supplies10 with a smaller amperage range. We stabilize11 the field with a
digital proportional-integral-derivative controller in our new experimental control software
(section 5.3) and obtain < 1 mG rms noise integrated up to 2.5 kHz and a relative stability
of ∆B/B ≃ 1 × 10−5

The chamber for quantum gas microscopy in the future will be attached to the remaining

8 LMA-PM-15 by NKT Photonics
9 In particular most types of steel and stainless steel are avoided. Non-magnetic materials are characterized

by a low magnetic permeability µr − 1 ≪ 1. If possible we used aluminum, brass, nonmagnetic stainless
steel (316L, 316LN, 316Ti), titanium, ceramics, or plastics [129].

10 BCS line by HighFinesse
11 The numbers we state are measured based on the current in the coils.

126



5.3. Experimental control and data processing network

free viewport on the main chamber (on the −x side in Fig. 5.3). Flooding the vaccum
system with high-grade nitrogen and using a glove bag to cover this part of the vacuum
system during the attachment should avoid contaminants to enter, circumventing re-baking
the system [129].

5.3. Experimental control and data processing
network

Our new experimental control is based on a real-time (RT) controller12 that allows for tens
of digital and analog in- and outputs which are individually programmable via interfaces
to multiple programming languages. The RT controller has a processor with a 1 GHz clock
rate and controls most other devices in our lab.

Since the beginning of the experiment build, the experimental control software was
changed twice. Initially the LabVIEW-based control software of the previous experimental
setup [521, 522] was replaced by a C#-based software [523] with some python interfacing
capability. After working with this software for approximately 1.5 years we realized the
necessity to implement a new control software13.

For the base code of the experimental control software we choose labscript [524–527].
labscript is open-source, python-based, and is widely adapted by multiple groups working
in atomic physics14 due to its flexibility and extensibility. The wide usage of an open-source
experimental control software whose base code is shared by many groups [524, 528–534]
has the advantage of collaborative efforts in understanding, adapting, and improving the

12 ADwin-Pro II by Jäger Computergesteuerte Messtechnick GmbH
13 Multiple motivations for the switch existed. Major motivating examples follow. (1) For every experi-

mental cycle the entire state of the RT controller was precomputed for every timestep at a predefined
sampling rate and sent to the RT controller in this form. This table of instructions is mostly redundant
for vast time intervals in which the state of few or no output channels change. Long experimental
cycles (such as with slow evaporative cooling steps) implied instruction tables that could exceed
the memory of the control computer. (2) Live control of the RT controller was absent. (3) Direct
software-controlled feedback during experimental cycling operation was absent (indirect control was
temporarily implemented through a python interface between the C# code and a database keeping
track of variables external to the C# code). (4) Programmatic modification of experimental sequences
is absent. The usage of a graphical user interface (GUI) to arrange experimental sequences is required
where the number of GUI actions rises steeply with the number of output channels required in the
modification.

14 Monash [524], MIT/Harvard [528], Maryland/NIST [529, 530] Heidelberg [531], Vienna [532], Darmstadt
[533, 534] and others [535].
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software in short times and for experiments with specific requirements15. In addition
to considering these advantages, our choice was made by the possibility to address all
motivators for the switch from the previous software by combining labscript with an
open-source interface to the RT controller initially developed by J. Schabbauer [532] in J.
Léonard’s group in Vienna [537].

5.3.1. labscript components

For an in-depth discussion of the infrastructure and the principles of labscript we refer
to the PhD theses and publications of the developers [524–527]. Here we briefly cover the
main aspects needed to understand our experimental control scheme based on labscript
(Fig. 5.4). labscript consists of four main packages, namely runmanager, blacs, lyse,
and runviewer (a). Experimental sequences are programmed directly in python and have
access to global variables defined in runmanager. A variable manager in runmanager allows
for convenient definition and manipulation of groups of variables. Variables can also be
defined through any valid python expression depending on other global variables. We find
that text-based creation of experimental sequences has several advantages over graphical
user interface (GUI)-based creation [527, 538]. The readability of complex experimental
sequences is enhanced, the ability to abstract subsequences in functions, programmatically
modify the code that generates sequences, and to version control a growing number of
experimental sequences is enabled by text-based sequence generation. runmanager reads
the python code of a sequence and generates hardware instructions that are saved to
a .h5 file [539]. This file is an efficient storage format allowing to save and append
multiple data structures including metadata, which is used to save everything related to
a single experimental run in a single file. That includes the code used to generate the
experimental sequence, the hardware instructions, and results generated at a later stage in
the data processing. The experimental sequence uses definitions from another file, called
the connection table, which defines the available hardware channels that physically exist
in the lab. blacs uses the connection table to generate a GUI that can be used to control
all devices in the lab live16 without cycling a specific experimental sequence. To run an
experimental sequence runmanager sends the path of the .h5 file to blacs which reads
the contained hardware instructions and executes them. Prior to the execution blacs

15 An active labscript forum exchange is a demonstration of these advantages [536].
16 Within labscript this is called the static mode.
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Figure 5.4.: Experimental control and data processing network. (a) labscript serves as
the base of our experimental control software. labscript consists of runmanager, blacs, lyse,
and runviewer, responsible for experiment preparation, execution, analysis, and visualization,
respectively. blacs is interfaced with the RT controller and hosts virtual camera and DDS devices.
The virtual camera device is a client for the camera program (b). lyse is connected to routines
CloudFitCommunicator and CloudFitDBWriter for communicating with fitting routines (c) and
the database (d), respectively, a graphical user interface DyPandasGUI for visualizing results, and
a machine-learning package analysislib-mloop implementing feedback to the experimental
control. The camera and fitting routines (b)-(c) consist each of a server and several other processes
enabling communication between them and lyse. (d) A network attached storage (NAS) server
provides a shared storage medium and hosts a database, written to by several environmental
sensors and accessed for manual data analysis or dashboards for graphical overview. The main
text provides a more detailed description.

checks that the connection table used to generate the experimental sequence is consistent
with the connection table used to generate the blacs interface, restricting the chances
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for human error17. lyse is responsible for post-processing and analyzing measurements
taken right after blacs reports that one experiment cycle has completed. lyse is a GUI
that collects a table (a dataframe within the pandas python library) of so-far completed
experimental shots reported by blacs and a list of user-defined python-based evaluation
routines. The routines can be chosen to be applied on manually selected sets of shots in
the lyse table, on newly completed single experimental runs (single-shot evaluation), or
on multiple experimental runs (multi-shot evaluation) for evaluation routines involving
data of past or future experimental runs. Hardware instructions from the .h5 files can be
visualized and compared using runviewer.

The communication between the different labscript components is achieved with an
open-source low-latency asynchronous networking library18. In blacs we implement an
interface to the RT controller and two virtual devices.

5.3.2. User devices

Starting from the Vienna code interface between blacs and the RT controller [532],
we extend the interface to be compatible with digital ouput cards without a separate
processor19. The table of hardware instructions for the RT controller for an experimental
sequence is efficient as it contains only the changes and corresponding times [532] required
for the experimental sequence in contrast to a fixed sampling rate table of all channel
states. The code for the RT controller (ADbasic) has been extended to allow for a digital
proportional-integral-derivative (PID) controlled analog output given any of the analog
input channels. In this way, the combination of labscript and the RT controller allows
for as many digital PIDs as there are analog-in and analog-out channels with a PID
bandwidth of up to 1/2τ0 = 250 kHz. This value is the theoretical maximum based on the
processing time (process delay) τ0 of the RT controller code [532]. The achievable PID
bandwidth using digital feedback controllers is often limited by the total system delay time
τ including circuitry after the digital output value generation for sufficiently low processing
time of the controller [541–543]. PID controllers become unstable and increase noise at a
phase lag φ = π corresponding to a frequency fφ = φ/2πτ [541, 542]. The frequency fπ is
17 If hardware connections in the lab change or new ones are created blacs and its connection table

have to be kept up to date. blacs will not execute hardware instructions for experimental sequences
generated with connection tables prior to the hardware changes, preventing unintentional signals or
voltage levels sent to a given device.

18 ZMQ [540].
19 We have no TiCo processor in the AdWin-II Pro digital output cards.
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known as “servo-bump“ [543, 544] due the appearance of a maximum at fπ in the noise
spectrum of a PID-controlled system with delay τ . In practice PID controllers often fail to
suppress noise below the unstabilizied signal starting from phase lags of π/2 corresponding
to a noise-suppression bandwidth fπ/2 = 1/4τ [543]. For example in our case the delay
caused by analog buffer cards, high-gain photodiodes, and other analog devices could limit
stabilization schemes depending on these components to 1/4τ ≃ 40 kHz. Depending on the
application such delays or bandwidths can be acceptable [532]. In these cases digital PIDs
offer a more flexible and programmable alternative with no additional device or space
required in the lab in comparison to analog PIDs.

Virtual devices are implemented in software, with no hardware components in the lab.
The cam device is a network client that connects to the camera server in our camera
program (Fig. 5.4(b)) and forwards the .h5 filepath every time blacs reports that an
experimental cycle has completed. The DDS device sets up direct digital synthesis (DDS)
devices via serial communication prior to the start of an experimental cycle. The DDS
devices control acousto-optical modulators (AOMs).

