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Abstract

In this thesis we study properties of type II supergravity solutions generated by
abelian and nonabelian T-duality. Also we determine, through the gauge/gravity
conjecture, some aspects of the field theory dual to the supergravity solutions ob-
tained by T-dualization. We consider three distinct types of backgrounds solutions,
namely, backgrounds that are dual to confining field theories, backgrounds dual to
conformal field theories and those dual to nonrelativistic field theories. We conclude
this thesis with an analysis of Wilson loops on backgrounds with nonrelativistic

symmetries.

Keywords: AdS/CFT; gauge/gravity; supergravity; string theory.

Areas: High Energy Physics - Theory.
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Resumo

Nessa tese estudamos propriedades de solucoes de supergravidade tipo II obtidas
através da dualidade T abeliana e nao abeliana. Também determinamos, através
da conjectura gauge/gravidade, aspectos da teoria de campos dual a essas solugoes
obtidas por dualidade T. Consideramos trés tipos distintos de solugoes: duais a
teorias de campos que confinam, duais a teoria de campos conformes e duais a
teoria de campos nao-relativistas. Concluimos essa tese com uma anélise dos lagos

de Wilson em solucoes com simetria nao relativista.

Palavras Chaves: AdS/CFT; gauge/gravidade; supergravidade; teoria de cordas.

Areas do conhecimento: Fisica de Altas Energias - Teoria.
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Chapter 1

Introduction

The truth is rarely pure and never simple

(Oscar Wilde)

N a speech titled “Nineteenth-Century Clouds over the Dynamical Theory

of Heat and Light”, presented in 1900, Lord Kelvin declared: “The beauty

and clearness of the dynamical theory, which asserts heat and light to
be modes of motion, is at present obscured by two clouds”. The two clouds were
the wltraviolet catastrophe and the failure to detect the Luminiferous cether. From
these two clouds emerged the two columns of modern physics, general relativity and
quantum mechanics.

One hundred years later, in the age of the LHC and the Planck satellite, we
physicists could — just in principle — describe all phenomena we can access through
our experimental apparatus using the standard model of elementary particles and
the standard model of cosmology. On the other hand, it is very embarrassing that
the two frameworks we use to describe the very small and the very large cannot live
together. In other words, we do not know how to study objects that are very massive
and infinitely small, as a black hole, because quantum mechanics and gravity are
incompatible.

In the quantum gravity program of research, we assume a pragmatic viewpoint
of what a scientific theory means, since the phenomena relevant to its study lives
beyond any experiment humans can probe. Obviously this does not mean that we
can neglect the proof of a quantum gravity theory through the experimental tests,

this just means that in order to prove a theory of this species, we need to see its low



energy effects. String theory is a conservative (yes, despite the criticism) attempt
to merge quantum mechanics and gravity in an unified framework.

The search for a unified description of nature is one of the oldest quests of
mankind, and goes back to the ancient Greeks motivated by theological and meta-
physical propositions and to Isaac Newton, James Clerk Maxwell, Steven Weinberg
and several others physicists, motivated by theoretical consistency'. The important
lesson is that we, modern physicists, are part of their cultural heritage and the
subject of this thesis in a tiny portion of it.

In this work we try to understand the effects of quantum symmetries, called
dualities, on some string theory backgrounds. In particular, we study the action
of the Nonabelian T-duality on string theory solutions and how it changes the field
theory dual to these transformed solutions. In other words, we study some properties
of T-duality |2, 3| and of the gauge/gravity duality, originally proposed in [4].

The general concept behind the gauge/gravity conjecture is that of a holographic
principle, that states that a d-dimensional field theory can be equivalent to a gravity
theory in d + 1 dimensions when the symmetries of the field theory are realized as
isometries of the gravity side [4-6]. This innocent, but powerful, idea has driven
the vanguard of physics for almost twenty years. One important feature of original
gauge/gravity correspondence [4] is that the duality relates string theory and a
conformal field theory with maximal supersymmetry, with all fields transforming in
the adjoint representation.

To make contact with the real world — that is for phenomenological applications
— we need to extend these ideas to nonconformal field theories with minimal super-
symmetry, N'= 1 SUSY, as well as adding fields transforming in the fundamental
representation.

In |7] it was found the gravity dual of a pure N' =1 SYM in d = 2+1 dimensions,
and this second solution is known as Maldacena-Nastase solution?. Furthermore,
in [9] a deformation of the solution in [7] was considered and fields transforming in
the fundamental representation were added.

In chapter 03 of this thesis, we apply the abelian T-duality on the deformed

Maldacena-Nastase solution [9|, which gives a type ITA solution and we lift this

1And by a refined aesthetic sense, “Beauty is the first test: there is no permanent place in the

world for ugly mathematics”, as G.H. Hardy said [1].
2See also [8] where the authors considered the gravity dual of ' =1 SYM in d = 3+ 1, coupled

to extra modes that could not be decoupled while maintaining calculability.



solution to eleven dimensions. Also, following the prescription of the gauge/gravity
duality, we probe the field theory dual to the backgrounds we obtain through the
T-duality.

Besides the T-duality [2,10-13] and the gauge gravity duality [4-6,14,15|, many
different dualities exist in string theory, for instance S-duality [16-19] and Mirror
Symmetry [20,21]. In this thesis we are also interested in the nonabelian T-duality,
started by the paper [3], which is the generalization of the T-duality (also called
abelian) for the case when the background has a nonabelian isometry group. Differ-
ently than its abelian cousin, the nonabelian T-duality has been poorly understood,
and just recently the action of the transformation on the RR fields was found [22,23].

Similarly to the abelian case, the nonabelian T-duality can also be used as a
solution generating technique. Then, starting from a solution of supergravity, we can
find another solution by a simple set of transformations rules, and we can investigate
these solutions through the gauge/gravity correspondence. Roughly speaking, this
is the general idea we perform in chapters 04 and 05.

In chapter 04 we are particularly interested in string theory solutions which the
metric has a d-dimensional anti-de Sitter space as a factor, that is, solutions of the
form AdS; x M0~ There are numerous solutions of this form, for instance, in
the best known example of the gauge/gravity duality [4] we consider a string theory
solution of the form AdSs x S°.

Another important solution of this form was considered in [24], called Klebanov-
Witten solution, which consists of a space of the form AdSs; x T!, where T%! is
the homogenous space (SU(2) x SU(2))/U(1). This solution is the gravity dual
of a superconformal field theory with AV = 1 and gauge group given by SU(n) X
SU(N). In fact, one of the first examples of the application of a nonabelian T-
duality transformation in a background supporting a nontrivial RR field was in the
Klebanov-Witten solution [23,25].

We apply the nonabelian T-duality transformation on the solutions found by
Jerome Gauntlett and his collaborators in [26,27] in chapter 04. In order to under-
stand the dual conformal four dimensional theory, we find conserved charges of the
backgrounds. Finally, we will see the effect of the renormalization group (RG) flow
on these backgrounds, in particular, the duality does not affect the flow.

Furthermore, a lot of the recent interest in the gauge/gravity correspondence has

been focused on applications to condensed matter physics, specifically in the study



of strongly coupled systems described by relativistic and also nonrelativistic field
theories. Since gauge/gravity duality relates strong coupling in field theory to weak
coupling in gravity (and vice versa), we can analyze models that are otherwise very
difficult to study. However, in these AdS/CMT cases we usually have no decoupled
system of branes, only a phenomenological construction of a gravity dual, therefore,
we have usually less control over the construction, and one degree of control is
obtained by analyzing the symmetries.

The holography for nonrelativistic systems is at an incipient stage, and there are
several unknown aspects that we need to understand, for example, in theories that
exhibit a d-dimensional Schrodinger symmetry — the symmetry of the Schrédinger
equation for the free particle [28-30] — their algebra cannot be organized as an
isometry of a (d+ 1)-dimensional space as usual, but in a (d + 2)-dimensional space,
and the role of this extra dimension is still unclear.

As we mentioned earlier, another important aspect of the gauge/gravity dual-
ity is that it relates weak and strong coupling regimes of the field theory to the
gravitational theory. As a result, the savage strongly coupled regime of the field
theory can be mapped to a docile weakly coupled regime in the gravitational side
and vice-versa |14, 31, 32].

We have a plethora of strongly coupled systems in condensed matter physics, then
it is perfectly reasonable to look for a gravitational dual to theories which describe
these condensed matter systems. In the study of strongly coupled condensed matter
systems, we have a variety of numerical and theoretical tools from statistical physics
and quantum field theory [33,34], but they usually are hard to use.

Then, if we want to study condensed matter systems through this modern per-
spective, we have a new paradigm in the gauge/gravity conjecture, namely, since the
field theories in condensed matter fields are nonrelativistic, their dual backgrounds
have nonrelativistic isometries [35-40], see [30| for a review. In these nonrelativistic
spacetimes, we first define the nonrelativistic algebra and then we try to realize it
geometrically [35-40], and then, the generic tools of AdS/CFT are applied in the
usual way.

In the fifth chapter of this thesis we use these facts to study the nonabelian
T-duality on nonrelativistic backgrouds and we also study charges of the new back-
grounds. In particular, we apply the transformation rules on backgrounds with
Schrodinger and Lifzshitz symmetries — symmetries of Lifshitz fixed-points [30,41,



42]. Also, in this chapter we start studying one important observable in field theo-
ries: Wilson loops.

Wilson loops are gauge invariant observables constructed from the connection of
the gauge group, and are associated to the parallel transport of a particle moving
through the gauge field [43,44|. In the holographic context, the prescription for the
calculation of Wilson loops in the gravity side was given by [31] and was applied in
the AdSsx S® solution of type IIB supergravity which is, as we already know, dual to
a superconformal field theory. This prescription has been extended to backgrounds
that are not anti-de Sitter, and by consequence, to backgrounds that are not dual
to conformal field theories - although, they preserve Lorentz symmetry - see 45, 46]
for excellent reviews.

Moreover, just recently the gravity duals of some of these relativistic systems
have been embedded into string theory, see for instance [37,47-50|, and it is evident
that the fundamental nature of the field theories is still a mystery. However, one
may hope to be able to identify and elucidate aspects of the nonrelativistic dual field
theories, just applying the holographic principle in the gravity side in the calculation
of familiar physical quantities.

Wilson loops seem to be a good starting point, since it is related to a probe string
moving just on the external space. This means that we can ignore, for a moment,
the internal space (as well as additional fields, such as the dilaton and p-forms)
which composes the supergravity solution.

In this sense, it is an observable which demands a small amount of information on
the background where the string is moving in, but it gives us important information
about the nature of the field theory; for instance, if the theory confines, if the theory
has conformal symmetry and so on [45,46]. Also, we can compute drag forces and
the energy loss of charged particles moving in these backgrounds [51-54|. In order
to complete the analysis we started in chapter 05, we study some of these aspects
in chapter 06 of this thesis.

Before we start addressing all these points, let us review the important aspects

of dualities in field and string theories.



Chapter 2

Dualities

2.1 Dualities in general

N THE LATE 60s there were several puzzles concerning the strong nuclear

interaction. In particular, the scattering amplitudes at high-energy have

some oddities [55]. When we consider just spinless particles, the Bose
statistics demands the symmetry s < ¢ in the scattering amplitude A(s,t), where
(s,t,u) are the Mandelstam variables.

On the other hand, by that time there were a large amount of strongly interacting
particles and they seemed to have arbitrary spin j. As it is well known, it is difficult
to construct a theory with higher spins interacting particles, since at high energies
they exceed unitarity bounds.

Consider one simple example, the scattering of scalar fields ¢ mediated by force

carriers o#*#i of spin j and mass M;. The interaction is of the form
ZQJ @ Oy -+ Oy 9ot M (2.1)
and the t-channel contribution to the amplitude is

) A
g;(—s)’

A(s,t) = — E o 2.2

It is conceivable to think of (2.2) as an infinite sum, since there was no reason to

consider a maximum value for the spin j. As a consequence, the equation (2.2)

is not necessarily an entire function of s. The oddity mentioned above is that in



physical processes we need to consider the s-channel due to its poles, but since (2.2)
may give us poles for finite values of s, it is not obvious that we need to consider the

s-channel now. Evidently we can construct the amplitude in terms of the s-channel

sty ==Y %t (2.3)

— s — M? "’
] ]

and the analysis would be the same.
The duality hypothesis states that the s- and t-channel represent alternative
descriptions of the same physics, and it motivated Gabriele Veneziano to postulate,

in 1968, the following formula for the scattering amplitude

Aps.t) — DA (a() 0
I'(—a(s) — a(t))

where I is the Euler gamma function and a(z) = a(0)+ o’z is the Regge trajectory

and the constant o/ the Regge slope [55-57].

It is well known that in the early 70s an alternative theory for the strong interac-
tion arose, quantum chromodynamics, and the original motivation for the Veneziano
ideas disappeared. Despite that fact, the study of the Veneziano model — or dual
resonance model — showed a rich framework, known as string theory, with results
ranging from pure mathematics to quantum gravity [10-13,55,58]. Much more im-
portant is that the concept of duality symmetries — and we will see that there is a

variety of them — is in the core of string theory.

2.2 Dualities in QFT and String Theory

Let us first try to understand what a duality really is. Roughly speaking, we may
say that a duality is a nontrivial isomorphism [59]. Observe that this definition has
one important aspect that we must understand, the precise meaning of nontrivial.
Equivalently, we will see that a duality is an unexpected equivalence between two
physical systems.

For instance, when we perform a Poincaré transformation or general coordinate
transformation, in our physical systems, we are using just a plain symmetry of the
theory. In other words, we use the fact that the coordinates of our system is just a

mathematical artefact and the nature itself does not care about the directions you



prefer to call left and right, up or down. In other types of symmetries, we just have
redundancies in our description, for instance, the gauge symmetry.

Mathematicians know very well the equivalences between two algebraic struc-
tures, that they call isomorphisms, above. In fact, they have fancy names for iso-
morphisms depending on the type of algebraic structures they are studying: homeo-
morphisms for topological spaces, diffeomorphisms for smooth manifolds, holomor-
phisms for complex manifolds and isometries for metric spaces for example.

Also, these symmetries preserve properties of the objects we are dealing with,
such as the the dimension, algebra, curvature, topology, etc. This is important
for physics, since it would not make sense a symmetry of a system that changes
the number of dimension of the physical system. Therefore, these invariant objects
is what allow us to study physics, and are directly related to the conservation of
momentum, energy and so on.

Duality is a new beast and comprises several new ingredients. For example,
now we can find an equivalence between different algebraic structures, that is, some
dualities can related algebraic geometry to representation theory, and this is an
idea that is not embraced by ordinary isomorphisms. In other words, dimensions,
topologies and so on have no fundamental meaning in the definition of dualities.

The physical aspects of the problem — the observables — guarantee the equiv-
alence of the physical systems, then, we may say the duality is a quantum equiv-
alence. In this sense is quite difficult to prove mathematically that two physical
systems are dual to one another, but one can find some mathematical insights on
this issue [59, 60].

Consider a quantum theory Q characterized by a set of parameters {\;} —
denoted collectively by M, and called moduli space of parameters — by an algebra
A, of observables and by a functional map ( - ) : Ay, — C®(M), where C*(M) is
the space of smooth functions defined on the moduli space M. In physical terms,

to each observable O, € A, we find its vacuum expectation value

(Oz) = f(A1 A2y ) (2.5)

that depends on the parameters ;. We say that the quantum theory (Q, M, A))
is dual to another quantum theory (é, M, ﬂ/\) if there exists a map between them
that preserves (2.5).

Essentially, we have three different types of dualities, namely dualities between



two-quantum field theories, dualities between string theories, between field theory

and string theory [61]. Let us understand qualitatively some examples.

2.2.1 Quantum field theory dualities

In two-dimensional field theories, particularly with conformal invariance, the holo-
morphic properties of the field implies severe constraints on the theory and this
explains — in part — an equivalence between fermions and bosons. In a CFT, for

example, the [10,62], we can represent a free Dirac fermion ¢ as
Y(2) ~ e () e (2:6)
where ¢(z) is a holomorphic scalar field with propagator

(9(2)9(0)) ~ —In(2) . (2.7)

On the other hand, corformal invariance is not a mandatory requirement, for
instance in [63] Sidney Coleman showed that the massive Tirring model, defined by

the action
Su= [ (10— miw - Sivoin) (2.9

is equivalent to the sine-Gordon model defined by

Sy = /d2x (—% uqbé?“qutmcosﬂgb) . (2.9)

This interesting example of duality is called bosonization and it is useful in the study

of condensed matter systems [64,65].

Another interesting example — and quite relevant to string theory — is related to
the electromagnetic theory [61]. Consider the electromagnetic action in the absence

of sources

1
SEM = _2_62 FAxF . (210)

The generacting functional is

7 = /DA e'SEM (2.11)



We may notice that the field F' and its Hodge dual xF satisfy the Maxwell equations
dFF =0 dxF =0, (2.12)

and we can easily see that they are invariant under F' <» xF', that is simply the
usual electromagnetic duality Ews —Band B E using an antiquated language.
To see the quantum aspects of this duality [61], we can try to write the measure of

the path integral (2.11) in terms of F', that is, we consider a transformation
DA DF [[s(d*F), (2.13)

and if we write xF = %fwdx” A dx¥, the functional delta function is

[[o@@«rF) /DVexp( /d4xva FW) , (2.14)

this functional representation is a mimic of 2md(y) = [dxexp(izy) . Using these

results, the path integral (2.11) becomes

= /DFDVexp{—i/d4x (412F Frv— (8[MVV])ﬁ“”) ,} (2.15)
27

and performing the Gaussian integral we find the final result
Z = N/DA eiSEM (2.16)

where A is just a normalization constant and

~ 1
SEM = _26’2 / G A «G . (217)

where ¢/ = 27 /e and G, = —2r F,w = 20,,V,). Then, we see that the magnetic part
of F,, is related to the electrlc part of GW, and it is simply the electromagnetic

duality stated above. In fact, we can add the 6-term

e ~
—F, F" | 2.18

1671'2 122 ( )
which is related to the instantons and if we write the coupling constant as

0 27T
— 2.19
T=oo i (2.19)

10



one can show that the electromagnetic duality implies the following transformation
T =——. (2.20)

It must be noticed that since we are in a free theory, we can easily absorb the
constants e and e’ by a redefinition of A, and V), respectively, but we consider this
explicit form, since the relation (2.20) is really suggestive.

When we try to extend the EM-duality above to a case in the presence of sources,
it is mandatory to conjecture the existence of a magnetic charge g, in such a way

that the Maxwell equations become
xdx F=j., dF =j,. (2.21)

In 1931, Dirac showed, in his groundbreaking paper [66], that this duality condition
demands a relation between the electric and magnetic charges, the Dirac quantiza-
tion condition

eg=2whn, ne€zZ, (2.22)

but since the existence of magnetic monopoles is a conundrum in our community,
and its introduction is an ad hoc hypothesis, it does not seem very natural to con-
sider that this duality is relevant in the Maxwell theory. Also, the existence of the
magnetic monopoles is related to the existence of a string-like singular region: the
Dirac string. It can be visualized as an infinitely long and infinitely thin solenoid,
in such a way that the magnetic monopole is precisely the magnetic field flowing
out the string. In quantum mechanics, we require that a wave function describing a
particle that turns around n times the solenoid is completely determined except for
an arbitrary phase. This condition is the Dirac quantization.

Furthermore, in certain gauge theories there exists a class o dualities that relates
the weak and strong coupling regimes of the theory. But we may notice that in the
Maxwell theory, we consider magnetic and electric charge at the same time, but if
we consider e << 1 we see that g >> 1 and vice-versa. Then we do not have a true
weak-strong duality in this case.

In 1974, Gerard 't Hooft [67] and Alexander Polyakov [68] showed that non-
abelian gauge theories — the Georgi-Glashow model in particular — admit mag-
netic mopopoles as solutions [69-73], but differently from the Dirac monopole, this 't
Hooft-Polyakov monopole is completely regular. Moreover, these solutions are very

different from the quanta of the fields, these particles are solitons whose stability
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is guaranteed by topological reasons and are extremely heavy at the weak-coupling
regime, since their masses are proportional to M ~ 1/g, where g is the coupling
constant |73, 74].

Montonen and Olive conjectured in 1977 that nonabelian gauge theories possess-
ing monopoles as solutions present the strong-weak duality |75,76|, and this conjec-
ture was extended by Witten and Olive and by Osborn [77,78|, what culminated in
the conjectured self-duality of the N = 4 super-Yang Mills theory. Supersymme-
try is fundamental in this context, since the simplest form of the Montonem-Olive
conjecture can not be true due to the running of the coupling constant. But one
can overcome this problem if the S-function of the theory vanishes, as in the N' = 4
SYM.

There are another important detail concerning this duality. The action of the

gauge sector in the theory is

1 0
S[A] = / (—2—62 F A«F + @F A F> (2.23)

but using that the angle 6 is defined up to 27, we have the additional symmetry
7 — 7+ 1. Together, we may conjecture that the gauge theory is invariant under
an PSL(2,Z) = SL(2,Z)/Zs group transformation, that is

C

b
(a d) € PSL(2,Z), a,bc,d€Z, ad—cb=1, (2.24a)

then the theory is invariant under

ar +b

T .
ct +d

(2.24b)

Furthermore, Seiberg and Witten generalized this strong-weak dualities to the-
ories with N'=1 and N = 2 supersymmetries. These dualities between strong and

weak coupling regimes are known generically as S-duality [17,79-87].

2.2.2 String theory dualities

By the 1990s, it was known that there are five consistent string theories: type I,
type IIA, IIB and the heterotic SO(32) and Es x FEjg string theories. However, this

is an embarrassing situation, since an unconstrained structure of a physical theory
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would make it useless, because we could not predict new results. In other words,
the theory would not be falsifiable [10,11].

This puzzle was solved when it was realized that there are nontrivial equivalences
among the string theories, now known as T- and S-dualities. In fact, T-duality
relates the type ITA and IIB string theory and the two heterotic theories, whilst
the S-duality relates the type I to the heterotic SO(2) and the type IIB to itself.
Together with the fact that the type I theory is obtained from the type IIB from
a procedure called orientifold projection, and is equivalent to the SO(32) theory by
an S-duality, we conclude that these five theories are in fact, the same theory, or
better, there may exist some underlying theory that governs these aspects of string
theory, this is the M-theory.

The string coupling constant, gs, is given by the vacuum expectation value of
exp ¢, where ¢ is the dilaton field. The S-duality relates the coupling constant g
to 1/gs, therefore, if we know the behaviour of string theory for g, — 0 we can get
insights of the theory for large gs. For instance, strongly coupled type I theory will
be related to weakly coupled SO(32) heterotic strings by S-duality. In the case of
type I1B string theory, S-duality relates this theory to itself.

In fact, using S-duality we can understand the behaviour of three of the five
string theories at strongly coupled regime, but we need to see how the type ITA and
the Eg x Fg work in this limit. The answer goes as follows: For g, large enough,
a new dimension of size g,f; emerges in these theories, in such a way that for the
type IIA this dimension is a circle and in the heterotic string we have an interval.
The important point is that this new 11-dimensional quantum theory demands a
new techniques, but we know that its low energy limit is governed by the d = 11
SUGRA [88-91].

For instance, the low energy action (in the string frame) of the bosonic sector in
the type I string theory is !

1 10 —2¢ 1 2 KPe? 2
Sr=55 [d xm{e (R+48M¢8“¢)—§]F3| g tr (|| )} :
(2.25a)

!The trace Tr is calculated using the 496-dimensional adjoint representation of the gauge group
SO(32), while the trace tr is calculated using the 32-dimensional fundamental representation of
the gauge group [10,11]. Considering the field strength F', we have the identity 30tr (F A F) =
Tr(FAF).
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and the corresponding action in the heterotic string is

1 1 2
Sy = 2—’{2 /dlox\/je‘w {R+ 48#(158“(/5 - §’H3’2 o 3gg2Tr (’FQ,Q)} ) (2'25b)

where the parameter g above is g? = 47 (27/,)%. Also, the gauge group of the type
I theory is SO(32), which suggests a deep connection with the Heterotic SO(32)

theory. In fact, the map between the theories is simply

o= —¢

(2.26)
G — e"z’GW .
And since the coupling constant is g, = (e?®) we see that
1
gl = 450 ° (2.27)

The type IIB S-duality is dramatically different and we will see in the next section
that it is closely related to the S-duality discussed in the N' =4 SYM. We already
know that in this theory we have a pair of two-forms (B, A®) related, respectively,
to the NS-NS and R-R sectors (see A.4.2 in the appendix A and references [10,11]),
and these fields transform as a doublet under SL(2,R), therefore we write them as

B= (Ai)) : (2.28)

with field strength H = dB. In this notation, if we consider

b
A—(a d)GSL(2,R), a,byec,de R, ad—bc=1, (2.29)

c
the B field transforms as B — AB. In addition, we define the azion-dilaton field

7= AO 4 je~? transforms as
at +b

et +d -’

(2.30)

T

We define the SL(2, R matrix

_ A0
_of I A
M=e¢ (—A(O) . , (2.31)

under SL(2,R, we have
M= (AHTMA . (2.32)
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All in all, we may write the type IIB action (A.32), in the Einstein frame, as

1 1 1
Sip=—5 | d%V-GR— —=H. MH"? + —tr (8“/\/16 M‘l)
2k2, 127 Hve 4 # (2.33)
1 . . )
_W (/ leQZ\/ —G|F(5)|2 -+ €ij /A(4) VAN 7‘[2 VAN Hj) 5
10

and in this form, the SL(2,R) symmetry is manifest.
This symmetry is not present in the full type IIB string theory, and it is broken
to the subgroup SL(2,7Z) due to stringy and quantum effects. In particular, the

transformation of the axion-dilaton field 7 is

ar +b
i 2.34
THCT—Fd ( )
but with
b
A:(a d) € SL(2,Z), a,byc,deZ, ad—bc=1. (2.35)
c

This is the S-duality of the type IIB string theory, which relates this theory to itself.
We may notice now that this transformation is similar to the transformation in the
N =4 SYM (2.24a — 2.24b), and we will see in the next section that it is not an
accident.

Before, we must consider another important duality in the string theory frame-
work, the T-duality.

T-duality

The bosonic string theory compactified on a circle S' of radius R allows us to
introduce an important symmetry of the theory. Considering that the closed string

moves in a space of the form R?%! x S!, the coordinate X?°(o, 7) must satisfy
X®(o+7,7)=X*(0,7) +27Rw , (2.36)

where w € Z, that bears the name of winding number, counts the number of times
that the string winds around the compact dimension. It can be shown [10,11] that

this coordinate splits as

X®(o,7)=XP(t+0)+ XP(1—0) (2.37)
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where

1

X¥(r—o) = 5(125 — %)+ (a’—; — wR) (tr—0)+--- (2.38a)
1

X2(r +0) = 5(;525 + %) + (o/E + wR) (T+0)+--- (2.38b)

where k € Z, called Kaluza-Klein excitation number, comes from the quantization

of the momentum p* = x/R. In addition, the mass formula is simply

w2 = (E) 4 (ﬁy + 2V + N — 2] (2.39)
R o 1% ’
where N;, and Ny are, respectively, the number left- and right-moving waves and
they satisfy Ngp — Np, = wk.

Now, the curious fact comes when we notice that the mass formula (2.39) is in-
variant under the transformation R — R = o//R, and the winding number becomes
the Kaluza-Klein number, and vice-versa. This unexpected symmetry of the theory
is called T-duality. Finally, in terms of the mode expansion, this symmetry means
that

X¥ s —X% and XP e XP (2.40)

In the type II superstring theory, we can repeat this analysis for the bosonic

coordinates, in such a way that under T-duality, the mode X?(c, 1) transforms as
X% —Xp and X! X7, (2.41)
and in the RNS formalism, the worldsheet supersymmetry demands that
U= —Ug  and Y- (2.42)

and one can show that this condition implies that under this transformation we

exchange from the type IIA and type 1IB theory.

Also, we may study the action of T-duality in the presence of background fields,
w, the Kalb-Ramond field B, and dilaton ¢ and the
R-R p-forms. The general procedure follows the original idea of Buscher [2]: We

for instance, the graviton GG

start with a o-model which supports an isometry such as U(NN). Then we gauge

the isometry, but we need to impose a constraint by means of Lagrange multipliers
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which guarantees that the connection field strength remains equal to zero. This
constraint enforces the condition that after gauging the isometry, the initial degrees
of freedom remain unchanged.

The duality works as follows. On one hand, by solving the equation of motion
for the Lagrange multipliers and replacing the solution into the action, we recover
the original model. If instead we solve the equation of motion for the connection
and we gauge fix, we find the dual o-model. Let us see how it works.

