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Abstract

In this thesis we study properties of type II supergravity solutions generated by

abelian and nonabelian T-duality. Also we determine, through the gauge/gravity

conjecture, some aspects of the �eld theory dual to the supergravity solutions ob-

tained by T-dualization. We consider three distinct types of backgrounds solutions,

namely, backgrounds that are dual to con�ning �eld theories, backgrounds dual to

conformal �eld theories and those dual to nonrelativistic �eld theories. We conclude

this thesis with an analysis of Wilson loops on backgrounds with nonrelativistic

symmetries.

Keywords: AdS/CFT; gauge/gravity; supergravity; string theory.

Areas: High Energy Physics - Theory.
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Resumo

Nessa tese estudamos propriedades de soluções de supergravidade tipo II obtidas

através da dualidade T abeliana e não abeliana. Também determinamos, através

da conjectura gauge/gravidade, aspectos da teoria de campos dual a essas soluções

obtidas por dualidade T. Consideramos três tipos distintos de soluções: duais a

teorias de campos que con�nam, duais a teoria de campos conformes e duais a

teoria de campos não-relativistas. Concluimos essa tese com uma análise dos laços

de Wilson em soluções com simetria não relativista.

Palavras Chaves: AdS/CFT; gauge/gravidade; supergravidade; teoria de cordas.

Áreas do conhecimento: Física de Altas Energias - Teoria.
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Chapter 1

Introduction

The truth is rarely pure and never simple

(Oscar Wilde)

I
N a speech titled �Nineteenth-Century Clouds over the Dynamical Theory

of Heat and Light�, presented in 1900, Lord Kelvin declared: �The beauty

and clearness of the dynamical theory, which asserts heat and light to

be modes of motion, is at present obscured by two clouds�. The two clouds were

the ultraviolet catastrophe and the failure to detect the Luminiferous æther. From

these two clouds emerged the two columns of modern physics, general relativity and

quantum mechanics.

One hundred years later, in the age of the LHC and the Planck satellite, we

physicists could � just in principle � describe all phenomena we can access through

our experimental apparatus using the standard model of elementary particles and

the standard model of cosmology. On the other hand, it is very embarrassing that

the two frameworks we use to describe the very small and the very large cannot live

together. In other words, we do not know how to study objects that are very massive

and in�nitely small, as a black hole, because quantum mechanics and gravity are

incompatible.

In the quantum gravity program of research, we assume a pragmatic viewpoint

of what a scienti�c theory means, since the phenomena relevant to its study lives

beyond any experiment humans can probe. Obviously this does not mean that we

can neglect the proof of a quantum gravity theory through the experimental tests,

this just means that in order to prove a theory of this species, we need to see its low
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energy e�ects. String theory is a conservative (yes, despite the criticism) attempt

to merge quantum mechanics and gravity in an uni�ed framework.

The search for a uni�ed description of nature is one of the oldest quests of

mankind, and goes back to the ancient Greeks motivated by theological and meta-

physical propositions and to Isaac Newton, James Clerk Maxwell, Steven Weinberg

and several others physicists, motivated by theoretical consistency1. The important

lesson is that we, modern physicists, are part of their cultural heritage and the

subject of this thesis in a tiny portion of it.

In this work we try to understand the e�ects of quantum symmetries, called

dualities, on some string theory backgrounds. In particular, we study the action

of the Nonabelian T-duality on string theory solutions and how it changes the �eld

theory dual to these transformed solutions. In other words, we study some properties

of T-duality [2, 3] and of the gauge/gravity duality, originally proposed in [4].

The general concept behind the gauge/gravity conjecture is that of a holographic

principle, that states that a d-dimensional �eld theory can be equivalent to a gravity

theory in d + 1 dimensions when the symmetries of the �eld theory are realized as

isometries of the gravity side [4�6]. This innocent, but powerful, idea has driven

the vanguard of physics for almost twenty years. One important feature of original

gauge/gravity correspondence [4] is that the duality relates string theory and a

conformal �eld theory with maximal supersymmetry, with all �elds transforming in

the adjoint representation.

To make contact with the real world � that is for phenomenological applications

� we need to extend these ideas to nonconformal �eld theories with minimal super-

symmetry, N = 1 SUSY, as well as adding �elds transforming in the fundamental

representation.

In [7] it was found the gravity dual of a pure N = 1 SYM in d = 2+1 dimensions,

and this second solution is known as Maldacena-Nastase solution2. Furthermore,

in [9] a deformation of the solution in [7] was considered and �elds transforming in

the fundamental representation were added.

In chapter 03 of this thesis, we apply the abelian T-duality on the deformed

Maldacena-Nastase solution [9], which gives a type IIA solution and we lift this

1And by a re�ned aesthetic sense, �Beauty is the �rst test: there is no permanent place in the

world for ugly mathematics�, as G.H. Hardy said [1].
2See also [8] where the authors considered the gravity dual of N = 1 SYM in d = 3 + 1, coupled

to extra modes that could not be decoupled while maintaining calculability.
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solution to eleven dimensions. Also, following the prescription of the gauge/gravity

duality, we probe the �eld theory dual to the backgrounds we obtain through the

T-duality.

Besides the T-duality [2,10�13] and the gauge gravity duality [4�6,14,15], many

di�erent dualities exist in string theory, for instance S-duality [16�19] and Mirror

Symmetry [20,21]. In this thesis we are also interested in the nonabelian T-duality,

started by the paper [3], which is the generalization of the T-duality (also called

abelian) for the case when the background has a nonabelian isometry group. Di�er-

ently than its abelian cousin, the nonabelian T-duality has been poorly understood,

and just recently the action of the transformation on the RR �elds was found [22,23].

Similarly to the abelian case, the nonabelian T-duality can also be used as a

solution generating technique. Then, starting from a solution of supergravity, we can

�nd another solution by a simple set of transformations rules, and we can investigate

these solutions through the gauge/gravity correspondence. Roughly speaking, this

is the general idea we perform in chapters 04 and 05.

In chapter 04 we are particularly interested in string theory solutions which the

metric has a d-dimensional anti-de Sitter space as a factor, that is, solutions of the

form AdSd ×M10−d. There are numerous solutions of this form, for instance, in

the best known example of the gauge/gravity duality [4] we consider a string theory

solution of the form AdS5 × S5.

Another important solution of this form was considered in [24], called Klebanov-

Witten solution, which consists of a space of the form AdS5 × T 1,1, where T 1,1 is

the homogenous space (SU(2) × SU(2))/U(1). This solution is the gravity dual

of a superconformal �eld theory with N = 1 and gauge group given by SU(n) ×
SU(N). In fact, one of the �rst examples of the application of a nonabelian T-

duality transformation in a background supporting a nontrivial RR �eld was in the

Klebanov-Witten solution [23,25].

We apply the nonabelian T-duality transformation on the solutions found by

Jerome Gauntlett and his collaborators in [26,27] in chapter 04. In order to under-

stand the dual conformal four dimensional theory, we �nd conserved charges of the

backgrounds. Finally, we will see the e�ect of the renormalization group (RG) �ow

on these backgrounds, in particular, the duality does not a�ect the �ow.

Furthermore, a lot of the recent interest in the gauge/gravity correspondence has

been focused on applications to condensed matter physics, speci�cally in the study
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of strongly coupled systems described by relativistic and also nonrelativistic �eld

theories. Since gauge/gravity duality relates strong coupling in �eld theory to weak

coupling in gravity (and vice versa), we can analyze models that are otherwise very

di�cult to study. However, in these AdS/CMT cases we usually have no decoupled

system of branes, only a phenomenological construction of a gravity dual, therefore,

we have usually less control over the construction, and one degree of control is

obtained by analyzing the symmetries.

The holography for nonrelativistic systems is at an incipient stage, and there are

several unknown aspects that we need to understand, for example, in theories that

exhibit a d-dimensional Schrödinger symmetry � the symmetry of the Schrödinger

equation for the free particle [28�30] � their algebra cannot be organized as an

isometry of a (d+ 1)-dimensional space as usual, but in a (d+ 2)-dimensional space,

and the role of this extra dimension is still unclear.

As we mentioned earlier, another important aspect of the gauge/gravity dual-

ity is that it relates weak and strong coupling regimes of the �eld theory to the

gravitational theory. As a result, the savage strongly coupled regime of the �eld

theory can be mapped to a docile weakly coupled regime in the gravitational side

and vice-versa [14,31,32].

We have a plethora of strongly coupled systems in condensed matter physics, then

it is perfectly reasonable to look for a gravitational dual to theories which describe

these condensed matter systems. In the study of strongly coupled condensed matter

systems, we have a variety of numerical and theoretical tools from statistical physics

and quantum �eld theory [33,34], but they usually are hard to use.

Then, if we want to study condensed matter systems through this modern per-

spective, we have a new paradigm in the gauge/gravity conjecture, namely, since the

�eld theories in condensed matter �elds are nonrelativistic, their dual backgrounds

have nonrelativistic isometries [35�40], see [30] for a review. In these nonrelativistic

spacetimes, we �rst de�ne the nonrelativistic algebra and then we try to realize it

geometrically [35�40], and then, the generic tools of AdS/CFT are applied in the

usual way.

In the �fth chapter of this thesis we use these facts to study the nonabelian

T-duality on nonrelativistic backgrouds and we also study charges of the new back-

grounds. In particular, we apply the transformation rules on backgrounds with

Schrödinger and Lifzshitz symmetries � symmetries of Lifshitz �xed-points [30, 41,
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42]. Also, in this chapter we start studying one important observable in �eld theo-

ries: Wilson loops.

Wilson loops are gauge invariant observables constructed from the connection of

the gauge group, and are associated to the parallel transport of a particle moving

through the gauge �eld [43,44]. In the holographic context, the prescription for the

calculation of Wilson loops in the gravity side was given by [31] and was applied in

the AdS5×S5 solution of type IIB supergravity which is, as we already know, dual to

a superconformal �eld theory. This prescription has been extended to backgrounds

that are not anti-de Sitter, and by consequence, to backgrounds that are not dual

to conformal �eld theories - although, they preserve Lorentz symmetry - see [45,46]

for excellent reviews.

Moreover, just recently the gravity duals of some of these relativistic systems

have been embedded into string theory, see for instance [37,47�50], and it is evident

that the fundamental nature of the �eld theories is still a mystery. However, one

may hope to be able to identify and elucidate aspects of the nonrelativistic dual �eld

theories, just applying the holographic principle in the gravity side in the calculation

of familiar physical quantities.

Wilson loops seem to be a good starting point, since it is related to a probe string

moving just on the external space. This means that we can ignore, for a moment,

the internal space (as well as additional �elds, such as the dilaton and p-forms)

which composes the supergravity solution.

In this sense, it is an observable which demands a small amount of information on

the background where the string is moving in, but it gives us important information

about the nature of the �eld theory; for instance, if the theory con�nes, if the theory

has conformal symmetry and so on [45, 46]. Also, we can compute drag forces and

the energy loss of charged particles moving in these backgrounds [51�54]. In order

to complete the analysis we started in chapter 05, we study some of these aspects

in chapter 06 of this thesis.

Before we start addressing all these points, let us review the important aspects

of dualities in �eld and string theories.

5



Chapter 2

Dualities

2.1 Dualities in general

I
n the late 60s there were several puzzles concerning the strong nuclear

interaction. In particular, the scattering amplitudes at high-energy have

some oddities [55]. When we consider just spinless particles, the Bose

statistics demands the symmetry s ⇔ t in the scattering amplitude A(s, t), where

(s, t, u) are the Mandelstam variables.

On the other hand, by that time there were a large amount of strongly interacting

particles and they seemed to have arbitrary spin j. As it is well known, it is di�cult

to construct a theory with higher spins interacting particles, since at high energies

they exceed unitarity bounds.

Consider one simple example, the scattering of scalar �elds φ mediated by force

carriers σµ1...µj of spin j and mass Mj. The interaction is of the form∑
j

gj(φ
∗∂µ1 · · · ∂µjφ)σµ1···µj (2.1)

and the t-channel contribution to the amplitude is

A(s, t) = −
∑
j

g2
j (−s)j

t−M2
j

. (2.2)

It is conceivable to think of (2.2) as an in�nite sum, since there was no reason to

consider a maximum value for the spin j. As a consequence, the equation (2.2)

is not necessarily an entire function of s. The oddity mentioned above is that in

6



physical processes we need to consider the s-channel due to its poles, but since (2.2)

may give us poles for �nite values of s, it is not obvious that we need to consider the

s-channel now. Evidently we can construct the amplitude in terms of the s-channel

A′(s, t) = −
∑
j

g2
j (−t)j

s−M2
j

, (2.3)

and the analysis would be the same.

The duality hypothesis states that the s- and t-channel represent alternative

descriptions of the same physics, and it motivated Gabriele Veneziano to postulate,

in 1968, the following formula for the scattering amplitude

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
, (2.4)

where Γ is the Euler gamma function and α(x) = α(0)+α′x is the Regge trajectory

and the constant α′ the Regge slope [55�57].

It is well known that in the early 70s an alternative theory for the strong interac-

tion arose, quantum chromodynamics, and the original motivation for the Veneziano

ideas disappeared. Despite that fact, the study of the Veneziano model � or dual

resonance model � showed a rich framework, known as string theory, with results

ranging from pure mathematics to quantum gravity [10�13,55, 58]. Much more im-

portant is that the concept of duality symmetries � and we will see that there is a

variety of them � is in the core of string theory.

2.2 Dualities in QFT and String Theory

Let us �rst try to understand what a duality really is. Roughly speaking, we may

say that a duality is a nontrivial isomorphism [59]. Observe that this de�nition has

one important aspect that we must understand, the precise meaning of nontrivial.

Equivalently, we will see that a duality is an unexpected equivalence between two

physical systems.

For instance, when we perform a Poincaré transformation or general coordinate

transformation, in our physical systems, we are using just a plain symmetry of the

theory. In other words, we use the fact that the coordinates of our system is just a

mathematical artefact and the nature itself does not care about the directions you
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prefer to call left and right, up or down. In other types of symmetries, we just have

redundancies in our description, for instance, the gauge symmetry.

Mathematicians know very well the equivalences between two algebraic struc-

tures, that they call isomorphisms, above. In fact, they have fancy names for iso-

morphisms depending on the type of algebraic structures they are studying: homeo-

morphisms for topological spaces, di�eomorphisms for smooth manifolds, holomor-

phisms for complex manifolds and isometries for metric spaces for example.

Also, these symmetries preserve properties of the objects we are dealing with,

such as the the dimension, algebra, curvature, topology, etc. This is important

for physics, since it would not make sense a symmetry of a system that changes

the number of dimension of the physical system. Therefore, these invariant objects

is what allow us to study physics, and are directly related to the conservation of

momentum, energy and so on.

Duality is a new beast and comprises several new ingredients. For example,

now we can �nd an equivalence between di�erent algebraic structures, that is, some

dualities can related algebraic geometry to representation theory, and this is an

idea that is not embraced by ordinary isomorphisms. In other words, dimensions,

topologies and so on have no fundamental meaning in the de�nition of dualities.

The physical aspects of the problem � the observables � guarantee the equiv-

alence of the physical systems, then, we may say the duality is a quantum equiv-

alence. In this sense is quite di�cult to prove mathematically that two physical

systems are dual to one another, but one can �nd some mathematical insights on

this issue [59,60].

Consider a quantum theory Q characterized by a set of parameters {λi} �

denoted collectively byM, and called moduli space of parameters � by an algebra

Aλ of observables and by a functional map 〈 · 〉 : Aλ → C∞(M), where C∞(M) is

the space of smooth functions de�ned on the moduli space M. In physical terms,

to each observable Oλ ∈ Aλ we �nd its vacuum expectation value

〈Oλ〉 = f(λ1, λ2, . . . ) , (2.5)

that depends on the parameters λi. We say that the quantum theory (Q,M,Aλ)
is dual to another quantum theory (Q̃,M̃, Ãλ̃) if there exists a map between them

that preserves (2.5).

Essentially, we have three di�erent types of dualities, namely dualities between
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two-quantum �eld theories, dualities between string theories, between �eld theory

and string theory [61]. Let us understand qualitatively some examples.

2.2.1 Quantum �eld theory dualities

In two-dimensional �eld theories, particularly with conformal invariance, the holo-

morphic properties of the �eld implies severe constraints on the theory and this

explains � in part � an equivalence between fermions and bosons. In a CFT, for

example, the [10,62], we can represent a free Dirac fermion ψ as

ψ(z) ∼ eiφ(z) , ψ̄(z̄) ∼ e−iφ
†(z̄) . (2.6)

where φ(z) is a holomorphic scalar �eld with propagator

〈φ(z)φ(0)〉 ∼ − ln(z) . (2.7)

On the other hand, corformal invariance is not a mandatory requirement, for

instance in [63] Sidney Coleman showed that the massive Tirring model, de�ned by

the action

Sψ =

∫
d2x

(
iψ̄/∂ψ −mψ̄ψ − g

2
ψ̄γµψψ̄γµψ

)
, (2.8)

is equivalent to the sine-Gordon model de�ned by

Sφ =

∫
d2x

(
−1

2
∂µφ∂

µφ+m cos βφ

)
. (2.9)

This interesting example of duality is called bosonization and it is useful in the study

of condensed matter systems [64,65].

Another interesting example � and quite relevant to string theory � is related to

the electromagnetic theory [61]. Consider the electromagnetic action in the absence

of sources

SEM = − 1

2e2

∫
F ∧ ∗F . (2.10)

The generacting functional is

Z =

∫
DA eiSEM . (2.11)
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We may notice that the �eld F and its Hodge dual ∗F satisfy the Maxwell equations

dF = 0 d ∗ F = 0 , (2.12)

and we can easily see that they are invariant under F ↔ ∗F , that is simply the

usual electromagnetic duality ~E 7→ − ~B and ~B 7→ ~E using an antiquated language.

To see the quantum aspects of this duality [61], we can try to write the measure of

the path integral (2.11) in terms of F , that is, we consider a transformation

DA 7→ DF
∏

δ(d ∗ F ) , (2.13)

and if we write ∗F = 1
2
F̃µνdx

µ ∧ dxν , the functional delta function is

∏
δ(d ∗ F ) =

∫
DV exp

(
i

2π

∫
d4xVν∂µF̃

µν

)
, (2.14)

this functional representation is a mimic of 2πδ(y) =
∫

dx exp(ixy) . Using these

results, the path integral (2.11) becomes

Z =

∫
DFDV exp

{
−i
∫

d4x

(
1

4e2
FµνF

µν − 1

2π
(∂[µVν])F̃

µν

)
,

}
(2.15)

and performing the Gaussian integral we �nd the �nal result

Z = N
∫
DA eiS̃EM . (2.16)

where N is just a normalization constant and

S̃EM = − 1

2e′2

∫
G ∧ ∗G . (2.17)

where e′ = 2π/e and Gµν = −2π
e2
F̃µν = 2∂[µVν]. Then, we see that the magnetic part

of Fµν is related to the electric part of Gµν , and it is simply the electromagnetic

duality stated above. In fact, we can add the θ-term

θ

16π2
FµνF̃

µν , (2.18)

which is related to the instantons and if we write the coupling constant as

τ =
θ

2π
+ i

2π

e2
, (2.19)
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one can show that the electromagnetic duality implies the following transformation

τ ′ = −1

τ
. (2.20)

It must be noticed that since we are in a free theory, we can easily absorb the

constants e and e′ by a rede�nition of Aµ and Vµ respectively, but we consider this

explicit form, since the relation (2.20) is really suggestive.

When we try to extend the EM-duality above to a case in the presence of sources,

it is mandatory to conjecture the existence of a magnetic charge g, in such a way

that the Maxwell equations become

∗d ∗ F = je , dF = jg . (2.21)

In 1931, Dirac showed, in his groundbreaking paper [66], that this duality condition

demands a relation between the electric and magnetic charges, the Dirac quantiza-

tion condition

eg = 2π~n , n ∈ Z , (2.22)

but since the existence of magnetic monopoles is a conundrum in our community,

and its introduction is an ad hoc hypothesis, it does not seem very natural to con-

sider that this duality is relevant in the Maxwell theory. Also, the existence of the

magnetic monopoles is related to the existence of a string-like singular region: the

Dirac string. It can be visualized as an in�nitely long and in�nitely thin solenoid,

in such a way that the magnetic monopole is precisely the magnetic �eld �owing

out the string. In quantum mechanics, we require that a wave function describing a

particle that turns around n times the solenoid is completely determined except for

an arbitrary phase. This condition is the Dirac quantization.

Furthermore, in certain gauge theories there exists a class o dualities that relates

the weak and strong coupling regimes of the theory. But we may notice that in the

Maxwell theory, we consider magnetic and electric charge at the same time, but if

we consider e << 1 we see that g >> 1 and vice-versa. Then we do not have a true

weak-strong duality in this case.

In 1974, Gerard 't Hooft [67] and Alexander Polyakov [68] showed that non-

abelian gauge theories � the Georgi-Glashow model in particular � admit mag-

netic mopopoles as solutions [69�73], but di�erently from the Dirac monopole, this 't

Hooft-Polyakov monopole is completely regular. Moreover, these solutions are very

di�erent from the quanta of the �elds, these particles are solitons whose stability
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is guaranteed by topological reasons and are extremely heavy at the weak-coupling

regime, since their masses are proportional to M ∼ 1/g, where g is the coupling

constant [73,74].

Montonen and Olive conjectured in 1977 that nonabelian gauge theories possess-

ing monopoles as solutions present the strong-weak duality [75,76], and this conjec-

ture was extended by Witten and Olive and by Osborn [77,78], what culminated in

the conjectured self-duality of the N = 4 super-Yang Mills theory. Supersymme-

try is fundamental in this context, since the simplest form of the Montonem-Olive

conjecture can not be true due to the running of the coupling constant. But one

can overcome this problem if the β-function of the theory vanishes, as in the N = 4

SYM.

There are another important detail concerning this duality. The action of the

gauge sector in the theory is

S[A] =

∫ (
− 1

2e2
F ∧ ∗F +

θ

8π2
F ∧ F

)
(2.23)

but using that the angle θ is de�ned up to 2π, we have the additional symmetry

τ → τ + 1. Together, we may conjecture that the gauge theory is invariant under

an PSL(2,Z) = SL(2,Z)/Z2 group transformation, that is(
a b

c d

)
∈ PSL(2,Z) , a, b, c, d,∈ Z , ad− cb = 1 , (2.24a)

then the theory is invariant under

τ 7→ aτ + b

cτ + d
. (2.24b)

Furthermore, Seiberg and Witten generalized this strong-weak dualities to the-

ories with N = 1 and N = 2 supersymmetries. These dualities between strong and

weak coupling regimes are known generically as S-duality [17, 79�87].

2.2.2 String theory dualities

By the 1990s, it was known that there are �ve consistent string theories: type I,

type IIA, IIB and the heterotic SO(32) and E8 × E8 string theories. However, this

is an embarrassing situation, since an unconstrained structure of a physical theory
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would make it useless, because we could not predict new results. In other words,

the theory would not be falsi�able [10, 11].

This puzzle was solved when it was realized that there are nontrivial equivalences

among the string theories, now known as T- and S-dualities. In fact, T-duality

relates the type IIA and IIB string theory and the two heterotic theories, whilst

the S-duality relates the type I to the heterotic SO(2) and the type IIB to itself.

Together with the fact that the type I theory is obtained from the type IIB from

a procedure called orientifold projection, and is equivalent to the SO(32) theory by

an S-duality, we conclude that these �ve theories are in fact, the same theory, or

better, there may exist some underlying theory that governs these aspects of string

theory, this is the M-theory.

The string coupling constant, gs, is given by the vacuum expectation value of

expφ, where φ is the dilaton �eld. The S-duality relates the coupling constant gs
to 1/gs, therefore, if we know the behaviour of string theory for gs → 0 we can get

insights of the theory for large gs. For instance, strongly coupled type I theory will

be related to weakly coupled SO(32) heterotic strings by S-duality. In the case of

type IIB string theory, S-duality relates this theory to itself.

In fact, using S-duality we can understand the behaviour of three of the �ve

string theories at strongly coupled regime, but we need to see how the type IIA and

the E8 × E8 work in this limit. The answer goes as follows: For gs large enough,

a new dimension of size gs`s emerges in these theories, in such a way that for the

type IIA this dimension is a circle and in the heterotic string we have an interval.

The important point is that this new 11-dimensional quantum theory demands a

new techniques, but we know that its low energy limit is governed by the d = 11

SUGRA [88�91].

For instance, the low energy action (in the string frame) of the bosonic sector in

the type I string theory is 1

SI =
1

2κ2

∫
d10x
√
−G

{
e−2φ (R + 4∂µφ∂

µφ)− 1

2
|F3|2 −

κ2e−φ

g2
tr
(
|F2|2

)}
,

(2.25a)

1The trace Tr is calculated using the 496-dimensional adjoint representation of the gauge group

SO(32), while the trace tr is calculated using the 32-dimensional fundamental representation of

the gauge group [10, 11]. Considering the �eld strength F , we have the identity 30tr (F ∧ F ) =

Tr (F ∧ F ).
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and the corresponding action in the heterotic string is

SH =
1

2κ2

∫
d10x
√
−Ge−2φ

{
R + 4∂µφ∂

µφ− 1

2
|H3|2 −

κ2

30g2
Tr
(
|F2|2

)}
, (2.25b)

where the parameter g above is g2 = 4π(2π`s)
6. Also, the gauge group of the type

I theory is SO(32), which suggests a deep connection with the Heterotic SO(32)

theory. In fact, the map between the theories is simply

φ→ −φ
Gµν → e−φGµν .

(2.26)

And since the coupling constant is gs = 〈eφ〉 we see that

gIs =
1

gSOs
. (2.27)

The type IIB S-duality is dramatically di�erent and we will see in the next section

that it is closely related to the S-duality discussed in the N = 4 SYM. We already

know that in this theory we have a pair of two-forms (B,A(2)) related, respectively,

to the NS-NS and R-R sectors (see A.4.2 in the appendix A and references [10,11]),

and these �elds transform as a doublet under SL(2,R), therefore we write them as

B =

(
B

A(2)

)
, (2.28)

with �eld strength H = dB. In this notation, if we consider

Λ =

(
a b

c d

)
∈ SL(2,R) , a, b, c, d ∈ R , ad− bc = 1 , (2.29)

the B �eld transforms as B 7→ ΛB. In addition, we de�ne the axion-dilaton �eld

τ = A(0) + ie−φ transforms as

τ 7→ aτ + b

cτ + d
. (2.30)

We de�ne the SL(2,R matrix

M = eφ

(
|τ |2 −A(0)

−A(0) 1

)
, (2.31)

under SL(2,R, we have
M 7→ (Λ−1)TMΛ . (2.32)
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All in all, we may write the type IIB action (A.32), in the Einstein frame, as

SIIB =
1

2κ2
10

∫
d10x
√
−G

(
R− 1

12
HT
µνρMHµνρ +

1

4
tr
(
∂µM∂µM−1

))
− 1

8κ2
10

(∫
d10x
√
−G|F (5)|2 + εij

∫
A(4) ∧Hi ∧Hj

)
,

(2.33)

and in this form, the SL(2,R) symmetry is manifest.

This symmetry is not present in the full type IIB string theory, and it is broken

to the subgroup SL(2,Z) due to stringy and quantum e�ects. In particular, the

transformation of the axion-dilaton �eld τ is

τ 7→ aτ + b

cτ + d
. (2.34)

but with

Λ =

(
a b

c d

)
∈ SL(2,Z) , a, b, c, d ∈ Z , ad− bc = 1 . (2.35)

This is the S-duality of the type IIB string theory, which relates this theory to itself.

We may notice now that this transformation is similar to the transformation in the

N = 4 SYM (2.24a � 2.24b), and we will see in the next section that it is not an

accident.

Before, we must consider another important duality in the string theory frame-

work, the T-duality.

T-duality

The bosonic string theory compacti�ed on a circle S1 of radius R allows us to

introduce an important symmetry of the theory. Considering that the closed string

moves in a space of the form R24,1 × S1, the coordinate X25(σ, τ) must satisfy

X25(σ + π, τ) = X25(σ, τ) + 2πRω , (2.36)

where ω ∈ Z, that bears the name of winding number, counts the number of times

that the string winds around the compact dimension. It can be shown [10, 11] that

this coordinate splits as

X25(σ, τ) = X25
L (τ + σ) +X25

R (τ − σ) (2.37)
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where

X25
R (τ − σ) =

1

2
(x25 − x̃25) +

(
α′
κ

R
− ωR

)
(τ − σ) + · · · (2.38a)

X25
R (τ + σ) =

1

2
(x25 + x̃25) +

(
α′
κ

R
+ ωR

)
(τ + σ) + · · · (2.38b)

where κ ∈ Z, called Kaluza-Klein excitation number, comes from the quantization

of the momentum p25 = κ/R. In addition, the mass formula is simply

M2 =
( κ
R

)2

+

(
ωR

α′

)2

+
2

α′
[(NL +NR)− 2] , (2.39)

where NL and NR are, respectively, the number left- and right-moving waves and

they satisfy NR −NL = ωκ.

Now, the curious fact comes when we notice that the mass formula (2.39) is in-

variant under the transformation R 7→ R̃ = α′/R, and the winding number becomes

the Kaluza-Klein number, and vice-versa. This unexpected symmetry of the theory

is called T-duality. Finally, in terms of the mode expansion, this symmetry means

that

X25
R 7→ −X25

R and X25
L 7→ X25

L . (2.40)

In the type II superstring theory, we can repeat this analysis for the bosonic

coordinates, in such a way that under T-duality, the mode X9(σ, τ) transforms as

X9
R 7→ −X9

R and X9
L 7→ X9

L , (2.41)

and in the RNS formalism, the worldsheet supersymmetry demands that

ψ9
R 7→ −ψ9

R and ψ9
L 7→ ψ9

L , (2.42)

and one can show that this condition implies that under this transformation we

exchange from the type IIA and type IIB theory.

Also, we may study the action of T-duality in the presence of background �elds,

for instance, the graviton Gµν , the Kalb-Ramond �eld Bµν and dilaton φ and the

R-R p-forms. The general procedure follows the original idea of Buscher [2]: We

start with a σ-model which supports an isometry such as U(N). Then we gauge

the isometry, but we need to impose a constraint by means of Lagrange multipliers
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which guarantees that the connection �eld strength remains equal to zero. This

constraint enforces the condition that after gauging the isometry, the initial degrees

of freedom remain unchanged.

The duality works as follows. On one hand, by solving the equation of motion

for the Lagrange multipliers and replacing the solution into the action, we recover

the original model. If instead we solve the equation of motion for the connection

and we gauge �x, we �nd the dual σ-model. Let us see how it works.

Consider the following worldsheet action in the presence of background �elds

S = − 1

4πα′

∫
d2σ

(√
−hhαβGµν∂αX

µ∂βX
ν − εαβBµν∂αX

µ∂βX
ν
)
. (2.43)

If we consider that the coordinate X9 is compacti�ed on a circle, the action has an

isometry in this coordinate, and we use this isometry to �nd the T-dual theory. Let

us introduce a Lagrange multiplier X̃9 in this theory and write the action (2.43) as:

4πα′S =

∫
d2σ

[√
−hhαβ (−G99VαVβ − 2Gµ9Vα∂βX

µ −Gµν∂αX
µ∂βX

ν)

+εαβ (B9µVα∂βX
µ +Bµν∂αX

µ∂βX
ν) + X̃9εαβ∂αVβ

]
,

(2.44)

and we can see that this action corresponds to (2.43) using the equation of motion

for X̃9, εαβ∂αVβ = 0⇒ Vα = ∂aX
9, and inserting it in (2.44) we recover the original

action. On the other hand, if we use Vα to eliminate the Lagrange multiplier X̃9,

we �nd the dual action

S̃ = − 1

4πα′

∫
d2σ

(√
−hhαβG̃µν∂αX

µ∂βX
ν − εαβB̃µν∂αX

µ∂βX
ν
)
, (2.45)

where2

e2φ̃ =
e2φ

|G99|
G̃99 =

1

G99

G̃MN = GMN−
G9MG9N −B9MB9N

G99

G̃9M =
1

G99

B9M

B̃MN = BMN − 2
B9[MGN ]9

G99

B̃M9 = −GM9

G99

2Including the transformation for the dilaton �eld that needs a di�erent approach. In fact, we

can compute its transformation as consistent conditions for the quantization of the dual theory

[92]. An easy (and somewhat lousy) way to see this transformation is requiring the invariance of√
−Ge−2φ →

√
−G̃e−2φ̃ under T-duality.
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These transformations are known as Buscher's rules [2, 93�95].

We can study the behaviour of the R-R forms under T-duality using di�erent

approaches, e.g. [94,96,97] from a spacetime perspective, [98,99] from a worldsheet

viewpoint, [100] using pure spinors and �nally [101].

In the approach of [94] (see also [93] for a detailed presentation) we consider

a dimensional reduction of the type IIA theory on a circle S1 of radius Rx and of

the type IIB on a circle of radius Ry in such a way that Kaluza-Klein scalar is

independent of the theory we started, then k2 = G99 = 1/G̃99, then we �nd

Rx

`s
=

`s
Ry

. (2.46)

Making this identi�cation, one can show that the nine dimensional theories we �nd

by dimensional reduction of the type IIA and type IIB theories are the same and

that the R-R �elds are related by

C
(n)
M1...Mn

= C
(n)
M1...Mn9 + nB[M1|9|C

(n−1)
M2...Mn]

+ n(n− 1)B[M1|9|GM2|9|C
(n−1)
M3...Mn]9/G99

(2.47a)

C
(n)
M1...Mn−19 = C

(n−1)
M1...Mn−1

− (n− 1)G[M1|9|C
(n−1)
M2...Mn−1]9/G99 , (2.47b)

and these are the T-duality rules for the R-R sector.

In fact, the T-duality is a particular case of a deeper conjectured duality called

mirror symmetry [20,21,102�104], that associates to each Calabi-Yau manifoldM a

mirror Calabi-Yau manifoldW is such a way that type IIA string theory compacti�ed

onM is equivalent to the type IIB string theory compacti�ed on W .

In order to consider realistic compacti�cations in the string theory framework,

we may split the ten-dimensional space where the string is de�ned as R1,3 ×M6

where R1,3 is the four dimensional Minkowski space andM6 is an internal compact

manifold, and consistence requires that this manifold is compact Kähler, Ricci-�at

manifold with holonomy group SU(3), which is precisely the de�nition 3 of a three-

dimensional Calabi-Yau manifold, also called Calabi-Yau 3-fold [10,55].

3In fact, there are many di�erent de�nitions of a Calabi-Yau n-fold [105�107].
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The simplest Calabi-Yau manifold, the 2-Torus T 2 = S1 × S1, where the circles

have radii R1 and R2. If we regard the torus as the lattice C/{Z ⊕ τZ} we can

easily conclude that it is �at, since C is �at, then it is also Ricci �at and has trivial

holonomy group. This space can be characterized by two numbers � the moduli

space is two-dimensional � and obviously we can consider simply the radii (R1, R2),

but it turns out that the it is more convenient to de�ne the moduli space through

ς = iR1R2 , ϑ = i
R2

R1

. (2.48)

As we know, string theory is invariant under T-duality. Therefore, the transfor-

mation R1 ↔ 1/R1, for α′ = 1, implies that string theory is invariant under ς ↔ ϑ.

Observe that this is a profound result, since from the classical viewpoint, two torus

with di�erent complex structures, ϑ and ϑ′, are not holomorphically equivalent.

