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Chapter 1

Introduction

In this thesis we present the work published during the Ph.D. and work that
was sent to the arXiv and is pending publication. It is based on four papers
in the field of string theory and particle physics [1, 2, 3, 4].

Below, we provide a brief introduction to the research done during the
Ph.D. studies in which we studied the role of fluxes and singularities in
realizing phenomenological features of string theory. The reader is referred
to the abstract, introduction and conclusions of each of the papers presented

in chapter 2 for a more technical description of the work.

1.1 General Introducion

There are currently two generally accepted physical frameworks describing
the behavior of our world. The first, quantum mechanics, describes the be-
havior of the small constituents of matter. This framework, using the formal-

ism of quantum fields, can be applied to describe processes that take place
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at particle accelerators from a theoretical point of view. This framework has
become known as the Standard Model of particle physics and its predictions
agree perfectly with the values measured in experiment. The second frame-
work, general relativity, deals with very large and massive objects such as
stars and galaxies. It describes the deformations of space and time caused
by such masses and their mutual influence. General relativity is used also to
understand the cosmological evolution of the universe. This theory as well is

tested to a high degree of accuracy.

Evidently, the two theories describe very different physical situations.
However, there are physical circumstances in which the large and the small
are incorporated together. An example of this is the astrophysical object
known as a black hole. A black holes is an objects whose mass is large
enough to attract anything in its surroundings, such that objects drawn
into it cannot escape. At the same time, due to their enormous gravitational
force, these objects are confined in a small enough space such that the energy
density is larger than some mass scale, known as the Planck scale which is
of order of 101%GeV. At this scale, quantum effects are significant, and thus

the physics inside a black hole must be described by both frameworks.

Another example is physics during the early stages of the universe. Ac-
cording to the cosmological theory of the evolution of our universe, the uni-
verse began by expanding from a point size singularity to the huge size it
is today. When the universe was just born, all of its energy and mass were
localized in a very small and energetic volume of space. Here, as before, the

physics of quantum fields and of general relativity live side by side.

In order to better understand such examples, one needs a new theory that
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incorporates both quantum mechanics and general relativity into some larger
framework. A simple attempt at combining these two theories aims at repre-
senting gravity by a quantum field, whose fluctuations describe deformations
in the geometry of space and time. This attempt leads to an inconsistent
theory since fluctuations over very small scales can be very energetic and can
create singularities, which are manifested by divergences in the calculations.
As of today there is no known theory that fully resolves this problem even at
a theoretical level except string theory. It is hoped that in the future string

theory could be verified experimentally.

Perturbative string theory is the quantum theory of extended objects
propagating in space-time, meaning the basic object is a string instead of a
point. There may be either open strings with two endpoints or strings that
close on themselves, whose spectrum of excitations describes the different
matter fields. In any consistent formulation of string theory one of the closed
string excitations is always a spin two graviton, the quantum manifestation
of general relativity. The finite size of the strings is the key ingredient that
solves the problem that arises at infinitely small distances when one tries to

quantize gravity.

However it is still unclear how to use the formalism of string theory to
describe the physics of our world, as the extended nature of the strings sets
many restrictions on the consistency of the theory. In the simplest formula-
tion of string theory, one such requirement is that the space-time in which
the objects propagate must be ten dimensional, which is in conflict with the
four dimensions we see around us. The spectrum of the string excitations

in these models contains a graviton, fermions, and vector fields as we indeed
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have in Standard Model, however it is not known how to reduce the spec-
trum to match the details of the Standard Model, nor is it known how to
generate the exact interactions between them with the correct parameters
we measure.

These difficulties, however, can be amended by including additional struc-
tures into the model. It is possible to reduce the dimensionality of space-time
to the known four dimensions by taking six of them to span a compact space.
It turns out that it is then necessary to include also non vanishing fluxes for
the fields in our theory. A viable spectrum of particles and their interactions
arises when we consider singular points of the geometry. This thesis studies
these structures in string theory with the hope that by incorporating them
it will be possible to generate a completely viable description of physics at

low energies.

1.2 Dimensionality of Space-Time — Fluxes in

String Theory

Although string theory can be formulated as a consistent theory of quantum
gravity, it still has to obey the equivalence principle and to reduce to the
Standard Model when we consider its low energy limit. In order to describe
string theory at low energies one can integrate out the massive excitations of
the string. The resulting limit leads to a supergravity theory whose action
can be calculated from string amplitudes. Solving the supergravity equa-
tions of motion, one gets backgrounds on which the full string theory can be

constructed.
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Since string theory can be consistent only when the number of space-time
dimensions is exactly ten, its low energy is described by a ten dimensional
background geometry. This seems to disqualify string theory, as we know that
there are only four space-time dimensions in the world we see. However, it
turns out that there are ways to make a ten dimensional world seem to be
only four dimensional. One such way is known as “compactification” and can
be described as follows. Consider the extra dimensions to span a very small
compact geometry. In order to probe it we need very energetic excitations.
As we take the extra dimensions to be smaller, we will need more energetic
particles in order to probe them. However, if the energy required is much
larger than what can be achieved currently in particle accelerators, the extra

dimensions cannot be observed directly.

In order to end up with a four dimensional theory we thus take the back-
ground to be of the form IR'® x Y, where Y is a compact six dimensional
space. By following the Kaluza-Klein reduction we can then dimensionally
reduce the theory to a four dimensional one. Many of the properties of the
four dimensional physics are determined from properties of the compact space
Y. For example, the symmetries of the four dimensional theory are deter-
mined by isometries of Y. The size and shape of this manifold also appear
in the four dimensional theory as massless scalar fields, moduli. Phenomeno-
logically these must receive a non vanishing mass that will stabilize them at
some value and make them non dynamical in the low energy limit. Therefore
there should be a mechanism in string theory that generates a moduli depen-
dent potential. One such mechanism is the use of supergravity backgrounds

with additional non trivial fluxes for the fields [5, 6, 7, 8, 9, 10, 11, 12]. The
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action then includes a potential that generically lifts all moduli.
Consequently, it is important to better understand string theory in back-
grounds that include fluxes. In the next subsections I will describe our work
carried out towards this goal. In subsection 1.2.1 we consider a different type
of moduli that are not stabilized by the fluxes and we consider a different
mechanism to stabilize them in some specific context. In subsection 1.2.2, we
study how such a string background with fluxes turned on can be described

by a quantum field theory with no gravity using different degrees of freedom.

1.2.1 Open String Moduli

Type II string compactifications on generic Calabi-Yau three-folds lead to
hundreds of massless scalar moduli fields, causing various phenomenologi-
cal problems since no such light scalar fields have been observed in nature.
By turning on some background value for the Neveu-Schwarz-Neveu-Schwarz
(NSNS) and Ramond-Ramond (RR) fluxes on cycles of the Calabi-Yau, a po-
tential develops that stabilizes these moduli at some fixed value and generates
a mass for the scalar fields.

In type IIB string theory, the classical supergravity action generates a po-
tential for the complex structure moduli of the Calabi-Yau manifold but not
for its Kahler structure moduli. Since the total volume of the compact man-
ifold is a Kahler modulus, it is not possible to fix all moduli by fluxes in the
type IIB supergravity approximation. However, it has been argued [13] that
non-perturbative effects in type IIB string theory introduce a potential that
depends also on the Kahler moduli. Including these non-perturbative effects

leads to a potential with a negative minimum, describing a supersymmetric
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Anti de-Sitter (AdS) background. This vacuum can be furthermore lifted
to a positive value of the energy density for which one gets a meta-stable
de Sitter (dS) background, in agreement with recent observations suggesting
a positive cosmological constant. The modification involves introducing a
space-filling anti-D3-brane (which we will denote as a D3-brane) that raises
the potential energy. This breaks all the supersymmetry, and using some
fine tuning it was argued that it is possible to obtain a positive yet small
cosmological constant. Following the work of [13], various other suggestions

for constructing meta-stable dS vacua have also appeared.

In addition to changing the potential, the addition of the D3-brane has
implications regarding the moduli in the theory. In the presence of the D3-
brane there is also an open string sector that includes some moduli that can
be interpreted as the location of the D3-brane in the compact space. In our

research we studied these moduli.

In the Kachru-Kallosh-Linde-Trivedi (KKLT) construction the moduli
are stabilized near a conifold singularity and the fluxes generate a warped
Klebanov-Strassler (KS) like “throat” with a warp factor ag. The D3-brane
is added at the tip of this “throat”. In [1] we studied the mass of the open
string moduli corresponding to the position of the D3-brane. In the limit
of an infinite “throat” these moduli are massless since they are Goldstone
bosons. However, when the “throat” is finite the background is changed and
the moduli obtain a mass. We studied in detail the deviation of the finite
“throat” theory from the infinite “throat” theory of [14], and we identified the
leading deviation that contributes to the mass of the open string moduli. The

approximate conformal symmetry of the “throat” theory is used to classify
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the deviations, and we found that the leading deviation corresponds to an
operator of dimension A = v/28 ~ 5.29, and that it leads to a mass-squared
for the open string moduli scaling as aOA_2 ~ a3?°. In the interesting limit of
large warping, ag < 1, this mass is exponentially lighter than the other mass
scales appearing in the warped compactification, implying that the KKLT

scenario generally leads to light scalars, which could cause phenomenological

problems.

We also studied a possible way to resolve this problem and increase the
mass of the moduli, by positioning two of the orientifold 3-planes (which
must be present anyway in KKLT-type compactifications) at the tip of the
“throat”, and adding to them half-D3-branes so that they become O3*-
planes rather than O3~ -planes. The D3-brane is then attracted to these
O3*'-planes, increasing the mass of the open string moduli. The mass-squared
is still smaller than the typical mass scales, but only by a factor of the string
coupling g which does not have to be very small. Therefore, this can be used
to avoid phenomenological problems (especially if the standard model fields
live at a different position in the Calabi-Yau and couple very weakly to the
D3-brane fields). Our scenario has the added advantage that by adding two
half D3-branes in addition to the D3-brane we do not generate a tadpole for
the D3-brane charge. This is in contrast to the original KKLT scenario where
such a tadpole exists and leads to subtleties in using the probe approximation
for describing the D3-brane (due to the necessity to change the background

elsewhere to compensate for the D3-brane charge).
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1.2.2 AdS/CFT Correspondence with Fluxes

An important concept in string theory is that of holography [17, 18]. Accord-
ing to holography, quantum theories of gravity in d space-time dimensions
can be described by dual quantum field theories, which do not include gravity,
in d-1 dimensions. The most well studied example is when the gravitational
theory is formulated on a space with geometry known as Anti de-Sitter (AdS).
The dual theory can be written in terms of a conformal field theory (CFT)
that exhibits a special type of symmetry called conformal symmetry. This
is known as the AdS/CFT correspondence [19, 20, 21]. This duality is a
strong/weak duality; it relates a theory of weakly interacting particles to a
strongly coupled theory, and vice versa. Such a duality allows us to calculate
things in a weakly coupled theory and deduce results for the dual theory in
a strong coupling regime where the results cannot be calculated directly.

In the previous subsection we saw that before lifting the potential by
adding D-branes, we have an AdS; background. This turns out to be a
common feature in flux backgrounds. Using the holographic arguments we
are led to conjecture that a dual three dimensional conformal field theory
exists for the AdS, flux compactifications.

For a generic type IIB flux compactification the complex structure mod-
uli as well as the axio-dilaton are stabilized by the flux induced potential.
However there is always at least one Kahler modulus — the overall scale that
is left unfixed. This results in the need for a non-perturbative analysis of
these backgrounds. Motivated by dualities between type IIA and type I1B
theories, such as mirror symmetry in which the role of the complex structure

and Kahler moduli is interchanged between the two types, we can expect that
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in type ITA all Kéhler moduli could easily be stabilized while the complex
structure muduli would remain massless. It is then possible to look for a
compact space without any complex structure moduli where all moduli will
be fixed, without resorting to non-perturbative effects. A compactification of
ITA string theory on backgrounds with fluxes was constructed in [15], where
they found the form of the superpotential and Kahler potential. For a specific
orientifold of T°/Zs3 x Zs this analysis was carried out by [16], where it was
shown that indeed all moduli are stabilized by a generic flux configuration.
However another novel feature was discovered. Unlike the type IIB case, not
all flux parameters are constrained by tadpole cancellation conditions. Hence
it is possible to take some flux parameters to be arbitrarily large, giving rise
to a small dilaton and large volume where supergravity is under control. The
non-compact space was shown to have a negative cosmological constant and

thus was identified as an AdS space.

In [4] we revealed the features of the dual field theory of this background.
We computed various basic properties of the dual field theory, like its central
charges and the generic features of its operator spectrum. In order to find
more clues about this mysterious field theory we investigated in some de-
tail its moduli space, which can be described using configurations of domain
walls in AdSy. Of course, generic flux backgrounds preserve no supersym-
metry so they would not be expected to have a moduli space. The flux
backgrounds of [16] preserve a four dimensional N = 1 supersymmetry, so
they are dual to three dimensional N' = 1 superconformal field theories. This
amount of supersymmetry is not enough to protect the moduli space from

quantum corrections, since generic scalar potentials are consistent with three
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dimensional N/ = 1 supersymmetry. Nevertheless, in our study (performed
in the weak coupling weak curvature limit) we found a large moduli space
in these backgrounds. Although we expect this moduli space to be lifted
by quantum corrections (perhaps non-perturbative), they are small in the
“large flux limit”, and we expect the existence of an approximate moduli
space in this limit to be a useful clue for the construction of the dual field
theory. The moduli space turned out to be very complicated, with many
different branches that might be interconnected. For each such branch we
employed some mathematical theorems that count the number of solutions
for polynomial equations, in order to enumerate the number of dimensions.

So far we have not been able to find a simple field theory model that would
reproduce all the properties that we found. We hope that these properties
will provide useful clues for the construction of such a field theory in the

future.

1.3 The Particles in Our World — Singulari-

ties in String Theory

Physics that can be probed nowadays in particle accelerators is described in a
very compact way, using the formalism of quantum field theory. Given a set of
symmetries that are exhibited in nature and the different particles that exist,
one can calculate to a high precision many experimental processes. The set
of symmetries and particles that exist in our world is known as the Standard
Model of particle physics. A requirement of any fundamental theory is that
the Standard Model be obtained from it as a limiting case. Although many
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properties of the Standard Model can be realized in backgrounds of string
theory, up to date no one has been able to construct it in full detail. The
search for the way to relate string theory to observations is known as string

phenomenology.

A crucial ingredient in the Standard Model that must also arise in string
theory is the presence of non-abelian gauge groups, which describe the sym-
metries of the theory under which matter fields are charged. In string theory
there is a natural way in which non-abelian gauge groups appear when we
consider D-branes. These are extended objects in string theory spanning a
p-dimensional submanifold on which open strings can end. The action of the
open string degrees of freedom on N coincident D-branes is given by a U(N)
supersymmetric Yang-Mills (SYM) theory. More realistic gauge groups ap-
pear when the D-branes span the four dimensional space-time and are located
at singular points in the Calabi-Yau. There the U(N) gauge group is broken
and one can describe the resulting gauge groups and spectrum compactly

using quiver diagrams.

As there are many types of singularities, each with many geometrical
parameters, it seems that string theory can accommodate a vast amount of
different solutions, each with different symmetries and spectrum of particles.
The method of finding the string background that will exhibit the desired
features known from experiments is known as the bottom-up approach. It is
currently known how to construct singularities that, by adding the correct
configuration of D-branes, will generate (almost) the exact low energy spec-
trum expected to be in the Standard Model. However it remains a standing

problem to engineer the correct interactions between particles. In subsec-
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tion 1.3.1 we employ such a bottom-up approach as a tool to test certain
classes of string models by using restrictions arising from the structure of

these interactions.

A different ingredient in string phenomenology constructions has to do
with the extended symmetry of space-time that relates bosonic and fermionic
degrees of freedom. This symmetry, called supersymmetry, is an intrinsic part
of string theory at high energies that is needed for the consistency of the the-
ory. This symmetry, if it exists, predicts that for any fermionic particle there
will be a degenerate bosonic particle. However, in the low energy experi-
ments such partners have never been observed. This ambiguity between the
symmetries of the theory at high and low energies can be ameliorated by the

mechanism of symmetry breaking.

There are other reasons to believe that supersymmetry is indeed a sym-
metry of physics at high energies. In the Standard Model there is a scalar
particle called the Higgs, which has an important role in making the other
particles massive. This particle has not yet been observed but there are
bounds on its mass that restrict it to be no more than about 150GeV (with
such a mass it should be detected soon in the experiments at the Large
Hadron Collider commencing this year). However, quantum corrections gen-
erate additional contributions to the Higgs mass shifting it to many orders
of magnitude above the bound (unless some fine tuning is introduced). The
inclusion of the additional degrees of freedom predicted by supersymmetry

controls the shift in the Higgs mass and pushes it back to the correct range.

There are several mechanisms for breaking supersymmetry at low ener-

gies. A highly motivated one is that of dynamical supersymmetry break-
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ing (DSB), in which the breaking of supersymmetry is due only to non-
perturbative effects. In the context of string theory, supersymmetry breaking
usually occurs in a different “sector”, a gauge theory described by D-branes
positioned on a different singularity than the one describing the Standard
Model. In subsection 1.3.2 we were able to describe such a sector using very
simple tools from string theory. Using this configuration one can then con-
struct realistic models and study the properties of supersymmetry breaking

in them.

1.3.1 Flavor Parameters and Neutrino Physics from

String Theory

Recently it was realized that string theory has many different vacua, in which
the low energy physics is different. Low energy physics puts constraints on the
possible vacuum in which we live. In order to make contact with experiments
it is necessary to find the background that generates the properties of the
Standard Model. The interplay between string theory and phenomenology is
bidirectional. Indeed, in many aspects string theory provides a stringent and
predictive setting for phenomenology. This is due to the strict theoretical
constraints that arise at high energy.

In [2] we employ a bottom-up approach as a tool to test certain classes of
string models by using restrictions arising from low energy phenomenology.
We study the incorporation of the hierarchy of the Yukawa coupling constants
into string theory and find that it constrains the possible solutions of the
theory. We also find that this constraint reflects back on the Standard Model

and predicts restrictions on neutrino masses.
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The charged fermion flavor parameters — quark masses and mixing angles
and charged lepton masses — exhibit a structure that is not explained within
the Standard Model. There are two puzzling features — the parameters are
both small and hierarchical. This suggests that there is some approximate
horizontal symmetry at work. The simplest framework that employs such a
mechanism to explain the flavor puzzle is that of the Froggatt-Nielsen (FN)
mechanism [22]. The various generations carry different charges under an
Abelian symmetry. The symmetry is spontaneously broken, and the breaking
is communicated to the Standard Model fermions via heavy fermions. The
ratio between the scale of spontaneous symmetry breaking and the mass scale
of the fermions provides a small symmetry-breaking parameter that explains
the smallness of the flavor parameters. Yukawa couplings that break the FN
symmetry are suppressed by powers of the breaking parameter, depending
on their FN charge, and the difference between the charges explains the
hierarchy. However, all FN predictions are subject to inherent limitations.
The FN charges are not dictated by the theory and are chosen arbitrarily,
the value of the small parameter is not predicted, and there is no information
on the O(1) coefficients. The predictive power of the FN framework is thus

limited.

To make further progress, one would like to embed the FN mechanism
in the string theory framework. Gauge theories arise in string theory when
D-branes are taken close to singular points of the geometry. There the low
energy physics is described by a class of gauge theories known as quiver theo-
ries. In our research [2], we studied quiver gauge theories and their orientifold

generalizations. These theories typically have numerous anomalous U(1)’s.
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The anomalies are cancelled through the generalized Green-Schwarz mech-
anism. We considered FN models from quiver gauge theories by employing
these anomalous U(1)’s as flavor symmetries and constructing FN models.
We found that there are severe restrictions on the possible FN charges that
lead to a generic constraint on the maximal hierarchy in this framework.
Specifically, we constructed FN models in SU(5)-GUT theories with a single
FN field. We found that there are only three possible FN charges for the
10-plets, and two for the 5-plets. This situation makes the theory highly
predictive. In particular, there is a unique configuration that gives rise to
flavor structure for the quark masses in which the flavor structure of the

lepton sector is fixed.

Additionally, there are more flavor parameters for the neutrinos. In the
Standard Model neutrinos are massless, however recently indirect experi-
ments have shown that this cannot be the case and that neutrinos must have
some small mass that is yet to be measured explicitly. It is however plausible
that the flavor structure of the neutrinos is different than that of the quarks
and leptons. Specifically, the neutrinos seem to possess an anarchical flavor
structure, with no hierarchy in their masses and with mixing angles of order
one. By extending our quiver model to include neutrinos we predict that the

only viable theory leads to neutrino masses that are anarchical.

The uniqueness of the model demonstrates the strong predictive power
of quiver gauge theories and the possibility of constraining models in string

theory through the bottom-up approach.
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1.3.2 A Simple Model for Breaking Supersymmetry

Supersymmetry is an extension of the space-time symmetries that is required
for the consistency of string theory. As this symmetry requires new parti-
cles that have not been found, it is necessarily broken at low energies and
only exhibited at high energies. It has been argued that the breaking is
accomplished through non-perturbative effects, a mechanism known as dy-
namical supersymmetry breaking. Several models of DSB have been found
over the years; however they are non-generic and thus difficult to incorporate
into string theory. The construction of such models involves very complex
configurations in string theory that are very difficult to study.

As discussed in the previous subsection, the Standard Model is realized in
string theory on D-branes located on singularities. Supersymmetry breaking
then occurs in a gauge theory located on a different set of D-branes spatially
separated from the Standard Model branes along the compact directions.
The information on the breaking can then be transmitted to the Standard
Model by several possible carriers such as a closed string (e.g. gravity) or an
open string stretching between the two stacks of branes.

As a first step towards writing a complete compact solution, one must
specify a local singularity on which one can construct the model that ex-
hibits DSB. In [3] we formulated such a model of DSB using a very simple
construction in string theory where the singularity is described by an orbifold
projection of a smooth space. The model consists of an SU(5) gauge group
with one generation of fields in the antisymmetric and antifundamental rep-
resentations, and is known to break supersymmetry due to non-perturbative

effects.
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The string construction is based on a quiver theory that includes D-branes
that are fixed to the singular point of the geometry. The branes composing
the quiver are located on additional singular six-dimensional spaces known
as orientifolds. At the intersection of the orientifolds with the orbifold sin-
gularity we found a rich structure for the quiver diagram that allows us to
generate the gauge group and matter content of our model. We were able
to give the explicit construction of the local singularity that describes the
desired four dimensional model.

We showed that the models described above offer new mechanisms to
break supersymmetry while at the same time they stabilize various moduli
(known as Kéhler moduli) which otherwise require complicated and less un-
derstood stabilization mechanisms. Our example demonstrates the existence
of a new class of quiver gauge theories located on orientifold planes. Using
such a simple model one could do further calculations that will shed some

light on the process of DSB in string theory.
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Open string moduli in Kachru-Kallosh-Linde-Trivedi compactifications
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In the Kachru-Kallosh-Linde-Trivedi (KKLT) de-Sitter construction one introduces an anti-D3-brane
that breaks the supersymmetry and leads to a positive cosmological constant. In this paper we investigate
the open string moduli associated with this anti-D3-brane, corresponding to its position on the S° at the tip
of the deformed conifold. We show that in the KKLT construction these moduli are very light, and we
suggest a possible way to give these moduli a large mass by putting orientifold planes in the KKLT

“throat.”

DOI: 10.1103/PhysRevD.72.106009

L. INTRODUCTION

Type 1II string compactifications to four space-time di-
mensions with nontrivial Ramond-Ramond (RR) and
Neveu-Schwarz-Neveu-Schwarz  (NS-NS) background
fluxes have been studied extensively in the literature in
the past few years, as a way to stabilize moduli in string
theory. Compactifications on generic Calabi-Yau (CY)
three-folds without background fluxes lead to hundreds
of massless scalar moduli fields, causing various phenome-
nological problems since no light scalar fields have been
observed in nature. However, by turning on some back-
ground value for the fluxes on cycles of the Calabi-Yau
manifold, a potential develops that stabilizes those moduli
at some fixed value and generates a mass for the scalar
fields (see [1] and references therein).

Several examples of this mechanism, involving orienti-
folds, have been studied in detail. In type IIA string theory
there are several known examples of toroidal orientifolds
in which all moduli are stabilized. In type IIB string theory,
the classical supergravity action generates a potential for
the complex structure moduli of the Calabi-Yau manifold
but not for its Kéhler structure moduli. Since the total
volume of the compact manifold is a Kéhler modulus, it
is not possible to fix all moduli by fluxes in the type IIB
supergravity approximation. However, it has been argued
[2] that nonperturbative effects in type IIB string theory,
such as gauge theory instantons or gaugino condensation in
the world volume of D7-branes or wrapped Euclidean D3-
branes, generate a potential which depends also on the
Kéhler moduli. Including these nonperturbative effects
leads to a potential with a minimum with a negative
cosmological constant, describing a supersymmetric anti
de-Sitter (AdS) background.