Consider the following worldsheet action in the presence of background fields

1

4o

S:

/ 420 (\/—hhaﬂc:waaxuaﬁxv —eo‘ﬁBm,aaX“GﬁX”> L (243)

If we consider that the coordinate X° is compactified on a circle, the action has an
isometry in this coordinate, and we use this isometry to find the T-dual theory. Let

us introduce a Lagrange multiplier X? in this theory and write the action (2.43) as:

dra'S — / Po [V (~GogVaVs — 260 VaOs X* — G Da X" 05X")
N (2.44)
+€* (Bo, Va0s X" + B,y0a X 05 X") + X0, V3| |

and we can see that this action corresponds to (2.43) using the equation of motion
for X9, €%9,V3 = 0 = V,, = 0,X?, and inserting it in (2.44) we recover the original
action. On the other hand, if we use V,, to eliminate the Lagrange multiplier X?,

we find the dual action

~ 1 aB ~ v aBn v
§=—1= / 0 (VR Gl 0u X 95X = € B0, X10,X7 ), (2.45)
where?
- 2¢ ~ 1
020 — Goo — ——
|Goo P G
~ Gy Gon — Boyr B ~ 1
Gurn = Gy 2o Gon = Bor Bon Gor — —— Bons
Gy Gog
~ By G ~ '
Bun = By — 222200 By = —(;Mg
99 99

’Including the transformation for the dilaton field that needs a different approach. In fact, we
can compute its transformation as consistent conditions for the quantization of the dual theory
[92]. An easy (and somewhat lousy) way to see this transformation is requiring the invariance of

V—Ge ¢ — v/ —Ge2? under T-duality.
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These transformations are known as Buscher’s rules [2,93-95].

We can study the behaviour of the R-R forms under T-duality using different
approaches, e.g. [94,96,97| from a spacetime perspective, [98,99| from a worldsheet
viewpoint, [100] using pure spinors and finally [101].

In the approach of [94] (see also [93] for a detailed presentation) we consider
a dimensional reduction of the type IIA theory on a circle S' of radius R, and of
the type IIB on a circle of radius R, in such a way that Kaluza-Klein scalar is
independent of the theory we started, then k2 = Ggg = 1/699, then we find

Mo _ b (2.46)

Making this identification, one can show that the nine dimensional theories we find
by dimensional reduction of the type IIA and type IIB theories are the same and
that the R-R fields are related by

n n n—1)
C](Wl)...Mn = C](\/[l)...MnQ + nB[M1|9|O]WQ M)

. (2.47a)
+n(n — 1)B[Ml|9\GMg|9\C Mn]9/G99
n n—1 n—1)
C](Wl)-..Mn—19 = C](Wl.._?ﬂn—l - (n o 1>G[]V[1|9‘C ]V[n 1] 9/G99 ’ (247b)

and these are the T-duality rules for the R-R sector.

In fact, the T-duality is a particular case of a deeper conjectured duality called
mirror symmetry |20,21,102-104], that associates to each Calabi-Yau manifold M a
mirror Calabi-Yau manifold W is such a way that type ITA string theory compactified
on M is equivalent to the type IIB string theory compactified on W.

In order to consider realistic compactifications in the string theory framework,
we may split the ten-dimensional space where the string is defined as RY3 x MS
where R'3 is the four dimensional Minkowski space and M?9 is an internal compact
manifold, and consistence requires that this manifold is compact Kéhler, Ricci-flat
manifold with holonomy group SU(3), which is precisely the definition * of a three-
dimensional Calabi-Yau manifold, also called Calabi-Yau 3-fold [10, 55]|.

3In fact, there are many different definitions of a Calabi-Yau n-fold [105-107].
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The simplest Calabi-Yau manifold, the 2-Torus 72 = S x S!, where the circles
have radii R, and Ry. If we regard the torus as the lattice C/{Z & 7Z} we can
easily conclude that it is flat, since C is flat, then it is also Ricci flat and has trivial
holonomy group. This space can be characterized by two numbers — the moduli
space is two-dimensional — and obviously we can consider simply the radii (R;, Rs),

but it turns out that the it is more convenient to define the moduli space through

R
c=iRRy, U= z’ﬁ . (2.48)

1

As we know, string theory is invariant under T-duality. Therefore, the transfor-
mation Ry <+ 1/Ry, for o/ = 1, implies that string theory is invariant under ¢ < ¥.
Observe that this is a profound result, since from the classical viewpoint, two torus
with different complex structures, 1 and ', are not holomorphically equivalent.
Obviously, the mirror symmetry for Calabi-Yau 3-folds are much more difficult, but

generically, the idea is the same.

Putting all these facts together, we conclude that the structure of the string
theory is very constrained and the theories, in the duality sense, are tied. So we
have the web of dualities depicted in the figure 2.1.

Now we want to turn our attention to a deeper and unexpected duality, that
one that relates string theory to quantum field theories, known as gauge/gravity

correspondence.

2.2.3 String-QFT duality

In the outstanding paper [108], 't Hooft studied the large N expansion of gauge
theories and found that in this regime we have a deep connection between gauge
theories and string theory. Naively, the Yang-Mills theory with gauge group U(N.,),
described by the Lagrangian

1
EYM = —2—T7° (FNVFMV) y (249)
Iy m

does not have a good dimensionless parameter that we can consider a perturbation
expansion, since the coupling constant gy ,; will be related to the scale A by dimen-

sional transmutation [109]. On the other hand, 't Hooft noticed that we have one
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Figure 2.1: Web of dualities.

more dimensionless parameter, the number of colours N.. When we consider a large
number of colours N. we could make a expansion in 1/N, [14,110].

If we consider a general theory with fields @, where a is an index that labels
the adjoint representation of SU(N,) and u labels generic quantum numbers. The

Lagrangian we want to consider is
L~ Tr(00,00,) + gy f* Tr (2,0,0,) + g& W Tr (0,0,0,d,) , (2.50)

where f** and h*** are arbitrary constants. If we rescale the fields as ® > g3, P,
we find

L~ [Tr (02,09,) + f**Tr(9,2,P,) + K Tr (2,0,0,0,)] . (2.51)

2
9y m

We may define the t Hooft coupling \ := g%,;N,, and the limit when N, — oo and

A remains fixed is known as 't Hooft limat.
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Using the double line notation, in which a field in the adjoint representation
is the product two fields in the fundamental and antifundamental representations,

then we may consider that (CIDa)ij = ¢'¢;. In this notation, the propagator is

% )‘ 0 1 {
(0, 0%)) o A (5l5§f — Eaj(sf) : (2.52)

and in the large N. we can safely ignore the second term in the propagator, so
that it is proportional to A/N.. Furthermore, from the Lagrangian (2.51) we easily
see that the vertices are proportional to N./A. Using the quarks and gluons as
our prototypical example of fields, we can draw the Feynman diagrams as double
lines an in the figure (2.2), where the orientation is taken from fundamental to

antifundamental indices. All in all, the Feynman diagrams have the power in N,

Propagator
e  UUUOO0U @ —_— i
N'AYAYRYATAY; e
AN AN / +
AX AR KR AL Nc
Vertices

Figure 2.2: Double diagrams for gluons.

and A

NY—EFENEZV (2.53)
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where

V = #Vertices
E = #FEdges (propagators)
F = #Faces (loops)

The Euler number £ defined by € =V — E + F is a topological invariant and for
closed surfaces it is given by & = 2 — 2¢g, where g is the number of handles of the
surface, and it is called genus. Therefore, the perturbative expansion of the theory

is simply
D ONZHE(N, (2.54)
g=0

where f(\) is some polynomial in A\. We have an expansion in terms of Riemann

surfaces of different genus in in the figure (2.3).

+ - + - ~ 4+ e

—2
g=0 NZ g=1 N/ g=2 N,

Figure 2.3: Perturbative expansion.

In particular, when we consider the large N, limit, the surfaces with g = 0 are
dominant, and the double line diagrams associated to these surfaces are called planar

diagrams, since we can draw them in the surface of the sphere, as in the figure (2.4).

When we make the identification g; ~ 1/N,, the expansion above is the same
expansion we find in the perturbative expansion of closed strings [10,12], so this fact
is an initial motivation to suppose that quantum field theories and string theory may
be related. The revival of the interest in such a connection is mainly due the work
of Maldacena in [4], and this duality known as gauge/gravity correspondence. It has
been used to explore many aspects of gauge theories which cannot be studied using

usual perturbation theory techniques.
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Figure 2.4: Planar and nonplanar diagrams.

The fundamental concept of the gauge/gravity duality is that the symmetries
of the field theory are realized geometrically as isometries in the gravity dual side
|4,6,14,32,111-116]. Let us see how this duality works using the original example.
We need to consider two sides of this duality, the field theory side and the gravity
side. In the field side we have a Yang-Mills theory with gauge group U(N,) and
N = 4 supersymmetries.

The field content of this theory consists of a gauge field A,, four fermions x,
and their complex conjugates )‘(2 and six scalar fields ¢!, where i, i = 1,...,4
describe, respectively, the fundamental 4 and antifundamental 4 representations of
the R-symmetry group SU(4) ~ SO(6) and [ = 1,...,6 describes the fundamental
representation SO(6), in addition o and & are chiral indices. Furthermore, all
these fields transform in the adjoint representation of the gauge group U(N.). The
Lagrangian of the theory is

1 2
Loy = Tr {— —F A+F — D,¢' D¢/ + QYTM Sl 07 + Oy F AF
9y m 1J

(2.55)
where the 4 x 4 matrices Cy are related to the Dirac matrices of the group SU(4),
see these matrices explicitly in [91].

The other side of the duality rests in a type IIB string theory solution. When

we consider N, coincident BPS D-branes, we obtain, as the worldvolume theory, a
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maximally supersymmetric U(N,) gauge theory. In the low energy limit, the U(1)
subgroup of U(N.) decouples from the effective action on the Dp-brane, in such a
way that the gauge theory is actually SU(IV,).

The D3-brane solution of the type IIB theory is given by

1
dsi g = ————nuda’dz” + /H(r) (dr® + r?dQZ) |
H{r) (2.56)

F=1+%)dH ' Adz® Ada! Ada® Ada?
where
L 4 ”
H(r)=1+ i L* = 4rag,N, | (2.57)
and dQ2Z is the SO(5)-invariant metric of S°. In the near horizon limit, r — 0, the

metric approaches to

2 r? TR L* 2102
dsirp = ﬁmudﬂﬁ dz” + ﬁdT + L7dQ5 (2.58)

and we recognize it as the metric of the direct product space AdSs x S°.

The isometry group of the gravity dual is SO(4,2) x SO(6), matching with the
N =4 SYM considered above. While the SO(4,2) symmetry of the anti-de Sitter
space is reinterpreted as the conformal group in 3 + 1 dimensions of the Yang-Mills
theory, and the group SO(6) ~ SU(4) can be identified with the R-symmetry group
of the conformal theory. Let us see how this duality works.

In the Kaluza-Klein (KK) analysis of fields in in the AdSs x S° background, the
fields are expressed in terms of spherical harmonics of S°. For instance, a scalar field

is expanded as

oo, 0) = 3 dulat, )Y (y) (2.59)
k
where Y*(y) are spherical harmonics on S°, satisfying
k(k+4)
OgY" = TY’“ : (2.60)

and ¢ (z#,r) are scalar fields on the anti-de Sitter space. The dynamics of the four
dimensional gauge theory is then encoded into the five dimensional AdSs space,
then the gauge/gravity duality is a holographic duality, since a gravity theory in
(d + 1)-dimensions is dual to the a gauge theory in d-dimensions. It turns out that

the radial coordinate r is related to the energy scale FE of the field theory FE ~ r,
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therefore, if we consider that the field theory includes all degrees of freedom, we
take F — oo, which corresponds to r — oo, and in this sense we may say that the
field theory is located at the boundary of the anti-de Sitter space [14,116].

Putting all these facts together, one can show that given generic fields ®* on the
gravity side, we can regard the boundary values ¢} as sources of operators O on
the field theory side, then

Datping = | DB S = <ef d“m¢6@i> = Zopr . (2.61)
%o

In [32] Joe Polchinski tells us an interesting history of a reader poll to deter-
mine the greatest equation of all time. His personal choice would be the equation
(2.61), since it includes quantum field theory, general relativity, string theory, su-
persymmetry, extra dimensions and so on at once. Can we disagree? I don’t think

S0.
Although there is not a precise mathematical proof of the gauge/gravity duality,

there are several tests of the correspondence, see [14,32,111-116] for further details.

2.3 Nonabelian T-Duality

The motivation for dualities is now well motivated. In this section we return to
the problem of the dualities in string theory. We may notice that the T-duality
procedure is determined using the isometry group U(1) of the compact manifold S*,
but one natural problem is the generalization of T-duality to other group isometries.
The first possibility is the isometry group of the torus 7", but this case is trivially
generalized, since its isometry group is just the product U(1)". Another possibility is
the nonabelian generalization of T-duality, that is, we consider that the background
we compactify the string theory supports a nonabelian abelian group G as the
isometry group |[3,22,23,117-121]. Here we consider G = SU(2).

We write the metric in the form
ds* = G, (v)datdx” + 2G ,;(v)dx" L' + g;;(x) L' L (2.62)

where p,v = 1,...,7, and L' are the Maurer-Cartan forms for SU(2). In general
we also have nontrivial Kalb-Ramond two-forms

. 1 ) .
B = Bde“ A dx” + Bmdl‘u A L + ibile VAN LJ, (263)
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and a dilaton ® = ®(z). The important point here is that all dependence on the
SU(2) Euler angles (6,1, ¢) is contained in the one-forms L.
Next, define the vielbeins

A_ A
= (2.64)
¢ = /ﬂ“ij + Apdaxt,
with A=1,...,7and a =1,2,3. Imposing
ds? = napee? 4 e, (2.65)
by direct comparison with (2.62) we have
G = napee? + K, KRS = gij, KA, = G, (2.66)
where we defined \jA} = K,
If we combine the metric and B field into Q and E by
Q/u/ = G/u/ + BMV? Q/Li = Gm' + Bui (267)
Qipn = Gip+ Biy, Eij = gij + byj
the Lagrangian density is
L =00, X" X"+ Q0 X'"L" + QL' 0 X"+ EyL\ L7 | (2.68)

where L', = —iTr (t'g7'0+g) , and g € SU(2). In order to find the nonabelian
T-dual, we gauge the isometry SU(2) by making the replacement

0+g — Dig=0+9— Aig, (2.69a)
and adding the Lagrange multiplier
—iv'FL, F.=0,A" —0_A, —[A, A]". (2.69b)
One can show that the nonabelian T-dual background is

Qm/ = Quu - QuiMingjW Eij = Mi;1

N . . (2.70)
Q;u‘ = Quiji y Qiu = _Mij Qj/u
where the matrix M is defined by
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Here fijk = V/2¢;;, are the structure constants of the group SU(2) and v; are
originally Lagrange multipliers, now dual coordinates. We can make the scaling

v; —> \/LEUZ-, so that the dual fields are written as

~ 2~ . 1 . .
ds? = G, (z)datdx” + —=G i(z)da"dv’ + =gy (x)dv'dv’ (2.72)
V2 2
and ) )
B = B\de” A dz” + Eﬁmd:ﬁ“ A dv' + le;ijdvi A dv?. (2.73)

and the dilaton (transformed at the quantum level as usual)
- 1 det M
¢:¢—§ln< — ) (2.74)

Besides the spectator fields 2#, the dual theory depends on 6, v, ¢, v, so we have

too many degrees of freedom. We need to impose a gauge fixing in order to remove

three of these variables, usually taken to be § = 1) = ¢ = 0. Then one finds

(M71>ij

= Tt (det q9q"” + 'y — eijkgklyl) (2.75)

where we have defined b;; = €;;,b; and y; = b; + o/v;. For a gauge fixing different
than 6 = ¢ = ¢ = 0, one defines o; = D;;v7, where

DY = ST (rgrlg™h), g =ex?esl™ert™ (2.76)

(7; are the Pauli matrices) and replaces everywhere v; by ;.
The dualization acts differently on the left- and the right-movers

Ly = —(M71);; (0v; + Q0+ X") (2.77a)
L. = Mi;1 (0-v; — Qju0-X") (2.77b)

and it produces two different sets of frames ¢/, and ¢"

¢p = —cM " (dv+QTdX) + AdX (2.78a)
e = kM ' (dv — QdX) + AdX (2.78b)

that are related by a Lorentz transformation ¢4 = A%¢”. The action on the spinor

representation of the Lorentz group is given by
Q7'M = AT (2.79)
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2.3.1 Nonabelian T-duality action on RR fields

One useful way to represent the fields in the R-R sector is as a product of spinors,

that is as bispinors, see appendix (A). For instance,

— —+I11A
Lypr-pin, R
. :¢¢Fll S { +4+IIB (2.80)
Taking an n-dimensional vector space V with basis {y1,...,7,}, we can find an

isomorphism between the Clifford C/(V') and the exterior algebra AV, that is

ACiV) = NV
A (2.81)
I]-'_>17 PZ'_)’V’L’ P'lep'_)’}/n/\/\’yzp7

and we can use this fact, associated to the transformation that the nonabelian T-
duality induces on the spinors (2.79), to find the action of this transformation in the
R-R sector.

Considering the RR sector in the democratic formalism [122] (we consider the

fluxes and their Hodges dual as well), we define the polyforms in type II supergravity
et & SRR RN
B: P=— ; Fopiy, TIA: P= 5 ; ¥, (2.82)

Then the nonabelian T-dual forms are obtained by the transformation (applied to

the nonabelian case by [22], following the work in the abelian case by [96])
P=prP-Q" (2.83)

We first write the p-form field strengths in the form

1
F =G0 +Go_ Ne® + §Ggl’_2 Aet A+ G Nt A A, (2.84)

Using a similar decomposition for the T-dual p-forms Fp in terms of the T-dual

vielbeins ¢,

I . . 1. " .
F, =G0 +Go_ N+ §Gg”_2 At A+ Gf’_)3 At AP A (2.85)
we have the transformation rules

GO = P9~ AGWY + 4,6
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. (A
Ge, = e (—7%@1”@;0_ |+ AG 1+AGG;°)1>

G, = 9 [eabC(Ach:)ﬁAOG;,z) — (4G, —Ang,2>]
. (A,
G1(33_3 = €¢7¢ <7€achZC_3 + AoGI()O_)3> . (286)

Here, defining y; = b; + o'v; as before and

¢ = n“iz’:m“i\/i_tg (2.87)
the coefficients of the transformation rules are
4y = 2o _vddg
VI+ detg + (koy')?
- & iy (2.88)

1+ (2 - \/detg+ (/i“iyi)?

In the next chapter we start using the knowledge we have drawn here to study
new string backgrounds and their dual field theories.
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Chapter 3

D5-branes on S°

N THIS CHAPTER we consider a T-duality on the Maldacena-Nastase so-

lution [7] that defines also a dual field theory. We start with a review

of the solution due to Canoura et al. [9], which contains the original so-
lution [7] as a special case. It is a type-IIB supergravity solution that consists of
Db5-branes wrapping a 3-cycle in a manifold that supports a Ga-structure and in the
IR limit, this theory is dual to A/ =1 SYM in three dimensions.

In [7,123,124], it was found a solution of 5-dimensional supergravity which can be
lifted to 7 dimensions and then to 10 dimensions. In this case we have a gravitational
solution that holographically describes D5-branes wrapping a three-cycle inside a G5
manifold. In the IR limit, the theory living in the worldvolume of these branes was
identified as being dual to N' = 1 SU(N,) SYM in three-dimensions with Chern-
Simons level kK = N,/2.

In this particular solution, we start with N, D5-branes, where the field theory
living on the worldvolume of these branes carries 16 supercharges, and we wrap
them on a sphere S?, what in general breaks supersymmetry. In order to preserve
some fraction of the original supersymmetries, we twist the fields in such a way that
we have four supercharges [125,126], equivalent to A/ = 1 supersymmetry in 2 + 1
dimensions.

In [9] the ansatz of |7,123] was generalized and this allowed one to find a new
class of solutions in which in the UV limit the metric is a product of a G5 cone
and a three dimensional Minkowski space, and a constant dilaton, in contrast to the

original behaviour of the Maldacena-Nastase solution, where the dilaton diverges
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as the holographic coordinate goes to infinity. It is important to realize that this
solution corresponds to D5-branes wrapped on a three-cycle of a GG, cone in which
the near-horizon effects of the branes on the metric become negligible in the UV
limit.

As we already mentioned, realistic theories require fields transforming in the
fundamental representation. To address this, one considers flavor branes in the
gravity side, which is equivalent to adding an open string sector [127]. One can
start by studying the quenched approximation, that is when probe branes are used
in a way that the number of flavor branes N is negligible compared to the number
N, of color branes. Then, the next natural step is to consider the unquenched case,
that is the case in which the number of flavor branes is of the same order as the
number color branes [128-130).

Canoura, Merlatti and Ramallo |9] added massless fundamental flavors to the
Maldacena-Nastase (hereafter MNa) solution in the unquenched case. The authors
found that this system with Ny > 2N, dramatically differs from N; < 2N,.. Mas-
sive fundamental flavors were added to the MNa solution in [131] and the author
showed that is is possible to find a solution which interpolates between the deformed
unflavored MNa background and the massless flavored background.

As pointed in [132,133], we can obtain the UV completion of this solution consid-
ering a Gy-structure rotation [134] which is a solution generating technique analogous
to the U-duality. The rotation procedure is implemented in a type IIA solution with
N =1 SUSY and gives a more general type IIA solution. The important point is
that in this rotation procedure, we have an extra warp factor in the metric and this
term ensures the finiteness of the cycle along the energy scale.

The gauge theory analysis of the rotated MNa solution was performed in [132],
and the author showed that the dual field theory is confining and that in the IR
limit, the Chern-Simons term dominates the dynamics of the theory.

In [133], the nonabelian T-duality has been considered along the SU(2) isom-
etry of the deformed MNa solution [9], and this gave a massive type ITA solution,
with no trivial field in the RR sector. The author showed that the generated solu-
tion is dual to a confining Chern-Simons gauge theory and using the gauge/gravity
correspondence he studied several holographic properties of the dual field theory.

In this chapter we perform the abelian T-duality on MNa solution along an

U(1) isometry in the D5-brane solution, which gives a D4-brane solution wrapping
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a two-cycle. Then we compute Maxwell and Page charges associated to this new
solution.

Moreover, we consider some aspects of the dual gauge theory, defining it in the
process. In section 3.4.1 we find the quark-antiquark potential and we see that the
requirements for confinement are satisfied. In such a case we are able to compute the
string tension. Next we follow considering the gauge coupling and the entanglement
entropy, which has been used as a probe of confinement. Finally, we study some
conditions in which we can treat the wrapped D4-branes as a domain wall, so that

we induce a Chern-Simons term in the gauge theory.

3.1 Wrapped fivebranes on a three-cycle

In general, when we put a supersymmetric field theory on a curved manifold 2, we
break SUSY since we do not have a killing spinor satisfying (0, + w,)e = 0. On
the other hand, if the theory has an R-symmetry, we can consider that the spin
connection is equal to the gauge connection arising from the R-symmetry group,
that is w, = A,, in such a way that now we can find a Killing spinor satisfying
(0, +w, — A,)e = 0,6 = 0. This resourceful way of preserving supersymmetry
is exactly the way that branes wrapping cycles in string/M theory operate to do
it [125,126], and theories satisfying this condition are called twisted theories.

Therefore, in order to preserve some fraction of supersymmetry of a type IIB
(string theory) configuration, which consists of NS 5-branes wrapping a 3-sphere,
we need to consider a twisting. The R-symmetry group is simply the rotation group
SO(4) ~ SU(2), x SU(2)r and the spin connection lives in the Lie algebra su(2)
(tangent space of the space S* ~ SU(2)). In this case we embed the spin connection
into SU(2),, and it can be checked to be enough to preserve the AV = 1 SUSY in
three dimensions [7].

At low energies, compared to the inverse radius of S, we have pure A" = 1 SYM
theory in three dimensions with gauge group U(N). Additionally, if we add a flux

of the NS-NS sector H on the worldvolume S* we induce a Chern-Simons coupling
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in three-dimensions. In the S-dual description we have, on the D5-brane, the term

1 1 2
—/ BEEANTr (FAF)=— / AB®EANTr ( ANdA + AP
1673 Jy, 1673 J, 3 3.1)
- Tr(AAdA+2A3) ,
47T g 3

where the parameter k is related to the three dimensional Chern-Simons level x by
k=kKk+ % and this extra term appears when we integrate out all the six dimensional
KK model.

In [7], the authors considered a supergravity solution that describes the system

of branes wrapping an S? given by

ds? = ds2 + N (@0 — Ay (3.2a)
F=N —}L(dzl—Al)/\(QQ—AQ)/\(@3—A3)+3F"/\(@“—A“) +H,
(3.2b)
where
ds? = da3, + o' N (dp® + R(p)*dQ3) (3.3a)
A — 1%"([’)% (3.3b)
H= N (w?(p) — 3w(p) +2) w' Aw* Aw®, (3.3¢)

16
w® are the Maurer-Cartan forms of SU(2) and this background has a nontrivial dila-
ton! . No analytic solution for this ansatz is known, but its asymptotic behaviour

for large p is simply
R*p)~2p, w(p)~1/4p, ¢~ —p+(3lnp)/8, (3.4a)
while, for small p we find
R*p) ~ p* +O(p"), w(p) ~1+0(p)p, ¢~ po+0(p*). (3.4b)

The topology of the seven dimensional space spanned by (p,w®, @*) is asymptotically
that of a cone whose base is S* x S?. The above solution bears the name Maldacena-

Nastase solution.

'In this chapter we write the dilaton as ¢ and we use the symbol ¢ to denote angular coordinates,

including the coordinate X along which we perform the duality.
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3.2 Deformed Maldacena-Nastase solution

In [9] the ansatz was generalized and this solution has the original solution of the

previous section (3.1) as a special case. The string frame metric is given by
ds?, = e? (dal, + ds3) (3.5)
and the internal part of the metric, which describes the manifold supporting a Gs-
structure, is
2h 029

, 1 )\
ds? = N, |e*dr? + %(01)2 + (wl -5+ w)Ul) ] ; (3.6)

where we are using an optimum holographic coordinate defined in [132]. Also, o’

and w' are two sets of SU(2) Maurer-Cartan forms satisfying
i 1 i A Ak
d)\a = _Eeijk/\a N )\a7 (37)

where | = ¢® and \, = w' for i = 1,2, 3. These forms can be represented in terms

of Kuler angles as

AL = cos,df, + sin 1, sin 0,dd, (3.8)
A2 = — sin),df, + cos i, sin 0,do, (3.9)
2 = dip, + cos 0,dy (3.10)

for0<6, <m 0< ¢, <2m, 0L, <A4m.
Also, the MNa solution has a nontrivial RR 3-form

N, ! . :
Fy = I{(01/\02/\03—w1/\w2/\w3)+%dr/\az/\w’—
(3.11)
- #em[al Aol AwP —wh AW /\ak]}.

One can easily show that this field strength is generated by the following two-form
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potential

1 1
c® = (_ZNC cos 01> dpy A dipy + (1]\[@ cos 92) dps N dipy+

N Nc(18+ ) dipy A diy + wsmel sin(y — 9)dey A dfy+

+ Ne(l+7) (cos 01 cos Oy + sin O sin Oy cos(p; — 12))dey A deo (3.12)
+ —NC(l +7) cos 0rdgy A dipgy + W cos(11 — Pa)dOy A dby

+ <_N—C<18+ 7) sin(t; — 1)9) sin 92) dfy N dopo + M cos Oadipy A dos

so that Fy = dC®.
Unfortunately, the solution for these equations is known just semi-analytically
in the IR and UV limits. In the IR limit, that is, » ~ 0 we have

—1)(9 5
629=90+(90 JO00+5) 2, (3.13a)
1290
395 — 4g0 +4)
2h 2 0 4
= — 3.13b
e gur? = B, (3.13b)
390 —2 ,
w=1———7r"+4... 3.13¢
300 (3.13c)
1
7:1—§r2+... (3.13d)
T 9
= —r? 3.13
¢ Qb() + 249(2)T ( e)
On the other hand, in the UV limit, where r ~ 0o, we have
e = e - 14 E6_4”3 (3.14a)
4(31
3c 9 7
2h _ 2% 4r/3 | 7 —4r/3 14
e 2 ¢ty 16616 (3.14b)
2
w=—e B4 (3.14c)
C1
1
725—1—... (3.14d)
2
¢ = oo + e /3 (3.14e)

1

We write the whole set of components of the string frame metric as

oM = {xuaxA}; {(M207172);(A:T7d/7a)}7
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where

x’!’

