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1 want to discuss briefly a possible avenue for the future
development of quantum field theory, which I believe
may be fruitful. We are all accustomed to the idealization
that accompanies the quantum theory of fields in its
representation of physical phenomena, i.e. the charac-
teristic quantum mechanical feature of the use of abstract
vectors and operators to symbolize physical quantities.
But in one respect, at least, the quantum field theory has
been conservative. It continues to make use of a classical
space-time background, upon which the quantum descrip-
tion is superimposed. I would like to suggest a slight
deepening of the abstract basis for the representation of
physical phenomena, which is the replacement of the
Lorentz or Minkowski space by a Euclidean space. At
first sight the idea of describing physical phenomena in
terms of a Euclidean geometry may appear to be either
trivial or incorrect. The aspect of triviality comes from
our familiarity with the use of an imaginary time co-
ordinate to bring about an appearance of the Euclidean
geometry in the equations of physics. However, this use
of an imaginary time co-ordinate is basically absentminded-
ness, for in classical physics one is very familiar with the
fundamental difference between hyperbolic and elliptic
differential equations. This already disposes of triviality.
It is even less trivial in quantum mechanics because we
know that the nature of states is fundamentally related to
the underlying symmetry group. That is, we can say that
the physical states are, in a sense, representations of the
underlying Lorentz group on the one hand, or of the
Euclidean group on the other, and these two groups have
completely different topologies. This means that while
you can certainly take a representation of the Euclidean
group and from it derive a representation of the Lorentz
group, you will not get all possible representations in this
way. What I would like to assert is that while one does
not get all the mathematical representations of the Lorentz
group, all the representations of physical interest are
actually obtained. The essential point to be made is that
this possibility of a correspondence between the quantum
theory of fields with its underlying Lorentz space, and a
mathematical image in a Euclidean space — if one adopts
a postulate that one should be able to do this in detail —
gives results which go beyond what can be obtained from
the present theory of fields. These I shall try to indicate.

But besides this, by freeing ourselves from the limitation
of the Lorentz group, which has produced all the well-
known difficulties of quantum field theory, one has here
a possibility — if this is indeed necessary — of producing
new theories. That is, one has the possibility of con-
structing new theories in the Euclidean space and then
translating them back into the Lorentz system to see what
they imply. Concerning the second feature, I have done
nothing. I am merely suggesting that when one finds
formulations that are equivalent, one of these will be
distinguished as the one that makes contact with the future
theory. All we can do at the moment is to look at all the
possible ways of formulating the present theory. First
I must demonstrate that there is at least a possibility of
replacing the description in Lorentz space by a description
in Euclidean space. This depends on making use of
suitable objects of correspondence. For this the well-
known vacuum expectation values of time-ordered products
are fundamental. These vacuum expectation values, or
Green’s functions ) as I prefer to call them, are the basic
objects which enable us to establish the correspondence
between the Lorentz and Euclidean formulations. We
consider a general Hermitian field y, which decomposes
into a Bose - Einstein field @, and a Fermi - Dirac field ».
The Green’s functions can be defined as vacuum state
expectation values of time-ordered field operator products.
There are two types,

G+ (xy-- xp) =< (Z (xp) - x (xp))+> ey (X0 xp)
and

G- (x; - xp) = < (X (xp) 4 (xl))—> & (xp Cr X)),

where positive or negative time-ordering implies an
assignment of multiplication order in accordance with the
ascending sense of time, as read from right to left (+),
or from left to right (—). The quantities ¢+ are anti-
symmetrical functions of the time coordinates for the
F. D. fields, which assume the value + 1 when the time-
ordered sense coincides with the written order. The
connection between the two Green’s functions is simply

G-(x;xp) = G4 (xp+ - xp) *.

The definitions as given are actually restricted to those
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fields for which all components are kinematically inde-
pendent at a given time. In more general situations
additional terms are necessary ¥, the function of which is
to maintain the non-dependence of the Green’s functions
on the particular time-like direction employed in the time-
ordering, which is otherwise assured by the commutativity
or anticommutativity of fields at points in space-like
relation.

