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Young diagrams can be parameterized with the help of hook variables, which is well known, but never 
studied in big detail. We demonstrate that this is the most adequate parameterization for many physical 
applications: from the Schur functions, conventional, skew and shifted, which all satisfy their own kinds 
of determinant formulas in these coordinates, to KP/Toda integrability and related basis of cut-and-join 
Ŵ -operators, which are both actually expressed through the single-hook diagrams. In particular, we 
discuss a new type of multi-component KP τ -functions, Matisse τ -functions. We also demonstrate that 
the Casimir operators, which are responsible for integrability, are single-hook, with the popular basis of 
“completed cycles” being distinguished by especially simple coefficients in the corresponding expansion. 
The Casimir operators also generate the q = t Ruijsenaars Hamiltonians. However, these properties are 
broken by the naive Macdonald deformation, which is the reason for the loss of KP/Toda integrability 
and related structures in q-t matrix models.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Schur functions [1] play increasingly important role in modern mathematical physics. They are

• characters of representations of the GL∞ group [2];
• solutions to the Hirota bilinear equations [3,4];
• eigenfunctions of the Calogero and W -operators [5,6].
• They form a basis of functions, which have factorized Gaussian matrix averages, and appear in < character >= character relations [7].
• They are starting point for various triangular deformations, which lead to Jack, Macdonald and Kerov functions [1,8,9].

At the same time, they still lack a clear first-principle definition, which puts the entire field on a somewhat shaky ground. The most 
popular interpretation is related to free fermion representations [3,10], which are peculiar to k = 1 Kac-Moody algebras, which causes 
difficulties with applications to other k, where Wakimoto-like representations in terms of free bosons are needed [11]. Instead, the free 
fermion formalism provides nice determinant formulas for the Schur functions [3,12], which are well suited for applications to KP/Toda 
integrability problems [3], while, in the free boson case, determinants are changed for more general combinations of Riemann theta-
functions, and integrability is not immediately transparent.

In this paper, we discuss determinant representations for all kinds of Schur and τ -functions in the hook (Frobenius) variables and 
related topics: the story is well known to experts, but have not received enough publicity so far. Our hope, however, is that these “weaker” 
determinant formulas may appear more “fundamental” and more suitable for further generalizations. In particular, we demonstrate that 
they are applicable to the shifted Schur functions [13], which are also solutions to the Hirota integrable equations. The hook variables are 
also related to the skew characters and show up not-quite-expectedly in the differential-expansion coefficients for twist and double-braid 
knots [14]. They also provide non-trivial solutions to the Plücker relations and thus provide new types of KP τ -functions, somewhat closer 
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to the partition functions of the rainbow tensor models [15–17]. Last but not least, the Casimir operators are essentially single-hook, and 
they generate the ordinary τ -functions, this is what makes these latter distinguished among the Hurwitz τ -functions, which do not yet 
possess any clear description in terms of Hirota-like equations.

This broad variety of applications makes hook representations for the Schur functions an interesting subject, which should be further 
explored. This paper is just the first step on this way.

The paper is organized as follows. Sections 2 and 3 provide a preliminary preparation for the main part of the text, we discuss 
determinant representations of the Schur functions (sec. 2) and of the skew Schur functions (sec. 3) in terms of the hook Schur functions. 
Section 4 contains a review of the relations between KP τ -functions and linear and bilinear combinations of the Schur functions. In 
section 5, we discuss τ -functions that are multilinear combinations of the Schur functions χR . In section 6, we discuss determinant 
representations of the shifted Schur functions [13] in terms of the hook Schur and shifted Schur functions. We also notice that the 
shifted Schur functions satisfy the Hirota bilinear equations. In sections 7 and 8, we discuss the generalized cut-and-join Ŵ -operators 
[6,18] and their representation in terms of hooks [19]. In particular, we discuss that, at each level, there is only one (up to a linear 
combination of lower level operators) cut-and-join Ŵ -operator that involves only single-hook Schur functions. At last, in section 9, we 
explicitly construct a simple basis of these operators, the Casimir operators associated with the completed cycles, and, in section 10, we 
evaluate the generating function of these operators and its eigenvalue. Section 10 contains a summary of the results obtained in the 
paper.

2. Hook variables and determinant formula

We denote the Schur functions as χR . Schur functions [1,20] depend on infinite sequence of time-variables pk , k = 1, . . . , ∞, they are 
graded polynomials of pk , and are symmetric functions of variables xi on the Miwa locus

p(N)

k = tr N×N Xk =
N∑

a=1

xk
a (1)

The Schur function can be defined through the Frobenius formula [21]

χR{pk} =
∑
�

ψR(�)

z�

p� (2)

Here, for the Young diagram � = {δ1 ≥ δ2 ≥ . . . δl� > 0} = {1m1 , 2m2 , . . .}, the symmetry factor is defined z� := ∏
i mi ! · imi and p� is 

a monomial p� ≡ pδ1 pδ2 . . . pδl , while ψR(�) is a character of the symmetric group Sn , n = |R|. It satisfies the orthogonality condi-
tions