{ T’QId5917¢17¢1;$a:927¢27¢2}-

Now we have

(NL)? = dO? + d¢p? + d? + 2 cos udip,d, (3.15)

and
in'i = COS(Q/Jl — 'lbg)d@ldeg — Sin(i/)l — 'lbg) sin 92d91d¢2
+ sin(¢y — o) sin 61 dp1dbs + [cos(1hy — 1hy) sin 0y sin by + cos 0y cos O] dd1deps

(3.16)
—+ cos 91d¢1dw2 -+ cos 92d¢1d¢2 + dw1d¢2
Then, we write the string-frame metric as
ds? = gundz™da™ = e?dz}, + Adr® + 2(0")? + Q(w')? + 2Ew'o” (3.17)
where we define
A = e?THN, (3.18a)
e¥ e29 ~
¥ =N <e2h + I(l + w)2> =¥y (3.18b)
e? 29 A
Q= c = — 1
1 1 (3.18c¢)
e¥T29
E=— (1+w)N, = ——(1+w) (3.18d)

for later convenience. Finally, using that M = {u, A} we find the components of

the metric matrix
G = €N, Gua =0
(garn) = ( 1 " " ) .

gau =0 JAB

Obviously, we need to find just the components g45 and these are

grr:A 97«“:0 grd:grazo
96 = 955 = 990 = X | 95 = X cost,
900 = 9oo = Guy = | goy = 2cos by
9oy = =sin(yy — o) sinby | g,5 = E[sin 0; sin O cos(yhy — 1b2) + cos 0y cos 6]
9oy =0 Gyy = S 0803

36



3.3 D4-brane solution

Now we perform a T-duality transformation in a direction along the brane, namely,
the 2° = 2% = ¢, direction. If we consider the type-ITA solution with NS-NS sector

given by {@, gun, Bun}, the Buscher’s rules [2,93-95] (see section 2.2.2 and the
appendix A) are

~ 2p 1
19541 955
. 9om958 — BanBin ~ 1
IgMN = gMN — oAzo — oM o 95 = —Bsu
95é 94¢
ByinIng Imé
Buyn = Buyn — 2—2M7Ne By = _IM¢

3.3.1 NS-NS sector

Using the transformation rules above, the dilaton is

| 1
W= —e? = e 3.19
e =€ 2e (3.19)

and the dual metric is
L~ 1
ds?, =e**Ydxt, + Adr® + §d¢f + X(dOF + sin® 0, dvp?)

+ 2= [(cos rw' — sinqw?)dh, — sin 6, cos O, (sin yPwt + cos w?)di,
+ sin® Grw’dypr | + Q(w')? (3.20)

1

[sin2 Yy sin? 01 (w')? + 2sin ), cos ¥y sin? Oy w' w?

+ 2sin vy cos 6 sin 0wiw® + cos? (% sin® 6, (w2)2 + 2 cos 1y sin B cos Ow?w?

+ cos” 61 (w*)?] |
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where we can rewrite the coefficients in terms of the type-1TA dilaton ¢

A= €2¢+2chi

5 = P52
e29t29
Q= N
62927"'29 ~
E=——— ([ +uw)NE (3.21)

Also, we define a first rotation

O = cosw! — sinyw? = cos(hy — 1 )dfy + sin(hy — 1) sin Oady
0% = sinw! + cosPw? = —sin(y — ¥ )dhy 4 cos(y — 1b1) sin Oadey
@3 = w3 = dl/JQ ~+ cos did)g

5 =03,

= cos 0! — sin o

52 = sintro' + cos ) 0?

We then consider a second rotation

obtaining the metric

N, o
ds?, :I62¢ <€2h +

(3.22)
ol = ol
&% = cos 0;0% — sin 6,0
& = sin 0% + cos 6,°
PO
6% = cos 0,62 — sin 0,6°
6% = sin0,6% + cos 6,5° (3.23)

1
I(l + w)Q) dﬁg + Adr® + Edqb% + Y(dOF + sin® 01 dr)?)

+ 2Z[@'d, — sin 0; cos 0107 dipy + sin® O,0°dipy] + Q(&")?

—_
—

!

[\

sin 6,0% + cos 6,0°)?

2

(3.24)
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or reorganizing

e%d

Ne o5 1
Lo (e% + I(l + w)2> al:z:i2 + Adr? + iddﬁ%—

32, =
Sst 4

-, (1 2~
n (E B ezsoﬁg%]\f()]) (dOF + sin” 0,dy?)
L+ vy e @1_1(1+w)d0 2+ A2+1(1+ ) sin 01di) 2
1 5 1 w 5 w ) S vy 1

+ <Q ~ %) ()2, (3.25)

Finally, the 2-form field, which vanishes in the original solution, is nontrivial

after the T-duality and one can write in the following form

B=— {COS 91d¢1 N d¢1 + %Sin(@bl — QZJQ) sin 91(192 VAN d¢1
+%[sin 01 sin 05 cos(1); — 1hy) + cos by cos Oz]dpa A doy + % cos B1dy N dq§1} )
(3.26)
One important cycle in this background is
Co = {01 = 0y = 0,1 = Yy = V|1, ¢o, 7, 71, 12 = const. } (3.27)

which is the cycle where the metric is wrapped.? The induced metric is given by

=2

dsg, = (S + 22+ Q) do* + (Q + Y sin? 0 + 2= sin? § — % cos? 9) dy?®,  (3.28)

and vanishes in the IR limit. The B field vanishes on this cycle.

3.3.2 R-R sector

Remember that the RR-sector for the type ITA supergravity is {C), C®)} while the
RR-sector for type IIB supergravity is {C®, C® C™®} and in the present case, the

2This cycle is a restriction for ¢; = ¢ =const. of the X3 cycle {o* = w'} on which D5-branes are
wrapped. Since ¢; is the T-duality direction, after it, the D4-branes are wrapped on Cs. Moreover,
since supersymmetry was preserved before the T-duality, it should be preserved afterwards, making
it likely the cycle is supersymmetric.
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nontrivial field is just C®, whose field strength is given by the Fy in (3.11),

N, ! A A
Fy = I{(01/\02/\03—w1/\w2/\w3)+%d7’/\al/\w’—
1 . . . :
— #eljk[a’ Aad AWk — Wi Awl A O'k].} (3.29)

Given the T-duality rules for going from type-IIB to type-IIA supergravity,

(2n+1) _ A(2n42) (2n)
CMl--.M2n+1 = MMy M1 d +(2n+1)B [My \¢>\C oMy 1] (3.30a)
(2n) '
+ 2020 + 1) Bagy 15190010 O a1/ 956
(2n+1 (2n)
O s = Chata, = 2090031 C ot a1 955 (3.30b)
we can use (3.12) and find the RR potential forms of the type IIA-solution
n=0
In this case, we have the following components of the dual theory
1) _ ~(2
OMI — CMlQ;
¢ =c®=o, (3.31)

so we obtain the potential

oW = {W[COS 01 cos Oy + sin 0, sin 05 cos(1h — 1y)|dpy — % cos B dyn

N (1+ ) ) N,
n ( - 7) sin(¢1 — o) sin 01d0, + g(l + ) cos Gldz/JQ} .
(3.32)

n=1
In this case, we have

(3) _ 4 .

CM1M2M3 = CM1M2M3¢~) =0
S e 1 0@ @)
Crins = COanan — %(QMWCM 5~ 95C0r5)- (3.33)



Therefore we obtain the three-form potential

c® = —w cos(1hy — y)db; A dopy A dbs
+ W sin 0y sin(ihy — 9)dfy A dpy A dos
— % cos 01 sin 0y sin(1h; — o) [22 + X(1 + )] dioy A doy A dby
- [w cos Oy (3.34)
—i—iv—g (E + (1 ;L ) E) cos 01[cos 01 cos O3 + sin 0 sin 05 cos(1h; — o) | X

X dipy Ndoy A deo
N.(1+ N, (_ X
_ [—( 3 ) + = (: + 5(1 + 7)) cos” 91} dipy N dy A dips
N,
+ e cos Oadpy N dpg A dihs.

We have generated a type ITA-solution of supergravity wich consists of N, D4-
branes wrapping a two-cycle and with a perpendicular S' manifold. This solution
has nontrivial RR 2 and 4-forms defined by Fy = dCW and F, = dCO®.

For completeness, starting from a solution of supergravity in eleven dimensions,
one can consider a dimensional reduction on a circle S' to a type-IIA solution.
Conversely, given a solution of the type-ITA supergravity, we can lift it to a solution of
eleven dimensional supergravity. In fact, the eleven dimensional fields corresponding
to the type IIA ones are written as

gz(xlf% = 672@/3?}MN + €4W301(\})Cz(\}) (0(3))}&1\713 = CZ(\/SI)NP
91(\},11)1 = 64@301(\}) (C(B)ﬁvl[N,n = Bun
11 5
951,1)1 = 178
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Rewriting the dual metric (3.20) as

Ne 5 2 1
d3?, = Z62(@ (62h + %(1 + w)2> dzi, + Adr? + idﬁ + N (df? + sin® 0, dv)?)

+ 2E[COS(¢1 — wg)deldgg — Sin(’(ﬁl — 77/}2) sin 92d01d¢2
— sin(z/zl — w2> sin 91 COS HldwldQQ
+ (cos B sin® B — cos ) sin 0 sin Oy cos(P1 — 12))dip1dgy + sin O dipydas]

—2

+ (Q — % sin2(¢1 — wg) SiIl2 81) d@%
—2

+ (Q — %[sin 0 sin 65 cos(1p; — 1b9) + cos b cos 92]2) de;
—2

+ (Q - % cos? 91) dip3+

=2
+2 (Q cos By — % cos 01 [sin 01 sin 65 cos(1h; — 1y) + cos b1 cos 02]) dpodipy

=2

— 2%[Sin 61 sin 05 cos(1h; — 1ha) + cos by cos O3] sin(; — 1)) sin Oy dbfsdeps

=2

— 2% sin(y); — 1hy) sin Oy cos 61 dbrdy)s | (3.35)
the eleven dimensional metric becomes
ds%u) = 6_2@/3d§§t
+et#3 (P + oW + el + eVl
+ec + el + cPe + el + o + e el

4e/3 (Cg) +C e+ o + dx“’) dz'®. (3.36)

3.3.3 Brane charges

Superstring theories have massless p-form potentials which may be regarded as gen-
eralizations of the electromagnetic gauge field. The Maxwell equations for the gauge

field of electrodynamics A = A,dx" in the presence of sources are
dFy = %TJp, , dx Fy = x7.. (3.37)

It follows that the electric and magnetic charges are given by

62/ *F27 g:/ F27 (338)
52 52
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where S? is a two-sphere surrounding the charges.

In string theory in the presence of n-forms, we can define conserved charges
associated to the gauge potentials and then find the stable branes of given electric
charge. For instance, a Dp-brane in type II superstring theory couples to a (p+ 1)-
form C®*Y with field strength Foio = dC®*t)_ The corresponding electric-type

charge is
Qpp = / *Fpia (3.39)
x8-p

where Y877 is a cycle surrounding the charge.
As an explicit example, consider the original background reviewed in section 3.2.

We know that this solution corresponds to N, D5-branes on an S3. Consider then

the 3-cycle
53 = {W'lo® = 0}, (3.40)
and integrate the RR three form (3.11) on it, obtaining ([ w' A w? A w? = 167?)
1
i Fy = N, 3.41
472 Jas 5 (341)

which means that we have a quantization condition.

In [135], the author showed that there are different types of electric or magnetic
charge associated with a gauge field. Here we collect the main results for D4-branes,
which is the case we are interested in.

In the T-dual solution that we computed above, we have one non trivial RR
1-form C™ and one 3-form C® and the Kalb-Ramond field B is also nonvanishing.
The 4-form gauge field, which is invariant under the abelian gauge transformation
CH — W £ d&y and CG) — CO) — BAdE, is
Fy = dCc® — M A dB. (3.42)
The Bianchi identity reads now

dF, = —dC'™M A dB, (3.43)

and if we regard the right hand side of this equation as a kind of Maxwell current
xJMazwell e are allowed to define a Maxwell charge, by integration of the 4-form
field F, on a four cycle. Another type of charge may be defined when we consider

the Bianchi identity as an exterior derivative of a form, say

d(Fy + CY A dB) = xJ 7, (3.44)
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and again we would define the conserved charge by integration. Comparing the two

definitions, we have that
Pl = Qppreelt + /C 4 cW A dB. (3.45)

One important feature of these charges is that the Maxwell charge is not quantized,
while the Page charge satisfies a quantization condition.

Considering a fixed point in the radial coordinate, the following cycle

ct = {927¢17 ¢27¢2|¢1 =0, = 0} (3-46)

is particularly smooth in studying the above quantities. Let us start with the Page

charge for convenience. On this cycle, the equation simplifies to
*jD4 = dF4 s (347)

and the quantized Page charge is the integral of this current in the five dimensional
space whose boundary is the cycle C*. Therefore, using the Stokes theorem and
normalizing our result, we find (C®)|cs = N,/4 cos Oaddy A dpy A dipy)

Page 1
D4 87T3

Fy = N.. (3.48)
ct
Also, we can define the Maxwell charge in this cycle as

1
]\/Ia:pwell QD4 . 47‘—3 s C(l) A dB : (349)

and using the RR forms that we computed, we have

N.(1
—CWAJB = yisme?d@/\d@wwﬂd@

N.(1 =
= M—wl AW AW ANdey (3.50)

FRES

SO 1 —_

[ cw — 1 +9)N,, 51
e C4C AdB = Z< +7) (3.51)

and we see that the Maxwell charge in not quantized, but it runs along the radial

direction.
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3.4 Field theory aspects

The original motivation of the MNa solution was from the gauge/gravity correspon-
dence. Since we have just found a background by T-duality of the MNa solution,
we want to study properties of the dual gauge field theory to this background.

3.4.1 Wilson loops

Wilson loop observables are given by (see, e.g., [14,43,46,114| for more details)

W(e) = NiTrPexp (z 7{ Aud:p“> | (3.52)

C

where the trace is usually taken over the fundamental representation. From the
expectation value of the Wilson loop, we can compute the quark-antiquark (QQ)
potential. Choosing a rectangular loop with sides of length Lgo in the spatial
direction and T for the time direction, with Lo << T, as T" — oo we have the
behaviour

(W(C)) ~ e Vaal, (3.53)

where Vi is the quark-antiquark potential.

In a confining theory, the potential behaves as

where the constant o is called the QCD string tension, so the expectation value of
the Wilson loop (3.53) obeys the area law,

(W(C)) ~ e, (3.55)

for the rectangular region considered.
In the case of N' = 4 SYM, dual to AdSs x S5, we have a holographic prescription

for a supersymmetric version of the Wilson loop,

W(C) = NiTrP exp { f (iA,3" + 0 X (2)Vi2)dr |, (3.56)

c

where 2#(7) parametrizes the loop and @ parametrizes the sphere S and couples
to the scalars X! in N/ =4 SYM.
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The holographic prescription for the Wilson loop VEV is [31,136],
(W(C)) ~e s, (3.57)

where S is the area of a string world-sheet which ends on a curve C at the boundary
of the AdS5 space. Since the area of the worldsheet is divergent, we need to subtract

the area of the string going straight down from U = oo to U = U,
W(C) ~ e~ 57E®), (3.58)

where £ is the perimeter of the Wilson loop contour C and ® = U,, — Uy. The area

of the worldsheet can be computed using the Nambu-Goto action

1
S =

2wa!

/ drdo(det g,,0, X" X")"/?, (3.59)

where g, is the AdSsx S® metric. In AdSsx S®, we find the behaviour Vg ~ 1/Lgg
determined by conformal invariance, see |31,136].

We now consider a more general background,
ds® = —gudt® + gupda® + g,,dp® + gf?tdyidyj : (3.60)

where we assume that the functions (g, gza, gpp) are functions of p only. We do not
fix the internal space, since we consider a probe string that is not excited in these
directions; so the internal space has no role in the present study.

As in AdS space, we consider a string whose ends are fixed at z = 0 and x = Lgg
at the boundary of space, p — oco. In addition, we assume that it can extend in the
bulk, so that the radial coordinate of the string assumes its minimum value at py,
and that by symmetry this occurs at © = Lgg/2.

We choose a configuration such that
t=17 x=uxz(0) p=plo), (3.61)

and we compute the Nambu-Goto action (3.59) with relation to the metric (3.60).
The induced metric on the worldsheet is G5 = 9, 0,2 02", where

dz\? dp 2
GTT = —0u, GO’O’ = Gz (%) + Gpp (%) ) G’TU’ =0 5 (362)
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and the determinant of the worldsheet is

detGag = _gttg:mv<x/)2 - gttgpp(pl)Q
= /@) = () (3.63)

where we have defined the functions f? = gu¢., and ¢*> = gug,,- Hence we write

the Nambu-Goto action as

T 2w T 2w
= d 222+ g2 (p)? = doL. .64
S5 | o PEP PP = 5 [ o (3.61)
Its equations of motion give
1
Or |7 (" + gzp’Q)] =0 (3.65)
1
Dy T f%’} =0 (3.66)
:1 2 7 1 2 / 2 1
s | 797P | = @ +0799). (3.67)

The first of these equations is trivially satisfied since we assume our background
time independent. The second, (3.66), is satisfied if we assume that the term inside

brackets is a constant Cy. That means

Lo, [P 212 2 12\1/2
zfﬂf?:c'o:> OO:(f$ +9°p")"", (3.68)
which implies that
dp dv f 5 5 dx
o i%C_og f2=Cp = i%Weff , (3.69)
thus we write p p p
P x P

Here we wrote Weys just for convenience and one can check that the third equation
(3.67) is satisfied once we assume that the above equation is true.
From the sort of solution we are looking for, one can show that there are two

distinct regions

x < LQQ/Q % = —Wefsf (371)
dp
x > LQQ/2 % = Weff, (372)



and we can formally integrate these equations, so that

dp n/w dp fo [e's]
— =W = = — da::>$(p):/
dx 1 9] Weff 0 P

dp > dp /LQQ * dp
— = Wesp = = dﬂfiw(p)zL-—/ . x> Lop/2.
dx Weyy . oe o Wers e

' (3.74)

dp
. z<Lop/2 (3.73)
Weff QQ

The fact that the string must be fixed at p — oo and we must have z(p) finite

implies that the following condition must be satisfied
lim Wesr(p) — oo. (3.75)
p—00

Once this equation is satisfied, the string moves to smaller values of the radial
coordinate down to a turning point py where 2|, = 0, namely where Wes;(py) = 0.
We restrict ourselves to turning points Co = f(po).

Now we can compute the quark-antiquark separation pair and its potential en-

ergy. The separation is written as

Wers

Log/2
Log(po) = 2/0 de =2 (3.76)

PO

In order to compute the potential V5 we need the Nambu-Goto action Syg/T
which diverges, but we subtract the W-boson mass given by a string going straight

down on p at x =constant, i.e.

M = /Oﬁ VP2 = /:g(p)dp, (3.77)

so that the renormalized quark-antiquark potential is given by

2ma'Viq(po) = f(po)Log(po) + 2/ dziii; VI*(2) = (o) — 2/ 9(2)dz,
" T (3.78)
and one can show that JV
QWQ'dLZZ = f(po). (3.79)

We can now compute the Wilson loops for the T-dual of the MNa solution. In

this case, the solution of the set of equations is not exactly known, but remember
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that in the UV limit (where we consider the cutoff r ~ A) we have the asymptotic
expansion (3.14a — 3.14e), so that

f? = GGan = €27 (3.80)
9* = Gugrr ~ €7 Nocye*/?, (3.81)

therefore, one may check the boundary condition to see that

1
1 ~ 2000 — £2 .
Lim Weyy Ve f2(ro), (3.82)

f(TO)QQA/BNclﬁci/?

where we will take ry ~ 0, implying f2(ro) = €??. A similar situation occurred in
[137], where the authors found a finite value for the boundary condition lim,_,o, Wess
and it was argued that the QFT needs to be UV-completed.® Under this condition,
we can calculate the QCD string tension (see [45,46,139]) through

1 1
= — 450
o 27T0/f(r0) . 5 C (3.83)
and therefore o .
_ 0
el —29 — S Vo~ Lo 3.84
" dLoo Fro) = Voo = 55 log » (3:84)

which means that this theory exhibits linear confinement.

3.4.2 Gauge coupling

We can consider now another important quantity, the gauge coupling. Consider the
Dirac-Born-Infeld action for a generic probe Dp-brane, wrapping an n-cycle X, with

induced metric

ds}, = A, drtde” + dsh (3.85)
and components given by M = {u,a}, where u = 0,...,p — n are indices in the
Minkowski space and a = 1,...,n are indices of the cycle. We also take the gauge

30ne possibility is that the QFT is deformed by an irrelevant operator, modifying the UV, and
perhaps one could remove it by using the solution in [134] as a starting point, as opposed to the
one in [9].It was argued in [138] that the UV behaviour of the solution in [9] is improved this way.
We thank the referee for this observation.
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field and the Kalb-Ramond field with non vanishing components F},,, and B,;. There-
fore, the DBI action reads

SDBI = —TDp/dp+10'€_¢\/— det(G]\/[N + BMN + 27TO/FMN)

— —TDp/ de’”f\/— det(G,, + 2ma’F),) / d"Ee"b\/— det(Gap + Bap),
M En
(3.86)

where M stands for Minkowski space and d = p + 1 — n is the dimension of the

reduced field theory. Taking an expansion of the first integral in terms of o/, we get

SDBI = _TDp/ dn26_¢\/— det(Gab + Bab>><

3.87)
) N2, ,—4A (
X / d37edA (1 + MFMVFMV+...) ,
M 4

so that we can recognize the gauge coupling as

1

Zo= Tpp(2m’)? / d"Se” D=4 /— det(Gup + Bu)- (3.88)
YM n

Consider first the MNa solution. In this case, the induced metric on the brane is

e

N, |
ds? ; = e [dxiQ + i (€2h + I(l — w)Q) (0’)2} , (3.89)

therefore neglecting numerical factors, the coupling constant is given by

1 o, € 2 i
o ~ (e + T(l —w) ) : (3.90)
and using the asymptotic expansions for these functions, we see that in the IR limit,
the coupling constant diverges gy s — 0o, whilst in the UV limit the coupling con-
stant vanishes gy, — 0, and this fact is consistent with confinement and asymptotic
freedom respectively, as it should be.

Now, we need to consider the case for the T-dual solution of the MNa. As we
know, we need to consider first the case of the D4-brane wrapping a 2-cycle defined
by

C? = {1 = o = ;61 = 6, = 0}, (3.91)
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with ¢ and ¢, fixed. Therefore, the induced metric is given by
~ 52
s}, g = €¥¥%da3 5 + (X + 22 + Q)d6* + (2 sin? 0 + 2=sin® 0 + Q — 51 cos’ 9> d?
(3.92)
and since the Kalb-Ramond field vanishes in this cycle, we can compute the de-
terminant of the induced metric easily. In fact, up to numerical factors the gauge
coupling is

1 = =2 1/2
—— ~ \/§€_¢(E + 2=+ Q)1/2/ (Esin2 0 +2=sin? 6 4 Q — > cos” 0) ,

9y m 52
(3.93)
and the bracket inside the integral can be written as
=2 =2
Q—f—l—sinQQ(Z—l—QE—i—E) , (3.94)
whereas
Y4+224+Q =2 —w. (3.95)

All terms, Ve %, (£ + 22+ Q)V2, Q — E2/5 and © + 25 + 52/, go to infinity at
r — 00, 80 1/g3, — 0o0. At r — 0, \/Ee*‘z’ goes to a constant, whereas X — w2,
Q—Z=2/3 and X +22+Z%/Y go to 0 as r?, so 1/¢g%,, — 0. Therefore we again have

confinement (g%,, — oo as r — 0) and asymptotic freedom (g%,, — 0 as r — 00).*

3.4.3 Nonlocality and entanglement entropy

Another useful quantity is the entanglement entropy (EE), which can be defined
as the von Neumann entropy for a reduced system, in a sense that we will explain
below.

Consider a quantum mechanical system (we closely follow the formalisms pre-
sented in [140-142]), described by a pure ground state |¥). The density matrix is

Prot = | V) (V] (3.96)
and it is easy to see that the von Neumann entropy

Stot = —Tr (Ptot In ptot)

4Of course, as usual one would need to see whether other couplings (to KK modes, for instance)
go to zero as well, in order to have real asymptotic freedom.
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vanishes. By an imaginary process, we can divide the total systems into two sub-
systems A and B, so that, the total Hilbert space is given by the direct product of
the corresponding subsystems Hilbert spaces, that is H = Ha ® Hp.

We may think of the EE as the entropy felt by an observer who has access only
to the subsystem A. Such observer will think that the system is described by the

reduced density matrix
pa =Tt Bpot, (3.97)

where we have smeared out the information of the subsystem B, by taking the trace
over the Hilbert space Hp. Then the entanglement entropy is defined as the von

Neumann entropy for the reduced system A, that is

Sai=—Tr(palnpya).

In a (d+1)—dimensional QFT, it has been proved that the entanglement entropy
diverges, but after introducing an ultraviolet cut-off ¢, the divergence behaves as

Area(0A)

1 + subleading terms , (3.98)
-

SAO(

since the entanglement between the subsystems A and B is more severe at the
boundary JA.

For our purposes, we can take the QFT defined on R with the following
intervals ° [137,138,142],

A=R¥" x 1T,
B =R¥"! xR\Z, (3.99)

where Zy is a line segment of length /. In such a case, the entanglement entropy is

Vol(RI1)

Sa o cd-1

(3.100)

where Vol(R?1) is the volume of the space R?"!, since the boundary of the d-
dimensional region A are two copies of the space R~ with separation /.

The computation of the EE in a QFT is not an easy task for an arbitrary region
A, even if we consider a free theory. If we consider a theory with a gravity dual,

we can compute the EE using the holographic prescription of [140|. In a large N,

5At fixed time, t = to.
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(d+1)—dimensional CFT, we find the minimal area of the d—dimensional surface ~
in the (d + 2)-dimensional AdS space at ¢ = ¢y, whose boundary of v coincides with
the boundary of the region A, that is 9y = 0A.

The holographic entanglement entropy is given by the area of this surface
1 d)
Sy= —/dda\/ng : (3.101)
4G5\(,1+2) v !

where the ng)d is the induced string frame metric on the surface 7. Considering a
ten-dimensional metric, we need to take into account the fact that in nonconformal
theories the dilaton and the volume of the internal space are not constant, therefore
a natural generalization is the prescription

1
Sa = —00) /d8062¢ G®
v

. 3.102
4G§\170 ind ( )

The entropy is obtained by minimizing the action (3.102) above, over all surfaces that
approach the boundary of the entangling region A. Klebanov, Kutasov and Murugan
found in [142] that in a confining background there are two surfaces minimizing the
action, the first one is disconnected which consists of two cigars descending straight
down to the IR cut-off ry, separated by a distance ¢, and the second is a connected
surface, in which the cigars are connected by a tube with the width depending on /.

Consider a gravitational background in the string frame of the form [142]

ds® = a(r)[B(r)dr® + nudatda”] + g5 dy'dy’ (3.103)
where 2# (1 = 0, 1,...,d) parametrize the flat space R4, r is the radial coordinate
and 0' (i = d+2,...,9) are internal coordinates. The volume of the internal manifold

is
Ve = [ doyndetlgy) (3.104)

and if we plug the background (3.103), into the prescription (3.102), we get

] : /2
Sy = 20 /Rd1 ddlx/d6y, /det[g}}“]/ dze > a(r)*?\/1 4 B(r)(0,r)?
N

)2
1 d—1 /2 —24 /2 3
4G(10 Vol(R ) " dz e 2 Via(r) /1 + B(r)(0y7)
+£/2
G“O L Vol(R" 1)// da/H) /T + B (0o (3.105)
0/2

23



where we have denoted by x the direction along which the interval Z, lies, and also

we have defined the useful quantity
H=e V2. (3.106)

We need to find the solution for the equation of motion in the integral (3.105). Since
this integral does not depend explicitly on x, we argue that the “energy” defined with
respect to it is conserved [143], that is, if we take £ = \/H + H{3(r")2, then

d (dL |

d H(r) _
- ( — Hﬁ(r’)2> =0, (3.107)

and after fixing the constant at the minimum value of the radial coordinate r*, we

dr 1 (H@r) N\
&= 50 (H(T*) 1) , (3.108)

and integrating between r* and infinity, we obtain

_ \/m/w dr (%)UQ . (3.109)

Finally, we insert equation (3.108) into (3.105), and we get the entropy density for

implies that

have the solution

the connected solution,

Z = VO Hir (3.110)

-1y 10
Vol(RET) ~ oG b
where we write the UV cut-off r,. As we already know, the entanglement entropy
generally is UV divergent, but KKM found that the difference between the EE of

the connected and disconnected solutions is finite, and is easily seen to be given by

26\ \/_
Vol(Rd-1) (S \/1 — H(r,)/H(r) /0 \/_ (8.111)

The EE can be used as an order parameter for the confinement /deconfinement phase

transition in a confining theory. In fact, a similar phase transition was found by
KKM in [142|, where they showed that depending on the value of ¢, the relevant
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solutions can be either the connected or the disconnected solutions and the phase
transition between these two solutions is a characteristic of confining theories.
Moreover, in [138], it was proved that a sufficient condition for the existence of
phase transitions is that the length ¢(r,) has an upper bound, and the nonexistence
of this maximum correlates with the absence of the phase transition.
We note that the quantity (3.106) is related to the warp factor we get after a
dimensional reduction on the (8 — d)-dimensional compact manifold.

In our particular case, the metric (3.20) can be written as
3%, = XX dat, + X (*N,)dr* + gittdy'dy’, (3.112)

so that we can compute the volume of the internal manifold (3.104) and the warp
factor (3.106) and find H = SV Gt as well as 3 = %9

Using the metrics presented in the section (3.3.1) we can find

l(re) =2+/N.H(r,) (3.113)

¢—
1
VI HGOHED) 1)

26" o)
W (S S N / d’/’€g\/_

—NC/ dredv/H.
To

(3.114)

One could in principle compute the volume of the internal manifold (3.104), but
this gives us a very complicated equation. We then would need to do the following:
firstly, evaluate the determinant of the internal metric and then solve the integral.

But we cannot solve analytically the integral, since we just have asymptotic
solutions. We can nevertheless find the behavior of V.

