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applications: from the Schur functions, conventional, skew and shifted, which all satisfy their own kinds
of determinant formulas in these coordinates, to KP/Toda integrability and related basis of cut-and-join
W—operators, which are both actually expressed through the single-hook diagrams. In particular, we
discuss a new type of multi-component KP t-functions, Matisse T-functions. We also demonstrate that
the Casimir operators, which are responsible for integrability, are single-hook, with the popular basis of
“completed cycles” being distinguished by especially simple coefficients in the corresponding expansion.
The Casimir operators also generate the g =t Ruijsenaars Hamiltonians. However, these properties are
broken by the naive Macdonald deformation, which is the reason for the loss of KP/Toda integrability
and related structures in g-t matrix models.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction
Schur functions [1] play increasingly important role in modern mathematical physics. They are

characters of representations of the GLy, group [2];

solutions to the Hirota bilinear equations [3,4];

eigenfunctions of the Calogero and W -operators [5,6].

They form a basis of functions, which have factorized Gaussian matrix averages, and appear in < character >= character relations [7].
They are starting point for various triangular deformations, which lead to Jack, Macdonald and Kerov functions [1,8,9].

At the same time, they still lack a clear first-principle definition, which puts the entire field on a somewhat shaky ground. The most
popular interpretation is related to free fermion representations [3,10], which are peculiar to k =1 Kac-Moody algebras, which causes
difficulties with applications to other k, where Wakimoto-like representations in terms of free bosons are needed [11]. Instead, the free
fermion formalism provides nice determinant formulas for the Schur functions [3,12], which are well suited for applications to KP/Toda
integrability problems [3], while, in the free boson case, determinants are changed for more general combinations of Riemann theta-
functions, and integrability is not immediately transparent.

In this paper, we discuss determinant representations for all kinds of Schur and t-functions in the hook (Frobenius) variables and
related topics: the story is well known to experts, but have not received enough publicity so far. Our hope, however, is that these “weaker”
determinant formulas may appear more “fundamental” and more suitable for further generalizations. In particular, we demonstrate that
they are applicable to the shifted Schur functions [13], which are also solutions to the Hirota integrable equations. The hook variables are
also related to the skew characters and show up not-quite-expectedly in the differential-expansion coefficients for twist and double-braid
knots [14]. They also provide non-trivial solutions to the Pliicker relations and thus provide new types of KP 7-functions, somewhat closer
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to the partition functions of the rainbow tensor models [15-17]. Last but not least, the Casimir operators are essentially single-hook, and
they generate the ordinary t-functions, this is what makes these latter distinguished among the Hurwitz t-functions, which do not yet
possess any clear description in terms of Hirota-like equations.

This broad variety of applications makes hook representations for the Schur functions an interesting subject, which should be further
explored. This paper is just the first step on this way.

The paper is organized as follows. Sections 2 and 3 provide a preliminary preparation for the main part of the text, we discuss
determinant representations of the Schur functions (sec. 2) and of the skew Schur functions (sec. 3) in terms of the hook Schur functions.
Section 4 contains a review of the relations between KP t-functions and linear and bilinear combinations of the Schur functions. In
section 5, we discuss tT-functions that are multilinear combinations of the Schur functions xg. In section 6, we discuss determinant
representations of the shifted Schur functions [13] in terms of the hook Schur and shifted Schur functions. We also notice that the
shifted Schur functions satisfy the Hirota bilinear equations. In sections 7 and 8, we discuss the generalized cut-and-join W—operators
[6,18] and their representation in terms of hooks [19]. In particular, we discuss that, at each level, there is only one (up to a linear
combination of lower level operators) cut-and-join W -operator that involves only single-hook Schur functions. At last, in section 9, we
explicitly construct a simple basis of these operators, the Casimir operators associated with the completed cycles, and, in section 10, we
evaluate the generating function of these operators and its eigenvalue. Section 10 contains a summary of the results obtained in the

paper.
2. Hook variables and determinant formula

We denote the Schur functions as yg. Schur functions [1,20] depend on infinite sequence of time-variables py, k=1, ..., 0o, they are
graded polynomials of py, and are symmetric functions of variables x; on the Miwa locus