The invariance of the formalism under inhomogeneous
Lorentz transformations requires that the Green’s func-
tions be translationally invariant functions of the space-
time co-ordinates, while the homogeneous, proper, ortho-
chronous Lorentz transformations

x(x) =Ly (x)

imply the Green’s function invariance property

(ﬁ Ly)G(*x) =G (x).

a=1

The form of the latter for infinitesimal transformations is

p 1 1
[ 2 (x, ;6,, — xv;aﬂ -+ S,”)a] G(x)=0.
a=1

The theory is also invariant under the proper, antiortho-
chronous transformation x#— — x*, provided a transition
to the complex conjugate algebra is included 2. Now

[ ij (Rst)a] Gi(—xy — xp)*

a=1

= ((Ro2* (=x) ) ) 4 (—x1 -+ —xp) = G- (x1°° %) ,

since positive and negative time-orderings are interchanged
under time reflection, and, with z pairs of F. D. fields,

e (—x10 " —xp) = (=" e~ (xp - xy),

while the sign factor (—1)"is compensated by the imaginary
unit contained in each matrix R, that is associated with
a half-integral spin (F.D.) field. Thus, for either type of
Green’s function

a =

V4
[ﬂ (Rst)a] G(—x) =G,
Rst — eni512 eni534 N

which, in its union of two disjoint pieces of the Lorentz
group, is a sign of the Euclidean foundation on which the
Green’s functions rest.

The explicit dependence of the fields on the space-time
co-ordinates is governed by the energy-momentum vector
P+ according to

¥ (x) — e iPx ¥ elPx ,

while the invariant meaning of the vacuum state is expressed
by

{O0|e ™ ={0]|, eP*|0y=]0).

Hence, if x® - - x(?) represent the time-ordered arrangement
of x;°+x, W > - > ) we have

Gi(x) = <%",il-”(,\c(l)--x(z));C e

eiP &(P-1) _x(p)) 2> ey - %)
and
G_(x) = <Xel'P(x(P)—x(P~1’) g

eiP(x(Z)‘x(l))x>a_(xp Cxy)

wherein additional indices are needed to distinguish the
various type of fields. The time dependence of the Green’s
function G is thus governed by the operators

i 7 (,(a) _ t(a+1))

which, in their dependence upon the differences of the
consecutively ordered time co-ordinates, contain no
negative frequencies (P > 0). The alternative Green’s
function G-, analogously constructed from the operators

i PO (¢(a) _ y(a+1)
etP(ta La ),

contains no positive frequencies.

We shall now use these spectral characteristics of the
Green’s functions to give a more precise meaning to the
assumed existence of the Green’s functions, which is in
the sense of the summability of Fourier integrals. It is
described by the absolute convergence (for distinct
X, X,) of the spectral representation obtained on replacing
the positive frequency unitary operators in G+ with

o iPO (@) _ (a+1)y 4 _jg)

and similarly inserting

e ip0 (t(a) ~flat1)y 14 ig)

in G_, where the limit e— + 0 is to be eventually per-
formed. This modified time dependence is also expressed
by the substitutions
to—t, (1 —ie)in Gy, and t,—>t,(1 +ie)in G_.

The existence of the Green’s functions in this sense is
equivalently described by the assumption that the various
field operator matrix elements, multiplied by the densities
of relevant states, possess no more than an algebraic
growth with increasing energy.

The absolute convergence of the spectral representations
for the Green’s functions G, and G_ is now assured for
the more general time substitution ) :

(*) The full analytic extension of the Green’s functions Gz is produced by t—- & in where 7 retains the initial time order, which
is to say that the otherwise arbitrary mapping function 7(#) is of positive slope.
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G+ ta—> Tqe 10

G_: fo—> T4 €' sin >0

in which 9 lies in the open interval 0 <& < z. The new
variables 7, are real numbers that retain the ordering of
the original time variables. We adopt a special notation
to accompany the particular choice ¢ = % 7, which asserts
the existence of the functions G4 (f— —ix,) and
G_(t—> + ix,. In this way there emerges a corres-
pondence between the Green’s functions in space-time and
functions defined on a four-dimensional Euclidean mani-
fold. To the extent that the two Euclidean functions thus
obtained are related, there also appears an analytical
continuation that connects the two distinct types of space-
time Green’s functions, G+. Conversely, given one of the
Euclidean functions, the substitutions x,—- e/(@/2=9 ¢
and x,— e @2-9¢ will yield functions having the
space-time character of G. and G_, respectively, in the
limit as e— + 0. We must now see how to supply an
independent basis for the Euclidean Green’s functions, from
which has disappeared all reference to the space and time
distinctions of the Lorentz metric.