The asymptotic behavior of the determinant is important, so we need to know -
at least qualitatively - its expression. In fact, the metric of the internal manifold is
of the form
956 955 955 Ys0 Yos Yoy
930 956 955 Yoo 9o Iou
Gt = | o8 9aa 95 Gie Gie G (3.115)

906 Y905 Yoy Yoo Gop Yoy
96 9os 9oi Go0 Gop Jov
Gi Iy Gpi Gvo Gus  Guu




where the nonvanishing components are

Jgg = X Jjs =2 Gg5 = Ssin’ 6y
oo = Q — £E2sin®(¢py — ¢3) sin® 0

Jop = %EQ n(1; — 1hy) sin By [sin b sin Oy cos(1); — 1g) + cos b1 cos O]
9oy = %E n(y; — o) sin by cos O

Jos = Q2 — £E[sin 0y sin b cos(1y — 12) 4 cos b; cos 0]

Goyp = S2cos by — %EQ cos 01 [sin 6 sin Oy cos(1); — 1g) + cos b cos Os)

1=2

Gy = Q0 — 5% cos® b,
Ggg = = cos(yy — wz) Gy = —=sin(yy — o) sinby | gz = —=sin ) cos by sin(¢y — o)

Jjp = E[cos 0y sin® 6, — cos 0 sin 0 sin O, cos(h; — )]

Gj, = Esin 20,

The determinant of this matrix is really laborious to calculate. However, the
volume element acts just in the angular directions, 0 < 6, < 7, 0 < ¢, < 2m,
0 <, < 4mw. So, we can ignore the expression of the angular directions, since it
only gives us numerical factors, which in the asymptotic limit are not important at
all. We are mainly interested in the radial direction.

In the UV limit r — oo, the determinant is a function of the form
det[§™] ~ €'/3 A + subleading , (3.116)

where A is a function of the angular directions only, so V;,; diverges at r — oo. We
also then find H ~ €'%/% and e9 ~ €2/3 so I(r*) in (3.113) and S(conn) — Gl(disconn)
in (3.114) are actually convergent at r — oo.

We also obtain that, modulo possible cancellations, det[g;,] is finite at r — 0,
therefore both H and 8 remain finite at » — 0.

Then from (3.113), as r* — 0, [(*) goes to a constant, whereas at r* — o0,

0o 2r/3
I(r*) ~ 68T*/3/ dr < = / /
- \/6167'/3 _ 616r*/3 / A /

(3.117)
where 7 = /3 and z = 7/, so I(r*) goes to infinity. This behaviour (I(r*)
increasing to infinity) already suggests there is no phase transition. Indeed, as
was pointed in [137,138|, the absence of a maximum value for [(r,) suggests the

absence of a first order phase transition in the entanglement entropy (in the cases
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with phase transition in the entanglement entropy, we have a maximum for {(r*): [
increases to a maximum, then decreases with r*). To verify this, we check the sign
of Sleonn) _ Gldisconn) at ze10 and infinity. At r* — 0,

e [ drero)VHG) (

*—0

AS

1
N ool 1) >0, (3.118)

since the integrand is positive. At r* — oo,

0 . 1 r*—00 .
AS|p oo~ /T*%OO drefd(r)\/H(r) (\/1 0 TG - 1) —/0 dred(r)H(r)

1—e 3
= ;(f*f [/100dzz4( 1;8 —1) —/Oldzz4]
= ;(f*)5\i§§<(§g)) — 400, (3.119)

so is not only positive, but goes to infinity. If nothing strange happens in between
(at finite 7*), it means that the disconnected solution has always the lower entropy,
implying that there is no phase transition. It is worth mentioning that this behavior
is consistent with [138], where a detailed study of entanglement entropy as a probe
of confinement was considered. In fact, they showed that the UV completion done

in [134] provides a consistent model with phase transitions.

3.4.4 Domain walls

Our configuration consists of a D4-Brane wrapping a two-cycle defined by C? =
{6y = 09,11 =102} and for ¢y =const., this cycle vanishes in the IR limit.

We may think of probe D4 branes that wrap the cycle S% = {0, } at r — 0 and
the remaining angular directions are fixed. This configuration can act as a domain
wall if it has finite tension. This is an useful observable, since even in the presence
of singularities, the tension of the domain wall remains finite. Taking the cycle S2,
the induced metric is

~2 N e*? 2h e* 2 2 2 . 9 2
dsg = — e + I(l +w)* | dry, + X(dOy + sin® 0,dyy). (3.120)
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The tension of the domain wall can be computed from the DBI action of the D4-

S = —Tm/deldm/d%e—%qm = — eff/d%, (3.121)

so that the tension in the IR,

brane

N2 2 ? AN
T.sp = 4me %2 (Z) <e2h + %(1 + w)2) STy ~ dme?/? (I) GeTpy
(3.122)
is finite. We can follow the formalism of [144] (see also [137]) and add a gauge field
Ay, with field strength G5 = dA; in the Minkowski part of the world volume of the

brane, in such a way that we induce a Wess-Zumino term of the form
SWZ = TD4 / C(l) VAN GQ A G2 = —TD4/FQ A GQ A Al, (3123)

where C() is the one-form that we found above, and F, = dC its field strength.
Using the cycle S2, in which the field strength is

N
FQ = —Z sin 91(191 VAN diz}l, (3124)
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we can perform the integral

/ FQ = —27TNC,
S2

and we insert this integral into the Wess-Zumino action (3.123) above, so that
S = 27TNCTD4 / GQ A Al- (3125)

We see that we have induced a Chern-Simons term in the 241 gauge theory, on the

domain wall.
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Chapter 4

N =1 AdS Backgrounds

N the last chapter we studied the action of an abelian T-duality on a

background dual to a nonconformal field theory. In this chapter we want

to see how a nonabelian T-duality acts on a backgroud with an AdS factor.
The study of nonabelian T-duality of AdS backgrounds was initiated in [23,145], and
recently, [146] reported a large class of new solutions with AdSs factors and made
the analysis of the field theory ', following [119], that performed the nonabelian
T-duality in a type IIB solution of the type AdSs x X° obtained in [26] after a
dimensional reduction of the warped solution AdSs x.,, Mg of D = 11 supergravity,
followed by an abelian T-duality.

In particular, we explore the nonabelian T-duality on the type IIA supergravity
solution (that is, before the abelian T-duality which gives AdSs x X?) of the form
AdS5 X, M5, where the internal manifold is obtained after a dimensional reduction
of a space that consists of a 2-sphere bundle over S? x T? [26].

Another application considered relates to the background found in [27]. It con-
sists of a domain wall with non trivial fluxes in the NS-NS and RR sectors. This
domain wall solution flows to the background AdS; x R? x S? x 83 in the IR limit,
and in the UV to AdSs x T%'. We study the T-dual of this domain wall and see
that it has as limits the T-dual of AdSs x TH! and AdS; x R? x S? x S3. We then
study the implication of nonabelian T-duality for the dual conformal field theories,
through a calculation of central charges.

The chapter is organized as follows. In section 4.1 we apply the nonabelian

!Nonabelian T-duality on solutions with AdS factors was considered also in [147-149].
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T-duality to the warped AdS5 solution. In section 4.2 we consider the T-dual of
the domain wall solution and in section 4.3 we consider dual conformal field theory

aspects of the T-dual solution and calculate central charges.

4.1 Warped AdS; solution

Supersymmetric solutions of D = 11 supergravity of the form AdSs x,, Mg, with
nontrivial four form flux living in the internal Riemann manifold were considered
in [26]. The authors found that the six dimensional Riemannian manifold always
admits a Killing vector, and that locally, the five-dimensional space orthogonal to
the Killing vector is a warped product of a one dimensional space parametrized by
the coordinate y and a four-dimensional complex space M.

Also, the authors found a large class of regular solutions. One of this solutions,
namely My = S? x T? is peculiar. Firstly we can reduce on an S* direction in the
torus 7T so that we can obtain a regular solution of type IIA solution of the form,
AdSs x X!. Moreover, after a T-duality on the other S' we get a type IIB solution
of the form AdSs x X5, where X;5 is a family of Sasaki-Einstein manifolds, and the
global aspects of these spaces was studied in [150,151].

The type ITA solution of [26] is of the form

L ds? = ds?(AdS5) + o (y)dy? + az(y)dz® + Bi(y) (LT + L3) + Ba(y) L3, (4.1a)

R2 " S
Gy (x)dordzy 9ij(w)LiL;
1
ﬁB =(y)dz N L (4.1b)
Blu‘dx“/\Li
0= 6(y) (4.1
1

ﬁFiRR) = n(y)dy A Vol(S?) A Ly (4.1d)

where L; = 0;/v/2, with i = 1,2,3 are the Maurer-Cartan forms of the group SU(2),

satisfying
1
dLZ = _éﬁeijk[/j A Lk, (42)
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with the left invariant forms

o1 = cosdf + sin v sin fd¢
o9 = —sinydf + cos 1 sin Od¢ (4.3)
03 = dip + cos 0d.

The coeflicients of this solution are given by

— 2
ai(y) = e Psec’(, as(y) = e, Bily) = 1 3cy, Baly) = 26(?98 S
 V2(ca+ ey — 2y) q O 2V2(l—cy)  2V2 (4.4)
1Y) =~ 6(a— 57 and (y) = — = - -2,

so that the metric is

1 —
ds? = R*ds*(AdSs) + R*e % sec? Cdy® + R*e”*da? + RQTCy(dQQ + sin? 0d¢?)
2

+ = cos? ((dvp + cos 0dg)?,

9
(4.5a)
where = parametrizes the circle S* of length 27a’/(IR?), with?
I = d , (4.5b)
3% = 2p* + py/4p® — 3¢?

(0,¢) are the polar and azimuthal angles in S?, y € (y1,92) and 0 < ¢ < 27 (note
that in our conventions, x and y are dimensionless, i.e. are written in units of R).
The angle ¢ is defined by sin¢ = 2ye™3* and €% = 2(a — y?)/(1 — ¢y) and a, c are
constants such that, if ¢ # 0 then 0 < a < 1, and if ¢ = 0 then a # 0, and if ¢ # 0

one can set it to 1 and find
a=3 + ————/4p? — 3¢, (4.5¢)

where p,q € Z.
The dilaton is
= —3A (4.5d)

2At the level of the supergravity action, the periodicity of z is arbitrary [26]. But it is T-dual
to a IIB solution involving Sasaki-Einstein spaces, for which there is a geometric constraint on the
periodicity [150].
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and the Kalb-Ramond field is
(ca + cy? — 2y)
6(a —y?)

In the RR sector, we have only a nonzero four-form field

B=R?

(dip + cosOdg) N dz. (4.5¢)

F, = —ngdy A (dip 4 cos 0dp) A Vol(S?). (4.6)

In what follows, it is convenient to use the frame fields
% = eldz®  AdSs directions
¢’ = Ra}ﬂdm, ¢’ = Ra;mdy (4.7)
o' = RA’Li, & =RpLy, ¢ =RpE"Ls,

so that we have the matrix x%; given by

RA 0 0
k=1 0 RB”? o |. (4.8)
0 0 RA”

4.1.1 Nonabelian T-dual model

We want to T-dualize the solution of the previous section with respect to the SU(2).
In fact, due to the AdS/CFT duality, there are a significant number of research
concerning the nonabelian T-duality of solutions with metric with a AdSj factor,
for instance, in [22,25,119,152-155].

As in section 2.3, we form the matrix M;;, given by M;; = g;; + bij + &€, 0%, S0

(bij = O; 9ij = "iaiﬁaj)a

R2ﬁ1 OéTA)g _Oé,'ﬁQ
M = —Oé,?Ajg R261 Oé/’[Jl . (49&)
O/f)g —O./If}l R2/82

We pick a gauge where § = ¢ = vy = 0, so that 0 = (costvq,sinvy,vs). This
gauge is useful when the vector 0y is a Killing vector as the present case (see [23],

for further possible choices). Therefore, the matrix M in this gauge is

R%j, a'vs —a/ sin vy
M = —a/vg R%B, o cospvy | . (4.9b)
o/ sinv;  —a’ cos Py R?B,
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The dilaton in the dual theory is given by

6= ¢——1 (A> (4.10)

0/3

where A = det M = R?*[(R*3? + o/?v3) 52 + o*vif].

To simplify the notation, from now on we absorb R? in 3y, B2, &' in vy, v3, as well
as R? in oy, a9, 7.

The inverse of the matrix M is then

B1 B2 + v cos? 1) v3f3y + vicosysiny  vivzcosy — vy Py siney
(M—HT = X —v335 + v? cos ) sin 1 B1B2 + vZsin? 1) 011 cos Y + V15 sin Y
V1vU3 COS '(b -+ Ulﬂl sin w _Ulﬁl COS w “+ V103 sin 1/} U?% + B%
(4.11)

Finally, taking the symmetric and skew-symmetric part of (2.70), we get the
following T-dual fields

~ 1
Guu = 5 (Qm WIQ]V + Qw UlQJ/L)
1 -1
5 (Qm - QjPLMij )
. L, - _
9i5 = 5 (M + M)
~ 1 _
BIW = 5 (Qm z]lQJV QviMileju)
_ 1
2

For the solution (4.1a - 4.1d), where z# = {z,y, AdS5 coordinates} and i =
1,2, 3, we consider just the terms which will be affected by the nonabelian T-duality,

namely, Qz, Qi and Q;;, giving

me = Gxx = Qg (y) Qx?) = B:J:S = P)/(y)
Qu =0Qxn=91= 51(9) Q33 = g3z = ﬁz(y)
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For the metric, we obtain éuv = G, ém- = 0V pu,v # x. Moreover, we have the

diagonal component

e = anly) + 5 (R + B (1.12)

o

the crossed terms

~ 1
Gp1 = —-Yv1v3COS Y

A
~ 1
Gpo = A0 sin 1 (4.13)
~ 1
G$3 = Z’Y(U?% + 612) )

and the g;; components
. 1 5 9 . 1, ) . 1
g = K(ﬂl@Q + vy cos” ), Gz = Z% cosysingy, gz = ZU1U3 cos ¢

) 1 ' A 1 ) ) 1 .
921 = ZU% cosPsineg,  gag = Z(ﬁﬁz +ofsin® ),  gos = N sin

(4.14)
o1 = ~ by Gp = —vusing, Gy = ~ (v + 57)
= — cos = — S = — .
g31 AU1U3 y 932 AUW:& my, gss A Us 1
All in all, we have the type IIB metric
1
ds® = d3* + —d>?, (4.15)
A
where
d3® = ds’ g + a1 (y)dy* + az(y)da® (4.16a)
and

2
dx? = 4202 + B2)daz® + —;dx [v105(cos by + sinphdiy) + (v3 + 57)dds]

\/_
(1B + vi cos? 1)do? + (B1 52 + vi sin® 1) di3 + 207 cos 1 sin Ydi, diy
(4.16b)

_|_

N | —

+ 20103 cos hddy diy + 20,03 sin Ydindds + (v2 + B2)d2
Remembering that 0 = (vy cos ¢, vy sin, v3), we rewrite it as

2 1
dEQ :,}/2(@3 + 5%)6&%’2 + %dl’ (Ulvgd?jl + <U§ + ﬁf)dﬂg) + §ﬁ1ﬁ2U%d¢2+
2 (4.16¢)

1
+ =(B1B2 + v})dvi + vivsdvidus + §(U§ + ﬂf)dv%

| —
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For later use, we calculate +/det g;,, for this metric, where g;,;, refers to the
internal, non-AdS, part of the metric. Writing explicitly the factors of R and o/, we

obtain

\/@ _R3 ,3\/_\/ 5152 \/ det (417)

where M is the matrix

AR?ap + 2R (03 + BIRY)  J5R*a”vvs HR* (a0 + BiRY)

V2
~ R4+a’21)2
M = lRZO/zUl’U?, 5152 5 O/2v12113
2 2 2 p4
N P2 12,2 2 p4 12 v1v3 vz +BIR
R (o%v3 + BIRY) o/ e i

(4.18)

and we find

detM = 062% :> V detgznt \/Oé]_CYQ/B]_ \/_ (419)

Finally, the T-dual Kalb-Ramond field is given by

B = 29PL 00 (= singdis + coswdin)

\/§1A
‘l‘—(—’l)gﬁgdf)l A di}Q + "Ulﬁl sin wdﬁl N d@g — Ulﬁl COS @Z)d@Q AN df)g)

2
= % |:’U\1/ﬂ§1 <’}/dl‘ —+ %dvg) - %’Uﬂ]gﬁgdvl] A dlp (420)

The T-dual vielbeins are 3

¢ = \/\/__A (v1vsBadtp + (v} + B182)dvr + vivsdus) — 1 Aﬁl v1vsde (4.21a)
¢ = _\/\/iﬂ_i (0151 B2drp — Bovgduy + vy frdus) — Vimvlﬁlcm (4.21b)
= VD (—viBrdyp + vivsdoy + (v3 + B)dvs) — 7\/@( + BHdz, (4.21c)

63——\/§A

where we have defined the rotated vielbeins

¢ _ costy  sin ¢ (4.21d)
¢, —siny costp) \ ey ) '

3In fact, we have two different sets of dual frame fields related by a Lorentz transformation,
that is, ¢4 = Ae_, as a result of the different transformation rules of the left- and the right- movers

in the sigma model [23]. For simplicity, in this letter we consider just the ¢; terms.

65



In term of this basis we write the Kalb-Ramond field (4.20) as

N a——
Gj} (8132)"/2

Using these results,we are able to find the RR forms in this type IIB background.
We write the four-form (4.1d) as (e; Aeg Aeg = 6“ﬁvol($2) A L3, remembering that
f3; contain R?)

B A L
3 Uy ——— ¢33 N\ ¢h. (4.22)

F4:EOdy/\el/\eg/\egEG%B)/\el/\eg/\eg, (423)

where G Zody with =y = —4\/_R/(3ﬁ1/2 = 4\/§/m In this way we
have written the RR 4-form in the way suited to apply the nonabelian T-duality as
described in the Appendix.

Using these rules, we find F4 = FQ = 0 and (reintroducing all factors of R and

¥ 5 R 4f
F1 = —€¢ ¢A0Gg3) = dCO = ,3/2 51dy (424)

~ A~ o~ 1 “ “ R

Fy = dCy— CodB = §e¢’¢G§3) A e“bcAcea Ay
1 o
= Eo§e“b0Aady A ey A e,

_ Rf\/gﬂimw [ \/551 <7dv3+R2fyd ) ”’235%1] A d)
L‘l\/ﬁ 1 1/2

R — / 1/2 /
a2 3 ﬁ;/zd A<ﬁ2 vzey A ey + 3 vleQAeg,)

— BAF, (4.25)

where the coefficients from the appendix are

1

A, = Al/2.A (4.26)
and A, = k%0" = Ra/ (ﬁ vy cosw 61 vy sin ), 52 ®v3). This background is sup-
plemented by the forms Fg = *Fl and F7 = — % F3. Using these expressions it is

straightforward to verify that the Bianchi identities dF7 = 0 and dF3 = H N F} are
satisfied. Moreover, B A F3 = 0.
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For later use, we also compute the Page charges in this geometry. The quantized

Page charges in this background are given by *

1 ~ ~ ~
QPage —/ Fs—BAF;)=0
1 ~ ~ ~
Page — | (Fs,—=BAF)=0 4.27
O = pa | (B-BAR) (4.27)
1 V2 R 42 c(y1 + y2)
Page _ _ — —1 2 =
or = QR%OTD7 /y1 b= a’3/2 9 (v2 = 1) (1 2 Nor

where, since after an abelian T-duality along the z-direction on the solution (4.1a-
4.1d) we get a the Sasaki-Einstein manifold, we have |150, 156]

1
1 4p(p q P q?)
1
Yo = 4—p(2p+3q— 4p% —3¢?) , (4.28)

the solutions to cos* ¢ = 0, and p,q € N with (p,q) = 1 for p > ¢. One may verify
that this new background has N/ = 1 supersymmetry, under the criteria of [23]. In
fact, in [121] the authors have proved that the vanishing of the Kosmann derivative
in the dualized directions of the Killing spinors means supersymmetry is preserved.®
In the present case, the derivative trivially vanishes, because the Killing spinors are
independent of the dualized directions. Moreover, in [121] a proof was given for the
formula (2.83), with closed expressions for the dual p-form potentials, that can be

applied more easily to specific cases.

Note that we could have considered the same calculation with a different gauge

fixing for the Lagrange multipliers. Consider that the matrix M is instead

51 V3 —U2
M = —U3 ﬁl U1 5 (429)
Vo —U1 52

with v = (pcos(siny, psin(sin x, pcosx). In this coordinate system, we have that

A = Bo(B? + p?cos? x) + B2p?sin? x. The inverse of the matrix M gives equation

“Note that 2x%, = (27)7a/* and Tp, = (27) 2/~ "5, s0 2x2,Tp, = (2l,)7 7.
®The supersymmetry preservation under nonabelian T-duality was discussed before in [147]
and [133].
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(4.11), but with the replacements

Y~ (, v~ psiny, U3~ pcosy. (4.30)

4.2 Flowing from AdS5 to AdS;

In a recent paper [27], the authors considered the construction of a supersymmetric
domain wall that approaches AdSs x T! in the UV limit, and AdSs; x R? x 52 x S3
in the TR limit. In this section we consider the nonabelian T-dual solution of the
domain wall ansatz and see that it has as its limit the nonabelian T-dual of the
AdSs x TH! and AdS; x R? x S? x S? in the UV and IR respectively.

In fact, the nonabelian T-dual solution of AdSsx T"! is already known from [23].
We therefore start with a short review of this solution. We consider the conventions
of [27]. Then the type IIB solution is

1 1 1
ﬁdsid&XWJ = dSsts + E(ds% + ds3) + §(dw + P)? (4.31a)
1
ﬁﬁg = 4(volags, + volpi), (4.31b)

and B = 0, ¢ =constant, where ds? = df? +sin® §;d¢? and P = cos 0,d¢, + cos Ordep
and we make the replacements v; ~ 2y; and vz ~ 2ys. The NS-NS sector of the

T-dual background is given by

2 2 2 2 )\(2)>\2 2 2
dST(AdS5><T1’1) = dsjgs, + Aodst + A Y103
1
+ 3 L7+ Ayt + (v3 + Ao)dys + 2pnyedyrdys] - (4.32a)
. 22
B = N [1yadys + (y5 + Ng)dy2] A a3, (4.32b)
e 2% = 8N/ /2, (4.32¢)

where A3 = 1/6, \* =1/9, 05 = dip + cos 61d¢;, and

~

A = det M =8A =8\ayi + A2 (y5 + )]
Bvi + Ba(vi + B7). (4.33)

Here 81 = 2X2, Ba = 2%, v; = 2y; and vz = 2y, and as in section 2, we have

absorbed a factor of R? in 31, 32, and a factor of o in v;,v3. The RR-sector is given
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by

o*2RFy = 8v/2X\\sin 0yd¢yy A db;

~ 4.34
o*?RE, = _8\/5)\3)\% sin01dgy A dby A oz A (Nyrdys — N2yady). .
For completeness, the T-dual vielbeins are given by
. A
¢ = _ZO [(y7 + NN0)dyr + y1ya(dyz + No)] (4.35a)
. A
¢ = ZO [Nyadyr — Ay (dyz + No3)] (4.35b)
. A
&5 = = [yiwadys + (43 + A5)dy2 — Ayios] . (4.35¢)

and as before, we defined the rotated vielbeins

Oz -
[ —siny cosvy ¢

This completes the type IIA background T-dual to AdSs x T in type 1IB

supergravity.

4.2.1 AdS; solution and its nonabelian T-dual

The solution with metric AdS; x R? x S? x S3 is given by

1 1 1
ﬁdsidsngzxszxszs :3—\/§ (st?axdsg + dzf + dz% + ds? + dsg + 5(611/1 + P)2)
(4.37a)
1 —T —TBQ
— B =——2(voly —voly) = z1(voly — vol 4.37b
R2 6\/6 1( 1 2) 2\/§R2 1( 1 2) ( )
1 T
—Fs =——dzy, N (voly — vol 4.37c
P == A vl — ol (1.570)
1F—1 ladss N |4dzy N d +T2(l+ l5)
R4 5 —27 VO AdSs Z1 Z9 9 VOl VOloy

2
+(dy + P) A lvoll A voly + %dzl A dzy N (voly + volg)} } ,
(4.37d)

where 7 is a constant.
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In order to find its T-dual, we consider the Maurer-Cartan forms

L, = %(COS Ydfy + sin ) sin Oadeps)

Ly = %(— sin ¢ dfy + cos 1) sin Oadeps) (4.38)
1

Lg T(dw —+ cos 92d¢2)

such that voly, = 2L, A Ly. Using the set-up of section 2.3, the vielbeins related to

the directions to be T-dualized are

o' = B°L, (4.392)
e = 3L, (4.39D)
¢® = B3/*(Ls + 1/V/2 cos 01dey). (4.39¢)

where we have defined 3; = 3 \f and fy = \l/g, absorbing the factors of R? in them
for simplicity.

With these definitions, we may write the metric as

ds® = Ba(2ds% g, + dst + dss + dzf + dz3) + (') + (2)? + (%)? (4.40)

and the RR-forms as (voly = 2e¢! Ae?, dip + P = V2 e3)

B1

S

1

ﬁFg \T/_dzg A voly — \/§d2}2 Ael A e? (4.41a)
72 2 4 9
—F5 {UOlAdS3 VAN |:4d21 N dZQ + ? <UOll + =¢ Ae ):|
1
2 2 2 2
—i—ie?’ A [voll A —et A+ 7-—dzl A dzo N\ (vol1 + —¢'A 22)} ,

. /32 1 8 B

(4.41b)
or as

=GV G A A (4.41¢)
=GO L BASHCEANIATHCY At AP A, (4.41d)
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where
1

R4

1 2
Gé(]) — 2_7'UOZAdS3 A |fld21 A dZQ + %U0l1:|

1 272
ﬁGi = \/_—j-l/del N dZQ A UOll,
21634
1 T 1 72
— G = ——dzy Avol — G2 = ——vol
203 6\/6 Z2 N voly, RT3 275100 AdS3
1 4 1 72
—G(s) = ———== (UO[ + —dz; Ndz )
R onvaglp 8T
1 T
— G = ———=dz. 4.42
R2 1 \/§ ZQ ( )
The matrix M is given by M;; = g;; + b;j + o€, 0k, so (after absorbing o factors
in 171)
o %52 + U3 —0y
M = —%52 — U3 b u |, (4.43)
() —0y B

As before, we consider the gauge fixing § = ¢ = vy = 0, so that the coordinates
become v = (cos vy, sin vy, v3), and for simplicity we define 05 = %Bg + 03, in
such a way that the inverse of M is (4.11), with the replacement v3 ~» v3, that is,

B1 By 4 v2 cos® 3 + v2 cos 1 sin 1) 1)1'123 cos ) — vy By siny
(M—HT = 3 — 0335 + v? cos 1 sin 1) P12 + v?sin? 1) v1 81 cosY + v1Ugsiny |
V103 cOs Y + vlﬁl sin v —vlﬁ] coS Y + v103 sin Y ﬁg + B%
(4.44)

where the determinant det M is A = det M = (52 + 02) 5, + v253,.
Under these definitions, we must apply the duality on the following fields®

Qos = Gos = P (5i0% 01 + 1 c0s?0,) | Quz = Gz = Qap = L2 P cos b,

Qoo = Gop = Po

Qop = Boy = —#52152 sin 0, Eig =bia = \2/—%5221
‘E11:E22=911:5~1 ‘E33=g33:5~2 ‘

6Note that since the dependence on the angular coordinates (¢9,6:) is encapsulated into the
Maurer-Cartan forms L;, in what follows the subscript (¢, #) refers logically to (¢1,61).
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Using these results and the same procedure as in section 3, we find that the dual

metric, dilaton and B field are

~ 1 ~ ~
dSAdeXRQXSQXSJ == BQ (2d8,24d53 + dZ% + dzg + dS%) + Eﬁlﬁﬂj%(dw + cos 01d¢1)2

1 -~ -
+ oK [(&Bg + v7)dvi + (05 + B)dvs + 20, 93dvdvs (4.45)
. 1. A
I~ U1 . 5 =
B = ——(0385dv; — v151d03) N d
ZA( 3B2dv; 181d0s) ~¢
_527'21

sin 491d91 A d¢1 + 5—2’01'&3 COS 91d¢1 N dU1

2v2

+2ﬁ—2 cos 01 (02 + )doy A dig

R ~
= ;\/Z_l ll + 6~ 0'3 (Ulﬁgdvl + (1~)§ + ﬁ%)dvg) (446)

For later use, the \/det g;,,; for this metric (g;, is as before the internal, i.e. non-AdS,

part of the metric) is

0
Vdet gine = s21r\1/_1 6122 vy. (4.47)

With F3 and F; written as in (4.41c) and (4.41d), we can apply the formulas in
the appendix, reintroduce the factors of o' in (4.42), (4.45) and (4.46) and obtain
the RR-sector T-dual forms ﬁl = }/7’\3 = ﬁ5 =0 and (FG and Fg would be redundant,

as we consider their Poincaré duals F; and Fy)

B, = o9 {_A0G53> TG A (Age! — A - A0E3)}

F, = ¢ {Agc:i G A (Age! — 482 — Ape®) + GO (A6 + Ape® + Ay
FG A (Azet A2+ AL A+ AP A ) + A;GIRE AR A é3} , (4.48)

where as before, =% = \/Za’_?’/Q, o320 A, = Bir/ B2 and o32et0A, — A,

and the dual vielbeins are
1/2
éﬁd53 \/_A [(5152 + v3)dvy + v, 03dvs + vlvgﬁg(dw + cos 91d¢1)] (4.49a)
» 51/2
eAng \/_A
¢ o = B Osd 02 + 52)d 23, (d 0,d 4.49
Cass, =~ 5% [01Psdun + (05 + B)dvs — viB1(dip 4 cos O1der) | - (4.49c¢)

21)3d'U1 — Ulﬁldvg — Ulﬁlﬁg(dlp —+ cos 01d¢1)i| (449]3)
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4.2.2 Domain Wall and its nonabelian T-dual

The Domain Wall solution which has as limits the above AdS3 and AdSs solution
is given by

1
ﬁds%w 262’4(—0{152 + da?) 4 e*P(da? + dad) + dp?
L oy, so NI % 2
+ 6¢ (dsy + ds3) + g¢ (V2Ls + cos 81déy) (4.50a)
1 —T
ﬁB —?xl(voll — voly) (4.50Db)
1
ﬁFg _Edl’g A (voly — vols) (4.50¢)
1
@F =4e*AT2B=V=4U qp A dx A day A dxy A dp + (\/_Lg + cos O1ddy) A voly A voly
%dxl A dxy N (\/_Lg + cos b1dgpy) A (voly + voly) (4.50d)

+ %ezA_QB_th Adx A dp A (voly + voly).