The authors of [2] suggested that a slight modification of
such a background could lead to a meta-stable de-Sitter
(dS) background, in agreement with recent observations
suggesting a positive cosmological constant. The modifi-
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cation involves introducing a space-filling anti-D3-brane
(which we will denote as a D3-brane) which raises the
potential energy. This breaks all the supersymmetry, and
using some fine-tuning it was argued that it is possible
to obtain a positive yet small cosmological constant.
Following the work of [2], various other suggestions for
constructing meta-stable dS vacua have also appeared.

In addition to changing the potential, the addition of the
D3-brane has implications regarding the moduli in the
theory. In the presence of the D3-brane there is also an
open string sector, which includes some light scalar fields
(moduli) that can be interpreted as the location of the
D3-brane in the compact space. In this paper we study
these moduli.

We begin in Section II by reviewing the KKLT construc-
tion, in which the moduli are stabilized near a conifold
singularity such that the compactification includes a
Klebanov-Strassler (KS) [3] type “throat,” generating a
hierarchy by a factor of the small warp factor a, at the
tip of the throat [4], and a D3-brane is then added at the tip
of the throat. In Section III we discuss the mass of the
open string moduli corresponding to the position of the
D3-brane. We argue that in the limit of an infinite throat
these moduli are massless since they are Goldstone bosons,
but when the throat is finite the background is changed and
the moduli obtain a mass. We discuss in detail the deviation
of the finite throat theory from the infinite throat theory of
[3], and we identify the leading deviation which contrib-
utes to the mass of the open string moduli. We use the
approximate conformal symmetry of the throat theory to
classify the deviations, and we find that the leading devia-
tion corresponds to an operator of dimension A = /28 =~
5.29, and that it leads to a mass squared for the open string
moduli scaling as aj 2 = a3:*. In the interesting limit of
large warping, ay << 1, this mass is exponentially lighter
than the other mass scales appearing in the warped com-
pactification, implying that the KKLT scenario generally
leads to light scalars which could cause phenomenological
problems.

In Section IV we suggest a possible way to resolve this
problem and increase the mass of the moduli, by position-
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ing two of the orientifold 3-planes (which must be present
anyway in KKLT-type compactifications) at the tip of
the throat, and adding to them half-D3-branes so that
they become O37-planes rather than O3 -planes. The
D3-brane is then attracted to these O3*-planes, increasing
the mass of the open string moduli. The mass squared is
still smaller than the typical mass scales, but only by a
factor of the string coupling g, which does not have to be
very small, so this may not lead to phenomenological
problems (especially if the standard model fields live in a
different position in the Calabi-Yau manifold and couple
very weakly to the D3-brane fields). Our scenario has the
added advantage that by adding two half D3-branes in
addition to the D3-brane we do not generate a tadpole for
the D3-brane charge, unlike the original KKLT scenario
where such a tadpole exists and leads to subtleties in using
the probe approximation for describing the D3-brane (due
to the necessity to change the background elsewhere to
compensate for the D3-brane charge).

Finally, in two appendices we derive some results used
in the text. In Appendix A we list the possible deformations
of the AdSs X T"! background (which is a good approxi-
mation to the throat) which can appear as deformations of
the throat in our background. In Appendix B we discuss the
moduli space of the gauge theory dual to the throat region
after deformations by superpotential operators, and we
argue that any such deformations reduce the dimension
of the moduli space.

II. A REVIEW OF DS FLUX COMPACTIFICATIONS
WITH D3-BRANES

The setting for our analysis in the following sections is
the dS background of KKLT [2]. We start with a brief
overview of a general flux compactification and then pro-
ceed to describe the construction of the dS background.
More details can be found in [2,4,5].

A. Warped flux compactifications

We consider type IIB string theory in the supergravity
approximation, described in the Einstein frame by the
action

1 oyToM7 G5+ G
S - le —BlR — M _ Y3 3
LCAREYER { 2(m7?  12Imr
F? 1 Cy A Gy AGs
-~ + ~ + Searr (2.1
4- 5!} 8iK3, / Imr toea (2:1)

where 7= C, + ie”? is the axio-dilaton field and we
combine the RR and NS-NS threeform fields into the
generalized complex threeform field G = F; — 7H;. In
addition one must impose a self duality condition on the
fiveform Fs = Fs —1Cy A Hy + 1B,y A F3,

F s = *Fs. (2.2)
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The local action Sj,, includes the contributions from
additional local objects such as D-branes or orientifold
planes.

We begin by considering warped backgrounds, with a
metric of the form

ds%o = eZA(y)nM,,dx'“dx” + e 2405 (y)dy"dy", (2.3)

where w, v =20, 1, 2, 3; myn=4,---,9, and the un-
warped metric §,,, scales as o'/, where o is the imaginary
component of the complex Kéhler modulus related to the
overall scale of the compact Calabi-Yau manifold. In ad-
dition, both the fiveform and threeform fields are turned on.
Because of 4-dimensional Poincaré invariance only com-
pact components of G; may be turned on, while for the
fiveform, the Bianchi identity determines it to be of the
form

Fs=(+%da(y) Adx® Adx' Adx® Adx®.  (2.4)

Finally, local objects extended in the four noncompact
dimensions can be added wrapping cycles of the compact
space. These must satisfy the tadpole cancellation condi-
tion

1
27y T5 fjvl Hj A Fs + Q9 =0,
6

where Q¢! is the D3-brane charge of the local objects.
The supergravity equations of motion for such a con-

figuration of fields can be conveniently written in terms of

the following combinations of the fiveform and warp factor

P, =+ a.

(2.5)

(2.6)
The Einstein equation and the Bianchi identity for the
fiveform field can be combined to give

€2A

Vi,

|G+ |? + e 4| VD, |2 + local, (2.7)

~ 6Imr
where we defined the imaginary self dual (ISD) and imagi-
nary antiself dual (IASD) components of the generalized
threeform flux,

G.=iG+#G =  #G.=*iG.. (2.8)

The local objects act as sources for the fields ®.. D3-
branes and O-planes appear as sources only in the equation
for @, while D3-branes appear only in the equation for
® _. For a background with no D3-branes there are no

sources for @ _, so we get using (2.7) and the compactness
of the Calabi-Yau manifold

O =0=a ="

(2.9)

Since |G_|? is positive definite it must vanish everywhere
and so G5 is ISD.

The equations of motion can be compactly summarized
by a 4-dimensional superpotential [5]

106009-2
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W= fQ/\G3, (2.10)
where () is the holomorphic (3,0) form, together with the
standard supergravity Kihler potential. This notation
makes explicit the fact that the equations give nontrivial
restrictions on some of the moduli. The superpotential
depends both on the axio-dilaton (through its appearance
in G3) and on the geometrical complex structure moduli
that appear in (). However, the resulting 4-dimensional
supergravity theory is of the no-scale class. The Kéhler
moduli, including the global volume of the compact mani-
fold, have no potential (in the supergravity approximation)
and remain unfixed.

Consider probing this space with D3-branes. The D3-
brane action in the Einstein frame without turning on any
open string fields, including both the DBI and the Wess-
Zumino term, is given by

SD3 = _T3 f\/ﬁd“xq),.

For the type of solutions discussed above, obeying
Eq. (2.9), we obtain that these probes feel no force, and
their moduli space is the full compact manifold. For
D3-brane probes, due to the opposite sign in the Wess-
Zumino term, we find that the action is

Sgs = —Ts f@dﬁ@.

In our background where ®, = 2¢*A there is thus a force
on the D3-brane driving it towards smaller values of the
warp factor.

(2.11)

(2.12)

B. Getting a hierarchy from the conifold

It is phenomenologically interesting to find a back-
ground in which, in addition to fixing the moduli, there is
a large warped throat. This can be used to realize the
construction of Randall and Sundrum [6-8], giving a
solution to the hierarchy problem. Such a background
was found in [4] by considering a generic Calabi-Yau
manifold near a special point in its moduli space where it
develops a singularity. Generically such a singularity looks
locally like the conifold singularity [9] which can be
described by the submanifold of C* defined by:

z%-l—z%-l—z_%-i—zﬁ:o. (2.13)
The conifold is a cone whose base is T"! = (SU(2) X
SU(2))/U(1), a fibration of S> over 2. The cone is singular
at (zy, 22, 23, z4) = (0,0, 0, 0) where the spheres shrink to
zero size. The isometry group of the base geometry is
easily seen to be SU(2) X SU(2) X U(1), where the
SU(2) X SU(2) = SO(4) rotates the z;’s and the U(1)
adds a constant phase z; — e'®z;.

The singularity of the conifold can be smoothed in two
ways, by blowing up either of the spheres to a finite size.

PHYSICAL REVIEW D 72, 106009 (2005)

We will be interested in the deformation of the conifold,
which is the submanifold given by

z%+z%+z%+z£=,u, (2.14)

where w becomes a complex structure modulus for this
manifold. Geometrically, in (2.14) the S? shrinks to zero
size at the tip while the S* remains at some finite size. The
minimal size S° at the ““tip” is given by

lz11% + 1221 + |z3]* + |z4]*> = |ul. (2.15)

This deformation breaks the symmetry group to SU(2) X
SU(2) X Z,, where the SO(4) can be understood geomet-
rically as rotations of the S°.

Placing M fractional D3-branes at a conifold singularity,
the background near the singularity is given, for large g, M
and for some range of radial distances from the singularity,
by the KS solution [3], where in the near horizon geometry
one replaces the branes by fluxes. Such a configuration
involves turning on M units of F5 flux on the S at the tip of
the conifold, and also ( — K) units of H; flux on the dual
cycle (which is noncompact in [3] but is compact when we
embed this into a compact Calabi-Yau manifold). It is
customary to define N = MK. In [4] it was found that
such fluxes generate a warped throat similar to [3] near
the singularity. The superpotential stabilizes the complex
structure modulus u at a value for which the warp factor at
the tip of the throat is given by

Ay = o—2mK/3Mg,

ag=e (2.16)

which is exponentially small when K > g M (the validity
of the supergravity approximation in the throat requires
also g.M > 1).

In the throat region of the Calabi-Yau manifold the warp
factor is given by

ag N(1+8M (3 4 3 ()
K \87 27 \uy

(2.17)

o — 27
4yt

where u is the radial coordinate along the throat. At the tip
of the throat the redshift is minimal and given by (2.16).
There we get u~ Ra,, where we defined R*=
%fn'a’2 g,N. The bulk of the Calabi-Yau manifold, where
the warp factor is of order unity (and deviations from (2.17)
are large) is at u ~ R.

C. Lifting to a dS background

Although phenomenologically interesting, backgrounds
of this type classically have at least one scalar modulus.
The low-energy theories we arrive at are no-scale models,
and the potential generated by the fluxes does not give any
mass term for the Kihler modulus related to the volume of
the compact space. This was mended in [2] by considering
nonperturbative effects. Terms in the potential coming
either from instantons in non-Abelian gauge groups on a
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stack of D7-branes or from Euclidean D3-branes wrapped
on 4-cycles depend on the volume of the space, and stabi-
lize it at some finite value.

The stabilization of the Kéhler modulus leads to a
vacuum with a negative cosmological constant, an AdS
space. It was then argued that adding an D3-brane (which,
as discussed above, should sit at the tip of the throat to be
stable) results in a positive contribution to the scalar po-
tential from (2.12), and with some tuning of the parameters
it can lift the minimum of the potential to a small positive
value. Thus it is possible to get a de-Sitter space with a
small cosmological constant.

III. THE D3-BRANE MODULI

A consequence of the introduction of an D3-brane to the
warped background is the addition of new light scalar
fields from the open strings ending on the D3-brane, cor-
responding to the position of the D3-brane on the compact
space. In this section we analyze the potential for these
moduli in the KKLT background. We first consider the
background without the additional D3-brane, and estimate
the deviation of the warped background with a compact
Calabi-Yau manifold from the noncompact background of
[3]. We then use this to estimate the masses for the position
of the D3-brane, using the action (2.12) and considering the
D3-brane as a probe (as in [2]). This approximation is valid
when g, K 1 K g, M.

From (2.12) we see that the D3-branes are not free to
move on the compact space since they have a nontrivial
potential proportional to the warp factor. This potential
drives them to the tip of the throat where the warp factor
is minimal, giving a mass to the scalar field corresponding
to the radial position of the D3-brane.

At the tip of the throat, the D3-brane can still move on
the S°. In the full infinite KS solution there is an exact
SO(4) symmetry corresponding to rotations in this 3-
sphere, and placing the D3-brane breaks this symmetry
as SO(4) — SO(3). This gives rise to three massless mod-
uli, the three Goldstone bosons, which can also be inter-
preted as the three coordinates of the position of the
D3-brane in the S3.

In our background there are, however, corrections com-
ing from the compactness of the Calabi-Yau manifold, as
the background deviates from the KS solution away from
the tip. From the point of view of the field theory dual of
the KS background, these corrections are related to UV
perturbations (changes in coupling constants). Some of
these corrections explicitly break the SO(4) symmetry,
and thus generate a mass for the Goldstone bosons. We
will first classify the possible perturbations that can be
turned on in this class of backgrounds, and then go on to
consider their effect on the mass for the three moduli of the
D3-brane.

PHYSICAL REVIEW D 72, 106009 (2005)

A. UV corrections of the background

The deformation of our background away from the KS
geometry, at large radial position away from the conifold,
is easily described in the language of the dual field theory.
The dual theory (at some cutoff scale) has an SU(N) X
SU(N + M) gauge group, with gauge superfields W, and
W, corresponding to the two gauge groups, and two dou-
blets of chiral superfields A;, B; (i=1, 2) in the
(N, N + M) and (N, N + M) representations, respectively,
of the SU(N) X SU(N + M) group, and in the (O,%) and
(O,%) representations of the global SU(2) X SU(2)
symmetry.

In the dual description the region near the singularity
describes the low-energy physics of the field theory while
the Calabi-Yau region end of the throat serves as a UV
cutoff of the field theory. Deforming the solutions at large
radial position is described by changing the theory at some
large UV scale where the effective theory is some defor-
mation of the KS theory,

L= Lyst c,-f@,-. 3.1
Generally all possible operators might be turned on at this
scale, and they could influence the D3-brane at the tip (the
IR limit) and give a mass to the moduli. Because of the
renormalization group flow the contribution to the mass of
the D3-brane at the tip will be dominated by the most
relevant operators at the IR, namely, the lowest dimension
operators. Relevant and marginal operators will have a
large effect, while that of the irrelevant operators will be
suppressed.

It is sufficient to analyze the operators and their dimen-
sions in the conformal case [10] where the gauge group is
SU(N) X SU(N), since the cascading case is expected to
behave similarly up to log corrections and operator mix-
ings which should not change our conclusions. For this
case the classification of all supergravity KK-modes on
T"! and the corresponding operators in the field theory was
given in [11,12]. Since we are only interested in turning on
operators that break neither 4-dimensional Lorentz invari-
ance nor supersymmetry, we can restrict our attention to
the highest components of the different superconformal
multiplets and consider only those that are Lorentz scalars.
The only possible operators come from vector multiplets of
the 5-dimensional gauged supergravity which arises by
KK reduction on T"!, either long multiplets or chiral
multiplets.

The analysis of supergravity modes is carried out in
Appendix A, where we find only one possible relevant
operator

N ] d’6Tr(A'BY),

ij=12  Ag =25

(3.2)

and three possible marginal operators
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S, = f POTHABIAB), Ay =4,
D, = f d?0Tr(W? + W32), Ag, =4, (3.3)
P, = f dOTe(W? — W3), Ay, =4

The operator S, is symmetric in (i, k) and (j, [); the
antisymmetric combination mixes with ®,. There is also
an infinite number of irrelevant operators, all of them with
dimensions A = 5.29.

In fact not all possible operators are turned on in the
compact Calabi-Yau manifold background. As discussed
above, a probe D-brane in this background must feel no
force and its moduli space should describe the full 6-
dimensional compact geometry. In Appendix B it is found
that the addition of the operators Sy, S, changes the moduli
space drastically and necessarily results in a force on the
D3-brane. Thus, these operators are not turned on in the
warped flux compactifications.

The two marginal operators, @, and W, can be turned
on, but they are symmetric under the SU(2) X SU(2) and
do not lead to symmetry breaking and to a mass for the
D3-brane moduli. From the field theory perspective they
correspond to changing the coupling constants that are
already present in the nondeformed theory and do not
generate new terms in the action.

B. Masses from UV corrections

In the previous subsection we have seen that relevant
operators are not turned on in the warped background,
while the possible marginal operators do not break the
symmetry and leave the moduli massless. Irrelevant opera-
tors, however, can be turned on, and we next discuss the
masses generated by them. As discussed in Appendix A,
the various operators which preserve SUSY and Lorentz
invariance are related to Kaluza-Klein modes of the
warped metric on the T"! 8;j» the field ®, defined in
(2.6), the threeform field G5 and the axio-dilaton 7.

The operators are turned on at the UV cutoff, and in
order to consider their effect on the IR physics we need to
discuss their flow, or in the supergravity language their
profile along the radial coordinate. We start by considering
the profiles of the fields corresponding to these operators
on AdSs X T"!, using the metric ds},q = u’dx*dx, +
du?/u?. There are two independent solutions for the field
¢ corresponding to an operator of dimension A > 2, with
the following u-dependence:

&) = au™? + but~*. (3.4)

In the KS background there are small logarithmic correc-
tions to this, and in addition the behavior near the tip of the
throat gives some IR boundary condition for the field
equations. Generically this implies that at u = Rag the
two terms are of the same order. Then, at the UV cutoff
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u ~ R (the Calabi-Yau), the second term will dominate so
¢(u~ R) =~ bRA4, (3.5)

Deforming the theory at the UV by some 8¢ (R) ~ ¢ will
then correspond in the IR to

A-4
8¢(Rag) ~ ¢0% = ¢oay . (3.6)
The deformation in the IR is suppressed for operators with
higher dimension, as expected.

The largest contribution to a mass of an object localized
near the tip will be from the operator with lowest dimen-
sion that breaks the SU(2) X SU(2) global symmetry. The
analysis of the previous subsection and Appendix A im-
plies that this is the lowest component of the vector mul-
tiplet I, with j =[/=1 and r = 0, whose dimension is
A = /28 =~ 5.29. This operator corresponds in the super-
gravity to a KK mode of the warped metric §;;. We do not
see any reason why this operator should not appear in the
CY compactification so we assume that it does." At the UV
we have g;; ~ o'/2, and we expect the deformation of the
metric to be of the same order as the metric so we can
approximate 82;jlyy ~ o'/? and

5§ij|IR ~ 0'1/261374 = 0'1/261(1)'29. (37)

In order to evaluate the corresponding mass we need to
write in more detail the action on a probe D3-brane. We
consider a D3-brane filling the noncompact space-time and
positioned at the point X™ in the compact Calabi-Yau,
which is near the tip of the throat. Expanding around this
position, we get the action (2.12) with an additional kinetic
term. Using the solution of the supergravity equations for
the fiveform (2.9) we get

SD_3 = _2T3 [\/'g—4d4x€4A(Xm)
L .
—T3a’[\/g_4d4x§gff 9, X"0,X" 8, (3.8)

where g,,, is the unwarped metric, g, = ajg,,. Mass
terms appear in this action only through the dependence
of the warp factor, e*, on the position X™. Since in the full
noncompact case the warp factor has only radial depen-
dence, for a mass to be generated in the S* directions we
need to consider the change in the warp factor due to the
deformed supergravity fields g;;.

Tracing the Einstein equation and using (2.9) we can
write the equation of motion for the warp factor as

V24 = f—g|G|2, (3.9)

where V2 is the Laplacian on the warped compact space

"Note that this operator deforming the throat seems to be
different from the one analyzed in the appendix of [13].
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and we use the warped metric to raise and lower indices.
The change in A due to the deformation in g;; will thus
satisfy

v2sa=%¢

43 iy i G 8™ M 88 ~ a4 (3.10)

mynyj8

In this equation we dropped a term (8VHA since the
change in the Laplacian due to the deformation in the
compact metric g;; will be proportional to derivatives in
those directions, while the original A has no such depen-
dence and so this term vanishes.

The masses arise due to the variation of A in the S° at the
tip, where the D3-brane position is parametrized by X'.
Since in the warped metric we are using, this 3-sphere has
constant size (with a radius ~+/g,M), we can estimate

A~Ag+ (gM) lah 8, XX, (3.11)

Plugging into (3.8) we find
S5~ — T3 f\/g_4d4x[2a3 + Z(gSM)_lag_zginin

/
0,10, | (3.12)
where we changed the metric to the unwarped metric in
both kinetic and mass terms.” We see that a mass term
was generated with a mass of the order of m?~
(g,Ma") a2 = (g,Ma)" a3,

We see that the deformation of the theory at the UV does
indeed generate mass terms for the open string moduli.
However, the highest contribution is of order a3:*. In the
warped background the typical IR mass scale is of order a3,
so the mass generated here is exponentially smaller (given
(2.16)). In the Klebanov-Strassler background there are
presumably subleading logarithmic corrections to this re-
sult, however it is still highly suppressed. Such light mod-
uli would lead to phenomenological problems if we try to
use such a scenario to describe the real world.

IV. A LARGE OPEN STRING MODULI MASS
FROM O-PLANES

It is possible to obtain a higher mass for the open string
moduli by using O-planes. In this section we calculate this
mass. Recall that integrating the supergravity equation of
motion (2.7) on the compact space we get that the left-hand
side vanishes since there are no boundaries. The right-hand
side is positive definite, except for possible negative con-
tributions in the local terms corresponding to orientifold
planes. Hence in general we must have orientifold 3-planes
in order to be able to solve the equations of motion. It is

Note that the first term, even though naively it is independent
of the volume o of the compact space, actually does give a
potential for the volume factor [2] when we rescale the 4-
dimensional metric canonically [14].
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then natural to try and use these orientifolds for the purpose
of stabilizing the moduli for the D3-brane, by choosing the
position of these orientifolds to be at the tip of the throat.

For simplicity we consider an orientifold of the non-
compact Klebanov-Strassler solution. Since the analysis is
local, embedding this into the full background will not
change the conclusions. The action of the orientifold is
defined as in [15] by

(21, 22, 23, 24) = (21, =22, —23, —24)- 4.1)

This orientifold has two fixed points, both on the tip of the
deformed conifold (2.15) at the poles of the S°,
(z1, 20, 23, 24) = (= Vi 0,0, 0). Physically there are two
O3-planes at these points, which will interact with the
D3-brane and generate a potential for its position on the
3-sphere. Note that the addition of the O3-planes has no
effect on the supersymmetry of the model, since the O3-
planes break the same supercharges as the fluxes.

The D3 charge of an orientifold plane as well as its
tension is negative (equal to —1/4 that of a D3-brane),
while for D3-branes the charge is negative and the tension
is positive. We see that both effects result in a repulsive
force, so that the D3-brane does not get stabilized but
rather it would want to sit on the equator of the S°.
However one can use half-D3-branes to fix the situation.
Putting a half-D3-brane on the orientifold singularity, we
get an O3"-plane with the opposite charge and tension.
Since we have two singular points we can add two such
half-D3-branes to make both O-planes positively charged.
Note that the insertion of one additional unit of D3-brane
charge is actually a necessity once we introduce the
D3-brane, due to the tadpole cancellation condition.
Assuming that without D3-branes the background with
037 -planes is a solution of the supergravity, inserting the
D3-brane will cause a deficiency in D3 charge, which can
be resolved by the extra two half-D3-branes. Note that an
D3-brane cannot annihilate with a half-D3 so the solution
should still be (meta)-stable.

The potential between the D3-brane and the O3 " -plane
can be calculated by world sheet methods [16]. The first
contribution which depends on the distance between the
D3-brane and the orientifold comes from the Mébius strip,
and is equal to

M =2T3g, > c,r™, (4.2)
n=0

where r is the distance (in string units) between the
D3-brane and the O3*-plane, namely r* = g, X'X’, and
the coefficients are

(4.3)

2n—4,n.(2—n)/2
n! )’

Cp = (_ 1)n+1k”73<

where k,_5 is a positive number for n = 0, 1. This com-
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putation was done in flat space, but for large g,M the
curvature is small and it is a good approximation.

The first term in the expansion is a correction to the
energy which is independent of the distance. The second
term is a quadratic potential for the position of the
D3-brane which describes attraction between the
D3-brane and the O3"-plane. The contribution to the
action is

21 [ JEidtaafg.ei XX

= —2T;, [\/Qd“xa%gsclg,-jX"Xf, 4.4)
so that the mass of the X' fields is
2c
2~ 7‘ g,a3. (4.5)

We see that the orientifold gives these fields a mass of order
m?* ~ g.a3, which is the same scale as generic low mass
scales in this background. Since this mass comes from the
Mobius strip, it is suppressed by a factor of g, compared to
other masses so these open string moduli are still light, but
not exponentially as before, so hopefully they should not

cause phenomenological problems.
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APPENDIX A: LOW DIMENSIONAL OPERATORS
FROM SUPERGRAVITY ANALYSIS

The Kaluza-Klein spectroscopy for the supergravity
fields on AdSs X T'! was carried out in [11,12]. In this
section we will review their results for the dimensions of
the corresponding operators as a function of their SU(2) X
SU(2) X U(1), quantum numbers j, [, r. By considering
the group theoretic restrictions on these quantum numbers
for each multiplet, we will be able to find the operators with
lowest dimension.