∑
�

ψR(�)ψR ′(�)

z�

= δR R ′ ,

∑
R

ψR(�)ψR(�′)
z�

= δ��′ (3)

as any character does.
Equivalently, one can construct the Schur function as a finite-dimensional determinant [12]. To this end, one defines a Schur function 

for symmetric Young diagram R = [r] through the expansion

exp

(∑
k

pkzk

k

)
=

∞∑
n=0

znχ[n]{p} (4)

Then, for arbitrary Young diagram R = {r1 ≥ r2 ≥ . . . ≥ rlR > 0}, [1]

χR = det
i j

χ[ri−i+ j] (5)

The hook (Frobenius) variables parameterize the Young diagram R in a somewhat different way, R = (�α| �β) with α1 > α2 > . . . > αl > 0, 
β1 > β2 > . . . > βl > 0:
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Remarkably, (5) can be rewritten in these coordinates as another determinant representation, where the entries are the single-hook 
characters,1 [22,23]:

χ(�α| �β) = det
i, j

χ(αi |β j) (6)

According to (5), the one-hook character is expressed through the symmetric characters as

χ(a|b) = (−1)b
∑
j≥0

χ[ j+b]{−pk}χ[a− j−1]{pk} = (−1)b+1
∑
j≥0

χ[b− j−1]{−pk}χ[a+ j]{pk} (7)

thus (6) is a somewhat “weaker” version of (5). Instead it has nicer properties and a broader variety of applications and deformations. In 
fact, there is a formula that mixes two representations (6) and (5), but at this moment it looks heavier, see [23, eq. (24)], and lacks clear 
applications.

3. Skew characters in the hook variables

For the skew Schur functions χR/P with R being one-hook, there is a very simple formula in the Frobenius coordinates:

χ(a|b)/(c|d) = χ(a−c|1)χ(1|b−d) (8)

Since all Young diagrams with more than one hook are not contained in the one-hook diagram, all other skew Schur functions vanish in 
this case. In fact, this is a corollary of the corresponding property of any skew Schur function: if the Young diagram P being embedded 
into the diagram R in such a way that their origins coincide, parts R into two untied Young diagrams R1 and R2, then

χR/P = χR1χR2 (9)

Formula (8), in particular, implies that

χ̂(a|b) · χ(c|d) = χ(a−c|1)χ(1|b−d) (10)

where χ̂R := χR{ 1
k

∂
∂ pk

}. Let us introduce a new operator D̂(c|d) acting on the single-hook Schur functions in such a way that

D̂(c|d) · χ(a|b) := χ(a−c|1)χ(1|b−d) (11)

Now we can write down what is the skew Schur function when P is single-hook, P = (c|d). In this case,

χ(�α| �β)/(c|d) = D̂(c|d) · det
i, j

χ(αi |β j) (12)

where the operator D̂(c|d) acts on the products of the single-hook Schur functions in the determinant by the Leibnitz rule, which is 
non-trivial, since the operator χ̂(a|b) in (10) contains higher derivatives. In other words,

χ(�α| �β)/(c|d) = χ(�α| �β) ·
∑
i, j

(
χ−1

)
αi ,β j

χ(α j−c|1)χ(1|βi−d) (13)

where χ−1 is the matrix inverse to χ(αi |β j) and we used Jacobi’s formula for the derivative of the determinant [24]

1 This formula reflects a peculiarity of the Schur functions: χ(�α| �β): depends on the first α1 + β1 − 1 time variables pk . Deformations of the Schur functions, for instance, 
to the Macdonald polynomials do not celebrate this property at any finite values of t and q but t = q: the polynomials become dependent on all first ∑n

i (αi + βi) − n time 
variables.
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D̂ · detχ = detχ · Tr
(
χ−1 · D̂χ

)
(14)

Using this formula, one can similarly describe the action of a few successive operators D̂ in a similar way (note that all of them commute). 
For instance, for D̂1 = D̂(a|b) , D̂2 = D̂(c|d) with a, b, c, d > 1,

D̂2 D̂1 · detχ = detχ · Tr
(
χ−1 · D̂1χ

)
· Tr

(
χ−1 · D̂2χ

)
− detχ · Tr

(
χ−1 · D̂1χ · χ−1 · D̂2χ

)
(15)

etc.
One can check that the action of a product of operators D̂ celebrates a simple property

. . . D̂(a1,b1) D̂(a2,b2) . . . · χ = − . . . D̂(a1,b2) D̂(a2,b1) . . . · χ (16)

i.e. it depends only on the two sets {ai} and {bi} and the parity of the permutation. Hence,

( n∏
i

D̂(ai ,bi)

)
· χ = 1

n! det
i, j

D̂(ai |b j) · χ (17)

Now everything is ready for our final formula for the generic skew Schur function:

χ(�α| �β)/( �γ |�δ) =
( n∏

i

D̂(γi ,δi)

)
· det

i, j
χ(αi |β j) (18)

The r.h.s. of this formula can be also rewritten in the matrix form:( n∏
i

D̂(γi ,δi)

)
· detχ = detχ ·

∑
a1,...,an

∑
σ∈Sn

(−1)pσ Z (γ1|δ1)

αa1 ,βaσ (1)
. . . Z (γn|δn)

αan ,βaσ (n)
(19)

where the matrix Z (γi |δi)

αa,βb
:=

(
χ−1 · D̂(γi |δi)χ

)
a,b

and the sum goes over all repeated indices and over all permutations from the symmetric 
group Sn , pσ being the parity of permutation σ .