Obviously, the mirror symmetry for Calabi-Yau 3-folds are much more di�cult, but

generically, the idea is the same.

Putting all these facts together, we conclude that the structure of the string

theory is very constrained and the theories, in the duality sense, are tied. So we

have the web of dualities depicted in the �gure 2.1.

Now we want to turn our attention to a deeper and unexpected duality, that

one that relates string theory to quantum �eld theories, known as gauge/gravity

correspondence.

2.2.3 String-QFT duality

In the outstanding paper [108], 't Hooft studied the large N expansion of gauge

theories and found that in this regime we have a deep connection between gauge

theories and string theory. Naively, the Yang-Mills theory with gauge group U(Nc),

described by the Lagrangian

LYM = − 1

g2
YM

Tr (FµνF
µν) , (2.49)

does not have a good dimensionless parameter that we can consider a perturbation

expansion, since the coupling constant gYM will be related to the scale Λ by dimen-

sional transmutation [109]. On the other hand, 't Hooft noticed that we have one
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Figure 2.1: Web of dualities.

more dimensionless parameter, the number of colours Nc. When we consider a large

number of colours Nc we could make a expansion in 1/Nc [14, 110].

If we consider a general theory with �elds Φa
µ, where a is an index that labels

the adjoint representation of SU(Nc) and µ labels generic quantum numbers. The

Lagrangian we want to consider is

L ∼ Tr (∂Φµ∂Φν) + gYMf
µνλTr (ΦµΦνΦλ) + g2

YMh
µνλσTr (ΦµΦνΦλΦσ) , (2.50)

where fµνλ and hµνλσ are arbitrary constants. If we rescale the �elds as Φ 7→ g−1
YMΦ,

we �nd

L ∼ 1

g2
YM

[
Tr (∂Φµ∂Φν) + fµνλTr (ΦµΦνΦλ) + hµνλσTr (ΦµΦνΦλΦσ)

]
. (2.51)

We may de�ne the 't Hooft coupling λ := g2
YMNc, and the limit when Nc →∞ and

λ remains �xed is known as 't Hooft limit.
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Using the double line notation, in which a �eld in the adjoint representation

is the product two �elds in the fundamental and antifundamental representations,

then we may consider that (Φa)ij ≡ φiφj. In this notation, the propagator is

〈Φi
jΦ

k
l〉 ∝

λ

Nc

(
δilδ

k
j −

1

Nc

δijδ
k
l

)
, (2.52)

and in the large Nc we can safely ignore the second term in the propagator, so

that it is proportional to λ/Nc. Furthermore, from the Lagrangian (2.51) we easily

see that the vertices are proportional to Nc/λ. Using the quarks and gluons as

our prototypical example of �elds, we can draw the Feynman diagrams as double

lines an in the �gure (2.2), where the orientation is taken from fundamental to

antifundamental indices. All in all, the Feynman diagrams have the power in Nc

Figure 2.2: Double diagrams for gluons.

and λ

NV−E+F
c λE−V , (2.53)
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where

V = #Vertices

E = #Edges (propagators)

F = #Faces (loops)

The Euler number ξ de�ned by ξ = V − E + F is a topological invariant and for

closed surfaces it is given by ξ = 2 − 2g, where g is the number of handles of the

surface, and it is called genus. Therefore, the perturbative expansion of the theory

is simply
∞∑
g=0

N2−2g
c f(λ) , (2.54)

where f(λ) is some polynomial in λ. We have an expansion in terms of Riemann

surfaces of di�erent genus in in the �gure (2.3).

Figure 2.3: Perturbative expansion.

In particular, when we consider the large Nc limit, the surfaces with g = 0 are

dominant, and the double line diagrams associated to these surfaces are called planar

diagrams, since we can draw them in the surface of the sphere, as in the �gure (2.4).

When we make the identi�cation gs ∼ 1/Nc, the expansion above is the same

expansion we �nd in the perturbative expansion of closed strings [10,12], so this fact

is an initial motivation to suppose that quantum �eld theories and string theory may

be related. The revival of the interest in such a connection is mainly due the work

of Maldacena in [4], and this duality known as gauge/gravity correspondence. It has

been used to explore many aspects of gauge theories which cannot be studied using

usual perturbation theory techniques.
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Figure 2.4: Planar and nonplanar diagrams.

The fundamental concept of the gauge/gravity duality is that the symmetries

of the �eld theory are realized geometrically as isometries in the gravity dual side

[4, 6, 14, 32, 111�116]. Let us see how this duality works using the original example.

We need to consider two sides of this duality, the �eld theory side and the gravity

side. In the �eld side we have a Yang-Mills theory with gauge group U(Nc) and

N = 4 supersymmetries.

The �eld content of this theory consists of a gauge �eld Aµ, four fermions χiα
and their complex conjugates χ̄īα̇ and six scalar �elds φI , where i, ī = 1, . . . , 4

describe, respectively, the fundamental 4 and antifundamental 4̄ representations of

the R-symmetry group SU(4) ' SO(6) and I = 1, . . . , 6 describes the fundamental

representation SO(6), in addition α and α̇ are chiral indices. Furthermore, all

these �elds transform in the adjoint representation of the gauge group U(Nc). The

Lagrangian of the theory is

LN=4 = Tr

{
− 1

g2
YM

F ∧ ?F −Dµφ
IDµφI +

g2
YM

2

∑
IJ

[φI , φJ ]2 + θYMF ∧ F

+ − χ̄ /Dχ+ gYM

(
Cij
I χ

i[φI , χj] + C̄ īj̄
I χ̄

ī[φI , χ̄j̄]
)}

,

(2.55)

where the 4 × 4 matrices CI are related to the Dirac matrices of the group SU(4),

see these matrices explicitly in [91].

The other side of the duality rests in a type IIB string theory solution. When

we consider Nc coincident BPS D-branes, we obtain, as the worldvolume theory, a
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maximally supersymmetric U(Nc) gauge theory. In the low energy limit, the U(1)

subgroup of U(Nc) decouples from the e�ective action on the Dp-brane, in such a

way that the gauge theory is actually SU(Nc).

The D3-brane solution of the type IIB theory is given by

ds2
IIB =

1√
H(r)

ηµνdx
µdxν +

√
H(r)

(
dr2 + r2dΩ2

5

)
,

F = (1 + ∗)dH−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

(2.56)

where

H(r) = 1 +
L4

r4
, L4 = 4πα′2gsNc , (2.57)

and dΩ2
5 is the SO(5)-invariant metric of S5. In the near horizon limit, r → 0, the

metric approaches to

ds2
IIB =

r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5 , (2.58)

and we recognize it as the metric of the direct product space AdS5 × S5.

The isometry group of the gravity dual is SO(4, 2)× SO(6), matching with the

N = 4 SYM considered above. While the SO(4, 2) symmetry of the anti-de Sitter

space is reinterpreted as the conformal group in 3 + 1 dimensions of the Yang-Mills

theory, and the group SO(6) ' SU(4) can be identi�ed with the R-symmetry group

of the conformal theory. Let us see how this duality works.

In the Kaluza-Klein (KK) analysis of �elds in in the AdS5× S5 background, the

�elds are expressed in terms of spherical harmonics of S5. For instance, a scalar �eld

is expanded as

φ(xµ, r, θ) =
∑
k

φk(x
µ, r)Y k(y) , (2.59)

where Y k(y) are spherical harmonics on S5, satisfying

�S5Y k =
k(k + 4)

L2
Y k , (2.60)

and φk(xµ, r) are scalar �elds on the anti-de Sitter space. The dynamics of the four

dimensional gauge theory is then encoded into the �ve dimensional AdS5 space,

then the gauge/gravity duality is a holographic duality, since a gravity theory in

(d+ 1)-dimensions is dual to the a gauge theory in d-dimensions. It turns out that

the radial coordinate r is related to the energy scale E of the �eld theory E ∼ r,
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therefore, if we consider that the �eld theory includes all degrees of freedom, we

take E → ∞, which corresponds to r → ∞, and in this sense we may say that the

�eld theory is located at the boundary of the anti-de Sitter space [14,116].

Putting all these facts together, one can show that given generic �elds Φi on the

gravity side, we can regard the boundary values φi0 as sources of operators Oi on
the �eld theory side, then

Zstring =

∫
φi0

DΦie−S[Φi] =
〈
e
∫

d4xφi0Oi
〉

= ZCFT . (2.61)

In [32] Joe Polchinski tells us an interesting history of a reader poll to deter-

mine the greatest equation of all time. His personal choice would be the equation

(2.61), since it includes quantum �eld theory, general relativity, string theory, su-

persymmetry, extra dimensions and so on at once. Can we disagree? I don't think

so.

Although there is not a precise mathematical proof of the gauge/gravity duality,

there are several tests of the correspondence, see [14,32,111�116] for further details.

2.3 Nonabelian T-Duality

The motivation for dualities is now well motivated. In this section we return to

the problem of the dualities in string theory. We may notice that the T-duality

procedure is determined using the isometry group U(1) of the compact manifold S1,

but one natural problem is the generalization of T-duality to other group isometries.

The �rst possibility is the isometry group of the torus T n, but this case is trivially

generalized, since its isometry group is just the product U(1)n. Another possibility is

the nonabelian generalization of T-duality, that is, we consider that the background

we compactify the string theory supports a nonabelian abelian group G as the

isometry group [3,22,23,117�121]. Here we consider G = SU(2).

We write the metric in the form

ds2 = Gµν(x)dxµdxν + 2Gµi(x)dxµLi + gij(x)LiLj (2.62)

where µ, ν = 1, . . . , 7, and Li are the Maurer-Cartan forms for SU(2). In general

we also have nontrivial Kalb-Ramond two-forms

B = Bµνdx
µ ∧ dxν +Bµidx

µ ∧ Li +
1

2
bijL

i ∧ Lj, (2.63)
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and a dilaton Φ = Φ(x). The important point here is that all dependence on the

SU(2) Euler angles (θ, ψ, φ) is contained in the one-forms Li.

Next, de�ne the vielbeins

eA = eAµdx
µ

ea = κajL
j + λaµdx

µ,
(2.64)

with A = 1, . . . , 7 and a = 1, 2, 3. Imposing

ds2 = ηABe
AeB + eaea, (2.65)

by direct comparison with (2.62) we have

Gµν = ηABe
AeB +Kµν , κaiκ

a
j = gij, κaiλ

a
µ = Gµi , (2.66)

where we de�ned λaµλ
a
ν = Kµν .

If we combine the metric and B �eld into Q and E by

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi

Qiµ = Giµ +Biµ, Eij = gij + bij ,
(2.67)

the Lagrangian density is

L = Qµν∂+X
µ∂−X

ν +Qµi∂+X
µLi− +QiµL

i
+∂−X

µ + EijL
i
+L

j
− , (2.68)

where Li± = −iT r (τ ig−1∂±g) , and g ∈ SU(2). In order to �nd the nonabelian

T-dual, we gauge the isometry SU(2) by making the replacement

∂±g → D±g = ∂±g − A±g , (2.69a)

and adding the Lagrange multiplier

−iviF i
± , F i

± = ∂+A
i
− − ∂−Ai+ − [A+, A−]i . (2.69b)

One can show that the nonabelian T-dual background is

Q̂µν = Qµν −QµiM
−1
ij Qjν , Êij = M−1

ij

Q̂µi = QµjM
−1
ji , Q̂iµ = −M−1

ij Qjµ,
(2.70)

where the matrix M is de�ned by

Mij = Eij + α′f k
ij vk. (2.71)
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Here f k
ij =

√
2εijk are the structure constants of the group SU(2) and vi are

originally Lagrange multipliers, now dual coordinates. We can make the scaling

vi → 1√
2
vi, so that the dual �elds are written as

dŝ2 = Ĝµν(x)dxµdxν +
2√
2
Ĝµi(x)dxµdvi +

1

2
ĝij(x)dvidvj (2.72)

and

B̂ = B̂µνdx
µ ∧ dxν +

1√
2
B̂µidx

µ ∧ dvi +
1

4
b̂ijdv

i ∧ dvj. (2.73)

and the dilaton (transformed at the quantum level as usual)

φ̂ = φ− 1

2
ln

(
detM

α′3

)
. (2.74)

Besides the spectator �elds xµ, the dual theory depends on θ, ψ, φ, vi, so we have

too many degrees of freedom. We need to impose a gauge �xing in order to remove

three of these variables, usually taken to be θ = ψ = φ = 0. Then one �nds

(M−1)ij =
1

detM

(
det ggij + yiyj − εijkgklyl

)
(2.75)

where we have de�ned bij = εijkbk and yi = bi + α′vi. For a gauge �xing di�erent

than θ = ψ = φ = 0, one de�nes v̂i = Djiv
j, where

Dij =
1

2
Tr (τ igτ jg−1), g = e

i
2
φτ3e

i
2
θτ2e

i
2
ψτ3 (2.76)

(τi are the Pauli matrices) and replaces everywhere vi by v̂i.

The dualization acts di�erently on the left- and the right-movers

Li+ = −(M−1)ji (∂+vj +Qµj∂+X
µ) (2.77a)

Li− = M−1
ij (∂−vj −Qjµ∂−X

µ) (2.77b)

and it produces two di�erent sets of frames êi+ and êi−

ê+ = −κM−T (dv +QTdX
)

+ λdX (2.78a)

ê− = κM−1 (dv −QdX) + λdX (2.78b)

that are related by a Lorentz transformation êa+ = Λa
bê
b
−. The action on the spinor

representation of the Lorentz group is given by

Ω−1ΓaΩ = Λa
bΓ

b. (2.79)
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2.3.1 Nonabelian T-duality action on RR �elds

One useful way to represent the �elds in the R-R sector is as a product of spinors,

that is as bispinors, see appendix (A). For instance,

Fµ1···µn = ψ̄L∓Γµ1···µnψR+

{
−+ IIA

+ + IIB
. (2.80)

Taking an n-dimensional vector space V with basis {γ1, . . . , γn}, we can �nd an

isomorphism between the Cli�ord C`(V ) and the exterior algebra
∧
V , that is

Λ : C`(V )→
∧

V

1 7→ 1 , Γi 7→ γi , Γi1···ip 7→ γi1 ∧ · · · ∧ γip ,
(2.81)

and we can use this fact, associated to the transformation that the nonabelian T-

duality induces on the spinors (2.79), to �nd the action of this transformation in the

R-R sector.

Considering the RR sector in the democratic formalism [122] (we consider the

�uxes and their Hodges dual as well), we de�ne the polyforms in type II supergravity

IIB: P =
eφ

2

4∑
n=0

/F 2n+1 , IIA: P̂ =
eφ̂

2

5∑
n=0

/̂F 2n (2.82)

Then the nonabelian T-dual forms are obtained by the transformation (applied to

the nonabelian case by [22], following the work in the abelian case by [96])

P̂ = P · Ω−1. (2.83)

We �rst write the p-form �eld strengths in the form

Fp = G(0)
p +Ga

p−1 ∧ ea +
1

2
Gab
p−2 ∧ ea ∧ eb +G

(3)
p−3 ∧ e1 ∧ e2 ∧ e3. (2.84)

Using a similar decomposition for the T-dual p-forms F̂p in terms of the T-dual

vielbeins e′,

F̂p = Ĝ(0)
p + Ĝa

p−1 ∧ e′
a

+
1

2
Ĝab
p−2 ∧ e′

a ∧ e′
b

+ Ĝ
(3)
p−3 ∧ e′

1 ∧ e′
2 ∧ e′

3
, (2.85)

we have the transformation rules

Ĝ(0)
p = eφ−φ̂(−A0G

(3)
p + AaG

a
p)
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Ĝa
p−1 = eφ−φ̂

(
−A0

2
εabcGbc

p−1 + AbG
ab
p−1 + AaG

(0)
p−1

)
Ĝab
p−2 = eφ−φ̂

[
εabc(AcG

(3)
p−2 + A0G

c
p−2)− (AaG

b
p−2 − AbGa

p−2)
]

Ĝ
(3)
p−3 = eφ−φ̂

(
Aa
2
εabcGbc

p−3 + A0G
(0)
p−3

)
. (2.86)

Here, de�ning yi = bi + α′vi as before and

zi =
yi√
det g

ζa = κaiz
i = κai

yi√
det g

(2.87)

the coe�cients of the transformation rules are

A0 =
1√

1 + ζ2
=

√
det g√

det g + (κaiyi)2

Aa =
ζa√

1 + ζ2
=

κaiy
i√

det g + (κaiyi)2
. (2.88)

In the next chapter we start using the knowledge we have drawn here to study

new string backgrounds and their dual �eld theories.
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Chapter 3

D5-branes on S3

I
n this chapter we consider a T-duality on the Maldacena-Nastase so-

lution [7] that de�nes also a dual �eld theory. We start with a review

of the solution due to Canoura et al. [9], which contains the original so-

lution [7] as a special case. It is a type-IIB supergravity solution that consists of

D5-branes wrapping a 3-cycle in a manifold that supports a G2-structure and in the

IR limit, this theory is dual to N = 1 SYM in three dimensions.

In [7,123,124], it was found a solution of 5-dimensional supergravity which can be

lifted to 7 dimensions and then to 10 dimensions. In this case we have a gravitational

solution that holographically describes D5-branes wrapping a three-cycle inside a G2

manifold. In the IR limit, the theory living in the worldvolume of these branes was

identi�ed as being dual to N = 1 SU(Nc) SYM in three-dimensions with Chern-

Simons level κ = Nc/2.

In this particular solution, we start with Nc D5-branes, where the �eld theory

living on the worldvolume of these branes carries 16 supercharges, and we wrap

them on a sphere S3, what in general breaks supersymmetry. In order to preserve

some fraction of the original supersymmetries, we twist the �elds in such a way that

we have four supercharges [125, 126], equivalent to N = 1 supersymmetry in 2 + 1

dimensions.

In [9] the ansatz of [7, 123] was generalized and this allowed one to �nd a new

class of solutions in which in the UV limit the metric is a product of a G2 cone

and a three dimensional Minkowski space, and a constant dilaton, in contrast to the

original behaviour of the Maldacena-Nastase solution, where the dilaton diverges
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as the holographic coordinate goes to in�nity. It is important to realize that this

solution corresponds to D5-branes wrapped on a three-cycle of a G2 cone in which

the near-horizon e�ects of the branes on the metric become negligible in the UV

limit.

As we already mentioned, realistic theories require �elds transforming in the

fundamental representation. To address this, one considers �avor branes in the

gravity side, which is equivalent to adding an open string sector [127]. One can

start by studying the quenched approximation, that is when probe branes are used

in a way that the number of �avor branes Nf is negligible compared to the number

Nc of color branes. Then, the next natural step is to consider the unquenched case,

that is the case in which the number of �avor branes is of the same order as the

number color branes [128�130].

Canoura, Merlatti and Ramallo [9] added massless fundamental �avors to the

Maldacena-Nastase (hereafter MNa) solution in the unquenched case. The authors

found that this system with Nf ≥ 2Nc dramatically di�ers from Nf < 2Nc. Mas-

sive fundamental �avors were added to the MNa solution in [131] and the author

showed that is is possible to �nd a solution which interpolates between the deformed

un�avored MNa background and the massless �avored background.

As pointed in [132,133], we can obtain the UV completion of this solution consid-

ering aG2-structure rotation [134] which is a solution generating technique analogous

to the U-duality. The rotation procedure is implemented in a type IIA solution with

N = 1 SUSY and gives a more general type IIA solution. The important point is

that in this rotation procedure, we have an extra warp factor in the metric and this

term ensures the �niteness of the cycle along the energy scale.

The gauge theory analysis of the rotated MNa solution was performed in [132],

and the author showed that the dual �eld theory is con�ning and that in the IR

limit, the Chern-Simons term dominates the dynamics of the theory.

In [133], the nonabelian T-duality has been considered along the SU(2) isom-

etry of the deformed MNa solution [9], and this gave a massive type IIA solution,

with no trivial �eld in the RR sector. The author showed that the generated solu-

tion is dual to a con�ning Chern-Simons gauge theory and using the gauge/gravity

correspondence he studied several holographic properties of the dual �eld theory.

In this chapter we perform the abelian T-duality on MNa solution along an

U(1) isometry in the D5-brane solution, which gives a D4-brane solution wrapping
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a two-cycle. Then we compute Maxwell and Page charges associated to this new

solution.

Moreover, we consider some aspects of the dual gauge theory, de�ning it in the

process. In section 3.4.1 we �nd the quark-antiquark potential and we see that the

requirements for con�nement are satis�ed. In such a case we are able to compute the

string tension. Next we follow considering the gauge coupling and the entanglement

entropy, which has been used as a probe of con�nement. Finally, we study some

conditions in which we can treat the wrapped D4-branes as a domain wall, so that

we induce a Chern-Simons term in the gauge theory.

3.1 Wrapped �vebranes on a three-cycle

In general, when we put a supersymmetric �eld theory on a curved manifold Ω, we

break SUSY since we do not have a killing spinor satisfying (∂µ + ωµ)ε = 0. On

the other hand, if the theory has an R-symmetry, we can consider that the spin

connection is equal to the gauge connection arising from the R-symmetry group,

that is ωµ = Aµ, in such a way that now we can �nd a Killing spinor satisfying

(∂µ + ωµ − Aµ)ε = ∂µε = 0. This resourceful way of preserving supersymmetry

is exactly the way that branes wrapping cycles in string/M theory operate to do

it [125,126], and theories satisfying this condition are called twisted theories.

Therefore, in order to preserve some fraction of supersymmetry of a type IIB

(string theory) con�guration, which consists of NS 5-branes wrapping a 3-sphere,

we need to consider a twisting. The R-symmetry group is simply the rotation group

SO(4) ' SU(2)L × SU(2)R and the spin connection lives in the Lie algebra su(2)

(tangent space of the space S3 ' SU(2)). In this case we embed the spin connection

into SU(2)L and it can be checked to be enough to preserve the N = 1 SUSY in

three dimensions [7].

At low energies, compared to the inverse radius of S3, we have pure N = 1 SYM

theory in three dimensions with gauge group U(N). Additionally, if we add a �ux

of the NS-NS sector H on the worldvolume S3 we induce a Chern-Simons coupling
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in three-dimensions. In the S-dual description we have, on the D5-brane, the term

1

16π3

∫
Σ6

BRR ∧ Tr (F ∧ F ) = − 1

16π3

∫
Σ6

dBRR ∧ Tr
(
A ∧ dA+

2

3
A3

)
= − κ̃

4π

∫
Σ3

Tr

(
A ∧ dA+

2

3
A3

)
,

(3.1)

where the parameter κ̃ is related to the three dimensional Chern-Simons level κ by

κ̃ = κ+ N
2
and this extra term appears when we integrate out all the six dimensional

KK model.

In [7], the authors considered a supergravity solution that describes the system

of branes wrapping an S3 given by

ds2 = ds2
7 +

α′N

4
(ω̃a − Aa)2 (3.2a)

F = N

[
−1

4

(
ω̃1 − A1

)
∧
(
ω̃2 − A2

)
∧
(
ω̃3 − A3

)
+

1

4
F a ∧ (ω̃a − Aa)

]
+H ,

(3.2b)

where

ds2
7 = dx2

2,1 + α′N
(
dρ2 +R(ρ)2dΩ2

3

)
(3.3a)

Aa =
1 + w(ρ)

2
ωaL (3.3b)

H =
N

16

(
w3(ρ)− 3w(ρ) + 2

)
ω1 ∧ ω2 ∧ ω3 , (3.3c)

ωa are the Maurer-Cartan forms of SU(2) and this background has a nontrivial dila-

ton1 ϕ. No analytic solution for this ansatz is known, but its asymptotic behaviour

for large ρ is simply

R2(ρ) ∼ 2ρ , w(ρ) ∼ 1/4ρ , ϕ ∼ −ρ+ (3 ln ρ)/8 , (3.4a)

while, for small ρ we �nd

R2(ρ) ∼ ρ2 +O(ρ4) , w(ρ) ∼ 1 +O(ρ2)ρ , ϕ ∼ ϕ0 +O(ρ2) . (3.4b)

The topology of the seven dimensional space spanned by (ρ, ωa, ω̃a) is asymptotically

that of a cone whose base is S3×S3. The above solution bears the name Maldacena-

Nastase solution.
1In this chapter we write the dilaton as ϕ and we use the symbol φ to denote angular coordinates,

including the coordinate X9 along which we perform the duality.
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3.2 Deformed Maldacena-Nastase solution

In [9] the ansatz was generalized and this solution has the original solution of the

previous section (3.1) as a special case. The string frame metric is given by

ds2
st = eϕ

(
dx2

1,2 + ds2
7

)
, (3.5)

and the internal part of the metric, which describes the manifold supporting a G2-

structure, is

ds2
7 = Nc

[
e2gdr2 +

e2h

4
(σi)2 +

e2g

4

(
ωi − 1

2
(1 + w)σi

)2
]
, (3.6)

where we are using an optimum holographic coordinate de�ned in [132]. Also, σi

and ωi are two sets of SU(2) Maurer-Cartan forms satisfying

dλia = −1

2
εijkλ

j
a ∧ λka, (3.7)

where λi1 = σi and λi2 = ωi for i = 1, 2, 3. These forms can be represented in terms

of Euler angles as

λ1
a = cosψadθa + sinψa sin θadφa (3.8)

λ2
a = − sinψadθa + cosψa sin θadφa (3.9)

λ3
a = dψa + cos θadφa , (3.10)

for 0 ≤ θa ≤ π, 0 ≤ φa < 2π, 0 ≤ ψa < 4π.

Also, the MNa solution has a nontrivial RR 3-form

F3 =
Nc

4

{
(σ1 ∧ σ2 ∧ σ3 − ω1 ∧ ω2 ∧ ω3) +

γ′

2
dr ∧ σi ∧ ωi−

− (1 + γ)

4
εijk[σ

i ∧ σj ∧ ωk − ωi ∧ ωj ∧ σk]
}
.

(3.11)

One can easily show that this �eld strength is generated by the following two-form
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potential

C(2) =

(
−1

4
Nc cos θ1

)
dφ1 ∧ dψ1 +

(
1

4
Nc cos θ2

)
dφ2 ∧ dψ2+

+
Nc(1 + γ)

8
dψ1 ∧ dψ2 +

Nc(1 + γ)

8
sin θ1 sin(ψ1 − ψ2)dφ1 ∧ dθ2+

+
Nc(1 + γ)

8
(cos θ1 cos θ2 + sin θ1 sin θ2 cos(ψ1 − ψ2))dφ1 ∧ dφ2 (3.12)

+
Nc(1 + γ)

8
cos θ1dφ1 ∧ dψ2 +

Nc(1 + γ)

8
cos(ψ1 − ψ2)dθ1 ∧ dθ2

+

(
−Nc(1 + γ)

8
sin(ψ1 − ψ2) sin θ2

)
dθ1 ∧ dφ2 +

Nc(1 + γ)

8
cos θ2dψ1 ∧ dφ2 ,

so that F3 = dC(2).

Unfortunately, the solution for these equations is known just semi-analytically

in the IR and UV limits. In the IR limit, that is, r ∼ 0 we have

e2g = g0 +
(g0 − 1)(9g0 + 5)

12g0

r2 + . . . (3.13a)

e2h = g0r
2 − 3g2

0 − 4g0 + 4)

18g0

r4 + . . . (3.13b)

w = 1− 3g0 − 2

3g0

r2 + . . . (3.13c)

γ = 1− 1

3
r2 + . . . (3.13d)

φ = φ0 +
7

24g2
0

r2. (3.13e)

On the other hand, in the UV limit, where r ∼ ∞, we have

e2g = c1e
4r/3 − 1 +

33

4c1

e−4r/3 (3.14a)

e2h =
3c1

4
e4r/3 +

9

4
− 77

16c1

e−4r/3 (3.14b)

w =
2

c1

e−4r/3 + . . . (3.14c)

γ =
1

3
+ . . . (3.14d)

φ = φ∞ +
2

c2
1

e−8r/3. (3.14e)

We write the whole set of components of the string frame metric as

xM = {xµ, xA}; {(µ = 0, 1, 2); (A = r, α̃, α)},
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where

{xr ≡ r;xα̃ ≡ θ1, φ1, ψ1;xα = θ2, φ2, ψ2}.

Now we have

(λia)
2 = dθ2

a + dφ2
a + dψ2

a + 2 cos θadψadφa (3.15)

and

ωiσi = cos(ψ1 − ψ2)dθ1dθ2 − sin(ψ1 − ψ2) sin θ2dθ1dφ2

+ sin(ψ1 − ψ2) sin θ1dφ1dθ2 + [cos(ψ1 − ψ2) sin θ1 sin θ2 + cos θ1 cos θ2]dφ1dφ2

(3.16)

+ cos θ1dφ1dψ2 + cos θ2dψ1dφ2 + dψ1dψ2.

Then, we write the string-frame metric as

ds2
st = gMNdx

MdxN = eϕdx2
1,2 + ∆dr2 + Σ(σi)2 + Ω(ωi)2 + 2Ξωiσi , (3.17)

where we de�ne

∆ = eϕ+2gNc (3.18a)

Σ =
eϕ

4
Nc

(
e2h +

e2g

4
(1 + w)2

)
≡ eϕΣ̃ (3.18b)

Ω =
eϕ+2g

4
Nc ≡

∆

4
(3.18c)

Ξ = −e
ϕ+2g

8
(1 + w)Nc ≡ −

Ω

2
(1 + w) (3.18d)

for later convenience. Finally, using that M = {µ,A} we �nd the components of

the metric matrix

(gMN) =

(
gµν = eϕηµν gµA = 0

gAµ = 0 gAB

)
.

Obviously, we need to �nd just the components gAB and these are

grr = ∆ grµ = 0 grα̃ = grα = 0

gθ̃θ̃ = gφ̃φ̃ = gψ̃ψ̃ = Σ gφ̃ψ̃ = Σ cos θ1

gθθ = gφφ = gψψ = Ω gφψ = Ω cos θ2

gθθ̃ = Ξ cos(ψ1 − ψ2) gφθ̃ = −Ξ sin(ψ1 − ψ2) sin θ2

gθφ̃ = Ξ sin(ψ1 − ψ2) sin θ1 gφφ̃ = Ξ[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

gθψ̃ = 0 gφψ̃ = Ξ cos θ2

36



gψθ̃ = 0

gψφ̃ = Ξ cos θ1

gψψ̃ = Ξ

3.3 D4-brane solution

Now we perform a T-duality transformation in a direction along the brane, namely,

the x9 ≡ xφ̃ = φ1 direction. If we consider the type-IIA solution with NS-NS sector

given by {ϕ̃, g̃MN , BMN}, the Buscher's rules [2, 93�95] (see section 2.2.2 and the

appendix A) are

e2ϕ̃ =
e2ϕ

|gφ̃φ̃|
g̃φ̃φ̃ =

1

gφ̃φ̃

g̃MN = gMN−
gφ̃Mgφ̃N −Bφ̃MBφ̃N

gφ̃φ̃
g̃φ̃M =

1

gφ̃φ̃
Bφ̃M

BMN = BMN − 2
Bφ̃[MgN ]φ̃

gφ̃φ̃
BMφ̃ = −

gMφ̃

gφ̃φ̃

3.3.1 NS-NS sector

Using the transformation rules above, the dilaton is

e2ϕ̃ =
1

Σ
e2ϕ =

1

Σ̃
eϕ (3.19)

and the dual metric is

ds̃2
st =e2ϕ̃Σ̃dx2

1,2 + ∆dr2 +
1

Σ
dφ2

1 + Σ(dθ2
1 + sin2 θ1dψ

2
1)

+ 2Ξ
[
(cosψ1ω

1 − sinψ1ω
2)dθ1 − sin θ1 cos θ1(sinψ1ω

1 + cosψ1ω
2)dψ1

+ sin2 θ1ω
3dψ1

]
+ Ω(ωi)2 (3.20)

− Ξ2

Σ

[
sin2 ψ1 sin2 θ1(ω1)2 + 2 sinψ1 cosψ1 sin2 θ1ω

1ω2

+ 2 sinψ1 cos θ1 sin θ1ω
1ω3 + cos2 ψ1 sin2 θ1(ω2)2 + 2 cosψ1 sin θ1 cos θ1ω

2ω3

+ cos2 θ1(ω3)2
]
,
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where we can rewrite the coe�cients in terms of the type-IIA dilaton ϕ̃

∆ = e2ϕ̃+2gNcΣ̃

Σ = e2ϕ̃Σ̃2

Ω =
e2ϕ̃+2g

4
NcΣ̃

Ξ = −e
2ϕ̃+2g

8
(1 + w)NcΣ̃. (3.21)

Also, we de�ne a �rst rotation

ω̃1 = cosψ1ω
1 − sinψ1ω

2 = cos(ψ2 − ψ1)dθ2 + sin(ψ2 − ψ1) sin θ2dφ2

ω̃2 = sinψ1ω
1 + cosψ1ω

2 = − sin(ψ2 − ψ1)dθ2 + cos(ψ2 − ψ1) sin θ2dφ2

ω̃3 = ω3 = dψ2 + cos θ2dφ2

σ̃1 = cosψ1σ
1 − sinψ1σ

2

σ̃2 = sinψ1σ
1 + cosψ1σ

2

σ̃3 = σ3 . (3.22)

We then consider a second rotation

ω̂1 = ω̃1

ω̂2 = cos θ1ω̃
2 − sin θ1ω̃

3

ω̂3 = sin θ1ω̃
2 + cos θ1ω̃

3

σ̂1 = σ̃1

σ̂2 = cos θ1σ̃
2 − sin θ1σ̃

3

σ̂3 = sin θ1σ̃
2 + cos θ1σ̃

3 , (3.23)

obtaining the metric

ds̃2
st =

Nc

4
e2ϕ̃

(
e2h +

e2g

4
(1 + w)2

)
dx2

1,2 + ∆dr2 +
1

Σ
dφ2

1 + Σ(dθ2
1 + sin2 θ1dψ

2
1)

+ 2Ξ[ω̃1dθ1 − sin θ1 cos θ1ω̃
2dψ1 + sin2 θ1ω̃

3dψ1] + Ω(ω̃i)2

− Ξ2

Σ
[sin θ1ω̃

2 + cos θ1ω̃
3]2 ,

(3.24)
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or reorganizing

ds̃2
st =

Nc

4
e2ϕ̃

(
e2h +

e2g

4
(1 + w)2

)
dx2

1,2 + ∆dr2 +
1

Σ
dφ2

1+

+

(
Σ− e2ϕ̃+2g (1 + w)2

42
NcΣ̃

)
(dθ2

1 + sin2 θ1dψ
2
1)

+ e2ϕ̃+2gNc

4
Σ̃

[(
ω̂1 − 1

2
(1 + w)dθ1

)2

+

(
ω̂2 +

1

2
(1 + w) sin θ1dψ1

)2
]

+

(
Ω− Ξ2

Σ

)
(ω̂3)2. (3.25)

Finally, the 2-form �eld, which vanishes in the original solution, is nontrivial

after the T-duality and one can write in the following form

B =−
{

cos θ1dψ1 ∧ dφ1 +
Ξ

Σ
sin(ψ1 − ψ2) sin θ1dθ2 ∧ dφ1

+
Ξ

Σ
[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]dφ2 ∧ dφ1 +

Ξ

Σ
cos θ1dψ2 ∧ dφ1

}
.

(3.26)

One important cycle in this background is

C2 = {θ1 = θ2 ≡ θ;ψ1 = ψ2 ≡ ψ|φ1, φ2, r, x1, x2 = const.} (3.27)

which is the cycle where the metric is wrapped.2 The induced metric is given by

ds2
C2 = (Σ + 2Ξ + Ω) dθ2 +

(
Ω + Σ sin2 θ + 2Ξ sin2 θ − Ξ2

Σ
cos2 θ

)
dψ2 , (3.28)

and vanishes in the IR limit. The B �eld vanishes on this cycle.