In general we expand the fields in spherical harmonics
TL1 — SUQ)XSU(Q)
u1 >

with fields of different spins on the compact space ex-
panded using the corresponding SO(5) harmonics. These
harmonics furnish representations of the isometry (global
symmetry) group, SU(2) X SU(2) X U(1), in our case, but
not all representations appear in the expansion. The spe-

on the 5-dimensional compact space

PHYSICAL REVIEW D 72, 106009 (2005)

cific participating representations depend on the Lorentz
properties of the fields, but it turns out that all representa-
tions satisfy that either both SU(2) spins j and [ are integers
or both are half integers.

All resulting modes can be arranged into multiplets of
the N = 1, d = 4 superconformal algebra. There are nine
types of multiplets—one graviton multiplet, four gravitini,
and four vector multiplets [11,12]. For specific values of
the quantum numbers, some multiplets obey a shortening
condition and become semilong, massless, or chiral
multiplets.

For the current analysis we are interested in operators
that can be turned on at some UV cutoff without breaking
4-dimensional Lorentz invariance or supersymmetry.
Hence the relevant multiplets are only those with scalars
as the highest component. These are only the vector mul-
tiplets, either with generic values of the quantum numbers
or when they obey the condition for shortening to chiral
multiplets. The top components of these multiplets are
related to Kaluza-Klein modes of the warped 5D metric
on the T"! g, the field @ defined in (2.6), the threeform
field G5, and the axio-dilaton 7.

The first vector multiplet (vector multiplet I in the
notations of [11,12]) has a top component related to the
Kaluza-Klein modes of the warped 5D metric on the T"!
8ij» both when it is long and when it obeys the chiral
shortening condition. The dimension of this multiplet,
defined as the dimension of the lowest component, is given

by
A=JHG L) +4-2, (AD)
where
. » r?
HG, L r) = 6(,(1 FD I ) - §>, (A2)

with (j, [, r) the quantum numbers for the representation of
the SU(2) X SU(2) X U(1), symmetry group. The lowest
component b, coming from a linear combination of the
fiveform and the warp factor ®_ = ¢* — q, is expanded
in scalar harmonics that satisfy that r is even (odd) for j, [
integers (half integers) and |r| < 2 min(j, /).

Small dimensions arise when H is small. Because of the
1/8 factor in the third term, large values of j and / cannot
be compensated by large values of r and will give higher
values. It is then enough to look at small values for j and /.
The lowest values and corresponding quantum numbers are
written in Table I. In addition, for each multiplet one can
check whether it obeys some shortening condition and
what is the dimension of the operator corresponding to
the top component. The j = [ = r = 0 chiral operator can
in fact be gauged away, so among the physical scalar
operators we are left with one relevant operator and one
marginal operator, and all others are irrelevant.
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TABLE I. Lowest dimensional operators from vector multiplet TABLE III. Lowest dimensional operators from vector multi-
L plet III.

J l || H A Type Agp j l r H A Type Agp
0 0 0 0 0 chiral 1 0 0 0 -3 2 chiral 4
1/2 1/2 1 8.25 1.5 chiral 2.5 1/2 1/2 1 2.25 35 chiral 5.5
0 1 0 12 2 semilong e 1/2 1/2 -1 8.25 4.5 none 6.5
1 0 0 12 2 semilong s 0 1 0 9 4.61 none 6.61
1 1 2 21 3 chiral 4 1 0 0 9 4.61 none 6.61
1 1 0 24 3.29 none 5.29

1/2 3/2 1 26.25 35 semilong o

3/2 1/2 1 26.25 35 semilong In this case we also have nontrivial restrictions from the

A similar analysis can be done for vector multiplet II for
which the top component is related to @, . This multiplet
does not satisfy any shortening condition. The dimension
of the multiplet is given by a similar expression

A= HGLr) +4+4.

In this case the top component is itself a mode of a ten-
dimensional scalar field so the quantum numbers satisfy
the same inequality as in the previous case. The lowest
dimensional operator has H =0— A =6— A, =38
which is already irrelevant. Some of the low dimensional
operators are described in Table II.

For the vector multiplet III, the top component (whether
or not the multiplet obeys a shortening condition) is related
to the threeform field G5, and the dimension of the multi-
plet is

(A3)

A= \JHGLr+2)+4+1. (A4)
For this multiplet none of the fields are expanded in scalar
harmonics. Instead, the top component a (which is the
same for both the long and chiral multiplets) originating
from the ten-dimensional twoform potential is expanded
using the twoform harmonics. For these harmonics we
again have that r is even (odd) for j, / integers (half
integers), but now the restriction on the quantum numbers
is |r] = 2min(j, [) + 2.

TABLE II. Lowest dimensional operators from vector multi-
plet IL.

j [ [7| H A Type Avop
0 0 0 0 6 none 8
1/2 1/2 1 8.25 7.5 none 9.5
0 1 0 12 8 none 10

1 0 0 12 8 none 10

1 1 2 21 9 none 11

1 1 0 24 9.29 none 11.29
1/2 3/2 1 26.25 9.5 none 11.5
3/2 1/2 1 26.25 9.5 none 11.5

unitarity bounds
3
2—As§rsA—2. (AS)

The possible quantum numbers are given in Table III.
Finally, vector multiplet IV has dimension given by

A=\/H(j,l,r—2)+4+1. (A6)
For long multiplets the top component is related to the
threeform field G5 while for multiplets satisfying a chiral
shortening condition the top component is related to the
axio-dilaton 7. This last mode appears in all vector multip-
lets of this type (though it is not always the top component)
and it is expanded in scalar harmonics. Its r-charge is equal
to r—2 so the quantum numbers obey |r—2|=
2 min(j, [). These are shown in Table IV. Since the dimen-
sion depends only on » — 2 we get a similar table to that of
vector multiplet I but with the dimensions shifted.

To summarize this appendix we include in Table V the
lowest dimension operators found above and their dimen-
sions, as well as the form of the corresponding operators in
the field theory when it is known. The first irrelevant
operator is the top component of a long multiplet and
contributes to the Kéhler potential, but its exact form is
not known.

APPENDIX B: THE MODULI SPACE OF THE
DEFORMED THEORY

In this appendix we consider deforming the superpoten-
tial of the Klebanov-Witten theory [10] by the relevant and
marginal operators S; and S, given in (3.2) and (3.3). The
resulting moduli space is analyzed and shown to be of
lower dimension than the original symmetric product of
N copies of the conifold. In the dual gravity description
this must be due to a deformation exerting a force on the D-
branes. Such a deformation is forbidden by the equations of
motion in our construction, so we conclude that these
operators are not turned on. For the case of a Klebanov-
Strassler background the conclusion should remain the
same.

In the SU(N) X SU(N) theory with superpotential W =
he;€;tr(A'B/A*B') the F-term equations require that the
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TABLE IV. Lowest dimensional operators from vector multi-
plet IV.

j [ r H E, Type Atop
0 0 0 0 3 chiral 4
12 12 1 825 45 chiral 55
0 1 0 12 5 semilong s
1 0 0 12 5 semilong s
1 1 2 21 6 chiral 7

1 1 0 24 6.29 none 8.29
1/2 3/2 1 26.25 6.5 semilong o
3/2 1/2 1 26.25 6.5 semilong

chiral fields A;, B;, i = 1, 2 will commute, so that they can
be simultaneously diagonalized by gauge transformations.
The D-term equations then lead to the general solution
being N copies of the conifold. This branch describes D-
branes moving separately on the 6-dimensional geometry.
Such a branch must also exist for the deformed theory due
to the no-force condition on the D-branes, and we expect
that the subspace of diagonal matrices that solve the F-term
and D-term equations should give us the Nth symmetric
product of the deformed 6-dimensional geometry.

For diagonal matrices the equations for the N X N ma-
trices become decoupled so we can consider them as N
identical equations for single fields. In this case the moduli
space will be the solution to the F-term equations divided
by the complexification of the U(1) gauge group, and the
original superpotential can be ignored. Since all fields are
charged under the U(1) we get

Dim (moduli space) = Dim(F — term solutions) — 2.
(B1)

Since the dimension should be six, we get that the solutions
to the F-term equations should form an 8-dimensional
space.

We begin by considering the relevant chiral operator S;.
The general deformation of the superpotential is given by:

where A;; is constant matrix. The F-term equations for 1 X
1 scalars are:

A-B =0, AM-A=0, (B3)

TABLE V. Lowest dimensional operators.
A j I |r] Multiplet Type Operator
25 12 121 1 chiral §; = [d?6Tr(AB)
4 1 1 2 1 chiral §, = [d?0Ti[(AB)*]
4 0 0 0 IV chiral ®, = [d*6Tr(W] + W3)
4 0 0 0 Im chiral ®y = [d?0Tr(W} — W3
5291 1 0 I long O, = [d*0(?)

PHYSICAL REVIEW D 72, 106009 (2005)

where we consider A, B as 2-vectors and A as a 2 X 2
matrix. For det(A) # O there is no solution to the system of
equations. For det(A) = 0, A # 0 (sorank(A) = 1), there is
a 2-dimensional space of complex solutions so the moduli
space is 2 dimensional. Only for A = 0 we get a moduli
space large enough for describing free D-branes.

We now add also the marginal operator S,. The de-
formed superpotential is

AW = A;;Tr(A;B)) + %aijk,Tr(AiBjAkB,), (B4)

with o, = oyjiy = 0. The symmetry condition for the
indices comes from the fact that the chiral marginal opera-
tor is the j = [ = 1 combination of the four fields. From
the cyclicity of the trace we also get oji; = oy;;-

The F-term equations for 1 X 1 scalars are now

1 1
)ll]B] + Ea'ijlejAkBl + Ea-kjilBjAkBl = A

+a—ijlejAkBl = O,

)\leJ + O-jiklAkBlAj = O,

ijBj

(BS)

where we used the symmetries of o. There are 4 complex
fields in the equations so the maximal dimension for the
space of solutions is 8. If the solutions indeed form an 8-
dimensional space then for a generic solution any change
A; — A; + 6A; and B; — B; + 6B; will result in a new
solution. Taking the first equation and shifting only the A;
fields we find for any 6A;

AijB; + 0ijuB;AB, + 0jyBj6AB; =0
= O-ijlejaAkBl =(

- a-ijlejBl = 0. (B6)

Again this holds for all solutions so we can now shift B; to
find

0iiuB;B) + 018B;B) + 0,;uB;5B; + 0,;,0B;6B, = 0
= (oiju + oiu;)B;6B; = 0

= ot o =0

= iy = 0.

(B7)

Where in the last step we used the symmetry properties of
o jx- Hence we are left with only the relevant deformation
which also vanishes by the previous argument.

This argument can be generalized to any higher defor-
mation of this form. Consider the deformation
Tr(A; B;, - -+ A; B; ). Since the SU(2) X SU(2) represen-
tation is j = [ = 7 the coefficient of this term is symmetric
under exchange of the j indices and under exchange of the i
indices. We can then carry out a similar argument, where
we take at each step another derivative with respect to A or
B. Because of the symmetry property, each time we will get
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the same coefficient with one lower power of the fields.
After 2n steps we will be left with only this term and no
lower terms, and will arrive to the conclusion that the
coefficient must vanish.

We conclude that turning on these types of deformations
the diagonal branch of the moduli space cannot have 6

PHYSICAL REVIEW D 72, 106009 (2005)

dimensions. Since the geometry discussed in Section II
accommodates D-branes on a 6-dimensional space, these
operators are not turned on by deforming the Klebanov-
Strassler solution to a compact Calabi-Yau manifold. In
particular the relevant and marginal deformations (n = 1
and n = 2) are not turned on.
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We consider a large class of models where the SU(5) gauge symmetry and a Froggatt-Nielsen (FN)
Abelian flavor symmetry arise from a U(5) X U(5) quiver gauge theory. An intriguing feature of these
models is a relation between the gauge representation and the horizontal charge, leading to a restricted set
of possible FN charges. Requiring that quark masses are hierarchical, the lepton flavor structure is
uniquely determined. In particular, neutrino mass anarchy is predicted.
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I. INTRODUCTION

The charged fermion flavor parameters—quark masses
and mixing angles and charged lepton masses—exhibit a
structure that is not explained within the standard model
(SM). The two puzzling features—smallness and hier-
archy —are very suggestive that an approximate horizontal
symmetry is at work. The simplest framework that em-
ploys such a mechanism to explain the flavor puzzle is that
of the Froggatt-Nielsen (FN) mechanism [1]. The various
generations carry different charges under an Abelian sym-
metry. The symmetry is spontaneously broken, and the
breaking is communicated to the SM fermions via heavy
fermions in vectorlike representations. The ratio between
the scale of spontaneous symmetry breaking and the mass
scale of the vectorlike fermions provides a small
symmetry-breaking parameter. Yukawa couplings that
break the FN symmetry are suppressed by powers of the
breaking parameter, depending on their FN charge.

Model building within the FN framework usually pro-
ceeds as follows. One chooses a value for the small
symmetry-breaking parameter(s), and a set of FN charges
for the fermion and Higgs fields. These choices determine
the parametric suppression of masses and mixing angles.
One then checks that the experimental data can be fitted
with a reasonable choice of order-one coefficients for the
various Yukawa couplings. Thus all FN predictions are
subject to inherent limitations:

(i) The FN charges are not dictated by the theory.

(ii) The value of the small parameter is not predicted.
(iii) There is no information on the O(1) coefficients.
The predictive power of the FN framework is thus limited.
There is one relation among the quark flavor parameters
that is independent of the choice of horizontal charges [2],
and there are three in the lepton sector [3]. The resulting
predictions, that suffer from order-one uncertainties, are
consistent with the data. Additional relations apply in the
supersymmetric extension of the SM, but to provide new
tests of the FN mechanism, supersymmetric contributions
to flavor changing processes must be explored, and the
universal effects of renormalization group equations run-
ning should be small [4]. The predictive power is sharply
enhanced in the framework of GUT. With an SU(5) gauge
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symmetry, the number of independent fermion charges is
reduced from fifteen to six.

To make further progress, one would like to embed the
FN mechanism in a framework where some or all of the
inherent limitations described above are lifted. This may
happen in string theory. While realistic constructions of the
supersymmetric SM in string theory are still under study
[5-14], much progress has been made in the search for
string-inspired phenomenologically viable extensions of
the SM such as the FN framework. The basic idea is that
the FN symmetry is a pseudoanomalous U(1) symmetry
[15-19]. Then the small parameter depends on the FN
charges and, furthermore, if one assumes gauge coupling
unification, there is a single constraint on the FN charges
that can be translated into a relation between the fermion
masses and the p-term. This idea is based on ingredients of
the heterotic string and has led to a detailed investigation of
the resulting phenomenology (see, for example, Refs. [20—
23)).

On the other hand, we are not aware of any attempt to-
date to construct FN models which arise from D-brane
configurations [24]. In this paper, we take a step in this
direction and consider FN models from quiver gauge theo-
ries. These theories arise at low energy as the effective
theories on D-branes placed at singular geometries (see
[25-30] and references therein). As opposed to the heter-
otic case, these theories typically have numerous anoma-
lous U(1)’s. The anomalies are canceled through the
generalized Green-Schwartz (GS) mechanism [31-33].
We employ these anomalous U(1)’s as flavor symmetries
and construct FN models.

As we show below, the structure of these theories tightly
constrains model building and hence the realization of the
FN mechanism. As a consequence, we will see that much
can be said about the lepton sector. In particular, within the
framework of the SU(5) GUT model with a single FN-
symmetry-breaking field, there is essentially a single viable
model which predicts mass anarchy in the neutrino sector.

It is worth noting that, within the SU(5) GUT model, it is
a priori difficult to get the correct flavor hierarchy alto-
gether. The reason for this is that 10 fields arise from open
strings with both ends residing on the same set of U(5)

© 2006 The American Physical Society
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U(5) U(1)

FIG. 1. A D-brane construction with an SU(5) gauge group
and a distinct U(1)gy. The fundamental fields are strings stretch-
ing between the two stacks and are thus charged under the FN
group, while the antisymmetric fields connect only to the U(5)
stack and have no U(1)gy charge.

stack of branes, while 5 fields come from strings with one
end on the U(5) stack and the other on a different brane
which may provide the necessary U(1)gy symmetry. This
situation is depicted in Fig. 1. In particular this means that
the 10 fields are not charged under the FN symmetry and
there is no hierarchy in the up sector. As we show below,
one can overcome this problem by extending the gauge
symmetry, and the obtained structure is sufficiently restric-
tive to provide prediction regarding the neutrino sector.
The paper is organized as follows. In Sec. II we discuss
quiver gauge theories and their orientifold generalizations.
We further discuss Higgsing and the role of anomalous
U(1)’s (and the problems that accompany them) in such
theories. In Sec. III we investigate the embedding of the FN
mechanism within quiver gauge theories. We argue that it
is difficult to construct models with nonrenormalizable
superpotential terms. We focus on the case of a single
U(1)py symmetry that arises from anomalous U(1)’s. We
show that there are severe restrictions on the possible FN
charges, which lead to a generic constraint on the maximal
hierarchy in this framework. In Sec. IV we construct FN
models in SU(5)-GUT theories with a single FN field. We
show that there are only three possible FN charges for the
10-plets, and two for the 5-plets. This situation makes the
theory highly predictive. In particular, requiring that quark
masses are hierarchical, a single set of charges is singled
out, leading to a unique flavor structure. The flavor struc-
ture of the lepton sector is fixed, and neutrino mass anarchy
is predicted. We conclude in Sec. V. A full, consistent,
quiver realization for the SU(5) GUT theory, with empha-
sis on anomaly cancellation, is presented in the Appendix.

II. QUIVER GAUGE THEORIES

A wide class of N = 1 supersymmetric vacua is ob-
tained by placing D-branes on singular manifolds of type II
strings such as orbifolds and orientifolds [25-27,29,34—
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41]. Placing D-branes at such singularities produces at low
energy conformal gauge theories [27], while adding frac-
tional D-branes breaks the conformal symmetry, rendering
a four dimensional chiral gauge theory.

A quiver diagram is an efficient way for describing the
gauge theory obtained from the open string sector (for a
review, see [30]). The degrees of freedom of oriented
strings can be described as strings starting and ending on
D-branes. Consequently, the fields in the theory transform
in the fundamental of a U(N;) factor of the gauge group
and in the antifundamental of another U(N;) factor. It is
therefore possible to describe the field theory by a quiver
diagram, where we denote each U(N;) factor by a node in
the graph and the fields are represented by directed lines
connecting two such nodes. The orientation of the line
represents the orientation of the string: a line coming out
of a node corresponding to a U(N;) gauge group factor
stands for a field in the fundamental N;, while a line going
into a node corresponding to U(N;) represents a field
transforming in the antifundamental N—J A line originating
and ending on the same node describes a field in the adjoint
representation of the corresponding U(N) factor.

Gauge invariant field combinations, which may be
present in the superpotential, can also be seen using the
diagrammatic description. A field transforming in the fun-
damental of a given U(N) must interact with a field in the
antifundamental of the same U(N) in order to get an
invariant interaction. In other words, if there is a field
coming into a given vertex, we must also have a field going
out of that same vertex. This has to be the case for all the
vertices, so an invariant interaction is described by a closed
loop in the quiver diagram. In particular, a renormalizable
cubic term in the superpotential is represented in the quiver
by a closed triangle. In general, however, not every closed
loop in the quiver which originates from a certain geometry
appears in the superpotential. The general problem of
extracting the spectrum and superpotential from a given
geometry is still not solved, and only specific examples are
known.

A. Orientifold quivers

Strictly speaking, gauge theories arising from unor-
iented string theory are not quivers since the low energy
field theory cannot be described by a directed graph.
Nevertheless, these theories may also be described dia-
grammatically by ‘“extended® quivers, where the lines
representing the strings are no longer directed. Instead,
the two ends of each string can independently be in either
the fundamental or the antifundamental. Thus each line
must be drawn with an arrow at each of the two ends,
indicating what is the representation of the corresponding
string under each of the two gauge group factors.
Unoriented strings with both ends coming out of the
same set of branes may reside in either the symmetric or
the antisymmetric combination of N X N. Which of these
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two options is realized is directly related to the orientifold
projection in the original theory: it is the antisymmetric
(symmetric) part for the SO(N) [Sp(N)] orientifold pro-
jection. Having said that, we stress that the effective field
theories of unoriented strings on singular manifolds are
only known for Z,, orbifolds. Nevertheless, it is expected
that the unoriented nature of the string should lead to the
same ‘“‘extended‘‘ quiver type diagrams in more general
singularities.

Again, invariant interactions follow from the (extended)
quiver. It corresponds to a set of lines for which each node
has the number of ingoing fields equal to the number of
outgoing fields.

B. Higgsing

Higgsing, that is the spontaneous breaking of the gauge
group via vacuum expectation values (VEVs) of scalar
fields, changes in general the low energy description of a
given theory. In particular, by Higgsing a quiver gauge
theory, one obtains a (not necessarily supersymmetric)
new quiver gauge theory where the low energy degrees
of freedom are bifundamentals of the conserved gauge
groups. We can thus write an effective quiver by identify-
ing or splitting the vertices and lines so that each new node
represents an unbroken U(N) gauge group.

As an example, consider string theory on a Z5 orbifold
of the conifold (also known as Y>?), with N branes at each
representation of Z5. The resulting [U(N)1® gauge theory is
described by the quiver of Fig. 2(a). If we Higgs the theory
by giving Z' a VEV proportional to the unit matrix,

a

zZ' = , )

the corresponding U(N) X U(N) group is broken to the
diagonal U(N), and the [U(N)}® gauge theory of Fig. 2(b)
is obtained. The Z' field itself is eaten up by the longitu-
dinal modes of the broken gauge fields. Higgsing Z* and Z°
in the same way, one finds the [U(N)]? theory described by
Fig. 2(c), which is exactly the quiver of the orbifold C3/Z,
[37].

If, instead, we break the Y>° quiver by choosing a
different form of the VEV for Z',

a

7' = R , )

the symmetry breaking is U(N) X UN) — U(n) X
U(N — n). This breaking is no longer supersymmetric
and Z! in not eaten up completely. The lines and the nodes
split and the quiver takes a very different form, as can be
seen in Fig. 3. Other breaking patterns of U(N) X U(M)
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2) y z1 b) N
N N N
z3 z3
—_—
N N N N
z2 z2
N / N
N
c)
N
N

FIG. 2. Successive Higgsing of the Y>° quiver diagram to a C3
quiver: (a) The Y>0 quiver diagram. (b) The effective quiver
diagram induced by Higgsing Z! « 1. (c) The C?/Z; quiver
induced by Higgsing also Z?, Z> « 1.

symmetries with bifundamentals can be obtained. The
most general breaking is

k
U(N) X UM) — UN — M + ny) X ]‘[ Umn;) 3)
i=0

with % n; = M. It leads to more complicated quiver
diagrams which, in general, will not be supersymmetric
due to a nonvanishing D-term. However, by giving VEVs
to a pair of fields in a vector representation, supersymmetry
may easily be preserved.

Different patterns of breaking are generated when the
Higgsed field is in the adjoint representation or, for *“‘ex-
tended* quiver, in the fundamentals of both gauge groups

N

FIG. 3. Breaking the Y>° quiver by a diagonal VEV with two
different eigenvalues with multiplicities n and N — n.
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or in the symmetric (or antisymmetric) representation. In
all cases, the resulting theories can be described by a new
quiver diagram.

C. Anomalous U(1)’s

Typically, many of the U(1) factors associated with the
U(N) gauge groups are anomalous, with anomalies can-
celed by the generalized Green-Schwartz (GS) mechanism
[25,31-33]. In contrast to the case of the heterotic string, in
type II string theory there can be several such anomalous
U(1) factors. Furthermore, the corresponding gauge fields
are massive independent of whether the symmetry is spon-
taneously broken [the spontaneous breaking is induced by
nonvanishing Fayet-Illiopolous (FI) terms] [42,43]. In the
case that the symmetry is not broken by scalar VEVs, these
U(1) factors remain as global symmetries [44] and the
corresponding SU(N) factors remain good gauge symme-
tries. Thus each node in the quiver has a corresponding
(local) global (non)anomalous U(1).