4. τ -functions and Schur functions

It is well-known that the linear and bilinear combinations of the Schur functions may give rise to a τ -function: in order for a linear 
combination∑

R

w RχR{p} (20)

to be a τ -function of the KP hierarchy,2 the coefficients in front of the Schur functions should satisfy the Plücker relations (see (27)
below), [3,4]. Similarly, there are explicit conditions for w R R ′ [25] that a bilinear combination∑

R,R ′
w R R ′χR{pk}χR ′ {p′

k} (21)

is a τ -function of the Toda hierarchy, or a KP τ -function w.r.t. the both sets of time variables {pk} and {p′
k}. This latter τ -function can be 

also treated as a τ -function of the 2-component KP hierarchy. However, no extension to multilinear combinations of the Schur functions 
that is still a τ -function has been known so far.

Note that there is a relatively simple class of coefficients w R and w R R ′ that gives rise to the τ -functions [26–30]:

w R R ′ = δR R ′
∏

i, j∈R

f (i − j), w R =
∏

i, j∈R

f (i − j) (22)

where f (x) is an arbitrary function. Such τ -functions are called hypergeometric [28]. In the case of f (x) = 1, the sum (21) is immediately 
calculated using the Cauchy formula

∑
R

χR{pk}χR{p′
k} = exp

(∑
k

pk p′
k

k

)
(23)

and is a trivial τ -function.
In [16,17], we suggested a possible extension of this Cauchy formula to the multilinear case

∑
R1,...,Rr

CR1 ...Rr

r∏
m=1

χRm {p(m)} = exp

(∑
k

∏r
m=1 p(m)

k

k

)
,

CR1,...,Rr :=
∑
�	n

∏r
i=1 ψRi (�)

z�

(24)

2 Note that usually in integrable theory other time variables are used: tk = pk/k.
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which gives rise to a (still trivial) KP τ -function w.r.t. all time variables and can be further made slightly less trivial [17].
At the same time, A. Orlov proposed another multilinear extension of (21), which we discuss in the next section.

5. Hook variables and Matisse τ -functions

Using the Frobenius coordinates, consider the sum

τ
(r)
0 :=

∑
�αi

r∏
i=1

χ(�αi | �αi+1){p(i)} (25)

It is a KP τ -function w.r.t. any of the time variables if one imposes the condition �αr+1 = �α1. Hereafter, we imply the ordering α1 > α2 >

. . . > 0 of the vector components, and the sum over �α means a sum over all possible ordered values of the vector components, and over 
all possible numbers l of non-zero components, i.e. over all possible sets satisfying the ordering condition.

Moreover, the expression

τ (r) :=
∑
�αi

r∏
k=1

⎛
⎝χ(�αi | �αk+1){p(k)}

∏
i, j∈(�αk| �αk+1)

fk(i − j)

⎞
⎠ (26)

is still a τ -function, fk being arbitrary functions.3 Such τ -functions have been called by A. Orlov “Matisse τ -functions” (because of the 
“Dance” painting [31]).

In order to prove that (25) is a τ -function w.r.t. the variables pk , it is sufficient to prove that all the Plücker relations

w(�α| �β)[αi ,α j;βi ,β j ] · w(�α| �β) − w(�α| �β)[αi;βi ] · w(�α| �β)[α j;β j ] + w(�α| �β)[αi;β j ] · w(�α| �β)[α j;βi ] = 0 (27)

for the coefficients w(�α| �β) of χ(�α| �β){pk} in (25) are satisfied. Here we denoted through [{αi}; {β j}] removing a subset {αi}; {β j} from the 
set of hook legs and arms.

The simplest way to prove this is as follows. We can use (6) and apply the formula

det
i, j

∞∑
k=1

Aik Bkj =
∑

1≤k1<k2<...

det
i j

Aik j det
i j

Bk j i (28)

Consider, for instance, r = 3. Then, (25) is a KP τ -function if

w(�α| �β) =
∑

�γ
χ( �β| �γ )χ( �γ | �α) (29)

satisfies the Plücker relations. Using (28), this formula is reduced to

w(�α| �β) = det
i j

( ∞∑
k=1

χ(βi |k)χ(k|α j)

)
(30)

again with one-hook determinant entries, and one can trivially check that it satisfies the Plücker relations: they are just the Jacobi identity4

for the determinant (30).
Because of (28), it is natural to introduce the kernel

K(r)
i j {p(m)} := χ(i|k2){p(1)}

(
r−1∏
m=2

χ(km|km+1){p(m)}
)

χ(kr | j){p(r)} (32)

Then, using (28), one can present (25) in the form

τ
(r)
0 :=

∑
�α

det
i j

K(r)
αi ,α j {p(m)} (33)

Moreover, in order to prove that (25) is a KP τ -function, one has to check that

w(�α| �β) = det
i j

K(r−1)
αi ,β j

{p(m)} (34)

3 This is because any function w R that satisfies the Plücker relations can be multiplied w R −→ w R
∏

i, j∈R f (i − j) by an arbitrary function f (x) and still continues to 
satisfy the Plücker relations [26,28]: these latter are invariant with respect to this operation.