3.3.2 R-R sector

Remember that the RR-sector for the type IIA supergravity is {C(1), C(3)} while the
RR-sector for type IIB supergravity is {C(0), C(2), C(4)} and in the present case, the

2This cycle is a restriction for φ1 = φ2 =const. of the Σ3 cycle {σi = ωi} on which D5-branes are
wrapped. Since φ1 is the T-duality direction, after it, the D4-branes are wrapped on C2. Moreover,

since supersymmetry was preserved before the T-duality, it should be preserved afterwards, making

it likely the cycle is supersymmetric.
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nontrivial �eld is just C(2), whose �eld strength is given by the F3 in (3.11),

F3 =
Nc

4

{
(σ1 ∧ σ2 ∧ σ3 − ω1 ∧ ω2 ∧ ω3) +

γ′

2
dr ∧ σi ∧ ωi−

− (1 + γ)

4
εijk[σ

i ∧ σj ∧ ωk − ωi ∧ ωj ∧ σk].
}

(3.29)

Given the T-duality rules for going from type-IIB to type-IIA supergravity,

C
(2n+1)
M1...M2n+1

= C
(2n+2)

M1...M2n+1φ̃
+ (2n+ 1)B[M1|φ̃|C

(2n)
M2...M2n+1]

+ 2n(2n+ 1)B[M1|φ̃|gM2|φ̃|C
(2n)

M3...M2n+1]φ̃
/gφ̃φ̃

(3.30a)

C
(2n+1)

M1...M2nφ̃
= C

(2n)
M1...M2n

− 2ng[M1|φ̃|C
(2n)

M2...M2n]φ̃
/gφ̃φ̃ , (3.30b)

we can use (3.12) and �nd the RR potential forms of the type IIA-solution

n=0

In this case, we have the following components of the dual theory

C
(1)
M1

= C
(2)

M1φ̃

C
(1)

φ̃
= C(0) = 0 , (3.31)

so we obtain the potential

C(1) =−
{
Nc(1 + γ)

8
[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ψ1 − ψ2)]dφ2 −

Nc

4
cos θ1dψ1

+
Nc(1 + γ)

8
sin(ψ1 − ψ2) sin θ1dθ2 +

Nc

8
(1 + γ) cos θ1dψ2

}
.

(3.32)

n=1

In this case, we have

C
(3)
M1M2M3

= C
(4)

M1M2M3φ̃
= 0

C
(3)

M1M2φ̃
= C

(2)
M1M2

− 1

gφ̃φ̃
(gM1φ̃

C
(2)

M2φ̃
− gM2φ̃

C
(2)

M1φ̃
). (3.33)
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Therefore we obtain the three-form potential

C(3) = −Nc(1 + γ)

8
cos(ψ1 − ψ2)dθ1 ∧ dφ1 ∧ dθ2

+
Nc(1 + γ)

8
sin θ2 sin(ψ1 − ψ2)dθ1 ∧ dφ1 ∧ dφ2

− Nc

8Σ
cos θ1 sin θ1 sin(ψ1 − ψ2) [2Ξ + Σ(1 + γ)] dψ1 ∧ dφ1 ∧ dθ2

−
[
Nc(1 + γ)

8
cos θ2 (3.34)

+
Nc

4Σ

(
Ξ +

(1 + γ)

2
Σ

)
cos θ1[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ψ1 − ψ2)]

]
×

× dψ1 ∧ dφ1 ∧ dφ2

−
[
Nc(1 + γ)

8
+
Nc

4Σ

(
Ξ +

Σ

2
(1 + γ)

)
cos2 θ1

]
dψ1 ∧ dφ1 ∧ dψ2

+
Nc

4
cos θ2dφ1 ∧ dφ2 ∧ dψ2.

We have generated a type IIA-solution of supergravity wich consists of Nc D4-

branes wrapping a two-cycle and with a perpendicular S1 manifold. This solution

has nontrivial RR 2 and 4-forms de�ned by F2 = dC(1) and F4 = dC(3).

For completeness, starting from a solution of supergravity in eleven dimensions,

one can consider a dimensional reduction on a circle S1 to a type-IIA solution.

Conversely, given a solution of the type-IIA supergravity, we can lift it to a solution of

eleven dimensional supergravity. In fact, the eleven dimensional �elds corresponding

to the type IIA ones are written as

g
(11)
MN = e−2ϕ̃/3g̃MN + e4ϕ̃/3C

(1)
M C

(1)
N (C(3))11

MNP = C
(3)
MNP

g
(11)
M,11 = e4ϕ̃/3C

(1)
M (C(3))11

MN,11 = BMN

g
(11)
11,11 = e4ϕ̃/3
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Rewriting the dual metric (3.20) as

ds̃2
st =

Nc

4
e2(ϕ̃)

(
e2h +

e2g

4
(1 + w)2

)
dx2

1,2 + ∆dr2 +
1

Σ
dφ2

1 + Σ(dθ2
1 + sin2 θ1dψ

2
1)

+ 2Ξ[cos(ψ1 − ψ2)dθ1dθ2 − sin(ψ1 − ψ2) sin θ2dθ1dφ2

− sin(ψ1 − ψ2) sin θ1 cos θ1dψ1dθ2

+ (cos θ2 sin2 θ1 − cos θ1 sin θ1 sin θ2 cos(ψ1 − ψ2))dψ1dφ2 + sin2 θ1dψ1dψ2]

+

(
Ω− Ξ2

Σ
sin2(ψ1 − ψ2) sin2 θ1

)
dθ2

2

+

(
Ω− Ξ2

Σ
[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]2

)
dφ2

2

+

(
Ω− Ξ2

Σ
cos2 θ1

)
dψ2

2+

+ 2

(
Ω cos θ2 −

Ξ2

Σ
cos θ1[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

)
dφ2dψ2

− 2
Ξ2

Σ
[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2] sin(ψ1 − ψ2) sin θ1dθ2dφ2

− 2
Ξ2

Σ
sin(ψ1 − ψ2) sin θ1 cos θ1dθ2dψ2 , (3.35)

the eleven dimensional metric becomes

ds2
(11) = e−2ϕ̃/3ds̃2

st

+ e4ϕ̃/3
(
C

(1)

ψ̃
C

(1)

ψ̃
+ C

(1)

ψ̃
C

(1)
φ + C

(1)

ψ̃
C

(1)
ψ + C

(1)

ψ̃
C

(1)
θ

+C
(1)
φ C

(1)
φ + C

(1)
φ C

(1)
ψ + C

(1)
φ C

(1)
θ + C

(1)
ψ C

(1)
ψ + C

(1)
ψ C

(1)
θ + C

(1)
θ C

(1)
θ

)
e4ϕ̃/3

(
C

(1)

ψ̃
+ C

(1)
φ + C

(1)
ψ + C

(1)
θ + dx10

)
dx10. (3.36)

3.3.3 Brane charges

Superstring theories have massless p-form potentials which may be regarded as gen-

eralizations of the electromagnetic gauge �eld. The Maxwell equations for the gauge

�eld of electrodynamics A(1) = Aµdx
µ in the presence of sources are

dF2 = ?Jm , d ? F2 = ?Je. (3.37)

It follows that the electric and magnetic charges are given by

e =

∫
S2

?F2 , g =

∫
S2

F2 , (3.38)
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where S2 is a two-sphere surrounding the charges.

In string theory in the presence of n-forms, we can de�ne conserved charges

associated to the gauge potentials and then �nd the stable branes of given electric

charge. For instance, a Dp-brane in type II superstring theory couples to a (p+ 1)-

form C(p+1) with �eld strength Fp+2 = dC(p+1). The corresponding electric-type

charge is

QDp =

∫
Σ8−p

?Fp+2 , (3.39)

where Σ8−p is a cycle surrounding the charge.

As an explicit example, consider the original background reviewed in section 3.2.

We know that this solution corresponds to Nc D5-branes on an S3. Consider then

the 3-cycle

S̃3 = {ωi|σi = 0}, (3.40)

and integrate the RR three form (3.11) on it, obtaining (
∫
ω1 ∧ ω2 ∧ ω3 = 16π2)

1

4π2

∫
S̃3

F3 = Nc, (3.41)

which means that we have a quantization condition.

In [135], the author showed that there are di�erent types of electric or magnetic

charge associated with a gauge �eld. Here we collect the main results for D4-branes,

which is the case we are interested in.

In the T-dual solution that we computed above, we have one non trivial RR

1-form C(1) and one 3-form C(3), and the Kalb-Ramond �eld B is also nonvanishing.

The 4-form gauge �eld, which is invariant under the abelian gauge transformation

C(1) → C(1) + dξ0 and C(3) → C(3) − B ∧ dξ0, is

F̃4 := dC(3) − C(1) ∧ dB. (3.42)

The Bianchi identity reads now

dF̃4 = −dC(1) ∧ dB, (3.43)

and if we regard the right hand side of this equation as a kind of Maxwell current

?JMaxwell, we are allowed to de�ne a Maxwell charge, by integration of the 4-form

�eld F̃4 on a four cycle. Another type of charge may be de�ned when we consider

the Bianchi identity as an exterior derivative of a form, say

d(F̃4 + C(1) ∧ dB) = ?J Page, (3.44)
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and again we would de�ne the conserved charge by integration. Comparing the two

de�nitions, we have that

QPageD4 = QMaxwell
D4 +

∫
C4

C(1) ∧ dB. (3.45)

One important feature of these charges is that the Maxwell charge is not quantized,

while the Page charge satis�es a quantization condition.

Considering a �xed point in the radial coordinate, the following cycle

C4 = {θ2, φ1, φ2, ψ2|ψ1 = θ1 = 0} (3.46)

is particularly smooth in studying the above quantities. Let us start with the Page

charge for convenience. On this cycle, the equation simpli�es to

?JD4 = dF4 , (3.47)

and the quantized Page charge is the integral of this current in the �ve dimensional

space whose boundary is the cycle C4. Therefore, using the Stokes theorem and

normalizing our result, we �nd (C(3)|C4 = Nc/4 cos θ2dφ1 ∧ dφ2 ∧ dψ2)

QPage
D4 = − 1

8π3

∫
C4

F4 = Nc. (3.48)

Also, we can de�ne the Maxwell charge in this cycle as

QMaxwell
D4 := QD4 −

1

4π3

∫
C4

C(1) ∧ dB , (3.49)

and using the RR forms that we computed, we have

−C(1) ∧ dB =
Nc(1 + γ)

8

Ξ

Σ
sin θ2dθ2 ∧ dφ2 ∧ dψ2 ∧ dφ1

=
Nc(1 + γ)

8

Ξ

Σ
ω1 ∧ ω2 ∧ ω3 ∧ dφ1 , (3.50)

so

− 1

4π3

∫
C4

C(1) ∧ dB =
Ξ

Σ
(1 + γ)Nc , (3.51)

and we see that the Maxwell charge in not quantized, but it runs along the radial

direction.
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3.4 Field theory aspects

The original motivation of the MNa solution was from the gauge/gravity correspon-

dence. Since we have just found a background by T-duality of the MNa solution,

we want to study properties of the dual gauge �eld theory to this background.

3.4.1 Wilson loops

Wilson loop observables are given by (see, e.g., [14, 43,46,114] for more details)

W (C) :=
1

Nc

TrP exp

(
i

∮
Aµdx

µ

)
, (3.52)

where the trace is usually taken over the fundamental representation. From the

expectation value of the Wilson loop, we can compute the quark-antiquark (QQ̄)

potential. Choosing a rectangular loop with sides of length LQQ̄ in the spatial

direction and T for the time direction, with LQQ̄ << T , as T → ∞ we have the

behaviour

〈W (C)〉 ∼ e−VQQ̄T , (3.53)

where VQQ̄ is the quark-antiquark potential.

In a con�ning theory, the potential behaves as

VQQ̄ ∼ σLQQ̄, (3.54)

where the constant σ is called the QCD string tension, so the expectation value of

the Wilson loop (3.53) obeys the area law,

〈W (C)〉 ∼ e−σS, (3.55)

for the rectangular region considered.

In the case of N = 4 SYM, dual to AdS5×S5, we have a holographic prescription

for a supersymmetric version of the Wilson loop,

W (C) :=
1

Nc

TrP exp

[∮
(iAµẋ

µ + θIXI(x)
√
ẋ2)dτ

]
, (3.56)

where xµ(τ) parametrizes the loop and θI parametrizes the sphere S5 and couples

to the scalars XI in N = 4 SYM.
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The holographic prescription for the Wilson loop VEV is [31, 136],

〈W (C)〉 ∼ e−S, (3.57)

where S is the area of a string world-sheet which ends on a curve C at the boundary
of the AdS5 space. Since the area of the worldsheet is divergent, we need to subtract

the area of the string going straight down from U =∞ to U = U0,

W (C) ∼ e−(S−`Φ), (3.58)

where ` is the perimeter of the Wilson loop contour C and Φ = U∞ − U0. The area

of the worldsheet can be computed using the Nambu-Goto action

S =
1

2πα′

∫
dτdσ(det gµν∂αX

µ∂βX
ν)1/2, (3.59)

where gµν is the AdS5×S5 metric. In AdS5×S5, we �nd the behaviour VQQ̄ ∼ 1/LQQ̄
determined by conformal invariance, see [31, 136].

We now consider a more general background,

ds2 = −gttdt2 + gxxdx
2 + gρρdρ

2 + gintij dy
idyj , (3.60)

where we assume that the functions (gtt, gxx, gρρ) are functions of ρ only. We do not

�x the internal space, since we consider a probe string that is not excited in these

directions; so the internal space has no role in the present study.

As in AdS space, we consider a string whose ends are �xed at x = 0 and x = LQQ̄
at the boundary of space, ρ→∞. In addition, we assume that it can extend in the

bulk, so that the radial coordinate of the string assumes its minimum value at ρ0,

and that by symmetry this occurs at x = LQQ̄/2.

We choose a con�guration such that

t = τ x = x(σ) ρ = ρ(σ) , (3.61)

and we compute the Nambu-Goto action (3.59) with relation to the metric (3.60).

The induced metric on the worldsheet is Gαβ = gµν∂αx
µ∂βx

ν , where

Gττ = −gtt, Gσσ = gxx

(
dx

dσ

)2

+ gρρ

(
dρ

dσ

)2

, Gτσ = 0 , (3.62)
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and the determinant of the worldsheet is

detGαβ = −gttgxx(x′)2 − gttgρρ(ρ′)2

≡ −f 2(x′)2 − g2(ρ′)2 , (3.63)

where we have de�ned the functions f 2 = gttgxx and g2 = gttgρρ. Hence we write

the Nambu-Goto action as

S =
T

2πα′

∫ 2π

0

dσ
√
f 2(x′)2 + g2(ρ′)2 ≡ T

2πα′

∫ 2π

0

dσL. (3.64)

Its equations of motion give

∂τ

[
1

L
(f 2x′2 + g2ρ′2)

]
= 0 (3.65)

∂σ

[
1

L
f 2x′

]
= 0 (3.66)

∂σ

[
1

L
g2ρ′

]
=

1

L
(x′2ff ′ + ρ′2gg′). (3.67)

The �rst of these equations is trivially satis�ed since we assume our background

time independent. The second, (3.66), is satis�ed if we assume that the term inside

brackets is a constant C0. That means

1

L
f 2x′ = C0 ⇒

f 2x′

C0

= (f 2x′2 + g2ρ′2)1/2 , (3.68)

which implies that

dρ

dσ
= ±dx

dσ

f

C0g

√
f 2 − C2

0 ≡ ±
dx

dσ
Weff , (3.69)

thus we write
dρ

dσ
= ±dx

dσ
Weff ⇒

dρ

dx
= ±Weff . (3.70)

Here we wrote Weff just for convenience and one can check that the third equation

(3.67) is satis�ed once we assume that the above equation is true.

From the sort of solution we are looking for, one can show that there are two

distinct regions

x < LQQ̄/2
dρ

dx
= −Weff (3.71)

x > LQQ̄/2
dρ

dx
= Weff , (3.72)
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and we can formally integrate these equations, so that

dρ

dx
= −Weff ⇒

∫ ρ

∞

dρ

Weff

= −
∫ x

0

dx ⇒ x(ρ) =

∫ ∞
ρ

dρ

Weff

, x < LQQ̄/2 (3.73)

dρ

dx
= Weff ⇒

∫ ∞
ρ

dρ

Weff

=

∫ LQQ̄

x

dx ⇒ x(ρ) = LQQ̄ −
∫ ∞
ρ

dρ

Weff

, x > LQQ̄/2.

(3.74)

The fact that the string must be �xed at ρ → ∞ and we must have x(ρ) �nite

implies that the following condition must be satis�ed

lim
ρ→∞

Weff (ρ)→∞. (3.75)

Once this equation is satis�ed, the string moves to smaller values of the radial

coordinate down to a turning point ρ0 where
dρ
dx
|ρ0 = 0, namely where Weff (ρ0) = 0.

We restrict ourselves to turning points C0 = f(ρ0).

Now we can compute the quark-antiquark separation pair and its potential en-

ergy. The separation is written as

LQQ̄(ρ0) = 2

∫ LQQ̄/2

0

dx = 2

∫ ∞
ρ0

dρ

Weff

. (3.76)

In order to compute the potential VQQ̄ we need the Nambu-Goto action SNG/T

which diverges, but we subtract the W-boson mass given by a string going straight

down on ρ at x =constant, i.e.

M =

∫ π

0

√
g2ρ′2 =

∫ ∞
ρ0

g(ρ)dρ, (3.77)

so that the renormalized quark-antiquark potential is given by

2πα′VQQ̄(ρ0) = f(ρ0)LQQ̄(ρ0) + 2

∫ ∞
ρ0

dz
g(z)

f(z)

√
f 2(z)− f 2(ρ0)− 2

∫ ∞
ρ0

g(z)dz,

(3.78)

and one can show that

2πα′
dVQQ̄
dLQQ̄

= f(ρ0). (3.79)

We can now compute the Wilson loops for the T-dual of the MNa solution. In

this case, the solution of the set of equations is not exactly known, but remember
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that in the UV limit (where we consider the cuto� r ∼ Λ) we have the asymptotic

expansion (3.14a � 3.14e), so that

f 2 = gttgxx ' e2φ∞ (3.80)

g2 = gttgrr ' e2φ∞Ncc1e
4Λ/3, (3.81)

therefore, one may check the boundary condition to see that

lim
r→Λ

Weff ∼
1

f(r0)e2Λ/3N
1/2
c c

1/2
1

√
e2φ∞ − f 2(r0), (3.82)

where we will take r0 ∼ 0, implying f 2(r0) = e2φ0 . A similar situation occurred in

[137], where the authors found a �nite value for the boundary condition limr→∞Weff

and it was argued that the QFT needs to be UV-completed.3 Under this condition,

we can calculate the QCD string tension (see [45,46,139]) through

σ =
1

2πα′
f(r0)

∣∣∣∣
IR

=
1

2πα′
eφ0 , (3.83)

and therefore

2πα′
dVQQ̄
dLQQ̄

= f(r0)⇒ VQQ̄ '
eφ0

2πα′
LQQ̄ , (3.84)

which means that this theory exhibits linear con�nement.

3.4.2 Gauge coupling

We can consider now another important quantity, the gauge coupling. Consider the

Dirac-Born-Infeld action for a generic probe Dp-brane, wrapping an n-cycle Σ, with

induced metric

ds2
Dp = e2Aηµνdx

µdxν + ds2
Σ (3.85)

and components given by M = {µ, a}, where µ = 0, . . . , p − n are indices in the

Minkowski space and a = 1, . . . , n are indices of the cycle. We also take the gauge

3One possibility is that the QFT is deformed by an irrelevant operator, modifying the UV, and

perhaps one could remove it by using the solution in [134] as a starting point, as opposed to the

one in [9].It was argued in [138] that the UV behaviour of the solution in [9] is improved this way.

We thank the referee for this observation.

49



�eld and the Kalb-Ramond �eld with non vanishing components Fµν and Bab. There-

fore, the DBI action reads

SDBI = −TDp
∫
dp+1σe−φ

√
− det(GMN +BMN + 2πα′FMN)

= −TDp
∫
M
dp+1−n~x

√
− det(Gµν + 2πα′Fµν)

∫
Σn
dnΣe−φ

√
− det(Gab +Bab),

(3.86)

where M stands for Minkowski space and d = p + 1 − n is the dimension of the

reduced �eld theory. Taking an expansion of the �rst integral in terms of α′, we get

SDBI = −TDp
∫

Σn
dnΣe−φ

√
− det(Gab +Bab)×

×
∫
M
dd~xedA

(
1 +

(2πα′)2e−4A

4
FµνF

µν + · · ·
)
,

(3.87)

so that we can recognize the gauge coupling as

1

g2
YM

= TDp(2πα
′)2

∫
Σn
dnΣe−(4−d)φ−A

√
− det(Gab +Bab). (3.88)

Consider �rst the MNa solution. In this case, the induced metric on the brane is

ds2
ind = eϕ

[
dx2

1,2 +
Nc

4

(
e2h +

e2g

4
(1− w)2

)
(σi)2

]
, (3.89)

therefore neglecting numerical factors, the coupling constant is given by

1

g2
YM

∼
(
e2h +

e2g

4
(1− w)2

)3/2

, (3.90)

and using the asymptotic expansions for these functions, we see that in the IR limit,

the coupling constant diverges gYM →∞, whilst in the UV limit the coupling con-

stant vanishes gYM → 0, and this fact is consistent with con�nement and asymptotic

freedom respectively, as it should be.

Now, we need to consider the case for the T-dual solution of the MNa. As we

know, we need to consider �rst the case of the D4-brane wrapping a 2-cycle de�ned

by

C2 = {ψ1 = ψ2 ≡ ψ; θ1 = θ2 ≡ θ} , (3.91)
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with φ1 and φ2 �xed. Therefore, the induced metric is given by

ds̃2
ind = e2ϕ̃Σ̃dx2

1,2 + (Σ + 2Ξ + Ω)dθ2 +

(
Σ sin2 θ + 2Ξ sin2 θ + Ω− Ξ2

Σ
cos2 θ

)
dψ2 ,

(3.92)

and since the Kalb-Ramond �eld vanishes in this cycle, we can compute the de-

terminant of the induced metric easily. In fact, up to numerical factors the gauge

coupling is

1

g2
YM

∼
√

Σ̃e−φ(Σ + 2Ξ + Ω)1/2

∫
S2

(
Σ sin2 θ + 2Ξ sin2 θ + Ω− Ξ2

Σ
cos2 θ

)1/2

,

(3.93)

and the bracket inside the integral can be written as

Ω− Ξ2

Σ
+ sin2 θ

(
Σ + 2Ξ +

Ξ2

Σ

)
, (3.94)

whereas

Σ + 2Ξ + Ω = Σ− wΩ. (3.95)

All terms,
√

Σ̃e−φ, (Σ + 2Ξ + Ω)1/2, Ω−Ξ2/Σ and Σ + 2Ξ + Ξ2/Σ, go to in�nity at

r → ∞, so 1/g2
YM → ∞. At r → 0,

√
Σ̃e−φ goes to a constant, whereas Σ − wΩ,

Ω−Ξ2/Σ and Σ + 2Ξ + Ξ2/Σ go to 0 as r2, so 1/g2
YM → 0. Therefore we again have

con�nement (g2
YM →∞ as r → 0) and asymptotic freedom (g2

YM → 0 as r →∞).4

3.4.3 Nonlocality and entanglement entropy

Another useful quantity is the entanglement entropy (EE), which can be de�ned

as the von Neumann entropy for a reduced system, in a sense that we will explain

below.

Consider a quantum mechanical system (we closely follow the formalisms pre-

sented in [140�142]), described by a pure ground state |Ψ〉. The density matrix is

ρtot = |Ψ〉〈Ψ| (3.96)

and it is easy to see that the von Neumann entropy

Stot := −Tr (ρtot ln ρtot)

4Of course, as usual one would need to see whether other couplings (to KK modes, for instance)

go to zero as well, in order to have real asymptotic freedom.
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vanishes. By an imaginary process, we can divide the total systems into two sub-

systems A and B, so that, the total Hilbert space is given by the direct product of

the corresponding subsystems Hilbert spaces, that is H = HA ⊗HB.

We may think of the EE as the entropy felt by an observer who has access only

to the subsystem A. Such observer will think that the system is described by the

reduced density matrix

ρA = Tr Bρtot, (3.97)

where we have smeared out the information of the subsystem B, by taking the trace

over the Hilbert space HB. Then the entanglement entropy is de�ned as the von

Neumann entropy for the reduced system A, that is

SA := −Tr (ρA ln ρA).

In a (d+1)−dimensional QFT, it has been proved that the entanglement entropy

diverges, but after introducing an ultraviolet cut-o� ε, the divergence behaves as

SA ∝
Area(∂A)

εd−1
+ subleading terms , (3.98)

since the entanglement between the subsystems A and B is more severe at the

boundary ∂A.

For our purposes, we can take the QFT de�ned on Rd+1 with the following

intervals 5 [137,138,142],

A = Rd−1 × I`
B = Rd−1 × R\I` (3.99)

where I` is a line segment of length `. In such a case, the entanglement entropy is

SA ∝
V ol(Rd−1)

εd−1
, (3.100)

where V ol(Rd−1) is the volume of the space Rd−1, since the boundary of the d-

dimensional region A are two copies of the space Rd−1 with separation `.

The computation of the EE in a QFT is not an easy task for an arbitrary region

A, even if we consider a free theory. If we consider a theory with a gravity dual,

we can compute the EE using the holographic prescription of [140]. In a large Nc

5At �xed time, t = t0.
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(d+ 1)−dimensional CFT, we �nd the minimal area of the d−dimensional surface γ

in the (d+ 2)-dimensional AdS space at t = t0, whose boundary of γ coincides with

the boundary of the region A, that is ∂γ = ∂A.

The holographic entanglement entropy is given by the area of this surface

SA =
1

4G
(d+2)
N

∫
γ

ddσ

√
G

(d)
ind , (3.101)

where the G(d)
ind is the induced string frame metric on the surface γ. Considering a

ten-dimensional metric, we need to take into account the fact that in nonconformal

theories the dilaton and the volume of the internal space are not constant, therefore

a natural generalization is the prescription

SA =
1

4G
(10)
N

∫
γ

d8σe−2φ

√
G

(8)
ind . (3.102)

The entropy is obtained by minimizing the action (3.102) above, over all surfaces that

approach the boundary of the entangling region A. Klebanov, Kutasov and Murugan

found in [142] that in a con�ning background there are two surfaces minimizing the

action, the �rst one is disconnected which consists of two cigars descending straight

down to the IR cut-o� r0, separated by a distance `, and the second is a connected

surface, in which the cigars are connected by a tube with the width depending on `.

Consider a gravitational background in the string frame of the form [142]

ds2 = α(r)[β(r)dr2 + ηµνdx
µdxν ] + gintij dy

idyj (3.103)

where xµ (µ = 0, 1, . . . , d) parametrize the �at space Rd+1, r is the radial coordinate

and θi (i = d+2, . . . , 9) are internal coordinates. The volume of the internal manifold

is

Vint =

∫
d6y
√

det[gintij ], (3.104)

and if we plug the background (3.103), into the prescription (3.102), we get

SA =
1

4G
(10)
N

∫
Rd−1

dd−1x

∫
d6y
√

det[gintij ]

∫ +`/2

−`/2
dxe−2φα(r)d/2

√
1 + β(r)(∂xr)2

=
1

4G
(10)
N

V ol(Rd−1)

∫ +`/2

−`/2
dx e−2φVintα(r)d/2

√
1 + β(r)(∂xr)2

=
1

4G
(10)
N

V ol(Rd−1)

∫ +`/2

−`/2
dx
√
H(r)

√
1 + β(r)(∂xr)2 , (3.105)
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where we have denoted by x the direction along which the interval I` lies, and also

we have de�ned the useful quantity

H = e−4φV 2
intα

d . (3.106)

We need to �nd the solution for the equation of motion in the integral (3.105). Since

this integral does not depend explicitly on x, we argue that the �energy� de�ned with

respect to it is conserved [143], that is, if we take L =
√
H +Hβ(r′)2, then

d

dx

(
dL
dr′

r′ − L
)

= 0

implies that
d

dx

(
H(r)√

H +Hβ(r′)2

)
= 0 , (3.107)

and after �xing the constant at the minimum value of the radial coordinate r∗, we

have the solution
dr

dx
=

1√
β(r)

(
H(r)

H(r∗)
− 1

)1/2

, (3.108)

and integrating between r∗ and in�nity, we obtain

`(r∗)

2
=
√
H(r∗)

∫ r∞

r∗
dr

(
β(r)

H(r)−H(r∗)

)1/2

. (3.109)

Finally, we insert equation (3.108) into (3.105), and we get the entropy density for

the connected solution,

SA
V ol(Rd−1)

=
1

2G
(10)
N

∫ r∞

r∗
dr

√
β(r)H(r)√

H(r)−H(r∗)
, (3.110)

where we write the UV cut-o� r∞. As we already know, the entanglement entropy

generally is UV divergent, but KKM found that the di�erence between the EE of

the connected and disconnected solutions is �nite, and is easily seen to be given by

2G
(10)
N

V ol(Rd−1)

(
S(c) − S(d)

)
=

∫ ∞
r∗

dr

√
βH√

1−H(r∗)/H(r)
−
∫ ∞
r0

dr
√
βH . (3.111)

The EE can be used as an order parameter for the con�nement/decon�nement phase

transition in a con�ning theory. In fact, a similar phase transition was found by

KKM in [142], where they showed that depending on the value of `, the relevant
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solutions can be either the connected or the disconnected solutions and the phase

transition between these two solutions is a characteristic of con�ning theories.

Moreover, in [138], it was proved that a su�cient condition for the existence of

phase transitions is that the length `(r∗) has an upper bound, and the nonexistence

of this maximum correlates with the absence of the phase transition.

We note that the quantity (3.106) is related to the warp factor we get after a

dimensional reduction on the (8− d)-dimensional compact manifold.

In our particular case, the metric (3.20) can be written as

ds̃2
st = e2ϕ̃Σ̃dx2

1,2 + e2ϕ̃Σ̃(e2gNc)dr
2 + g̃intij dy

idyj, (3.112)

so that we can compute the volume of the internal manifold (3.104) and the warp

factor (3.106) and �nd H = Σ̃
√
g̃int, as well as β = e2gNc.

Using the metrics presented in the section (3.3.1) we can �nd

l(r∗) = 2
√
NcH(r∗)

∫ ∞
r∗

dr
eg√

H(r)−H(r∗)
(3.113)

2G
(10)
N

V ol(Rd−1)

(
S(conn) − S(disconn)

)
∼ Nc

∫ ∞
r∗

dreg
√
H

(
1√

1−H(r∗)/H(r)
− 1

)

−Nc

∫ r∗

r0

dreg
√
H.

(3.114)

One could in principle compute the volume of the internal manifold (3.104), but

this gives us a very complicated equation. We then would need to do the following:

�rstly, evaluate the determinant of the internal metric and then solve the integral.

But we cannot solve analytically the integral, since we just have asymptotic

solutions. We can nevertheless �nd the behavior of Vint.

The asymptotic behavior of the determinant is important, so we need to know -

at least qualitatively - its expression. In fact, the metric of the internal manifold is

of the form

[g̃int] =



g̃θ̃θ̃ g̃θ̃φ̃ g̃θ̃ψ̃ g̃θ̃θ g̃θ̃φ g̃θ̃ψ
g̃φ̃θ̃ g̃φ̃φ̃ g̃φ̃ψ̃ g̃φ̃θ g̃φ̃φ g̃φ̃ψ
g̃ψ̃θ̃ g̃ψ̃φ̃ g̃ψ̃ψ̃ g̃ψ̃θ g̃ψ̃φ g̃ψ̃ψ
g̃θθ̃ g̃θφ̃ g̃θψ̃ g̃θθ g̃θφ g̃θψ

g̃φθ̃ g̃φφ̃ g̃φψ̃ g̃φθ g̃φφ g̃φψ

g̃ψθ̃ g̃ψφ̃ g̃ψψ̃ g̃ψθ g̃ψφ g̃ψψ


, (3.115)
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where the nonvanishing components are

g̃θ̃θ̃ = Σ g̃φ̃φ̃ = Σ−1 g̃ψ̃ψ̃ = Σ sin2 θ1

g̃θθ = Ω− 1
Σ

Ξ2 sin2(ψ1 − ψ2) sin2 θ1

g̃θφ = − 1
Σ

Ξ2 sin(ψ1 − ψ2) sin θ1[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

g̃θψ = − 1
Σ

Ξ2 sin(ψ1 − ψ2) sin θ1 cos θ1

g̃φφ = Ω− 1
Σ

Ξ2[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]2

g̃φψ = Ω cos θ2 − 1
Σ

Ξ2 cos θ1[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

g̃ψψ = Ω− 1
Σ

Ξ2 cos2 θ1

g̃θ̃θ = Ξ cos(ψ1 − ψ2) g̃θ̃φ = −Ξ sin(ψ1 − ψ2) sin θ2 g̃ψ̃θ = −Ξ sin θ1 cos θ1 sin(ψ1 − ψ2)

g̃ψ̃φ = Ξ[cos θ2 sin2 θ1 − cos θ1 sin θ1 sin θ2 cos(ψ1 − ψ2)]

g̃ψ̃ψ = Ξ sin2 θ1

The determinant of this matrix is really laborious to calculate. However, the

volume element acts just in the angular directions, 0 ≤ θa ≤ π, 0 ≤ φa < 2π,

0 ≤ ψa < 4π. So, we can ignore the expression of the angular directions, since it

only gives us numerical factors, which in the asymptotic limit are not important at

all. We are mainly interested in the radial direction.

In the UV limit r →∞, the determinant is a function of the form

det[g̃int] ∼ e16r/3A+ subleading , (3.116)

where A is a function of the angular directions only, so Vint diverges at r →∞. We

also then �nd H ∼ e16r/3 and eg ∼ e2r/3, so l(r∗) in (3.113) and S(conn) − S(disconn)

in (3.114) are actually convergent at r →∞.

We also obtain that, modulo possible cancellations, det[g̃int] is �nite at r → 0,

therefore both H and β remain �nite at r → 0.

Then from (3.113), as r∗ → 0, l(r∗) goes to a constant, whereas at r∗ →∞,

l(r∗) ∼ e8r∗/3

∫ ∞
r∗

dr
e2r/3

√
e16r/3 − e16r∗/3

= (r̃∗)4

∫ ∞
r̃∗

dr̃√
r̃8 − (r̃∗)8

= r̃∗
∫ ∞

1

dz√
z8 − 1

,

(3.117)

where r̃ = e2r/3 and z = r̃/r̃∗, so l(r∗) goes to in�nity. This behaviour (l(r∗)

increasing to in�nity) already suggests there is no phase transition. Indeed, as

was pointed in [137, 138], the absence of a maximum value for l(r∗) suggests the

absence of a �rst order phase transition in the entanglement entropy (in the cases
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with phase transition in the entanglement entropy, we have a maximum for l(r∗): l

increases to a maximum, then decreases with r∗). To verify this, we check the sign

of S(conn) − S(disconn) at zero and in�nity. At r∗ → 0,

∆S|r∗→0 ∼
∫ ∞
r∗→0

dreg(r)
√
H(r)

(
1√

1−H(r∗)/H(r)
− 1

)
> 0 , (3.118)

since the integrand is positive. At r∗ →∞,

∆S|r∗→∞ ∼
∫ ∞
r∗→∞

dreg(r)
√
H(r)

(
1√

1−H(r∗)/H(r)
− 1

)
−
∫ r∗→∞

0

dreg(r)H(r)

∼
∫ ∞
r∗→∞

dre
10r
3

 1√
1− e

8(r∗−r)
3

− 1

− ∫ r∗→∞

0

dre
10r
3

=
3

2
(r̃∗)5

[∫ ∞
1

dz z4

(
1√

1− z−8
− 1

)
−
∫ 1

0

dz z4

]
=

3

2
(r̃∗)5

√
πΓ
(

3
8

)
40Γ

(
7
8

) → +∞ , (3.119)

so is not only positive, but goes to in�nity. If nothing strange happens in between

(at �nite r∗), it means that the disconnected solution has always the lower entropy,

implying that there is no phase transition. It is worth mentioning that this behavior

is consistent with [138], where a detailed study of entanglement entropy as a probe

of con�nement was considered. In fact, they showed that the UV completion done

in [134] provides a consistent model with phase transitions.