Phenomenologically, these U(1) factors pose consider-
able problems to model building, essentially since the
global U(1) symmetries of the SM or its supersymmetric
extensions (SSM) are not directly related to the local gauge
groups. Consider, as an example, a supersymmetric quiver
theory which contains the SU(2)y, gauge group [5]. Under
the corresponding U(1), all the doublets (Q;, L;, H, and
H ) are charged = 1. The superpotential of the SSM has the
following form:

W =Y!H,Q:d; + Y'H,Qu; + Y;H,Lie; + wH,H,.
4)

It is clear that, to allow for Y* # 0 and Y4 # 0, the U(1)
charges of H, and H; must be the same. But then the u
term is forbidden. A similar problem exists in the SU(5)
GUT models [8,9] and their extensions, as we discuss in
Sec. IV.

There are three possible solutions to the above problem:

(1) The particle content of the low energy theory is
extended in such a way that the symmetry is real-
ized. For example, an extended Higgs sector [5]
enlarges the global symmetry.

(2) The U(1) is broken spontaneously. The only way to
do this without breaking the associated SU(N)
gauge group is by letting a singlet composed of N
fundamentals to obtain a VEV. This breaks the U(1)
down to a Zy. Such composite singlets may exist if
they are charged under a different, confining gauge
group.

(3) The anomalous U(1) is broken by nonperturbative
effects. Depending on the matter content, such ef-
fects break the symmetry down to Z;y for some
integer k.

While difficult to analyze, these solutions allow realistic
extensions of the SSM through quivers. We discuss these
possibilities further in Sec. IV.
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III. THE FN MECHANISM FROM QUIVERS

A. Renormalizable or nonrenormalizable

The Froggatt-Nielsen (FN) mechanism [1] provides an
explanation to the flavor puzzle using a horizontal symme-
try. Quarks and leptons of various generations are charged
differently under a symmetry J{ which is spontaneously
broken. The simplest realization is through the use of a
single Abelian U(1) which is broken by the VEV of a scalar
field S. To allow for JH -invariant interaction terms involv-
ing the SM Higgs and fermion fields, powers of S must be
involved, depending on the H -charge of the Yukawa
interaction. Thus, nonrenormalizable interaction terms
arise, suppressed by inverse powers of My, the scale at
which the breaking of # is communicated to the SM. The
effective Yukawa interactions are then suppressed by
powers of (S)/My < 1, and are characterized by smallness
and hierarchy, as required phenomenologically.

One way of embedding the FN mechanism in string
theory would be by identifying the scale My, with the string
scale, and obtaining a superpotential that has most of its
terms nonrenormalizable (the top, and perhaps other third
generation Yukawa couplings, being the exception). This
goal is difficult to achieve. Quiver gauge theories which
arise from D-branes at singularities have a superpotential
determined fully by the geometry. Geometrically engineer-
ing the required superpotential is hard. Most of the geome-
tries which are under control arise from orbifold
singularities [25] or toric geometries [37,38,40]. (These
two classes are, of course, not separate: Abelian orbifolds
are toric.) In the first type of geometry, the superpotential is
obtained by truncating N = 4 superconformal Yang-
Mills which has cubic interactions. For the second type,
in the case of Y79 geometries, one obtains also quartic
interactions. In any case, it is difficult to construct a quiver
theory with a superpotential that has most of its terms
nonrenormalizable.

A second approach is to construct a renormalizable
model above the scale My which, at low energy, produces
the required interactions. Further motivation for such a
construction comes from the possible identification of the
FN symmetry with an anomalous U(1), as discussed below.

A renormalizable model is easy to construct with the
introduction of additional vectorlike massive fields. As an
example, consider a nonrenormalizable superpotential
term of the form

S \»n

Vv

To generate such interaction, we introduce additional vec-
torlike massive fields V,, Vk (k =1, ..., n), with masses at
the scale My, and the following charges under the horizon-
tal symmetry:
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H (D) =n, H(Dy) =0, H(P3) =0,
H(S) =—1, HW)=-H(V,) = —k
Taking the renormalizable superpotential to be
W=od,V,+V,V, S+ -4V, Sh,y
+ MV, )

and integrating out V; and V,, one finds the required
interaction, Eq. (5). Figure 4 shows the relevant diagrams
which generate this low energy interaction for n = 1 and
for general n.

B. Identifying the FN symmetry

To relate the FN mechanism to a quiver field theory, one
needs to identify a global symmetry that can play the role
of a viable horizontal symmetry. We limit our search of
viable models to theories with the following features:

(i) The FN symmetry arises from anomalous gauged
U(1)’s in the quiver. (In particular, we do not con-
sider global symmetries of the open string sector
that are related to isometries in the dual gravita-
tional theory.)

(i) The spontaneous breaking of the symmetry comes
from a VEV of a single field, S.

(iii) The ratio of the two relevant energy scales is small,

e=(S)/M, <1, (8)

allowing for smallness and hierarchy in the effec-
tive Yukawa couplings.
We note several points that hold generically in a FN
mechanism that arises from a quiver theory using an
anomalous U(1):

Vn \_/n \/n-1 \_/n-1 Vn-2 \_/1
o @,
IVIV MV

D,

FIG. 4. Diagrams for generating interactions suppressed by
different factors (S)/M using only cubic interactions.
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(1) For S to be charged under an anomalous U(1), it
must either be stretched between two distinct verti-
ces, or have its two ends on the same vertex but with
both ends sitting in the same representation (either
fundamental or antifundamental). The second situ-
ation is possible only in the orientifold case. Since §
is generically charged under the full U(N)[ X U(M)],
and not just under the anomalous U(1) factors, it
necessarily breaks some of the gauge groups. This
means that the FN mechanism requires an extended
group.

(2) The charge of a given field under the FN symmetry
is fixed by its representation under the correspond-
ing non-Abelian gauge groups. For example, as-
sume S resides in the (Ny, Ng) representation of a
U(Np) X U(Ng) gauge group. It is neutral under the
sum of the two U(1) factors, U(1); g, but has a
charge +2 (in a specific normalization) under the
difference, U(1);,_g. Thus we must identify U(1)px
with U(1); _g. Any field in the (Ny,, 1) representa-
tion has then a FN charge of +1, while a field in the
(Np, Ng) representation is neutral under the FN
symmetry.

(3) There may be other fields in the theory obtaining
VEVs that break additional gauge groups or U(1)’s.
Our assumptions above mean that those VEVs are of
the order of My and do not contribute to the hier-
archy. To distinguish between these fields and S, one
may write the effective quiver after the Higgsing of
all fields except S.

C. FN charges

As explained above, the charges of the various fields
under the FN symmetry are very restricted. This, in turn,
affects the possible hierarchical structure within the quiver
theory. In fact, the strongest suppression possible is by €’
(e =(S)/My) and even this suppression is unlikely to
actually appear, as we explain below.

Consider first oriented strings. As explained above, for
directed quivers, S must be stretched between two distinct
branes and so its charge is (+1, —1) under the correspond-
ing U(1);, X U(1)g. The FN symmetry is then U(1)py =
U(1);_gr under which S is charged +2. Any other field can
be charged with one of the following: (0, 0), (*=1,0),
(0, =1), (=1, ¥1). Thus the strongest suppression of an
effective Yukawa term of the form ®,®,®; is obtained
when all three fields are charged (—1, +1), giving an €’
suppression. The corresponding quiver diagram is drawn in
Fig. 5.

While an e*-suppression can, in principle, be generated,
it is unlikely to be relevant in practice, since it requires that
all three fields ®; transform in the same way under the
entire gauge group. In particular, there is no such case in
SU(5) GUT models, as we discuss further in Sec. IV.
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(e =y

FIG. 5. A directed quiver diagram for an e>-suppression of the
effective @, P, P term in the superpotential.

To get an €>-suppression, there are two possibilities for
the charges: (+1, —1), (+1,—1), (0, 0) or (+1, —1),
(+1,0), (0, —1). Examples for the two sets of charges are
drawn in Fig. 6.

There are five sets of charges that yield an
e-suppression. These (and the other sets of charges that
yield suppression) are presented in Table I. The quiver
diagram that corresponds to the set (0, 0), (—1,0),
(0, +1) is depicted in Fig. 7(b). Figure 7(a) shows the
simplest triangle which produces a renormalizable (that
is unsuppressed) Yukawa coupling.

For orientifolds, in addition to the above U(1); X U(1)g
charges, there could be fields with charges (=2, 0), (0, =2)
and (*1, =1). Furthermore, S itself can have charges
(+1, —1) (similar to the oriented string), (+1, +1) or
(%2,0). The breaking patterns of the gauge groups will
be different for these three choices. The U(1)gy is then
U(1);._g, U(1); g or U(1),, respectively. For the first case,
Table II enumerates the possible suppression factors that
arise in addition to the orbifold case of Table I. Note the
additional configuration with an €* suppression, whose

FIG. 6. Directed quiver diagrams for an e>-suppression of the
effective @, P, P; term in the superpotential.
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TABLE I. Possible U(1); X U(1)g charges and the resulting
suppression factors (namely the power in €) in oriented strings.
Charges Suppression
(=1, +D(=1, +1)(—1, +1) 3
0,0 (=1, +1)(—1, +1) 2
(=1,0)0, +1)(—1, +1) 2
(0,0)(0,0)(—1, +1) 1
(0,0)(—1,0)(0, +1) 1
O, +1)(0, =1)(—=1, +1) 1
(+1,0)(=1,0)(—1, +1) 1
(+1, =D(=1, +1)(—1, +1) 1

relevant quiver diagram is shown in Fig. 8. The second
case, U(1).,r, can be easily obtained from the first one,
U(1),_gr, by multiplying the U(1)g charges by minus one.
Finally, the third case, U(1);, again exhibits a configura-
tion of €’-suppression, as can be seen in Table III. Here,
too, this configuration requires all three fields to be in the
same representation of the non-Abelian gauge groups.

FIG. 7. Directed
(a)  unsuppressed

which  lead to
coupling, and

quiver
effective
(b) e-suppression of the effective Yukawa coupling.

diagrams
Yukawa

TABLE II. Possible charges and suppression factors (the
power of €) with S(+1, —1) that are specific to the unoriented
case. The sets of Table I are also allowed.

Charges

(—=2,0)(0, +2)(—1, +1)
(=2, 0)(0, +2)(0,0)
(=2,0)(+1, +1)(—1, +1)
(=2,0)(0, +1)(0, +1)

0, +2)(—1, —1)(—1, +1)
0, +2)(—=1,0)(—1,0)
(=2,0)(0, +2)(+1, —1)
(=2,0)(+2,0)(—1, +1)
(—=2,0)(+1, +1)(0,0)
(—=2,0)(+1,0)(0, +1)

0, +2)(0, =2)(—1, +1)
0, +2)(—1, —1)(0,0)

0, +2)(—1,0)(0, —1)
(+1, +1D)(=1, =1)(—1, +1)
(+1, +1)(—1,0)(—1,0)
(=1, —1)(0, +1)(0, +1)

Suppression

w

— e e e e e e = = = DN DN DN DN DN
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FIG. 8.
&3

A quiver diagram in the orientifold case that gives an
-suppression.

TABLE IIl. Possible charges and suppression factors (the
power of €) in the unoriented case with S(+2,0). The
S(—2,0) case is obtained by multiplying the U(1); -charge by
—1.

Charges

(=2,0)(—=2,0)(—2,0)
(=2,0)(—2,0)(0,0)
(=2,00(-1, -1(-1,1)
(=2,0)(=1,0)(—1,0)
(=2,0)(—=2,0)(+2,0)
(=2,0)(0, —2)(0, +2)
(=2,0)(=1, =1)(+1, +1)
(=2, 0)(0,0)(0,0)
(=2,0)(—1,0)(+1,0)
(=2,0)(0, —1)(0, +1)
(=2,0)(—1, +1)(+1, 1)
0, =2)(—=1, +1)(—1, +1)
0,2)(-1, =D(=1,-1)
(=1, =1)(0,0)(—1, +1)
(=1L =1)(=1,0)0, +1)
(0,0)(—=1,0)(—1,0)
(—=L0)0, —1)(—1,+1)

Suppression

W

e e e e e e e e = = = = R RN N

Our results in this section show the strong predictive
power that is added to the generic Froggatt-Nielsen mecha-
nism when embedded in string theory. In fact, the con-
straints are so strong—i.e. the strongest suppression of a
Yukawa coupling is third order in a small parameter and,
for practical purposes, probably only second order—that
one may wonder whether our framework gives rise to any
viable flavor model at all. Indeed, in the next section we
show that, to construct viable models, one has to invoke
(rather plausible) nonperturbative effects. These effects
relax some of the constraints that we presented in this
section and, in particular, allow an e*-suppression of the
Yukawa couplings in the case of SU(5) GUT models.

IV. SU(5) GUT MODELS AND NEUTRINO MASS
ANARCHY

In this section we consider SU(5) GUT models with a
FN flavor symmetry. We search for viable models that arise
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from quiver gauge theories. The theory turns out to have
intriguing implications for the neutrino sector.

By an SU(5) GUT model we mean that there is a range
of energy scales where the gauge group is SU(5), with
matter fields that transform as 5, 5, and 10. The presence of
an antisymmetric multiplet of the gauge group requires that
we consider orientifold theories and choose the appropriate
projection. This projection is the one that results in an
SO(N) gauge group(s).

Our analysis focuses on the energy scale just above the
GUT breaking scale. In general there can be many fields
that break the various gauge groups that are present in the
quiver theory. However, as discussed in the previous sec-
tion, we consider a scale that is low enough so that the only
field to play a relevant role in the breaking of the FN
symmetry and possibly in breaking of a larger gauge group
into SU(5) is the FN field.

A. General considerations and predictions

The strongest mass hierarchy in the various fermion
mass matrices appears in the up sector. Thus, a minimal
requirement that we put on viable models is that they
produce an up mass hierarchy. This requirement signifi-
cantly narrows down the possible configurations.

There are two options regarding the SU(5) gauge group.
First, it could be related to a single node, namely, it is a
subgroup of a single U(N) symmetry. In this scenario, the
fields transforming as 10 must have both ends on the
SU(5)-related node. Consequently, they all carry the
same U(l)py charge, regardless of whether U(1)gy is
(i) a subgroup of the same U(N), (ii) unrelated to this
U(N) or (iii) a subgroup of U(N) X U(M), where U(M)
is related to a different node. Thus, this scenario gives rise
to up mass anarchy (that is, no special structure in the up
mass matrix) and is therefore phenomenologically
excluded.

The second scenario has the SU(5) gauge group related
to two nodes, namely, it is a subgroup of a U(N;) X U(Ng)
symmetry. The FN field must be in the bifundamental
(NL, Ng) of the two nodes. This case has a rich flavor
structure and is the only one that can lead to phenomeno-
logically viable models.

The simplest models have the following pattern of gauge
symmetry breaking: SU(5) X SU(5) — SU(5)gin,. We fo-
cus on this class of models. (More complicated breaking
patterns have a similar hierarchical form, but involve ex-
tended particle content.) The 5-plets then transform under
the SU(5) X SU(5) X U(1), X U(1)g as either (5, 1)_; g or
(1,5),—1. The 10-plets transform as either (10, 1),,, or
(1,10)9 4, or (5,5);1+;. The H,(5) field transforms as
either (5, 1)1y or (1, 5)g 1.

While S breaks the U(1)py = U(1)p_r symmetry, it
leaves U(1)p4+g as a global symmetry in the SU(5)gi
theory, under which the fields are charged as
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5(—1), 10(+2), H,y(—1), H,(+1). ()

This symmetry is flavor diagonal, with charges that are
determined solely through the SU(5) representation. As
mentioned in Sec. IIC, such U(1)’s are generic and face
strong phenomenological constraints. Clearly, the symme-
try of Eq. (9) is not a symmetry of the SU(5) GUT model.
In particular, no up-type masses are allowed with the above
symmetry [8,9]. One can try to overcome this problem by
introducing a composite H, field of charge —4 [8]. This
solution to the up mass(lessness) problem comes, however,
at the cost of two new problems: First, the H,H; term is
now forbidden, rendering the Higgsinos massless. Second,
the 55 H,H, terms are forbidden, rendering the neutrinos
massless.

As discussed in Sec. II C, there are three possible solu-
tions to this problem, which involve either extending the
particle content and the symmetry of the low energy theory,
or breaking the symmetry either spontaneously or non-
perturbatively. Before going into details, we observe that,
in fact, the quiver theory gives interesting predictions that
are independent of which solution to the up mass problem
is employed.

Indeed, since the 5 fields carry U(1); X U(1)g charges
of either (—1, 0) or (0, —1), at least two of them have the
same FN charge. Thus, there must be at least quasi-anarchy
(that is two nonhierarchical masses and one mixing angle
of order one) in the neutrino sector. In half of the models all
three 5 fields have the same FN charge, leading to complete
neutrino mass anarchy (no hierarchy in the masses and all
three angles of order one). In addition, this situation, where
a maximum of two possible FN charges are available to the
three 5 fields, has implications for the down sector: either
one or all three (in correspondence to quasi- or full-anarchy
in the neutrinos) down mass ratios are of the same order as
the corresponding mixing angles (e.g. m,/my, ~ |V, ).

A word of caution is, however, in order. The above
restrictions on the possible FN charges can be evaded if
the 10 and 5-plets are composite fields." In such a case, it is
possible for all fields to carry various charges under addi-
tional U(1) factors, which may play the role of the FN
symmetry. Such a possibility, however, complicates the
theory considerably and does not seem to be attractive,
especially since the effective theory cannot be described by
a quiver. We thus assume that the SM fermions are ele-
mentary fields, while condensates can either break the
U(1)L+r symmetry or generate effective Higgs fields.

We next discuss the possibilities for solving the U(1); 4 g
problem. We do so in the specific context of SU(5) GUT,
but the solutions can be straightforwardly generalized to
other gauge groups.

'We thank Micha Berkooz for drawing our attention to this
point.
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B. Extending the Higgs sector

To allow for up-quark, Higgsino and neutrino masses in
a model that has the U(1); 1 g symmetry, one needs to add
matter fields. The simplest extension has a second pair of
Higgs doublets [5]. The U(1); 4 charges of the four Higgs
fields are as follows:

H (-4,  Hi=1,  hy+4,  h(+1). (10)
Here H,; and h,, are fundamental fields, while H, and h,
are composite.

One can now distinguish between models according to
the FN charges of the matter fields, that is the three 10;, the
three 5,, the two elementary Higgs fields H, and 4,, and
the two composite Higgs fields H,, and &,. There are 640
different sets of U(1)py = U(1)._r charges. They are
listed in Table IV.

We now impose phenomenological requirements to see,
first, if there are viable models and, second, if these models
make further predictions. It turns out that requiring that the
quark masses are hierarchical is enough to select a single
flavor structure for all fermions and, in particular, predict
the flavor structure of the lepton sector.

We first consider the up sector. We require that the three
up-type quarks have masses and that these masses are
hierarchical. This means that no two 10-plets are allowed

TABLE IV. All possible charge assignments for the model
with additional fields and an unbroken U(1); .z symmetry.

SU(5) Model U(l), X U(1)g Ul _r
10, i=1,23) T 2,0)(2,0) (2,00 (+2, +2,+2)
T, 2,0)(2,0)(0,2) (+2, +2,-2)
T, 2,002,001, D (+2, +2,0)
T, 2,0)(0,2)(0,2) (+2,-2,-2)
T 2,0)(0,2) (1, 1) (+2,—2,0)
T 2,001, 1A, 1D (+2,0,0)
T, 0,2)0,2)(0,2) (=2, -2 -2)
Ty ©,2) (0,2) (1, 1) (=2, -2,0)
Ty 0,2) (1, 1) (1, 1) (=2,0,0)
Tio (1, D, D1 (0, 0, 0)
5, (i=1,2,3) Fi  (-1,0(-1,0)(-1,0 (-1,—-1,-1)
F, (=1,0)(—=1,00(0,—1) (—=1,—1,+1)
F;  (—1,0)0, —1)0, —-1) (—=1,+1, +1)
Fy (0, =1)(0, —1)(0, —=1) (+1,+1,+1)
Hd(g)’ hu(s) Dl (_1) 0)1 (+1) o) (_1’ +1)
D, (—=1,0), (0, +1) (=1, -1)
D; 0, —1), (+1,0) (+1,+1)
Dy 0, —1), (0, +1) (+1,—1)
H,(5), hy(5) U, (—4,0),(+4,0) (—4, +4)
U, (—4,0), (0, +4) (—4, —4)
U, (0, —4), (+4,0) (+4, +4)
U, (0, —4), (0, +4) (+4, —4)
S(1) (+1,-1) +2
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to carry the same FN charge. Out of the ten different sets of
charges for the 10-plets T;, only one fulfills this require-
ment, that is 75 of Table I'V. Furthermore, the up sector
couples to the composite H,,. In order that the up masses do
not vanish, H, must carry charge (—4, 0) under U(1);, X
U(1)gr. Thus, of the four sets U;, only U, and U, are viable
charge assignments.

We next consider the down sector. We require that the
three down-type quarks have masses and that these masses
are hierarchical. Out of the four different sets of charges for
the 5-plets F;, only one fulfills this requirement, that is F.
Furthermore, the down sector couples to the elementary
H,. H, must be connected to the same node as the 5. Thus,
of the four sets D;, only D, and D, are viable choices.

We are therefore left with a unique set of U(1);_g
charges, up to the choice of the charges for i, and 4,.
This freedom, however, only affects the wu-terms and the
overall scale of the neutrino masses. The flavor structure is
unaffected by this choice. Taking the configuration
“TsFD,U;,” we obtain the following parametric suppres-
sions for the various entries in the fermion mass matrices:

et e €&
M,~(H)| € € € |, (1)

e € 1

e € €
My~{H)|l € € €|, (12)

1 1 1

1 1 1

]’l 2

M,,~<A”4><1 1 1). (13)

1 1 1

There are other ways to extend the matter content in
order to incorporate the U(1); 4 as a the symmetry of the
theory. One way to generate the u-term for the H,H,
fields, without introducing another pair of Higgs fields,
can be achieved in a similar fashion to the next to minimal
supersymmetric standard model. One assumes H, is a
condensate 5555 and introduces another field T which is
a 55555 condensate of the same strongly coupled gauge
group. Then the coupling TH,H,; is allowed, while the
coupling T* which breaks the U(1); , g, may be generated
by nonperturbative effects below the scale at which the
SU(5) iy becomes strong, or may not be generated at all,
as in [45—-47]. We do not discuss this idea further, and just
note that, as before, the neutrino sector is predicted to be
anarchical.

C. Breaking U(1);, g — Z5

Another way to get the up Yukawa terms is by breaking
the symmetry through nonperturbative effects. In general,
operators which violate an anomalous symmetry are gen-
erated nonperturbatively and can be calculated using the
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holomorphic structure of the superpotential. It is important
to note that the Lagrangian of the minimal SU(5) possesses
a Zs symmetry under which the fields are charged as in
Eq. (9). This Z5 is a subgroup of U(1); ;. In our case, of
an SU(5)., X SU(5)g gauge group, it is simple to see that if
in one of the nodes, say the left, there is only a single
antisymmetric 10 (and another 5 to cancel gauge anoma-
lies), then the related AgCD’ where b is the coefficient in

the B function, is charged 5 under the anomalous symme-
try. Therefore, instantons, if they exist, break this U(1)
down to Zs and can generate masses in the up sector.
Unfortunately, at the field theory level, no nonperturbative
terms are generated in the superpotential even in this case.
The reason is that the number of flavors in this model is
= 5 [48,49].

Nevertheless, it could be that nonperturbative correc-
tions which break the anomalous U(1) arise already at the
string level. Such corrections cannot be calculated explic-
itly. However, they break the U(1) in a way that follows
from the anomaly and hence may generate the required up-
quark Yukawa couplings. Assuming that these terms are
indeed generated in this way, we consider the set of models
where there is a single antisymmetric representation on one
of the nodes. The list of the 80 possible charge assignments
is given in Table V.

Just as for the previous case, most of the possible charge
assignments lead to phenomenologically excluded models.
We find again that up mass hierarchy requires that the three
10-plets have three different charges (7'5), and down mass
hierarchy requires that the 5 and H, fields connect to the
left node (F;D;) in which the U(1) is broken down to Zs.
Both possible charge assignments for H, give nonvanish-
ing hierarchical masses. Note, however, that U, gives an
overall suppression of order € in the up sector. The neutrino

TABLE V. All possible charge assignments for the model with
instanton breaking of the U(1); 4 z.

SU(S) Model U(I)L X U(l)R U(I)L—R
10; T, (2,0) (2, 0) (0, 2) (+2, +2, —2)
T, (2, 0) (0, 2) (0, 2) (+2, -2, —2)
Ts 2,0)(0,2) (1, 1) (+2, —2,0)
Ts 2,0 (1, D (1, 1) (+2,0,0)
T 0,21, DA, 1D (=2,0,0)
5, F, (=1, 0)(=1,0)(—1,0) (-1, -1,-1)
F, (=1,0)(=1,0)(0, —1) (=1, —1,+1)
F; (=1,0)(0, —=1)(0, —1) (=1, +1, +1)
F, 0, —1)(0, =1)(0, —1) (+1,+1,+1)
H,((5) D, (=1,0) -1
D, 0, —1) +1
H,(5) U, (1, 0) +1
U, 0, D -1
S(1) (+1,—1) +2
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flavor structure is again anarchical (independent of the
choice U,;, though the overall scale depends once again
on this choice).