5.3.3. Data post-processing

In lyse the CloudFitCommunicator and CloudFitDBWriter programs are responsible for
obtaining fit results from the fitting program Cloudfit (c) for further use in lyse and
writing the results to the database (d). We develop DyPandasGUI, a GUI that accesses
the lyse pandas dataframe and allows to plot any field in the dataframe against any
other field in the dataframe via drag-and-drop20. A typical usage example is scanning an
experimental parameter and looking for a quick and live assessment of the atom number
as a function of this parameter. We also integrated analysislib-mloop [546] into our
lyse configuration which implements machine-learning (ML) online optimization of our
experiment. By accessing results contained in the lyse dataframe and feeding them to a
(software) controller, the controller determines the next set of parameters, and updates
the global variables defined in runmanager via the network connection to the new values
for the next cycle. Currently in our implementation analysislib-mloop realizes the ML
capabilities through M-LOOP [547], providing several controllers including neural networks
and Gaussian processes among others [548]. Despite its name, analysislib-mloop is not
20 The source code of pandas_GUI version 0.2.14 [545] was modified to implement this program. The

main changes include automatic accessing of the lyse pandas dataframe and selection of fit results
from CloudFit.
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limited to M-LOOP and allows implementation of other controllers [546]. Following a long
history [549] ML has emerged as a powerful tool in complex atomic, molecular and optical
experiments [547, 550, 551]. Among others, a strong motivation for us having ML methods
ready for the optimization of experiments is the recent demonstration of ML-assisted
productions of quantum gases in shorter times or with higher atom numbers compared
with time- and labor-intensive human optimization of experimental parameters [528, 547,
552, 553].

CameraProgram and CloudFit (Fig. 5.4(b)-(c)) are programs that receive images from
a camera21 and post-process them, respectively. Both programs are made up of several
processes that run simultaneously to provide as much independence of the data processing
steps as possible. The processes and communication between them rely on python’s
multiprocessing package. GUIs are created in pyqt and qt-designer and both programs
host a server built with the same structure as realized for the communication between
the labscript components, allowing to seamlessly transmit data between each other and
labscript. The functions along the data processing chain are best understood by following
the procedure for a given experimental cycle.

During an experimental cycle the RT controller triggers the camera to take images which
are held in memory. The virtual cam device in blacs sends the .h5 file path to the camera
server, signaling that one cycle is complete. CameraProgram saves the images locally and
sends the path and the images into a queue which is distributed to the GUI for displaying
the images and the CloudFit program. The images are then saved to the .h5 file while
the remaining post-processing is ongoing. The mediator process within the CloudFit
program receives the images and the .h5 path and sends the data to the fit process. This
process fits Gaussian functions to the atomic cloud in the images and reports the results
back to the mediator22. The mediator reports to the server that results are available and
sends them to the plot and GUI process for display. A queue between the CloudFitServer
and the mediator acts as a local memory for CloudFit which is accessed from the lyse
CloudFitCommunicator routine. Once CloudFitCommunicator receives the results from
CloudFit, they are saved to the dataframe and read from CloudFitDBWriter which writes
to a database (Fig. 5.4(d)).

Multiple servers throughout the data processing chain allow to distribute the programs

21 FLIR machine vision cameras BFS-U3-63S4M-C (side imaging) or BFS-U3-70S7M-C (top imaging).
22 The fit and GUI programs are independent and communicate only indirectly via pipes through the

mediator.
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over several computers. Typically runmanager and blacs (and runviewer if temporarily
desired) run on a computer, CameraProgram and CloudFit on a second computer, and
lyse on a third computer. The separation into control, imaging, and analysis distributes
computational power and provides independence along the post-processing chain, ensuring
that earlier steps in the chain succeed even if later steps are interrupted or fail.

5.3.4. Data storage and database

The database (Fig. 5.4(d)) is hosted by a network-attached storage (NAS) server. The
NAS has six slots for hard disk drives, is in a RAID 6-configuration for data redundancy,
and provides a shared storage medium accessible from all lab and office computers. The
database is implemented in MySQL, providing fast data access using a simple query language.
We install multiple sensors around the lab which report to the database in addition to lyse.
A notable example is a WIFI-enabled microcontroller23 connected to an environmental
sensor24 reporting temperature, pressure, and humidity. The combination is space and
cost-efficient and we deployed several sensors throughout the lab. Data pertaining to the
lab environment is monitored through an open-source dashboard service25 which accesses
the database and allows fast graphical overview of the lab state and correlating changes
in experimental results with environmental factors that would otherwise be difficult to
discover.

5.4. Five-beam magneto-optical trap

This section outlines our typical mode of operation to cool and trap atoms from the oven
to a compressed magneto-optical trap (MOT) ready for loading atoms into optical dipole
traps (ODTs).

5.4.1. Oven and Zeeman slower

We filled the oven with 50 g [513] 99.9 % purity dysprosium granulate and operate the
effusion cell (EC) and hot lip (HL) at temperatures TEC = 1100 ◦C and THL = TEC + 50 ◦C,
respectively. The HL is kept at a higher temperature compared with the EC to avoid
23 NodeMCU
24 Bosch BME280
25 Grafana
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accumulation of dysprosium atoms on the HL and potential clogging [514]. Atoms are
slowed with a spin-flip Zeeman slower (ZS) [193, 554]. The ZS design has been described in
detail in Ref. [513]. After operating the ZS at the therein described design parameters we
found that we could not achieve competitive MOT atom numbers, even with substantial
MOT optimization efforts. We decided to experimentally optimize the ZS magnetic fields
and the ZS beam detuning using Doppler spectroscopy with the narrow 626 nm transition
[555]. With this approach we were able to achieve satisfactory MOT atom numbers. The
final values for the ZS currents correspond to the optimal field assuming a safety factor26

s = 0.3 given the ZS coil winding plan and the fixed ZS length of l = 405 mm [513]. The
optimal ZS captures atoms with a start velocity of ≃ 379 m s−1, has a peak-to-peak magnetic
field of ≃ 520 G, the ZS beam detuning is ∆ZS = −7.5 Γ421, and the final velocity in the
main chamber is approximately vf = 6 m/s. The ZS beam is focused at the oven aperture
and operates with a power of 100–150 mW. Up to ≃ 110 mW we observe a rapid increase
in MOT atom number and for powers ≫ 150 mW we find a decreasing atom number at
a small rate. The decline is explained by sufficiently slow atoms being pushed back for
sufficiently high powers. The safety factor, start velocity, and detuning are consistent with
other efficient setups with ZSs of comparable length [497, 555]. The improved operation at
parameters optimal for the safety factor s = 0.3 is related to two differences compared
with our previous experimental setup [152]. The smaller of the two is a 12 % lower oven
temperature leading to a most probable velocity of ≃ 460 m/s [497], about 5 % lower than
for the previous experimental setup. We expect that the dominant effect is the 38 % shorter
ZS while assuming a safety factor of 0.85 that is even 9 % larger in the initial design
[513] as compared to the previous setup [152]. In short, we find experimentally that the
previously assumed safety factor and the associated starting velocity of ≃ 600 m/s for a
ZS of length l [513] overestimates the possible ZS performance and a more conservative
choice of s is appropriate [497, 555].

5.4.2. Magneto-optical trap

After the ZS we capture atoms in the MOT. A MOT is characterized by the dimensionless
parameter R = ℏkΓ/2Mg [556, 557] describing the maximum scattering force relative
to gravity with the gravitational acceleration g. R describes the narrowness of a MOT.
26 The security factor is the ratio between actual and maximal acceleration produced by the scattering

force of the ZS light [497, 513]. It is used to secure a sufficiently low final velocity assuming less than
idealized deceleration of the atomic beam and takes design imperfections in the ZS build into account.
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Typical broad alkali MOTs have R > 104 and very narrow MOTs are characterized by
R of order unity such as in 88Sr [556]. The important role of gravity is characteristic for
narrow MOTs. We use the 626 nm transition with a linewidth of Γ626 ≃ 2π × 136.6 kHz to
implement a five-beam MOT for 162Dy [497] which is relatively narrow (R ≃ 170). This
unusual MOT type takes advantage of the high mass of 162Dy, allowing to use only one
circularly polarized vertical beam against the direction of gravity with no backreflection.
In the horizontal plane the five-beam MOT uses two retroreflected circularly polarized
beams and a MOT gradient field as for a six-beam MOT [193]. The gained optical access
from the top allows to implement imaging along this direction in addition to imaging
through side viewports.