4 If we denote through J

(
i1 . . . is

j1 . . . js

)
the determinant of a matrix with removed rows i1, . . . , is and columns j1, . . . , js , then the Jacobi identity reads

J

(
i j
i j

)
· J = J

(
i
i

)
· J

(
j
j

)
− J

(
i
j

)
· J

(
j
i

)
(31)
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satisfies the Plücker relations, which is, indeed, the case because of the Jacobi identity.
Note that, for any matrix Aij , the following formula is correct:

∑
�α

det
i j

Aαi ,α j =
∞∑

n=0

χ[1n ] {pk = Tr Ak} = exp

(∑
n

(−1)n+1

n
Tr An

)
(35)

since χR{pk} = χ
R∨ {(−1)k+1 pk} and R∨ denotes the transposed Young diagram. It follows from the formula∑

α1>...>αn

det
i j

Aαi ,α j = χ[1n ] {pk = Tr Ak} (36)

Then, denoting through K the matrix with matrix elements K(r)
i j , one can rewrite (33) as

τ
(r)
0 = exp

(∑
n

(−1)n+1

n
Tr K n

)
(37)

One can also consider the matrix X with matrix elements X (m)

ik := χ(i|k){p(m)} and write equivalently

τ
(r)
0 = exp

(∑
n

(−1)n+1

n
Tr

(
X (1) X (2) . . . X (r)

)n
)

(38)

This formula remains correct for (26) with X (m)

ik = χ(i|k){p(m)} · ∏i, j∈(i|k) fm(i − j).
Let us consider the simplest case of r = 2. Then,

Ki j =
∑

k

χ(i|k){p(1)}χ(k| j){p(2)} (39)

and5

∞∑
n=1

(−1)n

n
Tr K n =

∞∑
n=1

(−1)n p(1)
n p(2)

n

n
(42)

This formula is a corollary of the fact that, as immediately follows from (25),

τ
(2)
0 = exp

( ∞∑
n=1

(−1)n+1 p(1)
n p(2)

n

n

)
(43)

6. Hook variables and shifted Schur functions

The shifted Schur functions are unambiguously defined by the formula

χ∗
μ{pk} = χμ{p} +

∑
λ: |λ|<|μ|

cμλχλ{pk} (44)

in such a way that the coefficients are (unambiguously) determined from the conditions

χ∗
μ{∗pk(R)} = 0 if μ /∈ R

∗pk(R) :=
∑

i

[
(Ri − i)k − (−i)k

]
(45)

They are symmetric functions of the variables xi − i, i = 1, . . . , N on the locus formed by the shifted power sums

∗p(N)

k (x) :=
N∑

i=1

[
(xi − i)k − (−i)k

]
(46)

These shifted Schur functions have three interesting properties:

5 If one defines

K′
i j =

∑
k

χ(i|k){p(1)}χ( j|k){p(2)} (40)

this formula gets the form

∞∑
n=1

(−1)n

n
Tr K ′n =

∞∑
n=1

p(1)
n p(2)

n

n
(41)
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• Surprisingly, these functions have a similar determinant representation, the determinant entries being one-hook characters:

χ∗
(�α| �β)

= det
i, j

χ∗
(αi |β j)

(47)

At the same time, formula (5) is not immediately generalized to the case of shifted functions.
• The shifted one-hook Schur function χ∗

R is given by a linear combination of only one-hook Schur functions χQ such that Q ∈ R:

χ∗
(α|β){pk} =

α∑
i=1

β∑
j=1

Cα−1,i−1 · Cβ, j · χ(i| j){pk} (48)

where the coefficients Cij are defined by the expansion of the Pochhammer symbol

k−1∏
i=0

(z − i) =
k∑

j=1

Ckj z
j (49)

• The shifted Schur functions themselves satisfy the Hirota bilinear equations in p∗
k , i.e. the coefficients cμλ in (44) satisfy the Plücker 

relations in λ at any μ. However, even if the coefficients of a linear combination of the shifted Schur functions satisfy the Plücker 
relations, this does not give rise to a KP τ -function.

Hence, all the formulas of the previous section still persist, but the counterpart of (25)-(26) is no longer a τ -function.