The last class of models involves spontaneous breaking
of U(1); +g. This can be achieved by adding a condensate
of five fields in the fundamental representations of one
SU(5) factor. This condensate includes a singlet of the
non-Abelian gauge group with a U(l);,r charge +5,
which we denote by K. By giving K a VEV, we break
U(1); 4+r — Z5 and allow up-type mass terms. A second,
conjugate, field K is needed in order to allow for a mass
term. The list of the 320 different charge sets is given in
Table VI. The majority of the sets of charges are not viable.
Only two models are viable: 7T5F;D;U;K; and
TsF,D,U,K,, where the latter, as in the previous case,
has an overall suppression in the up sector. Once again,
anarchy is predicted for the neutrino sector.

In all three classes of models, we arrived at an essen-
tially equivalent configuration for the matter content. The
differences between the three models are just with respect
to new fields that are added to solve the U(1); . problem.
This unique configuration, which leads to the flavor struc-
ture of Eq. (11), is presented in the quiver of Fig. 9. (The
theory described by this quiver diagram suffers from non-
Abelian gauge anomalies. A nonanomalous extension is
presented in the Appendix and Fig. 10.) This theory pro-
duces, at low energy, the minimal SU(5) with the correct
hierarchy in the up and down sector and with the predicted

TABLE VI. All possible charge assignments for the model
with spontaneous breaking of the U(1); 1z symmetry.

SU(S) Model U(I)L X U(I)R U(I)L*R
10; T, (2,0) (2,0) (2,0 (+2, 42, +2)
T, 2,0) (2, 0) (0, 2) (+2, +2, —2)
T, 2,00 2,0 (1, 1D (+2, +2,0)
T, (2, 0) (0, 2) (0, 2) (+2,-2,-2)
Ts 2, 0) (0,2) (1,1 (+2,-2,0)
Ts 2,00 (1, D, n (+2,0,0)
T, (0, 2) (0, 2) (0, 2) (—2,-2,-2)
Tg 0,2)(0,2) (1, 1) (=2,-2,0)
Ty 0,2 (1, D, n (=2,0,0)
Tyo (IL,DH(, DA n (0, 0, 0)
5, F, (-L0)(—L0)-1,0) (—1,—1,-1)
F, (-1,0)(—1,00(0,-1) (—1,—1,+1)
F, (=1,0)0,—1)(0,—-1) (=1, +1, +1)
F, 0, =1)(0, —1)(0, —1)  (+1,+1,+1)
H,(5) D, (=1,0) -1
D, 0, -1) +1
H,(5) U, (+1,0) +1
U2 (0, +1) _1
K(1), K(1) K, (+5,0), (—5,0) (+5, —5)
K, (0, +5), (0, —=5) (=5,+5)
S(1) (+1,—-1) +2
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FIG. 10. An SU(5) GUT quiver.

neutrino anarchy. We stress that, given our assumptions,
this theory is unique and thus the anarchy is predicted.

V. SUMMARY

The fermion flavor parameters of the standard model
have a special, nongeneric structure, that finds no expla-
nation within the standard model. The hierarchy and the
smallness of the Yukawa couplings are suggestive of an
approximate symmetry. The Froggatt-Nielsen (FN) mecha-
nism is a simple and attractive realization of this idea. The
mechanism is, however, limited in its predictive power. In
particular, the FN charges are not dictated by the theory,
and there is only information on the parametric suppres-
sion, but not the order-one coefficients, of the Yukawa
couplings. In this work, we investigated whether the em-
bedding of the FN mechanism in string theory improves its
predictive power.

Specifically, we examined quiver gauge theories which
arise at low energy from type II string theory with D-branes
placed on singular manifolds. The quiver gauge theories
can be described by (non)directed graphs for (un)oriented
strings, in which the nodes represent the gauge groups
(U(N), SO(N) or Sp(N)), while lines represent matter
fields charged under the corresponding gauge groups.

In general, these theories contain several anomalous
U(1) symmetries whose anomaly is canceled by a gener-
alized GS mechanism. The unbroken global symmetries
can be used to generate the hierarchy of the Yukawa
couplings, thus realizing the FN mechanism. Since charges

075009-10
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of the matter fields under these U(1) factors are fixed by
their representation under the gauge groups, the FN
charges are fixed. Consequently, one of the inherent limi-
tations of FN models is removed.

Precisely because it is highly predictive, the above
framework does not easily lend itself to the construction
of viable models. We have discussed this problem and its
possible solutions. Concentrating on a large class of SU(5)
GUT models, we have demonstrated the predictive power
of quiver gauge theories. Requiring mass hierarchy in the
up sector, we showed that the SU(5) must come from an
extended product group such as U(5) X U(5).
Furthermore, there must be either quasi- or full-anarchy
in the neutrino sector and either one or all three down mass
ratios are of the same order as the corresponding mixing
angles (e.g. m;/my ~ |V,,|). Further requiring mass hier-
archy in the down sector, the FN charges of all matter fields
are essentially fixed. Consequently, the lepton flavor struc-
ture is predicted and, in particular, there is anarchy (that is,
no special structure) in the neutrino sector.
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APPENDIX A: AN SU(5) GUT QUIVER

As we showed in Sec. IV, all three classes of models
have an equivalent configuration for the matter content,
which leads to the flavor structure of Eq. (11). A non-

PHYSICAL REVIEW D 73, 075009 (2006)

anomalous quiver which realizes this structure is presented
in Fig. 10. This figure corresponds specifically to the
method of spontaneously breaking the U(1); ;g symmetry.
In particular, we explicitly show the condensate field, K.

Note that the two SU(5) gauge groups are not asymptoti-
cally free, which is a typical problem in realizations of the
FN mechanism [2]. In our framework, however, the ab-
sence of asymptotic freedom does not pose a problem since
the theory is defined at the string scale, where new heavy
degrees of freedom are integrated in. The two SU(5)
factors are broken into the diagonal SU(5) after giving a
VEV to the Froggatt-Nielsen field S. The fields 10;, 5;, H,,
and H,, together with S that becomes an adjoint, are the
matter content of SU(5) GUT. The fields denoted by V; are
the vectorlike fields discussed in Sec. III.

All other fields are necessary for non-Abelian gauge
anomaly cancellation. The three X fields are connected to
a U(1) gauge group. However, to cancel the anomalies, we
can alternatively employ a single field connected to a U(3)
group. All these additional fields have mass terms in the
superpotential and can be integrated out in pairs: X; with X
and A5 with the symmetric part of 10,. At the level of the
massless spectrum, these fields may obtain masses through
couplings to S or to other moduli which obtain VEVs and
therefore, by definition, are not shown in our effective
quiver.

Reverse geometrically engineering a singular string the-
ory background with this quiver is a complicated task. A
generic construction is known for a very limited number of
cases [38,50,51]. In fact, we view our model as an effective
quiver obtained by Higgsing a larger quiver. One reason for
this is that the (symmetric) A5 field cannot be directly
obtained together with the (antisymmetric) 10 field through
the orientifold projection. Nevertheless, the symmetric A
can originate from a broken SU(5) X SU(5) — SU(5) if a
5 X 5 field is broken down to a A5 and a 10, where the
latter is integrated out with another 10.

Thus indeed this theory produces, at low energy, the
minimal SU(5) with the correct hierarchy in the up and
down sector and with the predicted neutrino anarchy.

[1] C.D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277
(1979).

[2] M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys. B398, 319
(1993); B420, 468 (1994).

[3] Y. Grossman and Y. Nir, Nucl. Phys. B448, 30 (1995).

[4] Y. Nir and G. Raz, Phys. Rev. D 66, 035007 (2002).

[5] L.E. Ibanez, F. Marchesano, and R. Rabadan, J. High
Energy Phys. 11 (2001) 002.

[6] C. Kokorelis, J. High Energy Phys. 09 (2002) 029; 08
(2002) 036.

[71 J.E. G. Cascales, M. P. Garcia del Moral, F. Quevedo, and
A.M. Uranga, J. High Energy Phys. 02 (2004) 031.

[8] R. Blumenhagen, B. Kors, D. Lust, and T. Ott, Nucl. Phys.
B616, 3 (2001).

[9] R. Blumenhagen, M. Cvetic, P. Langacker, and G. Shiu,
hep-th/0502005.

[10] V. Braun, Y.H. He, B. A. Ovrut, and T. Pantev, Phys. Lett.
B 618, 252 (2005); J. High Energy Phys. 06 (2005) 039;
hep-th/0512177.

[11] V. Braun, Y.H. He, and B. A. Ovrut, hep-th/0602073.

075009-11



YARON E. ANTEBI, YOSEF NIR, AND TOMER VOLANSKY

[12]
[13]
(14]
[15]
[16]
[17]
[18]

[19]
(20]

(21]
(22]
(23]

[24]

V. Bouchard and R. Donagi, Phys. Lett. B 633, 783 (2006).
V. Bouchard, M. Cvetic, and R. Donagi, hep-th/0602096.
J. Giedt, G. L. Kane, P. Langacker, and B. D. Nelson, Phys.
Rev. D 71, 115013 (2005).

L.E. Ibanez and G. G. Ross, Phys. Lett. B 332, 100 (1994).
V. Jain and R. Shrock, Phys. Lett. B 352, 83 (1995).

P. Binetruy and P. Ramond, Phys. Lett. B 350, 49 (1995).
E. Dudas, S. Pokorski, and C. A. Savoy, Phys. Lett. B 356,
45 (1995).

Y. Nir, Phys. Lett. B 354, 107 (1995).

J.K. Elwood, N. Irges, and P. Ramond, Phys. Lett. B 413,
322 (1997); Phys. Rev. Lett. 81, 5064 (1998).

P. Binetruy, S. Lavignac, and P. Ramond, Nucl. Phys.
B477, 353 (1996).

H.K. Dreiner, H. Murayama, and M. Thormeier, Nucl.
Phys. B729, 278 (2005).

R. Harnik, D. T. Larson, H. Murayama, and M. Thormeier,
Nucl. Phys. B706, 372 (2005).

For a different approach to hierarchy in D-brane construc-
tions, see D. Cremades, L. E. Ibanez, and F. Marchesano,
J. High Energy Phys. 07 (2003) 038, and references
therein.

M. R. Douglas and G. W. Moore, hep-th/9603167.

C. V. Johnson and R.C. Myers, Phys. Rev. D 55, 6382
(1997).

A.E. Lawrence, N. Nekrasov, and C. Vafa, Nucl. Phys.
B533, 199 (1998).

E. Kiritsis, Fortschr. Phys. 52, 200 (2004); Phys. Rep. 421,
105 (2005).

G. Aldazabal, L. E. Ibanez, F. Quevedo, and A. M. Uranga,
J. High Energy Phys. 08 (2000) 002.

Y. H. He, hep-th/0408142.

L.E. Ibanez, R. Rabadan, and A. M. Uranga, Nucl. Phys.
B542, 112 (1999); B576, 285 (2000).

M.B. Green and J.H. Schwarz, Phys. Lett. 149B, 117

(33]
[34]
(35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]

[46]
[47]
(48]
[49]

(50]
[51]

075009-12

PHYSICAL REVIEW D 73, 075009 (2006)

(1984).

M. Dine, N. Seiberg, and E. Witten, Nucl. Phys. B289, 589
(1987).

L.J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl.
Phys. B261, 678 (1985); B274, 285 (1986).

S. Kachru and E. Silverstein, Phys. Rev. Lett. 80, 4855
(1998).

M. Berkooz and R.G. Leigh, Nucl. Phys. B483, 187
(1997).

S. Benvenuti, S. Franco, A. Hanany, D. Martelli, and J.
Sparks, J. High Energy Phys. 06 (2005) 064.

B. Feng, A. Hanany, and Y. H. He, Nucl. Phys. BS95, 165
(2001).

I.R. Klebanov and E. Witten, Nucl. Phys. B536, 199
(1998).

D. Martelli and J. Sparks, Commun. Math. Phys. 262, 51
(2000).

M. Cvetic, G. Shiu, and A. M. Uranga, Nucl. Phys. B615,
3 (2001).

Z. Lalak, S. Lavignac, and H. P. Nilles, Nucl. Phys. B559,
48 (1999).

J.D. Lykken, E. Poppitz, and S.P. Trivedi, Nucl. Phys.
B543, 105 (1999).

E. Witten, Phys. Lett. 149B, 351 (1984).

C. Panagiotakopoulos and K. Tamvakis, Phys. Lett. B 469,
145 (1999).

C. Panagiotakopoulos and A. Pilaftsis, Phys. Rev. D 63,
055003 (2001).

A. Dedes, C. Hugonie, S. Moretti, and K. Tamvakis, Phys.
Rev. D 63, 055009 (2001).

E. Poppitz and S. P. Trivedi, Phys. Lett. B 365, 125 (1996).
P. Pouliot, Phys. Lett. B 367, 151 (1996).

D. Berenstein, J. High Energy Phys. 04 (2002) 052.

B. Feng, A. Hanany, and Y. H. He, J. High Energy Phys. 08
(2001) 040.



2.3 Dynamical Supersymmetry Breaking from Simple Quivers 59

2.3 Dynamical Supersymmetry Breaking from

Simple Quivers



60

2. Papers




PHYSICAL REVIEW D 77, 026001 (2008)

Dynamical supersymmetry breaking from simple quivers

Yaron E. Antebi* and Tomer Volansky’

Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 10 April 2007; published 9 January 2008)

We construct a simple local model of dynamical supersymmetry breaking. The model is a one-
generation SU(5) that arises from a IIB Z orientifold. It does not admit a runaway direction and is argued
to stabilize the blowup mode related to the corresponding U(1) factor. The theory demonstrates the
existence of a new class of “blowup” fractional branes
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L. INTRODUCTION

Dynamical supersymmetry breaking (DSB) [1] is an
intriguing solution to the hierarchy problem. Examples of
such models were first presented more than 20 years ago
[2], and the idea has been extensively studied both from the
theoretical and phenomenological points of view (for a
review see, e.g., [3]).

For string theory to make contact with reality, some
mechanism to break supersymmetry must be employed.
In recent years, following the understanding of flux com-
pactifications and moduli stabilization [4,5], the problem
of breaking supersymmetry has attracted a vast amount of
attention. Many models have been presented, employing
various stringy mechanisms, however only very few break
supersymmetry dynamically. The reason for the lack of
DSB models in string theory is twofold. On the one hand,
models with completely stable DSB vacua are nongeneric
at the field theory level. On the other hand, compactifying
such models and taking care of the stabilization of all
moduli and, in particular, K&hler moduli, is very laborious
[6].

Constructions of local models were attempted on D-
branes [7]. In [8§—10], a classification of the gauge dynam-
ics on fractional branes was introduced, where it was
argued that the corresponding quiver theories typically
break supersymmetry dynamically. However, as was
stressed in [11], these brane configurations generically
posses a runaway direction which corresponds to a blowup
of the singular geometry. This problem can be ameliorated
in compact models by stabilizing the runaway directions
through some nonperturbative effects [12,13].

Recently it was suggested that metastable vacua that
exhibit DSB may be more generic [14]. While this is
indeed true at the field theory level, such constructions in
string theory still lack a good explanation for the origin of
small mass terms which appear in most theories. There
have been several attempts to realize such models in string
theory; however, most do not address the above issue [15—
17] and cannot be compactified in a direct manner.

*yaron.antebi @ weizmann.ac.il
WLtomer.volansky @weizmann.ac.il

1550-7998/2008 /77(2)/026001(4)

026001-1

PACS numbers: 11.25.Wx, 11.30.Na, 12.10.Dm, 12.60.Jv

It is therefore worthwhile to construct new local models
of DSB which are simple enough to allow for a straightfor-
ward embedding in a compact background. In this note we
report on progress in this direction. Here we concentrate on
a simple local construction, while the details of the com-
pact model will be given in [18]. The local construction is a
type 1IB Z, orientifold. Specifically, we construct an
SU(5) gauge theory with one generation of 10 + 5 [19].
After imposing the orientifold projection, only one anoma-
lous U(1) is present. We argue that the corresponding
closed string Kihler blowup mode that shows up as a
Fayet-Iliopoulos (FI) term is stabilized close to the origin.
As opposed to the generic quiver, this (bidirectional) quiver
does not suffer from a runaway behavior and demonstrates
the existence of a new class of fractional branes which we
call blowup fractional branes.

While this work was being completed, we became aware
of [20] which partially overlaps with the local construction
of our model.

II. LOCAL MODELS

As a first step towards writing a complete compact
solution, one must specify a local quiver model which
exhibits DSB. Here we concentrate on the noncalculable
SU(5) gauge theory with one generation of 10 and 5. This
model is known to break supersymmetry dynamically [19].
The construction is based on fractional branes located at
fixed points of C?/Z, orientifolds. Quiver models that
arise from placing D-branes at such singularities have
been extensively studied. The reader is referred to
[21,22] and references therein for more details.

Formalism. We begin by setting up our notations, closely
following [22]. Consider a C*/Z, singularity. The Zy
generator @ acts on the three complex coordinates as
0: (7,22 2%) = (0P 7!, w22, w7%) where w = &2™/N
is the Nth root of unity. To preserve N = 1 supersymme-
try, the Z, must be a subgroup of SU(3) which translates
into taking b; + b, + b3 = 0 (mod N). The action on the
Chan-Paton indices is

AP — y(0)A*y(0)71, (D

Z'— "y(0)Z'y(0)", 2
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where y(0) is a representation of 7. Since Z is Abelian,
all its irreducible representations are one-dimensional, and
without loss of generality we may take y(6) to be

y(0) = diag(1,,, ®1,,..., 0" 'L, ) 3

where Y ,n, = n is the number of fractional branes. The
invariant spectrum at the singularity is described by a
U(ng) X U(ny) X ... X U(ny_;) theory with matter mul-
tiplets transforming as (n,, 4y, ) for i =1,2,3 and a +
b; is taken mod N. Such a field theory can be efficiently
described by a quiver diagram, where each node denotes a
U(n) factor and the bifundamental chiral fields are repre-
sented by directed lines connecting two such nodes. A line
originating and ending on the same node describes a field
in the adjoint representation of the corresponding U(n)
factor.

Next we would like to consider the spectrum of D-branes
located on top of orientifold planes. As usual, to preserve
the same supersymmetry as D3 branes, only O3- or
O7-planes may be included, located on the fixed locus of
the orientifold action, QR(—1)"t (where R is the Z, geo-
metric involution and (—1)ft is the left-handed world-
sheet fermion number). In terms of the open string modes,
the effect of the orientifold action is to identify each U(n,)
gauge group with U(n_,) while identifying the represen-
tation (m,, i, p,) With (n_,_p,fi_,). In particular, the
U(ngy) and U(ny/,) gauge factors (if they exist) are pro-
jected onto themselves, resulting in an Sp(SO) gauge
group, depending on the exact orientifold action.
Similarly chiral fields transforming in the (n,, n_,) are
projected into the (anti)symmetric representation of
SU(n,).

Finaly, the quiver diagrams must be extended to accom-
modate these unoriented theories [23]. Since each end of
the string can independently be in either the fundamental
or the antifundamental, it must be represented as a bidir-
ected line with an arrow at each of the two ends, indicating
the representation of the string under each of the two gauge
group factors. In such a bidirected quiver (biquiver for
short), a symmetric or an antisymmetric field is represented
by a line with both ends coming out of the same set of
branes.

DSB Quivers. It is now a simple matter to construct the
desired SU(5) model. As an example, consider a Z ori-
entifold with the orbifold action (b, b,, b3) = (1,2, —3)
and orientifold R = (—1, —1, —1). Furthermore, we take
the action on the Chan-Panton indices to be

diag (1;, 0’15, 0*15), w =3, 4)
so altogether we have 11 fractional branes. There is a
single orbifold fixed point and an O3-plane at the origin.
The biquiver is shown in Fig. 1. As required, the theory is
SO(1) X U(5) with one generation of 10 + 5. The U(1)
corresponding to the SU(5) is anomalous and becomes

massive through the generalized Green-Schwarz mecha-
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SU(5) So(1)
10 QH‘
5

FIG. 1. A one-generation SU(5) biquiver.

TABLE I. The four different orientifold models giving rise to
the noncalculable SU(5) DSB theory.

N b; y(6)

Zy 1,2, —3) diag(1;, %15, w*1s)
Zs (1, 1, _2) diag(ll, 0)215, (1)415)
Zg (2, 4, _6) diag(ll, w315, a)615, )
Ly, (1,4, —5) diag(1,, w*15, w81s)

nism [24,25]. Hence it remains as a global symmetry and
has no effect on the low-energy dynamics.

It is also possible to construct this biquiver on other

singularites, as we (nonexhaustively) list in Table I.

Blowup Fractional Branes. Such DSB biquivers exhibit

a new class of fractional brane models. In [8] fractional
branes were classified as follows:

(1) N =2 fractional branes: These exhibit flat direc-
tions along which the dynamics are those of N =
2. They typically arise at nonisolated C?/Zy
singularities.

(2) Deformation fractional branes: The theory exhibits
confining dynamics which translates into (partial)
complex-structure deformation of the geometry.

(3) Runaway (DSB) fractional branes: This is the ge-
neric case. In general, the gauge factors have differ-
ent ranks and the dynamics lead to a runaway
behavior through a nonperturbative superpotential.

It is clear that the DSB biquiver described above does

not fit into any of the above classes but instead demon-
strates the existence of a new class of fractional branes.'

(4) Blowup fractional branes: These are fractional
branes which do not have flat or runaway directions
and are associated with the stabilization of Kéhler
moduli, corresponding to the possible (partial)
blowup of the singularity. In accordance with the
classification above we expect blowup fractional
branes to be related to unoriented singularities.

In our example the singularity indeed blows up, as we now
explain. Ignoring for the moment the nonperturbative dy-
namics, the SU(5) model has a classical supersymmetric
minimum at the origin of field space. Turning on a FI term
& for the corresponding U(1) breaks supersymmetry due
to the incompatibility between the SU(5) and U(1) D-
terms. At large &2 where the classical theory is reliable, a
potential

vV~ (&)

'We thank Angel Uranga for drawing our attention to this
point.
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is generated, driving the dynamical FI field to zero. Taking
the nonperturbative effects into account, one cannot deter-
mine the exact location of the minimum, and on dimen-
sional grounds we expect £ to stabilize near the origin at
&2 ~ AZ. Such stabilization corresponds to blowing up a 2-
cycle in the geometry.

This is in contrast to the case of the runaway class, for
which the D-term of a massive anomalous U(1) is neces-
sary in order to stabilize a classical flat direction that
becomes unstable quantum mechanically. However, as
was already noted in [8] and stressed in [11], such D-
term equations should not be imposed, as the massive
U(1) is not exhibited at low energy. Imposing the massive
D-terms comes at the expense of introducing a new run-
away direction of a blowup mode which appears as a FI
term. For the model at hand, the field theory does not have
a runaway direction and this, in turn, translates into having
a stabilized Kéhler modulus.

For the specific SU(5) local model, one encounters at the
field theory level a single FI blowup mode. In order to
embed this quiver in a compact model (away from the
decoupling limit), one must worry about other Kéhler
moduli which must be stabilized without changing the
theory at the singularity. There are two mechanisms:
First, for the specific Z4 orbifold, the local geometry con-
sists of four exceptional divisors (arising from one fixed-
point and two fixed-curves) out of which only one is
compact. Thus, out of the four twisted Kéhler moduli,
one is stabilized as seen through the gauge dynamics, while
the others may be stabilized away from the orbifold fixed-
point without affecting the quiver. Second, it is not at all
clear which (if any) of the Kéhler moduli remain after the
orientifold projection. It is possibly misleading to under-
stand the geometry by first resolving the singularity and
then orientifolding. Still, the analysis of [26] suggests that
at least some of these moduli might be projected out. More
details of the Kahler stabilization will appear in [18].

Finally, let us remark that at this stage it is still not clear
how generic the blowup class is or whether examples exist
where the Kihler moduli are stabilized exactly at the
origin, corresponding to the orbifold limit. Furthermore,
it would be very interesting to understand whether such
quivers exhibit a large-N limit with DSB and Kihler

PHYSICAL REVIEW D 77, 026001 (2008)

stabilization at the bottom of a duality cascade. We post-
pone the investigation of this question to future work.

II1. SUMMARY

In this article, a novel realization of the one-generation
SU(5) DSB model in string theory was introduced. The
model arises in a simple type IIB Z, orientifold with
fractional branes at the singular locus. The corresponding
biquiver model is easily extracted from the geometry. At
the field theory level the model has no flat directions,
which translates into a stabilization of the Kihler modulus.
The latter appears as a dynamical FI term related to the
anomalous U(1). The dynamics are therefore in a new class
of fractional branes, which (partially) blow up the
geometry.