3.4.4 Domain walls

Our con�guration consists of a D4-Brane wrapping a two-cycle de�ned by C2 =

{θ1 = θ2, ψ1 = ψ2} and for φ1 =const., this cycle vanishes in the IR limit.

We may think of probe D4 branes that wrap the cycle S2 = {θ1, ψ1} at r → 0 and

the remaining angular directions are �xed. This con�guration can act as a domain

wall if it has �nite tension. This is an useful observable, since even in the presence

of singularities, the tension of the domain wall remains �nite. Taking the cycle S2,

the induced metric is

ds̃2
S2 =

Nce
2ϕ̃

4

(
e2h +

e2g

4
(1 + w)2

)
dx2

1,2 + Σ(dθ2
1 + sin2 θ1dψ

2
1). (3.120)
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The tension of the domain wall can be computed from the DBI action of the D4-

brane

S = −TD4

∫
dθ1dψ1

∫
d3xe−ϕ̃

√
|g̃| ≡ −Teff

∫
d3x, (3.121)

so that the tension in the IR,

Teff = 4πe−φ/2
(
Nc

4

)2(
e2h +

e2g

4
(1 + w)2

)2

ΣTD4 ' 4πeφ0/2

(
Nc

4

)3

g3
0TD4

(3.122)

is �nite. We can follow the formalism of [144] (see also [137]) and add a gauge �eld

A1, with �eld strength G2 = dA1 in the Minkowski part of the world volume of the

brane, in such a way that we induce a Wess-Zumino term of the form

SWZ = TD4

∫
C(1) ∧G2 ∧G2 ≡ −TD4

∫
F2 ∧G2 ∧ A1, (3.123)

where C(1) is the one-form that we found above, and F2 = dC(1) its �eld strength.

Using the cycle S2, in which the �eld strength is

F2

∣∣∣∣
S2

= −Nc

4
sin θ1dθ1 ∧ dψ1, (3.124)

we can perform the integral ∫
S2

F2 = −2πNc,

and we insert this integral into the Wess-Zumino action (3.123) above, so that

S = 2πNcTD4

∫
G2 ∧ A1. (3.125)

We see that we have induced a Chern-Simons term in the 2 + 1 gauge theory, on the

domain wall.
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Chapter 4

N = 1 AdS Backgrounds

I
n the last chapter we studied the action of an abelian T-duality on a

background dual to a nonconformal �eld theory. In this chapter we want

to see how a nonabelian T-duality acts on a backgroud with an AdS factor.

The study of nonabelian T-duality of AdS backgrounds was initiated in [23,145], and

recently, [146] reported a large class of new solutions with AdS5 factors and made

the analysis of the �eld theory 1, following [119], that performed the nonabelian

T-duality in a type IIB solution of the type AdS5 × X5 obtained in [26] after a

dimensional reduction of the warped solution AdS5 ×wM6 of D = 11 supergravity,

followed by an abelian T-duality.

In particular, we explore the nonabelian T-duality on the type IIA supergravity

solution (that is, before the abelian T-duality which gives AdS5 ×X5) of the form

AdS5×wM5, where the internal manifold is obtained after a dimensional reduction

of a space that consists of a 2-sphere bundle over S2 × T 2 [26].

Another application considered relates to the background found in [27]. It con-

sists of a domain wall with non trivial �uxes in the NS-NS and RR sectors. This

domain wall solution �ows to the background AdS3 ×R2 × S2 × S3 in the IR limit,

and in the UV to AdS5 × T 1,1. We study the T-dual of this domain wall and see

that it has as limits the T-dual of AdS5 × T 1,1 and AdS3 × R2 × S2 × S3. We then

study the implication of nonabelian T-duality for the dual conformal �eld theories,

through a calculation of central charges.

The chapter is organized as follows. In section 4.1 we apply the nonabelian

1Nonabelian T-duality on solutions with AdS factors was considered also in [147�149].
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T-duality to the warped AdS5 solution. In section 4.2 we consider the T-dual of

the domain wall solution and in section 4.3 we consider dual conformal �eld theory

aspects of the T-dual solution and calculate central charges.

4.1 Warped AdS5 solution

Supersymmetric solutions of D = 11 supergravity of the form AdS5 ×wM6, with

nontrivial four form �ux living in the internal Riemann manifold were considered

in [26]. The authors found that the six dimensional Riemannian manifold always

admits a Killing vector, and that locally, the �ve-dimensional space orthogonal to

the Killing vector is a warped product of a one dimensional space parametrized by

the coordinate y and a four-dimensional complex spaceM4.

Also, the authors found a large class of regular solutions. One of this solutions,

namelyM4 = S2 × T 2 is peculiar. Firstly we can reduce on an S1 direction in the

torus T 2 so that we can obtain a regular solution of type IIA solution of the form,

AdS5 ×X ′5. Moreover, after a T-duality on the other S1 we get a type IIB solution

of the form AdS5 ×X5, where X5 is a family of Sasaki-Einstein manifolds, and the

global aspects of these spaces was studied in [150,151].

The type IIA solution of [26] is of the form

1

R2
ds2 = ds2(AdS5) + α1(y)dy2 + α2(y)dx2︸ ︷︷ ︸

Gµν(x)dxµdxν

+ β1(y)(L2
1 + L2

2) + β2(y)L2
3︸ ︷︷ ︸

gij(x)LiLj

, (4.1a)

1

R2
B = γ(y)dx ∧ L3︸ ︷︷ ︸

Bµidxµ∧Li

(4.1b)

φ = φ(y) (4.1c)

1

R3
F

(RR)
4 = η(y)dy ∧ V ol(S2) ∧ L3 (4.1d)

where Li = σi/
√

2, with i = 1, 2, 3 are the Maurer-Cartan forms of the group SU(2),

satisfying

dLi = −1

2

√
2εijkLj ∧ Lk, (4.2)
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with the left invariant forms

σ1 = cosψdθ + sinψ sin θdφ

σ2 = − sinψdθ + cosψ sin θdφ (4.3)

σ3 = dψ + cos θdφ.

The coe�cients of this solution are given by

α1(y) = e−6λ sec2 ζ, α2(y) = e−6λ, β1(y) =
1− cy

3
, β2(y) =

2 cos2 ζ

9
,

γ(y) = −
√

2(ca+ cy2 − 2y)

6(a− y2)
and η(y) = −2

√
2(1− cy)

9
= −2

√
2

3
β1,

(4.4)

so that the metric is

ds2 = R2ds2(AdS5) +R2e−6λ sec2 ζdy2 +R2e−6λdx2 +R2 1− cy
6

(dθ2 + sin2 θdφ2)

+
R2

9
cos2 ζ(dψ + cos θdφ)2,

(4.5a)

where x parametrizes the circle S1 of length 2πα′/(lR2), with2

l =
q

3q2 − 2p2 + p
√

4p2 − 3q2
, (4.5b)

(θ, φ) are the polar and azimuthal angles in S2, y ∈ (y1, y2) and 0 ≤ ψ ≤ 2π (note

that in our conventions, x and y are dimensionless, i.e. are written in units of R).

The angle ζ is de�ned by sin ζ = 2ye−3λ and e6λ = 2(a − y2)/(1 − cy) and a, c are

constants such that, if c 6= 0 then 0 < a < 1, and if c = 0 then a 6= 0, and if c 6= 0

one can set it to 1 and �nd

a =
1

2
+

3q2 − p2

4p3

√
4p2 − 3q2 , (4.5c)

where p, q ∈ Z.
The dilaton is

φ = −3λ (4.5d)

2At the level of the supergravity action, the periodicity of x is arbitrary [26]. But it is T-dual

to a IIB solution involving Sasaki-Einstein spaces, for which there is a geometric constraint on the

periodicity [150].
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and the Kalb-Ramond �eld is

B = R2 (ca+ cy2 − 2y)

6(a− y2)
(dψ + cos θdφ) ∧ dx. (4.5e)

In the RR sector, we have only a nonzero four-form �eld

F4 = −R3 2(1− cy)

9
dy ∧ (dψ + cos θdφ) ∧ V ol(S2). (4.6)

In what follows, it is convenient to use the frame �elds

ia = eaâdx
â AdS5 directions

ex = Rα
1/2
1 dx, ey = Rα

1/2
2 dy (4.7)

e1 = Rβ
1/2
1 L1 , e2 = Rβ

1/2
1 L2 , e3 = Rβ

1/2
2 L3,

so that we have the matrix κaj given by

κ =

Rβ
1/2
1 0 0

0 Rβ
1/2
1 0

0 0 Rβ
1/2
2

 . (4.8)

4.1.1 Nonabelian T-dual model

We want to T-dualize the solution of the previous section with respect to the SU(2).

In fact, due to the AdS/CFT duality, there are a signi�cant number of research

concerning the nonabelian T-duality of solutions with metric with a AdS5 factor,

for instance, in [22,25,119,152�155].

As in section 2.3, we form the matrix Mij, given by Mij = gij + bij + α′εijkv̂k, so

(bij = 0, gij = κaiκ
a
j),

M =

R2β1 αv̂3 −α′v̂2

−α′v̂3 R2β1 α′v̂1

α′v̂2 −α′v̂1 R2β2

 . (4.9a)

We pick a gauge where θ = φ = v2 = 0, so that v̂ = (cosψv1, sinψv1, v3). This

gauge is useful when the vector ∂ψ is a Killing vector as the present case (see [23],

for further possible choices). Therefore, the matrix M in this gauge is

M =

 R2β1 α′v3 −α′ sinψv1

−α′v3 R2β1 α′ cosψv1

α′ sinψv1 −α′ cosψv1 R2β2

 . (4.9b)
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The dilaton in the dual theory is given by

φ̂ = φ− 1

2
ln

(
∆

α′3

)
, (4.10)

where ∆ ≡ detM = R2[(R4β2
1 + α′2v2

3)β2 + α′2v2
1β1].

To simplify the notation, from now on we absorb R2 in β1, β2, α′ in v1, v3, as well

as R2 in α1, α2, γ.

The inverse of the matrix M is then

(M−1)T =
1

∆

 β1β2 + v2
1 cos2 ψ v3β2 + v2

1 cosψ sinψ v1v3 cosψ − v1β1 sinψ

−v3β2 + v2
1 cosψ sinψ β1β2 + v2

1 sin2 ψ v1β1 cosψ + v1v3 sinψ

v1v3 cosψ + v1β1 sinψ −v1β1 cosψ + v1v3 sinψ v2
3 + β2

1

 .

(4.11)

Finally, taking the symmetric and skew-symmetric part of (2.70), we get the

following T-dual �elds

Ĝµν = Gµν −
1

2

(
QµiM

−1
ij Qjν +QνiM

−1
ij Qjµ

)
Ĝµi =

1

2

(
QµjM

−1
ji −QjµM

−1
ij

)
ĝij =

1

2

(
M−1

ij +M−1
ji

)
B̂µν = Bµν −

1

2

(
QµiM

−1
ij Qjν −QνiM

−1
ij Qjµ

)
B̂µi =

1

2

(
QµjM

−1
ji +QjµM

−1
ij

)
b̂ij =

1

2

(
M−1

ij −M−1
ji

)
For the solution (4.1a - 4.1d), where xµ = {x, y, AdS5 coordinates} and i =

1, 2, 3, we consider just the terms which will be a�ected by the nonabelian T-duality,

namely, Qxx, Qxi and Qij, giving

Qxx = Gxx = α2(y) Qx3 = Bx3 = γ(y)

Q11 = Q22 = g11 = β1(y) Q33 = g33 = β2(y)
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For the metric, we obtain Ĝµν = Gµν , Ĝµi = 0 ∀µ, ν 6= x. Moreover, we have the

diagonal component

Ĝxx = α2(y) +
1

∆
(v2

3 + β2
1)γ2, (4.12)

the crossed terms

Ĝx1 =
1

∆
γv1v3 cosψ

Ĝx2 =
1

∆
γv1v3 sinψ (4.13)

Ĝx3 =
1

∆
γ(v2

3 + β2
1) ,

and the gij components

ĝ11 =
1

∆
(β1β2 + v2

1 cos2 ψ), ĝ12 =
1

∆
v2

1 cosψ sinψ, ĝ13 =
1

∆
v1v3 cosψ

ĝ21 =
1

∆
v2

1 cosψ sinψ, ĝ22 =
1

∆
(β1β2 + v2

1 sin2 ψ), ĝ23 =
1

∆
v1v3 sinψ

(4.14)

ĝ31 =
1

∆
v1v3 cosψ, ĝ32 =

1

∆
v1v3 sinψ, ĝ33 =

1

∆
(v2

3 + β2
1).

All in all, we have the type IIB metric

dŝ2 = ds̃2 +
1

∆
dΣ2, (4.15)

where

ds̃2 = ds2
AdS + α1(y)dy2 + α2(y)dx2 (4.16a)

and

dΣ2 = γ2(v2
3 + β2

1)dx2 +
2γ√

2
dx
[
v1v3(cosψdv̂1 + sinψdv̂2) + (v2

3 + β2
1)dv̂3

]
+

1

2

[
(β1β2 + v2

1 cos2 ψ)dv̂2
1 + (β1β2 + v2

1 sin2 ψ)dv̂2
2 + 2v2

1 cosψ sinψdv̂1dv̂2

(4.16b)

+ 2v1v3 cosψdv̂1dv̂3 + 2v1v3 sinψdv̂2dv̂3 + (v2
3 + β2

1)dv̂2
3

]
.

Remembering that v̂ = (v1 cosψ, v1 sinψ, v3), we rewrite it as

dΣ2 =γ2(v2
3 + β2

1)dx2 +
2γ√

2
dx
(
v1v3dv1 + (v2

3 + β2
1)dv3

)
+

1

2
β1β2v

2
1dψ

2+

+
1

2
(β1β2 + v2

1)dv2
1 + v1v3dv1dv3 +

1

2
(v2

3 + β2
1)dv2

3.

(4.16c)
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For later use, we calculate
√

det gint for this metric, where gint refers to the

internal, non-AdS, part of the metric. Writing explicitly the factors of R and α′, we

obtain
√
gint =

1

∆2
R3α′3

√
α1

√
β1β2

v1√
2

√
det M̃ , (4.17)

where M̃ is the matrix

M̃ =


∆R2α2 + γ2R4(α′2v2

3 + β2
1R

4) γ√
2
R2α′2v1v3

γ√
2
R2(α′2v2

3 + β2
1R

4)
γ√
2
R2α′2v1v3

β1β2R4+α′2v2
1

2
α′2 v1v3

2
γ√
2
R2(α′2v2

3 + β2
1R

4) α′2 v1v3

2

α′2v2
3+β2

1R
4

2


(4.18)

and we �nd

det M̃ =
α2β1R

4

4
∆2 ⇒

√
det gint =

R5α′3

∆

√
α1α2β1

√
β2

v1

2
√

2
. (4.19)

Finally, the T-dual Kalb-Ramond �eld is given by

B̂ =
γv1β1√

2∆
dx ∧ (− sinψdv̂1 + cosψdv̂2)

+
1

2∆
(−v3β2dv̂1 ∧ dv̂2 + v1β1 sinψdv̂1 ∧ dv̂3 − v1β1 cosψdv̂2 ∧ dv̂3)

=
1

∆

[
v2

1β1√
2

(
γdx+

1√
2
dv3

)
− 1

2
v1v3β2dv1

]
∧ dψ. (4.20)

The T-dual vielbeins are 3

ê′1 = −
√
β1√
2∆

(
v1v3β2dψ + (v2

1 + β1β2)dv1 + v1v3dv3

)
− γ
√
β1

∆
v1v3dx (4.21a)

ê′2 = −
√
β1√
2∆

(v1β1β2dψ − β2v3dv1 + v1β1dv3)− γ
√
β1

∆
v1β1dx (4.21b)

ê3 = −
√
β2√
2∆

(
−v2

1β1dψ + v1v3dv1 + (v2
3 + β2

1)dv3

)
− γ
√
β2

∆
(v2

3 + β2
1)dx, (4.21c)

where we have de�ned the rotated vielbeins(
ê′1
ê′2

)
=

(
cosψ sinψ

− sinψ cosψ

)(
ê1

ê2

)
. (4.21d)

3In fact, we have two di�erent sets of dual frame �elds related by a Lorentz transformation,

that is, ê+ = Λê−, as a result of the di�erent transformation rules of the left- and the right- movers

in the sigma model [23]. For simplicity, in this letter we consider just the ê+ terms.
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In term of this basis we write the Kalb-Ramond �eld (4.20) as

−B̂
2

= −v3

β1

ê′1 ∧ ê′2 +
v1

(β1β2)1/2
ê3 ∧ ê′2. (4.22)

Using these results,we are able to �nd the RR forms in this type IIB background.

We write the four-form (4.1d) as (e1∧ e2∧ e3 = β1
√
β2

2
vol(S2)∧L3, remembering that

βi contain R2)

F4 = Ξ0 dy ∧ e1 ∧ e2 ∧ e3 ≡ G
(3)
1 ∧ e1 ∧ e2 ∧ e3 , (4.23)

where G(3)
1 = Ξ0dy with Ξ0 = −4

√
2R/(3β

1/2
2 ) = 4

√
2/
√

3(1− cy). In this way we

have written the RR 4-form in the way suited to apply the nonabelian T-duality as

described in the Appendix.

Using these rules, we �nd F̂4 = F̂2 = 0 and (reintroducing all factors of R and

α′)

F̂1 = −eφ−φ̂A0G
(3)
1 = dĈ0 =

R3

α′3/2
4
√

2

3
β1dy (4.24)

F̂3 = dĈ2 − Ĉ0dB̂ =
1

2
eφ−φ̂G

(3)
1 ∧ εabcAcêa ∧ êb

= Ξ0
1

2
εabcAady ∧ êb ∧ êc

= R5
√
α′

4
√

2

3∆
β1dy ∧

[
v2

1β1√
2

(
1√
2
dv3 +R2γdx

)
− v1v3β2

2
dv1

]
∧ dψ

= − 1

α3/2

4
√

2

3

1

β
1/2
2

dy ∧
(
β

1/2
2 v3e

′
1 ∧ e′2 + β

1/2
1 v1e

′
2 ∧ e3

)
= B̂ ∧ F̂1 , (4.25)

where the coe�cients from the appendix are

Aa =
1

∆1/2
Aa, (4.26)

and Aa = κaiv̂
i = Rα′(β

1/2
1 v1 cosψ, β

1/2
1 v1 sinψ, β

1/2
2 v3). This background is sup-

plemented by the forms F̂9 = ?F̂1 and F̂7 = − ? F̂3. Using these expressions it is

straightforward to verify that the Bianchi identities dF1 = 0 and dF3 = H ∧ F1 are

satis�ed. Moreover, B ∧ F3 = 0.
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For later use, we also compute the Page charges in this geometry. The quantized

Page charges in this background are given by 4

QPageD3 =
1

2κ2
10TD3

∫
Σ5

(F̂5 − B̂ ∧ F̂3) = 0

QPageD5 =
1

2κ2
10TD5

∫
Σ3

(F̂3 − B̂ ∧ F̂1) = 0 (4.27)

QPageD7 =
1

2κ2
10TD7

∫ y2

y1

F̂1 =
R3

α′3/2
4
√

2

9
(y2 − y1)

(
1− c(y1 + y2)

2

)
= ND7

where, since after an abelian T-duality along the x-direction on the solution (4.1a-

4.1d) we get a the Sasaki-Einstein manifold, we have [150,156]

y1 =
1

4p
(2p− 3q −

√
4p2 − 3q2)

y2 =
1

4p
(2p+ 3q −

√
4p2 − 3q2) , (4.28)

the solutions to cos2 ζ = 0, and p, q ∈ N with (p, q) = 1 for p > q. One may verify

that this new background has N = 1 supersymmetry, under the criteria of [23]. In

fact, in [121] the authors have proved that the vanishing of the Kosmann derivative

in the dualized directions of the Killing spinors means supersymmetry is preserved.5

In the present case, the derivative trivially vanishes, because the Killing spinors are

independent of the dualized directions. Moreover, in [121] a proof was given for the

formula (2.83), with closed expressions for the dual p-form potentials, that can be

applied more easily to speci�c cases.

Note that we could have considered the same calculation with a di�erent gauge

�xing for the Lagrange multipliers. Consider that the matrix M is instead

M =

 β1 v3 −v2

−v3 β1 v1

v2 −v1 β2

 , (4.29)

with v = (ρ cos ζ sinχ, ρ sin ζ sinχ, ρ cosχ). In this coordinate system, we have that

∆ = β2(β2
1 + ρ2 cos2 χ) + β2

1ρ
2 sin2 χ. The inverse of the matrix M gives equation

4Note that 2κ210 = (2π)7α′4 and TDp = (2π)−9α′−
p+1
2 , so 2κ210TDp = (2πls)

7−p.
5The supersymmetry preservation under nonabelian T-duality was discussed before in [147]

and [133].
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(4.11), but with the replacements

ψ ; ζ, v1 ; ρ sinχ, v3 ; ρ cosχ. (4.30)

4.2 Flowing from AdS5 to AdS3

In a recent paper [27], the authors considered the construction of a supersymmetric

domain wall that approaches AdS5×T 1,1 in the UV limit, and AdS3×R2×S2×S3

in the IR limit. In this section we consider the nonabelian T-dual solution of the

domain wall ansatz and see that it has as its limit the nonabelian T-dual of the

AdS5 × T 1,1 and AdS3 × R2 × S2 × S3 in the UV and IR respectively.

In fact, the nonabelian T-dual solution of AdS5×T 1,1 is already known from [23].

We therefore start with a short review of this solution. We consider the conventions

of [27]. Then the type IIB solution is

1

R2
ds2

AdS5×T 1,1 = ds2
AdS5

+
1

6
(ds2

1 + ds2
2) +

1

9
(dψ + P )2 (4.31a)

1

R4
F5 = 4(volAdS5 + volT 1,1), (4.31b)

and B = 0, φ =constant, where ds2
i = dθ2

i +sin2 θidφ
2
i and P = cos θ1dφ1 +cos θ2dφ2

and we make the replacements v1 ; 2y1 and v3 ; 2y2. The NS-NS sector of the

T-dual background is given by

dŝ2
T (AdS5×T 1,1) = ds2

AdS5
+ λ2

0ds
2
1 +

λ2
0λ

2

∆
y2

1σ
2
3̂

+
1

∆

[
(y2

1 + λ2λ2
0)dy2

1 + (y2
2 + λ4

0)dy2
2 + 2y1y2dy1dy2

]
(4.32a)

B̂ = −λ
2

∆

[
y1y2dy1 + (y2

2 + λ4
0)dy2

]
∧ σ3̂, (4.32b)

e−2φ̂ = 8∆α′−3/2, (4.32c)

where λ2
0 = 1/6, λ2 = 1/9, σ3̂ = dψ + cos θ1dφ1, and

∆̂ ≡ detM = 8∆ = 8[λ2
0y

2
1 + λ2(y2

2 + λ4
0)]

= β1v
2
1 + β2(v2

3 + β2
1). (4.33)

Here β1 = 2λ2
0, β2 = 2λ2, v1 = 2y1 and v3 = 2y2, and as in section 2, we have

absorbed a factor of R2 in β1, β2, and a factor of α′ in v1, v3. The RR-sector is given
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by

α′3/2RF̂2 = 8
√

2λ4
0λ sin θ1dφ1 ∧ dθ1

α′3/2RF̂4 = −8
√

2λ4
0λ
y1

∆
sin θ1dφ1 ∧ dθ1 ∧ σ3̂ ∧ (λ2

0y1dy2 − λ2y2dy1).
(4.34)

For completeness, the T-dual vielbeins are given by

ê′1 = −λ0

∆

[
(y2

1 + λ2λ2
0)dy1 + y1y2(dy2 + λ2σ3̂)

]
(4.35a)

ê′2 =
λ0

∆

[
λ2y2dy1 − λ2

0y1(dy2 + λ2σ3̂)
]

(4.35b)

ê3 = − λ
∆

[
y1y2dy1 + (y2

2 + λ4
0)dy2 − λ2

0y
2
1σ3̂

]
, (4.35c)

and as before, we de�ned the rotated vielbeins(
ê′1
ê′2

)
=

(
cosψ sinψ

− sinψ cosψ

)(
ê1

ê2

)
. (4.36)

This completes the type IIA background T-dual to AdS5 × T (1,1) in type IIB

supergravity.

4.2.1 AdS3 solution and its nonabelian T-dual

The solution with metric AdS3 × R2 × S2 × S3 is given by

1

R2
ds2

AdS3×R2×S2×S3 =
1

3
√

3

(
2ds2

AdS3
+ dz2

1 + dz2
2 + ds2

1 + ds2
2 +

1

2
(dψ + P )2

)
(4.37a)

1

R2
B =

−τ
6
√

6
z1(vol1 − vol2) ≡ −τ β̃2

2
√

2R2
z1(vol1 − vol2) (4.37b)

1

R2
F3 =

τ

6
√

6
dz2 ∧ (vol1 − vol2) (4.37c)

1

R4
F5 =

1

27

{
volAdS3 ∧

[
4dz1 ∧ dz2 +

τ 2

2
(vol1 + vol2)

]
+(dψ + P ) ∧

[
vol1 ∧ vol2 +

τ 2

8
dz1 ∧ dz2 ∧ (vol1 + vol2)

]}
,

(4.37d)

where τ is a constant.
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In order to �nd its T-dual, we consider the Maurer-Cartan forms

L1 =
1√
2

(cosψdθ2 + sinψ sin θ2dφ2)

L2 =
1√
2

(− sinψdθ2 + cosψ sin θ2dφ2) (4.38)

L3 =
1√
2

(dψ + cos θ2dφ2),

such that vol2 = 2L1 ∧ L2. Using the set-up of section 2.3, the vielbeins related to

the directions to be T-dualized are

e1 = β̃
1/2
1 L1 (4.39a)

e2 = β̃
1/2
1 L2 (4.39b)

e3 = β̃
1/2
2 (L3 + 1/

√
2 cos θ1dφ1). (4.39c)

where we have de�ned β̃1 = 2
3
√

3
and β̃2 = 1

3
√

3
, absorbing the factors of R2 in them

for simplicity.

With these de�nitions, we may write the metric as

ds2 = β̃2(2ds2
AdS3

+ ds2
1 + ds2

2 + dz2
1 + dz2

2) + (e1)2 + (e2)2 + (e3)2 (4.40)

and the RR-forms as (vol2 = 2
β̃1
e1 ∧ e2, dψ + P =

√
2√
β̃2

e3)

1

R2
F3 =

τ

6
√

6
dz2 ∧ vol1 −

τ√
2
dz2 ∧ e1 ∧ e2 (4.41a)

1

R4
F5 =

1

27

{
volAdS3 ∧

[
4dz1 ∧ dz2 +

τ 2

2

(
vol1 +

2

β̃1

e1 ∧ e2

)]

+

√
2√
β̃2

e3 ∧
[
vol1 ∧

2

β̃1

e1 ∧ e2 +
τ 2

8
dz1 ∧ dz2 ∧

(
vol1 +

2

β̃1

e1 ∧ e2

)] ,

(4.41b)

or as

F3 =G
(0)
3 +G12

1 ∧ e1 ∧ e2 (4.41c)

F5 =G
(0)
5 +G3

4 ∧ e3 +G12
3 ∧ e1 ∧ e2 +G

(3)
2 ∧ e1 ∧ e2 ∧ e3 , (4.41d)
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where

1

R4
G

(0)
5 =

1

27
volAdS3 ∧

[
4dz1 ∧ dz2 +

τ 2

2
vol1

]
1

R4
G3

4 =

√
2τ 2

216β̃
1/2
2

dz1 ∧ dz2 ∧ vol1,

1

R2
G

(0)
3 =

τ

6
√

6
dz2 ∧ vol1,

1

R4
G12

3 =
τ 2

27β̃1

volAdS3

1

R4
G

(3)
2 =

4

27
√

2

1

β̃
1/2
2 β̃1

(
vol1 +

τ 2

8
dz1 ∧ dz2

)
1

R2
G12

1 = − τ√
2
dz2. (4.42)

The matrix M is given by Mij = gij + bij + α′εijkv̂k, so (after absorbing α′ factors

in v̂i)

M =

 β̃1
τz1√

2
β̃2 + v̂3 −v̂2

− τz1√
2
β̃2 − v̂3 β̃1 v̂1

v̂2 −v̂1 β̃2

 , (4.43)

As before, we consider the gauge �xing θ = φ = v2 = 0, so that the coordinates

become v̂ = (cosψv1, sinψv1, v3), and for simplicity we de�ne ṽ3 = τz1√
2
β̃2 + v̂3, in

such a way that the inverse of M is (4.11), with the replacement v3 ; ṽ3, that is,

(M−1)T =
1

∆̃

 β̃1β̃2 + v2
1 cos2 ψ ṽ3β̃2 + v2

1 cosψ sinψ v1ṽ3 cosψ − v1β̃1 sinψ

−ṽ3β̃2 + v2
1 cosψ sinψ β̃1β̃2 + v2

1 sin2 ψ v1β̃1 cosψ + v1ṽ3 sinψ

v1ṽ3 cosψ + v1β̃1 sinψ −v1β̃1 cosψ + v1ṽ3 sinψ ṽ2
3 + β̃2

1

 ,

(4.44)

where the determinant detM is ∆̃ ≡ detM = (β̃2
1 + ṽ2

3)β̃2 + v2
1β̃1.

Under these de�nitions, we must apply the duality on the following �elds6

Qφφ = Gφφ = β̃2

(
sin2 θ1 + 1

2
cos2 θ1

)
Qφ3 = Gφ3 = Q3φ =

√
2

2
β̃2 cos θ1

Qθθ = Gθθ = β̃2

Qθφ = Bθφ = − τ
2
√

2
z1β̃2 sin θ1 E12 = b12 = 2τ√

2
β̃2z1

E11 = E22 = g11 = β̃1 E33 = g33 = β̃2

6Note that since the dependence on the angular coordinates (φ2, θ2) is encapsulated into the

Maurer-Cartan forms Li, in what follows the subscript (φ, θ) refers logically to (φ1, θ1).
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Using these results and the same procedure as in section 3, we �nd that the dual

metric, dilaton and B �eld are

dŝ2
AdS3×R2×S2×S3 = β̃2

(
2ds2

AdS3
+ dz2

1 + dz2
2 + ds2

1

)
+

1

2∆̃
β̃1β̃2v

2
1(dψ + cos θ1dφ1)2

+
1

2∆̃

[
(β̃1β̃2 + v2

1)dv2
1 + (ṽ2

3 + β̃2
1)dv2

3 + 2v1ṽ3dv1dv3

]
(4.45)

φ̂ = φ− 1

2
ln

∆̃

α′3

B̂ = − v1

2∆̃
(ṽ3β̃2dv1 − v1β̃1dv̂3) ∧ dψ

− β̃2τz1

2
√

2
sin θ1dθ1 ∧ dφ1 +

β̃2

2∆̃
v1ṽ3 cos θ1dφ1 ∧ dv1

+
β̃2

2∆̃
cos θ1(ṽ2

3 + β̃2
1)dφ1 ∧ dv̂3

= −τRz1

6
√

6
vol1 +

β̃2

2∆̃
σ3̂ ∧ (v1ṽ3dv1 + (ṽ2

3 + β̃2
1)dv3). (4.46)

For later use, the
√

det gint for this metric (gint is as before the internal, i.e. non-AdS,

part of the metric) is √
det gint = α′3

sin θ1

2
√

2

β̃1β̃
5/2
2

∆̃
v1. (4.47)

With F3 and F5 written as in (4.41c) and (4.41d), we can apply the formulas in

the appendix, reintroduce the factors of α′ in (4.42), (4.45) and (4.46) and obtain

the RR-sector T-dual forms F̂1 = F̂3 = F̂5 = 0 and (F̂6 and F̂8 would be redundant,

as we consider their Poincaré duals F̂4 and F̂2)

F̂2 = eφ−φ̂
{
−A0G

(3)
2 +G12

1 ∧ (A2ê
1 − A1ê

2 − A0ê
3)
}

F̂4 = eφ−φ̂
{
A3G

3
4 +G12

3 ∧ (A2ê
1 − A1ê

2 − A0ê
3) +G

(0)
3 (A1ê

1 + A2ê
2 + A3ê

3)

+G
(3)
2 ∧ (A3ê

1 ∧ ê2 + A1ê
2 ∧ ê3 + A2ê

3 ∧ ê1) + A3G
12
1 ê1 ∧ ê2 ∧ ê3

}
, (4.48)

where as before, eφ−φ̂ =
√

∆̃α′−3/2, α′3/2eφ−φ̂A0 = β̃1

√
β̃2 and α′3/2eφ−φ̂Aa = Aa,

and the dual vielbeins are

ê′1AdS3
= − β̃

1/2
1√
2∆̃

[
(β̃1β̃2 + v2

1)dv1 + v1ṽ3dv3 + v1ṽ3β̃2(dψ + cos θ1dφ1)
]

(4.49a)

ê′2AdS3
=

β̃
1/2
1√
2∆̃

[
β̃2ṽ3dv1 − v1β̃1dv3 − v1β̃1β̃2(dψ + cos θ1dφ1)

]
(4.49b)

ê3
AdS3

= − β̃
1/2
2√
2∆̃

[
v1ṽ3dv1 + (ṽ2

3 + β̃2
1)dv3 − v2

1β̃1(dψ + cos θ1dφ1)
]
. (4.49c)
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4.2.2 Domain Wall and its nonabelian T-dual

The Domain Wall solution which has as limits the above AdS3 and AdS5 solution

is given by

1

R2
ds2

DW =e2A(−dt2 + dx2) + e2B(dx2
1 + dx2

2) + dρ2

+
1

6
e2U(ds2

1 + ds2
2) +

1

9
e2V (
√

2L3 + cos θ1dφ1)2 (4.50a)

1

R2
B =
−τ
6
x1(vol1 − vol2) (4.50b)

1

R2
F3 =

τ

6
dx2 ∧ (vol1 − vol2) (4.50c)

1

R4
F5 =4e2A+2B−V−4Udt ∧ dx ∧ dx1 ∧ dx2 ∧ dρ+

1

27
(
√

2L3 + cos θ1dφ1) ∧ vol1 ∧ vol2

+
τ 2

36
dx1 ∧ dx2 ∧ (

√
2L3 + cos θ1dφ1) ∧ (vol1 + vol2) (4.50d)

+
τ 2

12
e2A−2B−V dt ∧ dx ∧ dρ ∧ (vol1 + vol2).