Here 7 is a constant and A, B, U, V" are functions of the radial coordinate p. From this
solution, we see that we can recover AdSs x T by setting the constant 7 = 0 and
A=B=pand U=V = 0. On the other hand, to recover the AdSs; x R? x §% x §3

solution, we set

33/4 1 4

and change variables by z; ~ z;/ V6 .
As before, the T-dual model is given by

dshy = RQezA(—dt2 + da?) + R?e*P(da? + da3) + R*dp?
R 1 - =
+—e?dst + —_ﬁlﬁzvf(d@/} + cos O dey )

6
1 —_
2A {(5152 + Ul)dvl (ﬁ% + 1732,)(111% + 21;1173(1111611}3}
~ TRx 3
B = — 6 1 2 —+ QBA (Ulﬁgdvl + (@g + 5%)dv3>
gg _ 4 —ln = (4.52)

where we have defined

= 1 - 2 T ) - o _
51 = §€2U7 52 = —62‘/7 vg = 5901 + v3, A= (5% + U§)52 + U%ﬁl ) (4-53)



and as before we absorbed R? factors in 3; and o/ in v;.

We can easily see that we can obtain the correct limits in the NS-NS sector.
The UV and IR limits of the T-dual solution to the domain wall are the nonabelian
T-duals of the AdSs x TV and the AdSs x R? x S? x S% solutions, respectively.

In the RR sector, we could verify term by term that the equality holds, but
alternatively, one can find the RR-forms components in the same way as in (4.42).

In the present case, we obtain

2
—G O — qt A da A dp A (462A+2BV4Ud.1'1 A dxy + T—eQAQBVvoll) (4.54)

R4 12

1 V272

ﬁGi = 3651/2 ———dx; A dxy A voly (4.55)
L GO T ey Avoly, Gl = T 2A2BV gy p e A d 4.56
R2 G To AN VOl , R 6/316 T p ( )
1 24/2 24/272

—4Gg3) \/_1/2 vol; + Lmdxl A dxy (4.57)
R 2761, 36515,

R2 G12 —S—&dxg s (458)

Then the T-dual RR-forms are as in (4.48), i.e
B, = {—AOGg3> FGR2 A (Aget — A — AoaS)}

~

F, = ¢ {A?,Gi S G2 (Age! — A8 — A8 + GO A (A + A + A3
FCD A (A A2+ A A&+ A2 A ) + A3G12% A2 A é?’} . (4.59)

Finally, we can also compute the vielbeins and see that they have the correct limits,
therefore the RR-sector also has the correct limits. For instance, the frame field ¢3

of the Domain Wall is
31/2

e?ﬁldS(DW) = —ﬁ [U1@3dvl + (17? + Bf)dvg - U%Bl(diﬁ — COS 91d¢1)} ) (4-603)

and we can easily verify that the UV and IR limits are the frame field ¢® in the
AdS;, AdS;

1/2

€as, = —% [v1vsdvy + (V3 + B7)dvs — v 61 (dy + cos b1dg )] (4.60D)

51/2

eing = —% |:’U1773d’01 + (ﬁg + B%)dv?) — U%Bl (d¢ 4+ cos 01d¢1)i| (460C)

respectively.
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4.3 Dual conformal field theories, central charges
and RG flow

An interesting question is, what happens to the conformal field theories dual to
the gravity backgrounds with AdS factor under nonabelian T-duality on the extra
dimensional space? The answer is not obvious. Abelian T-duality on a direction
transverse to a Dp-brane turns it into a D(p + 1)-brane, but if the original direction
is infinite in extent, the T-dual direction is infinitesimal in extent. However, this
discussion makes sense only in the region far from the region where AdS/CFT is
relevant, the core of the D-brane.

Naively, abelian T-duality on the transverse part of a gravity dual should increase
the dimensionality of the brane, therefore of the field theory dual to the background.
But if we perform a nonabelian T-duality on a space with an AdS factor, in such
a way that the AdS factor is not affected, and moreover the T-duality does not
introduce a new AdS direction, then it seems that the dimensionality of the dual
conformal field theory is unaffected. And yet since the gravity dual is modified, it
is logical to assume that the conformal field theory is modified as well.

To understand the effect of nonabelian T-duality on the conformal field theory, we
need some probes of the transverse space in AdS/CFT. Such probes are for instance
wrapped branes, dual to solitonic states in the field theory, like the example of the
5-brane wrapped on S° in AdSs x S°, giving the baryon vertex operator [157].” But
a more relevant probe was considered in [146], namely the central charge of the dual
field theory as a function of the number of branes.

One can calculate Page charges in a gravitational background, and identify those
with the number of branes that generate the geometry. For the central charge of the
dual conformal field theory, a slight generalization of the usual formula was provided
in [146]. For a metric on MP = AdS;,o x X", of the type

ds% =A dE(QLd) + AB d?“2 + gwdeldw s (461)

with a dilaton ¢, define the modified internal volume as

~

Vint = / d\/e=19 det[gin] A? (4.62)

"Baryon vertex probes in this context, but in other dimensions have been considered in [145]
and [148].
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and then H = V2

nt*

Then the central charge is given by

Bd/QIfIM
C=a2 = " (4.63)
GN(H’)d

~1is the Newton constant in D dimensions and prime denotes

where Gy = (o) 2
the derivative with respect to r.

The expectation of increase in dimensionality through T-duality affects the D-
brane charges of the gravity background. For a geometry with an AdS; factor in
type I1IB, generated only by D3-branes (with only D3-brane Page charges), after
T-duality we expect the geometry to be generated by D4- and D6-branes only, i.e.

to have only D4- and D6-brane Page charges

1 “ ~ ~
Page  _ __ _~ F,—BAFE
e / (F )
grese _ 1 / B, (4.64)
D6 263016 Js,

For an abelian T-duality, we would expect only D4-brane charge, but for nonabelian
T-duality (in some sense a T-duality on 3 coordinates), the expectation, confirmed
by a calculation, is that only D6-brane charges appear. One can calculate the central
charges and express them as a function of the Page charges. In the AdSsx S® case, we
find that C = 32m3R%a/~* = 27° N3, before, and C = (87°/3)R¥a/~* = (27° /24) N3,

after the nonabelian T-duality, leading to the relation®

Cbefore _ 24N%3
Cafter N12)6 ’

(4.65)

which is found to be satisfied also in other cases of nonabelian T-duality on type
IIB geometries generated by D3-branes.

An interesting question which we will try to answer in this section is whether a
similar formula is valid in more general contexts in the case of geometries with an

AdS factor.

8The formula in [146] is actually with a factor of 3 instead of 24, since different conventions

for T-duality were considered, with L; = o; instead of L; = 0;/v/2, giving an extra 2v/2 in the
quantization of the Page charges after T-duality.
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4.3.1 Page charges

e In the case of section 4.1, the starting geometry is in type IIA, the reverse
of the situation considered in [146]. Since F» = 0 in the background before

T-duality, Q1% = 0, and we only have a nonzero result for

Page R3 b2 2
Nps = |Qp%| = / n(y)dy/ vol(S?) A L
X3
3
_ ( R ) 2\/§(y2_y1) (1_Cy1—2ky2) 4n2\/3

= (fj) 9%}(. (4.66)

After the nonabelian T-duality, we have calculated in section 3 that Qpage =

Qpd9° = () and

age R 442 +
Nor =105 = e - ) (1- X5 %)

/3/2 9
R\® 4v/2
= (z_) T\/_K. (4.67)

e In the case of section 4.2, the we have a Domain Wall solution that interpolates
between an AdSs; x TH! and an AdSs x R? x S? x S3. This can be also found in
the N = 4 D=5 gauged supergravity arising as a consistent KK truncation of
type IIB on T [27], and as such it can be interpreted as an RG flow between
two fixed points in the dual field theory. A relevant question is then, is the
ratio of the central charges before and after the nonabelian T-duality modified
by the RG flow?

For AdSs x T11, the Page charges before and after the nonabelian T-duality
were found in [146], Qp = QL% = 0 and |Q}%°| = Nps before, and
|QFa9¢| = Npg, Q1 = 0 after the T-duality, with (in our conventions)

AR W2

Npy = ———
D3 = orrarn’ b6 = 974 alt

(4.68)

For AdS; x R? x S? x S3, the Page charges before the T-duality were found
in [27]. Assuming that R? is compactified to a 7% = S x S, with period
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21 Rd;/6, and defining s(S) as a homology 2-cycle generator in S? x S, one

has the integers

1
Qns = / H
’ (27l )? Sty xs(S)
1
Qps = 5 dCy (4.69)

(2mls)? S,y x3(9)

and the (D3-brane) Page charge quantization condition is

ﬁ / (Fy— BAdCy) € . (4.70)

For X5 = S? x S3, one obtains an integer
R\ * vol(T™)
N=(—)] ——= 4.71
(ls) o (471)

and for X5 = T2 x Ms, where M3 is a homology 3-cycle generator in S? x S |

one obtains an integer

_ R\* 8d,d 1
N = <Z_> é 2 = _iQNE)QDS- (4-72)

Moreover, the above flux quantization is actually valid over the whole domain

wall solution.

After the T-duality, we have F, and Fy, so we need to consider the quantization

of D4-brane Page charges

1
W/ (Fi—BAR) €T (4.73)
S Y4
and )
FelZ. 4.74
(27Tls) /22 ? < ( )
For ¥y = T?, we obtain
7222 ,6d,dy R
NDG - — 216 47 27rl5 E 5 (475)
and for ¥y = S2, we obtain
. 2V2 4n R
D6 — ——27 27‘(’[8 E (476)
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4.3.2 Central charges

e For the case in section 4.1, the central charge before the T-duality is obtained
using A = R*%, B=r"*and d = 3, leading to ([ L1 A Ly A L3 = 21%/2)

. o3R8 472 clyy + o'r3 RO 83
Vint = (2m) 2 (g — ) (1 ST K, (477)
l 9 2 ) 9
and therefore R 875 K
T
Cbefore - @?T ) (478)

where the Page charge quantization condition (4.66) means that we can write
R3/a’®? as a function of Np,, giving
9o ]\%4

b (4.79)

Cbefore =

After the T-duality, the central charge is found using the same A = R*r?,
B =r~%and d = 3, leading to (also using the y/det g;,; calculated in (4.19))

‘A/;-nt ,RG 3 K / d?)l ’U1 d’Ug

(4.80)

To calculate the integral over the v;, we can use as another gauge fixing,
related to the previous coordinates by v;/a’ ~ pcosx and vs/a/ ~ psiny
with p, x € [0, 7], leading to a value of 273 /3 for the integral.” We then obtain

™K [ R\°
Cafter_ 54[ (Z) 5 (481)

and from the Page charge quantization condition (4.67) we can write R*/a/3/?

as a function of Np; , giving

3,
after — 4.82
We see that the ratio is )
Cbefore o 48ND4 (483)

Cafter B N%N ’
which is basically the same as in (4.65), with the obvious generalization to
Np,/Np, s, and an extra factor of 2 which is probably the effect of a different

normalization.

9The rangle of p was defined in [148], and was then used for the calculation of central charges
in [146].
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e For the case in section 4.2, on the AdSs x T side, the central charge before
the T-duality was found to be [146]
(1) o 7T3R8 . 27

5nT2
before — 2704 - gﬂ' ND3 ) (484)

and after the T-duality

o 2D 9
after 3ot 64
leading to the ratio in (4.65). On the AdS; x T? x S% x S3 side, the central
charge before the T-duality is [27]

@ 3Rass, 3 (R\"8didyvol(T')
Cbefore = To~ =

TN, (4.85)

2G; 2\, 9 4t

3 _ _
= 5INQsQps| = 3INN| = 3NpsNps. (4.86)

Here (3 is the effective Newton’s constant, obtained from the dimensional

reduction of the action in string frame, thus proportional to
G o< (R/1) ol (TH)(27dy ) (27dy). (4.87)

After the T-duality, using the +/det g;,; calculated in (4.47), and doing the
integration over v; in the same way as in the case in section 3, with result

273 /3, we obtain

o Renidd, (1 72 o3 (1.5
wmnt r \/§ 3\/3 3 ) .
leading to
32v2r7 R 4 _
Copter =~y hb g = —53 Y4\/218 Nps Nps. (4.89)

The ratio of central charges before and after the T-duality can therefore be
expressed as
nggj)fore B 35/4y/21%2 NpsNps
c? 87%  NpeNps

after

Note that now we can fix 7 such that the prefactor equals 24, obtaining

(4.90)

2 _
Clge}ore _ 24=]\/vD37-Z\7D3 (4 91)
c? NpsNps

after

80



which is essentially the same formula (4.65) that was valid on the AdSs side of
the domain wall. The factor 7 is related to a redefinition of the fields, coupled
to a rescaling of the x; (or z;) coordinates [27], which are the two coordinates
that change from the AdSs on one side of the domain wall to a AdS5 x T? on
the other. It is therefore not surprising that changing 7 allows us to change
the normalization of the central charge dual to AdS3, with respect to the one
dual to AdSs.
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Chapter 5

Nonabelian T-duality for

nonrelativistic holographic duals

OW we want to move one step further and consider a nonabelian T-

duality on backgrounds with nonrelativistic isometries. As we explained

in the introduction, since the gauge/gravity duality is also a strong/weak
duality, we may try to apply the its lessons in condensed matter systems, where the
strong coupling regime is quite common.

As we know, the methodology of the gauge/gravity duality implies that the
symmetries of the field theory are mapped in isometries of the gravity theory. There
are two symmetry algebras that are relevant in the nonrelativistic case (see [30] and
references therein). The first one, known as Lifshitz algebra, contains the generators
for rotations {M;;}, translations {P,}, time translations {H} and dilatations D,
satisfying the standard commutation relations for {M;;, P;, H} together with

D, M) =0, [D,P]=iP;, [D,H]=izH, (5.1a)

and in [41] the geometric realization of the above symmetry (which has been em-
bedded in string theory in [48,49]) was defined by the gravity dual

dt*  dazidzt  dr?
2 72
As we can see, for z = 1 we recover Anti-de Sitter space.
A second relevant algebra is the conformal Galilean algebra which contains, be-

sides the generators for rotations {M;;}, translations {P,}, time translations {H}
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and dilatations D, also the "Galilean boosts", generated by K;, with nontrivial

commutators

D, K] =i(1—2)K; (5.2a)

In the special case z = 2, the algebra is called the Schrédinger algebra. Here NV is the
number operator, which counts the number of particles with a given mass m, and in
general has has only one nontrivial commutation relation, [D, N] = i(2 — z) N, but
in the z = 2 (Schrodinger) case we see that it becomes a central charge. Curiously,
it is not possible to arrange the D-dimensional Schrédinger algebra as an isometry
in (D + 1)-dimensions, but in [36,37] it was realized that we can write a gravity dual

as a (D + 2)-dimensional space, with metric

(5.2b)

gs? — 12 (_d_i N —2dtd¢ —;— dxida’ N d_rj) '
r r r

Obtaining nonrelativistic gravity duals in string theory turns out to be difficult
(see |38-40,47-50,158-163]).! In relativistic cases, several different techniques have
been employed in order to generate supergravity solutions, see [165-167| for recent
developments. One particularly interesting solution generating technique which has
been applied extensively is T-duality. In the usual case, T-duality relates strings in
a background with a compact direction, S* of radius R, with a background with an
St of radius o//R. The physical spectrum of a string in the geometry is invariant
under this transformation, see e.g. [2,92,168-170).

This usual duality (on S') is abelian (U(1) group), but a nonabelian gener-
alization for the group SU(2), called nonabelian T-duality, was introduced in [3]
and became an issue of recent interest [22,23,117,121,171-173]. This nonabelian
T-duality (NATD) transformation has been used successfully as a solution gener-
ating technique [25,133,137,145,147-149, 152,153, 174-177|, although some issues
concerning global properties of the dual manifold remain.

Considering the difficulties in constructing string theory gravity duals with non-
relativistic symmetries, in this chapter we consider NATD of known gravity dual

solutions. In section 5.2, we apply this technique to the solutions with conformal

1See [164] for the embedding of nonrelativistic string backgrounds via the use of abelian T-

duality in the context of double field theory.

83



Galilean symmetry constructed in [162], and in section 5.3 to the solutions with
Lifshitz symmetries constructed in [48].

In order to define the dual field theory, in section 5.4 we start by calculating
the quantized Page charges of the spaces constructed in the section 5.2 and 5.3. In
particular, we compare the charges of the Galilean solution constructed in section
5.2 with the charges calculated in [148]. We then define and study holographic
Wilson loops in these backgrounds.

5.1 Nonabelian T duality revisited

In principle we could follow using the usual method employed in the last section to
find the nonabelian T duality rules. On the other hand, here we will consider an
alternative method to find the transformation rules [121|, and obviously we must
have the same results, but this alternative path has the advantage of giving a closed
form for the fields in the RR sector?. Considering a spacetime metric and a Kalb-

Ramond two-form given by
ds* = G (v)datdx” + 2G ;(x)dat T + Gy (x) 77 (5.3)

1 1
B = §Buydl‘u A dx” + Bmdfﬂu N1+ §Bz’j7—i VAN T, (54)

in such a way that p, v =1,...,7 and all dependence on the SU(2) angles 6,v, ¢ is
contained in the Maurer-Cartan forms 7; for SU(2), which satisty dr; = %Eij]ﬂ'j A Tk.
Furthermore, in general this background has a nontrivial dilaton ® = ®(x).

If we define the field @ by its components

Qul/ = Guu + B,uln Qui = G,uz’ + B;n‘

(5.5)
Qip = Gip+ Biy, Ey=Gi;+ Byj,
one can show that the nonabelian T-dual background is given by
Q\,LLV = Qw/ - Qm’Mingjw Eij = MZ;1 (5 6)
Qm’ = QujMﬂlv Qiu = _Mingﬂ“
where the matrix M is defined by
M;; = Ej; + o/ vy, (5.7)

2We thank to the authors of [121] for clarifications.
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and €, are the structure constants of the group SU(2) and v; are Lagrange mul-
tipliers. Hereafter we absorb the factor of o into v; and we present all the correct

factors in the final answers. All in all, the dual fields are written as
ds? = @W(x)dx“dx” + Q@W(:L‘)dx“dvi + @ij(m)dvidvj (5.8a)

1A . 1~ ‘
B = EBde“ Adz” + Bydat A dv® + §Bl-jdvz A dv? (5.8b)

and the one-loop contribution to the dilaton is given by
~ 1 A

where A = det M. Besides the spectator fields, the dual theory depends on 0, v, ¢, v',
meaning that we have too many degrees of freedom and we need to impose a gauge
fixing in order to remove three of these variables.

It is convenient to write the metric as
3
ds3, = ds3 + Z e?%i(1; + AH? (5.9)
i=1
where A" are SU(2)-valued gauge fields and C; are scalars. Moreover, we define the
vielbeins {e”, ¢'}, such that

6

! = ds? = g, drtdx’ = Z(e“)2

, e (5.10)
3 3
¢ =ebi(r; + A => Z 20 (1, + AN? = Z(eZ)Q,
i=1 i=1
implying that the components of the metric (5.3) are
3 .
G = g + O ETALAL | Gy =T AL Gy =20 (5.11)
i=1

In the same way, it is useful to write the Kalb-Ramond as
1 1
B = ébwjdx‘u A dx” + (62 + dbz) NT; + éeijkkai A 75, (512)
and the components of (5.4) are
By, = by, Bui=Bu+0ubi, Bij = €jby . (5.13)
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We next write the inverse of the matrix M;;,

e2C2HCs) 1 22 iz — €2%zy 2123 + €222
2129 + €28z 2OFC) 422 pzs — 2012 | (5.14)

2123 — €22y zpzg + €01z HOHC2) 4 o2

1

-1 _

M = A

where A = e2(C17C2+Cs) | ¢2C1,2 4 020252 4 020322 and 2z; = o/v; + by. In fact, it is
easy to see the general formula for the components of M~ is

1
Mz‘;1 _ _(Zz'zj + 5ij€2(01+02+03)6720i i Eijk€20kzk) . (515)

A

Using all these equations, the authors of [121] were able to find a closed form for
the dual metric and Kalb-Ramond field,

1
ds* = dss + — [(z1Dz1 + 22Dz + 23Dz3)° + 2240 D2

A (5.16a)

+62(Cl+c3)DZ§ + 62(01+02)DZ§}

~ 1 1
B = 5Bu,,dx“ Adz” — Z(GQCl 21Dz A Dzg 4 €*@ 2y D25 A Dzy 4 €* 23Dz A Dzy)

—Dzl/\Al —DZQ/\AQ—D23/\A3—21A2/\A3—22A3/\A1 —ZgAl/\AQ
(5.16b)

where

For the RR sector the authors of [121] have shown explicit closed forms for the dual
backgrounds. Considering first a (massive) type ITA sector with fields given by

FO =m (517&)
. . 1 . .
F2 = G2 + J{ A (T,‘ + AZ) + Eﬁiijé(Tj + AJ) N (Tk + Ak> (517b)
. ) 1 ) )
F4 = G4 + Lg A (Ti +Al) + EﬁijkMé A (’7']' +A]) A (Tk + Ak)
+ N A (T +F A A (e + A A (13 + AP) (5.17¢c)
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one can find the dual type IIB RR fields as
32 = mzeCiet — il — Kie%e + el-ijézje’C’“Ek + N (5.18a)
o2y = meCrt0atOsgl p g2 A g3 1 OOt0s oo 1 1 Gy A 26010
— %eiijf A eCitCOgd A gk 4 JEN e e A ziei e
+ 2 Kie2iem O Csgh A g2 A &P (5.18b)
— Ny A %eijkziecbc‘féj - ziLé — M3 A eCigl + eijkMézj A e Crek
Q2 Fy = (14 %) [Gy A 2eCie% 4 eCHOHCG A A2 A
— %eijkLg A eCitCrel A gk
+ LA e DA 2 e g My N e B AP A ] L (5.18¢)
Reversely, starting from a type IIB solution, with RR-fields given by
F =G, (5.19a)
Fy=G3+ XL A (1 + A + %eiﬂch A (15 + AT A (3, + AF)
+m(r + AN A (o + AP A (13 + A%) (5.19b)
Fs=14%)[ZiAN(1+A)+ G A (m+ AN (a+ A2) A (13 + A%)] , (5.19¢)

we have the dual fields in ITA supergravity *

Fo=—m (5.19d)
Fy = —eCn2,Gh A8+ 2,X8 + Vi A (€98%) — e A (meCee)
+ %e‘c‘l_cbeabczcé“ AP — Gy (5.19¢)

~

Fy = et 0s g Gy — 2,28 — G020 g 70 A (e7%87) — €0 5y Z9 N 2,e%0¢°
—e%z,Gy N e + %Gg A (€207 Cpb A °) + %e“chg A (e9rTCb A ¢€)
— X§ A (e7 %) A (ze“0eb) — DTG A AR A
— 2,020V (7Tt A e A ) (5.19f)
where the dual vielbeins are defined to be

ot =eCAT! {ziszzj + X% %Dy + eijkzjezcj Dzk} . (5.20)
3Observe that, compared with [121], we have some different signs in the dual RR-fields. We
thank Eoin O Colgain for letting us know about it.
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5.2 Galilean Solutions

In this section, we first give a short review of the solutions of [162], which are
nonrelativistic generalizations of the gravity dual to ABJM [178| in type IIA string
theory. We then perform nonabelian T-duality on them, obtaining new type IIB
backgrounds. We consider the solutions in [162] because they have the nontrivial

z = 3, even though we don’t know much about their holographic dual field theory.

5.2.1 Galilean type-ITA solution and its NATD

The Galilean nonrelativistic solution of type ITA string theory of [162] has string

frame metric*

P R? ( B%(dx™)? N dy* + dz* — 2daxdx~
ma=—\— :

I ) +R? ds}ps (5.21)

J/

26 22
NV
2
A5G a1

where R?> = 1/ R3/k and the Fubini-Study metric for CP? is (see, e.g. [179,180])
1 1
dstps = dC* + 1 cos® (dO7 + sin? 0,dp?7) + 1 sin® ((df3 + sin? Oydg3)
1

- 1 sin? ¢ cos® ((dv) + cos 01d¢; + cos Oadeps)?,
1 1 1

= d¢* + 1 cos? (ds] + 1 sin® ((1f +73) + 1 sin? ¢ cos? ¢ (73 + cos Oyde)* .

(5.22)

Here ds? = df, + sin®6,d¢?, ¢ € [0,7/2], 6; € [0,7], ¢; € [0,27], ¥ € [0,47] and 7,
are the Maurer-Cartan forms for the group SU(2), namely
71 = —sinydfhy + cos sin Oadps
Ty = cosdby + sin ) sin Oydos (5.23)
T3 = dw + cos di(bg s

with dr; = %Ei]’k'fj A Tg. Considering the equation (5.9), we see that

RQ
ds? = ds%;al + R%d¢? + T cos? Cds% , (5.24a)

4Using the fact that the constant 3 is arbitrary, we make the transformation 3 — % 53, compared

with [162]. Also, remember that g5\ = eﬁd’gfy.
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2
2620 7+ A = R—sm (e + 1) + RZsm ¢ cos® ((73 + cosOydepy)? , (5.24b)

that is,
Ci . Oy 1/2 Cs 1/2
el =e ——sm e ——sm cOS ,
(=5 Ceos( = f 5210
A'=A2=0, A3=cosbido, .
We define the vielbeins associated to the Galilean metric
dsty = —etet +e7em + VeV + e (5.25a)
as
R
+:7ﬂ( dx™* —|——d:v ) : e_:2—zdz_
B (5.25h)
R
This solution is also supplemented with the following fields
R B R?p
= —, B=-————dz" Nd 5.26
C(l) = %Z—sdl‘ + 2kw ,
3Rk 6k
dC = A det Ndx™ Ndy Ndz = ﬁeJr Ne  NeY Ne® | (5.27)

where ¢ = 2p = \%, J = dw is a Kahler 2-form on CP? and the level k is the

quantum of dC(;) on CP! € CP?, that is

/ dC(l) = 2nk . (528)
CP!
Considering that on the CP'(6;, ¢;) with ¢ = 0 we have (e.g. [148])

1 1
w = —=sin’ ( (13 + cos O1de,) + ~ cos 1dg,
4 4 (5.29)

1 1
=3 tan ¢ €3 + e 01doy ,

we have

T =CNE+E,NE —E NE (5.30)
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where we have defined the following vielbeins with relation to the metric d3<2c[P>3 in
(5.22)

1 1
¢ =d¢, €)= -cos¢dth, €&,= -cos(sinbtidp,
2 2
. ) . (5.31)
@1 = §SiDCTl s @2 = §SiHCTQ s @3 = §SiHCCOSC<Tg+C0881d¢1) .
With these definitions we can easily see that vol((C]P’S) = %‘7 ANJT NJT, that is

Vol (CP?) = G- Ay A Eg A Ep A Ey A &5

1 ‘ (5.32)
=33 cos® ¢ sin® ¢ sin 0y sin OodC A dby A dpy A dfs A dda A dip
Therefore, using the quantization of the Page charge
1
m 5 JT"g_p = QDp € Z 5 (533)
where F = F' A e~ B, for some cycle X3P, we can see that
1 L 3275
W/Cpg*f4_ND2€ZjR_TND27 (534)

and in the fourth section, we find the condition that the radius R must satisfy in
terms of charges of the dual background. In particular, we will see that this condition
is consistent with the results of [148].