Such models are very simple and are generated from
singularities that appear generically on the moduli space of
Calabi-Yau manifolds. Therefore it should be easy to con-
struct a compactify version of our construction embedding
it in a Calabi-Yau 3-fold. It will be interesting to further
study such constructions as they will allow for complex-
structure moduli stabilization by turning on fluxes. Such a
setup is a step forward in constructing realistic models of
particle physics and may allow one to address issues of
DSB in the landscape.
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Abstract

We study the conformal field theory dual of the type IIA flux compacti-
fication model of DeWolfe, Giryavets, Kachru and Taylor, with all moduli
stabilized. We find its central charge and properties of its operator spectrum.
We concentrate on the moduli space of the conformal field theory, which we
investigate through domain walls in the type IIA string theory. The mod-
uli space turns out to consist of many different branches. We use Bezout’s
theorem and Bernstein’s theorem to enumerate the different branches of the
moduli space and estimate their dimension.
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1 Introduction and Summary of Results

Flux compactifications of string theory (for reviews see [1} 2], B, [4, [5, [6]) populate
large parts of the string landscape, and may describe our universe. However, the
theoretical basis for the construction of these compactifications is still far from rig-
orous (see [7] for criticism), and is based on using low-energy supergravity actions
in a regime which is different from the flat-space regime where they are usually
derived from string theory. It would be very interesting if a non-perturbative con-
struction of some flux compactifications could be found, providing further support
for their consistency, and perhaps leading to new methods for their analysis. A
promising arena for such a construction is in flux compactifications involving four
dimensional anti-de Sitter (AdS) space. Such compactifications are dual, by the
AdS/CFT correspondence [8, [, 10], to three dimensional conformal field theo-
ries. Thus, understanding the three dimensional conformal field theory dual to
some AdS, flux compactification would give a non-perturbative definition for that
background. Eventually we would like to study the statistics of conformal field
theories that are dual to AdS; backgrounds, in order to learn about statistics of
flux compactifications, and to try to understand how to describe also backgrounds
with a positive cosmological constant.

For general flux compactifications, it seems that understanding the dual con-
formal field theory must be very complicated (see [I1], 12] for attempts in this
direction). This is because the cosmological constant of the resulting background,
which is related to the central charge of the dual conformal field theory, depends
in a very complicated way on the fluxes, and it seems that extremely compli-
cated dynamics is needed to reproduce this on the field theory side. The situation
seems to be much simpler in the type ITA flux compactifications constructed in
[13] (these solutions were further analyzed from the ten dimensional point of view
n [I4]). These backgrounds have a “large-flux limit” in which some of the fluxes
(the three four-form fluxes f}, f? and f}) are taken to be large, such that in that
limit the cosmological constant becomes small, the string coupling becomes weak,
and the compact space becomes large. This means that these backgrounds can
reliably be studied in the supergravity approximation (except perhaps near the
orientifold where the string coupling may be large), and that in the “large-flux
limit” the properties of the dual conformal field theories depend in a simple way
on the fluxes. One can then hope to reproduce this simple dependence in some
field theoretic model. A first attempt at such an analysis, in a different “large-flux
limit” which does not lead to a weakly coupled string theory (not all four-form
fluxes are taken to be large) appeared in [I5]; we will attempt here to describe the
field theories appearing in the generic “large-flux limit”, which is described by a
weakly coupled string theory.

The naive way to construct a field theory dual for flux backgrounds is to imag-



ine constructing the flux gradually from branes carrying that flux, in a manner
similar to that in which the AdS5 x S° background of string theory is constructed
from D3-branes in flat space. In particular, the 4-form fluxes f} in our background
are carried by D4-branes wrapped on 2-cycles in the compact space, and it is nat-
ural to imagine building the background from such D4-branes [11, 12, 16]. It is
certainly possible to go from a background with a large flux (which is already a
weakly coupled weakly curved background) to a background with an even larger
flux by adding such branes, and we will use this in our discussion of the moduli
space of the conformal field theory. However, it is not clear if one can construct the
full theory from such branes, since in the limit of a small flux the background be-
comes not only strongly curved (this happens also for D3-branes) but also strongly
coupled. Nevertheless, it is still natural to guess that the dual conformal field the-
ory arises from some decoupled low-energy theory living on three sets of D4-branes.
However, we will find that assuming that the degrees of freedom in this theory are
weakly coupled open strings (in adjoint and bi-fundamental representations of the
resulting U(f}) x U(f?) x U(f2) gauge theory) leads to a contradiction, since the
central charge of the dual conformal field theory (which scales as (f} f2£3)%/2, as we
will compute in section [3)) grows faster than the number of such degrees of freedom.
Thus, the field theory must be more complicated than the naive theory of open
strings, perhaps involving a larger gauge group, or [12] fields in multi-fundamental
or other higher representations, or perhaps not coming from any gauge theory at
all.

In order to find clues about this mysterious field theory we investigate in some
detail its moduli space, which can be described using configurations of domain
walls in AdSy. Of course, generic flux backgrounds preserve no supersymmetry
so they would not be expected to have a moduli space. The flux backgrounds of
[13] preserve a four dimensional N' = 1 supersymmetry, so they are dual to three
dimensional A/ = 1 superconformal field theories. This amount of supersymmetry
is not enough to protect the moduli space from quantum corrections, since generic
scalar potentials are consistent with three dimensional NV = 1 supersymmetry.
Nevertheless, in our study (performed in the weak coupling weak curvature limit)
we will find a large moduli space in these backgrounds. We expect this moduli
space to be lifted by quantum corrections (perhaps non-perturbative), but these
quantum corrections are small in the “large flux limit”, and we expect the existence
of a moduli space in this limit to be a useful clue for the construction of the dual
field theory. The moduli space turns out to be very complicated, with many
different branches that may be interconnected. For each such branch we employ
some mathematical theorems that count the number of solutions of polynomial
equations, in order to compute its dimension. We will show that for large values
of the fluxes, the dimension of the moduli space scales as 3, _; fi £l



The effective field theory at generic points on the moduli space includes U(1)
gauge fields, scalars and fermions; however, in 2+ 1 dimensions a U(1) gauge field
is equivalent to a compact scalar, so the presence of these gauge fields does not
necessarily imply that the full theory is related to a U(f}) x U(f?) x U(f?) gauge
theory. However, there are special submanifolds of the moduli space in which we
can see gauge groups corresponding to all subgroups of U(f}) x U(f?) x U(f3),
suggesting that the conformal field theory may be described as the low-energy limit
of some gauge theory which includes this gauge group. This is further supported
by the scaling of the dimension of the moduli space, that is reminiscent of strings
in the bi-fundamental representation of each pair of gauge groups (and such bi-
fundamental fields indeed appear on the special submanifolds mentioned above).

So far we have not been able to find a simple field theory model that would
reproduce all the properties that we find; in particular it seems hard to explain
the large number of degrees of freedom, and the complicated form of the moduli
space. We hope that these properties will provide useful clues for the construction
of such a field theory in the future.

We begin in section 2l with a review of the type ITA backgrounds of [13] that we
will be studying and of their supersymmetry equations. In section Bl we compute
various basic properties of the dual field theory, like its central charges and the
generic features of its operator spectrum. In section Ml we consider branes span-
ning domain walls in the AdS, space, and find the condition that they preserve
supersymmetry. We then go on in section Bl to study the structure of their moduli
space. We compute the moduli space explicitly for a simple example and find
some properties, such as the dimension, for the generic case. In the appendices we
include some additional calculations, including an explicit calculation of the su-
persymmetry in the bulk in appendix[Al In appendix [Bl we show that the domain
walls found in section M obey the BPS condition, and in appendix [C] we consider
the possibility of additional domain wall brane configurations.

2 The Model

In this section we review the low-energy limit of the background of massive type
ITA string theory described by an orientifold of type ITA string theory on T°/Z2.
This model was studied extensively in [13], where it was shown that by turning on
generic values for the background fluxes it is possible to stabilize all moduli without
the use of non-perturbative effects. We will start by reviewing the geometrical
properties of the compact manifold, and then discuss the possible moduli and the
way in which they can be stabilized. Finally we will show that the background
satisfies the supersymmetry equations in the bulk.



2.1 The Geometry

The compact space is an orbifold of 7. We parameterize the torus by the three
complex coordinates z; = x; + iy;, with ¢ = 1,2, 3. We take the complex structure
moduli of the tori to be 7; = a = €*™/¢ 5o that the z; coordinates are periodic
with the identifications

zi~zi+1~z+a. (2.1)

At this point in the moduli space of the torus, the 7% has a Zjz symmetry, under
which the coordinates transform as

2 — 2. (2.2)

It is then possible to orbifold by this symmetry. This gives rise to a singular space,
with 27 singular points corresponding to the fixed points of the Zs symmetry
[T7, [I8]. After this identification, there is a second Zs symmetry acting freely on
the coordinates as

I+a 4 1+« 1+«

?,Oé Z9 + 3 , 23+ 3 ) (23)

(21, 22, 23) — (a221 +

This symmetry identifies triplets of fixed points, thus leading, after a second orb-
ifold by the second Zs symmetry, to a singular Calabi-Yau manifold with only 9
singular points (that can be locally described as a C3/Zs singularity). The coho-
mology of this manifold is given by h%! = 0 and h*! = 12. There are therefore no
complex structure moduli and 12 Kahler moduli. Nine of them are associated to
blow-up modes of the singular points, while the other three Kahler moduli describe
the volume of the three tori. These volume moduli 7; appear in the metric as

3
ds® = Z vidz'dz, (2.4)

i=1
or in the Kahler form for the manifold as

3
J =gy dz' NdZ = Z%dzi AdZ (2.5)

i=1

It will be useful to write an explicit basis for the cohomology of the compact
space. There are no one-forms, since the two Z3z orbifolds project out all of the one-
forms of the torus. There are three two-forms that form the basis of the untwisted
part of H?. These are the two-forms that remain invariant under the Z2, and they
can be chosen as

w; = (kV3)Y3id2 A dZ, (2.6)



in an arbitrary normalization (in which the triple intersection is k). Their Poincaré-
dual four-forms form the basis for the untwisted part of H*,

. 3\ /3 . .
W' = <—) (idz? A dZ) A (id2" A dZF), (2.7)
K

where {1, j, k} are different elements of the set {1,2,3}. We choose the normaliza-
tions such that

/ wy A\ we A\ wg = K, / w; A = 57 (2.8)
16723 T6/23

There are also two-forms and four-forms associated with the blow-up modes of the
orbifold fixed points, which we will not write down explicitly.

Since h%! = 0, the only 3-forms in the compact geometry are the holomorphic
3-form

Q= \/My273tdz A\ dzg N dzg (2.9)
and its complex conjugate 2. These are normalized such that
E/ QAQ =0l(T%/73) = L'yl'yg'yg, (2.10)
8 T6/73 8\/§
and can be verified to obey the standard relations
JAQ=0, %Q/\Q:%J?’. (2.11)

As a last step in defining the geometry we quotient by an orientifold action.
We will use the orientifold of T°/Z2 presented in [19]. The total orientifold action
is given by Q(—1)f2 o, where  is reflection on the worldsheet, FJ, is the worldsheet
left moving fermion number, and o is the spacetime involution

Under this action there is a 3 dimensional space left fixed, given by Re[z;] = 0.
Thus, the theory contains an O6-plane wrapping this 3-cycle and filling the non
compact directions.

Under the orientifold action the different forms have non trivial transformation
properties. The forms defined above transform as

w; — —w;, ' — 0 O — Q. (2.13)

One can write the three-forms in a diagonal basis with respect to the orientifold
by decomposing €2 to its real and imaginary parts, Q = VJ}Z\%& (g + ). These
transform as

Oy — Qp, 50 - —ﬁo- (2-14)



2.2 Moduli and Their Stabilization

In order to stabilize all the moduli we will need to turn on a 10-form (or O-form) RR
flux, so that in the low-energy limit we obtain Romans’ massive ITA supergravity
theory [20] (with a mass parameter proportional to the RR 0-form field strength),
compactified to four dimensions on the 7°/Z2 orientifold discussed in the previous
subsection. In addition to the background metric and dilaton, the theory includes
a NS-NS 2-form By (whose field strength is H3), and a RR 1-form and 3-form, C4
and C3 (with field strengths F» and Fy). [

Before turning on fluxes, the massless spectrum includes the Kahler parameters
from the metric, v;, and the dilaton ¢. Since Bj is odd under €2, its zero modes
are related to the forms w; in the o-odd cohomology H?, and it can be expanded

as
By = Zbiwi. (2.15)

The three zero modes b; combine with 7; to form the bosonic part of a chiral
multiplet. Similarly we can expand the RR forms. Since h! = 0, the one-form has
no zero modes. The three-form, being even under €2, has one zero mode, related
to the unique even three-form, . Thus we have

C3 = . (2.16)

The four dimensional axiodilaton superfield contains the combination of this axion
¢ with the dilaton ¢.

All of these moduli can be stabilized by turning on fluxes along the compact
directions. In order to preserve Poincaré invariance, the fluxes can be written as

F,=F,+voly ANF,_4, (2.17)

where all the indices in F' and F are internal, and they are Poincaré dual using the
6 dimensional metric, F, = (—1)(P=D(=2)/2 y Fy_,,. The background values for
the fluxes can then be written by expanding the fields in the relevant cohomology
(having the correct parity under the orientifold) :

A A~ A ) A ag A By
~1
Hs; = —pBy, Fy=-mg, Fy=-muw;, Fy=euw', Fs;=—e

. (2.18
vol ( )

They obey the following integrality condition

#/Fp:fpez, m/}]g,:hgez, (219)

!'Note that we use the following conventions for the RR fields. We follow the convention
of [I3, 21] including an additional factor of v/2 with respect to the standard convention, while
working with signs as in [22]. So, we use opposite signs for Fy and Fg compared to [13] 21].




so that the integer fluxes are related to the ones in (2.1I8) by
4 \/5 K1/3 \/5
_ Vraime,  fie YL =,
Jo o k= e 3 (2m o)
V2

1
fo = —meo, hs = mp. (2.20)

We will split the field strengths into the background part and an excitations
part. They can then be written as

fi-

Hy = HY +dB,,
F2 = szg‘i‘dCl‘i‘moBQ,
R = ng—i—dC’g—Cl/\ng—%Bg/\Bg. (2.21)

The background values of the fluxes are constrained by the tadpoles of the different
fields. These were analyzed in [I3], where it was found that there is a unique
tadpole for C'; which requires

mep = —V2 2V’ (2.22)

In terms of the integer fluxes (220)) this means fohs = 2, so that there are four
different possibilities, (fy, hs) = (1,2),(2,1), (1, —2), (=2, —1). All other fluxes
are not, constrained by tadpoles.

The scalar potential was analyzed in detail in [13], and it was found that by

turning on such fluxes (eq, €;, mg, m;, p) the moduli are stabilized at values given
by

1 [“5eiese
o= 2wV3)B o, [0S

|éz‘ 3mol‘£ ’
o=
mo
¢ — g(_l_zmoé@és)“
3pl\ 5 & ’
¢ = %(ewe;m%zm;?zm?’), (2.23)
0 0

with é; = e; + km;my,/mgo (where {1, 7, k} = {1,2,3}). From the four dimensional
point of view, this solution has a negative cosmological constant
2 /3

A= —" ,
2 717273

(2.24)



and we will consider the maximally symmetric solution of the resulting four di-
mensional action, which is given by AdS, x T°/Z3.

There are several things to note here regarding this solution. From supersym-
metry we get (see the next subsection) a constraint on the signs of the fluxes

sign(mop) = sign(mee;) = —, (2.25)

which also guarantees that the +; and e~ are real. When we take large values for
the quantized fluxes, fi > 1 (without making some of them much larger than the
others), we get to a regime with large volume and weak coupling where we can
trust our computation. Throughout this paper we will work in this regime. We
also note that there is a non-singular solution with ey = m; = 0, which has no
2-form and 6-form background fluxes.

There are additional moduli localized near the C3/Z3 singularities. One can
turn on I and F) fluxes on the corresponding localized cycles, which we denote,
respectively, by ns and fq (A =1,---,9 goes over the different singular points).
The blow up Kahler modes tg 4 are then stabilized at

poo_na 104
= —— — /=

(2.26)

where we defined fA = fa + n?%/2my, and the integer 3 is the non-trivial triple
intersection of the twisted cycles. The values for e® and ¢ are modified by these
additional fluxes (the dilaton by a small amount when f; > 1):

327 1/2
— 41 12 m0€1€2€3 ﬂz 10fA
e = -7 -

3ip] |V 5 25 o 368my

¢ = 1 <60 L et ZA fana N 6/<am1m2m3 +8Y 4 ni) (227)

P my 3m?

2.3 Supersymmetry

In this subsection we review how the background described above satisfies the
supersymmetry equations. We will write the background as a warped product of
a four-dimensional Anti de-Sitter space with T°/Z2, with the metric

ds* = e hyndaMda™ + gapdy?dy®, (2.28)

where A = A(y) is the warp factor, hyy is the 4 dimensional AdS metric and
gap is the metric on T°/Z2. We will use the double spinor convention, which in



type ITA amounts to writing the Majorana Killing spinor as two Majorana Weyl
spinors with opposite chirality,

e=¢ey+e, Tpoer = Feq. (2.29)

We can decompose the ten dimensional Clifford algebra into the 4d ® 6d algebras
in the following way,

Lp=7%0L Tun=74®m, (2.30)
where the 4d gamma matrices are real and the 6d are purely imaginary and anti-

symmetric. We denote by underlined indices the tangent space flat indices. The
Killing spinors also decompose as

er(,y) = abi(z) @ne(y) +a"0-(z) @n-(y),
e (v,y) = b0 (x)@n_(y) +b00_(z) @n4(y), (2.31)

where 1, = n* is the unique covariantly constant spinor on the Calabi-Yau, while
0., 0_ (with 8, = 0TC) are the Killing spinors on AdS, satisfying

1, 1
Do, = 5/1 Vb, Db = éﬂ'ﬁﬂ—%‘ (2.32)

The complex number p is the value of the superpotential, so that the cosmological
constant of the AdSy space is given by A = —|ul?.

The spinor 77, on the Calabi-Yau gives rise to an SU(3) structure. Following
[22, 23, 24] we can write the two pure spinors as bispinors of O(6, 6) in the following
way

Yt =an, ® b*ni, U~ =an,. by (2.33)
Using the Clifford map, there is a one-to-one correspondence between such bispinors
and p-forms, given by

C=> —Ci pdi" A Ada —— @=D —Ci iyt (2.34)

Using this map, the pure spinors can also be represented by the almost complex
structure 2-form and the holomorphic 3-form,

b _, jab
Ut = %e_"], U = —%Q. (2.35)

Following these notations, the equations for preserved supersymmetry are given
by [24, 2]

6_2A+¢(d+H/\)(62A_¢‘I’+) = 2uRe[V_], (2.36)
e (d 4+ HA)(A0W_) = 3iZm[aW,] +dAAT_

9



w2z |(laf* = B F + ilal* + b F|
(2.37)

where F' = Fy + I3 + Fy + Fg are the modified RR fields defined as
F=e¢BF 1 dC+ HAC, (2.38)

so that they obey the non-standard Bianchi identity dF,, = —H A F},_».
We solve these equations in Appendix [A] finding that for supersymmetry to be
preserved the Killing spinors should have b = —a*, and the moduli should obtain

values as in (2.23).

3 General Properties of the Dual Conformal Field
Theory

In the previous section we described a solution of supergravity (and, thus, of string
theory) that includes a four dimensional AdS space. According to the AdS/CFT
correspondence [§, 9] [10], there is a three dimensional conformal field theory which
is the holographic dual of this solution. Many properties of this CFT can be
calculated in a simple manner from the supergravity solution. We will discuss these
properties in this section, including the central charge, dimensions of operators and
the global symmetries of the CF'T. We will also discuss D-branes wrapping cycles
in the compact space to give particles or strings on AdS;. Throughout this paper
we will work only in the limit where all 4-form fluxes are large, so that the string
coupling is weak and the supergravity approximation is good.

3.1 The Central Charge

We will begin by finding the central charge of the CFT from the curvature of
the AdS space. There are various possible definitions of a central charge for three
dimensional CF'Ts, including the coefficient of the two-point function of the stress-
energy tensor, and the coefficient multiplying the volume times the temperature
squared in the entropy of the theory at finite temperature. In the gravity approxi-
mation, all definitions give answers proportional to R?,s/G4, where Gy is the four
dimensional Newton’s constant, since this is the coefficient (in units of R44g) of
the four dimensional action, so that all correlation functions are proportional to
this. Using our formulas from the previous section, we have (up to constants)

(RESY_ VolTH BN (R
G4 - o’ 05/2h§

~ (fifPfD2 (31
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since the 3-form and O-form fluxes are numbers of order one. In particular, if we
take all the fluxes fi ~ N, we find a central charge scaling as ¢ oc N%/2 (this was
independently noted in [15]).

Equation (B]) is reminiscent of the formula for the central charge in the case
of N =8 SU(N) SYM in 2+1 dimensions. In that case the central charge of the
theory in the IR (where it is dual to M theory on AdS,; x S7) scales like N3/2
(which is not understood in terms of any effective field theory degrees of freedom).
By analogy, this suggests that in our case there may be some N.s; = fif2f3,
namely that if there is a UV description of any sort it should include an order of
(fLf2£3)? degrees of freedom. This is also suggested by the fact that these are the
minimal integer powers which are larger than those appearing in the central charge
(B1). This UV description could be for instance an SU(N.sf) gauge theory, or
an SU(f1) x SU(f?) x SU(f}) gauge theory with matter in representations whose
dimension is of order N esz (such representations are consistent with asymptotic
freedom in 2 4 1 dimensions).

The analysis in [I5] give some support to this suggestion. It was argued there
that after two T-dualities in the directions of the first 2-torus, and in the limit of
fi — oo, 42 3 fized, the background should be lifted to M theory, and resembles
the near-horizon limit of f; M2-branes (at some singularity). In this case we see
that the degrees of freedom are renormalized from O(1) * (f})? in the theory on
some D2-branes (at the same singularity) to O(1) * (f#)*? in the theory on the
M2-branes.

Below we will use another indicator for the number of branes in the problem
which will be the structure (and in particular the dimensionality) of different
branches of the moduli space. The moduli space will be made out of holomorphic
(in an appropriate sense) D4-branes which wrap different 2-cycles of the torus.
Our analysis of the moduli space will be performed in the limit where all fluxes
are large, but since it preserves some supersymmetry it is natural to expect that the
same results for the form and dimension of the moduli space will hold also in other
limits (though we have not verified this directly). Assuming this, we find (using
our results derived below) that for the scaling of [15] the dimension of the largest
branch of the moduli space will scale like fi. Indeed, this branch is described
by the motion of D4-branes wrapping the first 72, which become M2-branes (or
D2-branes) after 2 T-dualities.

Our more general analysis below will show that the dimension of the maximal
branch of the moduli space scales like max(fif]), i # j. The previous case is a
special case of this. Note that this might suggest that in a scaling limit in which
two of the fluxes (say, fi and f7) become large while the third remains finite,
the theory resembles that of N.;; ~ flf? M2-branes. While the dimension of
the moduli space and the number of degrees of freedom are consistent with this

11



suggestion, the precise form of the moduli space is very different from what one
would obtain from any theory of N M2-branes.

3.2 Global Symmetries

As described above, the supergravity solution preserves a four dimensional N' = 1
supersymmetry. By the AdS/CFT correspondence this maps to a three dimen-
sional A/ = 1 superconformal symmetry, with two supersymmetry charges and
two superconformal charges.

In the AdS/CFT correspondence, the global symmetries of the CFT are re-
lated to gauge symmetries of the gravitational theory. Such symmetries arise from
reductions of the supergravity fields on the compact space (or from space-filling
D-branes). The simplest gauge fields are related to the ten dimensional metric,
and are related to the isometry group of the compactification manifold. In our
case the compact space is a Calabi-Yau manifold and thus has no isometry group.
So, we do not get any gauge fields from the metric. In addition to the metric, the
RR 1-form and 3-form can also give rise to gauge symmetries. In our background
we have a non-trivial 0-form flux which gives a mass to the 1-form (it is swallowed
by the 2-form B, which becomes massive). Thus, there is no gauge symmetry as-
sociated with the 1-form. In order to get a 1-form gauge field from the 3-form we
need to integrate it over a 2-cycle. As the compactification manifold contains three
such untwisted 2-cycles, we obtain three commuting gauge fields. However, since
the 2-cycles are odd under the orientifolding, these gauge fields are projected out
by the orientifold. The gauge fields arising from the twisted 2-cycles are similarly
projected out.

Thus, the conformal field theory that we are looking for does not have any
global symmetry (beyond the N' = 1 superconformal algebra, which does not
include any continuous R-symmetry group).