N
N
Py =t Xk =) "% (1)
a=1

The Schur function can be defined through the Frobenius formula [21]

z

A
U PRAICLEN )
A A

Here, for the Young diagram A = {81 > 8, >...§;, > 0} ={1™,2™2, ..}, the symmetry factor is defined z :=[[;m;!-i™ and pa is
a monomial pa = ps,Ps, ---Ps, While Yg(A) is a character of the symmetric group S,, n = |R|. It satisfies the orthogonality condi-
tions

YR(A)Yr(A)
YRR @)
A Za
A A
Z Yr(A)YR(AY) —San 3)
R Za

as any character does.
Equivalently, one can construct the Schur function as a finite-dimensional determinant [12]. To this end, one defines a Schur function
for symmetric Young diagram R = [r] through the expansion

k 0
exp (Z p';z ) =Y Z"x{p} 4)
n=0

k

Then, for arbitrary Young diagram R={ri > > ... >r, > 0}, [1]

XR = di?tX[ri—im (5)

The hook (Frobenius) variables parameterize the Young diagram R in a somewhat different way, R = (&|B) with a1 >0y > ...>a; >0,
B1>pP2>...>p >0:



A. Mironov, A. Morozov / Physics Letters B 804 (2020) 135362 3

aq e | [
kKL TTTTTTTT]
bk
2
1 [ []
b1

Remarkably, (5) can be rewritten in these coordinates as another determinant representation, where the entries are the single-hook
characters,' [22,23]:

X@g) = G}ejt X(@ilpy) (6)
According to (5), the one-hook character is expressed through the symmetric characters as
Xaby = (—=1)P Z Xij+b1 (=P Xta—j—11{Pk} = (=P Z Xib—j—11{—DPr} X(a+j1{PK} (7)
j=0 j=0

thus (6) is a somewhat “weaker” version of (5). Instead it has nicer properties and a broader variety of applications and deformations. In
fact, there is a formula that mixes two representations (6) and (5), but at this moment it looks heavier, see [23, eq. (24)], and lacks clear
applications.

3. Skew characters in the hook variables
For the skew Schur functions xg,p with R being one-hook, there is a very simple formula in the Frobenius coordinates:

X@b)/(cld) = X(a—c|1) X(1|b—d) (8)

Since all Young diagrams with more than one hook are not contained in the one-hook diagram, all other skew Schur functions vanish in
this case. In fact, this is a corollary of the corresponding property of any skew Schur function: if the Young diagram P being embedded
into the diagram R in such a way that their origins coincide, parts R into two untied Young diagrams R; and R;, then

XR/P = XR1 XR; (9)

Formula (8), in particular, implies that

X(ab) * X(cld) = X(a—c[1) X(1]b—d) (10)

where Xg := XR{% a%}. Let us introduce a new operator f)(c‘d) acting on the single-hook Schur functions in such a way that

Dclay - Xcalb) = X(a—cl1) X(1}b—d) (11)

Now we can write down what is the skew Schur function when P is single-hook, P = (c|d). In this case,
X@1p/cd) = Dl 'C}ejt X(@ilB)) (12)

where the operator ﬁ(c‘d) acts on the products of the single-hook Schur functions in the determinant by the Leibnitz rule, which is
non-trivial, since the operator X in (10) contains higher derivatives. In other words,

-1
X@py/cia) = X@p) - Z (X )ai’ﬁjx("‘j_dl)x(”ﬁi—d) (13)
i.j
where x~! is the matrix inverse to X(ey1p;) and we used Jacobi's formula for the derivative of the determinant [24]

! This formula reflects a peculiarity of the Schur functions: X@lp): depends on the first oy + 1 — 1 time variables py. Deformations of the Schur functions, for instance,

to the Macdonald polynomials do not celebrate this property at any finite values of t and g but t =g: the polynomials become dependent on all first Y} (e + ;) — n time
variables.
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f)-detx:detx-Tr(X_l-ﬁx) (14)

Using this formula, one can similarly describe the action of a few successive operators D in a similar way (note that all of them commute).
For instance, for D1 = D qjp), D2 = D(jq) With a,b,c,d > 1,

DyD; -det x =det ~Tr(X_1 -l51x) -Tr(X_1 -152)() — det x -Tr()(_l Diyx-x71 -152)() (15)

etc.
One can check that the action of a product of operators D celebrates a simple property