Here τ is a constant and A,B, U, V are functions of the radial coordinate ρ. From this

solution, we see that we can recover AdS5×T (1,1) by setting the constant τ = 0 and

A = B = ρ and U = V = 0. On the other hand, to recover the AdS3×R2×S2×S3

solution, we set

A =
33/4

√
2
ρ, B = U = −V =

1

4
ln

(
4

3

)
, (4.51)

and change variables by xi ; zi/
√

6 .

As before, the T-dual model is given by

dŝ2
DW = R2e2A(−dt2 + dx2) +R2e2B(dx2

1 + dx2
2) +R2dρ2

+
R2

6
e2Uds2

1 +
1

2∆̄
β̄1β̄2v

2
1(dψ + cos θ1dφ1)2

+
1

2∆̄

{
(β̄1β̄2 + v2

1)dv2
1 + (β̄2

1 + v̄2
3)dv2

3 + 2v1v̄3dv1dv3

}
B̂ = −τRx1

6
vol1 +

β̄2

2∆̄
σ3̂ ∧ (v1v̄3dv1 + (v̄2

3 + β̄2
1)dv3)

φ̂ = φ− 1

2
ln

∆̄

α′3
, (4.52)

where we have de�ned

β̄1 =
1

3
e2U , β̄2 =

2

9
e2V , v̄3 =

τ

3
x1 + v̂3, ∆̄ = (β̄2

1 + v̄2
3)β̄2 + v2

1β̄1 , (4.53)
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and as before we absorbed R2 factors in β̄i and α′ in vi.

We can easily see that we can obtain the correct limits in the NS-NS sector.

The UV and IR limits of the T-dual solution to the domain wall are the nonabelian

T-duals of the AdS5 × T (1,1) and the AdS3 × R2 × S2 × S3 solutions, respectively.

In the RR sector, we could verify term by term that the equality holds, but

alternatively, one can �nd the RR-forms components in the same way as in (4.42).

In the present case, we obtain

1

R4
G

(0)
5 = dt ∧ dx ∧ dρ ∧

(
4e2A+2B−V−4Udx1 ∧ dx2 +

τ 2

12
e2A−2B−V vol1

)
(4.54)

1

R4
G3

4 =

√
2τ 2

36β̄
1/2
2

dx1 ∧ dx2 ∧ vol1 (4.55)

1

R2
G

(0)
3 =

τ

6
dx2 ∧ vol1 ,

1

R2
G12

3 =
τ 2

6β̄1

e2A−2B−V dt ∧ dx ∧ dρ (4.56)

1

R4
G

(3)
2 =

2
√

2

27β̄1β̄
1/2
2

vol1 +
2
√

2τ 2

36β̄1β̄
1/2
2

dx1 ∧ dx2 (4.57)

1

R2
G12

1 = − τ

3β̄1

dx2 , (4.58)

Then the T-dual RR-forms are as in (4.48), i.e.,

F̂2 = e−φ̂
{
−A0G

(3)
2 +G12

1 ∧ (A2ê
1 − A1ê

2 − A0ê
3)
}

F̂4 = e−φ̂
{
A3G

3
4 +G12

3 ∧ (A2ê
1 − A1ê

2 − A0ê
3) +G

(0)
3 ∧ (A1ê

1 + A2ê
2 + A3ê

3)

+G
(3)
2 ∧ (A3ê

1 ∧ ê2 + A2ê
3 ∧ ê1 + A1ê

2 ∧ ê3) + A3G
12
1 ê1 ∧ ê2 ∧ ê3

}
. (4.59)

Finally, we can also compute the vielbeins and see that they have the correct limits,

therefore the RR-sector also has the correct limits. For instance, the frame �eld e3

of the Domain Wall is

e3
AdS(DW ) = − β̄

1/2
2√
2∆̄

[
v1v̄3dv1 + (v̄2

3 + β̄2
1)dv3 − v2

1β̄1(dψ − cos θ1dφ1)
]
, (4.60a)

and we can easily verify that the UV and IR limits are the frame �eld e3 in the

AdS5, AdS3

e3
AdS5

= − β
1/2
2√
2∆̄

[
v1v3dv1 + (v2

3 + β2
1)dv3 − v2

1β1(dψ + cos θ1dφ1)
]

(4.60b)

e3
AdS3

= − β̃
1/2
2√
2∆̄

[
v1ṽ3dv1 + (ṽ2

3 + β̃2
1)dv3 − v2

1β̃1(dψ + cos θ1dφ1)
]

(4.60c)

respectively.
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4.3 Dual conformal �eld theories, central charges

and RG �ow

An interesting question is, what happens to the conformal �eld theories dual to

the gravity backgrounds with AdS factor under nonabelian T-duality on the extra

dimensional space? The answer is not obvious. Abelian T-duality on a direction

transverse to a Dp-brane turns it into a D(p+ 1)-brane, but if the original direction

is in�nite in extent, the T-dual direction is in�nitesimal in extent. However, this

discussion makes sense only in the region far from the region where AdS/CFT is

relevant, the core of the D-brane.

Naively, abelian T-duality on the transverse part of a gravity dual should increase

the dimensionality of the brane, therefore of the �eld theory dual to the background.

But if we perform a nonabelian T-duality on a space with an AdS factor, in such

a way that the AdS factor is not a�ected, and moreover the T-duality does not

introduce a new AdS direction, then it seems that the dimensionality of the dual

conformal �eld theory is una�ected. And yet since the gravity dual is modi�ed, it

is logical to assume that the conformal �eld theory is modi�ed as well.

To understand the e�ect of nonabelian T-duality on the conformal �eld theory, we

need some probes of the transverse space in AdS/CFT. Such probes are for instance

wrapped branes, dual to solitonic states in the �eld theory, like the example of the

5-brane wrapped on S5 in AdS5×S5, giving the baryon vertex operator [157].7 But

a more relevant probe was considered in [146], namely the central charge of the dual

�eld theory as a function of the number of branes.

One can calculate Page charges in a gravitational background, and identify those

with the number of branes that generate the geometry. For the central charge of the

dual conformal �eld theory, a slight generalization of the usual formula was provided

in [146]. For a metric on MD = AdSd+2 ×Xn, of the type

ds2
D = A d~z2

(1,d) + AB dr2 + gijdθ
idθj , (4.61)

with a dilaton φ, de�ne the modi�ed internal volume as

V̂int =

∫
d~θ
√
e−4φ det[gint]Ad (4.62)

7Baryon vertex probes in this context, but in other dimensions have been considered in [145]

and [148].
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and then Ĥ = V̂ 2
int. Then the central charge is given by

C = dd
Bd/2Ĥ

2d+1
2

GN(Ĥ ′)d
(4.63)

where GN = (α′)
D
2
−1 is the Newton constant in D dimensions and prime denotes

the derivative with respect to r.

The expectation of increase in dimensionality through T-duality a�ects the D-

brane charges of the gravity background. For a geometry with an AdS5 factor in

type IIB, generated only by D3-branes (with only D3-brane Page charges), after

T-duality we expect the geometry to be generated by D4- and D6-branes only, i.e.

to have only D4- and D6-brane Page charges

QPageD4 =
1

2κ2
10TD4

∫
Σ4

(F̂4 − B̂ ∧ F̂2)

QPageD6 =
1

2κ2
10TD6

∫
Σ2

F̂2. (4.64)

For an abelian T-duality, we would expect only D4-brane charge, but for nonabelian

T-duality (in some sense a T-duality on 3 coordinates), the expectation, con�rmed

by a calculation, is that only D6-brane charges appear. One can calculate the central

charges and express them as a function of the Page charges. In the AdS5×S5 case, we

�nd that C = 32π3R8α′−4 = 2π5N2
D3 before, and C = (8π5/3)R8α′−4 = (2π5/24)N2

D6

after the nonabelian T-duality, leading to the relation8

Cbefore
Cafter

=
24N2

D3

N2
D6

, (4.65)

which is found to be satis�ed also in other cases of nonabelian T-duality on type

IIB geometries generated by D3-branes.

An interesting question which we will try to answer in this section is whether a

similar formula is valid in more general contexts in the case of geometries with an

AdS factor.
8The formula in [146] is actually with a factor of 3 instead of 24, since di�erent conventions

for T-duality were considered, with Li = σi instead of Li = σi/
√

2, giving an extra 2
√

2 in the

quantization of the Page charges after T-duality.
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4.3.1 Page charges

� In the case of section 4.1, the starting geometry is in type IIA, the reverse

of the situation considered in [146]. Since F2 = 0 in the background before

T-duality, QPageD6 = 0, and we only have a nonzero result for

ND4 = |QPageD4 | =
R3

2κ2
10TD4

∫ y2

y1

η(y)dy

∫
X3

vol(S2) ∧ L3

=

(
R

2π
√
α′

)3
2
√

2

9
(y2 − y1)

(
1− cy1 + y2

2

)
4π2
√

2

≡
(
R

ls

)3
2

9π
K. (4.66)

After the nonabelian T-duality, we have calculated in section 3 that QPageD3 =

QPageD5 = 0 and

ND7 = |QPageD7 | =
R3

α′3/2
4
√

2

9
(y2 − y1)

(
1− cy1 + y2

2

)
=

(
R

ls

)3
4
√

2

9
K. (4.67)

� In the case of section 4.2, the we have a Domain Wall solution that interpolates

between an AdS5×T 1,1 and an AdS3×R2×S2×S3. This can be also found in

the N = 4 D=5 gauged supergravity arising as a consistent KK truncation of

type IIB on T 1,1 [27], and as such it can be interpreted as an RG �ow between

two �xed points in the dual �eld theory. A relevant question is then, is the

ratio of the central charges before and after the nonabelian T-duality modi�ed

by the RG �ow?

For AdS5 × T 1,1, the Page charges before and after the nonabelian T-duality

were found in [146], QPageD5 = QPageD7 = 0 and |QPageD3 | = ND3 before, and

|QPageD6 | = ND6, QPageD4 = 0 after the T-duality, with (in our conventions)

ND3 =
4R4

27πα′2
, ND6 =

4
√

2

27α′2
R4. (4.68)

For AdS3 × R2 × S2 × S3, the Page charges before the T-duality were found

in [27]. Assuming that R2 is compacti�ed to a T 2 = S1
(1) × S1

(2) with period
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2πRdi
√

6, and de�ning s(S) as a homology 2-cycle generator in S2 × S3, one

has the integers

QN5 =
1

(2πls)2

∫
S1

(1)
×s(S)

H

QD5 =
1

(2πls)2

∫
S1

(2)
×s(S)

dC2 (4.69)

and the (D3-brane) Page charge quantization condition is

1

(2πls)4

∫
Σ5

(F5 −B ∧ dC2) ∈ Z. (4.70)

For Σ5 = S2 × S3, one obtains an integer

N =

(
R

ls

)4
vol(T 1,1)

4π4
, (4.71)

and for Σ5 = T 2×M3, where M3 is a homology 3-cycle generator in S2× S3 ,

one obtains an integer

N̄ =

(
R

ls

)4
8d1d2

9
= −1

2
QN5QD5. (4.72)

Moreover, the above �ux quantization is actually valid over the whole domain

wall solution.

After the T-duality, we have F2 and F4, so we need to consider the quantization

of D4-brane Page charges

1

(2πls)3

∫
Σ4

(F4 −B ∧ F2) ∈ Z (4.73)

and
1

(2πls)

∫
Σ2

F2 ∈ Z. (4.74)

For Σ2 = T 2, we obtain

ND6 = −τ
22
√

2

216
4π2 6d1d2

2πls

R4

l3s
, (4.75)

and for Σ2 = S2, we obtain

N̄D6 = −2
√

2

27

4π

2πls

R4

l3s
. (4.76)
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4.3.2 Central charges

� For the case in section 4.1, the central charge before the T-duality is obtained

using A = R2r2, B = r−4 and d = 3, leading to (
∫
L1 ∧ L2 ∧ L3 = 2π2

√
2)

V̂int =
α′r3R6

l
(2π)

4π2

9
(y2 − y1)

(
1− c(y1 + y2)

2

)
≡ α′r3R6

l

8π3

9
K , (4.77)

and therefore

Cbefore =
R6

8α′3
8π3

9

K

l
, (4.78)

where the Page charge quantization condition (4.66) means that we can write

R3/α′3/2 as a function of ND4, giving

Cbefore =
9π5

4

N2
D4

Kl
. (4.79)

After the T-duality, the central charge is found using the same A = R2r2,

B = r−4 and d = 3, leading to (also using the
√

det gint calculated in (4.19))

V̂int =
α′R6r3

2l
(2π)2K

9

∫
dv1

α′
v1

α′

∫
dv3

α′
. (4.80)

To calculate the integral over the vi, we can use as another gauge �xing,

related to the previous coordinates by v1/α
′ ; ρ cosχ and v3/α

′ ; ρ sinχ

with ρ, χ ∈ [0, π], leading to a value of 2π3/3 for the integral.9 We then obtain

Cafter =
π5K

54l

(
R

ls

)6

, (4.81)

and from the Page charge quantization condition (4.67) we can write R3/α′3/2

as a function of ND7 , giving

Cafter =
3π5

64Kl
N2
D7 (4.82)

We see that the ratio is
Cbefore
Cafter

=
48N2

D4

N2
D7

, (4.83)

which is basically the same as in (4.65), with the obvious generalization to

N2
Dp/N

2
Dp+3, and an extra factor of 2 which is probably the e�ect of a di�erent

normalization.
9The rangle of ρ was de�ned in [148], and was then used for the calculation of central charges

in [146].
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� For the case in section 4.2, on the AdS5 × T 1,1 side, the central charge before

the T-duality was found to be [146]

C(1)
before =

π3R8

27α′4
=

27

8
π5N2

D3 , (4.84)

and after the T-duality

C(1)
after =

2R8π5λλ4
0

3α′4
=

9

64
π5N2

D6 , (4.85)

leading to the ratio in (4.65). On the AdS3 × T 2 × S2 × S3 side, the central

charge before the T-duality is [27]

C(2)
before =

3RAdS3

2G3

=
3

2

(
R

ls

)8
8d1d2

9

vol(T 1,1)

4π4

=
3

2
|NQN5QD5| = 3|NN̄ | = 3ND3N̄D3. (4.86)

Here G3 is the e�ective Newton's constant, obtained from the dimensional

reduction of the action in string frame, thus proportional to

G ∝ (R/ls)
7vol(T 1,1)(2πd1)(2πd2). (4.87)

After the T-duality, using the
√

det gint calculated in (4.47), and doing the

integration over vi in the same way as in the case in section 3, with result

2π3/3, we obtain

V̂int =
R8

r

12(2π)4d1d2√
2

(
1

3
√

3

)7/2
2π3

3
, (4.88)

leading to

Cafter =
32
√

2π7

321/4
d1d2

R8

l8s
=

4

τ 2
3−1/4

√
2π6ND6N̄D6. (4.89)

The ratio of central charges before and after the T-duality can therefore be

expressed as
C(2)
before

C(2)
after

=
35/4
√

2τ 2

8π6

ND3N̄D3

ND6N̄D6

. (4.90)

Note that now we can �x τ such that the prefactor equals 24, obtaining

C(2)
before

C(2)
after

=
24ND3N̄D3

ND6N̄D6

, (4.91)
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which is essentially the same formula (4.65) that was valid on the AdS5 side of

the domain wall. The factor τ is related to a rede�nition of the �elds, coupled

to a rescaling of the xi (or zi) coordinates [27], which are the two coordinates

that change from the AdS5 on one side of the domain wall to a AdS3 × T 2 on

the other. It is therefore not surprising that changing τ allows us to change

the normalization of the central charge dual to AdS3, with respect to the one

dual to AdS5.
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Chapter 5

Nonabelian T-duality for

nonrelativistic holographic duals

N
ow we want to move one step further and consider a nonabelian T-

duality on backgrounds with nonrelativistic isometries. As we explained

in the introduction, since the gauge/gravity duality is also a strong/weak

duality, we may try to apply the its lessons in condensed matter systems, where the

strong coupling regime is quite common.

As we know, the methodology of the gauge/gravity duality implies that the

symmetries of the �eld theory are mapped in isometries of the gravity theory. There

are two symmetry algebras that are relevant in the nonrelativistic case (see [30] and

references therein). The �rst one, known as Lifshitz algebra, contains the generators

for rotations {Mij}, translations {Pi}, time translations {H} and dilatations D,

satisfying the standard commutation relations for {Mij, Pi, H} together with

[D,Mij] = 0 , [D,Pi] = iPj , [D,H] = izH , (5.1a)

and in [41] the geometric realization of the above symmetry (which has been em-

bedded in string theory in [48,49]) was de�ned by the gravity dual

ds2 = L2

(
−dt

2

r2z
+
dxidxi

r2
+
dr2

r2

)
. (5.1b)

As we can see, for z = 1 we recover Anti-de Sitter space.

A second relevant algebra is the conformal Galilean algebra which contains, be-

sides the generators for rotations {Mij}, translations {Pi}, time translations {H}
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and dilatations D, also the "Galilean boosts", generated by Ki, with nontrivial

commutators

[Mij, Kk] = i(δikKj − δjkKi) , [Pi, Kj] = −iδijN , [Ki, H] = −iPi ,
[D,Ki] = i(1− z)Ki ,

(5.2a)

In the special case z = 2, the algebra is called the Schrödinger algebra. Here N is the

number operator, which counts the number of particles with a given mass m, and in

general has has only one nontrivial commutation relation, [D,N ] = i(2− z)N , but

in the z = 2 (Schrödinger) case we see that it becomes a central charge. Curiously,

it is not possible to arrange the D-dimensional Schrödinger algebra as an isometry

in (D+1)-dimensions, but in [36,37] it was realized that we can write a gravity dual

as a (D + 2)-dimensional space, with metric

ds2 = L2

(
−dt

2

r2z
+
−2dtdξ + dxidxi

r2
+
dr2

r2

)
. (5.2b)

Obtaining nonrelativistic gravity duals in string theory turns out to be di�cult

(see [38�40,47�50,158�163]).1 In relativistic cases, several di�erent techniques have

been employed in order to generate supergravity solutions, see [165�167] for recent

developments. One particularly interesting solution generating technique which has

been applied extensively is T-duality. In the usual case, T-duality relates strings in

a background with a compact direction, S1 of radius R, with a background with an

S1 of radius α′/R. The physical spectrum of a string in the geometry is invariant

under this transformation, see e.g. [2, 92,168�170].

This usual duality (on S1) is abelian (U(1) group), but a nonabelian gener-

alization for the group SU(2), called nonabelian T-duality, was introduced in [3]

and became an issue of recent interest [22, 23, 117, 121, 171�173]. This nonabelian

T-duality (NATD) transformation has been used successfully as a solution gener-

ating technique [25, 133, 137, 145, 147�149, 152, 153, 174�177], although some issues

concerning global properties of the dual manifold remain.

Considering the di�culties in constructing string theory gravity duals with non-

relativistic symmetries, in this chapter we consider NATD of known gravity dual

solutions. In section 5.2, we apply this technique to the solutions with conformal

1See [164] for the embedding of nonrelativistic string backgrounds via the use of abelian T-

duality in the context of double �eld theory.
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Galilean symmetry constructed in [162], and in section 5.3 to the solutions with

Lifshitz symmetries constructed in [48].

In order to de�ne the dual �eld theory, in section 5.4 we start by calculating

the quantized Page charges of the spaces constructed in the section 5.2 and 5.3. In

particular, we compare the charges of the Galilean solution constructed in section

5.2 with the charges calculated in [148]. We then de�ne and study holographic

Wilson loops in these backgrounds.

5.1 Nonabelian T duality revisited

In principle we could follow using the usual method employed in the last section to

�nd the nonabelian T duality rules. On the other hand, here we will consider an

alternative method to �nd the transformation rules [121], and obviously we must

have the same results, but this alternative path has the advantage of giving a closed

form for the �elds in the RR sector2. Considering a spacetime metric and a Kalb-

Ramond two-form given by

ds2 = Gµν(x)dxµdxν + 2Gµi(x)dxµτi +Gij(x)τiτj (5.3)

B =
1

2
Bµνdx

µ ∧ dxν +Bµidx
µ ∧ τi +

1

2
Bijτi ∧ τj, (5.4)

in such a way that µ, ν = 1, . . . , 7 and all dependence on the SU(2) angles θ, ψ, φ is

contained in the Maurer-Cartan forms τi for SU(2), which satisfy dτi = 1
2
εijkτj ∧ τk.

Furthermore, in general this background has a nontrivial dilaton Φ = Φ(x).

If we de�ne the �eld Q by its components

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi

Qiµ = Giµ +Biµ, Eij = Gij +Bij ,
(5.5)

one can show that the nonabelian T-dual background is given by

Q̂µν = Qµν −QµiM
−1
ij Qjν , Êij = M−1

ij

Q̂µi = QµjM
−1
ji , Q̂iµ = −M−1

ij Qjµ,
(5.6)

where the matrix M is de�ned by

Mij = Eij + α′εijkvk , (5.7)

2We thank to the authors of [121] for clari�cations.
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and εijk are the structure constants of the group SU(2) and vi are Lagrange mul-

tipliers. Hereafter we absorb the factor of α′ into vi and we present all the correct

factors in the �nal answers. All in all, the dual �elds are written as

dŝ2 = Ĝµν(x)dxµdxν + 2Ĝµi(x)dxµdvi + Ĝij(x)dvidvj (5.8a)

B̂ =
1

2
B̂µνdx

µ ∧ dxν + B̂µidx
µ ∧ dvi +

1

2
B̂ijdv

i ∧ dvj , (5.8b)

and the one-loop contribution to the dilaton is given by

φ̂ = φ− 1

2
ln

(
∆

α′3

)
, (5.8c)

where ∆ = detM . Besides the spectator �elds, the dual theory depends on θ, ψ, φ, vi,

meaning that we have too many degrees of freedom and we need to impose a gauge

�xing in order to remove three of these variables.

It is convenient to write the metric as

ds2
10 = ds2

7 +
3∑
i=1

e2Ci(τi + Ai)2 , (5.9)

where Ai are SU(2)-valued gauge �elds and Ci are scalars. Moreover, we de�ne the

vielbeins {eµ, ei}, such that

eµ ⇒ ds2
7 = gµνdx

µdxν =
6∑

µ=0

(eµ)2

ei = eCi(τi + Ai) ⇒
3∑
i=1

e2Ci(τi + Ai)2 =
3∑
i=1

(ei)2,

(5.10)

implying that the components of the metric (5.3) are

Gµν = gµν +
3∑
i=1

e2CiAiµA
i
ν , Gµi = e2CiAiµ , Gij = e2Ciδij . (5.11)

In the same way, it is useful to write the Kalb-Ramond as

B =
1

2
bµνdx

µ ∧ dxν + (βi + dbi) ∧ τi +
1

2
εijkbkτi ∧ τj , (5.12)

and the components of (5.4) are

Bµν = bµν , Bµi = βµi + ∂µbi , Bij = εijkbk . (5.13)
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We next write the inverse of the matrix Mij,

M−1
ij =

1

∆

e2(C2+C3) + z2
1 z1z2 − e2C3z3 z1z3 + e2C2z2

z1z2 + e2C3z3 e2(C1+C3) + z2
2 z2z3 − e2C1z1

z1z3 − e2C2z2 z2z3 + e2C1z1 e2(C1+C2) + z2
3

 , (5.14)

where ∆ = e2(C1+C2+C3) + e2C1z2
1 + e2C2z2

2 + e2C3z2
3 and zi = α′vi + bi. In fact, it is

easy to see the general formula for the components of M−1 is

M−1
ij =

1

∆
(zizj + δije

2(C1+C2+C3)e−2Ci − εijke2Ckzk) . (5.15)

Using all these equations, the authors of [121] were able to �nd a closed form for

the dual metric and Kalb-Ramond �eld,

dŝ2 = ds2
7 +

1

∆

[
(z1Dz1 + z2Dz2 + z3Dz3)2 + e2(C2+C3)Dz2

1

+e2(C1+C3)Dz2
2 + e2(C1+C2)Dz2

3

] (5.16a)

B̂ =
1

2
Bµνdx

µ ∧ dxν − 1

∆
(e2C1z1Dz2 ∧Dz3 + e2C2z2Dz3 ∧Dz1 + e2C3z3Dz1 ∧Dz2)

−Dz1 ∧ A1 −Dz2 ∧ A2 −Dz3 ∧ A3 − z1A2 ∧ A3 − z2A3 ∧ A1 − z3A1 ∧ A2

(5.16b)

where

Dzi = dzi + βi − εijkzjAk . (5.16c)

For the RR sector the authors of [121] have shown explicit closed forms for the dual

backgrounds. Considering �rst a (massive) type IIA sector with �elds given by

F0 = m (5.17a)

F2 = G2 + J i1 ∧ (τi + Ai) +
1

2
εijkK

i
0(τj + Aj) ∧ (τk + Ak) (5.17b)

F4 = G4 + Li3 ∧ (τi + Ai) +
1

2
εijkM

i
2 ∧ (τj + Aj) ∧ (τk + Ak)

+N1 ∧ (τ1 + A1) ∧ (τ2 + A2) ∧ (τ3 + A3) , (5.17c)
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one can �nd the dual type IIB RR �elds as

α′3/2F̂1 = mzie
Ci êi − ziJ i1 −Ki

0e
Ci êi + εijkK

i
0zje

−Ck êk +N1 (5.18a)

α′3/2F̂3 = meC1+C2+C3 ê1 ∧ ê2 ∧ ê3 + eC1+C2+C3 ∗7 G4 +G2 ∧ zieCi êi

− 1

2
εijkJ

i
1 ∧ eCj+Ck êj ∧ êk + J i1 ∧ e−Ci êi ∧ zjeCj êj

+ ziK
i
0e

2Cie−C1−C2−C3 ê1 ∧ ê2 ∧ ê3 (5.18b)

−N1 ∧
1

2
εijkzie

−Cb−Cc êj ∧ êk − ziLi3 −M i
2 ∧ eCi êi + εijkM

i
2zj ∧ e−Ck êk

α′3/2F̂5 = (1 + ∗)
[
G4 ∧ zieCi êai+ eC1+C2+C3G2 ∧ ê1 ∧ ê2 ∧ ê3

− 1

2
εijkL

i
3 ∧ eCj+Ck êj ∧ êk

+ Li3 ∧ e−Ci êi ∧ zjeCj êj + ziM
i
2e

2Ci ∧ e−C1−C2−C3 ê1 ∧ ê2 ∧ ê3
]
. (5.18c)

Reversely, starting from a type IIB solution, with RR-�elds given by

F1 = G1 (5.19a)

F3 = G3 +X i
2 ∧ (τi + Ai) +

1

2
εijkY

i
1 ∧ (τj + Aj) ∧ (τk + Ak)

+m(τ1 + A1) ∧ (τ2 + A2) ∧ (τ3 + A3) (5.19b)

F5 = (1 + ∗)
[
Zi

4 ∧ (τi + Ai) +G2 ∧ (τ1 + A1) ∧ (τ2 + A2) ∧ (τ3 + A3)
]
, (5.19c)

we have the dual �elds in IIA supergravity 3

F̂0 = −m (5.19d)

F̂2 = −eCazaG1 ∧ êa + zaX
a
2 + Y a

1 ∧ (eCa êa)− εabcY a
1 ∧ (zbe

−Cc êc)

+
m

2
e−Ca−Cbεabczcê

a ∧ êb −G2 (5.19e)

F̂4 = eC1+C2+C3 ∗7 G3 − zaZa
4 − eC1+C2+C3 ∗7 Z

a
4 ∧ (e−Ca êa)− εabce−Ca ∗7 Z

a
4 ∧ zbeCb êc

− eCazaG3 ∧ êa +
1

2
G2 ∧ (εabczae

−Cb−Cc êb ∧ êc) +
1

2
εabcXa

2 ∧ (eCb+Cc êb ∧ êc)

−Xa
2 ∧ (e−Ca êa) ∧ (zbe

Cb êb)− eC1+C2+C3G1 ∧ ê1 ∧ ê2 ∧ ê3

− zae2CaY a
1 ∧ (e−C1−C2−C3 ê1 ∧ ê2 ∧ ê3) (5.19f)

where the dual vielbeins are de�ned to be

êi = eCi∆−1
{
zizjDzj + e2

∑
i 6=j CjDzi + εijkzje

2CjDzk
}
. (5.20)

3Observe that, compared with [121], we have some di�erent signs in the dual RR-�elds. We

thank Eoin Ó Colgáin for letting us know about it.
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5.2 Galilean Solutions

In this section, we �rst give a short review of the solutions of [162], which are

nonrelativistic generalizations of the gravity dual to ABJM [178] in type IIA string

theory. We then perform nonabelian T-duality on them, obtaining new type IIB

backgrounds. We consider the solutions in [162] because they have the nontrivial

z = 3, even though we don't know much about their holographic dual �eld theory.

5.2.1 Galilean type-IIA solution and its NATD

The Galilean nonrelativistic solution of type IIA string theory of [162] has string

frame metric4

ds2
IIA =

R2

4

(
−β

2(dx+)2

z6
+
dy2 + dz2 − 2dx+dx−

z2

)
︸ ︷︷ ︸

ds2Gal

+R2 ds2
CP3 (5.21)

where R2 =
√
R̃3/k and the Fubini-Study metric for CP3 is (see, e.g. [179,180])

ds2
CP3 = dζ2 +

1

4
cos2 ζ(dθ2

1 + sin2 θ1dφ
2
1) +

1

4
sin2 ζ(dθ2

2 + sin2 θ2dφ
2
2)

+
1

4
sin2 ζ cos2 ζ(dψ + cos θ1dφ1 + cos θ2dφ2)2,

= dζ2 +
1

4
cos2 ζds2

1 +
1

4
sin2 ζ(τ 2

1 + τ 2
2 ) +

1

4
sin2 ζ cos2 ζ (τ3 + cos θ1dφ1)2 .

(5.22)

Here ds2
1 = dθ1 + sin2 θ1dφ

2
1, ζ ∈ [0, π/2], θi ∈ [0, π], φi ∈ [0, 2π], ψ ∈ [0, 4π] and τi

are the Maurer-Cartan forms for the group SU(2), namely

τ1 = − sinψdθ2 + cosψ sin θ2dφ2

τ2 = cosψdθ2 + sinψ sin θ2dφ2 (5.23)

τ3 = dψ + cos θ2dφ2 ,

with dτi = 1
2
εijkτj ∧ τk. Considering the equation (5.9), we see that

ds2
7 = ds2

Gal +R2dζ2 +
R2

4
cos2 ζds2

1 , (5.24a)

4Using the fact that the constant β is arbitrary, we make the transformation β → 1√
2
β, compared

with [162]. Also, remember that gstrµν = e
4

D−2φgEµν .
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3∑
i=1

e2Ci(τi + Ai)2 =
R2

4
sin2 ζ(τ 2

1 + τ 2
2 ) +

R2

4
sin2 ζ cos2 ζ(τ3 + cos θ1dφ1)2 , (5.24b)

that is,

eC1 = eC2 =
R

2
sin ζ ≡ β

1/2
1 , eC3 =

R

2
sin ζ cos ζ ≡ β

1/2
2 ,

A1 = A2 = 0 , A3 = cos θ1dφ1 .
(5.24c)

We de�ne the vielbeins associated to the Galilean metric

ds2
Gal = −e+e+ + e−e− + eyey + ezez , (5.25a)

as

e+ =
Rβ

2

(
1

z3
dx+ +

z

β2
dx−

)
, e− =

Rz

2β
dx−

ey =
R

2z
dy , ez =

R

2z
dz .

(5.25b)

This solution is also supplemented with the following �elds

eφ =
R

k
, B =

β√
2

R2p

z4
dx+ ∧ dy , (5.26)

C(1) =
β√
2

qk

z3
dx+ + 2kω ,

dC(3) =
3R2k

8z4
dx+ ∧ dx− ∧ dy ∧ dz =

6k

R2
e+ ∧ e− ∧ ey ∧ ez , (5.27)

where q = 2p = 1√
2
, J = dω is a Kähler 2-form on CP3 and the level k is the

quantum of dC(1) on CP1 ∈ CP3 , that is∫
CP1

dC(1) = 2πk . (5.28)

Considering that on the CP1(θ1, φ1) with ζ = 0 we have (e.g. [148])

ω = −1

4
sin2 ζ (τ3 + cos θ1dφ1) +

1

4
cos θ1dφ1

= −1

2
tan ζ E3 +

1

4
cos θ1dφ1 ,

(5.29)

we have

J = E3 ∧ Eζ + Eφ ∧ Eθ − E1 ∧ E2 (5.30)
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where we have de�ned the following vielbeins with relation to the metric ds2
CP3 in

(5.22)

Eζ = dζ , Eθ =
1

2
cos ζdθ1 , Eφ =

1

2
cos ζ sin θ1dφ1

E1 =
1

2
sin ζτ1 , E2 =

1

2
sin ζτ2 , E3 =

1

2
sin ζ cos ζ(τ3 + cos θ1dφ1) .

(5.31)

With these de�nitions we can easily see that vol(CP3) = 1
3!
J ∧ J ∧ J , that is

vol(CP3) = Eζ ∧ Eφ ∧ Eθ ∧ E1 ∧ E2 ∧ E3

=
1

32
cos3 ζ sin3 ζ sin θ1 sin θ2dζ ∧ dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2 ∧ dψ .

(5.32)

Therefore, using the quantization of the Page charge

1

(2πα′1/2)7−p

∫
Σ8−p
F8−p = QDp ∈ Z , (5.33)

where F = F ∧ e−B, for some cycle Σ8−p, we can see that

1

(2πα′1/2)5

∫
CP3

∗F4 = ND2 ∈ Z ⇒ R4 =
32π2α′5/2

k
ND2 , (5.34)

and in the fourth section, we �nd the condition that the radius R must satisfy in

terms of charges of the dual background. In particular, we will see that this condition

is consistent with the results of [148].

The vielbeins with relation to the metric (5.21) for the internal space are de�ned

as

eζ = Rdζ , eθ =
R

2
cos ζdθ1 , eφ =

R

2
cos ζ sin θ1dφ1 , (5.35a)

e1 =
R

2
sin ζτ1 ≡ β

1/2
1 τ1 , e2 =

R

2
sin ζτ2 ≡ β

1/2
1 τ2 , (5.35b)

e3 =
R

2
sin ζ cos ζ (τ3 + cos θ1dφ1) ≡ β

1/2
2 (τ3 + A3) . (5.35c)

The relativistic limit of this solution, that is AdS4×CP3, can be recovered by setting

β → 0.

Nonabelian T-dual of the Galilean background

Now we want to perform a T-duality transformation [23, 25, 120, 121] with respect

to the SU(2) isometry. We construct the matrix Mij, de�ned by Mij = gij + bij +
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α′εijkv̂k, obtaining (since bij = 0),

M =

 β1 α′v̂3 −α′v̂2

−α′v̂3 β1 α′v̂1

α′v̂2 −α′v̂1 β2

 . (5.36a)

We consider a gauge where θ2 = φ2 = v2 = 0, so that v̂ = (cosψv1, sinψv1, v3),

where ψ ∈ [0, 2π]. We can make connections to the gauge choice in [148] by making

the transformation (v1 = ρ sinχ, v3 = ρ cosχ) with χ ∈ [0, π] and the range of

the coordinate ρ is not yet determined, but we argue that ρ ∈ [nπ, (n + 1)π) as

in [146,148], (see [23] for other possible gauge choices).