3.3 Operators and Scalings

Another basic property of a conformal field theory is the spectrum of operators in
the theory. The simplest operators are related to the supergravity fields, and their
dimensions are related to the masses so we can easily find the spectrum. There are
two mass scales for fields in the supergravity. The first is the mass of the moduli,
which can be computed from their potential. This was written explicitly in [13]
for some of the moduli, and it is easy to see that the others have the same scaling.
In units of the four dimensional Planck scale l12,4 ~ (¢4 the moduli masses are

m?noduli ~ (fifffj)_3/2l;42 (32)
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The other mass scale in supergravity is the mass of the Kaluza-Klein modes, given
by the inverse radii of the compact tori,

m%(K ~ %'_l ~ (fifffj)_gﬁfil;f‘ (3'3)

The dimensions of the corresponding operators are given using the AdS/CFT
correspondence as

Aoduti ~ Mmoduti Baas ~ 1, Agr ~mrrRass ~ 1/ [} (3.4)

Thus, as in all other conformal field theories dual to theories with a four dimen-
sional supergravity approximation (implying a separation of scales between the
moduli and the KK modes), there is a small number of operators with dimen-
sions of order one, and all others have large dimensions. The order one operators
correspond to the eight moduli fields, ¢, &, b;, v;.

3.4 Wrapped Branes

Another type of operators in the field theory involves Dp-branes wrapped on p-
cycles in the compact space, giving particles in the AdS4. Since our background
involves massive type IIA string theory, we cannot have any DO-branes (which
must have fy strings ending on them) or D6-branes (which must have fy NS 5-
branes ending on them); this is related to the fact that the RR 1-form is swallowed
by the NS-NS 2-form. Naively we can have wrapped D2-branes or D4-branes on
our 2-cycles or 4-cycles, but in fact the orientifold maps these to anti-D-branes, so
it is unlikely that any stable configurations of this type would exist.

We can also consider a p-brane wrapping a (p — 1)-cycle, leading to a string in
AdSy (mapped to some type of flux tube in the conformal field theory). The only
such possible configurations are a D4-brane wrapping a 3-cycle and an NS5-brane
wrapped on a 4-cycle. A D4-brane wrapped around the g cycle is mapped to
an anti-brane by the orientifold, while a D4-brane wrapping the (3, cycle is not a
consistent configuration, since there is Hs-flux on that 3-cycle, implying that such
D4-branes must have D2-branes ending on them. The same phenomenon arises
for NS5-branes wrapped on the 4-cycles, since these have 4-form flux. Note that
the fundamental string is also mapped to a string with opposite orientation by the
orientifold. Thus, we do not expect to have any stable extended objects in our
theory.

4 Supersymmetric Domain Walls

In the next two sections we wish to study the moduli space of the conformal
field theory dual to the background described in section 2l To describe the moduli
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space we need to find Lorentz-invariant configurations with zero energy which have
the same asymptotics as the solution described above, but differ in the interior.
Usually in the AdS/CFT correspondence such configurations are described by
supersymmetric branes sitting at some value of the radial position, giving domain
walls in AdS along which the flux which the brane is charged under jumps. Moving
along the moduli space of these configurations is described in the field theory side
as giving non-trivial vacuum expectation values to operators. Such domain walls
break half of the supersymmetry in the bulk; in the conformal field theory they
break the superconformal generators and preserve the standard supersymmetry
generators.

We will consider here D-brane domain walls, given by Dp-branes wrapping
(p — 2)-cycles in the compact space, and sitting at fixed radial position in AdS,.
For the configuration to be supersymmetric (which is the same as having zero
energy in the field theory) these must obey some calibration condition. We will
find the supersymmetric cycles over which D-branes can be wrapped by considering
the k-symmetry equation. In Appendix [Bl we will also verify directly that these
configurations are BPS states by considering the DBI4-CS action for the D-branes
and checking that there is no force acting on them. All of these equations are
valid in the probe approximation, in which the back-reaction of the D-brane on
the background is small. This approximation will be good in the limit of large four-
form fluxes that we are working in. Since in three dimensional A" = 1 theories
the moduli space is generally not protected, we expect some potential along the
moduli space to be generated by corrections to our leading order approximation;
however, this potential is very small in the limit we are working in, so that there
will still be an approximate moduli space in the conformal field theory.

The general supersymmetry condition for a Dp-brane filling time plus ¢ dimen-
sions and wrapping a (p — ¢q)-cycle in the compact directions is the x-symmetry
equation [25], which in the double spinor notation can be written as in [22]:

poe— = E-i-a (41)
where
Loy =10..075" © %p—q)’ (4.2)
€ot- g B...

falaz o Fog1a V815, (4.3)

1
A~/ o
) = /det(P[g] + F) 21%; I1s!2t

Here, P[] indicates the pullback of a bulk field onto the worldvolume of the D-
brane, and F = f + P[B] where f is the field strength of the gauge field on the
worldvolume of the D-brane, and we set 2ra’ = 1.
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We can split the k-symmetry equation into an equation in the AdS space,
V0..q0+ = a0y (4.4)
for some constant «, and an equation in the compact space
b Ao = a®" an g, (4.5)

where 27" is defined to be z (2*) for even (odd) values of n (and a and b were
defined in (Z31])). From these we can see (using the unitarity of the v matrices)
that a must be a pure phase, and that the D-brane can be supersymmetric only if
la| = |b], which is indeed the case for our background. For type ITA (even p) the
internal equation can be brought to the form

b’y(p q ( )p_qa’(*)piqa*n(—)pf% (46)

from which one gets, as in [22], the following calibration condition on the cycle
which the D-brane wraps:

{b* Pl NeT}|,, = —a*ay/det(Plg] + F) do* A ... A do™ (4.7)

for D-branes wrapping even 2k-cycles, and

{bP[—iQ A"} }2k+1 = a*a*y/det(Plg] + F) do* A ... A do® T (4.8)

for D-branes wrapping odd (2k + 1)-cycles. We denote the n-form part of an
expression by {-}|,.

We will next use this formalism to describe different configurations of D-branes
in this background and study their supersymmetry properties. We begin by veri-
fying that a D6-brane parallel to the orientifold plane obeys the above equations.
We then continue to study the equation for D4-branes spanning domain walls in
space-time. After finding the general supersymmetric solution we will study the
special case of linear D-branes. In Appendix [Cl we show that there are no other
types of D-branes that lead to supersymmetric domain walls.

4.1 A Space-Time Filling D6-Brane

We start by considering a probe D6-brane filling the whole non-compact AdS;
space-time and wrapping a three-cycle in the compact space. This is not a domain
wall, but we use it to test our equations, since we know that such a configuration
carrying the same charges as the O6-plane must be supersymmetric. The AdS,
part of the k-symmetry equation (L) gives

a 9+ = Y1230+ = 1y@)04 = 04, (4.9)
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so it fixes o« = —1.
Since the orientifold action is

2 = —Z, (4.10)

the orientifold plane is located on z; = —Z;, and we wish to put the D6-branes in
the same position, so we can parameterize the three compact coordinates of the
D6-brane using the embedding

01 =11, O2=1Y2, O03=1Y3. (4.11)

The induced metric on the worldvolume is
ds’ =Y " 7i(do’)? (4.12)
and the induced 3-form is

P[Q] = \/’)/1’)/2’)/3610'1 N dO’Q N dO’g. (413)

The right hand side of (48] is

a*a’y/det(P[g] + F) doy A doy A\ dos = a*in/Y17273 doy Adoy ANdos,  (4.14)

and the left hand side of the equation is

{bP[—ZQ] N 6]:}‘3 = —Z.b\/’)/l’)/g’)/g dO’l A dO’g VAN dO’g, (415)
so in order for the configuration to be supersymmetric we must have b = —a*,

precisely as we found from the bulk supersymmetry in section 23]

4.2 D4-Brane as a Supersymmetric Domain Wall

Next, consider a D4-brane extended as a domain wall in the AdS space and wrap-
ping a generic untwisted 2-cycle@, in the cohomology class of > N;w;. On such a
domain wall, the fluxes jump by fi — fi+N;. In order to find the supersymmetric

configuration we will solve the k-symmetry equation, starting as before with the
AdS, part,

a0 =020y = Y2l = — el = —in by = —inby.  (4.16)

20ne could also consider D4-branes wrapped around twisted 2-cycles, but it seems that these
are never supersymmetric in the presence of the 2-form fluxes stabilizing the twisted sector
moduli.
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We choose the AdS; metric

1
ds® = ‘u—|(dr2 + 2 napda®da?), (4.17)

where 7 is a flat Minkowski metric. This is just the standard AdS metric in the
Poincaré patch, with the redefinition » = —In(z). The covariant derivative can be
written as in [26] 27],

1
D, =0, + §|,u\e7"7g7£. (4.18)

We are interested in the Poincaré supercharges, obeying 0,6+ = 0, so using (2.32))
we get

1 1, 1,

SlHleramls = SH™ a0 = Spte" b (4.19)
W : b

V.0, = —0_ = —sign(p)=0_. 4.20

Plugging this into ([LI0) we find o = —sign(p)i?.

To solve the internal part of the x-symmetry equation we need to choose how
to wrap the D4-brane. We start with the simplest case where the D4-brane wraps
the torus z;. We can choose the embedding

ol =12, o=y (4.21)

with the induced metric being
Y1(dot)? + i (do?)?, (4.22)

and the pullback of J given by
P[J] = yido* A do?. (4.23)

Plugging into the supersymmetry condition (A7) we have on the right-hand
side

—a*ay/det(P[g] + F)do' Ado? = z'sign(p)abb

while on the other side we have

*

ydo' Ado? = —sign(p)ib*y,do' Ado?,
(4.24)

{v*Ple=I neT }|, = —ib* P[J] = —ib*yido’ A do®. (4.25)

We see that when the background value of p is positive the configuration is su-
persymmetric When p is negative one can take the same embedding and flip its

3Recall that the signs of p and e; are the same (A22]).
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orientation such that ! = y! and 0 = 2!, to get a supersymmetric configuration.
This is just an anti-D4-brane instead of a D4-brane. We see that depending on
the sign of the background fluxes, the supersymmetric brane is either a D4-brane
or an anti-D4-brane.

Note that in the above we assumed F = P[B] + f = 0. As the sk-symmetry
equation only depends on F, the result won’t change if we have a non-trivial back-
ground F, (which generates also a non-trivial background B) as long as we turn
on fluxes on the worldvolume f = —P[B]. If the worldvolume flux is different than
this value there will be an additional contribution to both sides of the equation.
In the right hand side F appear only inside the square root so it will change only
the absolute value while keeping the phase unchanged. In contrast, the left hand
side is proportional to F —iJ and so will change its phase. We thus conclude that
the configuration is supersymmetric only for F = 0.

A different type of cycle the D4-branes can wrap is a twisted cycle at a fixed
point. When we go away from the singular limit by turning on 2-form flux on
these cycles, the background fluxes and values of the moduli change, see equation
(2.217). However the k-symmetry equations are only sensitive to changes in the bulk
supercharges, that is to the relation between a and b which remains unchanged.
Thus, by turning on the appropriate worldvolume flux on D4 branes wrapping
the twisted cycles such that F = 0 as before we get additional supersymmetric
configurations. We will not consider these configurations in detail, since their
contribution to the dimension of the moduli space is finite in the large flux limit.

4.3 Generic D4-Brane Configuration

Since the linear embedding described in the previous subsection cannot be realized
for generic values of the IV;, we will now analyze the most general supersymmetric
case of a D4-brane wrapping a generic (untwisted) surface. We will use the complex
coordinates z, = x, + iy, in space-time as in (2] and define the worldvolume
complex coordinate to be ¢ = o7 + 109 with the same complex structure. The
position of the D4-brane can be written as

2% = 2%0,0). (4.26)
The induced metric is given by

9oo — Z Vaazaaga )

a=1,2,3

1 _ _
9o = Yso — Z 5’}/@(82@82&—}‘82,182@),

a=1,2,3

Js55 = Z Ya0%a0%q, (4.27)

a=1,2,3
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so the right-hand side of the x equation is proportional to

2
1 _ _ o
(Z 5%(8%82,1 + 8za82a)> - za: Ya07a0Z4 zb: Y02p0Zp. (4.28)

a

This should be equal to the pullback of the almost complex structure, which gives

Z %’Ya(azaéza - 52{18211)' (429)

a

Taking the squares of both sides and equating we get
1 _ _
0 = 3 zb: Vi 024025 — 02,024, (4.30)

which vanishes if and only if
02,02y = 02,02,. (4.31)

In order to understand the meaning of this result, let’s consider z; and z,. We
start by defining a new variable w = z;(¢, 7). We have

dw = Ozdo + 0xda,

do = 0zdo + 0zd5, (4.32)
and
do — ?Zldw—?zld@
o i ohd
7T 020m — 02107, (4.33)
We now can write
% = 2—56@ + 2—5822 = 5505 i(%azl (—029021 + 02,02) (4.34)

which vanishes according to ({31]). We see that the supersymmetry condition can
be understood as the statement that the three coordinates z, can be written as
holomorphic functions of each other. In other words, supersymmetry is equivalent
to the requirement that the worldvolume wraps a cycle that can be written as the
zero locus of two holomorphic functions of the coordinates.
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4.3.1 Linear D4-Brane

We will study now a simple class of configurations, in which the embedding of the
D-brane can be chosen to be a linear map. We can write the embedding as

7' =ad'oc' + b0’ +a, y' =o' +d'a® + 3. (4.35)

Two of the six parameters o, 3° can be absorbed into a shift in o;, o9, while the
others parameterize the moduli of the position of the D4-brane. We also need to
check that this embedding keeps the periodicity of the tori. The identifications on

01,09 are
1 V3
(01,09) ~ (01 + 1,09) =~ (07 + 5702 + 7) (4.36)

and similarly for the (z;, ;) pairs. Under the first transformation, we get
(i, 4:) = (T + @i,y + ). (4.37)

For these two points to be identified we must have ¢; = \[
some integers m;, n;. The second transformation acts as

V3 V3

m; and a; = 5t +n; for

a;
(i) — (i + 2+ L2 g+ 24 i), (4.38)
2 2 2
which gives us the restrictions d; = m; — 2t and b; = (Qm +m; — 5t —n;) (with

integers m;,n;). We are now able to express a,b,c, d in terms of four integers
m,n,m,n. The wrapping numbers N; are given by

N; = M = det ({ af bz- }) M =d'd — b =n'm' —a'm'.
fzy dxidyt ¢ d fxy dxidyi
(4.39)
Plugging the embedding into the supersymmetry equations (£31)) we get
mjm; — mym; +n;n; —n;n; =0, (4.40)
mim; — mjm; + nym; — mjn; — nim,; +mng =0, (4.41)
n;m; — myn; = Nj. (4.42)

We can solve the first two equations for n, m, and plugging into the third we get

N,  m?+mn; +n?
N; m; +m;n; +n;

It turns out that not all charges N; may be realized by a single linear D4-brane
of the type described above, since there is not always an integer solution to (£43)).
To see this, we will now prove some things about this ratio. First, note that

4(m* +mn +n*) =3(n+m)* + (n —m)® = 32° + (4.44)
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so we can write the equation as

_ 3xi 4y}

- 145
i 323 +y7 (4.45)

with integer x;,7y;. Next, we will show that a number that can be written as
N = 322 + y? has an even power for the factor of 2 in its prime decomposition.
Then, the ratio of two such numbers must also have an even power for the 2 in its
prime decomposition (if the ratio is a fraction its prime decomposition is the one
coming from the prime decompositions of the numerator and denominator).

We will prove this by induction, showing that if N is divisible by 22"*! then
it is also divisible by 22"*2. For n = 0, if both z,y are even, N is obviously
divisible by 4. Else for N to be even both z,y have to be odd, i.e. of the form
r=2a+1, y=20+1. We then get N = 322 +y? = 3(4a*+4a+1)+40*+4b+1 =
4(3a* + b* + 3a + b) + 4 which is divisible by 4.

We next consider general n. Again, since N is even, z,y are both even or
both odd. In the first case we can divide the entire equation by 4 and reduce it
to the case with n — 1. For the latter case, we can write again N = 322 + 3% =
3(4a* +4a+1) + 40> +4b+1 = 4(3a(a+1) + b(b+ 1) + 1), which after division by
4 is an odd number, specifically it is not a multiple of 22"™! so this case cannot
arise.

5 The Geometry of the Moduli Space

We have seen that the background of section ] allows for supersymmetric domain
walls, described by D4-branes wrapped on 2-cycles. Over each domain wall the
4-form fluxes jump according to the number of times the domain wall is wrapped
over each cycle. When we go far away from the domain walls, we arrive at a
background with specific values for the 4 form fluxes. However there are many
different configurations of domain walls which result in the same background in
the interior of AdS space (beyond all the domain walls). For example, we can take
one D-brane wrapped N; times over the ¢’th cycle, or several branes whose total
wrapping number is N;. From this we see that the moduli space may be composed
of many different branches. The parameterization of each branch includes the
radial position of the domain walls, so each branch is a cone, and all the branches
are connected at the origin (when all the domain walls go to the horizon of AdS
space). Naively, the full moduli space is made out of all configurations of D4-
branes carrying total wrapping numbers equal to the total fluxes fi (some of the
D4-branes can of course sit at the origin). However, it is not completely clear
that this is true, since our approximations break down when the 4-form fluxes fi
become small (and it is certainly not clear if there is an AdS, solution when one
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of the fluxes vanishes). Nevertheless, we expect that this naive approach will be a
useful tool for counting the dimension of the moduli space at large fi.

Note that often configurations made out of different sets of D4-branes (with
the same total wrapping number) can be connected without the need to send some
of the branes to the origin of the moduli space. When two D4-branes intersect,
new light degrees of freedom arise at their intersection point which may deform
the configuration and smooth it into a configuration of a single D4-brane with the
same total flux.

We will begin by considering a simple branch of the moduli space where there
is only one D4-brane wrapping a simple cycle. We will study it in detail and
describe its global structure. We will then go on to describe some properties of
the general moduli space. Specifically, we will parameterize the different branches,
and estimate the dimension of a generic branch.

5.1 The Moduli Space of a Single D4-Brane

We start with the simplest branch of the moduli space, which includes branes
with wrapping numbers (N1, No, N3) = (1,0,0). For these values we can have only
one possible configuration of domain walls, which consists of a single D4-brane
wrapping the first 72 inside the compact space. The geometry of its moduli space
can be simply read from its low-energy effective action. We consider the D4-brane

to be located at specific values of r,u?, v?, u?, v® and embedded as

t = 60, .Tl — 61, .T2 _ 62, Ul — 637 ul — 64- (51)

We begin by assuming that the D4-brane is away from all fixed points of the
orbifold and orientifold. The DBI action is given (up to quadratic order in the
fields) by

Lppr = — [l / e/ =g
50 — 7’ 1 . vk | L i kk'
N | e 14 5CuwOX X " + 2 FuFing" g (5.2)

= %—?%GIK is the induced metric on the D-brane, and G is the ten

dimensional metric which we now write in the form (with R = Raq4s)

where g;1

i dt* + (dz')* + (dz®)?) + —2dr2 + Z% ((du’)? + (dv')?). (5.3)

r

dSQZE(

We use 1, k to denote the worldvolume indices, ¢, k are transverse coordinates and
I, K denote full ten dimensional indices. Reducing the action on the torus we take
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the fields 7, u?, v%, u?, v® to depend only on t, z1, z5. The 5 dimensional gauge field
A can be expanded as R
A=A + aldul + agdvl, (54)

giving rise to two Wilson lines a;, and a three dimensional gauge field, A, which
can be dualized to another scalar x3dA = d¢. Using [ du'dv' = @ we get the
three dimensional action

/3

3 21 . 11 11
Lppr = — Ha—oo d3§€_¢1 {r_ + iaﬁba%

ékalﬁial + 5 —@-aﬁiag

R R G ”

1R2 7 1 291, 2 1 29i,.2 1 39:, 3
+ ——8#8 r+ —w@iu 8 u” + —’)/282'1} (9 V7 + —’Ygaiu 8 Uu
2 r2 2 2 2
1 .
+ 5’73811)3821}3] s
(5.5)

with indices raised and lowered using the flat metric.

The Chern-Simons term is
oI / Cs, (5.6)

where C5 = C5 + C5 A Fy + 5C1 A Fy A Fa + gmgws, with dws = Fy A Fo A F,. This
can be written as an integral of a 6-form, Fg = dCs, over the volume bounded by
the D4-brane. In our background only Fy contributes, and using the calculation
in Appendix [B] we have

3
\/§,LL4 Fs = g dtda:ldx2e_¢r—71 dut A dvt + Edu2 A dv? + Ealu?’ Adv?]
R3

! §a!
(5.7)
which becomes

R o¢ ot ot og

3 29,2 204 2 343 3 A3
\/§N4/F6:M4/d5§@_¢r_ {71+72(6u v _au av)_i_%(au ov _au ov

(5.8)
when we use our specific embedding of the D4-brane. When we compactify, we
assume that no fields depend on the compact coordinates, so the only term that
contributes to the low-energy effective action is the constant, which is canceled
with the constant term in the DBI part.

We can also redefine the radial coordinate to be p = 2\/3%711%\/? so that

4For F» # 0 we need to take the gauge field to have non vanishing background flux so that
F = 0. This doesn’t change the rest of the analysis.
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the action is given by
2

1 . 1 . . .
Lppr = — /d3§ {581/)(91/) + §4P—R2 (0:00°¢ + 771 '0;010'ar + 1 ' Da20"as

+ 100" u* + 10;0° 0% + 10Ul u’ + 130,0°0'0°) | (5.9)

This describes an 8 dimensional moduli space which is a cone (with radial coordi-
nate p) over a 7 dimensional space parameterized by ¢, ay, az, u?, v?, u3, v3.

To study the global structure of the moduli space we will consider now each of
the scalar fields. Starting with the dual scalar, ¢, one can see that it is actually

periodic. In a 3d YM theory, whose action is given by

[ @i fur® = = [ 1741, (5.10)

4912/M 912/M

the electric charge inside an S is given by

Q= [ sf=—— [ do=——(62m)—0(0).  (511)
9y m J st 9y m J st 9y m

Since the field values ¢(0) and ¢(27) are the same, and @), are integers we have

b~ o+ gl (5.12)

In our case gi,; = %\/;/ :
1

The Wilson lines are also periodic fields. Performing a gauge transformation
A — A+ dA with A = ciu! + vt on a torus of complex structure 7, shifts the
Wilson lines by a; — a; + ¢;. Since e must be periodic under the identifications
of the coordinates given by (u',v') ~ (u' + 1,v) ~ (u' + Re[r],v' + Zm[7]), we
need

c1 = 2T, c1 Re[T] + co ITm|7] = 27Ny, (5.13)
for integers n; and ny. These are solved for integral linear combinations of
1 — Re[7]
-9 P 0
{Cl T, Co ™ Im[T] }
1
=0 =2 . 5.14
{Cl ) C2 Q0 Im[’]'] } ( )

Under the corresponding gauge transformation the fields do not change so we must
identify these points on the moduli space of the Wilson lines. Therefore we get
(using 7 = €/3)

2 47

\/§) ~ (a1, a3 + —=). (5.15)

(a'la a’2) ~ (a'l + 27Ta az + \/g
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This is a torus with complex structure 7 = ¢™/3 in the coordinate Z = g(ag +iay).

Thus, we see that the moduli space has the structure of a cone with a seven

dimensional base St x (T2)3 (before imposing the orbifold and orientifold identifi-
cations), where the circumference of the S! is
2 gs 1

2TRy = ———, 5.16
i \/§H4’Yl ( )

and the complex structure of the three tori are all 7 = e
are

/3 while their volumes

4r\? 1
(%) I? 72, V3. (517)

The above analysis was for a D4-brane located at a generic point, where it is
separated from its images. However, we can consider also a D4-brane located at
the fixed points of the T°/Z3. We start with the non fractional brane (and obtain
the fractional ones from it via higgsing). The D-brane wraps u',v!, and it can sit
at a fixed point on the other two tori. There are three such points, distinct after
all identifications. In the covering space of the orbifold action, 7°, the D4-brane
has nine copies, which are divided into three separate groups of three coincident
branes. To study the moduli space we need to consider the transformation of the
Chan-Paton indices. Under the first Zs; The fields transform as

2(i—j
¢z’j - o ( 2)¢137
riy — o2y,
_ : 2(1+i—j
aij = (&1 + Zag)ij — E ];aij,
32 a2 2(1+i—j) 2
z; = (U %) — « Ziis
3 (3 4 3. 2(1+i—j) .3
zyp = (U +iv)y; — « i, (5.18)

where a = €™/3. The invariant fields are then

oo 0 0
¢=(0 ou 0],
0 0 ¢
Too 0 0
T = 0 11 0 s
0 0 7929
0 aop1 0
a = 0 0 a12 s
920 0 0
0 2z 0
=10 0 Z,]|. (5.19)
2z 00
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The moduli space is determined by considering commuting matrices, since the
scalar potential contains terms with commutators. We then find two branches.
On one branch the fields a, 22, 2% vanish, and ¢,r can have any value, giving
rise to 3 scalars each. This describes the D4-brane and its images at the fixed
point as fractional branes with the corresponding gauge group of U(1)3, each at a
different radial position. The second is when a, 22, 2% are generic and ¢ and r are
proportional to the identity matrix, in which case the D-brane is away from the
fixed points and has some non-trivial Wilson line. Here the gauge group is broken
back to a single U(1). The position and Wilson lines are given by /2421525,
and /agiai2azg, respectively. This just spans locally a Zj singularity. The global
identifications are just as in the case away from the fixed points.