+-Day,b)Diaz,by) - - X ==+ Diay,b)Diag,byy - X (16)
i.e. it depends only on the two sets {a;} and {b;} and the parity of the permutation. Hence,

n
. 1., .
(HDm,-,b,-)) X =rdetDaiy - x (17)
i t

Now everything is ready for our final formula for the generic skew Schur function:

n
X@g)/ G5 = (l_[ D(Vivai)) ‘ﬁ!ﬁtX(ailﬁj) (18)
1

The r.h.s. of this formula can be also rewritten in the matrix form:
. B 5
(H D(V""Si)) rdety =det - Z Z (=1 Zét}: ‘,ﬂlairm a 'Ztm‘,ga)a(n) (19)
i a

where the matrix Z(Z‘ lg;) = (X‘l 'f’(yi\éi) X) , and the sum goes over all repeated indices and over all permutations from the symmetric
’ a,

group Sp, ps being the parity of permutation o.
4. 7-functions and Schur functions

It is well-known that the linear and bilinear combinations of the Schur functions may give rise to a t-function: in order for a linear
combination

> wrxr{p} (20)
R

to be a T-function of the KP hierarchy,® the coefficients in front of the Schur functions should satisfy the Pliicker relations (see (27)
below), [3,4]. Similarly, there are explicit conditions for wggs [25] that a bilinear combination

> Wer xR P KR AP} (1)
R,R'

is a T-function of the Toda hierarchy, or a KP t-function w.r.t. the both sets of time variables {px} and {p; }. This latter t-function can be
also treated as a t-function of the 2-component KP hierarchy. However, no extension to multilinear combinations of the Schur functions
that is still a 7-function has been known so far.

Note that there is a relatively simple class of coefficients wg and wgg that gives rise to the 7-functions [26-30]:

wrr =8p [[ FG—0),  we= ][] fi-p (22)
i,jeR i,jeR
where f(x) is an arbitrary function. Such t-functions are called hypergeometric [28]. In the case of f(x) =1, the sum (21) is immediately
calculated using the Cauchy formula

> xr{pibxr(py) = exp (Z %) (23)

R k

and is a trivial T-function.
In [16,17], we suggested a possible extension of this Cauchy formula to the multilinear case

r 1—[r . p(m)
§ Q:Rl.A.Rr l_[ XRm{p(m)} = exp <§ 7m7k k ) ,
m=1 k

R1,..., Ry

! (A
CRy Ry = Z M (24)

z
AFn A

2 Note that usually in integrable theory other time variables are used: t; = py/k.
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which gives rise to a (still trivial) KP t-function w.r.t. all time variables and can be further made slightly less trivial [17].
At the same time, A. Orlov proposed another multilinear extension of (21), which we discuss in the next section.

5. Hook variables and Matisse 7 -functions

Using the Frobenius coordinates, consider the sum

.
% = [ [ x@ntp®) (25)
@ i=1
It is a KP t-function w.r.t. any of the time variables if one imposes the condition &1 = &;. Hereafter, we imply the ordering o1 > o3 >
... > 0 of the vector components, and the sum over & means a sum over all possible ordered values of the vector components, and over
all possible numbers ! of non-zero components, i.e. over all possible sets satisfying the ordering condition.
Moreover, the expression

@ ::Zl_[ X(&il&kﬂ){p(k)} 1_[ feli =) (26)

a; k=1 i,je(@klayy1)

is still a T-function, fi being arbitrary functions.® Such 7-functions have been called by A. Orlov “Matisse t-functions” (because of the
“Dance” painting [31]).
In order to prove that (25) is a T-function w.r.t. the variables py, it is sufficient to prove that all the Pliicker relations
Wibienassl Wah ~ W@ s Wa@biegss T Wahiss Wi s =0 (27)
for the coefficients W16 of X(&‘g){Pk} in (25) are satisfied. Here we denoted through [{«;}; {8;}] removing a subset {;}; {8;} from the
set of hook legs and arms.
The simplest way to prove this is as follows. We can use (6) and apply the formula

oo
det » AyByj= det Ay det By ; 28
i Z ik Dkj Z i ik;j i kji (28)

k=1 1<ki<ky<...