7. Cut-and-join operators in the hook variables

First of all, let us note that the time variables pa are expanded only into single-hook Schur functions

pa =
a∑

i=1

(−1)i+1χ(a−i+1|i) (50)

Hence, the products of time variables pa pb are expanded into double-hook Schur functions, pa pb pc , into triple-hook Schur functions, etc. 
For instance, for a ≥ b

pa pb = (−1)a+b
b∑

j=1

a−b−1∑
i=1

(−1)iχ(i+ j, j|a+1−i− j,b+1− j) +

+
∑

i≥1, j≥1
i+ j≤b

(−1)i+ j+bχ(a+1− j,i|b+1−i, j) +
∑

i≥1, j≥1
i+ j≤b

(−1)i+ j+aχ(b+1− j,i|a+1−i, j) +

+
b∑

i=1

(−1)i+1
(
χ(a+b+1−i|i) + (−1)a+bχ(i|a+b+1−i)

)
(51)

These formulas can be used for constructing the cut-and-join operators [6]

Ŵ� = 1

z�

:
∏

i

D̂δi : (52)

where

D̂k = Tr (M∂M)k (53)

and M is a matrix. The normal ordering in (52) implies that all the derivatives ∂M stand to the right of all M . We apply W� only to gauge 
invariants, and they are themselves “gauge”-invariant matrix operators, thus, they can be realized as differential operators in pk = Tr Mk . 
The Schur functions form a system of common eigenfunctions of the cut-and-join operators [6],

Ŵ�χR{p} = φR(�) · χR{p} (54)

with the eigenvalues [32]

φR(�) =
∑

μ	|�|
χ∗

μ

(∗ pk(R)
) ψμ(�)

z�

(55)

First few examples of the cut-and-join operators in terms of the time-variables are

Ŵ [1] = tr D̂ =
∑

kpk
∂

∂ pk
(56)
k=1
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Ŵ [2] = 1

2
: tr D̂2 : = 1

2

∞∑
a,b=1

(
(a + b)pa pb

∂

∂ pa+b
+ abpa+b

∂2

∂ pa∂ pb

)
(57)

Ŵ [3] = 1

3
: tr D̂3 : = 1

3

∞∑
a,b,c≥1

abcpa+b+c
∂3

∂ pa∂ pb∂ pc
+ 1

2

∑
a+b=c+d

cd (1 − δacδbd) pa pb
∂2

∂ pc∂ pd
+ (58)

+1

3

∑
a,b,c≥1

(a + b + c)
(

pa pb pc + pa+b+c
) ∂

∂ pa+b+c
(59)

Since [6]

Ŵ [1,1] = 1

2
Ŵ [1](Ŵ [1] − 1) (60)

Ŵ [2,1] = Ŵ [2](Ŵ [1] − 2) (61)

Ŵ [1,1,1] = 1

6
Ŵ [1](Ŵ [1] − 2)(Ŵ [1] − 1) (62)

we are interested only in Ŵ R with R that does not contain the unit cycle, i.e. in Ŵ [1] , Ŵ [2] , Ŵ [3] , etc.
Now one can realize the cut-and-join operators in terms of hook variables. Let us introduce the Schur functions of derivatives

χ̂R := χR

{
k

∂

∂ pk

}
(63)

Then, the cut-and-join operator can be realized as a sum

Ŵ� =
∑

C (�)
R P χR χ̂P (64)

with some coefficients C (�)
R P . For instance, the first non-trivial operators are realized as [19]

Ŵ [1] =
∑
a=1

apa
∂

∂ pa
=

∑
a=1

a∑
s,s′=1

(−1)s+s′ · χ(a−s+1|s) · χ̂(a−s′+1|s′) =
∞∑

r,s,r′,s′=1
r+s=r′+s′

(−)s+s′ · χ(r|s) · χ̂(r′|s′) (65)

Ŵ [2] = 1

2

∞∑
a,b=1

(
(a + b)pa pb∂a+b + ab pa+b∂a∂b

)
= 1

2

∞∑
r,s,r′,s′=1

r+s=r′+s′

(−)s+s′(r − s + r′ − s′) · χ(r|s) · χ̂(r′|s′) (66)

where we used formulas (50) and (51). Naively, one could expect basing on (51) that the Ŵ [2]-operator depends on 2-hook Young 
diagrams. However, there is conspiracy, and only single-hook diagrams enter the result. Similarly, the Ŵ�-operators with higher |�| such 
that � does not contain cycles of unit length depend on Young diagrams with not more than |�| − 1 hooks (the number of hooks can 
be less: for instance, Ŵ [4] involves not more than double-hook Young diagrams, Ŵ [5] triple hooks, etc.; see (92)). This removing cycles 
of unit length is much similar to removing U (1)-factors from U (N) algebras, which results in simple algebras of rank one unit less. For 
instance, the Ŵ [3]-operator has the following hook form representation

Ŵ [3] = 1

2

∞∑
r,s,r′,s′=1

r+s=r′+s′

(−)s+s′ C ([3])
(r,s),(r′,s′) · χ(r|s) · χ̂(r′|s′) +

+
∑

r1+r2+s1+s2=r′+s′+1

C ([3])
([r1,r2]|[s1,s2]),(r′,s′) · (χ([r1,r2]|[s1,s2]) · χ̂(r′|s′) + χ(r′|s′) · χ̂([r1,r2]|[s1,s2])

) +

+
∑

∑2
i=1(ri+si−r′

i−s′i)=0

C ([3])
([r1,r2]|[s1,s2]),[r′

1,r′
2]|[s′1,s′2]) · χ([r1,r2]|[s1,s2]) · χ̂([r′

1,r′
2]|[s′1,s′2]) (67)

where

C ([3])
(r,s),(r′,s′) = 1

2

(
r − s + r′ − s′)2 + (s′ − r′)�(r − s − (r′ − s′)) +

+(s − r)�(r′ − s′ − (r − s) − 2) + �(s + s′ − r − r′ − 2)(r + r′ − s′ − s) − (r + s − 2) (68)

and �(x) is the Heaviside function, and the other coefficients C ([3])
([r ,r ]|[s ,s ]),(r′,s′) and C ([3])

′ ′ ′ ′ are also rather involved.