It is instructive to discuss the working principle of this MOT [556, 557] to gain an
intuition on trade-offs of its operation. The radiative force on an atom for a single beam
of the MOT is

F (v, r) = ℏkΓ
2

s

1 + s+ 4 (∆ + k · v + β · r)2 /Γ2
, (5.1)

where ∆ = ∆626 is the detuning, k = k626 is the wave vector, Γ = Γ626 is the linewidth,
s = I/Isat,626 the saturation parameter, v the velocity, r the position, and β = µZ∇B(r)
is the Zeeman shift with the differential magnetic moment µZ/µB = geme − ggmg between
ground state and excited state with magnetic quantum numbers mg, me and Landé factors
gg, ge, respectively [556, 557]. To discuss the working principle of the five-beam MOT
we focus on the z direction along gravity Fz(vz, z) at x = y = 0 (Fig. 5.5). A relatively
narrow six-beam magneto-optical trap (a) has steep forces Fz(vz, z; −k,−β)−Fz(vz, z; k, β)
relatively far apart that lead to a box potential, tilted by gravity −Mg (b). The width
(depth) of the box is determined by the combination of detuning and gradient (saturation
parameter) and the tilt is fixed by the mass of the atomic species. The depth of the six-beam
box can be large as atoms at z > 0 are pushed back to z = 0 due to the combination of the
gradient field and the sixth beam. If the sixth beam is removed (c) the upper wall of the
box disappears and atoms can still be trapped thanks to the competition of gravity and
upward radiation force. In equilibrium, atoms rest several millimeters up to centimeters
below the magnetic field zero leading automatically to a spin polarized MOT [506, 558].
The effective maximum trap depth is reduced to the potential difference between trap
minimum and the value at the magnetic field gradient zero crossing. Atoms that reach the
zero field lose their quantization axis and can be excited to higher-lying Zeeman states,
leading to spin polarization loss and expulsion of these atoms from the trap [558].
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Figure 5.5.: Theory of operation for a five-beam magneto-optical trap. (a) Radiative
force Fz(z) at vz ≈ 0 for a six-beam MOT without gravity. (b) The corresponding six-beam MOT
potential including gravity acquires a tilted box shape with relatively hard walls. The depth is
controlled by the laser intensity, the width by the detuning and magnetic field gradient, and the
tilt by the atomic mass. Atoms in the box undergo mostly free flight, becoming damped only in
the limit of low intensity, detuning, or gradient where the two force peaks approach each other. (c)
Five-beam MOT potential by removing the beam along gravity from (b) yields atoms trapped by
a competition of radiative force and gravity. The absence of the upper beam results in a damping
coefficient that is only intensity dependent. The inset magnifies the potential minimum region.
(d) Five-beam MOT potential towards a cMOT, from MOT (blue) to intermediate (orange)
and cMOT (green). The potentials are shifted each to the reference at z = 0 representing the
magnetic zero field. The MOT parameters (∂zB,∆, s) ≃

(
2.7 G cm−1,−65 Γ626, 24

)
(see main

text) have been used for (a)-(c) and the blue curve in (d). The green curve in (d) is for the
cMOT parameters (∂zB,∆, s) ≃

(
1.35 G cm−1,−8 Γ626, 0.6

)
and the orange curve for the average

of MOT and cMOT parameters.

To reduce (increase) the temperature (density) of the MOT, a sequence of steps can
be taken (Fig. 5.5(d)), producing a compressed MOT (cMOT). Typically this is done by
reducing |∂zB|, |∆|, and s [503, 518, 555, 558, 559]. The equilibrium position z0 at which
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F (0, z0) = 0 is given by the local dimensionless detuning

∆ + βz0

Γ = 1
2
√
s(R − 1) − 1. (5.2)

If ∆ or β change, the position z0 adjusts automatically such that ∆ +βz0 remains constant
[556, 558]. This relation shows that the vertical position of a five-beam MOT is tightly
coupled to the detuning, the gradient field, and the laser power. The damping coefficient

α = −
2ℏk2

√
s(R − 1) − 1
R2s

(5.3)

in the vicinity of the potential minimum is determined from Fz(vz, z0) ≈ αvz by expanding
Fz at z = z0 to first order in vz [556, 557]. The diffusion coefficient Dz = ℏ2k2Γ ⟨ρ22⟩ ≃
ℏ2k2Γ/2R with the excited state population ⟨ρ22⟩ [556–558] is used to estimate the equi-
librium temperature

T = Dz

kB|α|
= ℏΓ

√
s

2kB

R

2
√
R − 1 − 1/s

. (5.4)

As the MOT is compressed, the motion of the atoms becomes increasingly damped and the
temperature decreases. Notably the damping coefficient and temperature are independent
of ∆ and β which only leads to an automatic adjustment of z0. Whist this description
captures the essential working principle of the five-beam MOT, the full three-dimensional
dynamics of MOTs can be modeled using Monte Carlo simulations [489, 560, 561].

Our MOT beams have Gaussian beam diameters of d ≃ 27 mm leading to a capture
velocity of vc ≃ 16 m/s [497], suitable to capture the atoms escaping the ZS at final
velocities vf < 10 m/s. We load the MOT at a gradient of ∂zB ≃ 2.7 G cm−1, detuning
∆ ≃ −65 Γ626, and intensity I ≃ 24 Isat,626 (Fig. 5.6(a)). The MOT is shifted further below
the ZS beam with a magnetic offset field which we found to be beneficial for the loading
rate in agreement with Ref. [518]. The atoms in Fig. 5.6(a) acquire an ellipsoidal shape at
the bottom characteristic of the steep wall potential (Fig. 5.5(c)) of a far detuned narrow
line MOT [556, 562]. We found steady improvement in the atom number for lower vertical
positions. A lower MOT position avoids radiation from the ZS beam and moves the MOT
out of the way of insufficiently cooled atoms from the ZS coil side.

To load the MOT we use the transverse cooling (TC) unit with typically 100–180 mW of
power per beam at a detuning of ≃ −0.5 Γ421 [152, 497]. We could achieve a factor two to
four increase in MOT atom number depending on the alignment and the power available
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Figure 5.6.: Magneto-otical trap. (a) Picture of magneto-optically trapped (MOT) atoms
along the −x-direction in steady state below the Zeeman slower (ZS) beam. The orange MOT
fluorescence and blue ZS fluorescence is captured with a cell phone camera. (b) Loading curve of
the MOT. Points show measured atom numbers from absorption images along the z-axis and
error bars are the standard deviation over three averages. The orange line is a least-squares fit to
the data (see main text).

in the TC. The MOT atom number continually increases with the available power here,
which is limited by the overall available laser power and the coupling efficiency of the
fibers delivering the light from the laser table. We also apply a spectral broadening to the
626 nm light [497, 555, 556, 559] of about ±5 Γ626 that effectively increases the capture
volume of the MOT and yields approximately a factor two increase in loading rate.

The loading data (Fig. 5.6(b)) is fit with the loading curve function N(t) = Nss(1 −
exp(γt)) where Nss is the steady state atom number, γ is the one-body loss rate, and
R = Nssγ is the loading rate [518, 563]. We obtain Nss = 8.7(6) × 108, γ = 0.088(11) s−1,
and R = 0.77(11) × 108 s−1. In the low-density regime of an uncompressed MOT, the
two-body collisional rate can be neglected as compared to γ [563]. The values we obtain are
comparable to the optimized first reported five-beam magneto-optical trap of dysprosium
[518]. We also saw that we can increase the loading rate roughly by a factor of two with
every 100 ◦C increase in oven temperature [518].

We noticed that intensities above ≃ 25 Isat,626 are detrimental for the loading rate of
the five-beam MOT for the best MOT parameters we found. This occurs because of the
trap depth limitation of the five-beam MOT (Fig. 5.5(c)) and the increase in temperature
(Eq. (5.4)) for higher powers. A larger detuning would allow for higher powers, compensating
vertical position shift and attaining higher atom numbers at higher temperatures, but
there is a trade-off between a very low vertical position being beneficial for the loading
of the MOT and a longer compression distance and time to reach a cMOT closer to the
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magnetic zero point.

5.4.3. Magneto-optical trap compression

The compression of the MOT serves several purposes that are ideally simultaneously
fulfilled. The cMOT should have a high atom number, low temperature, form at a vertical
position that is accessible with optical dipole trap (ODT) lasers for later evaporative
cooling, and mode match to those ODTs. Since several MOT parameters for the five-beam
MOT are strongly coupled, fulfilling all requirements optimally is challenging. At the same
time this coupling provides an opportunity to explore using optimal control with the new
experimental control in the future [564]. In this section we present a compression sequence
that was satisfactory to move on with ODT loading but we believe that there is further
potential in cMOT optimization.

Our optimal compression sequence turns out to be similar to previous experiments
[518, 555, 559]. For the compression we close shutters for the ZS and TC light and close
the oven shutter so that the oven atomic beam does not heat the cMOT as it shifted
up during the compression. We turn off the frequency broadening of the 626 nm light
and ramp the ZS coils off in 20 ms. Simultaneously the compensation and gradient fields
are adjusted to minimize the positional displacement of the MOT due the ZS magnetic
field change, which was experimentally optimized. Overall the gradient field is reduced
to ∂zB ≃ 1.35 G cm−1, the detuning to ∆ ≃ −8 Γ626, and the intensity to I ≃ 0.6 Isat,626

in a total compression time of ≃ 200 ms. These values have been used in Fig. 5.5(d).
With typically 4 s MOT loading time we reach in the end N ≃ 100–150 × 106 atoms at
temperatures 10–20 µK in the cMOT. The corresponding estimated cMOT volume [558] is
V/(2π)3/2 ≃ (0.5 mm)3–(1 mm)3, peak densities n0 = N/V on the order of 1010 cm−3, and
classical phase space densities PSDc = n0λ

3
dB in the range 10−6–10−5, which are typical

starting conditions for evaporation in ODTs [555, 558, 565]. We observed cMOT lifetimes
of several hundreds of milliseconds which is sufficient for ODT loading [518].

A better trade-off between atom number and temperature of the cMOT for ODT loading
could be to compress further than we presented in this section. After working with the
ODTs (see following sections) our experience suggests that sacrificing atom number for a
lower temperature and reduced size with a better mode matching to the ODTs is favorable
[490].
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5.5. Dysprosium Bose-Einstein condensate

In this section we describe the first 162Dy BEC production with the new experimental
setup. The results in this section are preliminary in the sense that the imaging system is
rudimentary and was not explicitly characterized. In sections 5.5.1-5.5.2 we use a simple
machine vision camera27 and the atomic cloud is imaged using a 4f -configuration with
two singlet 100 mm lenses. The lenses are mounted in a lens tube to form a telescope
and the magnification Mg = 1 is measured in a test setup with an error of < 1 %. By
manually adjusting the telescope position as opposed to with a micrometer stage, the focus
position is determined by minimizing the apparent widths of a thermal cloud in absorption
images. The adjustment would be improved by using a micrometer stage and repeating
the adjustment at colder temperatures. Due to the imaging setup we assume that defocus
aberration is the largest source of systematic error in sections 5.5.1-5.5.2, leading to lower
optical densities and larger widths than expected. These effects quantitatively influence
the absolute values of densities, widths, and temperatures but not qualitative observations.