The vielbeins with relation to the metric (5.21) for the internal space are defined

as
R R )
ec =RA(, ey = - cos Cdby, ey= By cos ( sin 01doy , (5.35a)
R R
e = o) sin(m = 511/27'1 , ey = Esin (o = 611/272 , (5.35b)
e3 = gsinCcos ¢ (13 + cosbdpy) = 21/2(73 + Aj) . (5.35¢)

The relativistic limit of this solution, that is AdSy x CP?, can be recovered by setting
8 —0.

Nonabelian T-dual of the Galilean background

Now we want to perform a T-duality transformation [23,25,120,121] with respect
to the SU(2) isometry. We construct the matrix M;;, defined by M;; = ¢;; + b;; +
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o€, 0y, obtaining (since b;; = 0),

51 Oé,’lA}g _Oé,'l/)Q
M = —Oé,fjg Bl Oé/’[]1 . (536&)
Oél’lAJQ —(1//171 62

We consider a gauge where 6 = ¢o = vy = 0, so that v = (cos vy, sin vy, v3),
where ¢ € [0,27]. We can make connections to the gauge choice in [148] by making
the transformation (v; = psiny,vs = pcosy) with x € [0,7] and the range of
the coordinate p is not yet determined, but we argue that p € [nm,(n + 1)7) as
in [146,148], (see [23] for other possible gauge choices).

Therefore, the matrix M in this gauge is

51 o'vg —a sin Y,
M=1| —-duvs b1 o cospvy | . (5.36b)
o sinyv;  —a’ cos Py Ba

The dilaton in the dual theory is given by
~ 1 A =~  Ra®?
_ ¢ _

where A = det M = [(87 + o*v2) 3y + 0% 3y].

Using the results of 2.3, the dual metric becomes

1
ds3 = ds2 + ZdZQ (5.38a)

where

d¥? = (21D + D2y + 23D 23)% 4 22 D2 1 214G 0,2 4 ACHC) 2
= o*v; B1 51 + & {(B1B2 + o*0})dv} + (BF + a*v3)dv; + 20 vivsdvidus

(5.38b)
with 7 = dy + cos #1d¢,. Here we have used that z, = o/0, and
1 . ~ A3 1 . .43 1 .
—/DZl = dUl — UQA 3 _,.DZQ == dUQ + UlA y —/DZg == dUg . (539)
o o o
The dual vielbeins are
¢, = e“eA! [zaszzb + 2Lz Dy eabcszQCszc} , (5.40)
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such that

/ ol/2

[(5152 + o0} )dvy + a*vyvsdvog — o 52711@377]

¢} = cos ey + sinyey =
(5.41a)

1/2
E/Q = —sin ¢E1 -+ cos wég i [ /621)3611}1 — O/ﬁﬂ)ld?}g —+ ﬁlﬁﬂjlf]] (541b)

) a1/2
63 = a% [v1vsdvy + (BF + av3)dvs + o/ BroTi] . (5.41c)
The Kalb-Ramond field is given by
~ R2
B = ﬁ—pdaﬁ A dy
V2 2

1
N {6201 21Dzy A Dzs + €2“220D23 A D2y + €2 23Dz A Dzz} — Dzg A A3

\%]fp dat A dy —0‘,3“1:35 2 dvy Ay + O‘/(O‘/Q”iﬂl =) s A (cos 1der )
+ 0/32351 dvz A dip
— %Rz—ipdx* A dy — \alA& (a*vivzdvy + (05 + 6%)61’03)1/\77 + o'dvg A dip
= (closed form)
(5.42a)
or, using the spherical coordinates (v1,v3) = (psin y, pcos x),
B= jﬁR L gyt A dy /52 (Bt + ap?) cos xdp — Bipsin xdx) A7)
= %%dm*’ Ady — a'% {R4p cos? ¢ sin* ¢ cos 6, sin ydéy A dy
(5.42b)

+ cos? ¢ cos 0 cos x(R*sin® ¢ 4+ 1602 p*)dp A de,

— pR*sin® ¢ cos® ¢ sin xdx A dip + (R*sin® ¢ + 16a/%p?) cos® ¢ cos xdp A dw}
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After a gauge transformation, we can write the B-field as

~ B R R?sin?¢
B = ——4d1}+ A dy - O/64—A

V2 2

4 cos? ¢ cos 0 cos x(R*sin* ¢ + 16a/2p*)dp A dep, (5.42¢)

{R4p cos? ¢ sin ¢ cos 6y sin ydop, A dx

+ 160/%p? [p(sin2 x + cos? y cos? ) sin xdx A dy) — sin? y sin® ¢ cos xdp A dw} }
— old(peos xdp) ,

with the term on the last line being a pure gauge contribution. The B-field at the
2-cycle defined by S? = (¢; = const.,x™ = const.,y = const.; x, 1) is

B| = —d/psinydy Ady, (5.43)

SQ

. 2 2
where we also have used that lim¢_,g ﬁ =£ Ve

are defined such that the holonomy of B satisfies

/E
S

which justifies our choice p € [nm, (n + 1)m).
In order to find the dual R-R fields, it is convenient to write the RR-fields before
the T-duality as

o?. Large gauge transformations

1

420/

b € [n,n+1), (5.44)

k 2k
Fy, = dC(l) = —12%82 Ael 4+ E(eg Nee+ ey Neg—er A 22)
2k . 2k B/ 2k
zﬁ(6qet/\e +e¢/\e9)——R§ ec A (T2 + Az) — R2171/\72
=Go+ JPA (TP + A3) + Kimi ATy (5.45a)

Fy = dC(g) —HA C(l)

tanC e Ae? Ae® Aes

2k to 16pk
:—et/\ey/\ez/\(?)e_—l—SpCO 1%)— D

R? cos R?
o%h . (o 8pcoth 16k, t . (3
=G+ LEN (TP + A3), (5.45b)
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with ¢! = (¢7 —¢7)/V/2, Fs = — * Fy and Fy = xF,. Using equations (5.17a-5.18c)
we have that the dual fields in the RR sector are given by

BPE = —alvg J3— KS’B;/QE;; + O/Kgﬂfl/zvl (cos ey — sin)ey)

= —dv3J} — o Kldvs (5.46a)

0/3/2133 = 51521/2 x7 Gy + /Gy A [01511/2(005 ey + sines) + 03521/%3]

/ ol/2
+ JEA [—51E1 A ey + %83 A (costpe; + sin wéz)]
2
/ K3 1/2 ) ) )
+ %21 A WA €3
1
_ ﬁ 51/2 %o (3 /2G d d . O/2U1 J3 2.2 2 d
= 1P92 776Gy + 2/\(1}1 U1 + U3 Ug) A 1/\[(& Ulﬂl‘i'ﬁlﬁz) V1
/4
+ vvsaBudvs] A — = Z‘”’”l K3Badvy A dvs A i (5.46b)

PP = <1+*){O/G4A[vlﬁi/Q(coswéﬁsiwaz)+v35;/2é3}

+ BB PGa A At Ak
0/61/21)1
+ L§ A\ —51&1 VAN ég + ?ég VAN (COS wél + Sinwég)
2

= BB w0 Cat G (B8 + 0

o/ﬁl/2vl
+ *7Lg A —ﬁlég + ?E’Z

2
— o %7 Gy A [vlﬁi/%; A s + 03528 A ég]

1/2
2

05’51/21)1
L3N | —Brer Aty + ————e3 A&

+ BBPGa N Aoy NGy
O/ﬁl

By

= —BiBy? %7 Go + oGy A [vrduy + vadus) — (%7L3) A dvs

v 0/2 . .
IA LA [(O/QUfﬁl + 2 Bo)dvy + 0/21)11)361(1@3} AT (5.46¢)

o3y 818y
A

0/37115%52

A

*7 Gy N\ [v3Badvy — vy Brdvs] A1)

Gz/\dvl/\dvg/\’f]
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or, using spherical coordinates,
~ k
o3P = B (—,0 sin? ¢ sin xydx + sin” ¢ cos xdp — psin 2¢ cos XdC) (5.46d)

~ kR 8p cot 6
o2 Fy = P Gin3 Ceos ¢ [ 3eS A e A e? + LERTL = f ol p ef
4 cos ¢

2]{;&’2 t z ¢ 0 al4 2 . 2 2 3 . A~
+ 72 p(6qe ANe”+e® Ae ) Adp + A sin” ( cos” (p° cos x sin xydp A dx A\ 7
/2kR2 R4
a4A psin® ¢ cos ¢ siny d¢ A {1_6 sin® ¢ cos® (d(psin x) + o*p? sin x dp] AT
(5.46e)
~ 2ka? 8p cot §
o32Fy = (14 %) { RC; pet AeY Aet A (Se‘ + %Cled’) A dp
a/SkRzl
+—5A sin®  cos® ¢ psiny (6g ¢" Ae® +e¢? Ae’) Adp Ady A7)
2pk Ra?
+% sin? ¢ psinx ¢! Ae¥ A A
R4
A {E sin® ¢ cos? (d(psin x) + a*p? sin x dp} A ﬁ} . (5.46f)

5.2.2 Galilean solution in massive type-IIA and its NATD

We also have the following background, in the string frame [162]

2(dxt)?  dy?* +dz? — 2dxtda~ 5
ds® 114 = o (—5 <z§ ) + y s e )+%ds&n3 (5.47a)

(. /
~~

2
dSmGal

where ag f2 = 2, L? = age=*/2, f5/2 L% = 2m{/* and my is the Romans’ mass. In
this background we also have the nontrivial fields
2
20 _ I B:%id TAd

2\/§ﬁm0 1 VBmy
=" — _dxz", dCy = 4 i

Note that the solution is similar to the one in the previous subsection, but there

(5.47b)
dxt ANdx™ Ndy A dz .

are subtle differences. This solution does not preserve any supersymmetry even in

the relativistic case § = 0. We write the metric (5.47a) in a similar manner to the
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previous subsection, as

3
ds?,pa = dsz + Z e?Ci(ot + AY)? (5.48a)

=1

where

3 1
ds2 = ds?,qu + ﬂ (dQ +7 cos® (ds%) (5.48b)

and
A oa
Z Yol 4 A2 = ?0 [sin® (7] + 73) + sin® ( cos® ( (73 + cos 1dg)?] , (5.48c¢)
i=1

such that

& _ Cn _ V500
22
A =A%=0, A®=cosbido .

\/5_schosC ﬁ1/2 ,

51/2 Cs _
G =A%, e 2V/2 (5.48d)

Nonabelian T-dual of the massive Galilean background

The dual dilaton is given by

-~ 1 A
¢=¢—5n (E) : (5.49)

where A = [(6? + a/?13) 35 + a?v?f,]. The nonabelian T-dual metric is
1 -
where

d%? = (21Dz + 2Dz + 23D23)? 4 22 D2 4 2 O1HC) D2 4 2(C14C2) )2
= Ulﬁlﬁgn + o {(6152 + O/2 2)d7)1 (ﬁl + a/2U§)dU§ + 20/2U1U3d’01d7)3} s
(5.50b)
with 1) = dy + cos 01d¢, . Here we have used that
1 L1 1 i
—/Dzl = d’l)l — UQA s _,DZQ = d'UQ —+ UlA s —/DZ;; = d?}g . (551)
« (67 (07
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The dual Kalb-Ramond field is given by

S 28
B = o dz™ A dy
1 ~ ~ ~
— Z {6201 21D2y A Dzs + €22 20D25 A D2y + €2 23Dz A ng} — Dzg A A3
— fz_ﬁd A dy Md vy AN+ o/ (o Ufl )dvg A (cos 61 dey)
o302
Alﬁ Ldvg A dip
20 ,5 2,2 | 32 A
= cdz A dy o?vyvgduy + (a®v; + B7)dvs ) Af)+ closed . (5.52)
Given that the original R-R fields are
FO = My (5533)
Fy = dCy + moB = my e, A (JS e+ egm> (5.53b)

Fi=dC) = HACqy+ 5 BAB
= V5 moel, ANep, Al Ak (5.53¢)

where these vielbeins are related to the metric (5.47a), it folllows that the T-dual
fields are given by

a2, = almg [0,31/2 (cos &' + sin 0e?) + vy %]

= moa’*(vidvy + v3dus) (5.54a)
o2 Fy = moh By % NENE + BB xr By
+a'Fy A [vlﬁl (cos ! + sinye?) + vy ,31/”3} (5.54b)
o m051 52

= T 1d’01 VAN d’U3 VAN 77 + 6152 X7 F4 + 04/2F2 VAN (Uldvl + U3dU3)
Py = (1+ %) {o/F4 A [01311/2(008 el + sin ye?) + vsBa’%e 3]

L BBV R AR AR A é3}

_ _j e n viaB2 5, .

= —/3162 *7 F2+O./ F4/\ (UldU1 +U3d1)3) — TFg/\dvl /\d?}3/\’l'}
5 pl/2 N B

- 06,3%(*7F4> N (Ugﬁgdvl - Ulﬁldvg) VAN 77 (554C)
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or

o Fy = o/*myg pdp (5.54d)
moa/S

A
~ 0/3 o~ ~ o~
o*2Fy = o pFy A\ dp + Kﬁfﬁgszg Adp ANvolg, — 51521/2 x7 By

%y = B3 Bapdp Avolg: + 5’155/2 7 Fy+ opFy A dp
o - 51/2 2 2 2 2\ A
+K5152 *7 Fy N | =p”sin® x cos x (b1 — B2 ) n A dp
+ pisiny (52 cos® x + (3, sin? X) A dx} (5.54e)
where volg, = sin xdx A dy and

¢, = e A1 [zaszzC + 2L Dy 4 eabczbewszc} . (5.55)

5.3 Lifshitz Solutions

In [48,49], an infinite class of Lifshitz solutions of D = 10 and D = 11 supergravity
with dynamical exponent z = 2 was considered. In this section we review some
aspects of this class of solutions in [48], which has as a special limit the solutions
of [49].

This type IIB supergravity solution has a metric of the form
ds® = dsj;; + L*dsy, (5.56a)
where

1
dsQLif = L* (r2(+2dadt + da] + dad) + ﬁdrz + fd02>

5.56b
2 r 2 2/ 7.2 2 1, r’ ? ( )
=L _Tdt +r7(dzy + dry) + —dr* + f d0+7dt :
r

where f is a function of ¢ and of the coordinates of the Sasaki-Einstein manifold
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Es. This background has also the nontrivial fields®

Fy = 4L*(1 4+ *)Volg, , (5.56¢)
G=do AW, (5.56d)
P = gdo . (5.56e)

We can recover the standard solution AdSs x E® solution by W = f = g = 0 and
the solution of [49] can be obtained in the special limit W = 0, f = f(o) > 0,
g = g(o) € R. In addition, the coordinate o is compact and parametrizes a circle
St

Another interesting class of solutions are those with constant f. When we set
f to a constant, f = 1, the four dimensional noncompact part of this metric is

precisely the metric with the Lifshitz symmetry for z =2 and r = %, that is

A2 dride’ du?
ds? = [2 (——+ T “) (5.57)

ud u? u?

Also, in [48], the authors showed that under certain conditions, we can consider the
KK-reduction on S* x Es and we get contact with the bottom-up construction of

Lifshitz solutions.

5.3.1 Homogeneous Space T

We start considering the particular solution in which Ej is the homogeneous space
(SU(2) x SU(2))/U(1), that is, E5 = T"Y with metric

1 1 1
dsia) = §(d¢ + cos O1deéy + cos Oydpy)? + é(dﬁ% + sin? 0,d¢p?) + E(dé’g + sin? Oydp3)

= L @ () (e () (5.58)

where

L L L
= %7’1 , = %7’2 , = 3 (7° + cos b1dgn )
) I ) I (5.59)
i 2 :
¢ = —d¢91 " = —=sSsIn 91d¢1

V6 V6

SFor 7 = Cy +ie~?, P = (i/2)e®dr and G = ie®/?dr(rdB — dC,), where the scalar Cj is
the axion and ¢ the dilaton, and the 2-forms in the NS-NS and the RR sectors are B and Cj,

respectively.
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and 7; are given by (5.24) Using these results and the notation of [121], we see that

L 71/2 L i
=2 = — = 1/, e === 2/,

3 (5.60)
Al =A%=0, A3=cosbdo, .

In the NS-NS sector we have the Kalb-Ramond field B with field strength
—V2k do A (ei A4l A e2> : (5.61)

and this field strength can be generated by

2 2

kL
By = ———cosb;do ANdop; + ——=
2 32 1 ol 32

which means that [5 = %da. The dilaton and the axion are taken to be trivial.

do N3, (5.62)

In the R-R sector we just have the self-dual 5-form

Fy =4 L* (r* do Adt Adr A day A dey + Volpa)

, (5.63)
=4 L (1 + *) VOZT(1,1) .

Note that we can consider an ordinary T-duality and an uplift of this solution in

order to find type IIA and D = 11 solutions (in this particular case we have f = k).

Nonabelian T-dual

The nonabelian T-duality with respect to the SU(2) isometry parametrized by the
(1, ¢2,03) coordinates in the space TV has been considered in [25] and was re-
viewed in [23]. Here we consider a slight modification of [25], namely now we have a
nonvanishing Kalb-Ramond field and obviously the noncompact space is not AdSs.

Then the T-dual space has metric

‘ 2
72 1 3 3
ds® = ds%if + Fdsf +Z (Z ziDzZ-> + 2(C1FC2+Cy) Z 6_207"(17752‘)2
—_——

i=1 i=1
2
dsz

2L% ko’ - E2LA
— ds %_}_ A {\/_ ; (67 (()é/QUlUQd'Ul + (Oé,2U§ _|_5%)d1}3) d0+ E ( 2 2 +51) }

4 & Ui o U15152 A2

A {(5152 + v} dv? + (B + o*v3)dvs + 20/21)1?)3d1)1d’03}

(5.64)
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where the coordinates are {z; = /01,29 = /09,23 = &/03} and their “covariant”

derivatives Dz; are
1 | | 1
—/Dzl = dUl — UQA s —/DZQ = d’UQ + UlA s —/DZg = dUg + —/53 s (565)
(0 « (@ (6]

and finally A = [(52 + o/*02)Bs + o/*02f,], which is related to the dual dilaton ¢
field by A = a/3e=2%.

The T-dual NS-NS two-form is
é—_ ——k i 0, d /\d¢ —_ = ( 620‘ Dz: ND )— 6,.D /\d¢
COS o €iq 'zl zZ COS V4
3\/— 1 1 A Jk J k 1 3 1

]{JLQ 05/3 _ - .
= _ﬁ COS 91 do N\ d¢1 — Z (52U1U3d'l)1 - 511)161?}3) VAN n
kL? ~ 2.9 kL?

— — + oFv3)do A7)+
3van 2 AN

Using the fact that the original self-dual five-form is given by

do N dp — o' cosbydvs Adgy . (5.66)

212 5 5
Fo=""(14%) el AZAT ATy A (13 + cosb;d
5 9 ( ) 1A To A (T3 1d¢r) (5.67)
= (1 + *) GQ ANTI AT N (Tg + COS@ld(bl) ,
the dual R-R sector is defined by
aPPFy = G,y (5.68a)
/ /
B2n o’vy N . advg,.
o Fy = Gy N\ {—(5152)1/2 (cos ey — siney) A ez + _51 ¢1 A e
O/2 _ _ )
= XG2 A {o/ﬁgvlvgdvl — Brvi(a’dvs + 63)} AT, (5.68b)
where
¢, = eCe A1 [zaszzb + 2Lz Dy 4 eabcszQC”ch} , (5.69)
which implies
¢} = cos ey + sin ey
71/2 o B
= IT [/ (B132 + *v7)dvy + o*vivs(advs + B3) — o Bavrvsiy] (5.70a)
¢y, = —sine; + cos ey
71/2 ) ) o
= IT [0/2521)361@1 — o/ frvr (o' dvs + Bs) + 04/5152”177] (5.70b)
51/2
e = QT [%vivsdvy + (BF 4 ov3) (o/dvs + B5) + Bt (5.70¢)
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Here (33 = %da.

5.3.2 Sasaki-Einstein Space Y71

Another possible choice is F5 = YP?, such that the Sasaki-Einstein metric is

2

1—y dy q(y)
dsQ,,,q:wy doz+hy7‘2+ 2+ 72) + + 72

B L why) L w@ay) 1 o 1oy, 5
_g(y)(3+ 9(y) d) 000 " T uwam™ e (i)
(5.71a)

where g(y) = q(y)/9 + w(y)h(y)® and
h(y):%, w(y):%%_yy), q(y):%. (5.71b)

Here a is a real constant. As studied in [150], in these manifolds there is a 2-sphere
fibration parametrized by (y, ), with y € [y1, y] over a 2-sphere parametrized by

(0, ¢). Also, the coordinate o parametrizes a circle of length 27l,. In these spaces,

we have

1 p* =3¢

a=3 g p? —3q
1

Yy = — <2p —3q — \V4p? — 3q2> (5.72)
4p
1

=1 <2p+3q —\/4p? — 3q2) :

where (p, q) are relative integers and p > ¢ > 0.
We can set the axion and the dilaton to be zero, but, contrary to the previous
solution, this condition does not imply that the function f is a constant. In fact, it

satisfies the following equation

2 1
—4f + ——0,[(a — 3y* +24*)0, f] + = 0. 5.73
1— y y[( ) Y ] (1 . y>4 ( )
We define the vielbeins
L |wq L
¢ =—,/—da, ¢=—dy 5.74a
3\ o (5.74a)
1-— 1— h
' =1 ( Gy)ﬁ’ =17 ( 6y)7'2, egzL\/§<T3+w—doz> . (5.74b)
g
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In this Y74 background, one has
dy N (6do + 713) + 11 A Tz]

w LQd{ ! (6dar + )} L7 [
= — —(6da +13)| = —
VT2 [1-y ’ 6v2(1 —y) L1 —y)
L? wh 1 6
=" ddynl|[6-—)da+ e3]+—el/\e2},
6\/5(1—y)2{ y [( g) Ly/g L?
(5.75)
which means that
H=—-do AW
L? ( wh) L
= (6——|doAdyAda + —————do ANdy N> (5.76
sva—y \°7 VI 1= 5 (570
1
+ ——do A el Ae?.
V2(1 —y)?
Using the notation of [121], we find
1_
1 =2 = [ 5 - B s = L\/g = ,83/2 : (5.77a)
h
A=Ay =0, As= %da , (5.77h)
L2 2
=p,=0, = — do, Df3=df;=— dy N\ do
B = B2 B3 6\/5(1—y) B3 B3 6\/5( ~ )2 Y
b; =0,
(5.77¢)
therefore
LY gond L on (5.78)
B=————doNdo — ————do NT3. )
V2(1—y) 6v2(1 —y) ’
The R-R five-form for the solution is
Fy = 4L* (14 %) Volyr.a (5.79)
207 h
— T(1—y)\/§ (14+%) e* A ATEATEA (T3+w7doz) (5.80)
v 5 wh
= <1+*) Gg/\Tl/\TQ/\ T +7d06 . (581)

103



Finally, the metric of the T-dual space becomes

da +—dy +— <ZZ’DZZ> +e Cl+02+03)26 {(Dz)?
=1

-~

ds7

d<§2 - dS%Zf +

1{__’<
Al 3v2(y—1)
(a’2U32,+Bl)L4d }+04 015152 42

=ds2 + o*vyvgdvy + (a*vs + Bf)dv;g) do

+

72(1 —y)2
+O/2{(BB 242)d 202)dv? + 200, vsdvy d 5.82
X 1B+ o202 dv? + (B2 4 o*0)dv? + 2001 vsdvydos b (5.82)

where § = di + M da and A = (B2 + o/202) By + o’*02f3,. The NS-NS two-form is

~ L? 1
B=——" doANda— — (e:4*2;Dz; N Dz,) — Dzs A A
ﬂ(l—y) A( gk J k:) 3 3

= i 1— hw da N d - [o/[;’vvdv ﬁqu(a'dv +B)]/\A
= ——— o — — —
\/5(1 2 69 2U1V3A V1 1V1 3 3 g

o' hw

Q

do A dvs (5.83)

. A

The fields of the T-dual R-R sector are

and the dilaton is

aPPEy, = Gy (5.85a)
/
O/3/2ﬁ4 = ég N {#( S¢62 — sm@/zel) VAN 23 -+ ﬂél VAN 22
(B1P2)1/? B
12
= CYA GQ A {O//Bzvﬂ)gdvl — ﬁlvf(&/d’U?} + 63)} N ’3/ s (585]3)
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with the vielbeins

&) = costpe; + sin ey
51/2 L } )
2 [a/(ﬁlﬁQ + v} dv; + o*vyv3(a’dvs + B3) — O/Qﬁgvlvg’y} (5.86a)

¢y = —sine; + cos ey
— U11A/2 [a/252v3dv1 — o/ By (o dvs + B3) + a’ﬁulﬂvwlﬂ (5.86h)
o= B2 [+ G ot o] (500
Here fy = g5t do.

5.4 Holographic Dual Field Theory

5.4.1 Quantized Charges for Galilean Solutions

In [148], the authors considered the dualization of the background holographic dual
to the ABJM theory [178], which consists of a metric for AdS; x CP? in type IIA,
together with two R-R fields, F;, and Fj. They also calculated the conserved charges
of the dual background.

Considering the effect of the nonrelativistic deformation of the ABJM back-
ground considered in [162], we compute the conserved charges of the background
that we found in the last section. We compare our results with [148] in order to see
the effect of the nonrelativistic deformation of the background [178]. We calculate
the conserved charges of the solutions in sections 2.1 (massless type ITA ) and 2.2

(massive type ITA) separately.

Massless type IIA

We start with a short review of the conserved charges of AdS, x CP? and its NATD
solution. The solution has the metric of AdS,; x CP?, the dilaton ¢ = In (R/k) and
the R-R forms [148]

dC(l) = 2kdw (587&)
3
dC) = gkL2V01Adg4 (5.87h)
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in such a way that

1 32772 15/2
/ dCyy = 2k and —/ «Fi=NeZ = [1=2"2 N,
o (2ma’/2)5 Jops k
(5.88)
where we have used the CP' defined by (& = 7/2, 65, ¢2), and [ Voleps = %3. We see
that these quantization conditions agree perfectly with the quantization conditions
(5.28-5.34) of the Galilean solution.
In [148], the authors calculated the charge Nps in the dual field theory, which
was found from an integration of the dual 3-form over the cycle defined by 32 =

(¢, 01, ¢1), such that®

%
64ma/5/2

In our case of the Galilean solution of massless type ITA, we must consider the same

calculation for the dual .7?3. Using that

Ns (5.89)

T 651 21/2k ¢ 0 b 3]€R4
s 23 - R2a/3/? CACAE = 16a/3/2

sin® ¢ cos® Cd¢ A volgz (5.90)

where volgz = sin6dby A d¢,, we compute the charge

~ km R

Imposing the quantization condition for the Page charge,

1 ~
m/z:?’fg:@pg,ez, (592)
we obtain LR
QDB - W (593)

But since originally R* satisfied the relation kR* = 3272/V/2N, the charge Ops
cannot be an integer, and in this case, the radius R in the dual theory will be defined
through new relations. The noninteger charge in the nonabelian T-dual theory is a
generic feature which arises from the violation of the condition Tp(,—n) = (2m)"Tpp.

In the present case, we see that if we consider the 5-cycle ¥° = (¢, 04, ¢1, X, V) =

((,01,¢1,v1 = nmsiné, vg = nmwcosé, ¥) in the T-dual background, we compute the

5In their notation o = 1.
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restriction

a2 F; = nmwa! F3 A volg (5.94)
5

which is consistent with a large gauge transformation ]?5 — .7?5 + nmwa! ]?3 A volg,

(with the volume form volg, = sin xdx A d¢), and therefore we find

Qp3z =nLQps . (5.95)

The field theory on the boundary is a 2+1 dimensional CS gauge theory, as was
the ABJM theory before the NATD. The CS gauge groups have levels, that should
be possible to calculate from the gravity dual. As in [148|, we can define the levels
of the AdS/CFT dual field theory as

1 ~ 1 ~
S F S D 7
d5 ‘(27?0/1/2)2/2 3 43 ‘(zﬂa/1/2)4/2 5

where the integrations are performed on the cycles X3 = (p,01,01) = (v3,61,01)

, (5.96)

and X5 = (p, 01, 01, X, V) = (01, ¢1, v1, v3, ), respectively. In the presence of a large
gauge transformation, one obtained in the case in [148]
(2n+ )m (3n+2)7

Using the same definitions, in our case we obtain from (5.46f)

2
o2 Fy = _a2 puvolsz Ndp o*?F A B =0, (5.98a)
23 23

therefore we obtain in a similar manner to the above case

2 1
k5:k( n+ 1)

YWGE (5.98b)
We also find from (5.46f) that
13/2 T ka”
a2 Fs =P dp A volgz A volgs (5.99a)
and given that
0/2
o312 Fy A v0l g 5= 5 pdp N volgz N volg (5.99b)
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under a large gauge transformation ]% — ]% + nmd! ﬁg A wvolg., we have

s (4r)?
/25 (F5 +nma F3 ANvolg) = k o2 (3n + 2)7* (5.99¢)
Then finally
(3n+2)m

such that (3n + 2)ks = 3(2n + 1)ks. Using these relations, we find the relations
between the radius R and the quantized charges of the background

~ 1~

R'ks = 32r%a/ <QD3 + §QD5) (5.101a)
~ 2 ~

R'k3 = 167%a <QD3 + §QD5) : (5.101b)

If we compare our results with [148] we can see that the nonrelativistic deformation
does not change the quantization condition of the theory and of its nonabelian T-
dual.