1 2 1 2 ([r1,r2]|[s1,s2]),[r1,r2]|[s1,s2])
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A comment on evaluating the coefficients C (�)
R P Note that, since

χ̂RχP = χP/R (69)

one obtains from (54) that

Ŵ�χR =
∑

C (�)
Q P χQ χR/P = φR(�) · χR (70)

i.e. one can realize the Ŵ�-operator not as a differential operator, but as an operator acting on the linear space of Young diagrams. To 
this end, one can note that

χR/P =
∑

S

N R
P Q χS (71)

hence, the Ŵ�-operator can be given by an infinite matrix in the space of Young diagrams:(
Ŵ�

)
R S

=
∑

X,Y ,Z

C (�)
XY N S

X Z N R
Y Z (72)

where N R
XY are the Littlewood-Richardson coefficients, and |R| = |S|. Here we used that

χX {p}χY {p} =
∑

Z

N Z
XY χZ {p}

χX/Y =
∑

Z

N X
Y ZχZ (73)

Thus, the eigenvalue equation (70) can be rewritten in the matrix form as∑
X,Y ,Z

|X|=|Y |

C (�)
XY N S

X Z N R
Y Z = φR(�)δR S (74)

This linear system unambiguously defines a symmetric matrix C (�) for any given function φR(�).
In fact, the system of equations∑

X,Y ,Z
|X|=|Y |

C XY N S
X Z N R

Y Z = λRδR S (75)

can be simplified if one makes the linear transform with the kernel 
ψX (�)ψY (�′)

z�z′
�

:

A XY −→ Ã��′ :=
∑
X,Y

|X|=|Y |

ψX (�)ψY (�′)
z�z′

�

A XY (76)

Then, using

N Z
XY =

∑
�1,�2

ψZ (�1 + �2)ψX (�1)ψY (�2)

z�1 z�2

(77)

where the sum of two Young diagrams is understood as a reordered unification of rows from the both diagrams, one can rewrite (75) in 
the form

∑
�1,�2

�−�1=�′−�2

C̃�1�2

z�−�1

= λ̃��′ (78)

8. Single-hook Ŵ -operators

Let us now understand how many Ŵ sh-operators exist that involve only single-hook diagrams in expansion (64). The eigenfunction 
condition (54) does not restrict Ŵ sh when it is acting on the single-hook diagrams. Consider its action on the double-hook diagrams. 
Then, as it follows from (12),

Ŵ sh
(
χ(r1,s1)χ(r2,s2) − χ(r1,s2)χ(r2,s1)

)
=

= λ(r1,s1)χ(r1,s1)χ(r2,s2) + λ(r2,s2)χ(r1,s1)χ(r2,s2) − λ(r1,s2)χ(r1,s2)χ(r2,s1) − λ(r2,s1)χ(r1,s2)χ(r2,s1) (79)

i.e.

λ([r1,r2],[s1,s2]) = λ(r1,s1) + λ(r2,s2) = λ(r1,s2) + λ(r2,s1) (80)
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At level 4 (r1 = s1 = 2, r2 = s2 = 1), it imposes two restrictions on the eigenvalues (and, hence, in accordance with (75), on the operator 
Ŵ sh):

λ([2,1],[2,1]) = λ(2,2) + λ(1,1) = λ(2,1) + λ(1,2) (81)

Similarly, at level 5, there are four more restrictions:

λ([3,1],[2,1]) = λ(3,2) + λ(1,1) = λ(3,1) + λ(1,2)

λ([2,1],[3,1]) = λ(2,3) + λ(1,1) = λ(2,1) + λ(1,3) (82)

at level 6, eight additional restrictions, and at level k, p(k) − 3 additional restrictions, p(k) being the number of partitions of k.
It looks like still there is a large ambiguity in allowed eigenvalues λR . However, starting from level 9, there appear triple-hook diagrams, 

etc., which imposes more conditions. For instance, the triple-hooks diagrams impose seven restrictions for eigenvalues for every triple-
hook diagram:

λ([r1,r2,r3],[s1,s2,s3]) = λ(r1,s1) + λ(r2,s2) + λ(r3,s3) = λ(r1,s2) + λ(r2,s3) + λ(r3,s1) = λ(r1,s3) + λ(r2,s1) + λ(r3,s2) =
= λ(r1,s3) + λ(r2,s2) + λ(r3,s1) = λ(r1,s1) + λ(r2,s3) + λ(r3,s2) = λ(r1,s2) + λ(r2,s1) + λ(r3,s3) (83)

The conditions for double-hook diagrams remain only 3k − 3 independent eigenvalues up to level k, which gives 30 for the levels up to 
11. At the same time, there are 8 triple-hook diagrams up to this level, which gives 56 additional conditions. Hence, normally, one would 
not expect any freedom in eigenvalues remaining.