After we observed the first BEC with the new setup using absorption imaging (ABI)
(sections 5.5.1-5.5.2) we implemented phase-contrast imaging (PCI) allowing us to see
then density in-situ [495, 566] using an objective with a magnification of Mg ≃ 76.6. PCI
with a detuning ∆421 ≃ −30 Γ421 was used for our BEC production using machine learning
(section 5.5.3). The change from ABI to PCI is not necessary for the observations presented
in section 5.5.3 but occurred during our continuing efforts to upgrade the new experiment.
At this stage we did not yet characterize the imaging system in-depth and the objective
was slightly defocussed, allowing us to obtain Gaussian fits to the data from the thermal
cloud to the BEC regime and qualitatively assess atom numbers and widths. Thermal
clouds and BECs are clearly distinguishable even with this temporary imaging setup28.

5.5.1. Loading optical dipole traps

We start from a compressed MOT (cMOT) with 100–150 × 106 atoms at temperatures
10–20 µK. Our goal is to load atoms into a crossed ODT (cODT) formed by ODT1-2
(section 5.2.2) that each approximately have waists of wx,y ≃ 62(5) µm. By directly loading

27 FLIR BFS-U3-70S7M-C
28 BECs appear as an Airy disc point-spread function since they are presumably smaller than the

resolution attained with the defocussed objective. The BEC density was too high for the chosen
polarizer angle in PCI when the atomic cloud was perfectly in focus, leading to saturated images.
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from the cMOT into the cODT at a power of P0 = 7.5 W each, we only retain typically
≃ 0.1 ×106 atoms in the relatively shallow dimple. By changing the holding time after
the cODT loading we see that many atoms get lost in the wings of the ODTs and only
atoms in the vicinity of the dimple remain trapped. The low loading efficiency results
from a combination of the cMOT to cODT mode matching and the cODT trap depth.
The cMOT has a volume of approximately 1 × 1 × 1 mm3 while the capture volume of
the cODT is on the order of the waist cubed. The trap depth of the cODT with P0 each
is approximately ∆Vx,y/kB ≃ −30 µK and ∆Vz = 2∆Vx,y. These limitations could be
addressed by more laser power. Increasing the overall laser power would allow to create
spatially larger time-averaged potentials with greater trapping depths by activating the
scanning AODs and beam shaping the ODTs to smaller waists. In our setup here the
power was limited to P0 due to losses at AOMs and fibers in the beam preparation for
the experiment. Due to these limitations we decided to temporarily use the high-power
multifrequency29 100 W, 1070 nm fiber laser as ODT3 [495] with a waist of w ≃ 30 µm to
initially capture atoms in a trap with better mode matching to the cODT and to increase
the density of the atoms from the cMOT. We capture 10–20 × 106 atoms in this laser
at a power of P0,I ≃ 72 W and reduce the power for simplicity with a single exponential
ramp PI(t) = P0,I exp(−ΓIt) to pre-evaporate the atomic cloud into the cODT. Other
ramp shapes could lead to higher evaporation efficiencies [568, 569]. We optimize the rate
ΓI and the final power by monitoring atom number and temperature in the cODT. We
find ΓI ≃ 2 s−1 for a final power PI/P0,I = 0.03 which amounts to an evaporation time of
≃ 1.8 s. At this stage 1–2 × 106 atoms remain in the vicinity of the ODT3 focus, which are
transferred without significant losses to the cODT. The linear polarization of the ODTs is
adjusted to maximize the atom number in the cODTs and we find that this polarization
minimizes the temperature. The dependence originates from the fact that the Rayleigh
scattering rate in the ODTs is angle-dependent due to the tensor polarizability. As a result
the heating rate due to the gained recoil energy is angle dependent and expected to be
minimal when the the ODT polarization is orthogonal to the magnetic field [567]. We
confirm that the cODT atom number and temperature are sinusoidal and π out of phase
29 IPG Photonics YLR-LP 1030–1070 nm. The temporary laser is a suboptimal choice as we likely

reproduce previously reported heating effects due to the multiple frequency components [152, 197, 567].
The heating effect imposes an upper limit on the initial power used to temporarily capture atoms and
a lower limit on the rate with which the laser power is ramped down in order to trade off temperature
and atom number. Towards the end of this thesis we replaced the laser with the single frequency
YLR-LP-SF 1064 nm model. The single frequency laser was not available to us at the time we first
needed it.
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as a function of the polarization angle θ [567].
The Feshbach magnetic field is calibrated using radio frequency spectroscopy [152, 197]

in the cODT. Using this standard method for the calibration, we accurately reproduced
previously reported Feshbach spectra by scanning the magnetic field and observing atom
number and temperature starting from atoms at ≃ 5 µK after partial evaporation in
the cODT [6, 138, 508]. Our measurement also produced the current to field conversion
expected from the coil design [514] with deviations of less than 5 mG/A. We set the field
to 1.8 G which is far from Feshbach resonances [508].

We measure the cODT trap frequencies by displacing the ODTs horizontally by 0.5–1
waist using the AODs during the transfer from ODT3 to cODT and observe the COM
oscillations. The frequencies in the two directions transverse to the top imaging are ωx,y =
[237(5), 266(4)] Hz. Assuming that the ODTs are intersecting at approximately 90◦ we
infer ωz =

√
2ω̄x,y ≃ 355(5) Hz. The geometric mean trapping frequency ω̄x,y ≃ 251(3) Hz

is consistent with beam waists of ≃ 64 µm at a power of P0 = 7.5 W. In this cODT
we find a 1/e lifetime of a few seconds. The overall geometric mean trapping frequency
ω̄ = (ωxωyωz)1/3 ≃ 2π × 282(3) Hz is useful to define the classical phase space density
(PSD) [528, 568]

PSDc = N
(ℏω̄)3

(kBT )3 . (5.5)

This PSD is connected to the peak density n0 ≃ PSDc/λ
3
T and the simple measure

N/x6
th ∝ PSDc for estimating the in-situ PSD from time of flight images containing atomic

clouds with thermal spatial widths xth
30.

5.5.2. Evaporative cooling and Bose-Einstein condensation

To achieve a BEC with the new experimental setup we first choose a single exponential
ramp P (t) = P0 exp(−Γt) of both ODT powers simultaneously starting from P0 = 7.5 W.
We first fix the final power to be P/P0 = 0.3 and optimize the evaporation duration,
finding an optimum of tevap = 8 s (Γ ≃ 0.15 s−1). Next we vary the final power P/P0 while
keeping this evaporation time tevap fixed (Fig. 5.7). Overall this optimization could be
improved by varying both the rate and the final power. As P/P0 approaches 0.1 we observe
a drastic decrease in atomic cloud width while the atom number decreases at a slower rate
(Fig. 5.7(a)-(b)). The temperature T = (M/2)ω̄2

x,yx
2
th/(1+ ω̄2

x,yt
2) (Fig. 5.7(c)) is calculated

30 The width xth =
√

2σ is related to the variance σ of a normalized Gaussian distribution
exp(−x2/2σ2)/

√
2πσ2.

142



5.5. Dysprosium Bose-Einstein condensate

(a) (b) (c)

0.15 0.20 0.25 0.30 0.35 0.40
0.0

0.1

0.2

0.3

0.4

at
om

nu
m
be
r
N

(1
06
)

0.15 0.20 0.25 0.30 0.35 0.40
0

50

100

150

200

relative power P/P0
w
id
th
x
th

(µ
m
)

0.15 0.20 0.25 0.30 0.35 0.40
0
1
2
3
4
5

te
m
pe
ra
tu
re
T

(µ
K
)

0
2
4

Figure 5.7.: Evaporative cooling. (a) Atom number, (b) Gaussian width, and (c) temperature
along the evaporation to different ODT powers P relative to P0 = 7.5 W after 10 ms time of flight.
The inset in (c) shows 100 × PSDc as a function of P/P0 (see main text). Error bars indicate the
standard deviation of four experiment repetitions.
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Figure 5.8.: Bose-Einstein condensation. Optical density (OD) distributions after 20 ms time
of flight in a field of view of 250 × 250 µm2 (top row) and one-dimensional cuts through the center
(bottom row) for final relative powers P/P0 = (0.115, 0.105, 0.095) in (a), (b), (c), respectively.
The OD is averaged over four single shots and error bars in the bottom row show the standard
deviation. The bottom row shows the emergence of a bimodal density distribution where the
orange dashed line is the thermal component and the green line is the sum of thermal and
condensate components. The estimated condensate fractions are ≃ (8, 35, 69) % from left to
right. Systematic errors are discussed in the main text.