Massive type ITA

We now turn to the model in section 2.2. We first consider the model before the

T-duality. We find
53 \/gmo

*10fy = TUOZCP3 , (5.102&)
giving
53
D3 = V5 _mo. (5.102b)

192712¢y /5/2 f6

In |162], the author considered the compactification of the ordinary type ITA theory

and of the massive type ITA theory to four dimensions.”

We calculate the D5-charge by using (5.53) to write
\/_ dmy

Fol = ,3/251 Wa B = R BB e, A A, (5.103)
»3 3

Since the only relationship between these two theories is Hull’s duality [181], the author argued
that the similarity between the 4D actions means that there is a mapping between the Romans’
mass and the flux k. In that case, f < 1/R and mg x k/R?, so that, up to numerical constants,
one could write Q73 o< Qpo.
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where *; is Poincaré duality in ds?2. We then calculate the magnetic D5-charge
associated with this flux as

mo 53V5  mg

5 = 38dran® 5 (5.104)

For the cycle X°, we have .7-A'§10|25 = 0, so now we obtain @gg = n@’gg when we
consider a large gauge transformation.

On the other hand, fg‘“\ig = 0, which remains equal to zero after a large gauge
transformation.

We can define a third cycle ¥3 = (p, x, ), which gives
Fol =0, (5.105)
3
but after a large gauge transformation ﬁgmo — .7?5"”0 + mm/]?{”o A volg, we find

/2

2
ToT 2 on+1). (5.106)

2

mo __
k5 —

Finally, for the cycle X5 = (61, é1,p, X, %), we have that ks = 0 even after a large

gauge transformation.

5.4.2 Quantized Charges for Lifshitz Solutions
Homogeneous Space SU(2) x SU(2)/U(1)

For the background (5.58) in section 3.1 we start with a 5-form

2L4
Fy = 7(1 + *)volgz A Ti ATy A (T3 + cosOrdey) (5.107)

and using similar methods we find the quantized charge

4 LA

After the T-duality we obtain the charges
27 2
L' = =0, (5.109)

on the cycle S? = (0;, ¢;). Using the fact that F1 = 0, after a large gauge transforma-
tion ]-A"4 — ]-A"4—|—n7ro/.7?2/\volg2, we find @m = n@DG on the cycle 4 = (01, ¢1, x, V),
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Sasaki-Einstein Space

In the Sasaki-Einstein case in section 3.2, we have a similar situation. The quantized

charge before the T-duality is

v 1 LA
ND3 — HEVYWI 5 (5110)
on the cycle X2 = (a,y) and
8m3l, [
Vyp,q = / VOlyp,q = / dy(l - y) . (5.111)
Yra 3 Y1

Repeating the previous analysis, we find

~ LA
Qps = vap,q (5.112)

on the cycle 3?2 = (a, y).

Again we can use the same arguments from the previous subsection to find Fi=0
on 34 = (o, y, x, ¥). If we take a large gauge transformation F; — Fy + nwa/Fo A
volg,, where Sy = (x, 1), we also find Ops =nQps .

5.4.3 Wilson Loops

One can in principle define a Wilson loop variable in the case of nonrelativistic
gravity duals, even though it is not really clear what it would mean in the field
theory. However, we can simply calculate the observable, and leave for later issues
of interpretation.

One way to embed the Schrodinger algebra with z = 2 (a particular case of
conformal Galilean algebra) into string theory is to consider a DLCQ of a known
duality [30,38-40|. The general conformal Galilean algebra is realized holographi-
cally through the metric

dt*  2dtd¢ + da®  dr?
ds® = 2 {—T+¥+%] (5.113)
reF T T
For the Lifshitz case, gravity duals are instead usually of the type
dt?  di?  du?
2 _ 12
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However, in [48,49] it was suggested that for d = 4 and z = 2, the case considered

in section 3, we can consider the gravity dual
1
dsi;p= L7 (TQ(—QdO'dT + dx} + dx3) + ﬁdr2 + fdaz) ) (5.115)

and for 0 = 2t and 7 = 27, 0 must be a compact coordinate to obtain a 2+1
dimensional field theory dual with coordinates 7, x1, xs.
Note that compared with the Schrodinger case, the roles of ™ and 2~ are inter-

changed and z is compact.

Wilson Loops in conformal Galilean spacetime

The general prescription for the calculation of Wilson lines in relativistic field the-
ories is well known [14, 45,46, 114,116, 182-184]. Recently, important hints in
the identification of the dual field theory of nonrelativistic systems were studied
in [185-189].

We want to consider the Wilson loops for the conformal Galilean gravity dual
case in section 2. This formalism was also considered in [188].

Considering a probe string which is not excited in the internal space directions,

our gravity dual manifold is of the general form (without the internal space)

R? ( dt?

2
ds® = — | =75 + 2dédt + d - df) + R—2dr2 : (5.116)
T

r r2(z—1)
with £ compact and null, for z = 3 (thus is not of the Schrédinger form, which would
correspond to z = 2). We consider the following ansatz

t=71, z=uxz(0), r=r(oc), &= constant. (5.117)

Given that the induced metric on the world-sheet is Gog = ¢,,0,X"03X", the

Nambu-Goto action becomes

1 [ TR? 2 2
S = / dT/dO‘\/— doiG = L1 /da\/@”%;ﬁ?"@ . (5.118)
0

2ma! 2ma’

As usual, the analysis of the differential equations (see [45,46,186]) shows that the
separation between the endpoints of the N—shaped string that extends from the point
x = —{/2 to the point x = £/2 at the boundary r = 0 is

_ e r H(rmaz)
= 2/0 ! \/H(T)2 — H("maz)?

, (5.119a)
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with H2 = R*/r?G+D . Therefore

z+2
U(Pmaz, 2) = 2rmax\/_ [ (55) (5.119b)

F'(zm)

and we can invert this expression, giving e = Tmaez(€). For z = 3, we obtain

wi g . (5.120)

The general formalism [45,46] allows us to compute a would-be quark-antiquark

potential, which gives

2RV T (555)
Tiae(22 +2) T (2 +2)
It is not clear what would be the interpretation of this quantity in the field theory,

Vag = (5.121)

since it was defined for relativistic gauge theories. But we can continue with the
assumption that it still gives the potential between external "quarks" introduced in
the theory, and see what we can deduce from it.

Therefore, if we consider the solutions in the section 5.2, with z = 3, the potential

is
2R/ (3)
Vi = 5 5.122
q9q 37,,?nam 1—\ (%) ? ( )
which implies
av R?
— 0. 5.123
e~ 7t ” ( )

max

This means that the would-be quark-antiquark interaction is atractive everywhere
[139,188,190]. We also have

eV 2 T (1)
&= LT () <0, (5.124)

and this condition means that the force is a monotonically nonincreasing function

of their separation.

Wilson Loops in Lifshitz spacetime

Consider the spacetime metric® of the form in the section 5.3,
2

L L?
dspip = —5(=2d€dt + da” + dy?) + —5dr® + L7 [(€)dE? (5.125)

8We changed the notation ¢ — &, and we keep the symbol o to the spacelike worldsheet
coordinate. Also, we renamed r — %
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where the coordinate £ parametrizes the circle.
First, we notice that due to the absence of the component g in the metric above,

we cannot find a string configuration such that
t=71, z=uz(0), r=r(oc), &= constant, (5.126)

so one might consider an ansatz with the string moving also on the compact coor-
dinate £, despite the fact that its physical meaning is rather uncertain [30].

We consider the following ansatz (see |186], for similar considerations in space-
times with Schrodinger symmetry)

t=1, &=¢&(1), z=x(o), r=r(o). (5.127)

Then the components of the induced metric are

G,y = —QT—[f 0-E+ L2 f(6)(0:6)*, Goo = f—j (@) + (")) (5.128)

where 2/ = 0,z, ' = 0,r and G = det G35 = G+G,,. The Nambu-Goto action is
given by

S:

/ drdo/P (o) (@) + (7)) , (5.129)

B 2o
where
92 — _GTTL2/7~2, (5.130)

We consider the equation of motion for &,

o0 [av=G (— + 51906 )| =0 = 0. (C49) = (6v=a s90.¢)

(5.131)
where G = G!. From (5.127) we see that r is independent of 7 and from [48],
we already know that the function f does not have functional dependence on 7.
Therefore, both sides in (5.131) must vanish independently. The left-hand side of
the equation (5.131), implies that GG ho(o) therefore we take £ = veT, where

r2

ve is a constant. The right-hand side gives 0, f(¢) = 0 and since f cannot be a
function of » = o, we conclude that f is a constant.

This means that the configuration (5.127) is allowed just for particular metrics
(5.125) (as in [48]), namely those with f constant, which occurs for instance when
the internal manifold is 7!, whereas this configuration is forbidden for the Sasaki-

Einstein manifolds Y74, It is rather curious that although we consider the string
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propagating just in the noncompact spacetime, the form of the internal manifold
can determine physical aspects of the string propagation.

The equation of motion for x = x(0) is

2
g
Oy Opx | =0 = 0,r = xVips 05, (5.132)
(%cﬂ @+ )
where .
Vers = « g*(r) — ¢, (5.133)

and cg is just an integration constant. We consider a N-shaped string similar to the
solution considered in the last section, namely a string which extends from = = —¢/2
to x = £/2 and it reaches a maximum point 7,4, in the bulk space.
The boundary conditions for this configuration [46] imply that Sll_;‘rao — 00. In
our case, we can easily see that this condition is satisfied since lim, o Veys — o0.
The turning point, i.e. the maximum point in the r direction, is determined by

the condition j—;(rmax) = 0, which gives

,  2L* LAf

2 2 _ _
9" (Tmaz) — g =0 = ;= ;‘;wxvg r%wxvg : (5.134)
In order for ¢y to be real, we see that we need ve < 2/(fr2,,..)-
Finally, the distance between the string endpoints is
Tmazx 1
gq(j(rmax) = 29(rmax)/ dr ; (5135)
0 \/92(7'> — 9%(Tmaz)
and if we define w = /1,4, we find
23 1 w?
lyq Tmaz) = e T'mazx
qq( ) L2\//U_§g( ) \/ fvfrmax - ) fvfrmaccwz + 2 (5 136)
2r3 '
= e max I max
770 (Ta) L)
In order to solve the integral, we write it as
1 w2
Z(Tmaz) = dw , (5.137a)
\/ fvfrmar - 2)11)2 2] (U)2 - 1)
and performing the substitution w = sinu, we find the elliptic integral
2
Tmax = / sin” y (5137b)
\/_ \/1 + (2 fvf”‘ma@ Slnzu
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with (2 — fuer?,,.) > 0.

max

In terms of the complete elliptic integrals of first and second kind [191],

w/2
K(k) = / du (5.138a)
0 1 — k2sin®u
w/2
E(k) :/ duv/'1 — k2 sin*u (5.138b)
0

(The constant k is called elliptic modulus and it can take any complex or real value
%)) we can write (5.137b) as

K(k) — E(k)

Vi
where k? = (fver?,. — 2)/2. Then the distance between the string endpoints is
given by

T(ras) = (5.139)

L2\/@g max
22 R e By = 22

- Ve k? Jve

Now observe that —k* = (2 — fuer2,,.)/2 > 0, since fuer?,. < 2, therefore
2
2

K(k) — E(k)

&M(Tmax) =

(5.140)

A(—k?) .

k* +1 > 0, which implies that ve > 0. Therefore v¢ € (O, fr—>, and —k? € (0,1),
see figure 5.1.

04 1

et U e Ve Ty
0.2 0.4 0.6 0.8 Lo

Figure 5.1: Graph of the function A(—k?).

Finally, following the standard calculation [45,46|, we compute the observable
that would correspond to the energy of a ¢g-pair (defined in relativistic gauge theo-

ries by introducing external quarks into the theory, and measuring their potential),

9Generally in physics and engineering problems, the modulus k? is parametrized in such that
k% € (0,1), but it is not our case. See [192] for details.
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by subtracting from the string action the action of two ‘rods’ that would fall from

the end of the space to the boundary. The renormalized energy is obtained to be
T 2 T
max g (7«.) max
Vig(Tmaz) = 2/ dr — 2/ dr g(r)
“ 0 \/92(7“) - g2(rmam) 0

_ V2uel? (2w? — fuer?,,)

1
/ dw
Tmazx ver _
0 \/(1 _ (foe '%211133 Q)wz) (1 — w?)
oL (- S
w? 2

= —\/Q_USIP (Z-o(k,w™) + Io(k,w’) = Z,(K',w™2)) ,  (5.141)

rmaw

where k' = fuer?, /2.

We can easily see that

o(k, w° dw ST = —foert K(k). (5.142a
5 max
\/ f%r"““” )w2) (1 —w?)

Consider the substitution w = sinu, so that the second integral is

/2 1

T o(k,w?) = 2/ du
0 sin? u\/<1 — M”%_m sin® u)

=2[K(k) — E(k)] — 2 \/<1 _ el —2) sin? u) cot u

w/2

9

2

0
(5.142b)

and the third integral reads (considering the arcsin modulo 27n)

/2 2
Zy(k,w™?) = 2/ du C.OSQU \/(1 Ve s sin? u)
0 sin” u 2
2
=—12 (1 — Msirﬁu) cscu
2 (5.142¢)
w/2
—/2fver?,,, arcsin (\ / % sin u) ]

+ 21/ 2 fuer?, . -
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The terms with arcsin(---) and the terms in the upper limit u — 7 are constants,

but we observe that we have two divergent terms for u — 0, namely

2
I:—Q\/(l—%siﬁu) cscu

2 =2
]I:—Q\/(l—%siﬁu) cotu ,

and the difference in the equation (5.141) gives

2 —2
lim (—\/(1—Msin2u) cscu—l—\/(l Msiﬁu) cotu) =0.
u—0 2 2

(5.144)

(5.143)

All in all, if n € Z, the potential energy Vg is

A/ 2U§L2

V;}q(rmaa:) = |: 2 - fvamaz)K(k) - QE(k) — 21 V 2fv§rmaa:
rmax
2
2fuver2,, arcsin | 4/ SV +24/1— Ve o .
2 2
(5.145a)
Since ve € (0, fﬁL), we write v = 55— with a € (0,2), such that

~ 1 1 5
‘/:I‘?(rmax) = m%q(rmaﬂc) = \/m [_2 (k' K<k’) + E(k‘)) — QWH\/%

+v/2a arcsin (\/g) + 2@1 .

(5.145b)
In the figure 5.2, we plot the graph for three different values of a.

Alternatively, we can write the energy as a function of the distance, £z, as

L?./2 k2«/
Vi (Tmaz) = v fv \/ qu + = E —2mnv2a
Tmax 1+ kz
(5.145¢)
+\/%arcsin <\/g) +24/1— g } .
and from this last result we see that
_ 4/ /1.2 2V
Wog _ pWIORVR - AV (5.146)
dly,g T'maz(1 + k2)1/2 dls;
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(a) a=0.1 (b) a =1.0 (c)a=1.9

Figure 5.2: Graph of XA/qq against —k?, for three different values of @ and n = 0.

It is important to notice that, although the potential energy V,; exhibits a linear
behaviour in relation to the distance {4, similar to confining theories, we can not
say that this theory is confining, since we have a maximum value for the distance ¢,;
in relation to the maximum distance r,,,,. Therefore, if we suppose that {,; < {4z,
the potential V; is a bounded function of ;. A similar phenomenon also happens
in the calculations of Wilson loops at finite temperature [45]. Moreover, as we said,
it is not clear if the interpretation imported from the relativistic gauge theories still

holds in this case.
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Chapter 6

More on Wilson loops for

nonrelativistic backgrounds

UE to their importance, we want to continue the analysis of the Wilson

%)

) /’ loops in this chapter. We start with a short review of the usual prescrip-
ik «3@@; tion of Wilson loops defined in [31], reviewed in [45]. Also, we highlight

the relevant details for the calculation of the drag forces considered in |51, 54].

In this chapter, we examine some string configurations on backgrounds with
Schrodinger and Lifshitz symmetries and we see that these systems are tricky. We
exclude some configurations and we also find systems that can hardly be solved
analytically.

Even though the nonrelativistic systems considered here are at zero temperature,
we found a nonzero drag force for them, as in [193|. Finally, reconsidering the
systems of [186,188|, we perform further analysis and present some speculative ideas

on the nature of the nonrelativistic field theory dual to the background.

6.1 Short review

We have presented a review of the prescription for the calculation of Wilson loops
in the section (3.4.1), but by completeness, we show again the main results. In
summary, we present a short review of the ideas examined in [31,194] and reviewed
in [45, 46| for the calculation of the quark-antiquark distance and potential. In

addition, we consider some fundamental ideas related to the drag force on a classical
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string configuration as in [51,52,54].

6.1.1 Quark-antiquark system

As we have seen in the section (3.4.1), we start with a background of the generic
form
ds® = —gudt® + 9u2dT + grrdr® + dsy (6.1)

where ¢y, g». and g, are functions of the radial coordinate r, and the term dsf\,t 18
a metric of an internal manifold. We can neglect the internal space ds}, because we
consider a probe string that is not excited along those directions.

We take an ansatz for the string as
t=1, xz=uz(0), r=r(o), (6.2)

and when we calculate the Nambu-Goto action and its equations of motion, we find

that this configuration implies

dr  dv f(r) / ) 5
do i%C’og(r) Sy =G (6:3)

where f(1)? = g1tGuz, 9(r)? = g19rr and Cy is an integration constant. The shape of

the solution in this background can be pictured as a string whose ends are fixed at
x = 0 and x = {,; at the boundary of space, r — 0. In addition, it can extend in the
bulk, so that the radial coordinate of the string assumes its maximum value at r,
that occurs at © = (,;/2. Furthermore, one can show that the integration constant
is equal to Cy = f(ro), see [46].

Considering the string solution above, we can compute gauge invariant quantities
such as the separation and the energy between the endpoints of the string, which
can be interpreted as the separation between a quark and an antiquark living on the

brane, see [45,46] for further details. These results are given by

(ya(r0) = 2f(r0) / “") ! , (6.4

Eya(ro) = F(ro)lag(ro) — 2 /0 drg(r) +2 /0 %mrv—ﬂm)?. (6.5)
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6.1.2 Drag force

In [51], the author considered a probe string moving through the AdSs-Schwarzschild
background, whose radius of the horizon is related to the temperature of the dual

gauge theory. In summary, Gubser considered the metric of the near-extremal D3-

brane B 4 2
ds?y = = \/g ) VH(dr?/h+ dQZ) (6.6)
where ” A
H=1+", h= —%. (6.7)
The near horizon limit is simply
2 2 7.2
o T 9 2 L#dr
ds* = ﬁ(—hdt +dx )+ ET , (68)

where we drop the five dimensional part of the metric, since it plays no role in the
present case.

Besides, he considered the following configuration

t=71, x(r,0)=v,7+n(0), r=o, (6.9)
with action .
S = Y /deUC ) (6.10)
and density
v h
E:\/l_—x —n2 . 6.11
g (6.11)
From the equation of motion we find that the momentum II,, = ng, is a constant
equals to
2
I Yo TH (6.12)

(ivier: ¥
Using this last expression, the authors of [54] showed that the drag force, opposite
to the motion of the string, is given by
F, = —ﬁl’[n, (6.13)
and using the relation 7L?T = rp, we see that the drag force depends on the
temperature of the system.
In this section we have defined the calculation of the drag force using the holo-
graphic principle, but we can reconsider this same calculation for backgrounds with-

out horizon. This is what we intend to do below.
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6.2 Schrodinger backgrounds

We begin by reconsidering some of the calculations that have been performed in
|186, 188,193,195 concerning the calculation of Wilson loops on backgrounds with
Schrodinger symmetries. Moreover, we perform further analysis in these solutions,
and we study additional string configurations.
The probe string moves on a manifold of the form
ds® =

r2

—dt?
( seop T 2dédt + (da')? +dr2> (6.14)
.

where £ is a compact timelike coordinate, and the natural number z is the dynamical
exponent. It can be shown , see [30] and references therein, that for i =1,--- | D —
1, the space (6.14) is the geometric realization of the Schrédinger algebra in D

dimensions.

6.2.1 Constant compact direction
First, we consider the following configuration for the probe string [186, 188, 193]
t=1,r=r(0),r=ux(o),§ = constant . (6.15)

The Nambu-Goto action for this configuration is

2m (@ () (6.16)

and if we define f(o) = R?/r**Y, the equations of motion for z and r are

fo/ B
F2(22 + 172) = Co (6.17)
f2r/ B (1’/2 + 7“’2) ﬁ
2 ( 12(2" —1—7"2)) o 2(17 +r’2)fdr' (6.18)

Equation (6.17) implies that
d r \/f?—C3 d
@ :I: V=G =+ Vers(r), (6.19)
do do C’O do

and the equation (6.18) is solved when this last equation is satisfied. Also, for a

M-shaped string, the turning point is defined as the point ry where —;‘r = 0. Using

this condition we determine the constant Cy = f(r9).
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Since we consider a string moving in the bulk with its endpoints lying on the
boundary » — 0, the Dirichlet boundary condition lim,_, Z—f — 0 must be satisfied.
We can see that this condition is readily satisfied, since lim,_,o V.5 — o0.

The quark-antiquark distance is given by

( 242 >
log(ro,2) = 2roﬁ—2(21+1) : (6.20)
r (2(z+l)>
and in [186,188] it was found that the quark-antiquark potential ! is

z+2

_QRW%F(m)

215 F(ﬁ)

(2y/7) 1+ R2 F(%) ah 1
o\ (o))

From this equation we see that for the special case z = 1 we have the behaviour

V@(TO, Z) -
(6.21)

Vag ~ —ﬁ in the potential quark-antiquark, which is consistent with the conformal
scaling.
In [188], the author also showed that the convexity conditions [139,190] of such

a configuration are satisfied, that is

AV, &2V,

Cad ¢ a 22
Ay~ 0 ae, =Y (6.22)

where the first condition means that the quark-antiquark interaction is always attrac-
tive and the second equation means that the potential is a monotone nonincreasing
function of ¢. Therefore, this configuration is physically admissible.

A second configuration with constant compact direction that we would like to

explore is given by
t=7,r=0,r=uv,7+n(0),§=const . (6.23)

As we said in the previous section, the drag force has been studied in [5,53] in the
context of a quark moving in a thermal plasma of N' =4 SYM, and we have seen

that the horizon is related to the temperature of the field theory. Despite the fact

1 Using the definition of the Gamma function to extend the domain of the Beta function.
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that in the present case we do not have a horizon in our geometry, we may apply
the very same ideas.
The action is

2 ,U2
27'('0( T2Z T‘z - ﬁ:| ’ (624)

and the equation of motion implies that II,,, given by
R4 /
I, = 7 , (6.25)
poeen B [y 22— )

is a constant. Therefore, we find

1— UQTQz—Q
e — 1L

Now observe that if we take z = 1, the numerator in the square root is positive for
all values v < 1, and this is consistent with a relativistic theory.

For the denominator we find that for some large r, the constant H% could be
greater than R*/r?, and in this case, the denominator would be negative. Since
there is no upper bound for r, we see that the reality condition of the integral
implies that II, = 0, which implies that the drag force is zero, as we shall see below.

This result is expected, since for z = 1 we have the anti-de Sitter space, which is
at zero temperature, and in the relativistic case, the drag force for a system at zero
temperature vanishes. Also, we can see that the equation of motion for r is trivially
satisfied since % =L

For z = 2, the values IT,, = £ R?v? avoid an imaginary value in (6.26). Essentially
these two examples were studied in [193].

In addition, for z > 1 we have the general formula
IT, = £R*EHD/GED (6.27)
Using that the drag force, formally defined as

Firag = —V—9G229°°7" (6.28)

and that II, a L we can easily show that Fy., = II,,. The drag force is defined to

be contrary to the velocity of the string, hence

Firag = —R*PpETD/GED (6.29)
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For the special case z = 2, the drag force is Fy,,, = —R*v®, which is consistent with
the results found in [193].

For a general z, the results above are equal to the case studied in [187] for the
Lifshitz spacetime at zero temperature. This happens because any configuration in
the Schrodinger and Lifshitz spacetimes have the same Nambu-Goto action when
& = constant.

In the section 6.1.2 we have seen that the radius of the horizon is related to
the drag force of the system. On the other hand, the nonrelativistic spaces we
consider do not have horizons, but have nontrivial drag forces. As the authors
argued in [193|, these systems may have a hidden chemical potential that allows
such a phenomenon. In fact, making the transformations t — ut and & — p~ !¢ in
(6.14), we can repeat our calculations and see that Fj.,, o< 1/u?, and in the dual
field theory, the parameter p can be interpreted as the chemical potential |30, 196].

In other words, the chemical potential is the conjugate variable to the particle
number, and the compact coordinate & is directly related to the particle number (see
for instance [30,196]); then it is somewhat expected the presence of this ’hidden’
chemical potential. On the other hand, the nature of the coordinate ¢ is still a
mystery [36-39], and the mechanism (considering that it exists) which allows us to
relate the spectrum of the masses (particle number) to the chemical potential is

unknown.

6.2.2 Nonconstant compact direction

We now consider that the string also moves on the compact direction . We start
with an example studied by [186], where the author concluded that the configuration
is not physical. Here we point out some reasons that suggest a richer physical
scenario. Furthermore, we study a new configuration in which the compact direction
¢ depends on the coordinate o that parametrizes the string. This configuration is
described by a system of nonlinear differential equations and we could not find an
explicit solution.

The reader must remember that we do not have a correct interpretation of this
coordinate [30], consequently, the physical meaning of the string with its endpoints

moving along this direction is uncertain; and maybe it is not even physically admis-
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sible. Even so, let us insist on this direction and examine the ansatz

t=1,r=r(0),z=2x(0),§=¢&(7), (6.30)

where the Nambu-Goto action reads

1
S = - dea\/g(T, o) ((z")2 + (r)?), (6.31)
for g(r,£)* = f—; (== — 20:€). The equations of motion are

d-g(r,&) =0, (6.32)

2./
7 =Ch, (6.33)

92($/2 —|—T’2)
a 927”/ B (x/2 + T/Q) @ (6 34)
v 92 (2 + 1) o 92 (2 + 70/2)ng' '

We can see that {(7) = v, and the third equation is solved by imposing the second

one. Therefore, the quark-antiquark distance now reads

dr r*+

/ \/1 _ 2U£T2z 2 _ 1(%4 ) 2242

_29 7“0

0= (6.35)

and the potential is
7o

d
ror -2 drg(r), (6.36)

V3 —9 7’0 0

where 7 is the end of the space. The last term is necessary to remove the infinity
part of the potential [31,45,46,197]. This term is the mass of a W-boson which

corresponds to strings stretching from zero to the end of the space 7y. Additionally,

qq—2

the IR limit is defined such that the maximum value ry approaches the end of the
space, that is rg — 7y [46].

In [186], the author argued that since this integral is imaginary for values of
r such that r2G=Y > 27 — 1/2¢, the configuration (6.30) with & = vt is
unphysical. Even though his arguments seem accurate, we point out some reasons
which suggest that, perhaps, it is too early to rule out this configuration, inasmuch

as we must be careful in using nonrelativistic spaces in our calculations.
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First we need to remember that, except when z = 1, which is the AdS space,
we can have several undesirable features on the background such as curvature sin-
gularities at the end of the spacetime 7y — oo, see [30,198,199]. On the other
hand, it is important to notice that not all curvature singularities affect physical
quantities [200-202], therefore, these spaces are not severely ill-defined.

In fact, considering spaces with Lifshitz symmetry the authors of [203] consid-
ered a configuration that can be interpreted as scattering amplitudes and studied
observable consequences of the singularity in the IR structure of the dual field the-
ory. Moreover, we are considering zero temperature systems and these singularities
can be removed with finite temperature effects [30, 40].

Therefore, we expect to integrate the counterterm in (6.36) up to some point
7o < o0o. In this case, the problem can be fixed if we consider that the “cutoft” is
defined at some point 7y < 7., where the integral is well defined.

Evidently, after fixing the end of the space 7y, we have a maximum (allowed)
value for the velocity ve. Then, we can take a velocity ve to be small enough, such
that FeC "
reasonable configuration under certain conditions, and also that the velocity along

) < 1/2ve. Therefore, we notice that for the case ve # 0, we have a

the compact direction £ may have an upper bound.

Furthermore, under the time reversal transformation ¢ — —t or the parity £ —
—&, the space (6.14) is not invariant and we have g% = f—; (T%z + 2% . In this case,
the integral for the W-boson mass is always real. This is a hint that field theory
dual to supergravity solutions with Galilean symmetries may “perceive” the time
direction. This is a point that deserves further investigation.