Therefore, the matrix M in this gauge is

M =

 β1 α′v3 −α′ sinψv1

−α′v3 β1 α′ cosψv1

α′ sinψv1 −α′ cosψv1 β2

 . (5.36b)

The dilaton in the dual theory is given by

φ̂ = φ− 1

2
ln

(
∆

α′3

)
⇒ eφ̂ =

Rα′3/2

k∆1/2
, (5.37)

where ∆ ≡ detM = [(β2
1 + α′2v2

3)β2 + α′2v2
1β1].

Using the results of 2.3, the dual metric becomes

dŝ2
IIB = ds2

7 +
1

∆
dΣ2 (5.38a)

where

dΣ2 = (z1Dz1 + z2Dz2 + z3Dz3)2 + e2(C2+C3)Dz2
1 + e2(C1+C3)Dz2

2 + e2(C1+C2)Dz2
3

= α′2v2
1β1β2η̂

2 + α′2
{

(β1β2 + α′2v2
1)dv2

1 + (β2
1 + α′2v2

3)dv2
3 + 2α′2v1v3dv1dv3

}
,

(5.38b)

with η̂ = dψ + cos θ1dφ1. Here we have used that za = α′v̂a and

1

α′
Dz1 = dv̂1 − v̂2A

3 ,
1

α′
Dz2 = dv̂2 + v̂1A

3 ,
1

α′
Dz3 = dv̂3 . (5.39)

The dual vielbeins are

êa = eCa∆−1
[
zazbDzb + e2

∑
b 6=a CbDza + εabczbe

2CbDzc
]
, (5.40)
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such that

ê′1 ≡ cosψê1 + sinψê2 =
α′β

1/2
1

∆

[
(β1β2 + α′2v2

1)dv1 + α′2v1v3dv3 − α′β2v1v3η̂
]

(5.41a)

ê′2 ≡ − sinψê1 + cosψê2 =
α′β

1/2
1

∆
[α′β2v3dv1 − α′β1v1dv3 + β1β2v1η̂] (5.41b)

ê3 =
α′β

1/2
2

∆

[
α′2v1v3dv1 + (β2

1 + α′2v2
3)dv3 + α′β1v

2
1 η̂
]
. (5.41c)

The Kalb-Ramond �eld is given by

B̂ =
β√
2

R2p

z4
dx+ ∧ dy

− 1

∆

{
e2C1z1Dz2 ∧Dz3 + e2C2z2Dz3 ∧Dz1 + e2C3z3Dz1 ∧Dz2

}
−Dz3 ∧ A3

=
β√
2

R2p

z4
dx+ ∧ dy − α′3v1v3β2

∆
dv1 ∧ η̂ +

α′(α′2v2
1β1 −∆)

∆
dv3 ∧ (cos θ1dφ1)

+
α′3v2

1β1

∆
dv3 ∧ dψ

=
β√
2

R2p

z4
dx+ ∧ dy − α′β2

∆

(
α′2v1v3dv1 + (α′2v2

3 + β2
1)dv3

)︸ ︷︷ ︸
=
√
β2 ê3∧η̂

∧η̂ + α′dv3 ∧ dψ︸ ︷︷ ︸
(closed form)

(5.42a)

or, using the spherical coordinates (v1, v3) = (ρ sinχ, ρ cosχ),

B̂ =
β√
2

R2p

z4
dx+ ∧ dy − α′β2

∆

(
(β2

1 + α′2ρ2) cosχdρ− β2
1ρ sinχdχ

)
∧ η̂

=
β√
2

R2p

z4
dx+ ∧ dy − α′R

2 sin2 ζ

64∆

{
R4ρ cos2 ζ sin4 ζ cos θ1 sinχdφ1 ∧ dχ

+ cos2 ζ cos θ1 cosχ(R4 sin4 ζ + 16α′2ρ2)dρ ∧ dφ1 (5.42b)

− ρR4 sin4 ζ cos2 ζ sinχdχ ∧ dψ + (R4 sin4 ζ + 16α′2ρ2) cos2 ζ cosχdρ ∧ dψ
}
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After a gauge transformation, we can write the B-�eld as

B̂ =
β√
2

R2p

z4
dx+ ∧ dy − α′R

2 sin2 ζ

64∆

{
R4ρ cos2 ζ sin4 ζ cos θ1 sinχdφ1 ∧ dχ

+ cos2 ζ cos θ1 cosχ(R4 sin4 ζ + 16α′2ρ2)dρ ∧ dφ1 (5.42c)

+ 16α′2ρ2
[
ρ(sin2 χ+ cos2 χ cos2 ζ) sinχdχ ∧ dψ − sin2 χ sin2 ζ cosχdρ ∧ dψ

]}
− α′d(ρ cosχdψ) ,

with the term on the last line being a pure gauge contribution. The B̂-�eld at the

2-cycle de�ned by S̃2 = (φ1 = const., x+ = const., y = const.;χ, ψ) is

B̂

∣∣∣∣
S̃2

= −α′ρ sinχdχ ∧ dψ , (5.43)

where we also have used that limζ→0
∆

sin2 ζ
= R2ρ2

4
α′2. Large gauge transformations

are de�ned such that the holonomy of B̂ satis�es

b =
1

4π2α′

∣∣∣∣∫
S̃2

B̂

∣∣∣∣ ∈ [n, n+ 1), (5.44)

which justi�es our choice ρ ∈ [nπ, (n+ 1)π).

In order to �nd the dual R�R �elds, it is convenient to write the RR-�elds before

the T-duality as

F2 = dC(1) = −12
qk

R2
ez ∧ et +

2k

R2
(e3 ∧ eζ + eφ ∧ eθ − e1 ∧ e2)

=
2k

R2

(
6q et ∧ ez + eφ ∧ eθ

)
− 2kβ

1/2
2

R2
eζ ∧ (τ 3 + A3)− 2kβ1

R2
τ1 ∧ τ2

≡ G2 + J3
1 ∧ (τ 3 + A3) +K3

0τ1 ∧ τ2 (5.45a)

F4 = dC(3) −H ∧ C(1)

=
2k

R2
et ∧ ey ∧ ez ∧

(
3e− + 8p

cot θ1

cos ζ
eφ

)
− 16pk

R2
tan ζ et ∧ ey ∧ ez ∧ e3

=
2k

R2
et ∧ ey ∧ ez ∧

(
3e− +

8p cot θ1

cos ζ
eφ

)
− 16pkβ

1/2
2

R2
tan ζ et ∧ ey ∧ ez ∧ (τ 3 + A3)

≡ G4 + L3
3 ∧ (τ 3 + A3) , (5.45b)
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with et = (e+ − e−)/
√

2, F6 = − ∗ F4 and F8 = ∗F2. Using equations (5.17a�5.18c)

we have that the dual �elds in the RR sector are given by

α′3/2F̂1 = −α′v3 J
3
1 −K3

0β
1/2
2 ê3 + α′K3

0β
−1/2
1 v1 (cosψê2 − sinψê1)

= −α′v3J
3
1 − α′K3

0dv3 (5.46a)

α′3/2F̂3 = β1β
1/2
2 ∗7 G4 + α′G2 ∧

[
v1β

1/2
1 (cosψê1 + sinψê2) + v3β

1/2
2 ê3

]
+ J3

1 ∧

[
−β1ê1 ∧ ê2 +

α′β
1/2
1 v1

β
1/2
2

ê3 ∧ (cosψê1 + sinψê2)

]

+
α′v3K

3
0β

1/2
2

β1

ê1 ∧ ê2 ∧ ê3

= β1β
1/2
2 ∗7 G4 + α′2G2 ∧ (v1dv1 + v3dv3)− α′2v1

∆
J3

1 ∧
[
(α′2v2

1β1 + β2
1β2)dv1

+ v1v3α
′2β1dv3

]
∧ η̂ − α′4v3v1

∆
K3

0β2dv1 ∧ dv3 ∧ η̂ (5.46b)

α′3/2F̂5 = (1 + ∗)

{
α′G4 ∧

[
v1β

1/2
1 (cosψê1 + sinψê2) + v3β

1/2
2 ê3

]
+ β1β

1/2
2 G2 ∧ ê1 ∧ ê2 ∧ ê3

+ L3
3 ∧

[
−β1ê1 ∧ ê2 +

α′β
1/2
1 v1

β
1/2
2

ê3 ∧ (cosψê1 + sinψê2)

]}
= −β1β

1/2
2 ∗7 G2 + α′G4 ∧

[
v1β

1/2
1 ê′1 + v3β

1/2
2 ê3

]
+ ∗7L

3
3 ∧

[
−β1ê3 +

α′β
1/2
1 v1

β
1/2
2

ê′2

]
+ L3

3 ∧

[
−β1ê1 ∧ ê2 +

α′β
1/2
1 v1

β
1/2
2

ê3 ∧ ê′1

]
−α′ ∗7 G4 ∧

[
v1β

1/2
1 ê′2 ∧ ê3 + v3β

1/2
2 ê′1 ∧ ê′2

]
+ β1β

1/2
2 G2 ∧ ê1 ∧ ê2 ∧ ê3

= −β1β
1/2
2 ∗7 G2 + α′2G4 ∧ [v1dv1 + v3dv2]− α′β1

β
1/2
2

(∗7L
3
3) ∧ dv3

− v1α
′2

∆
L3

3 ∧
[
(α′2v2

1β1 + β2
1β2)dv1 + α′2v1v3β1dv3

]
∧ η̂ (5.46c)

− α′3v1β1β
1/2
2

∆
∗7 G4 ∧ [v3β2dv1 − v1β1dv3] ∧ η̂

− α′3v1β
2
1β2

∆
G2 ∧ dv1 ∧ dv3 ∧ η̂
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or, using spherical coordinates,

α′3/2F̂1 =
k

2

(
−ρ sin2 ζ sinχdχ+ sin2 ζ cosχdρ− ρ sin 2ζ cosχdζ

)
(5.46d)

α′3/2F̂3 =
kR

4
sin3 ζ cos ζ

(
3eζ ∧ eθ ∧ eφ +

8p cot θ1

cos ζ
e− ∧ eζ ∧ eθ

)
+

2kα′2

R2
ρ
(
6qet ∧ ez + eφ ∧ eθ

)
∧ dρ+

α′4R2

4∆
sin2 ζ cos2 ζρ3 cosχ sinχdρ ∧ dχ ∧ η̂

+
α′2kR2

4∆
ρ sin3 ζ cos ζ sinχ dζ ∧

[
R4

16
sin4 ζ cos2 ζd(ρ sinχ) + α′2ρ2 sinχ dρ

]
∧ η̂

(5.46e)

α′3/2F̂5 = (1 + ∗)
{

2kα′2

R2
ρ et ∧ ey ∧ ez ∧

(
3e− +

8p cot θ1

cos ζ
eφ
)
∧ dρ

+
α′3kR4

32∆
sin6 ζ cos2 ζ ρ2 sinχ

(
6q et ∧ ez + eφ ∧ eθ

)
∧ dρ ∧ dχ ∧ η̂

+
2pkRα′2

∆
sin4 ζ ρ sinχ et ∧ ey ∧ ez∧

∧
[
R4

16
sin4 ζ cos2 ζd(ρ sinχ) + α′2ρ2 sinχ dρ

]
∧ η̂
}
. (5.46f)

5.2.2 Galilean solution in massive type-IIA and its NATD

We also have the following background, in the string frame [162]

ds2
mIIA = a0

(
−β

2(dx+)2

z6
+
dy2 + dz2 − 2dx+dx−

z2

)
︸ ︷︷ ︸

ds2mGal

+
5a0

2
ds2

CP3 (5.47a)

where a0 f
2 = 2, L2 = a0e

−φ/2, f 5/2 L2 = 2m
1/2
0 and m0 is the Romans' mass. In

this background we also have the nontrivial �elds

e2φ =
f 2

m2
0

, B =
2β

f 2

1

z4
dx+ ∧ dy ,

C(1) =
2
√

5βm0

3f 2

1

z3
dx+ , dC(3) = 4

√
5m0

f 4z4
dx+ ∧ dx− ∧ dy ∧ dz .

(5.47b)

Note that the solution is similar to the one in the previous subsection, but there

are subtle di�erences. This solution does not preserve any supersymmetry even in

the relativistic case β = 0. We write the metric (5.47a) in a similar manner to the
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previous subsection, as

ds2
mIIA = ds̃2

7 +
3∑
i=1

e2C̃i(σi + Ai)2 (5.48a)

where

ds̃2
7 = ds2

mGal +
5a0

2

(
dζ2 +

1

4
cos2 ζds2

1

)
(5.48b)

and

3∑
i=1

e2C̃i(σi + Ai)2 =
5a0

8

[
sin2 ζ(τ 2

1 + τ 2
2 ) + sin2 ζ cos2 ζ(τ3 + cos θ1dφ1)2

]
, (5.48c)

such that

eC̃1 = eC̃2 =

√
5a0

2
√

2
sin ζ ≡ β̃

1/2
1 , eC̃3 =

√
5a0

2
√

2
sin ζ cos ζ ≡ β̃

1/2
2 ,

A1 = A2 = 0 , A3 = cos θ1dφ1 .

(5.48d)

Nonabelian T-dual of the massive Galilean background

The dual dilaton is given by

φ̂ = φ− 1

2
ln

(
∆̃

α′3

)
, (5.49)

where ∆̃ = [(β̃2
1 + α′2v2

3)β̃2 + α′2v2
1β̃1]. The nonabelian T-dual metric is

dŝ2
mIIB = ds2

7 +
1

∆̃
dΣ̃2 (5.50a)

where

dΣ̃2 = (z1Dz1 + z2Dz2 + z3Dz3)2 + e2(C2+C3)Dz2
1 + e2(C1+C3)Dz2

2 + e2(C1+C2)Dz2
3

= α′2v2
1β̃1β̃2η̂

2 + α′2
{

(β̃1β̃2 + α′2v2
1)dv2

1 + (β̃2
1 + α′2v2

3)dv2
3 + 2α′2v1v3dv1dv3

}
,

(5.50b)

with η̂ = dψ + cos θ1dφ1 . Here we have used that

1

α′
Dz1 = dv̂1 − v̂2A

3 ,
1

α′
Dz2 = dv̂2 + v̂1A

3 ,
1

α′
Dz3 = dv̂3 . (5.51)
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The dual Kalb-Ramond �eld is given by

B̂ =
2β

f 2z4
dx+ ∧ dy

− 1

∆̃

{
e2C̃1z1Dz2 ∧Dz3 + e2C̃2z2Dz3 ∧Dz1 + e2C̃3z3Dz1 ∧Dz2

}
−Dz3 ∧ A3

=
2β

f 2z4
dx+ ∧ dy − α′3v1v3β̃2

∆̃
dv1 ∧ η̂ +

α′(α′2v2
1β̃1 − ∆̃)

∆̃
dv3 ∧ (cos θ1dφ1)

+
α′3v2

1β̃1

∆̃
dv3 ∧ dψ

=
2β

f 2z4
dx+ ∧ dy − α′β̃2

∆̃

(
α′2v1v3dv1 + (α′2v2

3 + β̃2
1)dv3

)
∧ η̂ + closed . (5.52)

Given that the original R-R �elds are

F0 = m0 (5.53a)

F2 = dC(1) +m0B = m0 e
t
m0
∧
(√

5 ezm0
+ eym0

)
(5.53b)

F4 = dC(3) −H ∧ C(1) +
m0

2
B ∧B

=
√

5 m0 e
t
m0
∧ e−m0

∧ eym0
∧ ezm0

, (5.53c)

where these vielbeins are related to the metric (5.47a), it folllows that the T-dual

�elds are given by

α′3/2F̂1 = α′m0

[
v1β̃

1/2
1 (cosψê1 + sinψê2) + v3β̃

1/2
2 ê3

]
= m0α

′2(v1dv1 + v3dv3) (5.54a)

α′3/2F̂3 = m0β̃1β̃
1/2
2 ê1 ∧ ê2 ∧ ê3 + β̃1β̃

1/2
2 ∗7 F4

+ α′F2 ∧
[
v1β̃

1/2
1 (cosψê1 + sinψê2) + v3β̃

1/2
2 ê3

]
(5.54b)

= −α
′3m0β̃

2
1 β̃2

∆̃
v1dv1 ∧ dv3 ∧ η̂ + β̃1β̃

1/2
2 ∗7 F4 + α′2F2 ∧ (v1dv1 + v3dv3)

α′3/2F̂5 = (1 + ∗)
{
α′F4 ∧

[
v1β̃

1/2
1 (cosψê1 + sinψê2) + v3β̃

1/2
2 ê3

]
+

+ β̃1β̃
1/2
2 F2 ∧ ê1 ∧ ê2 ∧ ê3

}
= −β̃1β̃

1/2
2 ∗7 F2 + α′2F4 ∧ (v1dv1 + v3dv3)− v1α

′3β̃2
1 β̃2

∆̃
F2 ∧ dv1 ∧ dv3 ∧ η̂

− α′3v1β̃1β̃
1/2
2

∆̃
(∗7F4) ∧ (v3β̃2dv1 − v1β̃1dv3) ∧ η̂ (5.54c)
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or

α′3/2F̂1 = α′2m0 ρdρ (5.54d)

α′3/2F̂3 =
m0α

′3

∆
β̃2

1 β̃2ρ
2dρ ∧ volS̃2 + β̃1β̃

1/2
2 ∗7 F4 + α′2ρF2 ∧ dρ

α′3/2F̂5 = α′2ρF4 ∧ dρ+
α′3

∆
β̃2

1 β̃2ρ
2F2 ∧ dρ ∧ volS̃2 − β̃1β̃

1/2
2 ∗7 F2

+
α′3

∆
β̃1β̃

1/2
2 ∗7 F4 ∧

[
−ρ2 sin2 χ cosχ

(
β̃1 − β̃2

)
η̂ ∧ dρ

+ ρ3 sinχ
(
β̃2 cos2 χ+ β̃1 sin2 χ

)
η̂ ∧ dχ

]
(5.54e)

where volS̃2 = sinχdχ ∧ dψ and

êa = eCa∆̃−1
[
zazbDzc + e2

∑
b 6=a CbDza + εabczbe

2CbDzc
]
. (5.55)

5.3 Lifshitz Solutions

In [48,49], an in�nite class of Lifshitz solutions of D = 10 and D = 11 supergravity

with dynamical exponent z = 2 was considered. In this section we review some

aspects of this class of solutions in [48], which has as a special limit the solutions

of [49].

This type IIB supergravity solution has a metric of the form

ds2 = ds2
Lif + L2ds2

E5
(5.56a)

where

ds2
Lif = L2

(
r2(+2dσdt+ dx2

1 + dx2
2) +

1

r2
dr2 + fdσ2

)
= L2

(
−r

4

f
dt2 + r2(dx2

1 + dx2
2) +

1

r2
dr2 + f

(
dσ +

r2

f
dt

)2
)
,

(5.56b)

where f is a function of σ and of the coordinates of the Sasaki-Einstein manifold
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E5. This background has also the nontrivial �elds5

F5 = 4L4(1 + ∗)V olE5 , (5.56c)

G = dσ ∧W , (5.56d)

P = gdσ . (5.56e)

We can recover the standard solution AdS5 × E5 solution by W = f = g = 0 and

the solution of [49] can be obtained in the special limit W = 0, f = f(σ) > 0,

g = g(σ) ∈ R. In addition, the coordinate σ is compact and parametrizes a circle

S1.

Another interesting class of solutions are those with constant f . When we set

f to a constant, f = 1, the four dimensional noncompact part of this metric is

precisely the metric with the Lifshitz symmetry for z = 2 and r = 1
u
, that is

ds2 = L2

(
−dt

2

u4
+
dxidxi

u2
+
du2

u2

)
. (5.57)

Also, in [48], the authors showed that under certain conditions, we can consider the

KK-reduction on S1 × E5 and we get contact with the bottom-up construction of

Lifshitz solutions.

5.3.1 Homogeneous Space T (1,1)

We start considering the particular solution in which E5 is the homogeneous space

(SU(2)× SU(2))/U(1), that is, E5 = T (1,1) with metric

ds2
T (1,1) =

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 +

1

6
(dθ2

1 + sin2 θ1dφ
2
1) +

1

6
(dθ2

2 + sin2 θ2dφ
2
2)

=
1

L2

(
(e1)2 + (e2)2 + (e3)2 + (e1̂)2 + (e2̂)2

)
(5.58)

where

e1 =
L√
6
τ 1 , e2 =

L√
6
τ 2 , e3 =

L

3

(
τ 3 + cos θ1dφ1

)
e1̂ =

L√
6
dθ1 , e2̂ =

L√
6

sin θ1dφ1

(5.59)

5For τ = C0 + ie−φ, P = (i/2)eφdτ and G = ieφ/2dτ(τdB − dC2), where the scalar C0 is

the axion and φ the dilaton, and the 2-forms in the NS-NS and the RR sectors are B and C2,

respectively.
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and τi are given by (5.24) Using these results and the notation of [121], we see that

eC1 = eC2 =
L√
6
≡ β̄

1/2
1 , eC3 =

L

3
≡ β̄

1/2
2 ,

A1 = A2 = 0 , A3 = cos θ1dφ1 .

(5.60)

In the NS-NS sector we have the Kalb-Ramond �eld B with �eld strength

H3 = −
√

2k dσ ∧
(
e1̂ ∧ e2̂ + e1 ∧ e2

)
, (5.61)

and this �eld strength can be generated by

B2 = − kL
2

3
√

2
cos θ1 dσ ∧ dφ1 +

kL2

3
√

2
dσ ∧ τ3 , (5.62)

which means that β3 = kL2

3
√

2
dσ. The dilaton and the axion are taken to be trivial.

In the R-R sector we just have the self-dual 5-form

F5 = 4 L4
(
r3 dσ ∧ dt ∧ dr ∧ dx1 ∧ dx2 + V olT (1,1)

)
= 4 L4(1 + ∗) V olT (1,1) .

(5.63)

Note that we can consider an ordinary T-duality and an uplift of this solution in

order to �nd type IIA and D = 11 solutions (in this particular case we have f = k).

Nonabelian T-dual

The nonabelian T-duality with respect to the SU(2) isometry parametrized by the

(ψ, φ2, θ2) coordinates in the space T (1,1) has been considered in [25] and was re-

viewed in [23]. Here we consider a slight modi�cation of [25], namely now we have a

nonvanishing Kalb-Ramond �eld and obviously the noncompact space is not AdS5.

Then the T-dual space has metric

dŝ2 = ds2
Lif +

L2

6
ds2

1︸ ︷︷ ︸
ds27

+
1

∆̄

( 3∑
i=1

ziDzi

)2

+ e2(C1+C2+C3)

3∑
i=1

e−2Ci(Dzi)
2


= ds2

7 +
1

∆̄

{√
2L2kα′

3

(
α′2v1v2dv1 + (α′2v2

3 + β̄2
1)dv3

)
dσ +

k2L4

18
(α′2v2

3 + β̄2
1)dσ2

}

+
α′2v2

1β̄1β̄2

∆̄
η̂2 +

α′2

∆̄

{
(β̄1β̄2 + α′2v2

1)dv2
1 + (β̄2

1 + α′2v2
3)dv2

3 + 2α′2v1v3dv1dv3

}
(5.64)
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where the coordinates are {z1 = α′v̂1, z2 = α′v̂2, z3 = α′v̂3} and their �covariant�

derivatives Dzi are
1

α′
Dz1 = dv̂1 − v̂2A

3 ,
1

α′
Dz2 = dv̂2 + v̂1A

3 ,
1

α′
Dz3 = dv̂3 +

1

α′
β3 , (5.65)

and �nally ∆̄ = [(β̄2
1 + α′2v2

3)β̄2 + α′2v2
1β̄1], which is related to the dual dilaton φ̂

�eld by ∆̄ = α′3e−2φ̂.

The T-dual NS�NS two-form is

B̂ = − kL
2

3
√

2
cos θ1 dσ ∧ dφ1 −

1

∆̄

(
εijke

2CiziDzj ∧Dzk
)
− cos θ1Dz3 ∧ dφ1

= − kL
2

3
√

2
cos θ1 dσ ∧ dφ1 −

α′3

∆̄

(
β̄2v1v3dv1 − β̄1v

2
1dv3

)
∧ η̂

− kL2

3
√

2∆̄
β̄2(β̄2

1 + α′2v2
3)dσ ∧ η̂ +

kL2

3
√

2
dσ ∧ dψ − α′ cos θ1dv3 ∧ dφ1 . (5.66)

Using the fact that the original self-dual �ve-form is given by

F5 =
2L2

9
(1 + ∗) e1̂ ∧ e2̂ ∧ τ1 ∧ τ2 ∧ (τ3 + cos θ1dφ1)

≡ (1 + ∗) G2 ∧ τ1 ∧ τ2 ∧ (τ3 + cos θ1dφ1) ,

(5.67)

the dual R�R sector is de�ned by

α′3/2F̂2 = −G2 (5.68a)

α′3/2F̂4 = G2 ∧
{

α′v1

(β̄1β̄2)1/2
(cosψê2 − sinψê1) ∧ ê3 +

α′v3

β̄1

ê1 ∧ ê2

}
=
α′2

∆̄
G2 ∧

{
α′β̄2v1v3dv1 − β̄1v

2
1(α′dv3 + β3)

}
∧ η̂ , (5.68b)

where

êa = eCa∆̄−1
[
zazbDzb + e2

∑
b 6=a CbDza + εabczbe

2CbDzc
]
, (5.69)

which implies

ê′1 ≡ cosψê1 + sinψê2

=
β̄

1/2
1

∆̄

[
α′(β̄1β̄2 + α′2v2

1)dv1 + α′2v1v3(α′dv3 + β3)− α′2β̄2v1v3η̂
]

(5.70a)

ê′2 ≡ − sinψê1 + cosψê2

=
β̄

1/2
1

∆̄

[
α′2β̄2v3dv1 − α′β̄1v1(α′dv3 + β3) + α′β̄1β̄2v1η̂

]
(5.70b)

ê3 =
β̄

1/2
2

∆̄

[
α′3v1v3dv1 + (β̄2

1 + α′2v2
3)(α′dv3 + β3) + α′2β̄1v

2
1 η̂
]
. (5.70c)
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Here β3 = kL2

3
√

2
dσ.

5.3.2 Sasaki-Einstein Space Y p,q

Another possible choice is E5 = Y p,q, such that the Sasaki-Einstein metric is

ds2
Y p,q = w(y) (dα + h(y)τ3)2 +

1− y
6

(τ 2
1 + τ 2

2 ) +
dy2

w(y)q(y)
+
q(y)

9
τ 2

3

= g(y)

(
τ3 +

w(y)h(y)

g(y)
dα

)2

+
w(y)q(y)

9g(y)
dα2 +

1

w(y)q(y)
dy2 +

1− y
6

(τ 2
1 + τ 2

2 )

(5.71a)

where g(y) = q(y)/9 + w(y)h(y)2 and

h(y) =
a− 2y + y2

6(a− y2)
, w(y) =

2(a− y2)

1− y
, q(y) =

a− 3y2 + 2y3

a− y2
. (5.71b)

Here a is a real constant. As studied in [150], in these manifolds there is a 2-sphere

�bration parametrized by (y, ψ), with y ∈ [y1, y2] over a 2-sphere parametrized by

(θ, φ). Also, the coordinate α parametrizes a circle of length 2πlα. In these spaces,

we have

a =
1

2
− p2 − 3q2

4p3

√
4p2 − 3q2

y1 =
1

4p

(
2p− 3q −

√
4p2 − 3q2

)
(5.72)

y2 =
1

4p

(
2p+ 3q −

√
4p2 − 3q2

)
,

where (p, q) are relative integers and p > q > 0.

We can set the axion and the dilaton to be zero, but, contrary to the previous

solution, this condition does not imply that the function f is a constant. In fact, it

satis�es the following equation

−4f +
2

1− y
∂y[(a− 3y2 + 2y3)∂yf ] +

1

(1− y)4
= 0. (5.73)

We de�ne the vielbeins

eα =
L

3

√
wq

g
dα , ey =

L
√
wq

dy (5.74a)

e1 = L

√
(1− y)

6
τ1 , e2 = L

√
(1− y)

6
τ2 , e3 = L

√
g

(
τ3 +

wh

g
dα

)
. (5.74b)
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In this Y p,q background, one has

W = − L2

√
72
d

[
1

1− y
(6dα + τ3)

]
= − L2

6
√

2(1− y)

[
1

(1− y)
dy ∧ (6dα + τ3) + τ1 ∧ τ2

]
= − L2

6
√

2(1− y)2

{
dy ∧

[(
6− wh

g

)
dα +

1

L
√
g
e3

]
+

6

L2
e1 ∧ e2

}
,

(5.75)

which means that

H = −dσ ∧W

=
L2

6
√

2(1− y)2

(
6− wh

g

)
dσ ∧ dy ∧ dα +

L

6
√

2g(1− y)2
dσ ∧ dy ∧ e3 (5.76)

+
1√

2(1− y)2
dσ ∧ e1 ∧ e2 .

Using the notation of [121], we �nd

eC1 = eC2 = L

√
1− y

6
= β̆

1/2
1 , eC3 = L

√
g = β̆

1/2
2 , (5.77a)

A1 = A2 = 0 , A3 =
wh

g
dα , (5.77b)

β1 = β2 = 0 , β3 = − L2

6
√

2(1− y)
dσ , Dβ3 = dβ3 = − L2

6
√

2(1− y)2
dy ∧ dσ

bi = 0 ,

(5.77c)

therefore

B = − L2

√
2(1− y)

dσ ∧ dα− L2

6
√

2(1− y)
dσ ∧ τ3 . (5.78)

The R�R �ve-form for the solution is

F5 = 4L4 (1 + ∗) V olY p,q (5.79)

=
2L2

3
(1− y)

√
g (1 + ∗) eα ∧ ey ∧ τ 1 ∧ τ 2 ∧

(
τ 3 +

wh

g
dα

)
(5.80)

= (1 + ∗) Ğ2 ∧ τ1 ∧ τ2 ∧
(
τ 3 +

wh

g
dα

)
. (5.81)
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Finally, the metric of the T-dual space becomes

dŝ2 = ds2
Lif +

wqL2

9g
dα2 +

L2

wq
dy2︸ ︷︷ ︸

ds̆27

+
1

∆̆

( 3∑
i=1

ziDzi

)2

+ e2(C1+C2+C3)

3∑
i=1

e−2Ci(Dzi)
2


= ds̆2

7 +
1

∆̆

{
− α′

3
√

2(y − 1)

(
α′2v1v3dv1 + (α′2v2

3 + β̆2
1)dv3

)
dσ

+
(α′2v2

3 + β̆2
1)

72(1− y)2
L4dσ2

}
+
α′2v2

1β̆1β̆2

∆̆
γ̂2

+
α′2

∆̆

{
(β̆1β̆2 + α′2v2

1)dv2
1 + (β̆2

1 + α′2v2
3)dv2

3 + 2α′2v1v3dv1dv3

}
, (5.82)

where γ̂ = dψ + hw
g
dα and ∆̆ = (β̆2

1 + α′2v2
3)β̆2 + α′2v2

1β̆1. The NS�NS two-form is

B̂ = − L2

√
2(1− y)

dσ ∧ dα− 1

∆̆

(
εijke

2CiziDzj ∧Dzk
)
−Dz3 ∧ A3

=
L2

√
2(1− y)

(
1− hw

6g

)
dα ∧ dσ − α′2

∆̆

[
α′β̆2v1v3dv1 − β̆1v

2
1(α′dv3 + β̆3)

]
∧ γ̂

+
α′hw

g
dα ∧ dv3 , (5.83)

and the dilaton is

φ̂ = −1

2
ln

(
∆̆

α′3

)
. (5.84)

The �elds of the T-dual R�R sector are

α′3/2F̂2 = −Ğ2 (5.85a)

α′3/2F̂4 = Ğ2 ∧

{
α′v1

(β̆1β̆2)1/2
(cosψê2 − sinψê1) ∧ ê3 +

α′v3

β̆1

ê1 ∧ ê2

}

=
α′2

∆̆
Ğ2 ∧

{
α′β̆2v1v3dv1 − β̆1v

2
1(α′dv3 + β̆3)

}
∧ γ̂ , (5.85b)
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with the vielbeins

ê′1 ≡ cosψê1 + sinψê2

=
β̆

1/2
1

∆̆

[
α′(β̆1β̆2 + α′2v2

1)dv1 + α′2v1v3(α′dv3 + β̆3)− α′2β̆2v1v3γ̂
]

(5.86a)

ê′2 ≡ − sinψê1 + cosψê2

=
β̆

1/2
1

∆̆

[
α′2β̆2v3dv1 − α′β̆1v1(α′dv3 + β̆3) + α′β̆1β̆2v1γ̂

]
(5.86b)

ê3 =
β̆

1/2
2

∆̆

[
α′3v1v3dv1 + (β̆2

1 + α′2v2
3)(α′dv3 + β̆3) + α′2β̆1v

2
1 γ̂
]
. (5.86c)

Here β̆3 = −L2

6
√

2(1−y)
dσ.

5.4 Holographic Dual Field Theory

5.4.1 Quantized Charges for Galilean Solutions

In [148], the authors considered the dualization of the background holographic dual

to the ABJM theory [178], which consists of a metric for AdS4 × CP3 in type IIA,

together with two R�R �elds, F2 and F4. They also calculated the conserved charges

of the dual background.

Considering the e�ect of the nonrelativistic deformation of the ABJM back-

ground considered in [162], we compute the conserved charges of the background

that we found in the last section. We compare our results with [148] in order to see

the e�ect of the nonrelativistic deformation of the background [178]. We calculate

the conserved charges of the solutions in sections 2.1 (massless type IIA ) and 2.2

(massive type IIA) separately.

Massless type IIA

We start with a short review of the conserved charges of AdS4×CP3 and its NATD

solution. The solution has the metric of AdS4 × CP3, the dilaton φ = ln (R/k) and

the R�R forms [148]

dC(1) = 2kdω (5.87a)

dC(3) =
3

8
kL2V olAdS4 (5.87b)
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in such a way that∫
CP1

dC(1) = 2πk and
1

(2πα′1/2)5

∫
CP3

∗F4 = N ∈ Z ⇒ L4 =
32π2α′5/2

k
N ,

(5.88)

where we have used the CP1 de�ned by (ξ = π/2, θ2, φ2), and
∫
V olCP3 = π3

6
. We see

that these quantization conditions agree perfectly with the quantization conditions

(5.28-5.34) of the Galilean solution.

In [148], the authors calculated the charge ND5 in the dual �eld theory, which

was found from an integration of the dual 3-form over the cycle de�ned by Σ3 =

(ζ, θ1, φ1), such that6

N5 =
kL4

64πα′5/2
. (5.89)

In our case of the Galilean solution of massless type IIA, we must consider the same

calculation for the dual F̂3. Using that

F̂3

∣∣∣∣
Σ3

=
6β1β

1/2
2 k

R2α′3/2
eζ ∧ eθ ∧ eφ =

3kR4

16α′3/2
sin3 ζ cos3 ζdζ ∧ volS2

1
, (5.90)

where volS2
1

= sin θ1dθ1 ∧ dφ1, we compute the charge∫
Σ3

F̂3 =
kπR4

16α′3/2
. (5.91)

Imposing the quantization condition for the Page charge,

1

(2πα′1/2)2

∫
Σ3

F3 = Q̂D5 ∈ Z , (5.92)

we obtain

Q̂D5 =
kR4

64πα′5/2
. (5.93)

But since originally R4 satis�ed the relation kR4 = 32π2α′1/2N , the charge Q̂D5

cannot be an integer, and in this case, the radius R in the dual theory will be de�ned

through new relations. The noninteger charge in the nonabelian T-dual theory is a

generic feature which arises from the violation of the condition TD(p−n) = (2π)nTDp.