The significance of the latter remark can be appreciated
through the form assumed in the Euclidean description
by the statement of infinitesimal rotational invariance of
the Green’s functions. The Hermitian spin matrices
Suvs v = 1,°+,4 (xy = + ix%, comprising S; and
Ska = + 1 Sox, still bear the mark of their Lorentz origin
in the symmetry of these matrices; the S;; are anti-
symmetrical, while the Sy, are symmetrical. Hence, one
must perform a unitary transformation to unite them into
six antisymmetrical, imaginary matrices that describe
independent infinitesimal orthogonal transformations. The
means for distinguishing between the two types of matrices
is provided by the space-reflection matrix Ry,

Rt Sy Ry = Sk Ry Sga Ry = — Sk4,

or, alternatively, by the time-reflection matrix
R; = RS! RS .

Indeed, for integral spin the necessary transformation is
produced by
ai aip
SA(V(E) =e" 14 R'S,twei ! )
where the plus or minus sign applies to the matrices asso-
ciated with G+ or G-:

i o

SpE = eF TR (L iy Sppe* T B = R, Sy .

Since the Hermitian matrices R, and R, are symmetrical
for integer spin, and anticommute with Sy, the net effect
of the transformation is to convert the symmetrical matrix
Sks into the desired antisymmetrical Si,(®). For half-
integral spin, however, both the skew-Hermitian matrix R,
and the Hermitian matrix R; are antisymmetrical and the
transformation as stated does not yield the required

Euclidean matrices. One must also associate with R;, say,
an antisymmetrical matrix that commutes with all S,
and with R; (the apparently different possibility of a
symmetrical matrix that anticommutes with R;, is simply
a change of representation ), produced with the aid of
Ry, that effectively replaces Ry with R,. Thus, to permit
the complete transformation from the Lorentz to the
Euclidean metric, every half-integer spin (F.D.) field
must carry a charge. Just such a general fermionic charge
property, under the name of nucleonic charge or leptonic
charge, is either well established experimentally, or has
been conjectured on other grounds. The Euclidean
formulation may be the proper basis for comprehending
this general attribute of F. D. fields. If / is the imaginary
antisymmetrical matrix representing the fermionic charge
property, the required transformation for half-integer
spin fields is

Rsd

i—% Ryl

7
E) _ F5
S,ur( c = S,ul' e i

and, indeed,
Sia® =i d Ry Sy

has the desired property of antisymmetry.

We should also note the removal of reference to the
Lorentz metric from the orthogonal matrices Ry, R,, that
are associated with the reflections of the individual space-
time co-ordinate axes. For a B.E. field all these matrices
are commutative, real, symmetrical matrices, and they are
unchanged by the transformation to the Euclidean metric.
On considering a F.D. field, however, we find that R,
occupies a distinguished position, differing from the anti-
commuting, real, symmetrical matrices R, by being
imaginary and antisymmetrical. While the matrices Ry
are unaltered by the metric change, the Euclidean matrix
associated with the reflection of x, is now

R = ei_‘l—RS’[(i Rz)e¥-}RS[ = R ¢,

which is also a real symmetrical matrix. Thus all the
individual Euclidean co-ordinate reflection matrices are
real, symmetrical and orthogonal, with the two classes of
fields distinguished by commutativity properties, according
to

E: R, R,=e™Sw =¢S5 R, R,.

To obtain an independent characterization of the
Euclidean-type Green’s functions we can convert to the
Euclidean metric the system of differential equations
obeyed by the Green’s functions. We shall only attempt
to outline this process in the following considerations.
Let the Lagrange function be written as

Q=4[xdrd, gy — 004" %] ++xByx — 5 (),

in which $, refers to the interactions between fields. The
field equations are
919

A”0/¢Z+Bx = a1
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while the commutation properties on a space-like surface,
as expressed in a local co-ordinate system, are given by
(for simplicity of description, we adhere to the fiction
that all components of y are kinematically independent
on o)

[A° % (x), x (x)], = i6°(x — x'),

where ¢ (x — x') is defined by
[dos o —x) £ & =1

Now, uniting the field equations and commutation pro-
perties, the differential equations for the Green’s functions
are obtained :

(A# 0, +B); G+ (xy° " xp) + ...
= id(x, _x2)G+(x3”-xp):i:i6(x1 —X3) G+ (X3 xp) + .oy

in which the omitted terms on the left are the particular
Green’s function combinations needed to represent the
interaction effects in the field equations, while, on the
right, the summation is extended over all points that
refer to the same field as does x,. The summation is
symmetrical or antisymmetrical in these points, according
to the statistics of the field. Thus the Green’s functions
obey an infinite system of equations that are linear and
inhomogeneous (since the function with p = 0 is simply
unity), and which incorporate fully all information con-
cerning the interacting fields.