Consider, for instance, r = 3. Then, (25) is a KP t-function if

Waip = Z X @i X71a) (29)
Y
satisfies the Pliicker relations. Using (28), this formula is reduced to
o0
Wp = det (; X(ﬂiuoX(kwj)) (30)
k=

again with one-hook determinant entries, and one can trivially check that it satisfies the Pliicker relations: they are just the Jacobi identity*
for the determinant (30).
Because of (28), it is natural to introduce the kernel

r—1

ICS){P('”)} = Xk {p") (l—[ X(kmkmm{P(m)}) X1y (P} (32)

m=2

Then, using (28), one can present (25) in the form
= Z dgt ;cgﬁaj{p(m)} (33)
o

Moreover, in order to prove that (25) is a KP 7-function, one has to check that

o r-1)
Wp) = dethy, 4, (™) (34)

3 This is because any function wy that satisfies the Pliicker relations can be multiplied wg —> wpg ]_[I-J-QR f(@i — j) by an arbitrary function f(x) and still continues to
satisfy the Pliicker relations [26,28]: these latter are invariant with respect to this operation.

4 If we denote through | ( jl ],s ) the determinant of a matrix with removed rows iy, ..., is and columns jq,..., Jjs, then the Jacobi identity reads
1 --- Js

()= ()20
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satisfies the Pliicker relations, which is, indeed, the case because of the Jacobi identity.
Note that, for any matrix Aj;, the following formula is correct:

o P (_1)n+1
D det Ay o =) Kyn Pk =Tr A" ) =exp ()~ —Tr A" (35)
a Y n=0 n
since Xr{Pk} = X, {(=1)¥*1p,} and RV denotes the transposed Young diagram. It follows from the formula
> detAg.a; = Xy Pk =Tr A¥) (36)
o1>...>0p u

Then, denoting through K the matrix with matrix elements ICl(Jr) one can rewrite (33) as

+1
(W] =" n
T, =ex E ——TrK 37
0 p < e n (37)
One can also consider the matrix X with matrix elements Xi(,':') = Xl { p'™} and write equivalently
+1
@ D" ( My @ (r))"
T, =ex —Tr (XX ... X 38
0 =exp (Z - (38)

This formula remains correct for (26) with Xl.(,:") = X ip™} - T jedp fmG = D)
Let us consider the simplest case of r = 2. Then,

Kij= Y X (b Xy {p®} (39)
k
and®
0 o 1) (2)
1)
Z ( ) TrKn — Z(_l)n Pn "DPn (42)
n=1 n n=1 n

This formula is a corollary of the fact that, as immediately follows from (25),
) - 1 P:(1])Pz(12)
7,” = exp Z(—l)’“r — (43)
n=1
6. Hook variables and shifted Schur functions

The shifted Schur functions are unambiguously defined by the formula

Xulpid = xulpY+ Y cunxalpid (44)
A M=l

in such a way that the coefficients are (unambiguously) determined from the conditions

Xu'p(®)}=0 ifu¢R

(R 1= Y[ (R = = (=] (45)
i
They are symmetric functions of the variables x; —i, i=1,..., N on the locus formed by the shifted power sums
N
00 =3 [i— ik - (-] (48)

i=1

These shifted Schur functions have three interesting properties:

5 If one defines

Kij = Z Xao I D) (40)
k
this formula gets the form
o0 o (1) (2)
_1)n
ZQTFK”EZM (41)

n

n
n=1 n=1



A. Mironov, A. Morozov / Physics Letters B 804 (2020) 135362 7

e Surprisingly, these functions have a similar determinant representation, the determinant entries being one-hook characters:
* _ *
X@p) = 9 Xapy) (47)

At the same time, formula (5) is not immediately generalized to the case of shifted functions.
e The shifted one-hook Schur function xj is given by a linear combination of only one-hook Schur functions xq such that Q € R:

Ca—1,i-1-Cp,j - X ipk) (48)
1

POTLOEDS

B
i=1 j=
where the coefficients Cj; are defined by the expansion of the Pochhammer symbol

k—

1 k
[[e-d=> c, (49)
j=1

i=0
o The shifted Schur functions themselves satisfy the Hirota bilinear equations in p;, i.e. the coefficients ¢, in (44) satisfy the Pliicker
relations in A at any . However, even if the coefficients of a linear combination of the shifted Schur functions satisfy the Pliicker
relations, this does not give rise to a KP t-function.
Hence, all the formulas of the previous section still persist, but the counterpart of (25)-(26) is no longer a t-function.