In the present case, we see that if we consider the 5-cycle Σ5 = (ζ, θ1, φ1, χ, ψ) ≡
(ζ, θ1, φ1, v1 = nπ sin ξ, v3 = nπ cos ξ, ψ) in the T-dual background, we compute the

6In their notation α′ = 1.
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restriction

α′3/2F̂5

∣∣∣∣
Σ5

= nπα′F̂3 ∧ volS̃2 , (5.94)

which is consistent with a large gauge transformation F̂5 → F̂5 + nπα′F̂3 ∧ volS̃2

(with the volume form volS̃2 = sinχdχ ∧ dψ), and therefore we �nd

QD3 = nQD5 . (5.95)

The �eld theory on the boundary is a 2+1 dimensional CS gauge theory, as was

the ABJM theory before the NATD. The CS gauge groups have levels, that should

be possible to calculate from the gravity dual. As in [148], we can de�ne the levels

of the AdS/CFT dual �eld theory as

q5 =

∣∣∣∣ 1

(2πα′1/2)2

∫
Σ̃3

F̂3

∣∣∣∣ , q3 =

∣∣∣∣ 1

(2πα′1/2)4

∫
Σ̃5

F̂5

∣∣∣∣ , (5.96)

where the integrations are performed on the cycles Σ̃3 = (ρ, θ1, φ1) ≡ (v3, θ1, φ1)

and Σ̃5 = (ρ, θ1, φ1, χ, ψ) ≡ (θ1, φ1, v1, v3, ψ), respectively. In the presence of a large

gauge transformation, one obtained in the case in [148]

q5 = k
(2n+ 1)π

4α′1/2
, q3 = k

(3n+ 2)π

12α′1/2
. (5.97)

Using the same de�nitions, in our case we obtain from (5.46f)

α′3/2F̂3

∣∣∣∣
Σ̃3

= −α
′2k

2
ρ volS2

1
∧ dρ , α′3/2F̂1 ∧ B̂

∣∣∣∣
Σ̃3

= 0 , (5.98a)

therefore we obtain in a similar manner to the above case

k5 = k
(2n+ 1)π

4α′1/2
. (5.98b)

We also �nd from (5.46f) that

α′3/2F̂5

∣∣∣
Σ̃5

=
kα′3

2
ρ2dρ ∧ volS2

1
∧ volS̃2 , (5.99a)

and given that

α′3/2F3 ∧ volS̃2

∣∣
Σ̃5

= −kα
′2

2
ρdρ ∧ volS2

1
∧ volS̃2 (5.99b)
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under a large gauge transformation F̂5 → F̂5 + nπα′F̂3 ∧ volS̃2 , we have∫
Σ̃5

(F̂5 + nπα′F̂3 ∧ volS̃2) = k
(4π)2

12α′1/2
(3n+ 2)π3 . (5.99c)

Then �nally

k3 = k
(3n+ 2)π

12α′1/2
, (5.100)

such that (3n + 2)k5 = 3(2n + 1)k3. Using these relations, we �nd the relations

between the radius R and the quantized charges of the background

R4k5 = 32π2α′2
(
Q̂D3 +

1

2
Q̂D5

)
(5.101a)

R4k3 = 16π2α′2
(
Q̂D3 +

2

3
Q̂D5

)
. (5.101b)

If we compare our results with [148] we can see that the nonrelativistic deformation

does not change the quantization condition of the theory and of its nonabelian T-

dual.

Massive type IIA

We now turn to the model in section 2.2. We �rst consider the model before the

T-duality. We �nd

∗10F4 =
53
√

5m0

f 6
volCP3 , (5.102a)

giving

Qm0
D2 =

53
√

5

192π2α′5/2
m0

f 6
. (5.102b)

In [162], the author considered the compacti�cation of the ordinary type IIA theory

and of the massive type IIA theory to four dimensions.7

We calculate the D5-charge by using (5.53) to write

F̂m0
3

∣∣∣∣
Σ3

=
1

α′3/2
β̃1β̃

1/2
2 ∗7 F4

∣∣∣∣
Σ3

=

√
5m0

α′3/2
β̃1β̃

1/2
2 eζm0

∧ eθm0
∧ eφm0

, (5.103)

7Since the only relationship between these two theories is Hull's duality [181], the author argued

that the similarity between the 4D actions means that there is a mapping between the Romans'

mass and the �ux k. In that case, f ∝ 1/R and m0 ∝ k/R2, so that, up to numerical constants,

one could write Qm0

D2 ∝ QD2.
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where ∗7 is Poincaré duality in ds2
7. We then calculate the magnetic D5-charge

associated with this �ux as

Q̂m0
D5 =

53
√

5

384πα′5/2
m0

f 6
. (5.104)

For the cycle Σ5, we have F̂m0
5 |Σ5 = 0, so now we obtain Q̂m0

D3 = nQ̂m0
D5 when we

consider a large gauge transformation.

On the other hand, F̂m0
3 |Σ̃3 = 0, which remains equal to zero after a large gauge

transformation.

We can de�ne a third cycle Σ̌3 = (ρ, χ, ψ), which gives

F̂m0
3

∣∣∣∣
Σ̌3

= 0, (5.105)

but after a large gauge transformation F̂m0
3 → F̂m0

3 + nπα′F̂m0
1 ∧ volS̃2 , we �nd

km0
5 =

m0π
2α′1/2

2
(2n+ 1) . (5.106)

Finally, for the cycle Σ̃5 = (θ1, φ1, ρ, χ, ψ), we have that k3 = 0 even after a large

gauge transformation.

5.4.2 Quantized Charges for Lifshitz Solutions

Homogeneous Space SU(2)× SU(2)/U(1)

For the background (5.58) in section 3.1 we start with a 5-form

F5 =
2L4

9
(1 + ∗)volS2

1
∧ τ1 ∧ τ2 ∧ (τ3 + cos θ1dφ1) , (5.107)

and using similar methods we �nd the quantized charge

ND3 =
4

27π

L4

α′2
. (5.108)

After the T-duality we obtain the charges

L4 =
27α′2

2
Q̂D6 , (5.109)

on the cycle S2 = (θ1, φ1). Using the fact that F̂4 = 0, after a large gauge transforma-

tion F̂4 → F̂4+nπα′F̂2∧volS̃2
, we �nd Q̂D4 = nQ̂D6 on the cycle Σ4 = (θ1, φ1, χ, ψ),.
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Sasaki-Einstein Space

In the Sasaki-Einstein case in section 3.2, we have a similar situation. The quantized

charge before the T-duality is

N̆D3 =
1

4π4

L4

α′2
VY p,q , (5.110)

on the cycle Σ2 = (α, y) and

VY p,q =

∫
Y p,q

V olY p,q =
8π3lα

3

∫ y2

y1

dy(1− y) . (5.111)

Repeating the previous analysis, we �nd

Q̂D6 =
L4

4π3α′2
VY p,q (5.112)

on the cycle Σ2 = (α, y).

Again we can use the same arguments from the previous subsection to �nd F̂4 = 0

on Σ4 = (α, y, χ, ψ). If we take a large gauge transformation F̂4 → F̂4 + nπα′F̂2 ∧
volS̃2

, where S̃2 = (χ, ψ), we also �nd Q̂D4 = nQ̂D6 .

5.4.3 Wilson Loops

One can in principle de�ne a Wilson loop variable in the case of nonrelativistic

gravity duals, even though it is not really clear what it would mean in the �eld

theory. However, we can simply calculate the observable, and leave for later issues

of interpretation.

One way to embed the Schrödinger algebra with z = 2 (a particular case of

conformal Galilean algebra) into string theory is to consider a DLCQ of a known

duality [30, 38�40]. The general conformal Galilean algebra is realized holographi-

cally through the metric

ds2 = L2

[
−dt

2

r2z
+

2dtdξ + d~x2

r2
+
dr2

r2

]
. (5.113)

For the Lifshitz case, gravity duals are instead usually of the type

ds2 = L2

[
−dt

2

u2z
+
d~x2

u2
+
du2

u2

]
. (5.114)
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However, in [48, 49] it was suggested that for d = 4 and z = 2, the case considered

in section 3, we can consider the gravity dual

ds2
Lif = L2

(
r2(−2dσdτ + dx2

1 + dx2
2) +

1

r2
dr2 + fdσ2

)
, (5.115)

and for σ = x+ and τ = x−, σ must be a compact coordinate to obtain a 2+1

dimensional �eld theory dual with coordinates τ, x1, x2.

Note that compared with the Schrödinger case, the roles of x+ and x− are inter-

changed and x+ is compact.

Wilson Loops in conformal Galilean spacetime

The general prescription for the calculation of Wilson lines in relativistic �eld the-

ories is well known [14, 45, 46, 114, 116, 182�184]. Recently, important hints in

the identi�cation of the dual �eld theory of nonrelativistic systems were studied

in [185�189].

We want to consider the Wilson loops for the conformal Galilean gravity dual

case in section 2. This formalism was also considered in [188].

Considering a probe string which is not excited in the internal space directions,

our gravity dual manifold is of the general form (without the internal space)

ds2 =
R2

r2

(
− dt2

r2(z−1)
+ 2dξdt+ d~x · d~x

)
+
R2

r2
dr2 , (5.116)

with ξ compact and null, for z = 3 (thus is not of the Schrödinger form, which would

correspond to z = 2). We consider the following ansatz

t = τ , x = x(σ) , r = r(σ) , ξ = constant . (5.117)

Given that the induced metric on the world-sheet is Gαβ = gµν∂αX
µ∂βX

ν , the

Nambu-Goto action becomes

S = − 1

2πα′

∫ T

0

dτ

∫
dσ
√
− detG = −TR

2

2πα′

∫
dσ

√
(∂σr)2 + (∂σx)2

r2(z+1)
. (5.118)

As usual, the analysis of the di�erential equations (see [45, 46, 186]) shows that the

separation between the endpoints of the ∩�shaped string that extends from the point

x = −`/2 to the point x = `/2 at the boundary r = 0 is

` = 2

∫ rmax

0

dr
H(rmax)√

H(r)2 −H(rmax)2
, (5.119a)
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with H2 = R4/r2(z+1). Therefore

`(rmax, z) = 2rmax
√
π

Γ
(
z+2
2z+2

)
Γ
(

1
2z+2

) , (5.119b)

and we can invert this expression, giving rmax = rmax(`). For z = 3, we obtain

l = 2rmax
√
π

Γ
(

5
8

)
Γ
(

1
8

) . (5.120)

The general formalism [45,46] allows us to compute a would-be quark-antiquark

potential, which gives

Vqq̄ =
2R2
√
π

rzmax(2z + 2)

Γ
( −z

2z+2

)
Γ
(

1
2z+2

) . (5.121)

It is not clear what would be the interpretation of this quantity in the �eld theory,

since it was de�ned for relativistic gauge theories. But we can continue with the

assumption that it still gives the potential between external "quarks" introduced in

the theory, and see what we can deduce from it.

Therefore, if we consider the solutions in the section 5.2, with z = 3, the potential

is

Vqq̄ = −2R2
√
π

3r3
max

Γ
(

5
8

)
Γ
(

1
8

) , (5.122)

which implies
dV

d`
=

R2

r4
max

> 0 . (5.123)

This means that the would-be quark-antiquark interaction is atractive everywhere

[139,188,190]. We also have

d2V

d`2
= − 2R2

√
πr5

max

Γ
(

1
8

)
Γ
(

5
8

) < 0 , (5.124)

and this condition means that the force is a monotonically nonincreasing function

of their separation.

Wilson Loops in Lifshitz spacetime

Consider the spacetime metric8 of the form in the section 5.3,

ds2
Lif =

L2

r2
(−2dξdt+ dx2 + dy2) +

L2

r2
dr2 + L2f(ξ)dξ2 , (5.125)

8We changed the notation σ → ξ, and we keep the symbol σ to the spacelike worldsheet

coordinate. Also, we renamed r → 1
r .
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where the coordinate ξ parametrizes the circle.

First, we notice that due to the absence of the component gtt in the metric above,

we cannot �nd a string con�guration such that

t = τ , x = x(σ) , r = r(σ) , ξ = constant , (5.126)

so one might consider an ansatz with the string moving also on the compact coor-

dinate ξ, despite the fact that its physical meaning is rather uncertain [30].

We consider the following ansatz (see [186], for similar considerations in space-

times with Schrödinger symmetry)

t = τ , ξ = ξ(τ) , x = x(σ) , r = r(σ) . (5.127)

Then the components of the induced metric are

Gττ = −2L2

r2
∂τξ + L2f(ξ)(∂τξ)

2 , Gσσ =
L2

r2

(
(x′)2 + (r′)2

)
, (5.128)

where x′ ≡ ∂σx, r′ ≡ ∂σr and G ≡ detGαβ = GττGσσ. The Nambu-Goto action is

given by

S = − 1

2πα′

∫
dτdσ

√
g2(σ, τ) ((x′)2 + (r′)2) , (5.129)

where

g2 = −GττL
2/r2. (5.130)

We consider the equation of motion for ξ,

∂τ

[
Gττ
√
−G

(
− 1

r2
+ f(ξ)∂τξ

)]
= 0 ⇒ ∂τ

(
Gττ
√
−G

r2

)
= ∂τ

(
Gττ
√
−G f(ξ)∂τξ

)
,

(5.131)

where Gττ ≡ G−1
ττ . From (5.127) we see that r is independent of τ and from [48],

we already know that the function f does not have functional dependence on r.

Therefore, both sides in (5.131) must vanish independently. The left-hand side of

the equation (5.131), implies that Gττ
√
−G

r2 = h0(σ) therefore we take ξ = vξτ , where

vξ is a constant. The right-hand side gives ∂τf(ξ) = 0 and since f cannot be a

function of r = σ, we conclude that f is a constant.

This means that the con�guration (5.127) is allowed just for particular metrics

(5.125) (as in [48]), namely those with f constant, which occurs for instance when

the internal manifold is T 1,1, whereas this con�guration is forbidden for the Sasaki-

Einstein manifolds Y p,q. It is rather curious that although we consider the string
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propagating just in the noncompact spacetime, the form of the internal manifold

can determine physical aspects of the string propagation.

The equation of motion for x = x(σ) is

∂σ

(
g2√

g2 ((x′)2 + (r′)2)
∂σx

)
= 0 ⇒ ∂σr = ±Veff ∂σx , (5.132)

where

Veff =
1

c0

√
g2(r)− c2

0, (5.133)

and c0 is just an integration constant. We consider a ∩�shaped string similar to the

solution considered in the last section, namely a string which extends from x = −`/2
to x = `/2 and it reaches a maximum point rmax in the bulk space.

The boundary conditions for this con�guration [46] imply that dr
dx

∣∣
r→0
→∞. In

our case, we can easily see that this condition is satis�ed since limr→0 Veff →∞.

The turning point, i.e. the maximum point in the r direction, is determined by

the condition dr
dx

(rmax) = 0, which gives

g2(rmax)− c2
0 = 0 ⇒ c2

0 =
2L4

r4
max

vξ −
L4f

r2
max

v2
ξ . (5.134)

In order for c0 to be real, we see that we need vξ < 2/(fr2
max).

Finally, the distance between the string endpoints is

`qq̄(rmax) = 2g(rmax)

∫ rmax

0

dr
1√

g2(r)− g2(rmax)
, (5.135)

and if we de�ne w = r/rmax we �nd

`qq̄(rmax) =
2r3

max

L2√vξ
g(rmax)

∫ 1

0

dw
w2√

(fvξr2
max − 2)w4 − fvξr2

maxw
2 + 2

≡ 2r3
max

L2√vξ
g(rmax) I(rmax) .

(5.136)

In order to solve the integral, we write it as

I(rmax) =

∫ 1

0

dw
w2√

[(fvξr2
max − 2)w2 − 2](w2 − 1)

, (5.137a)

and performing the substitution w = sinu, we �nd the elliptic integral

I(rmax) =
1√
2

∫ π/2

0

du
sin2 u√

1 +
(2−fvξr2

max)

2
sin2 u

, (5.137b)
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with (2− fvξr2
max) > 0.

In terms of the complete elliptic integrals of �rst and second kind [191],

K(k) =

∫ π/2

0

du√
1− k2 sin2 u

(5.138a)

E(k) =

∫ π/2

0

du
√

1− k2 sin2 u (5.138b)

(The constant k is called elliptic modulus and it can take any complex or real value
9.) we can write (5.137b) as

I(rmax) =
K(k)− E(k)√

2 k2
, (5.139)

where k2 = (fvξr
2
max − 2)/2. Then the distance between the string endpoints is

given by

`qq̄(rmax) =

√
2r3

max

L2√vξ
g(rmax)

K(k)− E(k)

k2

=
2
√

2√
fvξ

√
−k

2 + 1

k2
(K(k)− E(k)) ≡ 2

√
2√

fvξ
Λ(−k2) .

(5.140)

Now observe that −k2 = (2 − fvξr
2
max)/2 > 0, since fvξr2

max < 2, therefore

k2 + 1 > 0, which implies that vξ > 0. Therefore vξ ∈
(

0, 2
fr2
max

)
, and −k2 ∈ (0, 1),

see �gure 5.1.

Figure 5.1: Graph of the function Λ(−k2).

Finally, following the standard calculation [45, 46], we compute the observable

that would correspond to the energy of a qq̄-pair (de�ned in relativistic gauge theo-

ries by introducing external quarks into the theory, and measuring their potential),

9Generally in physics and engineering problems, the modulus k2 is parametrized in such that

k2 ∈ (0, 1), but it is not our case. See [192] for details.
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by subtracting from the string action the action of two `rods' that would fall from

the end of the space to the boundary. The renormalized energy is obtained to be

Vqq̄(rmax) = 2

∫ rmax

0

dr
g2(r)√

g2(r)− g2(rmax)
− 2

∫ rmax

0

dr g(r)

=

√
2vξL

2

rmax

∫ 1

0

dw

 (2w−2 − fvξr2
max)√(

1− (fvξr2
max−2)

2
w2
)

(1− w2)

−2
1

w2

√(
1− fvξr2

max

2
w2

)]

=

√
2vξL

2

rmax

(
I−2(k, w−2) + I0(k, w0)− Ig(k′, w−2)

)
, (5.141)

where k′ = fvξr
2
max/2.

We can easily see that

I0(k, w0) =

∫ 1

0

dw
−fvξr2

max√(
1− (fvξr2

max−2)

2
w2
)

(1− w2)

= −fvξr2
maxK(k) . (5.142a)

Consider the substitution w = sinu, so that the second integral is

I−2(k, w−2) = 2

∫ π/2

0

du
1

sin2 u

√(
1− (fvξr2

max−2)

2
sin2 u

)
= 2 [K(k)− E(k)]− 2

√(
1− (fvξr2

max − 2)

2
sin2 u

)
cotu

∣∣∣∣∣
π/2

0

,

(5.142b)

and the third integral reads (considering the arcsin modulo 2πn)

Ig(k, w−2) = 2

∫ π/2

0

du
cosu

sin2 u

√(
1− fvξr2

max

2
sin2 u

)

= −

[
2

√(
1− fvξr2

max

2
sin2 u

)
cscu

−
√

2fvξr2
max arcsin

(√
fvξr2

max

2
sinu

)]∣∣∣∣∣
π/2

0

+ 2πn
√

2fvξr2
max .

(5.142c)
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The terms with arcsin( · · · ) and the terms in the upper limit u → π
2
are constants,

but we observe that we have two divergent terms for u→ 0, namely

I =− 2

√(
1− fvξr2

max

2
sin2 u

)
cscu

II =− 2

√(
1− (fvξr2

max − 2)

2
sin2 u

)
cotu ,

(5.143)

and the di�erence in the equation (5.141) gives

lim
u→0

(
−

√(
1− fvξr2

max

2
sin2 u

)
cscu+

√(
1− (fvξr2

max − 2)

2
sin2 u

)
cotu

)
= 0 .

(5.144)

All in all, if n ∈ Z, the potential energy Vqq̄ is

Vqq̄(rmax) =

√
2vξL

2

rmax

[
(2− fvξr2

max)K(k)− 2E(k)− 2πn
√

2fvξr2
max

+
√

2fvξr2
max arcsin

(√
fvξr2

max

2

)
+ 2

√
1− fvξr2

max

2

]
.

(5.145a)

Since vξ ∈
(

0, 2
fr2
max

)
, we write vξ = a

fr2
max

with a ∈ (0, 2), such that

V̂qq̄(rmax) =
1

L2vξ
√
f
Vqq̄(rmax) =

1√
k2 + 1

[
−2
(
k2K(k) + E(k)

)
− 2πn

√
2a

+
√

2a arcsin

(√
a

2

)
+ 2

√
1− a

2

]
.

(5.145b)

In the �gure 5.2, we plot the graph for three di�erent values of a.

Alternatively, we can write the energy as a function of the distance, `qq̄, as

Vqq̄(rmax) =
L2
√

2vξ

rmax

[
−2

(
k2
√
fvξ

2
√

2

√
−k2

1 + k2
`qq̄ +

a

2
E(k)

)
− 2πn

√
2a

+
√

2a arcsin

(√
a

2

)
+ 2

√
1− a

2

]
.

(5.145c)

and from this last result we see that

dVqq̄
d`qq̄

= L2 (
√
fvξ)k

4/
√
−k2

rmax(1 + k2)1/2
> 0 ,

d2Vqq̄
d`2
qq̄

= 0 . (5.146)
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(a) a = 0.1 (b) a = 1.0 (c) a = 1.9

Figure 5.2: Graph of V̂qq̄ against −k2, for three di�erent values of a and n = 0.

It is important to notice that, although the potential energy Vqq̄ exhibits a linear

behaviour in relation to the distance `qq̄, similar to con�ning theories, we can not

say that this theory is con�ning, since we have a maximum value for the distance `qq̄
in relation to the maximum distance rmax. Therefore, if we suppose that `qq̄ < `max,

the potential Vqq̄ is a bounded function of `qq̄. A similar phenomenon also happens

in the calculations of Wilson loops at �nite temperature [45]. Moreover, as we said,

it is not clear if the interpretation imported from the relativistic gauge theories still

holds in this case.
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Chapter 6

More on Wilson loops for

nonrelativistic backgrounds

D
ue to their importance, we want to continue the analysis of the Wilson

loops in this chapter. We start with a short review of the usual prescrip-

tion of Wilson loops de�ned in [31], reviewed in [45]. Also, we highlight

the relevant details for the calculation of the drag forces considered in [51,54].

In this chapter, we examine some string con�gurations on backgrounds with

Schrödinger and Lifshitz symmetries and we see that these systems are tricky. We

exclude some con�gurations and we also �nd systems that can hardly be solved

analytically.

Even though the nonrelativistic systems considered here are at zero temperature,

we found a nonzero drag force for them, as in [193]. Finally, reconsidering the

systems of [186,188], we perform further analysis and present some speculative ideas

on the nature of the nonrelativistic �eld theory dual to the background.

6.1 Short review

We have presented a review of the prescription for the calculation of Wilson loops

in the section (3.4.1), but by completeness, we show again the main results. In

summary, we present a short review of the ideas examined in [31,194] and reviewed

in [45, 46] for the calculation of the quark-antiquark distance and potential. In

addition, we consider some fundamental ideas related to the drag force on a classical
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string con�guration as in [51,52,54].

6.1.1 Quark-antiquark system

As we have seen in the section (3.4.1), we start with a background of the generic

form

ds2 = −gttdt2 + gxxd~x
2 + grrdr

2 + ds2
M (6.1)

where gtt, gxx and grr are functions of the radial coordinate r, and the term ds2
M is

a metric of an internal manifold. We can neglect the internal space ds2
M because we

consider a probe string that is not excited along those directions.

We take an ansatz for the string as

t = τ , x = x(σ) , r = r(σ) , (6.2)

and when we calculate the Nambu-Goto action and its equations of motion, we �nd

that this con�guration implies

dr

dσ
= ±dx

dσ

f(r)

C0g(r)

√
f(r)2 − C2

0 , (6.3)

where f(r)2 = gttgxx, g(r)2 = gttgrr and C0 is an integration constant. The shape of

the solution in this background can be pictured as a string whose ends are �xed at

x = 0 and x = `qq̄ at the boundary of space, r → 0. In addition, it can extend in the

bulk, so that the radial coordinate of the string assumes its maximum value at r0,

that occurs at x = `qq̄/2. Furthermore, one can show that the integration constant

is equal to C0 = f(r0), see [46].

Considering the string solution above, we can compute gauge invariant quantities

such as the separation and the energy between the endpoints of the string, which

can be interpreted as the separation between a quark and an antiquark living on the

brane, see [45,46] for further details. These results are given by

`qq̄(r0) = 2f(r0)

∫ r0

0

dr
g(r)

f(r)

1√
f(r)2 − f(r0)2

, (6.4)

Eqq̄(r0) = f(r0)`qq̄(r0)− 2

∫ r0

0

drg(r) + 2

∫ r0

0

dr
g(r)

f(r)

√
f(r)2 − f(r0)2 . (6.5)
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6.1.2 Drag force

In [51], the author considered a probe string moving through the AdS5-Schwarzschild

background, whose radius of the horizon is related to the temperature of the dual

gauge theory. In summary, Gubser considered the metric of the near-extremal D3-

brane

ds2
10 =

(−hdt2 + d~x2)√
H

+
√
H(dr2/h+ dΩ2

5) (6.6)

where

H = 1 +
L4

r4
, h = 1− r4

H

r4
. (6.7)

The near horizon limit is simply

ds2 =
r2

L2
(−hdt2 + d~x2) +

L2

r2

dr2

h
, (6.8)

where we drop the �ve dimensional part of the metric, since it plays no role in the

present case.

Besides, he considered the following con�guration

t = τ , x(τ, σ) = vxτ + η(σ) , r = σ , (6.9)

with action

S =
1

2πα′

∫
dτdσL , (6.10)

and density

L =

√
1− v2

x

h
+
h

H
η′2 . (6.11)

From the equation of motion we �nd that the momentum Πη = ∂L
∂η′

is a constant

equals to

Πη =
vx√

1− v2
x

r2
H

L2
. (6.12)

Using this last expression, the authors of [54] showed that the drag force, opposite

to the motion of the string, is given by

Fη = − 1

2πα′
Πη, (6.13)

and using the relation πL2T = rH , we see that the drag force depends on the

temperature of the system.

In this section we have de�ned the calculation of the drag force using the holo-

graphic principle, but we can reconsider this same calculation for backgrounds with-

out horizon. This is what we intend to do below.
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6.2 Schrödinger backgrounds

We begin by reconsidering some of the calculations that have been performed in

[186, 188, 193, 195] concerning the calculation of Wilson loops on backgrounds with

Schrödinger symmetries. Moreover, we perform further analysis in these solutions,

and we study additional string con�gurations.

The probe string moves on a manifold of the form

ds2 =
R2

r2

(
−dt2

r2(z−1)
+ 2dξdt+ (dxi)2 + dr2

)
(6.14)

where ξ is a compact timelike coordinate, and the natural number z is the dynamical

exponent. It can be shown , see [30] and references therein, that for i = 1, · · · , D−
1, the space (6.14) is the geometric realization of the Schrödinger algebra in D

dimensions.

6.2.1 Constant compact direction

First, we consider the following con�guration for the probe string [186,188,193]

t = τ , r = r(σ) , x = x(σ) , ξ = constant . (6.15)

The Nambu-Goto action for this con�guration is

S =
T

2πα′

∫
dσ

√
R4

r2(z+1)
((x′)2 + (r′)2) , (6.16)

and if we de�ne f(σ) = R2/r(z+1), the equations of motion for x and r are

f 2x′√
f 2(x′2 + r′2)

= C0 (6.17)

∂σ

(
f 2r′√

f 2(x′2 + r′2)

)
=

(x′2 + r′2)√
f 2(x′2 + r′2)

f
df

dr
. (6.18)

Equation (6.17) implies that

dr

dσ
= ±dx

dσ

√
f 2 − C2

0

C0

= ±dx
dσ

Veff (r) , (6.19)

and the equation (6.18) is solved when this last equation is satis�ed. Also, for a

∩-shaped string, the turning point is de�ned as the point r0 where dr
dx

∣∣
r0

= 0. Using

this condition we determine the constant C0 = f(r0).
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Since we consider a string moving in the bulk with its endpoints lying on the

boundary r → 0, the Dirichlet boundary condition limr→0
dx
dr
→ 0 must be satis�ed.

We can see that this condition is readily satis�ed, since limr→0 Veff →∞.

The quark-antiquark distance is given by

`qq̄(r0, z) = 2r0

√
π

Γ
(

z+2
2(z+1)

)
Γ
(

1
2(z+1)

) , (6.20)

and in [186,188] it was found that the quark-antiquark potential 1 is

Vqq̄(r0, z) = −2
R2
√
π

zrz0

Γ
(

z+2
2(z+1)

)
Γ
(

1
2(z+1)

)
= −(2

√
π)1+zR2

z

Γ
(

z+2
2(z+1)

)
Γ
(

1
2(z+1)

)
z+1

1

`zqq̄
.

(6.21)

From this equation we see that for the special case z = 1 we have the behaviour

Vqq̄ ∼ − 1
`qq̄

in the potential quark-antiquark, which is consistent with the conformal

scaling.

In [188], the author also showed that the convexity conditions [139,190] of such

a con�guration are satis�ed, that is

dVqq̄
d`qq̄

> 0 ,
d2Vqq̄
d`2
qq̄

≤ 0, (6.22)

where the �rst condition means that the quark-antiquark interaction is always attrac-

tive and the second equation means that the potential is a monotone nonincreasing

function of `. Therefore, this con�guration is physically admissible.

A second con�guration with constant compact direction that we would like to

explore is given by

t = τ , r = σ , x = vxτ + η(σ) , ξ = const . (6.23)

As we said in the previous section, the drag force has been studied in [5, 53] in the

context of a quark moving in a thermal plasma of N = 4 SYM, and we have seen

that the horizon is related to the temperature of the �eld theory. Despite the fact

1Using the de�nition of the Gamma function to extend the domain of the Beta function.
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that in the present case we do not have a horizon in our geometry, we may apply

the very same ideas.

The action is

S =
T

2πα′

∫
dr

√
R4

r2

[
1

r2z
+
η′2

r2z
− v2

r2

]
, (6.24)

and the equation of motion implies that Πη, given by

Πη =
R4η′

r2z+2

√
R4

r2

[
1
r2z + η′2

r2z − v2

r2

] , (6.25)

is a constant. Therefore, we �nd

η′ = Πη

√
1− v2r2z−2

R4

r2z+2 − Π2
η

. (6.26)

Now observe that if we take z = 1, the numerator in the square root is positive for

all values v < 1, and this is consistent with a relativistic theory.

For the denominator we �nd that for some large r∗ the constant Π2
η could be

greater than R4/r4
∗, and in this case, the denominator would be negative. Since

there is no upper bound for r, we see that the reality condition of the integral

implies that Πη = 0, which implies that the drag force is zero, as we shall see below.

This result is expected, since for z = 1 we have the anti-de Sitter space, which is

at zero temperature, and in the relativistic case, the drag force for a system at zero

temperature vanishes. Also, we can see that the equation of motion for r is trivially

satis�ed since ∂L
∂r′

∣∣
r=σ

= L.
For z = 2, the values Πη = ±R2v3 avoid an imaginary value in (6.26). Essentially

these two examples were studied in [193].

In addition, for z > 1 we have the general formula

Πη = ±R2v(z+1)/(z−1) . (6.27)

Using that the drag force, formally de�ned as

Fdrag = −
√
−gGxxg

σση′ , (6.28)

and that Πη = ∂L
∂η′

, we can easily show that Fdrag = Πη. The drag force is de�ned to

be contrary to the velocity of the string, hence

Fdrag = −R2v(z+1)/(z−1) . (6.29)
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For the special case z = 2, the drag force is Fdrag = −R2v3, which is consistent with

the results found in [193].

For a general z, the results above are equal to the case studied in [187] for the

Lifshitz spacetime at zero temperature. This happens because any con�guration in

the Schrödinger and Lifshitz spacetimes have the same Nambu-Goto action when

ξ = constant.

In the section 6.1.2 we have seen that the radius of the horizon is related to

the drag force of the system. On the other hand, the nonrelativistic spaces we

consider do not have horizons, but have nontrivial drag forces. As the authors

argued in [193], these systems may have a hidden chemical potential that allows

such a phenomenon. In fact, making the transformations t → µt and ξ → µ−1ξ in

(6.14), we can repeat our calculations and see that Fdrag ∝ 1/µ2, and in the dual

�eld theory, the parameter µ can be interpreted as the chemical potential [30, 196].

In other words, the chemical potential is the conjugate variable to the particle

number, and the compact coordinate ξ is directly related to the particle number (see

for instance [30, 196]); then it is somewhat expected the presence of this 'hidden'

chemical potential. On the other hand, the nature of the coordinate ξ is still a

mystery [36�39], and the mechanism (considering that it exists) which allows us to

relate the spectrum of the masses (particle number) to the chemical potential is

unknown.

6.2.2 Nonconstant compact direction

We now consider that the string also moves on the compact direction ξ. We start

with an example studied by [186], where the author concluded that the con�guration

is not physical. Here we point out some reasons that suggest a richer physical

scenario. Furthermore, we study a new con�guration in which the compact direction

ξ depends on the coordinate σ that parametrizes the string. This con�guration is

described by a system of nonlinear di�erential equations and we could not �nd an

explicit solution.

The reader must remember that we do not have a correct interpretation of this

coordinate [30], consequently, the physical meaning of the string with its endpoints

moving along this direction is uncertain; and maybe it is not even physically admis-
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sible. Even so, let us insist on this direction and examine the ansatz

t = τ , r = r(σ) , x = x(σ) , ξ = ξ(τ) , (6.30)

where the Nambu-Goto action reads

S =
1

2πα′

∫
dτdσ

√
g(τ, σ)2 ((x′)2 + (r′)2) , (6.31)

for g(r, ξ)2 = R4

r2

(
1
r2z − 2

r2∂τξ
)
. The equations of motion are

∂τg(r, ξ) = 0 , (6.32)

g2x′√
g2(x′2 + r′2)

= C1 , (6.33)

∂σ

(
g2r′√

g2(x′2 + r′2)

)
=

(x′2 + r′2)√
g2(x′2 + r′2)

g
dg

dr
. (6.34)

We can see that ξ(τ) = vξτ , and the third equation is solved by imposing the second

one. Therefore, the quark-antiquark distance now reads

`ξqq̄ =
2g(r0)

R2

∫ r0

0

dr rz+1√
1− 2vξr2z−2 − g2(r0)

R4 r2z+2

, (6.35)

and the potential is

Vqq̄ = 2

∫ r0

0

dr g(r)√
g2(r)− g2(r0)

− 2

∫ r̂0

0

drg(r), (6.36)

where r̂0 is the end of the space. The last term is necessary to remove the in�nity

part of the potential [31, 45, 46, 197]. This term is the mass of a W-boson which

corresponds to strings stretching from zero to the end of the space r̂0. Additionally,

the IR limit is de�ned such that the maximum value r0 approaches the end of the

space, that is r0 → r̂0 [46].

