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Introduction

The new results of LHCb collaboration sug-
gest the violation of the lepton flavour univer-
sality from the decays of beauty quark[1], so
it is essential to understand the beauty quark
to understand the lepton flavour universality.
We have already studied Bottomonium in the
framework of a semi-classical approach to un-
derstand the beauty quark[3]. In this paper,
we study charmed beauty meson in the frame-
work of Martin potential.

Methodology

The different spectroscopic properties like
Spin-averaged masses and decay widths
of Quarkonium states were studied in
Ref.[3].Here, we are using the semi-classical
approach[3],[4] and considering the Martin
potential[2].

V (r) = λrν + V0(l = 0) +Bl(l + 1)
〈
r−2

〉
. (1)

The λ is potential strength and index ν = 0.1.

The potential is considered the centrifugal
contribution for non-zero orbital angular mo-
mentum states for Bc meson.

S-Waves

For S-wave kinds of states (i.e., l = 0)
the third term in eqn.(1) will not contribute
and for the first two terms, we’ve used the
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experimental spin averaged masses [5] of S-
waves. We have used experimental pseu-
doscalar and vector masses to get the theo-
retical ground state. The best-fitted values of
unknown parameters are V0 = −5.7273GeV

& λ = 6.0342GeV (ν+1). Now to predict the
vector and pseudoscalar masses of S-states,
we have used the Spin-Averaged mass(MSA)
eqn.(2) and Hyperfine mass splitting(∆M)
eqn.(3) from Ref.[9].

MSA = mc +mb + V0 + Enl (2)

∆M =
Ahyp

∣∣ψnl(0)
∣∣2

mc(eff)mb(eff)
(3)

Where, mc(eff) & mb(eff) are the effec-
tive masses corresponds to charm and
beauty quark respectively, mc & mb are
the masses of charm and beauty quark[5],
Enl is the bound energy found from the

semi-classical approximation[4],
∣∣ψnl(0)

∣∣2 is
the ground state wavefunction found from the
Feynman-Hellman theorem and semi-classical
approximation[4], and the best fitted value of
hyperfine parameter is Ahyp = 10.3274. The
splitted S-wave masses along with the avail-
able experimental data and results of other
approaches are mentioned in the TABLE I

TABLE I : S-Waves of B+
c in GeV

n2S+1SJ Our mass [6] [7] [8] Experiment
11S0 6.2735 6.272 6.271 6.278 6.2749 [5]
13S1 6.3325 6.333 6.338 6.331 -
21S0 6.8506 6.842 6.855 6.863 6.8716 [5]
23S1 6.8791 6.882 6.887 6.873 -
31S0 7.1719 7.226 7.25 7.244 -
33S1 7.1913 7.258 7.272 7.249 -
41S0 7.3991 7.585 - 7.564 -
43S1 7.4139 7.609 - 7.568 -
51S0 7.5762 7.928 - 7.852 -
53S1 7.5882 7.947 - 7.855 -
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P & D -Waves
Now the third term in eqn.(1) starts show-

ing its effects in the case of non-zero orbital
angular momentum states (i.e., l 6= 0). The
fitting of centrifugal parameter B using the
theoretical mass of 1P state [6][7][8] produces
the value 0.0107967GeV −1.

Non-zero orbital angular momentum states
shows splitting only due to the spin-orbit and
the Tensor interactions while the effects of the
spin-spin interactions(hyperfine splitting) are
negligible. the masses of triplet states (S = 1)
n3P0 or 0++ (scalar), n3P1 or 1++ (pseudovec-
tor) & n3P2 or 2++ (tensor) can be found
by adding contributions of interactions to the
MSA. We have considered eqn.(4) & (5) the
spin-orbit and tensor contributions from the
Breit interaction terms [10].

HT =
1

12mcmb
S12

[
1

r

d

dr
VV (r)− d2

dr2
VV (r)

]
(4)

HLS =
1

2mcmb

~L.~S

[
3
d

dr
VV (r)− d

dr
Vs(r)

]
(5)

where we took VV (r) = VS(r) = 1
2V (r),

S12 = 4
(2l−1)(2l+3)

[
~S2 ~L2 − 3

2
~L.~S − 3(~L.~S)2

]
and ~L.~S = 1

2 [J(J + 1)−S(S + 1)−L(L+ 1)].
So 〈

HT

〉
=

λν

12mcmb
S12

〈
r−2

〉
, (6)

〈
HLS

〉
=

λν

2mcmb

~L.~S
〈
r−2

〉
(7)

where
〈
r−2

〉
can also be found using the

Feynman-Hellman theorem. The non-zero
orbital angular momentum states are not
yet found experimentally, so we mentioned
our predictions with other theoretical ap-
proaches along with the contributions of
interactions in TABLE II & TABLE III.

TABLE II : P-Wave of B+
c in GeV

n2S+1PJ Our MSA HT HLS Our mass [6] [7] [8]
11P1 6.75 0 0 6.75 6.75 6.75 6.769
13P0 -0.0182 -0.0545 6.6774 6.699 6.706 6.748
13P1 0.0091 -0.0272 6.7318 6.743 6.741 6.767
13P2 -0.00182 0.0272 6.7754 6.761 6.768 6.775
21P1 7.1059 0 0 7.1059 7.1430 7.15 7.156
23P0 -0.0107 -0.0320 7.0633 7.094 7.122 7.139
23P1 0.0053 -0.0160 7.0953 7.134 7.145 7.155
23P2 -0.0010 0.0160 7.1209 7.157 7.164 7.162
31P1 7.3498 0 0 7.3498 7.51 - 7.479
33P0 -0.0076 -0.0229 7.3191 7.474 - 7.463
33P1 0.0038 -0.0115 7.3421 7.5 - 7.479
33P2 -0.0008 0.0115 7.3604 7.524 - 7.485

TABLE III : D-Wave of B+
c in GeV

n2S+1DJ Our MSA HT HLS Our mass [6] [7] [8]
11D1 7.0093 0 0 7.0093 7.026 7.036 7.035
13D0 -0.0040 -0.0362 6.9691 7.021 7.03 7.028
13D1 0.0040 -0.0121 7.0013 7.025 7.041 7.025
13D2 -0.0011 0.0241 7.0323 7.029 7.045 7.026
21D1 7.2777 0 0 7.2777 7.40 - 7.37
23D0 -0.0027 -0.0240 7.2510 7.392 - 7.365
23D1 0.0027 -0.0080 7.2724 7.399 - 7.361
23D2 -0.0008 0.0160 7.2929 7.405 - 7.363
31D1 7.4791 0 0 7.4791 7.743 - -
33D0 -0.0020 -0.0181 7.4589 7.732 - -
33D1 0.0020 -0.0060 7.4751 7.741 - -
33D2 -0.0006 0.0121 7.4907 7.75 - -

Result and discussion
The good agreement of the masses with the

available experimental data [5] and other the-
oretical approaches [6][7][8] is the indication of
success of Martin potential in explaining the
spectroscopic properties of B+

C meson.
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