7. Cut-and-join operators in the hook variables

First of all, let us note that the time variables p, are expanded only into single-hook Schur functions

a
Pa = Z(—I)H_]X(a—iﬂﬁ) (50)
i=1

Hence, the products of time variables p,pp are expanded into double-hook Schur functions, pgpppc, into triple-hook Schur functions, etc.
For instance, for a > b

b a-b-1
Pabp = (D> 3" (1) x(i ) jlas1—imjbr1-)) +
j=1 i=1
+ Z (—1)i+j+bX(a+1,j,ub+14.j)+ Z (_1)HjH]X(bJrlfj,ilaJrlfi,j)+
e 5
b .
+Y (D! (X(a+b+lfi|i) + (—1)a+bX(i|a+b+1fi)) (51)

i=1

These formulas can be used for constructing the cut-and-join operators [6]

. 1 .
Wp=—:]]Ds: (52)
zy
where
D =Tr (Map)k (53)

and M is a matrix. The normal ordering in (52) implies that all the derivatives 9y stand to the right of all M. We apply W only to gauge
invariants, and they are themselves “gauge”-invariant matrix operators, thus, they can be realized as differential operators in pj = Tr MX.
The Schur functions form a system of common eigenfunctions of the cut-and-join operators [6],

Wa xr{P} = #r(A) - Xr(P) (54)

with the eigenvalues [32]

or(d) =Y x;:("pu(R)) H= (55)

z
uElA

Yu(A)
A

First few examples of the cut-and-join operators in terms of the time-variables are

R A~ d
Wi=trD=) kpy— (56)
[1] I; <8pk
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W LIy . i ((a—i—b)p p 0 +abp P ) (57)
21=75 = b b
#T2 2 “Opary T 9Padpy
W ! tr b3 ! i abcp i +1 Z cd (1 — 8acdpd) PaP 82 + (58)
B1=73: = a+b+c o A T 35 — OacObd) PaPb—F7—
3 3o 0padpydpe 2 9pcdpa
1 9
+3 D @+b+0) (PaPoPe+Patbic) 7 — (59)
abo=1 Da+b+c
Since [6]
. 1. .
Wi = EW[l](Wll] -1 (60)
Wia1) = Wia(Wpy —2) (61)
. 1.0 . .
Wi = an](W[l] —2) (Wi —1 (62)

we are interested only in W with R that does not contain the unit cycle, i.e. in Wjj, W, W3, etc.
Now one can realize the cut-and-join operators in terms of hook variables. Let us introduce the Schur functions of derivatives

N a
fwe= iy | (63)

Then, the cut-and-join operator can be realized as a sum
Wa =) Cip'xrip (64)

with some coefficients C}(ﬁ,). For instance, the first non-trivial operators are realized as [19]

. 9 a , . ad , .
Wiy = Zapaa— =D ) U x@stig - Raesuy = . (T xaiw - X (65)
a=1 Pa a=1s,s'=1 rsr/.s'=1
r4s=r'+s’
1S -~
Wiz =5 3 ((a + b)papbdaip +ab pa+b8a8b) =5 Y =5+ =) X Kals) (66)
,b=1 rs,r,s'=
¢ r+s:r’+1s’

where we used formulas (50) and (51). Naively, one could expect basing on (51) that the W[z]—operator depends on 2-hook Young
diagrams. However, there is conspiracy, and only single-hook diagrams enter the result. Similarly, the Wa -operators with higher |A| such
that A does not contain cycles of unit length depend on Young diagrams with not more than |A| — 1 hooks (the number of hooks can
be less: for instance, W[4] involves not more than double-hook Young diagrams, W[s] triple hooks, etc.; see (92)). This removing cycles
of unit length is much similar to removing U (1)-factors from U(N) algebras, which results in simple algebras of rank one unit less. For
instance, the W[3J-operator has the following hook form representation