from (b) assuming ballistic expansion during t = 10 ms time of flight [155, 570, 571]. The
associated PSDc ∝ N/x6

th increases by a factor of 20, reaching values ≃ 2.5 × 10−2, and
the temperature drops below 500 nK. The temperature (PSD) is likely overestimated
(significantly underestimated) systematically due to the temporary imaging setup.
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To investigate the regime near P/P0 ≃ 0.1 more closely we increase the time of flight
to 20 ms such that the atomic clouds expand longer and their thermal wings are larger
in the images. At relative powers P/P0 ≃ 0.115 and below we observe the emergence of
a bimodal density distribution (Fig. 5.8), characteristic of Bose-Einstein condensation
[112, 113, 116, 117]. A sum of a Gaussian and a column-integrated inverted parabolic
function is fit to the data. The functions account for the thermal component and the BEC
component in the Thomas-Fermi limit, respectively [112, 113, 116, 117]. The range for the
thermal component fit is limited to the outer wings and bosonic enhancement is neglected
[155, 572]. Total atom numbers N ≃ [186(6), 128(21), 58(1)] × 103 and temperatures
T ≃ [388(17), 245(17), 177(10)] nK are obtained in Fig. 5.8(a)-(c). Theoretically the
standard BEC transition temperature with N ≃ 130 × 103 atoms and trapping frequencies
ωx,y,z/2π ≃ 80 × (1, 1,

√
2) Hz at a power of P/P0 ≃ 0.1 is expected to be Tc ≃ 209 nK31

[183, 185]. Assuming either a thermal fit range that differs by ±5 µm or a broadening
effect of 10 % of the density distribution due to the imaging setup is sufficient for a good
agreement between the theoretical expectation N0/N = 1 − (T/Tc)3 and the temperatures
and condensate fractions N0/N determined experimentally in (b)-(c). The PSDs in (b)-(c)
are consistent with ≃ 0.9 corresponding to peak densities on the order of n0 ≃ 1/λ3

T ≃
0.5 × 1020 m−3 which is typical for dipolar BECs [113].

5.5.3. Machine learning Bose-Einstein condensation

In the last section we obtained a BEC using a single exponential ramp from P0 = 7.5 W
to 0.1P0 in 8 s, optimized by ourselves. This section serves as a proof of principle that
machine learning techniques as set up with the new experimental control software allow to
improve experimental parameters live in our lab without human intervention.

To test the efficiency of the machine learning capabilities of the new control we choose
here three consecutive exponential ramps for evaporative cooling. The evaporation rates Γj

(j = 1, 2, 3) are optimization parameters while we constrain the powers to begin at 0.8P0

and to be Pj/P0 = (0.5, 0.2, 0.1) after step j. The rates Γj are each constrained between
0.12–0.73 s−1 which constrains the total evaporation time between 2.8–17.0 s. The time τj

for power Pj to be ramped exponentially down to power Pk is related to the rate Γj via
τj = ln(Pj/Pk)/Γj. By ending evaporation at a power of P3/P0 = 0.1 we know that the

31 Finite size and interaction corrections to Tc [185] amount in total to ≃ −13% at as = abg ≃ 140(20) a0
[138] for our present parameters.
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Figure 5.9.: Machine learning of evaporative cooling. (a) Reward N/x6
th ∝ PSDc as a

function of the reward-ordered run index. Insets show the single-shot normalized in-situ optical
density in a field of view of 50 × 50 µm2 for the run indices denoted in the top right. Rewards are
normalized to the reward of the starting parameters (ordered run index 24) corresponding to a
thermal gas and error bars show the propagated error from the standard error of the Gaussian fit
parameters used to determine N and xth. The machine finds sequences suitable for the generation
of BECs (run ≳ 30) despite failed fits at similar parameters (e.g. run seven, see inset) and the
optimal parameters correspond to a fast initial ramp followed by two slow and smooth ramps
(see main text). (b) Optimization parameters (Γ1, Γ2, Γ3) (blue circles, orange squares, green
diamonds) as a function of the reward-ordered run index.

final trapping potential is roughly the same as in our manually optimized experiment and
that finding suitable combinations of rates should be sufficient for the machine to obtain
BECs.

To set up the optimization we use a Gaussian process alternating with a single differential
evolution step if no better parameters are found for four consecutive Gaussian process
runs32. For our purpose a Gaussian process [573] is an optimization method trading off
convergence time with noise resilience [547, 574]. The single differential evolution step
serves to interrupt the stagnation of the Gaussian process with a random selection of

32 In the analysislib_mloop setup file the parameter max_num_runs_without_better_params = 4.
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optimization parameters. We define the reward as N/x6
th, which is proportional to PSDc

and can be evaluated for every single shot. The optimization goal is to maximize the
reward33. We run 50 single experimental shots with this machine learning setup starting
with Γj = 0.3 s−1 for all j, corresponding to a thermal gas. Figure 5.9 shows the rewards
and the optimization parameters for the entire run in the order of increasing reward.

During the optimization the machine discovers evaporation sequences reaching BECs
(run ≳ 30). At about run 30 there is a characteristic increase in PSD by an order of
magnitude and the density profile changes qualitatively to that observed with our manual
BEC evaporation sequence. The optimal parameters Γopt

j found by the machine for the
highest PSDs have interesting properties. Γopt

1 ≃ 0.73 s−1 ≫ Γopt
2,3 corresponds to a fast

evaporation near the upper constraint for Γj followed by two slow evaporation steps(
Γopt

2 , Γopt
3

)
= (0.25, 0.19) s−1. Not only do the precise value of all evaporation rates lead

to a total evaporation time of 7.95 s similar to our manually optimized evaporation time
but the values for

(
Γopt

2 , Γopt
3

)
lead to a minimal discontinuity of ∂tP (t) at the interface

between ramps two and three. Discontinuities in ∂tP (t) far into the evaporation sequence
can heat the atomic sample and lead to a reduction in PSD. The rates give two ramps of
nearly equal duration 3.65(1) s that combine smoothly to a single ramp matching at their
interface both P as constrained by us and ∂tP as found by the machine to be beneficial
for the PSD.

Failed fits (run seven and several others up to run 13 in Fig. 5.9) due to image noise
at parameters near an efficient evaporation sequence could have prevented the machine
from exploring efficient parameters further. A high number of failed fits during a run are
detrimental for the convergence over time since they force the machine to explore other
parameters although the best ones might have been found already. The combination of the
Gaussian process and differential evolution prevented the machine to learn (conclude) that
shots like seven correspond to an inefficient evaporation and allowed the machine to explore
an efficient regime for a substantial amount of the total runs (runs ≳ 26). Due to the
change in imaging setups that occurred during our characterization of the BEC production
(section 5.5.2) and the machine learning characterization we cannot quantitatively compare
the BECs reached between the two approaches.

Our proof of principle demonstration in this section can be extended and improved
in several ways. By improving the laser stability and the lab environmental conditions,

33 In optimization the objective function is known as reward (cost) if the goal is to maximize (minimize)
the function.
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especially the lab temperature, the number of single shot noisy images can be reduced.
Typical reasons for noisy images are slight laser power fluctuations near the moment
the image is taken and laser lock stability limitations. The analysislib-mloop script
defining the machine learning setup was used as a single-shot routine in lyse, accessing
only one shot for the objective function evaluation. By setting it as a multi-shot routine,
averages of the objective function over several shots can be used. Both these improvements
benefit the convergence of the optimization over time. To optimize BECs for atom number
and temperature, a separate objective function definition can be helpful [528]. For the
evaporation, more steps and parameters can be included and other controllers, including
the neural net, could yield improved evaporation sequences [528]. More generally the
machine learning capabilities could be applied to other stages of the experiment. For
example optimizing the MOT or cMOT sequences before the ODT loading could yield
higher atom numbers in the cMOT or better mode matching to the ODTs and therefore
better starting conditions for high atom number BECs.

5.5.4. Conclusion and outlook

In this section we demonstrated the first production of a 162Dy BEC using our new machine.
Despite the very simple single evaporation ramp for the production of this BEC we could
achieve atom numbers that are already competitive with good conditions of the previous
experimental setup [152, 246]. At multiple stages of the way towards this first BEC we
pointed out possible improvements of the experimental conditions that will clearly benefit
the achievable atom numbers of this experiment going forward. Our new experimental
control software offers several improvements over previous controls including a live control
of the experiment, monitoring of environmental conditions, the ability to abstract and
programmatically change experiment sequence-generating code, and we have implemented
a closed-loop interface for the experiment enabling automatic optimization of experimental
parameters through several feedback controllers from classical optimization to machine
learning based algorithms. The machine learning capabilities of the new control were
demonstrated by letting the experiment optimize a more complex evaporation sequence
which, given loose constraints, yielded BECs in the absence of human intervention. In
the future it will be interesting to probe the highest density regimes achievable with this
experiment setup and compare with the theoretically predicted phase diagram of oblate
quantum ferrofluids [3, 302]. With additional control over the optical trapping potential
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as provided by a digital micromirror device whose implementation is currently underway,
investigations of the so-far experimentally unexplored Higgs amplitude mode of trapped
dipolar supersolid droplets [7] and the behavior of supersolids in toroidal traps will be
possible [1, 345]. Cold atomic clouds from compressed magneto-optical traps or BECs in
optical dipole traps are also the basis for the transport to the microscope chamber in the
future.
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“Life is like riding a bicycle. To keep your
balance, you must keep moving.”

– Albert Einstein

Chapter 6
Conclusion and Outlook
This thesis investigates self-organized structures and excitations of dipolar quantum fluids
and presents the implementation of a new dysprosium quantum gas experimental setup,
paving the way for future studies of new quantum phases in dipolar quantum fluids.
The results of this thesis are presented in three parts spanning chapters 3-5. We briefly
summarize the results, draw conclusive insights, and outline future prospects following a
similar structure.