The analogous differential equations for the G- can be
obtained directly, or by complex conjugation of the
equations obeyed by G+ and differ from the latter only in
the sign of i exhibited by the right-hand B. E. terms.
It is worthy of note that, apart from the trivial situation
of uncoupled fields, the two sets of differential equations
are intrinsically different — the two types of Lorentz-
type Green’s functions cannot be characterized in detail
as solutions of a common equation that are distinguished
by boundary conditions. There is, however, a simple
relation between the Green’s functions that can be inferred
from the differential equations (and from the time ordered
operator definitions), namely

G-(x) =(—1D"Gi(—e ™ x).

The factor (—1)" is inserted to reverse the sign of the right-
hand F.D. terms. The interpretation given to — e,
applied to the space coordinates, is unity. But, for the
time co-ordinates, it is a combination of two operations:
time reflection, which inverts the time order (t®) > - -« (),
— ¢t > ... — r); multiplication by e~7!, which reverses
the sign of all time coordinates while retaining the time
order. The latter transformation changes the sign of all
the d-functions and converts the differential equations for
G+ into those describing G-. The negative frequency
character of the latter functions is also reproduced. The
connection here obtained between G+ and G- is an analytic
continuation stated without reference to intermediate
Euclidean functions.

The correspondence between Lorentz- and Euclidean-
type Green’s functions is now exhibited as

ni i
Gi (x) <> Ilg g (e* 7 "™ 1),

n 1)

X Ip p (¥R 7T ) 6,00 @,
in which x° and x, are understood as the variables in the
appropriate functions. Accompanying the imaginary
relations between the variables is the transformation
8 (x) <= (£1) 6 (x) B,

On performing these substitutions in the differential equa-
tions we encounter the real B.E. matrices

E :l:sz ”_.1 i“_.iR fﬁ

A“( b TR e TT Y, e TT T
:(—Ath)AO)

E MR, o 2Ry 8

BE.: BY) = _#afi,#Tp o+7Rt 53

= _BRts

which are, respectively, antisymmetrical and symmetrical,
and the real F.D. matrices

£ =

(Ey qziRs :Flel :Fll
A =Fe 17" e 4 4,2 2

e 4+
(lAky— AO RS[)

¥-}Rsl £
e

F.D.:

R

— BR;il,

gl T
BB f = — eFT 7 TT Be

which are symmetrical and antisymmetrical, respectively.
The resulting form of the Green’s function differential
equations, as adapted to the Euclidean metric, is

[, 0, + (A, HB] Ge(xy- x,) B4 ...
=0 (x; — x) G- x) B 4.,

where the choice indicated for the coefficient of B signifies :
unity, for a B.E. field; + £, for a F.D. field. If, as we have
discussed before 3, the Lorentz B matrices are constructed
as the product of R, with an invariant, symmetrical matrix
that is independent of internal degrees of freedom, the
Euclidean B matrices will be completely of the latter type.
This remark, together with the observation that the trans-
formation applied to B~* A4, is unitary, apart from the
F.D. factor 4/, indicates how Lorentz invariance is
translated into Euclidean invariance.

The Green’s functions of the Lorentz description are
intrinsically complex quantities and, accordingly, there are
two linearly independent sets of such functions. It is an
indication of the simplification obtained through the
introduction of the Euclidean metric that completely real
Euclidean Green’s functions can be defined — provided a
certain general symmetry restriction is enforced on the
field interactions. Conversely, the latter invariance pro-
perty acquires substantial support through its role in
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unifying the two classes of Green’s functions and eliminat-
ing complex numbers from a formulation of the funda-
mental laws of physics. Let us notice that, aside from the
interaction terms, the differential equations for Gi &
differ only in the F.D. quantity 4 £, referring to the
fermionic charge. This sign factor can be removed by
introducing the operation of fermionic charge reflection.
But, when full account is taken of the variety of field
interactions ¥ it appears that all types of charge are
dynamically coupled, and the interconversion of the two
sets of equations is possible only if the interaction terms
differ merely through the effect of general charge reflection.
Assuming this property, we conclude that

p
G B = [H(RQ)a] G B = Ry G/ B),

a=1

where the individual charge reflection matrices Ry are real
and orthogonal. The composite matrix Rg also describes
the reality properties of the Euclidean-type Green’s func-
tions,

G+(E)* = RQ G+(E) ’

for the mutually complex conjugate relation of G still
applies to the derived functions G+E). In effect, all matrices
appearing in the Euclidean formulation of the differential
equations are real, with the exception of the imaginary
charge matrices, and complex conjugation is equivalent to
charge reflection. If we accept the interpretation ® of
the imaginary unit as symbolic of the charge nature of
the measurement apparatus (matter — antimatter), the
symmetry property we have postulated can be described as
the relativistic invariance of the Euclidean formulation
with respect to charge reflection, for the application of
this transformation to the system under investigation and
to the apparatus employed for the purpose produces no
discernible change.