¢}

A 1 ,
+s' ~([3D -
Wi = 2 Z (=) Cirsy.irs) " Xals) - Xarish +
rs,r’s'=1
r+s=r'+s’
3D N ”
+ Z C(lﬁJzH[S1,SzJ),(r/,s/) ’ (X(lTLTzHlSl,SzJ) S Xa'lsy T Xalsh X([rl,rzms],sz])) +
r14r24s1+s2=r'+s'+1
(3D ”
+ > Cltrrallis ool irg 1y 551 * X@rnaliissab * Xr s 1iis; 50 (67)
Zi2=1 (ri+si—r{—s))=0
where
(E)) 1 N o
Cors.os) = E(T—S—l—r —5> +E -MOTr—s—0" -5))+
HE—NO@ =5 = (=9 =2)+ 06+ —r—r' =) +1' =5'—5) = (r+5-2) (68)

(13D and cBD

([r1.1211[51,521), (" 8") (Ara.rallistsa D, 7 s sy 3T€ also rather involved.

and O(x) is the Heaviside function, and the other coefficients C
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A comment on evaluating the coefficients C ﬁ,) Note that, since

XRXP = XP/R (69)
one obtains from (54) that
WAXR=ZC&A13XQXR/P=¢R(A)~XR (70)

i.e. one can realize the WA—operator not as a differential operator, but as an operator acting on the linear space of Young diagrams. To
this end, one can note that

Xrp =Y Nfqxs (71)
S
hence, the Wx -operator can be given by an infinite matrix in the space of Young diagrams:
W, ) = 3 c@NS, NR 72
(ARS XXy:Z xy VxzNyz (72)

where Nf}y are the Littlewood-Richardson coefficients, and |R| = |S|. Here we used that

xx(phxv{py =Y _ Ngyxzip}
Z

xxiv =) Nizxz (73)
Z

Thus, the eigenvalue equation (70) can be rewritten in the matrix form as

> CKYNRZNE, = dr(A)oks (74)
Xisiv)

This linear system unambiguously defines a symmetric matrix C(4) for any given function ¢g(A).
In fact, the system of equations

>~ CxyNxzN§; = irégs (75)
X.Y.Z
IX|=IY|
A A
can be simplified if one makes the linear transform with the kernel %:
AL
~ Ux(A) Py (A)
Axy —> Appri= ) —————Axy (76)
X,Y ZAZp
IXI=IY|
Then, using
Yz(A1+ A)Yx (A1) Yy (Az)
Niy= D (77)

ZAZ
INWS A<l

where the sum of two Young diagrams is understood as a reordered unification of rows from the both diagrams, one can rewrite (75) in
the form

Cara -
E —122 =Janr (78)
ot ZA—Aq
A-Ay=A'—Ay

8. Single-hook W-operators
Let us now understand how many WSh—operators exist that involve only single-hook diagrams in expansion (64). The eigenfunction
condition (54) does not restrict WS" when it is acting on the single-hook diagrams. Consider its action on the double-hook diagrams.

Then, as it follows from (12),

27sh
w# (X(rl,sz(rz,sz) - X(rl,sz>X<rz,s1)) =
= A1) X(r1,50) X(2,52) T A(ra,52) X(r1,50) X(r2.52) = Ar1,52) X(r1,52) X(r2,51) — Mra,51) X(r1,52) X(r2.51) (79)

Ari,ralIssa) = Arys) T A5 = Aerusa) F Ao (80)
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At level 4 (r{ =51 =2, rp =s = 1), it imposes two restrictions on the eigenvalues (and, hence, in accordance with (75), on the operator
WSh):
Azanzay = A2 TAan =2ren A2 (81)

Similarly, at level 5, there are four more restrictions:

AR =432 +2a,n =43, + 10,2
A@ALEa) =223 A =Aen +1a3) (82)

at level 6, eight additional restrictions, and at level k, p(k) — 3 additional restrictions, p(k) being the number of partitions of k.