One-dimensional structures

The starting point of this thesis is the first dipolar supersolid of dipolar quantum droplets in
a tubular trap [9, 96, 97]. We realize this state with dysprosium Bose-Einstein condensates
in a narrow interaction range, where the interplay of interactions combined with quantum
fluctuations lead to a stable droplet crystal structure immersed in a superfluid background
[6].

We observe experimentally that the structure formation is driven by low-energy roton
excitations [5]. Comparison with our numerical simulations shows that these are two
degenerate roton modes which split up into the low-energy Goldstone mode and Higgs
amplitude mode, associated to the translational symmetry breaking of the supersolid
[7, 8]. Through in situ observation of the density fluctuations, we demonstrate that the
overall density fluctuation strength is thermally enhanced. Moreover we identify that
the supersolid is characterized by the simultaneous presence of crystal and superfluid
phonon modes. Our analysis indicates that these phonon modes mix with other modes in
tubular harmonic traps due to coupling between collective excitations and center of mass
motion. Additionally the phonons couple to the Higgs amplitude mode due to a symmetry
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limitation of low-energy elementary excitations in tubular traps.
In collaboration with S. Reimann’s group [1] we investigate a toroidal trap, where the

superfluid is initially uniform along the azimuthal direction and a center of mass is absent.
With varying interactions the toroidal superfluid undergoes a quantum phase transition
to a droplet supersolid, where Goldstone phonons and Higgs amplitude modes appear
in a decoupled form. The decoupling allows a clearer observation of the connections to
elementary excitations that are predicted for infinitely extended supersolids. We identify
that the supersolid excitation spectrum is characterized by three distinct branches, including
two Goldstone phonons and a Higgs amplitude mode. The amplitude mode exists in a
decoupled form since the toroidal trap provides with every droplet a new symmetry
to which the low-energy excitations belong, while the lowest energy Higgs amplitude
mode belongs to and remains in a distinct symmetry. One Goldstone phonon originates
from the superfluid phonon prior to the phase transition. In the supersolid phase, it
manifests as an in-phase oscillation between the superfluid background and the crystal
structure. The second Goldstone phonon originates from one of two low-energy roton
excitations (the other becoming the Higgs amplitude mode) and presents in the supersolid
an out-of-phase oscillation between the superfluid background and the crystal structure,
allowing this phonon to remain at lower energy than the first Goldstone mode. Together
these two phonons are shown to have remote analogies to the first and second sound in
superfluid helium at finite temperature. Our characterization of Goldstone phonons and
Higgs amplitude modes based on their symmetry allows us to devise experimental protocols
for selectively exciting individual collective modes, setting the stage for observations of
Goldstone and Higgs amplitude modes in experimentally feasible systems.

Two-dimensional structures

Our experimental investigations of density fluctuations in oblate trapped dipolar quantum
fluids reveals that the crystallization mechanism is driven by angular roton modes [4].
The structure formation mechanism is analogous to the one in tubular traps with the
lowest-lying roton modes contributing most of the density fluctuations at the transition
point. The competition between several angular roton modes of different symmetry and a
limited atom number in our experiments leads to a competition of crystal structures with
different droplet numbers.

Theoretically we show that tighter traps and higher atom numbers are favorable for
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obtaining a droplet crystal immersed in a superfluid background with a substantial density
overlap between the droplets [2]. The density overlap was shown to stabilize the phase
of the droplet array when tuning the interactions dynamically from the superfluid into
the supersolid regime. Analogous to the rotationally symmetric toroidal trap the lowest
angular roton modes split up into a low-energy Goldstone phonon and a Higgs amplitude
mode. In the oblate harmonic trap, these modes couple to other modes due to the presence
of center of mass motion, similar to the tubular trap system. The parameters favorable
for supersolidity were further discussed based on the scaling properties of the extended
Gross-Pitaevskii theory. Evidence for supersolids with two-dimensional crystal structures
has since been reported by the Innsbruck team [403, 410].

Our investigation of the phase diagram in these oblate traps towards higher atom numbers
demonstrates that supersolid honeycomb and amorphous labyrinth phases form beyond the
supersolid droplet phase [3]. The change is in the phase diagram is characterized by a density
saturation in the ground states or low-energy metastable states. An increasingly dominant
role of the quantum fluctuations allows for a decreasing repulsive interaction strength with
the same effective stabilization in the density saturated regime. The honeycomb phase
represents a novel type of supersolid and the labyrinth phase is characterized by multiple
near-degenerate metastable amorphous patterns, reminiscent of characteristics found in
glasses [78, 480, 492]. Superfluid flow is possible through a honeycomb density pattern,
which was shown to have a very high superfluid fraction in an extended study of this
new phase by A. Gallemí and L. Santos [466]. The self-organization of a superfluid in an
amorphous density pattern suggests that the labyrinth is a candidate for a superglass [78,
480, 492, 575]. We show that the stability of the patterns depends on the trap aspect ratio
and that the characteristic length scale of the patterns scales like the roton momentum in
the quasi 2D regime. The ability of the dipolar BEC to form various patterns in equilibrium
and the controllability of the pattern formation with interaction strength, density, and
trapping geometry suggests this system as a model for self-organized equilibrium in weakly
interacting quantum many-body systems.

New experimental setup

Simultaneous to the investigations of self-organized one-dimensional and two-dimensional
structures and excitations of dipolar quantum fluids, we design and construct a new
experimental setup for dysprosium. The design of the new setup allows to form both
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magneto-optical traps and Bose-Einstein condensates in the same experimental chamber.
An unconventional five-beam magneto-optical trap [518] exploiting the high mass of
dysprosium atoms and narrow linewidth of the trapping light allows to implement a
high-resolution objective from the missing sixth beam direction along gravity. We devise
a new experimental control software based on the open-source software labscript [524].
Extending an interface between this software and a real-time controller initially developed
by J. Schabbauer in J. Léonard’s group [532] and integrating it into a network of processes
that automatically analyzes images of magneto-optical traps and Bose-Einstein condensates,
we establish a flexible and modern approach for experimental control of dipolar quantum
fluids. The control software allows to use live and automatic feedback to the experiment
from measured quantities. We realize this functionality by implementing a machine learning
package for optimizing experimental parameters [546–548]. Using this experimental control
we achieve the first 162Dy Bose-Einstein condensate with the new setup. We also show
that the machine learning capabilities are ready for further optimization of the experiment
by letting the machine optimize a cooling sequence under loose constraints, realizing a
Bose-Einstein condensate in the absence of human intervention.

Outlook

The Higgs amplitude mode of dipolar supersolids [1, 2, 7] has not been experimentally
observed to this day. This Higgs amplitude mode is stabilized by the absence of modes
with the same symmetry which allows for the stability within a narrow range of interaction
strengths in harmonic traps and within a wider range in toroidal traps. Finding experi-
mental evidence for the Higgs mode would allow to complete the picture of the excitation
spectrum of trapped dipolar supersolids together with the so-far observed Goldstone [8],
higher compressional [148, 371, 576], and roton [4, 5, 125] excitations. Work towards the
experimental realization of toroidal traps for dipolar supersolids is already underway [345,
346]. In the future, it would be interesting to study whether the stabilization of the Higgs
amplitude mode can be achieved with a fundamentally different mechanism. The Higgs
mode in the superfluid to Mott insulator transition [167, 168, 173, 577] and in supersolids
in crossed optical cavities [170, 578] is stable due to the effective particle-hole symmetry in
these systems. The tricritical point, where the droplet supersolid and honeycomb supersolid
become degenerate in infinite oblate dipolar quantum fluids [3, 238, 302] could potentially
have a significant role for the stabilization of the Higgs amplitude mode. Given that the
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energy functional becomes symmetric with respect to the density wave amplitude which
gives rise to the droplet or honeycomb (”particle“ or ”hole“) solutions one can speculate
that the Higgs quasiparticle is particularly stable in the vicinity of this region in the phase
diagram.

Finite temperature investigations as a whole are interesting extensions of the work
presented in this thesis. We saw that the density fluctuation strength at the superfluid
to supersolid phase transition is thermally enhanced [5] and the Innsbruck team showed
that finite temperature results in a shift of the critical scattering length, allowing to
drive the crystallization counter-intuitively by heating the superfluid [316]. Furthermore
cooling into the supersolid regime was used to retain phase coherence for two-dimensional
supersolids [402, 403] and the decoupled Goldstone phonons in the toroidal trap showed
behavior remotely analogous to first and second sound in helium at finite temperature
[1]. These are several indications of the importance of finite temperature effects in dipolar
supersolids. The thermodynamics of these supersolids has so far not been studied in
depth. With concrete proposals suggesting a finite temperature extension of the extended
Gross-Pitaevskii theory [315–317], investigating the supersolid thermodynamics is a major
topic for a deeper understanding of the supersolid phase.