Before continuing, we must examine the relation between
the matrices Rp'®, and the charge reflection matrices of
the Lorentz description, Rp. The latter, having no
reference to space-time properties, are uniformly chosen
as real, orthogonal, symmetrical matrices (Rgp? = 1).
The distinction between Rp and Rp®, which exists only
for F.D. fields, arises from the incorporation of the ferm-
ionic charge f into 4,8) = — 4, R, £. To compensate the
sign change of 4,® induced by the reflection of ¢, the
F.D. matrix Ro® must contain the co-ordinate reflection
matrix R,®) = Ry, £. Thus,

F.D.: RQ(E) = RQ Ry £,

which is a real, orthogonal, antisymmetrical matrix
(Ro®?2 = — 1). However, the composite matrix Ro‘®,
which is constructed from an even number of F. D. con-
tributions, is a real symmetrical matrix obeying

Ro®” =1,

The hypothesis of Euclidean relativistic charge reflection
invariance can now be interpreted as a property of the
Lorentz-type Green’s functions and, thereby, of the
Lagrange function of the interacting fields. The relation
implied between the Green’s functions G+ and G- is

G- (ixy) = IIp g, (Rg R) lr p (R i Ry) G+ (— ixy)
=(—=1D"Ro R, G+(—ixy,

which makes explicit the analytic continuation that connects
the two Lorentz Green’s functions

G-() = (— 1) Rp R, G4 (e~ 1)
G+ () = (— 1)"Rg R, G— (7 1) .

When this result is compared with the previously obtained
connection,

Gz (1) = (— 1) Ge (— eF7ip),
we learn that

Ro R, G(—1t) =G () ;

the Lorentz-type Green’s functions are invariant under
charge and time reflection. The same assertion can be
made of the combination of charge and space reflection,
since space-time reflection is an invariance operation. But
in the latter form we are dealing with unitary transforma-
tions of Hermitian field operators, and it can be concluded
that the invariance of the Lagrange function under space
and charge reflection is equivalent to the postulate that
Euclidean-type Green’s functions exhibit a relativistic
invariance with respect to charge reflection. It is surely
significant that we are thus led to a general invariance
property which is consistent with all the recent experiments
on the so-called parity non-conserving interactions. The
existence of an exact invariance transformation involving
space reflection is now supplied with a basis that may be
considered more substantial than the mere belief in the
intrinsic indiscernibility of left and right.

We have not yet exhibited the real Euclidean-type
Green’s functions, the existence of which is assured by the
presence of a linear transformation equivalent to complex
conjugation,

(G</B))* = Ry Gu(B) |
Indeed, functions having the required reality property are

given by

E mpe  — MRy Mo
GP — 0Ty ~ 56, B _ g TR TG )

A second such choice is
i

i 173 i
RQG(E) —e TReTG P —eTfee TG P

although the latter are not a linearly independent set and
can be regarded as presenting G®) in a new representation.
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An essential limitation of the description by real Green’s
functions must be observed, however. The matrices

7

e* TR are not composite and the transformation that
introduces G/£) has no simple significance for the differential
equations that characterize the Green’s functions. Were
only B.E. fields involved, the composite transformation
formed from the individual Ry could be employed, but
this is not possible for F.D. fields.
true that real Euclidean-type Green’s functions exist
from which the physically meaningful Green’s functions
G+ and G- can be inferred.

Finally, we shall indicate briefly the possibility of re-
placing the differential equations, as the characterization
of the Euclidean-type Green’s functions, by an explicit if
formal construction. For this purpose we define fields
% (x), on the Euclidean manifold, that are completely
commutative or anticommutative, as befits the statistics,

[x(x), x(x)]L=0,

and a complementary set of fields % (x), with the same
characteristics, which are such that

[7(), x ()] =06(x —x).