It looks like still there is a large ambiguity in allowed eigenvalues Ag. However, starting from level 9, there appear triple-hook diagrams,
etc., which imposes more conditions. For instance, the triple-hooks diagrams impose seven restrictions for eigenvalues for every triple-
hook diagram:

A(r1,r2,r3L0s1,52,53D) = Ary,s1) T Aa,s2) FAs,s3) = Aarr,sp) T Awa,s3) T Aas,s) = Aa,ss) T A FAess) =

=A(r1,53) T A02.52) T A5 = Arr,sn) T Aaaiss) T Arasy) = Arsy) F Aaa,s) T Ars,sy) (83)

The conditions for double-hook diagrams remain only 3k — 3 independent eigenvalues up to level k, which gives 30 for the levels up to
11. At the same time, there are 8 triple-hook diagrams up to this level, which gives 56 additional conditions. Hence, normally, one would
not expect any freedom in eigenvalues remaining.

It remains to notice that these conditions (82), (83), etc. are solved by any eigenvalues of the form

rap = 2 (6160 + &) 4

with arbitrary functions &; (x). Linear functions give rise to W[” and quadratic, to W[z], since

Pap D=3 (wi+p-1), &200=x-1/2
ap (12D =2 (“iz —ai— B + ﬂz‘), E1(X) = —6(0) =x* —x (85)

1

At the same time,

) Ly =S (Ll Ltz 20 c s 1pp 25 1
P@ip) (13D + 595 (1D —2(3% SO 3%t B — 5B+ 3h 2),

1

el 3_ 12,2, 1
S1(X)—$2(X)—3X 5% +3x i (86)

This means that the combination W[3] + %Wﬁ 1 is a single-hook operator too. Moreover, it has simple expansion coefficients C (cf. with

(60)):

1. N
Wi = W3 + - Wm—— Z (- )S“( r’—S’)2+2)-X(r\srX(r/\s/) (87)
rs,r.s'=1

r+s=r'+s’

Other combinations, with distinct (linear, cubic) functions & (x) and &, (x), or coinciding quadratic functions for WS can not be made of
the Casimir operators. Since these latter form a basis in the space of differential operators of finite order (local operators), such Wsh are
given by non-local operators.

Note that, at each level n, there is exactly one new operator W*", it is equal to W[n] + Pol,_1(W »), where Pol;, denotes a polynomial,
which is a sum of monomials []; W a, such that 3", |A;| <k. In the next section, we construct a simple basis of such polynomials.

9. Integrability and W-operators

As we discussed in sec. 4, a diagonal bilinear combination of the Schur functions,

ZfRXR bxrip'} (88)

is a (hypergeometric) KP t-function w.r.t. to both time variables py and py iff fr = ]_[iqjeR f(N —i+ j) for arbitrary function f(x) (it is
also a Matisse 7-function). Moreover, it is a Toda lattice 7-function [25,28,30]. There is a more general expression, a generating function
of the Hurwitz numbers [6,27] (we called it Hurwitz t-function) with fr =exp (ZA ﬂAqu(A)):

ZXR{p}xR }exp (Z ﬁmR(A)) (89)
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where B are arbitrary constants labeled by Young diagrams. This generating function can be reproduced from the trivial exponential
7-function exp (Zk:] %) by action of the W -operators:

ZH =exp (ZﬂA . WA> - exp (Z pkl—fk) (90)
A I

and it generally does not give rise to ordinary integrability. The point is that the basis of the commuting operators W is too large: the
cut-and-join operators form an additive basis of commuting operators, and, for ordinary integrability, one needs a multiplicative basis.
What is this restricted basis?

A crucial property of the function fr = l_[i‘jeR f@ — j) is that an exponential of an arbitrary linear combination of C, =

> ((Ri — )" — (—i)”), which are eigenvalues of the SL(N) Casimir operators, is of this kind [30]. Hence,

= Z XrR{Pk} XrR{DK} €XP (Z Cncn(R)> 1)
R n

where ¢, are arbitrary coefficients, is a KP 7-function. We choose slightly different definition (linear combination) of C, that gives most
simply looking formulas:

GR=1 Y |:(Ri —it172) = (=it 1/2)1 5 (Ente) + D™ ()
i 2% — 1" (92)
En(x): = Tonn

Every C,(R) is definitely a low triangle (in grading) polynomial combination of the eigenvalues ¢g(A), the concrete combinations (92)
being called completed cycles [33]. These combinations can be realized either at the level of eigenvalues, or at the level of W 5 -operators.
For instance,

éz:W[z]
Cs = Wiy + 2 WE — 21
3= W3] 27T ) (1]