It remains to notice that these conditions (82), (83), etc. are solved by any eigenvalues of the form

λ(�α| �β) =
∑

i

(
ξ1(αi) + ξ2(βi)

)
(84)

with arbitrary functions ξ1,2(x). Linear functions give rise to Ŵ [1] and quadratic, to Ŵ [2] , since

φ(�α| �β)([1]) =
∑

i

(
αi + βi − 1

)
, ξ1,2(x) = x − 1/2

φ(�α| �β)([2]) =
∑

i

(
α2

i − αi − β2
i + βi

)
, ξ1(x) = −ξ2(x) = x2 − x (85)

At the same time,

φ(�α| �β)([3]) + 1

2
φ(�α| �β)([1])2 =

∑
i

(1

3
α3

i − 1

2
α2

i + 2

3
αi + 1

3
β3

i − 1

2
β2

i + 2

3
βi − 1

2

)
,

ξ1(x) = ξ2(x) = 1

3
x3 − 1

2
x2 + 2

3
x − 1

4
(86)

This means that the combination Ŵ [3] + 1
2 Ŵ 2[1] is a single-hook operator too. Moreover, it has simple expansion coefficients C (cf. with 

(60)):

Ŵ sh
3 = Ŵ [3] + 1

2
Ŵ 2[1] = 1

4

∞∑
r,s,r′,s′=1

r+s=r′+s′

(−)s+s′
(
(r − s + r′ − s′)2 + 2

)
· χ(r|s) · χ̂(r′|s′) (87)

Other combinations, with distinct (linear, cubic) functions ξ1(x) and ξ2(x), or coinciding quadratic functions for Ŵ sh can not be made of 
the Casimir operators. Since these latter form a basis in the space of differential operators of finite order (local operators), such Ŵ sh are 
given by non-local operators.

Note that, at each level n, there is exactly one new operator Ŵ sh , it is equal to Ŵ [n] + Poln−1(W�), where Polk denotes a polynomial, 
which is a sum of monomials 

∏
i Ŵ�i such that 

∑
i |�i | ≤ k. In the next section, we construct a simple basis of such polynomials.

9. Integrability and Ŵ -operators

As we discussed in sec. 4, a diagonal bilinear combination of the Schur functions,∑
R

f RχR{p}χR{p′} (88)

is a (hypergeometric) KP τ -function w.r.t. to both time variables pk and p̄k iff f R = ∏
i, j∈R f (N − i + j) for arbitrary function f (x) (it is 

also a Matisse τ -function). Moreover, it is a Toda lattice τ -function [25,28,30]. There is a more general expression, a generating function 
of the Hurwitz numbers [6,27] (we called it Hurwitz τ -function) with f R = exp

(∑
� β�φR(�)

)
:

Z H =
∑

χR{p}χR{p′}exp

(∑
β�φR(�)

)
(89)
R �
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where β� are arbitrary constants labeled by Young diagrams. This generating function can be reproduced from the trivial exponential 
τ -function exp

(∑
k=1

pk p̄k
k

)
by action of the Ŵ -operators:

Z H = exp

(∑
�

β� · Ŵ�

)
· exp

(∑
k=1

pk p̄k

k

)
(90)

and it generally does not give rise to ordinary integrability. The point is that the basis of the commuting operators Ŵ� is too large: the 
cut-and-join operators form an additive basis of commuting operators, and, for ordinary integrability, one needs a multiplicative basis. 
What is this restricted basis?

A crucial property of the function f R = ∏
i, j∈R f (i − j) is that an exponential of an arbitrary linear combination of Cn =∑

i

(
(Ri − i)n − (−i)n

)
, which are eigenvalues of the S L(N) Casimir operators, is of this kind [30]. Hence,

τ H
N =

∑
R

χR{pk}χR{p̄k}exp

(∑
n

ζnCn(R)

)
(91)

where ζn are arbitrary coefficients, is a KP τ -function. We choose slightly different definition (linear combination) of Cn that gives most 
simply looking formulas:

Cn(R) := 1

n

∑
i

[(
Ri − i + 1/2

)n −
(

− i + 1/2
)n

]
= ∑

i

(
ξn(αi) + (−1)n+1ξn(βi)

)

ξn(x) : = (2x − 1)n

2n · n

(92)

Every Cn(R) is definitely a low triangle (in grading) polynomial combination of the eigenvalues φR (�), the concrete combinations (92)
being called completed cycles [33]. These combinations can be realized either at the level of eigenvalues, or at the level of Ŵ�-operators. 
For instance,

Ĉ2 = Ŵ [2]

Ĉ3 = Ŵ [3] + 1

2
Ŵ 2[1] − 5

12
Ŵ [1]

Ĉ4 = Ŵ [4] + 2Ŵ [2]Ŵ [1] − 11

4
Ŵ [2]