As we have outlined at the end of section 2.5, the self-organized honeycomb and labyrinth
structures are interesting for future studies of dipolar quantum fluids since they challenge
fundamentally the state-of-the-art of the numerical and theoretical framework, and neces-
sitate experiments capable of reaching the high-density regimes. We believe realizing these
regimes will be crucial for a further development in the description of dipolar quantum fluids.
Mapping out the phase diagram experimentally would allow to probe the validity of the
quantum fluctuation correction as included in the extended Gross-Pitaevskii theory in new
regimes [138, 227]. It is theoretically interesting to investigate what the minimal conditions
for the structure formation are [276, 284]. The honeycomb and labyrinth patterns can also
be seen in classical reaction-diffusion systems [274] and similar models that do not feature
an anisotropic interaction. Exploring these minimal conditions could help classifying the
complexity of dipolar Bose-Einstein condensates in terms of their suitability as model
systems. It could also help determine whether realistic, potentially simpler, and more
controllable quantum systems possess similar self-organization capabilities. A milestone
achievement in S. Will’s group with the observation of Bose-Einstein condensation of
dipolar molecules [247] was reported right at the end of this thesis. These dipolar molecules
allow for tunable dipolar lengths [246] and for absolute values of the dipolar interaction
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strength several orders of magnitude higher than in atomic Bose-Einstein condensates.
As outlined in section 2.4.3, this enhancement in the dipolar lengths can be rescaled into
effective parameters, enabling the realization of the effective high-density regimes at much
lower atom numbers, densities, and in looser traps compared to atomic Bose-Einstein
condensates [3, 246].

Lastly our new experimental setup holds the potential to address the above-mentioned
avenues for physics with dipolar quantum fluids. The experimental control is equipped with
a flexible programmable interface for the generation of experimental sequences and allows
for direct feedback from measurements. The machine learning package, alongside other
optimization algorithms that can be easily integrated into the new experimental control,
allows for the optimization of experimental parameters. Using computer assistance in this
way, quantum fluids with higher atom numbers or shorter production times will allow for a
more efficient exploration of the self-organized phases presented in this thesis. Furthermore
the experimental setup in its current state is the foundation for incorporating an additional
vacuum chamber and deploy a quantum gas microscope for studying extended Hubbard
physics [51, 326].
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A. A new numerical toolbox

The starting point for the numerical toolbox developed during the course of this thesis
is a code initially provided by M. Wenzel [197] which was used, modified, and described
more in depth in our previous work [205]. This code solves the eGPE dynamics using the
finite difference Cranck-Nicolson method [579] in real and imaginary time. The code is
based on C/C++. An initial version to solve the BdG equations was also developed by M.
Wenzel, which was matlab-based and separate from the C/C++ code. The matlab code uses
a split-step Fourier method with Lie splitting to solve for the ground state in imaginary
time and did not have the capability to simulate specific real-time dynamic simulations of
the eGPE.

From this starting point we experimented with different programming languages and
algorithms with the goal of achieving better computational performance, a unified code
base, and to be able to share it more easily and teach how to use the code for other
members in our team. First we implemented a BdG solver in C/C++ based on spectra
[580], which is a linear algebra library implementing among others matrix-free eigenvalue
solvers similar to the arpack library that matlab relies on. The solution of the BdG
equations in C/C++ and matlab were comparable in speed and give identical results for
simulations of BECs. For quantum droplets we found the convergence using the spectra
package slower as compared to the matlab implementation. We implemented a split step
method for imaginary time evolution additionally in mathematica and julia. The best
performance among all codes including the C/C++ version was achieved in the matlab
implementation. The increased speed could be traced to the lowest time of the discrete
Fourier transforms in the matlab implementation. The split step method relies heavily
on discrete Fourier transforms and takes advantage of the fft implementation in matlab
which by default uses multithreading. Matrix operations in the C/C++ code were based on
a custom class which was not highly optimized and performance could likely be gained by
using a specialized matrix operation library like eigen [581]. We expect that the C/C++
code with a more efficient implementation could provide similar or improved performance
compared to the matlab implementation. julia is a relatively new programming language
that ought to combine speed comparable to C/C++ code and convenience comparable to
matlab or python code due to its design based on multiple dispatch [582]. Due to the
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convenience of having other numerical functions in the matlab suite directly connected
to the numerical simulations and the advantageous performance outright we decided to
develop the code in matlab further.

B. Principal component analysis

This appendix introduces the basic idea of principal component analyis (PCA). Our
discussion closely follows the thesis [153] having introduced the most important concepts
related to the BdG solutions and our previous work [7, 205]. For detailed information
about PCA we refer to the book [583].

PCA is a model-free statistical analysis method to extract information of large or noisy
datasets by representing the main variance in these datasets with a few uncorrelated
variables, known as principal components (PCs). The technique was developed originally
by Pearson [584] and Hotelling [585]. In ultracold atom experiments PCA has been used
to filter noise [586], to identify the largest noise sources [587], to map out the critical trap
aspect ratio in the formation of dipolar quantum droplets [282], and to measure collective
excitations [5, 148, 372]. To probe angular oscillations of dipolar supersolids a PCA-related
method was proposed [410]. In the following our main goal is to establish a connection
between PCA and BdG theory.

We consider a set of Ñ images where each image contains p pixels. We write the individual
images as a vector Xi, with the pixel values of each image i as components and obtain the
mean image

M = 1
Ñ

∑
j

Xj. (B1)

We subtract the mean from the images and define a new p× Ñ matrix

B = [X1 − M , . . . ,XÑ − M ] (B2)

and the covariance matrix

CB,B = cov (B,B) = 1
Ñ − 1

BBT. (B3)

This p× p matrix is in general quite large and it is costly to diagonalize directly [372]. The
ability to use PCA for reducing dimensionality in the data lies in the observation that the
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rank of CB,B is at most Ñ and it has the same spectrum as a Ñ × Ñ matrix [372, 586].
PCA diagonalizes the covariance matrix CB,B yielding a set of eigenvectors X̂j, the PCs,
and eigenvalues λj. This is in general computationally expensive but in PCA, a subset of
the eigenvectors of the full spectrum sorted by largest variance is obtained using iterative
methods [372]. Then the initial images can be represented as a linear combination of the
new ortho-normal eigenvectors Xi = M +∑

j αjX̂j , with the respective weights αj of each
PC. The weights are obtained by projecting the centered image onto the corresponding
PC [372] and are related to the Ñ × Ñ matrix with a linear transformation [586]. Since
the PCs are sorted by variance in practice a small set of PCs is sufficient to represent most
of the variance in the dataset and higher PCs play a negligible role [153, 205, 372, 586].
This way PCA is used for dimensionality reduction in datasets.

We show in the following that PCA is directly related to the density fluctuations obtained
by the BdG equations [372]. Using a hydrodynamic model [232] or the linearized time
evolution with the BdG density fluctuation (2.47) with multiple modes excited one can
write

n(r, t) = n0(r) +
∑

j

cjδnj(r) cos(ωjt+ ϕj) (B4)

for the density time evolution where δnj is the j-th normal mode or BdG density fluctuation
pattern [372] with frequency ωj and phase ϕj. Analyzing time series or discrete shots in
either experiment or numerical simulations of the time evolution, one observes discrete
positions ri,j and times ti,j. Further including a contribution ∆(ri, rj) due to technical
noise in the preparation and the imaging of the atomic cloud for experimental data, we
can write the entries of the covariance matrix as [372]

Ci,j = N

2(N − 1)
∑

k

c2
kδnk(ri)δnk(rj) + ∆(ri, rj). (B5)

Provided the noise covariance ∆(ri, rj) between pixels i and j is small, it can be shown
that the functions δnk(r) are the eigenvectors or PCs with eigenvalue ∼ c2

k/2 [372]. These
relations establish a direct connection between the PCs of a dataset in which the fluctuations
either over time or over multiple averages correspond to BdG excitations.

Standard implementations of PCA are available in data analysis packages of nearly all
programming languages, with which the PCs and their weights are readily obtained. In
this thesis we have used the pca function of matlab for the results presented in section 3.2
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and we implemented in our previous work [205] a mathematica [588] program, that uses
the KarhunenLoeveDecomposition [589] as a generalization of the PrincipalComponents
[590] function, which we used in section 3.3.

C. Group theory

This appendix provides additional details on the group Cnd,v, describing the modes of a
supersolid with nd droplets in a cylindrically symmetric trap. Our discussion concerning
groups closely follows standard group theory texts [411], to which the interested reader is
referred for further information and the discussions in the following sections follow Ref. [1].

Symmetries of seven droplets in a toroidal trap and comparison
to harmonically trapped droplets

Before we state the general compatibility assignment between superfluid and supersolid
modes starting from cylindrically symmetric superfluids, we focus in this section on the
specific case of seven droplets in a toroidal trap. Starting with this example, we can
introduce the notions of the symmetries, irreducible representations and character tables
involved in the following section.

Consider a nd = 7 droplet supersolid ground state in a toroidal trap. The ground state
symmetries are described by the point group C7,v. The character table of the group C7,v is
reproduced in Tab. Eq. (C.1), where classes are arranged along the columns, irreducible
representations along the rows and the body of the table shows their character.

The ground state is symmetric with respect to the identity (E), rotation (C7) around
±2π/7, rotation (C2

7 ) around ±4π/7, rotation (C3
7 ) around ±6π/7 around the z-axis, and

reflection (σv) through the seven vertical planes intersecting the z-axis and the droplets.
These five types of symmetries divide the group C7,v into the five classes E, 2C7, 2C2

7 ,
2C3

7 , 7σv yielding five irreducible representations A1, A2, E1, E2, and E3 [411]. Ai and Ei

are one-dimensional and two-dimensional irreducible representations, respectively. The
notations used for the symmetries and irreducible representations are known as Schoenflies
and Mulliken symbols, respectively.

To get an intuition on the symmetries compatible with each of the irreducible represen-
tations, we consider the example basis functions given in Tab. C.1. Modes compatible with
A1 transform as z – symmetric with respect to all rotations and reflections in the group.
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Table C.1: Character table for the group C7,v. The irrotational character values are
χn = 2 cos(2πn/7).