We also need to consider the effect of the orientifold action, Q(—1)Zo, where
o is the spacetime involution z; — —Z;, Fp, is the worldsheet left moving fermion
number and €2 is the worldsheet parity reversal. The action on our fields is

Gij — —O—j—i

Tz',j — 7’_]'7_2

CLZ'J' — C_L_j,_z

Gy T A

sz — —Eijri. (5.20)

We then get the following degrees of freedom:

92522 = _¢117 ¢00 = 07

T22 = T11, T00,
~ Gp1 = Gz, a1z = d12,
i =1 i =1
01 = T 20 212 = TR12- (5.21)

The D-brane position is now i|y/ 24, 24525,| so it can move only along the O-plane.
To move out of this plane the D-brane must meet its image and so we need a pair
of such D-branes. Similarly, the Wilson line is | #/ag1a12a90].

5.2 Generic Properties of the Moduli Space

In the previous section we found that supersymmetric domain wall configurations
are described by a holomorphic curve. Here we will provide a more detailed de-
scription of a generic branch of this type, and explain how to count its dimension
(in the limit of large charges). The main tools that we will use are the Bezout
and Bernstein theorems, which we will review, which will be used to calculate the
wrapping numbers of a generic branch. We will be interested primarily in the
branch of largest dimension, and examine how this maximal dimension scales with
the wrapping numbers.
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5.2.1 Mathematical Preliminaries

We will now introduce some mathematical theorems that will help us count the
number of solutions for a system of generic polynomial equations. More details
can be found in [29]. The basic theorem that answers this question is Bezout’s
Theorem:

If the equations f; = ... = f, = 0 have degree dy, ..., d, and finitely many
solutions in CP", then the number of solutions (counted with multiplicity) is
dy---d,.

This theorem holds for any polynomials f; in the complex projective space.

We will be interested, however, in polynomials in C". Given such polynomials
fi € Clxy,...,z,] with terms of total degree up to d;, we can always add an
additional variable, z, making all terms of total degree d;. We can then view
them as equations in CP", and then we can apply Bezout’s theorem and find
the number of solutions. We will assume generic polynomials, so that one can
assume no solutions at z = 0. By gauging z = 1 we can reduce each solution in
the projective space to a solution in C”. We thus have this version of Bezout’s
theorem

Given n generic polynomials fi,..., f,, if the equations f; = ... = f, =0
have maximal total degree dy, ..., d, and finitely many solutions in C", then
the number of solutions (counted with multiplicity) is d; - - - d,,.

Here we assume that the polynomials are generic in the sense that all terms with
degree up to d; appear with a non vanishing coefficient in the polynomial f;.

In our case we will have polynomials that are generic in a different sense than
what was used in the previous case. The polynomial f; will contain all terms that
are up to order df in each variable xaﬁ This is obviously less generic than needed
for Bezout’s theorem so we will need to use Bernstein’s theorem, a generalization of
Bezout’s theorem. We will start by introducing some concepts used in Bernstein’s
theorem.

Let f € C[zy,...,x,] be a polynomial in n variables. We can describe it by
a set of points in the positive integer lattice Z%,, each point corresponding to a

monomial. We can write
f= Z Ca”, (5.22)
aEZgO

and the set of points is given by

A={a€Zy:cy #0}. (5.23)

5Actually, one can relax this condition, but this will not change the scaling behavior of the
dimensionality of the moduli space as we will discuss in the next subsection.
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(@) (b)

d d’

Figure 1: The Newton polytopes of (a) a polynomial with highest total degree d.
(b) a polynomial with each z, having highest degree d,.

This set of points can be used to define the Newton polytope of f, given by the
convex hull of A

NP(f) = Conv(A) = {Z Al g = 0,) Ao = 1} : (5.24)

acA acA

A polynomial is said to be generic if ¢, # 0 for any lattice point « inside its Newton
polytope. As an example, for n = 2, the Newton polytope for a polynomial with
all terms of order up to d is given by the triangle in figure [M(a). The Newton
polytope of a polynomial with terms up to d* in the variable z, is given by the
square in figure [Ii(b).

There are two operations that can be carried out on polytopes in R™ in order
to generate new ones. Let P, () be polytopes in R™ and let A > 0 be a real number.

1. The Minkowski sum of P and () denoted P + @, is
P+Q={p+q:p€ PandqcQ}, (5.25)
where p + ¢ denotes the usual vector sum in R”
2. The polytope AP is defined by
AP ={\p:pe€ P}, (5.26)
where Ap is the usual scalar multiplication on R™.

We will also define the mixed volume of a collection of polytopes Py, --- | Py,
denoted
MV, (P, ,Py,) (5.27)

to be the coefficient of the monomial A;\s--- ), in the volume of the polytope
P=X\NP + -+ \,P,.
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Using the notions introduced above, we can now write Bernstein’s theorem as
follows [29, [30]

Given polynomials fi,..., f, over C with finitely many common zeroes in
(C*)™, let P, = NP(f;) be the Newton polytope of f; in R™. Then the
number of common zeros of the f; in (C*)™ is bounded above by the mixed
volume MV, (P, ..., P,). Moreover, for generic choices of the coefficients in
the f;, the number of common solutions is exactly MV,,(Py, ..., B,).

For the two cases in R? described in figure [ it is simple to calculate the mixed
volume. Polynomials fi, fo with all terms up to order dy, dy have triangular Newton
polytopes, as in figure [[l(a), and their mixed volume is given by

MV, (Py, Py) = dyds, (5.28)

while polynomials with terms up to order d} in z; and d? in z, have square Newton
polytopes as in figure [i(b), for which

MV, (P, P,) = did? + d2dj. (5.29)

5.2.2 The Branches of Moduli Space

Next we will use Bernstein’s theorem to calculate the properties of the moduli
space for a generic D4-brane (or several D4-branes) wrapping a 2-cycle on the
compact space. We have seen that the supersymmetry condition requires the
embedding of the D4-brane to be holomorphic, so the 2-cycle is given by a set of two
holomorphic equations in the z;. Since the z; are doubly periodic the holomorphic
equations should be periodic as well. The most general elliptic function over a
torus with complex structure 7 can be written in terms of the periodic Weierstrass
functions w; = @(z;|7) and their derivatives w} = ¢'(z;|7). For the purposes of
Berenstein’s theorem we will treat these variables as independent and add to the
set of polynomials f; the relations

w? — (4w? + go(T)w; + g3(7)) =0, i=1,2,3. (5.30)

A general supersymmetric D-brane will thus be located at the zeros of (5.30) and
of two holomorphic polynomials of the form

P(wi, wy) = Q(w;, wy) = 0. (5.31)

We can restrict the polynomials to have terms only up to first order in w, since
higher powers can be removed using the relations (5:30). We will take the highest
degree of the variable w; in P and @) to be p;, ¢, respectively@.

6The D-brane configuration is described by the vanishing locus of a set of polynomials where
the highest degree of each parameter is constrained separately. Perhaps one can relax this
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Given a set of such polynomials, which describe a D4-brane, we will use Bern-
stein’s theorem, applied to subsets of this set, to count the wrapping number of the
D-brane on the different cycles. Consider for example N; — the number of times
the brane wraps the z; cycle. We will evaluate N; by fixing a value of z; and then
counting how many solutions there are to the equations for this z; (for a generic
z1). Fixing z; means that we fix both w; and w] which satisfy the constraint (5.30)
for ¢+ = 1. This leaves us with 4 polynomials in the variables ws, w3, w's, w's, on
which we apply Bernstein’s theorem. The number of solutions to these equations
is

N1 ~ pags + p3go, (5.32)

and similarly for permutations of {1, 2, 3}.

Recall that we fix N; 23 and count the dimensionality of the moduli space for
this set of N’s. We are interested in finding the values of p; and ¢; for which we
obtain the largest dimensionality. The dimension of the moduli space for a given
set of p; and ¢; can be estimated by the number of different monomials in the two
polynomials, which is 8pipsps + 8¢1¢2q3. However, the actual dimension of the
moduli space is smaller, since different pairs of polynomials might have the same
zero locus. If we assume ¢; < p;, then any multiple of () with degree smaller than
p; can be removed from P. We are thus left with a moduli space of dimension

D ~ 8(pipaps + 1¢2q3 — (p1 — 1) (P2 — @2) (P3 — @3)). (5.33)

To summarise, we have found that the moduli space describing a domain wall
across which the flux jump by (N7, N3, N3) units of flux, consists of different
branches each parametrized by a set of 2 polynomials with degrees satisfying (5.32]).
The dimension of such a branch is given by (£.33)).

5.2.3 The Maximal Moduli Space

It is interesting from the point of view of the dual field theory to understand
how the dimension of the moduli space scales as we take large wrapping numbers,
N; >> 1 (which should still be much smaller than the fluxes since we are using the
probe approximation). For this we will find the dimension of the maximal branch
with given wrapping numbers. We can use (5.32)) to solve for ¢; in terms of the p;
for given values of the fluxes,

_ —Nip1 + Nopa + Nips

5.34
2pap3 ( )

q1

condition by considering zeros of this set of equations that enter from infinity or from zeros of
w;. On the torus side, in the computations below, we can always avoid such points.
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and similarly for ¢9,q3. Since the ¢;’s are positive, this give some non-trivial
condition on the p;’s. The requirement ¢; < p; then leads to the inequalities

— Nip1 + Nops + N3ps < 2p1paps,

Nip1 — Napy + N3ps < 2p1paps,

Nip1 + Napa — N3ps < 2p1paps,
(5.35)

which can be brought to the form
N1 < 2pops (5.36)

and its permutations. In the same way we can get N; > 2¢2q3 and its permutations.

We can now use our results in the equation (5.33) for D. The term with three
pi’s cancels. For the terms of the form ppg we can use (534) to see that they
scale like N;p; < N;N;, since p; can be just as large as N, (j # 7). Next, we have
pqq < pN so these terms are also smaller than N;N;. Finally, the term with three
¢;’s 18 qqq < Nq and scales as the other terms. Terms with less than three p’s or
¢’s are smaller for the same reasons. We thus conclude that for large fluxes the
dimension of moduli space behaves as

D <> NN;. (5.37)
i#]

We can actually find a configuration which saturates this bound on the dimen-
sionality of moduli space. For instance, if all N; are of the same order, then by
choosing all ¢; ~ 1 we get p; ~ > N;, in which case we get D ~ Zi# N;N;.

The previous analysis was done under the assumption that each ¢; is smaller
than p; so that we can eliminate terms in the polynomial P using () thus reducing
the dimension of moduli space. However it is possible that this is not the case. If
one of the ¢;’s is larger we need to take all monomials, and the dimension of the
moduli space is D ~ p1paps + q1g2q3. We will assume that ¢; is the large g so that
q1 > P, Q2,3 < p23. We find

¢ >p1 — —Nipi + Nops + N3ps > 2pipops,
G2 <p2 — Nigs — Naga + N3qs > 2q1G2qs3. (5.38)

From the first inequality we get that pipaps < N;N; and from the second one we
get that also g1¢2gs < N;N; so that we arrive again to the same conclusion (5.37)
as before.

In addition to the directions in the moduli space that change the two polyno-
mials and control the embedding of the D-brane, there are additional dimensions
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of the moduli space related to Wilson lines. The number of Wilson lines is re-
lated to the 1 dimensional homology group of the Riemann surface the D-brane
is wrapping. We can try to estimate this number as follows. We can think of the
polynomials P(w;, w}), Q(w;, w}) as polynomials in a projective space by adding
a new variable A and making all terms have the same weight of p = > p; and
q = >_¢;. The relations (5.30) are then of weight 3. It is then possible using
algebraic geometry methods to calculate the Euler characteristic of the complete

intersection of these 5 polynomials to be

X = —27Tpq(2 —p — q). (5.39)

As before, we have ppg ~ N;p; and qgp ~ N,g; so that we have x ~ N;N;. Since
the number of Wilson lines is just the genus, it scales as the Euler characteristic,
and we get that
DWilscm ~ Z Nz'Nj7 (540)
i#]
as before. We thus conclude that the total dimension of the moduli space with
given wrapping numbers scales in the same fashion,

Diotar ~ »_ NiN;. (5.41)

i#]
We note that this behavior may point us towards an SU(f}) x SU(f2)x SU(f3)
gauge theory, as the dimension of the moduli space can than be viewed as coming

from the degrees of freedom of strings sitting in the bifundamental representation
of any two SU(N) factors.
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A Supersymmetry Equations in the Bulk

In this appendix we solve the equations for supersymmetry in the bulk for the
background discussed in section 2l We find the unbroken spinors and the values
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for the stabilized moduli.
The equations for preserved supersymmetry are given by [24] 22]

e AT (d+ HA)(4700,) = 2uRe[V_], (A1)
AT (d+ HA) (400 ) = 3iZm[pV,] +dAAT_
+22e? | (lal* = b E + ilaf? + [b)F
(A.2)

where F' = Fy + I3 + Fy + Fg are the modified RR fields defined as
F=e¢PF®dCc+HANC, (A.3)

so that they obey the non-standard Bianchi identity dF,, = —H A F},_».
Plugging our background into the first equation we get

HAV, =2uRe[V_]
b _, b
= —pfy A O; =92 Re [—EQ]

8
= —pabfy = 2uTm[abQ] = V2 ?))117273( Relab] By + Zmlab] ay),
(A4)
where Q}Z\Q} Bo = Zm[2] and VJ}]\Q} ap = Re[2]. The solution is Zm[ab] = 0 and
—pab = V2u ’;117273 ab =
p 3 b P V3
y = b A= P = (A.5)
V2V b 271727

In the second equation we use for the left hand side

—zab Vs 1 . ipab /717273
HANV_ = —pBy A T \/5( 0+ ifo) = T3V 3 a A By (A.6)

This equation can be split according to the rank of the forms that appear in it.
The zero-form part of the equation is

,uab} + Qe

= 3T
03[8 16

“(lal? = o) By — illal® + bo1?) s B| . (A7)

The first term is proportional to Zmlab] so it vanishes. The real part implies

lal = 0], (A-8)
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assuming a non-vanishing value for FO, while the imaginary part of this equation
requires Fy = 0 which gives, using ([A.3)),

, ) ) 1. 1
0 = /F6:/HA03+F6bg—ngAB+§F§gABAB—6F§gABABAB
1
= p§—€0—€ibi—§/€bibjmk+/€moblbgbg, (A.9)

with {1, 7, k} being summed over all permutations of {1,2,3}.
The two-form part is

fab 2 R .
0= 3@14%(-@])] + 1“—6_6@5 [(W — P +i(jal? + B |, (A.10)
with
J = %(H\/g)_l/gwi,
Fz = —m;w; + mobjw;,
2er? (V3 1/3
~ A . 62 B
F2 = >I<6F4 = _éz x Q' = 7% (—2> Wi, (All)
Y17273 \ R
where we used
o r"bg rbg 1 r"bg
= (€i + /i(mjbk + mkb]) - limobjbk)ﬁ]i = éz’lZJZ (A12)

Again, (A10) splits into real and imaginary parts. The real part vanishes since
|a| = |b|, while the imaginary part reduces to
.—ﬂal; \/_ é

<J>+zﬁe (laf? + W) Py

1/3
31/4 226,72 3
= Z——(K,\/_) 3w otb+ie¢\a|2M Lz_ wi(A.13)
\f 2/ M7273 8v1y2ys \ K

which gives

205 311/12 b
(& 67,’}/7; _ pﬁll/3a—2 (A14)
VI e e 8 la|
(with no summation over 7). This can be solved to give
64 é1éqe
e 2y, = €126 (A.15)

- 311/6 é¢p2f€2/3 )
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where we used Zm[ab] = 0 and |a| = |b| to get b = +a* or ab = +|a|>. We will later
see that we must take the minus sign for the background to be supersymmetric.
The 4-form part of the equation is

0:3iIm{_——(—iJ)2] +\1/—§e¢ [(W—\b|2)ﬁ4+z'(\a|2+\b|2)ﬁ4 . (A16)

Just as before, the first term vanishes, and since we have Fj = «Fy we get

[wi] Mo

Plugging this back into (AT2) we get é&; = e; + r=L.
Finally, the 6-form part is

ubl

HAU_ = 3iTm
! { 8 6

~(- iJ)3]+\1/—§e¢ [(lal? = o) B + (lal® + o) By . (A.18)

We use (A.6) and

Fﬁ = *GFO = —My *g 1
1 i ~ T y17273
— P =-QAQ=- A By = %1 A.19
G 3 3 \/3 ag A\ By = * ( )
to get
b1 2 R ~
0 = —HAVU_+3iTm {%6(—@])3] + 1—{56@5 [(W — 1b2)Es + i(|al? + |b]2) Fe
ipab NAREREN fabl 12 > vwm
= A 31— oA By — —e®i2
sya A 0Nt 3T a0 h L5 2l V3
ipab 2% p 3V ablyiyeys
— % A Bo — 3i——= ag A Bo
8v2 3 V2727 88 3
1
16 ZQ‘CL|2 2m 08’}/1\’;2;}/3 0 A ﬁo
5ipab /Y1273 bl 12 Ly7273
= 88\/_ 31/4 0/\60 - —66 ’L2|a‘ ﬂmog \/g Oé()/\ﬂo, (A20)

which gives us

5377 31/4 p ab
el 20, = A21
[ =222 8, Ao

Using ((A15) we can solve for e and ;. We know that the O6-plane generates
a tadpole that is canceled by the fluxes mg and p according to ([Z22)), so that we
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find sign(mep) = —. We thus must have, for supersymmetry to hold, b = —a* as
stated in the main text. The results we got for the moduli agree with (2.23)).

We note that equations (A.14]), (A.21)) give us the following conditions on the
signs of the background fluxes,

sign(pe;) = +, sign(pmg) = —. (A.22)

B BPS Condition

In this appendix we will consider the supersymmetric domain wall solutions found
in section @ Such a supersymmetric configuration should be a BPS state and
therefore feel no radial force. We will verify this fact directly by considering the
D-brane effective action. In the supersymmetric configuration the gravitational
force coming from the DBI term will be canceled against the RR force coming
from the WZ term, related to the charge of the D-brane.

The D-branes extend along a 2+ 1 dimensional surface in AdS, parallel to the
boundary at constant r, and wrap a (p — 2)-cycle in the compact space. Their
world-sheet action in the string frame is given by

Ivrane = Ippr + Iwz , (B.1)

where

]DBI = —Mp/dp$6_¢\/— det (G-}-]:) (B2)

is a Dirac-Born-Infeld type action in the string frame, p, is the D-brane tension
and

F=f+P[B]. (B.3)
Iy z is the following Wess-Zumino (WZ) type action
[WZ = \/§,up/ (C A 6}- + mow) s (B4)
where .
C= ZCZ- , dw = e’ (B.5)
i=0

and my is the massive type ITA mass parameter. The v/2 is due to the different
normalization of the RR fields we use (following [13]).

As in [2§], the brane action has two contributions which depend on the radial
location of the brane in AdS;. One contribution is proportional to the brane area
A and comes from the DBI action, the other is proportional to the volume enclosed
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by the brane V' and comes from the WZ action. Next, we are going to evaluate
the different terms for wrapped D4-branes. We will assume F = 0.

The D4-brane domain walls wrap a two-cycle in the compact space. In our
background there is a 3-dimensional basis for the untwisted 2-cycles given by
[wi], i =1,2,3. For simplicity we consider wrapping the two-cycle [w;] in T°¢/Z2.

DBI

In this case we have

3
AdS

3
V—det G = vydu'dv’ RT dtdz'dx?, (B.6)

so we have

3
Ipgpr = M4/d51’€_¢\/ —det G = ,U/4a’}/1€_¢ "

3
RAdS

where we define

aE/ dutdvt . (B.8)
[wi]

WZ

The only non-zero contribution to the WZ term is given by

,U4\/5 Cs = ,114\/§ Fg, (B~9)
Ws Vol(Ws)

where Wj is the D4-brane worldvolume wrapping a 2-cycle in the compact space

and spanning a surface of constant r in the AdS space. Vol(W;) is the two cycle

times the volume in AdS bounded by the surface of constant r. The other boundary

of the volume, at r — oo, gives a contribution ~ =3 — 0 so it does not contribute.
The supergravity fields obey

FGE*F4:F6—03/\H3+%Bg/\32/\32. (BlO)

Integrating over Vol(W5) we get that the last two terms vanish, since there are no
such background fields with indices in the non-compact space. We can then write

Vol(Ws) Vol(Ws)

The right-hand side is what we want to calculate, while the left-hand side is pro-
portional to the integration of Fy over the dual cycle which we can calculate.
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In massive type ITA supergravity we have
Fy =dCy+ F —Cy A Hs — ™ By A By, (B.12)

since the By and C; are only the fluctuations and vanish in the background, we
can replace Fj in the integral by F}.
In addition to a boundary term we are left with

/ Fy = / e, (B.13)
w2 XWws3 w2 XWws3

and the WZ term can now be written as

a2 % Fy. (B.14)
Vol(Ws)

Now

1
, 3
F, = eo'=— (ﬁ) e (dz2 ANdZ*) A (2P NdZP) + ..

K

3
xF, = —4 (—) 61LQAdS4 VAN (dul VAN dUl) +
Y273

1/3
i 3

V17273

where 445, is the volume form in AdS. We find

1
Iwy = a2 / Cs = —padv/2 (ﬁ) an / &
_ K 2K33% VU3 RAds

TE_ 3
T e DL T Al a/d%: ~Ippr. (B.16)
elpmé AdS

Thus, the gravitational force due to the DBI term is canceled exactly by the force
from the WZ term, as must be the case for a BPS configuration.

The analysis is very similar for a more general cycle, and we will not write it
down explicitly here.

C Other Domain Walls

Here we consider D2 and D6-branes in domain wall configurations and study their
supersymmetry equations. We show that a D2-brane can never be supersymmetric.
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A D6-brane can classically be supersymmetric, however due to flux quantization
there are generically no such solutions with integer values for the flux.
C.1 D2-Brane as a Supersymmetric Domain Wall

The k-symmetry equation (£J]) takes a simple form when we consider D2-
branes, since they are not extended along any compact dimension. In order for
these domain walls to be supersymmetric we need

Yo126— = €. (C.1)
This can be brought to the form
Vo204 @ b = 0_ @ a™n_. (C.2)

The AdS, part of the equation is the same as for D4-branes, which results in the
equation

*

b = aa” = —sign(p)iga* — b= —sign(p)ia”, (C.3)

which contradicts our supersymmetric condition in the bulk, b = —a*. There-
fore we conclude that D2-branes cannot be supersymmetric domain walls in this
background.

C.2 D6-Brane as a Supersymmetric Domain Wall

Consider now a D6-brane which extends as a domain wall in the AdS and wraps
(for instance) the 4-torus spanned by 21, zo. Its embedding may be chosen as

o=z, o =y, o’ =z, o=y, (C4)

with the induced metric being
n(do')? + 7(do®)? +72(do”)* + 7a(de?)?, (C.5)

and the pullback of J given by
P[J] = mido" A do? + vyado® A do*. (C.6)

Plugging into the supersymmetry condition (£7) and taking F = 0 as for the
D4-branes, we have on the right-hand side

—a*ay/det(P[g] + F)do' Ndo® Ndo® Ndo* = —sign(p)ib*y172dot Ado? Ado® Ado*
(C.7)
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while on the left-hand side we have

(B A ) = b S (<iPLI]) A (<iPLI]) = ¥ S(PLI) A (PLI])
= b*y172dot Ado? A do® A do. (C.8)

Since the first is purely imaginary and the second is real they cannot be equal,
and the domain walls are not supersymmetric. A more generic embedding will
not be able to compensate for the factor of 7, and so even the general case is not
supersymmetric. However as we have seen for the D4-branes, adding non trivial F
can add a relative phase between the two sides. With F = fido* Ado?+ fodo® Ado?
the k-symmetry equation becomes

B — i) — 12) = —sien()iv 07 + O3+ ). (C9)
Writing f — iy = /2 + 72~ 0 (/1) we get that for positive p

tan”' (1/f1) + tan”' (y2/ fo) = 7/2 (C.10)

which has a solution for f; > 0. For negative p the right hand side should be 37 /4 so
there are solutions for f; > —~;. Classically such supersymmetric configurations
exist, however generically there are no such configurations consistent with flux
quantization.
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