Ĉ5 = Ŵ [5] + 3Ŵ [3]Ŵ [1] + 2Ŵ 2[2] − 19

2
Ŵ [3] + 2

3
Ŵ 3[1] − 9

4
Ŵ 2[1] + 383

240
Ŵ [1]

. . . (93)

They are linear combinations of the single-hook operators of the previous section and have a simple hook representation

Ĉn = 1

2n · n

∞∑
r,s,r′,s′=1

r+s=r′+s′

(−)s+s′
(
(r − s + r′ − s′ + 1)n − (r − s + r′ − s′ − 1)n

)
· χ(r|s) · χ̂(r′|s′) (94)

With these operators, one can present (91) in the form

τ H
N = exp

(∑
n

ζnĈn

)
·
∑

R

χR{pk}χR{p̄k} = exp

(∑
n

ζnĈn

)
· exp

(∑
k=1

pk p̄k

k

)
(95)

These Casimir operators Ĉn are elements of the GL(∞) and, thus, provide the Bäcklund transformation: acting on the trivial τ -function 
exp

(∑
k=1

pk p̄k
k

)
, they still give rise to a new τ -function. Similarly, one can generate the KP τ -function (26) from (25):

τ (r) = exp

(
r∑

i=1

∑
n

ζ
(i)
n Ĉn(p(i))

)
· τ (r)

0 (96)

Thus, we come to the conclusion that the Bäcklund transformation is given by exponential of a linear combination of the Ŵ -operators 
iff these Ŵ -operators are from the space spanned by all single-hook operators.

10. Macdonald Hamiltonian and Casimir operators

It is well-known (see, e.g., a review [34]) that the Macdonald polynomials form a set of common eigenfunctions of the Ruijsenaars 
exponential Hamiltonians [35] Ĥm , the simplest of which is (in fact, just this Hamiltonian is enough to fix the Macdonald polynomials 
unambiguously)
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Ĥ1 =
∮

dz

z
exp

(∑
k>0

(1 − t−2k) pkzk

k

)
· exp

(∑
k>0

q2k − 1

zk

∂

∂ pk

)
(97)

Choosing the parameter t = q, one returns to the Schur functions, while the system becomes the Calogero-Moser-Sutherland system at a 
special value of the coupling constant where the system becomes free. All higher Hamiltonians in this case are generated from this one,

Ĥ(q) := 1

q − q−1

∮
dz

z
exp

(∑
k>0

(1 − q−2k) pkzk

k

)
· exp

(∑
k>0

q2k − 1

zk

∂

∂ pk

)
(98)

Ĥ(q)χ R{p} =
⎛
⎝ lR∑

i=1

q2ri − 1

q2i−1
+ 1

⎞
⎠ · χ R{p} (99)

since the Schur functions do not depend on q, and

[Ĥ(q), Ĥ(q′)] = 0 (100)

Thus, H(q) is a generating function of all Hamiltonians in this case. One can introduce the variable h̄, q := eh̄ and consider Ĥ(q) as a 
power series in h̄. In the hook coordinates, this generating function is equal to [36]

Ĥ(q) = (q − q−1)

∞∑
r,s,r′,s′=1

r+s=r′+s′

(−)s+s′qr+r′−s−s′ · χ(r|s) · χ̂(r′|s′) =

= 2 sinh h̄ ·
∞∑

r,s,r′,s′=1
r+s=r′+s′

(−)s+s′e(r+r′−s−s′)h̄ · χ(r|s) · χ̂(r′|s′) (101)

Using formula (94), one obtains

Ĉ(q) :=
∞∑

n=1

Ĉn
(2h̄)n

(n − 1)! = Ĥ(q) − 1 (102)

The factor q − q−1 in (101) explains the origin of the structure (... + 1)n − (... − 1)n in the summand of (94).
Thus, this generating function of the Casimir operators is exactly the Hamiltonian (98), and the eigenvalue of Ĉ (q) is

Ĉ(q) · χR = λ(q) · χR ,

λ(q) =
lR∑

i=1

q2ri − 1

q2i−1
=

∑
i

(
q2αi−1 − q1−2βi

)
(103)

11. Conclusion

We used the hook (Frobenius) parametrization of the Young diagrams and discussed in these terms explicit expressions for the Schur 
functions and shifted Schur functions, as well as for the skew Schur functions. We demonstrated that

• A periodic product of the Schur functions each depending on its own set of time variables, (25) gives rise to a KP τ -function w.r.t. to 
all these sets of times;

• Acting on this product with exponential of any linear combination of cut-and-join Ŵ -operators that involve only single-hook Young 
diagrams is a Bäcklund transformation keeping the KP τ -function (26), (96);

• At any level, there is exactly one cut-and-join Ŵ -operator of this type up to a linear combination of lower level operators, sec. 8.
• We also explicitly constructed the simplest looking basis of these operators, the Casimir operators associated with the completed 

cycles (92), (94).
• We evaluated the generating function of these operators (102) and its eigenvalue (103).

Remained for the future work are two big directions: q-t generalization to the Macdonald family, and its alternative restriction to 
the Q Schur functions [1,37,38], both require non-trivial additional ideas which can shed light on associated deformations of integrable 
structures.
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