C7,v E 2C7 2C2
7 2C3

7 7σv example basis

A1 1 1 1 1 1 z

A2 1 1 1 1 -1 Rz

E1 2 χ1 χ2 χ3 0 {x, y}
E2 2 χ2 χ3 χ1 0 {x2 − y2, xy}
E3 2 χ3 χ1 χ2 0 {x(x2 − 3y2), y(3x2 − y2)}

Modes compatible with A2 transform as Rz (rotation around the z-axis) – antisymmetric
with respect to 7σv and symmetric otherwise. The m = 7 angular roton modes therefore
split into a zero energy Goldstone mode compatible with A2 and a Higgs amplitude mode
compatible with A1. The two-dimensional representations Ei share the same symmetry
with the m = i angular roton modes. For example, modes compatible with E1 are either
antisymmetric with respect to x or y, exactly like the two degenerate m = 1 angular roton
modes. This identification allows generally, to think of the m = i angular roton modes as
basis functions, representing the symmetry of modes compatible with Ei. E in C3,v and
C4,v transforms just as E1 in the point groups of higher symmetry.

A different special case for three droplets is discussed in our publication [2] considering
the cylindrically symmetric case of a two-dimensional supersolid in a harmonic trap
(section 4.2).

The large number of symmetries in a toroidal trap, growing with the droplet number, can
be contrasted with the situation in tubular traps [7, 8, 148]. In these traps, the low-energy
supersolid excitations are found to be either symmetric or antisymmetric with respect to
the center of the trap. This symmetry corresponds to the group C1,v (which is identical to
Cs and isomorphic to C2 and the symmetric group S2). Modes for a ground state with C1,v

symmetry are either symmetric and compatible to A1 or antisymmetric and compatible to
A2.
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Cylindrically symmetric superfluid to supersolid mode
compatibility

When a cylindrically symmetric superfluid transitions to a supersolid phase with nd droplets,
driven by angular roton modes with circulation number m = nd, the continuous rotational
symmetry C∞,v → Cnd,v is spontaneously broken.

Table. C.2 shows the compatibility between m−angular roton modes and irreducible
representation across every point group (up to m = nd = 13). The table is obtained by
considering that modes compatible with Ei transform as m = i angular roton modes. The
periodicity in the pattern in Tab. C.2 has a physical interpretation. When the symmetry
is broken C∞,v → Cnd,v momenta that were continuously increasing corresponding to the
angular roton modes with m up to ∞ can be folded back to the first Brillouin zone in which
only momenta up to m = nd/2 for even nd and m = (nd − 1)/2 for odd nd are available.
Therefore angular roton modes are assigned to Ei with increasing i for i < m/2, to B1 +B2

right at the edge of the Brillouin zone i = m/2, and to Ei with decreasing i for i > m/2.
For example in C4,v modes compatible with E transform as m = 1 angular roton modes
and modes compatible with B1, B2 transform as m = 2 angular roton modes. Angular
roton modes with m = 1, 3, 5, ... remain degenerate (E) and those with m = 2, 6, 10, ...
split up into two levels (B1, B2).
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Table C.2: Compatible irreducible representations between the angular roton modes of the
superfluid to elementary excitations of the supersolid with nd droplets when the rotational
symmetry is spontaneously broken C∞,v → Cnd,v. A section of the full table which continues
indefinitely to the right and bottom is shown. The row for the symmetry C7,v of the ground state
in the main text is highlighted. The pattern emerging in the body of the table towards higher nd

along the rows continues predictably and has a physical interpretation, see main text.
m (C∞,v) 0 1 2 3 4 5 6
C1,v A1 A1 + A2 A1 + A2 A1 + A2 A1 + A2 A1 + A2 A1 + A2
C2,v A1 B1 +B2 A1 + A2 B1 +B2 A1 + A2 B1 +B2 A1 + A2
C3,v A1 E E A1 + A2 E E A1 + A2
C4,v A1 E B1 +B2 E A1 + A2 E B1 +B2
C5,v A1 E1 E2 E2 E1 A1 + A2 E1
C6,v A1 E1 E2 B1 +B2 E2 E1 A1 + A2
C7,v A1 E1 E2 E3 E3 E2 E1
C8,v A1 E1 E2 E3 B1 +B2 E3 E2
C9,v A1 E1 E2 E3 E4 E4 E3
C10,v A1 E1 E2 E3 E4 B1 +B2 E4
C11,v A1 E1 E2 E3 E4 E5 E5
C12,v A1 E1 E2 E3 E4 E5 B1 +B2
C13,v A1 E1 E2 E3 E4 E5 E6

Table C.2: (Continuation)
m (C∞,v) 7 8 9 10 11 12 13
C1,v A1 + A2 A1 + A2 A1 + A2 A1 + A2 A1 + A2 A1 + A2 A1 + A2
C2,v B1 +B2 A1 + A2 B1 +B2 A1 + A2 B1 +B2 A1 + A2 B1 +B2
C3,v E E A1 + A2 E E A1 + A2 E
C4,v E A1 + A2 E B1 +B2 E A1 + A2 E
C5,v E2 E2 E1 A1 + A2 E1 E2 E2
C6,v E1 E2 B1 +B2 E2 E1 A1 + A2 E1
C7,v A1 + A2 E1 E2 E3 E3 E2 E1
C8,v E1 A1 + A2 E1 E2 E3 B1 +B2 E3
C9,v E2 E1 A1 + A2 E1 E2 E3 E4
C10,v E3 E2 E1 A1 + A2 E1 E2 E3
C11,v E4 E3 E2 E1 A1 + A2 E1 E2
C12,v E5 E4 E3 E2 E1 A1 + A2 E1
C13,v E6 E5 E4 E3 E2 E1 A1 + A2
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Figure D.1: Effecitive mass of the Higgs amplitude mode. (a) Effective mass of the Higgs
amplitude mode M∗ = ℏ2(∂2

q̃E(q̃))−1 (full orange line). For comparison we show the mass
obtained if one assumes a quadratic behavior for the dispersion relation and obtains the mass
with a least squares fit (gray dashed line). The vertical line indicates the transition point. The
Higgs mass diverges near the transition point, suggesting a linear dispersion relation in the
vicinity of the transition. (b) Coefficient of determination in form of the adjusted R2 coefficient
for a quadratic fit (i), R2 coefficient for a linear fit (ii), and adjusted R2 coefficient for a linear fit
(iii). Case (iii) is equivalent to the Pearson correlation coefficient, a measure for linear correlation
in the dataset [591]. The Higgs dispersion is a near-perfect linear function of q̃ in the vicinity of
the transition point. It becomes more quadratic around ϵdd ≃ 2.1 and towards ϵdd ≳ 2.13 the
linear fits rise in quality, suggesting that both linear and quadratic contributions to the dispersion
relation are present.

D. Higgs effective mass in a toroidal trap

In previous studies of dipolar supersolids in harmonic traps the linear quasimomentum
couples to the COM momentum. As a result the Higgs character of the amplitude mode
was only maintained in a narrow range of interaction strengths before coupling to other
modes occurs [2, 7]. Due to the absence of the COM in the toroidal traps we are able to
distinguish Higgs amplitude modes at several quasimomenta q̃m = 2πm/Θ with m = 0, 1, 2.
The isolation of the Higgs mode over the range we have studied in Fig. 3.11 allows us to
define an effective mass M∗ = ℏ2(∂2

q̃E(q̃))−1 of the excitation. The effective mass describes
the dispersion of a localized Higgs quasi-particle wavepacket excited at some position on
the torus. Three q̃-points are just enough to calculate the derivative with the centered
second order finite difference formula E ′′(q̃1) = (E(q̃2) − 2E(q̃1) + E(0))/q̃2

1. The unit
M0 = ℏq̃1/c0 ≃ 29 u is defined with the superfluid speed of sound at the critical point c0
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and relates the mass M∗ directly to the momentum scale q̃1. Moreover M∗/M0 = ℏω0/E
′′

where ω0 = c0q̃1.
Figure D.1(a) shows the effective mass of the Higgs mode. The mass diverges near

the transition point1. Assuming a series expansion for the Higgs dispersion relation, the
divergence would be consistent if terms of second and higher order vanish and a linear Higgs
dispersion relation is obtained. To investigate this possibility we separately fit a linear
and a quadratic function to the data E(q̃) and observe the coefficient of determination for
these fits as a function of ϵdd (Fig. D.1(b)). The coefficient of determination, or (adjusted)
R2 coefficient, is a measure for the amount of variance explained in the fit, with values
close to unity indicating a good fit [591]. The Higgs dispersion relation is near-perfect
linear in the vicinity of the phase transition and approximately quadratic at intermediate
values ϵdd ≃ 2.1–2.13. Towards larger values the importance of the linear contribution in
the dispersion fit rises again (b). The results for the change in Higgs dispersion relation
could be compared to models of infinite supersolids [169, 338] and the general dispersion
relation form giving rise to a change from linear to quadratic behavior [11, 153, 159].

1 The nearest point in the supersolid is approximately at ϵdd − ϵcrit
dd ≃ 3.0 × 10−3 where the mass is

M∗/M0 ≃ 150 whereas at the next point ϵdd −ϵcrit
dd ≃ 3.3×10−3 the mass has dropped to M∗/M0 ≃ 9.1.

The divergence is also suggested by the near-perfect fit with linear functions.
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