The B.E. ficlds P, i® are Hermitian, while the F.D.
fields v and ¥ are mutually Hermitian conjugate. The
Euclidean-type Green’s functions are then given by

Gi(xl"xp)‘E)=<Wi|x(x1)-'x(xp)\0>/<Wi 0>,
(ordinary operator multiplication!) where |0> is the

right eigenvector of the operators 7 (x) associated with
null eigenvalues

1[0y =0,
and the vector { W- | is characterized by

(We|ldpdur + 0, £ OBy + ... —%]1=0,

in which the omitted terms are the functions of the Euclid-
ean field operators x(x) needed to describe the field

Nevertheless, it remains’

(0, + (1, £ OBl Ge(xy - - x)P + ..
= <Wi|9,<x1)x(x2)-~x(x,,)|0>/<Wi|0>
=0 (x, _xz)Gi(xs"xp)(E)‘l—-.-a

where commutation relations and the significance of
| 0) as a 7 eigenvector are used to obtain the stated result.

The vector Wj;' can be constructed from the left
eigenvector of the % associated with null eigenvalues,

<Wi =<0|e‘Wi

where the operator

Wald =4 [ @Ol Ay 02+ 20+ OBx +...]

bears an obvious genetic relation to the action operator of
the interacting fields. The Euclidean operators W are not
Hermitian but they are related to their Hermitian conjugates
by a unitary transformation, which constitues a self-
adjointness property. We now have

Ge (B = (0| 7 () 7 (x,) e 212[03 /<0 e <] 0

and, in turn, these Green’s functions can be derived from
a single generating function, the expansion of which
produces the field operator products. In the latter form,
we make contact with previous developments employing
the action principle for quantized fields and the device
of external sources V) and subsequent work, largely
unpublished). A large variety of equivalent forms can
now be devised for the Green’s functions, based primarily
upon the well-established transformation and representa-
tion theory *) for canonical variables of the first and
second kind. A discussion of these developments for
specific systems will be deferred to another publication, in
which the problem of translating quantum electrodynamics
into the Euclidean metric is examined.

Although we have emphasized the fundamental implica-
tions of the Euclidean representation, it will be evident that
the Euclidean-type Green’s functions also have practical
advantages. Indeed, the utility of introducing a Euclidean
metric has frequently been noticed in connection with
various specific problems, but an appreciation of the
complete generality of the procedure has been lacking.
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DISCUSSION

Chairman : 1 thank you very much for this inspiring
report. To open the discussion I wish to say that for the audi-
ence it is perhaps a bit more interesting than for the speaker
that the idea of analytical continuation has been anti-
cipated by Wightman. Instead of more general transforma-
tions the speaker has selected a particular case of rotations
of 90°, and I hope I interpret him correctly that he means
that this has a special significance for physics and for
the formalism in that particular case.

Yamaguchi : 1 just want to add a brief comment on
this paper. Nakano of Osaka City University tried the
same proposal and he is busy working on this proposal.
That is all.

Stueckelberg : 1 would like to tell Schwinger that if
you take a real Hilbert space, and 7/ as an antisymmetric
operator, unitary meaning now orthogonal, in which all
observables are symmetric observables, you must take i
commuting with all observables, 2 = — 1, meaning just
that i has an inverse, and you get the C TP invariance
stated in a real linear way. Pauli tells me that this is a
triviality and probably it is. Now if you take an indefinite
metric, does the spin statistics relation, usually a consequence
of the positive definite energy — that is, of causality —now
follow exclusively from the 7 CP invariance in this
formalism ?

Pauli : (to Schwinger) Perhaps you can see in general
how the spin statistics connection comes out in this
Euclidean interpretation. This would be interesting.

Schwinger :  First, the T C P theorem is built into the
theory since the fundamental way in which one understands
it is through the underlying Euclidean formulation of the
theory. That is, in the ordinary description one produces
the time reversal essentially by going outside the Lorentz
group through the Euclidean group or the complex Lorentz
group, which is even more general, as Jost has done, in
order to produce the 7' C P transformation. The T CP
theorem is one of the indications for the underlying
Euclidean structure of the present-day theory.

When one has presented the theory in a Euclidean form
it is automatically contained, as there is no longer any
distinction between the past and the future, and the proper
transformation, which includes time reflection, is a conse-
quence of the ordinary rotations of the theory. This, of
course, depends upon the spin statistics connection and the
whole development has already made use of it. The
question of to what extent you can go backwards, remains
unanswered, i.e. if one begins with an arbitrary Euclidean
theory and one asks : when do you get a sensible Lorentz
theory? This I do not know. The development has been
in one direction only; the possibility of future progress
comes from the examination of the reverse direction, and
that is completely open.
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