Alternatively, since the coordinate o which parametrizes the string length is
compact, we could consider a configuration with £ = £(o), for o € [0, L]. Then, take

the ansatz
t:T,T:T(U) 7$:vx7+77<0) ,f:f(o’), (637)

with Nambu-Goto action

T
§= o / dol | (6.39)
where ) ) , , )
L Lo\ = +r7)  (£)
R (— - —) EEE (6.39)

and equations of motion

B, (R—4 ) =0, (6.40)



RY (1 %\
a,, {T’Q_ (E—T—Q)T]} :O, (641)

oL RY (1 %\ ,
E:&, [@ (@—T—Q)T] . (642)

The first two equations above give

1 (R 2\ ¢r2 o 1 vz 2 2

ﬁ(rj—Q) " =05 = 2 (= +r"%), (6.43)
R' (1 v; ’ 2 2 1 v\ (*+r?) &2
F(z—ﬁ)”:@{577ﬁ—if—+ﬁy (6.44)

respectively.

We can simplify this system considering the particular case v, = 0. The action

S=_1 / da\/h2 [(n')2;(r')2 - (’5')2] , (6.45)

2ol 72

is

with h(0)? = R*/r?. Using the notation 2ra’S = T [ do L, we see that the equations

of motion are

h2 /
0, (Z%) =0, (6.46)
h2 !
0, <ET’77> ~0, (6.47)
and 12 9
r
8(7 (Zﬁ) = E . (648)
The first of these equations implies that
1 [h? Cc?
ﬁ(z—@%@%wiwuwa, (6.49)

while the second equation gives
1 h2 7"/2 §/2
= (77 — C§> (') =C3 (rT + ﬁ> . (6.50)

In order to find a restricted class of solutions, we consider initially & = constant,

which is the first case considered in this section. Alternatively, we can set n =
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constant and r = . In the latter, the equation of motion for 7 is trivially satisfied,

which means that Cy = 0, whereas the equation of motion for ¢ gives

dr r*=t [h2

The equation (6.48) now gives us the following differential equation

h§/2 1 5/2
€F _ o\ fL €

(6.52)

and if we insert (6.51) into (6.52) we see that this system is not consistent unless
C7 = (3 = 0, which implies that £ = constant. This means that this restricted class
of solutions is trivial, and in order to find solutions one may try to solve numerically
the coupled equations (6.43 — 6.44) or (6.49 — 6.50) for v, = 0.

In summary, one sees that the motion of string along the compact coordinate
¢ of a Schrodinger background is a tricky issue, and deserves further investigation,

but in principle, there is no apparent reason to rule out these configurations.

6.3 Lifshitz

Now we would like to study the motion of a string in a space of the form

R_Q( dt?

2

+ (dxi)2> + LAy (6.53)

Cr2(-0) r2

Analogously to what we have done in the last section, we could try to consider the

probe string with the following profile
t=1,r=r(0),x=2x(0), (6.54)

and we get the same equations as in the first example of section (6.2.1), see [185].

Moreover, if we take the example
t=1,r=r(0),r=uv,7+n(0), (6.55)

we find the second example of the same section, since in that case we considered
& = constant.

Additionally, the solution presented in [48] is much more interesting. In this
paper, the authors used the methodology of [47], which allowed them to embed a
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Schrodinger invariant solutions with z = 2 into string theory, to find a supergravity
solution with Lifshitz symmetry.
The exterior part of the solution [48] is given by

RQ

ds? = . — (—2dtdg + (da')* + r? f(€)de? + dr?) , (6.56)
and in order to make explicitly the Lifshitz symmetry, we write
—2dtd dt? dt\”
Crae=- 4 (d - _2) | (6.57)
r? r4 r

where we considered f = 1.
Notice that a configuration with £ = constant, t = t(7), r = r(o) and x = z(0)
is not allowed, since it would give a zero Nambu-Goto action. On the other hand,

we may consider that

t=71,r=r(0),r=uv,7+n(0),§ = const, (6.58)
and we obtain a nontrivial Nambu-Goto action
T R*v
= T ()2 — ()2
§=5— / dot =P~ (7 (6.59)

From the reality of the action, we may notice that the functions n and r must
be purely imaginary or one of them complex, in such a way that the combination
—(n')* — (+")? > 0. Such conditions for  and r are unacceptable because they are
distances. Therefore, this configuration is unphysical.

In the last chapter we have studied one more configuration, namely
t=1,r=r(0),x=2a(0) ,§ =veT , (6.60)
and we saw that the the quark-antiquark distance is given by
V2 | k41

gqq (rmafl?) = \/f_Ug

where K(k) and E(k) are the complete elliptic integrals of first and second kind
respectively; and k? = (fuverZ,, — 2)/2, with —k* € (0,1). The quark antiquark
potential is

L\ /2v k2\/ (I
qu<rmam>: r : [_2( f 1+k2£qq+ E > —271'77,\/%

+v/2a arcsin (\/g) + 2\/@1 .
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(6.62)



where a € (0, 2).
As we said before, the coordinate £ is compact, so it is reasonable to take the

functional relation £ = (o). Then we consider the ansatz

t:Tﬂ”:T(U)7$:Uz7+n(0)af:f(0)a (663)
such that T
S = - /daﬁ : (6.64)
where
1 — 1202 NZ _ 2 (/2 1 72
L = RQ \/( r sz)(ﬁrl v:p(n +r ) (665)
The equations of motion for n and & give
007’2 (1 _ 7‘2U2f)£'2 — 22
U :i: z €z .
g Uy \/ R*?2 + Cr* ’ (6.66a)
VeV R RA(1— 12 )¢
Wagf + 0, ( a7 ) =0, (6.66b)
and if we take f to be a constant, we find
/12 + T-/Q
' = 0, Cyr? 7 . 6.66
‘ ”1r¢a—ﬂ@mww—3m—ﬂ@m (605
The equation for r is
Ry oL
—0, ( v ) =5 (6.66d)

In order to simplify this system, one can try to set one further constraint, n =

constant. From the equation of motion for £, we find

r_ r2Chu,r’
Foe V(1= frro2)[r'CE — RA(1 — fr2v2)] (6.67a)

We see that if we set r = o, we find an inconsistent configuration, since from this

last equation

¢ =+ . (6.68a)
VI = frf)[riCF — RY(1 - fr2?)] '
while from the equation of motion for r we have
RY1 —r203f) —C%?
e ()2 6.68b
(e -a)e - (0:050)
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By substitution we can see that both equations are not consistent, unless C; = C3 =

0, where the constant
R4 2
Oy = —=
ril
solves the equation (6.66d) for r = ¢ and ' = 0.
On the other hand, we can take the system with 7" # 0, but with r = . The

equations of motion are

+L (6.69)

COT’2 (1 _ T21}2f)€/2 _ U2
/: :l: x xT .
" Uy \/ R%w2 + C2rt 7’ (6.70a)
and
/2 + 1
' — 4, Oy 7 . 70b
o V Qe Ty e oy 7)) M

Finally, we see that the integration constant Cj is equal to the conserved charge

I, = 9£  therefore, the drag force of this configuration is
n on

R4U277I
rif

Firag = — (6.71)

but in order for this to be well defined, we need to solve the equation of motion
for the coordinate & — probably numerically — and we also need to consider the
additional condition (1 — v2f)¢? —v? > 0, that comes from the reality condition of
the equation (6.70a). Therefore, we can see that in this case we can find nontrivial

drag forces at zero temperature.
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Chapter 7

Conclusions

N this thesis we studied several properties of the abelian and nonabelian

T-duality on backgrounds of type ITA and IIB supergravity. Moreover, we

have seen how we can use prescriptions of the gauge/gravity methodology
to understand the field theory dual to these T-dual backgrounds.

In chapter 03 of this thesis we have considered a T-duality along an U (1) isometry
of a deformation of the MNa solution in |7], such that the resulting type ITA solution
consists of D4-branes wrapping a two-cycle. We found a solution with nontrivial RR
forms, a nonvanishing Kalb-Ramond field and a complicated metric. We analyzed
Maxwell and Page charges associated to this solution.

We then studied properties of the field theory dual to the T-dual gravitational
background. From a calculation of the Wilson loops, we saw that the dual gauge
theory presents confinement. We also computed the QCD string tension and the
gauge coupling of the gauge theory.

From a calculation of the entanglement entropy, we found that the field theory
does not have a phase transition, despite being a confining theory; this could be
due to the nonlocality of the theory, as suggested in [138]. Finally, considering
domain walls in the gravitational background, we generate a Chern-Simons term in
the gauge theory.

Also, in the chapter 04 we have studied the nonabelian T-duals of some back-
grounds with A" = 1 supersymmetry and an AdS factor, that can have an AdS/CFT
interpretation. We have considered the nonabelian T-dual of a type I1A solution with

an AdSs factor, giving a type IIB solution with an AdSs factor, and the nonabelian
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T-dual of a type IIB domain wall solution that interpolates between AdSs x 11
and AdS; x R? x S2 x S3.

We have probed the interpretation of nonabelian T-duality of these solutions
from the point of view of the dual conformal field theory through a calculation of
the central charges. We have found that the simple law (4.65) found in [146] for the
ratio of central charges before and after the T-duality holds in all cases, with the
obvious generalization of Npg/Npg to Nj,/Np, .5 or to NpsNps/NpsNps. In the
case of the type IIB dowain wall solution, we obtained the usual oc N? behaviour,
and on the AdS; side we could fix the normalization of the central charge by using
a rescaling parameter 7, in order to obtain the same law (4.65) valid on the AdSs
side of the domain wall. In order to understand better the effect of nonabelian T-
duality on gravity duals with AdS factors, one needs to study also other probes of
the geometry, but we leave this for future work.

In the fifth chapter, we have studied nonabelian T-duality for nonrelativistic
holographic duals. In particular, using a NATD transformation we constructed novel
examples of nonrelativistic spaces with the interpretation of holographic duals, one
for a conformal Galilean theory in massless type IIA, one for a conformal Galilean
theory in massive type ITA, and two for Lifshitz theories in type I1IB, coming from
NATD of spaces with TV and Y? internal spaces.

In order to describe the field theories dual to the nonrelativistic gravitational
backgrounds, we have calculated the conserved charges of these backgrounds and
we compared our results with those obtained in [148|.

We have also calculated the Wilson loop observables for the holographic dual
spaces, though their true interpretation in the field theory remains to be seen, and
it would be very interesting to understand. For the Wilson loops in gravity duals of
conformal Galilean theories, we considered that the compact coordinate is constant
and we found that the energy potential between quarks is always attractive. For
the case of gravity dual of spaces with Lifshitz symmetry, we could not consider a
constant compact coordinate, and we do not know the field theoretical interpretation
for the string moving in this direction. The Wilson loop that we found for this second
class of spaces is proportional to the quark-antiquark distance, but the interpretation
of this result is not clear.

It would be useful to characterize further the field theories dual to the nonrela-

tivistic backgrounds considered in this paper, by studying also other properties, like
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conductivity or shear viscosity.

Finally, in the chapter 06 we concluded this thesis reconsidering some string
configurations that give Wilson loops in the dual nonrelativistic field theory. In
summary, we studied strings moving in spacetimes with Schrédinger and Lifshitz
symmetries.

We started with Schrodinger spacetimes, and reviewed the string configurations
with constant compact dimensions [188]. In this case, we have some physical configu-
rations and we calculated the quark-antiquark distance and potential. By extension,
we considered the string moving along the z-direction and we calculated a nonzero
drag force for such a configuration.

Taking into account the motion along the compact extra dimension, £ = £(7), we
reconsidered the configuration of [186]. We pointed that one cannot claim that this
configuration is unphysical yet; in fact, there are some issues that must be taking
into account: first, the role of the compact coordinate £ is not clear, and we need
to remember that there are genuine singularities at the end of the space. Also, at
the present stage of development, we can consider a parity transformation & — —¢&,
and, apparently, this transformation makes the system well defined.

Alternatively, we pointed that the coordinate £ is compact, then the configuration
with dependence £ = (o) may make physical sense. In this case, we found a coupled
system of differential equations.

For the Lifshitz case, we saw that there are some cases in which the analysis is
the same as in the Schrodinger solution for constant compact dimension [185]. On
the other hand, we have considered the Lifshitz solution related to the construction
given by [48], and we saw that a rich scenario emerges. For the case with constant
compact direction the solution is unphysical.

For a compact dimension ¢ with dependence on the dimension 7, we have cal-
culated the quark-antiquark potential in [195]. Finally, for the compact dimension
with dependence on the coordinate o, we calculated the drag force of the string
moving through this background.

We recall that we must be careful in using these nonrelativistic spaces. An
interesting question is whether the systems of differential equations have solutions
or not. It is also very promising to consider the effect of fields of the NS-NS sector

on the string, or quantum effects similar to [45].
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Appendix A

Type Il superstring

N this section we consider a concise review of type IIA and type IIB

string theory and their low energy limits. In this appendix I do not try

to be self-contained by no means, and it must be seen as a guide to the
type II string theory. The topics I consider here can be found in the standard books
of string theory and references therein, e.g [10,11,55,58,93|.

A.1 Highlights on the RNS and GS formalisms

There are two equivalent ways we can introduce supersymmetry into superstring

theory, namely:

e The Ramond-Neveu-Schwarz (RNS) formalism in which the supersymmetry is
realized on the worldsheet

e The Green-Schwarz (GS) formalism in which the supersymmetry is realized
on the spacetime.

A.1.1 RNS formalism

Let us consider first the RNS formalism. We consider momentarily that o/ = 1/2,

then the bosonic action in the conformal gauge is simply
1
Sy = —5 d?00,X,0°X" (A.1)
™
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and we complement this action with a Dirac action for D massless Majorana fermion,
then

1 _
S=—5- / d*0 (0. X, 0% X" + "Dy, (A.2)

where @ = p®0, and 1 = i)T p°. The Dirac matrices p® satisfy the Clifford algebra
{p, p°} = 2n*® such that

(7)) =

. (v
() »

we can write the fermionic part of (A.2) in the light-cone coordinates as

If we define

7
Sy = £ [ o (00,0, +050-00) (A.5)
and the equations of motion are
8+¢— =0 a—¢+ =0 ) (AG)

that describe left-moving and right-moving waves. In addition, these equations
implies that these Majorana spinors are also Weyl spinors.
Open strings

We already know that in the open string case, the left-moving modes are related to
the right-moving modes by the boundary conditions. In order to be a well defined
theory it can be shown that some inequivalent boundary conditions can be satisfied.

For instance, if we take
wi’rj:() = wﬁ’azo 5 (A?)

we can have two different conditions for the other string endpoint:

1. Ramond (R) boundary condition:

wi’a:ﬂ' = wﬁ’a:n s (AS)
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with mode expansion

Y (0,7) deﬂ e ) (A.9a)

ne’l

W (o, 7) =% Z dre=n(r+o) (A.9h)

ne’l

such that (d*)" = d",,.

2. Neveu-Schwarz (NS) boundary condition:

¢i|0:7r = _¢ﬁ|a:7r 5 (A]_O)

with mode expansion

W (o Z e~ (T=o) (A.11a)

T’EZ+1/2

P (o, 7) —in(r+o) (A.11b)
T€Z+1/2

SI

%I

Closed strings

In the closed string case we have two sets of fermionic modes, hence four different

conditions. The periodicities conditions are
Vi(r,0) = £Yk(r,0+7), (A.12)

that is, we have periodic boundary condition (R), and the antiperiodic boundary

condition (NS). Therefore, the right-movers have the expansion

(o, 7) Zd“ “2in(r=o) or (0, 7) Z b= 2n(r=o) (A.13)

nez reZ+1/2

while the left-movers satisfy

Y (o, 7) Zd” “EnEe) or (o, T) = Z pre2in(r+o) (A.14)

nez reZ+1/2

All in all, we have four inequivalent possibilities: states in the NS-NS and R-R
sectors, describing spacetime bosons, and states in the NS-R and R-NS sector, that

describe spacetime fermions.
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From the quantization of the modes, we can be find the spectrum of the open
and closed strings. In particular, it can be shown (see [10,11]) that there are two
inequivalent N/ = 2 superstring theories with only closed strings, the type IIA, in
which the left- and right moving R-sector ground states have opposite chirality, and

the type IIB string theory, where these modes have same chirality.

A.1.2 GS formalism

In the RNS formalism we can calculate amplitudes in a way that the Lorentz symme-
try is preserved, together with the fact that we can find the spectrum of the theory
very quickly. Obviously we need to be aware of the GSO projection (see [10,11]) but
except this small obstacle, we do not have problems regarding the quantization of
string theory in the RNS formalism. On the other, the supersymmetry of the theory
in this formalism is not manifest, although we can easily show that the number of
degrees of freedom at each mass level match as required by supersymmetry, it is not
a direct proof.

On the other hand, we can handle a formalism where the supersymmetry is
manifest, the GS formalism. The bosonic string theory is defined as a map from the

string worldsheet Y to a spacetime manifold M, that is
X:Y—>M, (A.15)

we may think of the GS formalism as a map from string worldsheet 3 to a superspace
manifold My,

The GS action is given by
1 (03
S=—5- d2ov/—hh*PTIA 5
1 _ _ _ _
+ — /d206"‘5 [—GQX“ (@11“#(95@1 = ®2FH(95@2) — @1Fﬂaa®1@11“#85®2} ,
(A.17)
where

" = 9,X" — 67,0,0" (A.18)

and ©4, with A = 1,..., N, are Majorana-Weyl spinors in d = 10. In the type II
superstring, we have N’ = 2. In the type IIA theory, these spinors have opposite
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chirality, while in the type IIB theory, these spinors have same chirality, that is

IIA : T;,0% = (—1)*"e (A.19)
1B : T ,04 =064, (A.20)

The spectrum of the theory can be analysed through the light-cone quantization,
and in this case, only a subgroup of the Lorentz symmetry is manifest, namely, the
transverse SO(8) rotational symmetry. Moreover, in ten dimensions a Majorana-
Weyl spinor has eight components and each ©4 fulfills an representation of SO(8),
and as we will see below, there will be two inequivalent representations of this
symmetry group.

A.2 Triality

In ten dimensions, we can find irreducible spinors that satisfy the Majorana and
Weyl conditions simultaneously', and in this case our spinors have a minimum of
eight complex components. Therefore, we are dealing with representations of the
Lie algebra so(8) = Dy, whose Dynkin diagram is

Figure A.1: Dynkin diagram for the Lie algebra so(8).

One conspicuous property of this group is its threefold symmetry, known as

triality, that permutes inequivalent representations (with the same dimensionality)

In fact, given a space with signature (¢,s) we can define Majorana-Weyl (MW) spinors if
s —t =0 (mod 4). Therefore, in Minkowski spaces, with d < 11, we can have MW-spinors for
d = 2,10 [91,204]
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of this group. In other words, there are three eight dimensional representations of
s0(8), the fundamental representation, denoted by 8, and two spinor representations,
8, and its complex conjugate 8. [205]. Let us think about it for a moment.
Consider first the familiar rotation group in three dimensions SO(3). The fun-
damental representation in this case is defined by the action of 3 x 3 matrices on
vectors ¥ with components o', for i = 1,2,3, that is v’ — R’v/, where R € SO(3).
In addition, using the exponential map, we can write the matrix R € SO(3) as

R =exp (zd; . E) where & = wn defines the angle w we are making the rotation and

the components of L are the generators of the Lie algebra so(3)

Moreover, the generators of Lie algebra of the group SU(2) satisfies [0;,0,] =
2i€;j,0 where o;, ¢ = 1,2, 3 are the Pauli matrices. Therefore, the map ¢ : su(2) —
s0(3) defined by L; = o(0;) := 0;/2 is an isomorphism between these two algebras.

On the other hand, the groups SO(3) and SU(2) differ in global topological
aspects. In particular, we know that for n > 2 the orthogonal group SO(n) is not

simply connected. At the same time, any matrix U € SU(2) can be written in the

U_(a—l—zb c—i—zd) (A.22)

form

—c+id a—1b

with a,b,c,d € R and det U = a? 4+ b* + ¢? + d? = 1, which is the equation defining
the 3-sphere 2. The group SU(2) is, as a group manifold, the 3-sphere S3, therefore,
it is simply connected. All in all, one can show that the correspondence between
these two groups is two-to-one and in fact SO(3) ~ SU(2)/Zs.

The important point here is that using this group homomorphism ¢ : SU(2) —
SO(3), we can find a representation of SU(2) once we have a representation R of
SO(3). Using these facts we define the objects transforming under the fundamental
representation of the group SU(2) as the spinor representation SO(3), see [206]
for further mathematical details and [69] for a explicit and detailed construction of
spinor representations.

One may clearly notice that the fundamental representation of SO(3) is three-

dimensional, whilst the spinor representation is two-dimensional, which means that

2In terms of quaternions H, the Lie group SU(2) is the subset of H with elements of length

equal to one.
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the vector and spinor have different dimensions and are obviously intrinsically dif-
ferent. The same occurs for most of the groups we consider, for instance in the
Poincaré group SO(1,3) and in the R-symmetry group SO(6) of N' =4 SYM, and
there is no special reason why it should be different. But the distinguished property
of the group SO(8) is that the dimensions of the spinor and vector representation
are the same. Surely it is what Bertrand Russell would call mathematical supreme
beauty [207] and it is astonishing that this amazing symmetry has something deep

to say about a mundane theory such as string theory, as we will see now.

A.3 Type II supermultiplet

In order to make contact with string theory, we need to pay attention that in the
light-cone quantization of superstring theory we have an SO(8) rotational transverse
symmetry, and from the results we have just found, associated to this group we can
find three inequivalent representations denoted by 8,, 8, and 8, see [10,11, 55,90,
208.

Since the theory we supersymmetric, the number of bosonic and fermionic degrees
of freedom must match, and one can show that the ground state for open strings
(see for instance [11]) is given by 8, @ 8, (or evidently 8, & 8.) where 8, consists
of a massless vector and 8, its spinor partner, together these fields give the vector
multiplet. Taking tensor products of left and right-movers we obtain the ground

state for closed strings. We have two possibilities:

ITA: (8, ®8.)® (8,®8,)

(A.23)
IIB: (8,58,)®(8,&8,).

Let us now understand what all these products mean. The multiplication table
[90,205,208] (see also, the appendix B1 of [32] and the D’Hoker’s lectures in [58]) of
the group SO(8) is
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8, ®8,=1028®35, : [0]+[2]+(2)

8,8, =1028PB35, : [0]+[2] + [4]s
8.28.=1028®35. : [0]+[2]+[4].
8, ®8.=8,®56, : [1],+[3],

8, ® 8 = 8. D 56,

8. ®8, =8, D56,

Consider first the term 8, ® 8,, which is common to both ITA and IIB string
theory and is called NS-NS sector. The decomposition gives a scalar, the dilaton
¢, a anti-symmetric rank 2 tensor, the Kalb-Ramond field B;; and the traceless
symmetric rank 2 tensor, the graviton G;;.

In the type ITA and IIB string theories, we take the product 8. ® 8, = 8, ® 56,.
In this case the decomposition gives a spinor \,, the dilatino and a vector-spinor

¢, the gravitino, see [208| for a detailed analysis of these decompositions. Together,
8, ® 8, and 8. ® 8, give the graviton multiplet.

For the type ITA string theory we have 8, ® 8, = 8. ® 56, that is, a dilatino
and a gravitino \; and w& Also ,8, ® 8. = 8, ® 56,,, known as R-R sector, gives a
vector AEI), the graviphoton and an anti-symmetric rank 3-tensor AS’,)C

Finally, the type IIB string theory has 8, ® 8, = 8, @& 56, that gives a dilatino
and a gravitino )\, and WX; and the R-R sector is 8, ® 8, = 1 & 28 & 35., gives
a scalar A, an anti-symmetric rank 2-tensor Ag) and an anti-symmetric rank
4-tensor AE;L,)CI, whose field strength is self-dual, that is dA® = xdA®.

sector type ITA type I1B
NS-NS (bosons) | ¢, Bij, Gy ¢, Bij, Gij
NS-R (fermions) | A, 0% Aas V4
R-NS (fermions) | A, 9" Aas V4
R-R (bosons) Agl), Al(j,)C A Aﬁf), Agjl)vl
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A.4 Type II supergravity

In the previous section we have seen the massless spectrum of the type IIA and IIB
string theories. But one can show that for the low energy limit of these theories,
o/ — 0, the massive spectrum becomes extremely heavy, and we can study the

dynamics of the massless modes by a supergravity theory.

A.4.1 D= 11 and the type ITA supergravity

We begin by recovering the massless bosonic field content of the type ITA string

theory in ten dimensions, that is

NS-NS sector: G

¢
1) 43
R-R sector: AL ), Agux)p

B

pv s Puv o

But the field content of the type IIA supergravity can be obtained from a theory in
eleven dimensions, than in principle has nothing to do with string theory, namely,
d = 11 N = 1 supergravity first studied by [209]3. Initially, it was realized [213]
that we can formulate consistent (with spin < 2) supersymmetric field theories
only if the spacetime dimension d is less than or equal to eleven dimensions, than
d < 11. Another important characteristic of eleven dimensional theories is the
fact that in principle, if we want to reproduce the standand model gauge group
SU(3) x SU(2) x U(1) as isometries of compact higher dimensions, then we need at
least seven extra dimensions [214], for instance, the manifold CP? x S? x S'. But it
became clear that from this procedure we could not obtain a chiral theory.

The field theory of /' = 1 d = 11 supergravity theory contains the metric
G, that can be formulated equivalently in terms of vielbeins e,,” with 44 degrees
of freedom, a Majorana Gravitino W,, with 128 degrees of freedom and an anti-
symmetric rank 3-tensor Gj;yp. Let us now consider just the bosonic sector of the

theory, but it important to notice that the fermionic sector could be included in this

3See also [89,91,210] for some reviews on this subject and the collections [211,212] ranging
important works from the early days of higher dimensional theories to the Maldacena first work in
the AdS/CFT paradigm.
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analysis as well [89]. Following the notation of [32], the bosonic action is given by

N 1 1
2k2,51; = /d”w\/—G (R - Z\dCP) - 6/C/\dCAdC, (A.24)

where r; is related to the Newton’s constant Gy; by %, = 87Gy;. The type ITA
supergravity is readily obtained by dimensional reduction of this theory on a 1-sphere
S3.

Consider that the coordinates split as M = {u, 10}, then the metric decomposes
as

ds? = Gy ydaMdz™

. A.25
= G, datda” + 93 (dz' + A(Vl)dx”) . ( )

Therefore, from the eleven dimensional metric G, we obtain the ten-dimensional
metric G, the dilaton ¢ and the graviphoton A,(}). The ten-differential forms A,(ﬁ,)p,
in the R-R sector, and the Kalb-Ramond field B,,, in the NS-NS sector are

Cop =A% Cuo= B, . (A.26)

pvp o

Therefore, if we call H = dB, F®, F® = dA®) + AW A H the action of the type
ITA string theory, obtained by dimensional reduction of the d = 11 supergravity is

1 1
Stra = —5 | d%2v—Ge™*? | R+ 40,90"¢ — = |H|?
2K70 2
] ] (A.27)
[ avav=aG <|F(2)|2 + |F<4>|2) — — [ BAdA® A dA® |
4K, 4k
where k%, = k%, /27R.
Finally we may observe an important property of the type ITA supergravity.
Associated to this theory we have a 2-form and a 4-form field strengths, and using

the Hodge duality we can find a 6-form and an 8-form, that is
F6 = *F4 s Fg = *FQ . (A28)

Romans showed in [215] (see for a review [93]) that we can find a deformation of
this theory that is not related to the eleven dimensional supergravity. The main ob-
servation is that if we consider a 10-form field strength Fiy = dA®) whose equation

of motion implies that d x F;p = 0 we can introduce a parameter

m = *Fg (A.29)
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in our theory. At the end we find a theory defined by the action

- 1 1
SIW}A = S[[A RO dlox\/ —Gm2 + 5 .9 me s (A30)
4K, 2K,

where Syy4 is simply (A.27) but with the replacements

A.4.2 Type IIB Supergravity

The massless bosonic field content of the type 1IB string theory in ten dimensions

18

NS-NS sector: G, , By, , ¢
R-R sector: A,(f]), A,(fu), Agly)po’

and the low energy limit is described by the action

1 1
S[[B =39 dlox\/ —G€72¢ R + 48#¢8M¢ — —‘H‘z
2K7) 2
_L/dwx,/—_g FOR L FOR 4 L peR) - L [ A0 A g p®
4’1%0 2 4/@%0 ’
(A.32)
where
- ~ 1 1
F® =dA® 4 A0 g O = gA®W — 5A<2> NH+ 5B A dA® (A.33)
The equation of motion and the Bianchi identity for F®) are
d* F® =dF® = F AFO) (A.34)
which is consistent with the constraint
FO ) (A.35)
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A.4.3 Einstein and String Frame

Finally, the Einstein-Hilbert action in d-dimensions is simply
1
SEH = 2—2 /ddx\/ —GR s (A36)
Ka

but in (A.27) and (A.32) we have a factor of e=? in front of the Ricci scalar. This is
called, the string frame. We can write the action in the usual Einstein frame (A.36)

if we make the transformation
Gu — Gl =e G, = V-G =e"?/-GF. (A.37)

Evidently, the differential form F}, does not change after this transformation, but
the Hodge dual *F}, does, since
V-G
(*F> = —6,11»1"'.U‘plierl---HdG#lyl e G'upprVl"'Vp ) (A38)

Bp+1-
p!

so that

1

and in the Einstein frame we have

datr+t Ao Adat (A.39)

Ppt1Hd

(*F)E — e(p—5)¢>/2<*p)

Kp+1°Hd

(A.40)

Hp+1-Hd *
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