A . 11 .
Ca =Wy +2W )Wy — ZW[Z]

A A A - 19 . 2 53 A5 383 .
C5 = W5 +3W Wiy +2W,, — 7W[3] + 3Win - ZWUJ + %W“J
(93)
They are linear combinations of the single-hook operators of the previous section and have a simple hook representation
o
S > (—)S“/((r—S-i-r’ —S D = (r—s+r -5 — 1)") “Xals) - Kals)) (94)
2".n
r.sr’,s'=1
r4s=r'+s’

With these operators, one can present (91) in the form

o =exp (Z cnén> -3 xriP} xR {Br) = exp (Z m) exp (Y2 "kf’ ) (95)
n R n

k=1

These Casimir operators C, are elements of the GL(co) and, thus, provide the Bicklund transformation: acting on the trivial T-function
exp (Zk:l %), they still give rise to a new t-function. Similarly, one can generate the KP t-function (26) from (25):

.
) = exp (Z Yo (p(”)) 7 (96)
i=1 n

Thus, we come to the conclusion that the Bicklund transformation is given by exponential of a linear combination of the W-operators
iff these W -operators are from the space spanned by all single-hook operators.

10. Macdonald Hamiltonian and Casimir operators
It is well-known (see, e.g., a review [34]) that the Macdonald polynomials form a set of common eigenfunctions of the Ruijsenaars

exponential Hamiltonians [35] Hy,, the simplest of which is (in fact, just this Hamiltonian is enough to fix the Macdonald polynomials
unambiguously)
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1-t Zk)pkz k-1 9
A= %—exp( — | e P (97)
k>0 k>0

Choosing the parameter t = g, one returns to the Schur functions, while the system becomes the Calogero-Moser-Sutherland system at a
special value of the coupling constant where the system becomes free. All higher Hamiltonians in this case are generated from this one,

. 1 dz (1 _ q72k) kak qZk ~-1 9
H(q) := — exp ———— | -exp — (98)
a-q'J z (g k g z£ apy
N Ik q¥i—1
H@xrip}= Zqz,.—_lu - x&{p} (99)

i=1

since the Schur functions do not depend on ¢, and

[H(q), H@)1=0 (100)

Thus, H(q) is a generating function of all Hamiltonians in this case. One can introduce the variable h, q := e/ and consider I:I(q) as a
power series in fi. In the hook coordinates, this generating function is equal to [36]

o
Hp=@—-q" Y, a7 xas - Ros) =
r.s.r’,s’'=1

r+s=r'+s’

00
— 2sinhhi - Z (_)s+s’e(r+r’—s—s i Xrls) - )A((r’|s’) (101)

rs,;rl s’'=1

r4s=r'+s

Using formula (94), one obtains

C@ _ch 1)v -1 (102)

The factor ¢ —q~' in (101) explains the origin of the structure (... +1)" — (... — 1)" in the summand of (94).

Thus, this generating function of the Casimir operators is exactly the Hamiltonian (98), and the eigenvalue of ¢ (q) is

C@ - xr =1 - Xr

@ =SS (et _ 12 103
@=3" =>(a q'72) (103)

i=1 i
11. Conclusion

We used the hook (Frobenius) parametrization of the Young diagrams and discussed in these terms explicit expressions for the Schur
functions and shifted Schur functions, as well as for the skew Schur functions. We demonstrated that

e A periodic product of the Schur functions each depending on its own set of time variables, (25) gives rise to a KP t-function w.r.t. to
all these sets of times;

e Acting on this product with exponential of any linear combination of cut-and-join W-operators that involve only single-hook Young
diagrams is a Backlund transformation keeping the KP 7-function (26), (96);

e At any level, there is exactly one cut-and-join W-operator of this type up to a linear combination of lower level operators, sec. 8.

e We also explicitly constructed the simplest looking basis of these operators, the Casimir operators associated with the completed
cycles (92), (94).

e We evaluated the generating function of these operators (102) and its eigenvalue (103).

Remained for the future work are two big directions: g-t generalization to the Macdonald family, and its alternative restriction to

the Q Schur functions [1,37,38], both require non-trivial additional ideas which can shed light on associated deformations of integrable
structures.
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