In [186], the author argued that since this integral is imaginary for values of

r such that r2(z−1) > r
2(z−1)
∗ = 1/2vξ, the con�guration (6.30) with ξ = vξτ is

unphysical. Even though his arguments seem accurate, we point out some reasons

which suggest that, perhaps, it is too early to rule out this con�guration, inasmuch

as we must be careful in using nonrelativistic spaces in our calculations.
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First we need to remember that, except when z = 1, which is the AdS space,

we can have several undesirable features on the background such as curvature sin-

gularities at the end of the spacetime r̂0 → ∞, see [30, 198, 199]. On the other

hand, it is important to notice that not all curvature singularities a�ect physical

quantities [200�202], therefore, these spaces are not severely ill-de�ned.

In fact, considering spaces with Lifshitz symmetry the authors of [203] consid-

ered a con�guration that can be interpreted as scattering amplitudes and studied

observable consequences of the singularity in the IR structure of the dual �eld the-

ory. Moreover, we are considering zero temperature systems and these singularities

can be removed with �nite temperature e�ects [30, 40].

Therefore, we expect to integrate the counterterm in (6.36) up to some point

r̂0 < ∞. In this case, the problem can be �xed if we consider that the �cuto�� is

de�ned at some point r̂0 < r∗, where the integral is well de�ned.

Evidently, after �xing the end of the space r̂0, we have a maximum (allowed)

value for the velocity vξ. Then, we can take a velocity vξ to be small enough, such

that r̂2(z−1)
0 < 1/2vξ. Therefore, we notice that for the case vξ 6= 0, we have a

reasonable con�guration under certain conditions, and also that the velocity along

the compact direction ξ may have an upper bound.

Furthermore, under the time reversal transformation t → −t or the parity ξ →
−ξ, the space (6.14) is not invariant and we have g2 = R4

r2

(
1
r2z +

2vξ
r2

)
. In this case,

the integral for the W-boson mass is always real. This is a hint that �eld theory

dual to supergravity solutions with Galilean symmetries may �perceive� the time

direction. This is a point that deserves further investigation.

Alternatively, since the coordinate σ which parametrizes the string length is

compact, we could consider a con�guration with ξ = ξ(σ), for σ ∈ [0, L]. Then, take

the ansatz

t = τ , r = r(σ) , x = vxτ + η(σ) , ξ = ξ(σ), (6.37)

with Nambu-Goto action

S =
T

2πα′

∫
dσL , (6.38)

where
L2

R4
=

(
1

r2z
− v2

x

r2

)
(η′2 + r′2)

r2
+

(ξ′)2

r4
, (6.39)

and equations of motion

∂σ

(
R4

r4L
ξ′
)

= 0 , (6.40)
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∂σ

[
R4

r2L

(
1

r2z
− v2

x

r2

)
η′
]

= 0 , (6.41)

∂L
∂r

= ∂σ

[
R4

r2L

(
1

r2z
− v2

x

r2

)
r′
]
. (6.42)

The �rst two equations above give

1

r2

(
R4

r4
− C2

1

)
ξ′2 = C2

1

(
1

r2z
− v2

x

r2

)
(η′2 + r′2) , (6.43)

R4

r4

(
1

r2z
− v2

x

r2

)2

η′2 = C2
2

[(
1

r2z
− v2

x

r2

)
(η′2 + r′2)

r2
+
ξ′2

r4

]
, (6.44)

respectively.

We can simplify this system considering the particular case vx = 0. The action

is

S =
T

2πα′

∫
dσ

√
h2

[
(η′)2 + (r′)2

r2z
+

(ξ′)2

r2

]
, (6.45)

with h(σ)2 = R4/r2. Using the notation 2πα′S = T
∫
dσL, we see that the equations

of motion are

∂σ

(
h2

L
ξ′

r2

)
= 0 , (6.46)

∂σ

(
h2

L
η′

r2z

)
= 0 , (6.47)

and

∂σ

(
h2

L
r′

r2z

)
=
∂L
∂r

. (6.48)

The �rst of these equations implies that

1

r2

(
h2

r2
− C2

1

)
(ξ′)2 =

C2
1

r2z

(
η′2 + r′2

)
, (6.49)

while the second equation gives

1

r2z

(
h2

r2z
− C2

2

)
(η′)2 = C2

2

(
r′2

r2z
+
ξ′2

r2

)
. (6.50)

In order to �nd a restricted class of solutions, we consider initially ξ = constant,

which is the �rst case considered in this section. Alternatively, we can set η =
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constant and r = σ. In the latter, the equation of motion for η is trivially satis�ed,

which means that C2 = 0, whereas the equation of motion for ξ gives

dr

dξ
= ±r

z−1

C1

√
h2

r2
− C2

1 . (6.51)

The equation (6.48) now gives us the following di�erential equation

h(ξ′)2

r2
= −C3

√
1

r2z
+

(ξ′)2

r2
, (6.52)

and if we insert (6.51) into (6.52) we see that this system is not consistent unless

C1 = C3 = 0, which implies that ξ = constant. This means that this restricted class

of solutions is trivial, and in order to �nd solutions one may try to solve numerically

the coupled equations (6.43 � 6.44) or (6.49 � 6.50) for vx = 0.

In summary, one sees that the motion of string along the compact coordinate

ξ of a Schrödinger background is a tricky issue, and deserves further investigation,

but in principle, there is no apparent reason to rule out these con�gurations.

6.3 Lifshitz

Now we would like to study the motion of a string in a space of the form

ds2 =
R2

r2

(
− dt2

r2(z−1)
+ (dxi)2

)
+
R2

r2
dr2. (6.53)

Analogously to what we have done in the last section, we could try to consider the

probe string with the following pro�le

t = τ , r = r(σ) , x = x(σ) , (6.54)

and we get the same equations as in the �rst example of section (6.2.1), see [185].

Moreover, if we take the example

t = τ , r = r(σ) , x = vxτ + η(σ) , (6.55)

we �nd the second example of the same section, since in that case we considered

ξ = constant.

Additionally, the solution presented in [48] is much more interesting. In this

paper, the authors used the methodology of [47], which allowed them to embed a
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Schrödinger invariant solutions with z = 2 into string theory, to �nd a supergravity

solution with Lifshitz symmetry.

The exterior part of the solution [48] is given by

ds2 =
R2

r2

(
−2dtdξ + (dxi)2 + r2f(ξ)dξ2 + dr2

)
, (6.56)

and in order to make explicitly the Lifshitz symmetry, we write

−2dtdξ

r2
+ dξ2 ≡ −dt

2

r4
+

(
dξ − dt

r2

)2

, (6.57)

where we considered f = 1.

Notice that a con�guration with ξ = constant, t = t(τ), r = r(σ) and x = x(σ)

is not allowed, since it would give a zero Nambu-Goto action. On the other hand,

we may consider that

t = τ , r = r(σ) , x = vxτ + η(σ) , ξ = const, (6.58)

and we obtain a nontrivial Nambu-Goto action

S =
T

2πα′

∫
dσ
R2vx
r2

√
−(η′)2 − (r′)2 . (6.59)

From the reality of the action, we may notice that the functions η and r must

be purely imaginary or one of them complex, in such a way that the combination

−(η′)2 − (r′)2 > 0. Such conditions for η and r are unacceptable because they are

distances. Therefore, this con�guration is unphysical.

In the last chapter we have studied one more con�guration, namely

t = τ , r = r(σ) , x = x(σ) , ξ = vξτ , (6.60)

and we saw that the the quark-antiquark distance is given by

`qq̄(rmax) =
2
√

2√
fvξ

√
−k

2 + 1

k2
(K(k)− E(k)) , (6.61)

where K(k) and E(k) are the complete elliptic integrals of �rst and second kind

respectively; and k2 = (fvξr
2
max − 2)/2, with −k2 ∈ (0, 1). The quark antiquark

potential is

Vqq̄(rmax) =
L2
√

2vξ

rmax

[
−2

(
k2
√
fvξ

2
√

2

√
−k2

1 + k2
`qq̄ +

a

2
E(k)

)
− 2πn

√
2a

+
√

2a arcsin

(√
a

2

)
+ 2

√
1− a

2

]
.

(6.62)
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where a ∈ (0, 2).

As we said before, the coordinate ξ is compact, so it is reasonable to take the

functional relation ξ = ξ(σ). Then we consider the ansatz

t = τ , r = r(σ) , x = vxτ + η(σ) , ξ = ξ(σ) , (6.63)

such that

S =
T

2πα′

∫
dσL , (6.64)

where

L = R2

√
(1− r2v2

xf)(ξ′)2 − v2
x(η
′2 + r′2)

r2
. (6.65)

The equations of motion for η and ξ give

η′ = ±C0r
2

vx

√
(1− r2v2

xf)ξ′2 − v2
xr
′2

R4v2
x + C2

0r
4

, (6.66a)

v2
x(ξ
′)2R4

2r2L
∂ξf + ∂σ

(
R4(1− r2v2

xf)ξ′

r4L

)
= 0, (6.66b)

and if we take f to be a constant, we �nd

ξ′ = ±vxC1r
2

√
η′2 + r′2

(1− r2v2
xf)[C2

1r
4 −R4(1− r2v2

xf)]
. (6.66c)

The equation for r is

−∂σ
(
R4v2

xr
′

r4L

)
=
∂L
∂r

. (6.66d)

In order to simplify this system, one can try to set one further constraint, η =

constant. From the equation of motion for ξ, we �nd

ξ′ = ± r2C1vxr
′√

(1− fr2v2
x)[r

4C2
1 −R4(1− fr2v2

x)]
. (6.67a)

We see that if we set r = σ, we �nd an inconsistent con�guration, since from this

last equation

ξ′ = ± r2C1vx√
(1− fr2v2

x)[r
4C2

1 −R4(1− fr2v2
x)]

, (6.68a)

while from the equation of motion for r we have(
R4(1− r2v2

xf)

r4
ξ′2 − C2

3

)
ξ′2 =

−C2
3v

2
x

(1− r2v2
xf)

. (6.68b)
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By substitution we can see that both equations are not consistent, unless C1 = C3 =

0, where the constant

C3 =
R4v2

x

r4L
+ L (6.69)

solves the equation (6.66d) for r = σ and η′ = 0.

On the other hand, we can take the system with η′ 6= 0, but with r = σ. The

equations of motion are

η′ = ±C0r
2

vx

√
(1− r2v2

xf)ξ′2 − v2
x

R4v2
x + C2

0r
4

, (6.70a)

and

ξ′ = ±vxC1r
2

√
η′2 + 1

(1− r2v2
xf)[C2

1r
4 −R4(1− r2v2

xf)]
. (6.70b)

Finally, we see that the integration constant C0 is equal to the conserved charge

Πη = ∂L
∂η′

, therefore, the drag force of this con�guration is

Fdrag = −R
4v2
xη
′

r4L
, (6.71)

but in order for this to be well de�ned, we need to solve the equation of motion

for the coordinate ξ � probably numerically � and we also need to consider the

additional condition (1− v2
xf)ξ′2 − v2

x > 0, that comes from the reality condition of

the equation (6.70a). Therefore, we can see that in this case we can �nd nontrivial

drag forces at zero temperature.
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Chapter 7

Conclusions

I
n this thesis we studied several properties of the abelian and nonabelian

T-duality on backgrounds of type IIA and IIB supergravity. Moreover, we

have seen how we can use prescriptions of the gauge/gravity methodology

to understand the �eld theory dual to these T-dual backgrounds.

In chapter 03 of this thesis we have considered a T-duality along an U(1) isometry

of a deformation of the MNa solution in [7], such that the resulting type IIA solution

consists of D4-branes wrapping a two-cycle. We found a solution with nontrivial RR

forms, a nonvanishing Kalb-Ramond �eld and a complicated metric. We analyzed

Maxwell and Page charges associated to this solution.

We then studied properties of the �eld theory dual to the T-dual gravitational

background. From a calculation of the Wilson loops, we saw that the dual gauge

theory presents con�nement. We also computed the QCD string tension and the

gauge coupling of the gauge theory.

From a calculation of the entanglement entropy, we found that the �eld theory

does not have a phase transition, despite being a con�ning theory; this could be

due to the nonlocality of the theory, as suggested in [138]. Finally, considering

domain walls in the gravitational background, we generate a Chern-Simons term in

the gauge theory.

Also, in the chapter 04 we have studied the nonabelian T-duals of some back-

grounds with N = 1 supersymmetry and an AdS factor, that can have an AdS/CFT

interpretation. We have considered the nonabelian T-dual of a type IIA solution with

an AdS5 factor, giving a type IIB solution with an AdS5 factor, and the nonabelian
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T-dual of a type IIB domain wall solution that interpolates between AdS5 × T 1,1

and AdS3 × R2 × S2 × S3.

We have probed the interpretation of nonabelian T-duality of these solutions

from the point of view of the dual conformal �eld theory through a calculation of

the central charges. We have found that the simple law (4.65) found in [146] for the

ratio of central charges before and after the T-duality holds in all cases, with the

obvious generalization of N2
D3/N

2
D6 to N2

Dp/N
2
Dp+3 or to ND3N̄D3/ND6N̄D6. In the

case of the type IIB dowain wall solution, we obtained the usual ∝ N2 behaviour,

and on the AdS3 side we could �x the normalization of the central charge by using

a rescaling parameter τ , in order to obtain the same law (4.65) valid on the AdS5

side of the domain wall. In order to understand better the e�ect of nonabelian T-

duality on gravity duals with AdS factors, one needs to study also other probes of

the geometry, but we leave this for future work.

In the �fth chapter, we have studied nonabelian T-duality for nonrelativistic

holographic duals. In particular, using a NATD transformation we constructed novel

examples of nonrelativistic spaces with the interpretation of holographic duals, one

for a conformal Galilean theory in massless type IIA, one for a conformal Galilean

theory in massive type IIA, and two for Lifshitz theories in type IIB, coming from

NATD of spaces with T 1,1 and Y p,q internal spaces.

In order to describe the �eld theories dual to the nonrelativistic gravitational

backgrounds, we have calculated the conserved charges of these backgrounds and

we compared our results with those obtained in [148].

We have also calculated the Wilson loop observables for the holographic dual

spaces, though their true interpretation in the �eld theory remains to be seen, and

it would be very interesting to understand. For the Wilson loops in gravity duals of

conformal Galilean theories, we considered that the compact coordinate is constant

and we found that the energy potential between quarks is always attractive. For

the case of gravity dual of spaces with Lifshitz symmetry, we could not consider a

constant compact coordinate, and we do not know the �eld theoretical interpretation

for the string moving in this direction. The Wilson loop that we found for this second

class of spaces is proportional to the quark-antiquark distance, but the interpretation

of this result is not clear.

It would be useful to characterize further the �eld theories dual to the nonrela-

tivistic backgrounds considered in this paper, by studying also other properties, like
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conductivity or shear viscosity.

Finally, in the chapter 06 we concluded this thesis reconsidering some string

con�gurations that give Wilson loops in the dual nonrelativistic �eld theory. In

summary, we studied strings moving in spacetimes with Schrödinger and Lifshitz

symmetries.

We started with Schrödinger spacetimes, and reviewed the string con�gurations

with constant compact dimensions [188]. In this case, we have some physical con�gu-

rations and we calculated the quark-antiquark distance and potential. By extension,

we considered the string moving along the x-direction and we calculated a nonzero

drag force for such a con�guration.

Taking into account the motion along the compact extra dimension, ξ = ξ(τ), we

reconsidered the con�guration of [186]. We pointed that one cannot claim that this

con�guration is unphysical yet; in fact, there are some issues that must be taking

into account: �rst, the role of the compact coordinate ξ is not clear, and we need

to remember that there are genuine singularities at the end of the space. Also, at

the present stage of development, we can consider a parity transformation ξ → −ξ,
and, apparently, this transformation makes the system well de�ned.

Alternatively, we pointed that the coordinate ξ is compact, then the con�guration

with dependence ξ = ξ(σ) may make physical sense. In this case, we found a coupled

system of di�erential equations.

For the Lifshitz case, we saw that there are some cases in which the analysis is

the same as in the Schrödinger solution for constant compact dimension [185]. On

the other hand, we have considered the Lifshitz solution related to the construction

given by [48], and we saw that a rich scenario emerges. For the case with constant

compact direction the solution is unphysical.

For a compact dimension ξ with dependence on the dimension τ , we have cal-

culated the quark-antiquark potential in [195]. Finally, for the compact dimension

with dependence on the coordinate σ, we calculated the drag force of the string

moving through this background.

We recall that we must be careful in using these nonrelativistic spaces. An

interesting question is whether the systems of di�erential equations have solutions

or not. It is also very promising to consider the e�ect of �elds of the NS-NS sector

on the string, or quantum e�ects similar to [45].
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Appendix A

Type II superstring

I
n this section we consider a concise review of type IIA and type IIB

string theory and their low energy limits. In this appendix I do not try

to be self-contained by no means, and it must be seen as a guide to the

type II string theory. The topics I consider here can be found in the standard books

of string theory and references therein, e.g [10,11,55,58,93].

A.1 Highlights on the RNS and GS formalisms

There are two equivalent ways we can introduce supersymmetry into superstring

theory, namely:

� The Ramond-Neveu-Schwarz (RNS) formalism in which the supersymmetry is

realized on the worldsheet

� The Green-Schwarz (GS) formalism in which the supersymmetry is realized

on the spacetime.

A.1.1 RNS formalism

Let us consider �rst the RNS formalism. We consider momentarily that α′ = 1/2,

then the bosonic action in the conformal gauge is simply

Sb = − 1

2π

∫
d2σ∂αXµ∂

αXµ (A.1)
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and we complement this action with a Dirac action for D massless Majorana fermion,

then

S = − 1

2π

∫
d2σ

(
∂αXµ∂

αXµ + ψ̄µ/∂ψµ
)

(A.2)

where /∂ = ρα∂α and ψ̄ = iψTρ0. The Dirac matrices ρα satisfy the Cli�ord algebra

{ρα, ρβ} = 2ηαβ, such that

ρ0 =

(
0 −1

1 0

)
ρ1 =

(
0 1

1 0

)
. (A.3)

If we de�ne

ψµ =

(
ψµ−
ψµ+

)
(A.4)

we can write the fermionic part of (A.2) in the light-cone coordinates as

Sf =
i

π

∫
d2σ (ψµ−∂+ψµ− + ψµ+∂−ψµ+) , (A.5)

and the equations of motion are

∂+ψ− = 0 ∂−ψ+ = 0 , (A.6)

that describe left-moving and right-moving waves. In addition, these equations

implies that these Majorana spinors are also Weyl spinors.

Open strings

We already know that in the open string case, the left-moving modes are related to

the right-moving modes by the boundary conditions. In order to be a well de�ned

theory it can be shown that some inequivalent boundary conditions can be satis�ed.

For instance, if we take

ψµ+|σ=0 = ψµ−|σ=0 , (A.7)

we can have two di�erent conditions for the other string endpoint:

1. Ramond (R) boundary condition:

ψµ+|σ=π = ψµ−|σ=π , (A.8)
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with mode expansion

ψµ−(σ, τ) =
1√
2

∑
n∈Z

dµne
−in(τ−σ) (A.9a)

ψµ+(σ, τ) =
1√
2

∑
n∈Z

dµne
−in(τ+σ) (A.9b)

such that (dµn)† = dµ−n.

2. Neveu-Schwarz (NS) boundary condition:

ψµ+|σ=π = −ψµ−|σ=π , (A.10)

with mode expansion

ψµ−(σ, τ) =
1√
2

∑
r∈Z+1/2

bµr e
−in(τ−σ) (A.11a)

ψµ+(σ, τ) =
1√
2

∑
r∈Z+1/2

bµr e
−in(τ+σ) . (A.11b)

Closed strings

In the closed string case we have two sets of fermionic modes, hence four di�erent

conditions. The periodicities conditions are

ψµ±(τ, σ) = ±ψµ±(τ, σ + π) , (A.12)

that is, we have periodic boundary condition (R), and the antiperiodic boundary

condition (NS). Therefore, the right-movers have the expansion

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2in(τ−σ) or ψµ−(σ, τ) =

∑
r∈Z+1/2

bµr e
−2in(τ−σ) (A.13)

while the left-movers satisfy

ψµ+(σ, τ) =
∑
n∈Z

d̃µne
−2in(τ+σ) or ψµ+(σ, τ) =

∑
r∈Z+1/2

b̃µr e
−2in(τ+σ) . (A.14)

All in all, we have four inequivalent possibilities: states in the NS-NS and R-R

sectors, describing spacetime bosons, and states in the NS-R and R-NS sector, that

describe spacetime fermions.
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From the quantization of the modes, we can be �nd the spectrum of the open

and closed strings. In particular, it can be shown (see [10, 11]) that there are two

inequivalent N = 2 superstring theories with only closed strings, the type IIA, in

which the left- and right moving R-sector ground states have opposite chirality, and

the type IIB string theory, where these modes have same chirality.

A.1.2 GS formalism

In the RNS formalism we can calculate amplitudes in a way that the Lorentz symme-

try is preserved, together with the fact that we can �nd the spectrum of the theory

very quickly. Obviously we need to be aware of the GSO projection (see [10,11]) but

except this small obstacle, we do not have problems regarding the quantization of

string theory in the RNS formalism. On the other, the supersymmetry of the theory

in this formalism is not manifest, although we can easily show that the number of

degrees of freedom at each mass level match as required by supersymmetry, it is not

a direct proof.

On the other hand, we can handle a formalism where the supersymmetry is

manifest, the GS formalism. The bosonic string theory is de�ned as a map from the

string worldsheet Σ to a spacetime manifoldM, that is

X : Σ→M , (A.15)

we may think of the GS formalism as a map from string worldsheet Σ to a superspace

manifoldMθ,

(X,Θ) : Σ→Mθ . (A.16)

The GS action is given by

S = − 1

2π

∫
d2σ
√
−hhαβΠµ

αΠµβ

+
1

π

∫
d2σεαβ

[
−∂αXµ

(
Θ̄1Γµ∂βΘ1 − Θ̄2Γµ∂βΘ2

)
− Θ̄1Γµ∂αΘ1Θ̄1Γµ∂βΘ2

]
,

(A.17)

where

Πµ
α = ∂aX

µ − Θ̄AΓµ∂αΘA , (A.18)

and ΘA, with A = 1, . . . ,N , are Majorana-Weyl spinors in d = 10. In the type II

superstring, we have N = 2. In the type IIA theory, these spinors have opposite
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chirality, while in the type IIB theory, these spinors have same chirality, that is

IIA : Γ11ΘA = (−1)A+1ΘA (A.19)

IIB : Γ11ΘA = ΘA . (A.20)

The spectrum of the theory can be analysed through the light-cone quantization,

and in this case, only a subgroup of the Lorentz symmetry is manifest, namely, the

transverse SO(8) rotational symmetry. Moreover, in ten dimensions a Majorana-

Weyl spinor has eight components and each ΘA ful�lls an representation of SO(8),

and as we will see below, there will be two inequivalent representations of this

symmetry group.

A.2 Triality

In ten dimensions, we can �nd irreducible spinors that satisfy the Majorana and

Weyl conditions simultaneously1, and in this case our spinors have a minimum of

eight complex components. Therefore, we are dealing with representations of the

Lie algebra so(8) = D4, whose Dynkin diagram is

Figure A.1: Dynkin diagram for the Lie algebra so(8).

One conspicuous property of this group is its threefold symmetry, known as

triality, that permutes inequivalent representations (with the same dimensionality)

1In fact, given a space with signature (t, s) we can de�ne Majorana-Weyl (MW) spinors if

s − t = 0 (mod 4). Therefore, in Minkowski spaces, with d ≤ 11, we can have MW-spinors for

d = 2, 10 [91, 204]
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of this group. In other words, there are three eight dimensional representations of

so(8), the fundamental representation, denoted by 8v and two spinor representations,

8s and its complex conjugate 8c [205]. Let us think about it for a moment.

Consider �rst the familiar rotation group in three dimensions SO(3). The fun-

damental representation in this case is de�ned by the action of 3 × 3 matrices on

vectors ~v with components vi, for i = 1, 2, 3, that is vi 7→ Ri
jv
j, where R ∈ SO(3).

In addition, using the exponential map, we can write the matrix R ∈ SO(3) as

R = exp
(
iω̂ · ~L

)
where ~ω = ωn̂ de�nes the angle ω we are making the rotation and

the components of ~L are the generators of the Lie algebra so(3)

[Li, Lj] = iεijkLk . (A.21)

Moreover, the generators of Lie algebra of the group SU(2) satis�es [σi, σj] =

2iεijkσk where σi, i = 1, 2, 3 are the Pauli matrices. Therefore, the map % : su(2)→
so(3) de�ned by Li ≡ %(σi) := σi/2 is an isomorphism between these two algebras.

On the other hand, the groups SO(3) and SU(2) di�er in global topological

aspects. In particular, we know that for n ≥ 2 the orthogonal group SO(n) is not

simply connected. At the same time, any matrix U ∈ SU(2) can be written in the

form

U =

(
a+ ib c+ id

−c+ id a− ib

)
(A.22)

with a, b, c, d ∈ R and detU = a2 + b2 + c2 + d2 = 1, which is the equation de�ning

the 3-sphere 2. The group SU(2) is, as a group manifold, the 3-sphere S3, therefore,

it is simply connected. All in all, one can show that the correspondence between

these two groups is two-to-one and in fact SO(3) ' SU(2)/Z2.

The important point here is that using this group homomorphism φ : SU(2)→
SO(3), we can �nd a representation of SU(2) once we have a representation R of

SO(3). Using these facts we de�ne the objects transforming under the fundamental

representation of the group SU(2) as the spinor representation SO(3), see [206]

for further mathematical details and [69] for a explicit and detailed construction of

spinor representations.

One may clearly notice that the fundamental representation of SO(3) is three-

dimensional, whilst the spinor representation is two-dimensional, which means that

2In terms of quaternions H, the Lie group SU(2) is the subset of H with elements of length

equal to one.
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the vector and spinor have di�erent dimensions and are obviously intrinsically dif-

ferent. The same occurs for most of the groups we consider, for instance in the

Poincaré group SO(1, 3) and in the R-symmetry group SO(6) of N = 4 SYM, and

there is no special reason why it should be di�erent. But the distinguished property

of the group SO(8) is that the dimensions of the spinor and vector representation

are the same. Surely it is what Bertrand Russell would call mathematical supreme

beauty [207] and it is astonishing that this amazing symmetry has something deep

to say about a mundane theory such as string theory, as we will see now.

A.3 Type II supermultiplet

In order to make contact with string theory, we need to pay attention that in the

light-cone quantization of superstring theory we have an SO(8) rotational transverse

symmetry, and from the results we have just found, associated to this group we can

�nd three inequivalent representations denoted by 8v, 8s and 8c, see [10, 11, 55, 90,

208].

Since the theory we supersymmetric, the number of bosonic and fermionic degrees

of freedom must match, and one can show that the ground state for open strings

(see for instance [11]) is given by 8v ⊕ 8s (or evidently 8v ⊕ 8c) where 8v consists

of a massless vector and 8s its spinor partner, together these �elds give the vector

multiplet. Taking tensor products of left and right-movers we obtain the ground

state for closed strings. We have two possibilities:

IIA : (8v ⊕ 8c)⊗ (8v ⊕ 8s)

IIB : (8v ⊕ 8c)⊗ (8v ⊕ 8c) .
(A.23)

Let us now understand what all these products mean. The multiplication table

[90,205,208] (see also, the appendix B1 of [32] and the D'Hoker's lectures in [58]) of

the group SO(8) is
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8v ⊗ 8v = 1⊕ 28⊕ 35v : [0] + [2] + (2)

8s ⊗ 8s = 1⊕ 28⊕ 35s : [0] + [2] + [4]s

8c ⊗ 8c = 1⊕ 28⊕ 35c : [0] + [2] + [4]c

8s ⊗ 8c = 8v ⊕ 56v : [1]v + [3]v

8v ⊗ 8s = 8c ⊕ 56c

8c ⊗ 8v = 8s ⊕ 56s

Consider �rst the term 8v ⊗ 8v, which is common to both IIA and IIB string

theory and is called NS-NS sector. The decomposition gives a scalar, the dilaton

φ, a anti-symmetric rank 2 tensor, the Kalb-Ramond �eld Bij and the traceless

symmetric rank 2 tensor, the graviton Gij.

In the type IIA and IIB string theories, we take the product 8c⊗ 8v = 8s⊕ 56s.

In this case the decomposition gives a spinor λα, the dilatino and a vector-spinor

ψiα, the gravitino, see [208] for a detailed analysis of these decompositions. Together,

8v ⊗ 8v and 8c ⊗ 8v give the graviton multiplet.

For the type IIA string theory we have 8v ⊗ 8s = 8c ⊕ 56c that is, a dilatino

and a gravitino λα̇ and ψiα̇. Also ,8s ⊗ 8c = 8v ⊕ 56v, known as R-R sector, gives a

vector A(1)
i , the graviphoton and an anti-symmetric rank 3-tensor A(3)

ijk.

Finally, the type IIB string theory has 8c ⊗ 8v = 8s ⊕ 56s that gives a dilatino

and a gravitino λα and ψiα, and the R-R sector is 8s ⊗ 8c = 1 ⊕ 28 ⊕ 35c, gives

a scalar A(0), an anti-symmetric rank 2-tensor A(2)
ij and an anti-symmetric rank

4-tensor A(4)
ijkl, whose �eld strength is self-dual, that is dA(4) = ∗dA(4).

sector type IIA type IIB

NS-NS (bosons) φ,Bij, Gij φ,Bij, Gij

NS-R (fermions) λα̇, ψ
i
α̇ λα̇, ψ

i
α̇

R-NS (fermions) λα, ψ
i
α λα̇, ψ

i
α̇

R-R (bosons) A
(1)
i , A

(3)
ijk A(0), A

(2)
ij , A

(4)
ijkl
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A.4 Type II supergravity

In the previous section we have seen the massless spectrum of the type IIA and IIB

string theories. But one can show that for the low energy limit of these theories,

α′ → 0, the massive spectrum becomes extremely heavy, and we can study the

dynamics of the massless modes by a supergravity theory.

A.4.1 D= 11 and the type IIA supergravity

We begin by recovering the massless bosonic �eld content of the type IIA string

theory in ten dimensions, that is

NS-NS sector: Gµν , Bµν ,

φ

R-R sector: A
(1)
µ , A

(3)
µνρ

But the �eld content of the type IIA supergravity can be obtained from a theory in

eleven dimensions, than in principle has nothing to do with string theory, namely,

d = 11 N = 1 supergravity �rst studied by [209]3. Initially, it was realized [213]

that we can formulate consistent (with spin ≤ 2) supersymmetric �eld theories

only if the spacetime dimension d is less than or equal to eleven dimensions, than

d ≤ 11. Another important characteristic of eleven dimensional theories is the

fact that in principle, if we want to reproduce the standand model gauge group

SU(3)×SU(2)×U(1) as isometries of compact higher dimensions, then we need at

least seven extra dimensions [214], for instance, the manifold CP2 × S2 × S1. But it

became clear that from this procedure we could not obtain a chiral theory.

The �eld theory of N = 1 d = 11 supergravity theory contains the metric

GMN , that can be formulated equivalently in terms of vielbeins e A
M with 44 degrees

of freedom, a Majorana Gravitino ΨM with 128 degrees of freedom and an anti-

symmetric rank 3-tensor GMNP . Let us now consider just the bosonic sector of the

theory, but it important to notice that the fermionic sector could be included in this

3See also [89, 91, 210] for some reviews on this subject and the collections [211, 212] ranging

important works from the early days of higher dimensional theories to the Maldacena �rst work in

the AdS/CFT paradigm.
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analysis as well [89]. Following the notation of [32], the bosonic action is given by

2κ2
11S11 =

∫
d11x

√
−Ĝ

(
R− 1

4
|dC|2

)
− 1

6

∫
C ∧ dC ∧ dC , (A.24)

where κ11 is related to the Newton's constant G11 by κ2
11 = 8πG11. The type IIA

supergravity is readily obtained by dimensional reduction of this theory on a 1-sphere

S3.

Consider that the coordinates split as M = {µ, 10}, then the metric decomposes

as

ds2 = ĜMNdxMdxN

= Ĝµνdx
µdxν + e4φ/3

(
dx10 + A(1)

ν dxν
)
.

(A.25)

Therefore, from the eleven dimensional metric GMN , we obtain the ten-dimensional

metric Gµν , the dilaton φ and the graviphoton A(1)
µ . The ten-di�erential forms A(3)

µνρ,

in the R-R sector, and the Kalb-Ramond �eld Bµν , in the NS-NS sector are

Cµνρ ≡ A(3)
µνρ , Cµν10 = Bµν . (A.26)

Therefore, if we call H = dB, F (2), F̃ (4) = dA(3) + A(1) ∧H the action of the type

IIA string theory, obtained by dimensional reduction of the d = 11 supergravity is

SIIA =
1

2κ2
10

∫
d10x
√
−Ge−2φ

(
R + 4∂µφ∂

µφ− 1

2
|H|2

)
− 1

4κ2
10

∫
d10x
√
−G

(
|F (2)|2 + |F̃ (4)|2

)
− 1

4κ2
10

∫
B ∧ dA(3) ∧ dA(3) ,

(A.27)

where κ2
10 = κ2

11/2πR.

Finally we may observe an important property of the type IIA supergravity.

Associated to this theory we have a 2-form and a 4-form �eld strengths, and using

the Hodge duality we can �nd a 6-form and an 8-form, that is

F̃6 = ∗F̃4 , F̃8 = ∗F2 . (A.28)

Romans showed in [215] (see for a review [93]) that we can �nd a deformation of

this theory that is not related to the eleven dimensional supergravity. The main ob-

servation is that if we consider a 10-form �eld strength F10 = dA(9), whose equation

of motion implies that d ∗ F10 = 0 we can introduce a parameter

m ≡ ∗F10 (A.29)
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in our theory. At the end we �nd a theory de�ned by the action

SmIIA = S̃IIA −
1

4κ2
10

∫
d10x
√
−Gm2 +

1

2κ2
10

∫
mF10 , (A.30)

where S̃IIA is simply (A.27) but with the replacements

F2 → F2 +mB , F̃4 → F̃4 +
m

2
B ∧B . (A.31)

A.4.2 Type IIB Supergravity

The massless bosonic �eld content of the type IIB string theory in ten dimensions

is

NS-NS sector: Gµν , Bµν , φ

R-R sector: A
(0)
µ , A

(2)
µν , A

(4)
µνρσ

and the low energy limit is described by the action

SIIB =
1

2κ2
10

∫
d10x
√
−Ge−2φ

(
R + 4∂µφ∂

µφ− 1

2
|H|2

)
− 1

4κ2
10

∫
d10x
√
−G

(
|F (1)|2 + |F̃ (3)|2 +

1

2
|F̃ (5)|2

)
− 1

4κ2
10

∫
A(4) ∧H ∧ F (3) ,

(A.32)

where

F̃ (3) = dA(2) + A(0)H , F̃ (5) = dA(4) − 1

2
A(2) ∧H +

1

2
B ∧ dA(2) . (A.33)

The equation of motion and the Bianchi identity for F̃ (5) are

d ∗ F̃ (5) = dF̃ (5) = H ∧ F̃ (3) , (A.34)

which is consistent with the constraint

F̃ (5) = ∗F̃ (5) . (A.35)
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A.4.3 Einstein and String Frame

Finally, the Einstein-Hilbert action in d-dimensions is simply

SEH =
1

2κ2
d

∫
ddx
√
−GR , (A.36)

but in (A.27) and (A.32) we have a factor of e−2φ in front of the Ricci scalar. This is

called, the string frame. We can write the action in the usual Einstein frame (A.36)

if we make the transformation

Gµν → GE
µν = e−φ/2Gµν ⇒

√
−G = e5φ/2

√
−GE . (A.37)

Evidently, the di�erential form Fp does not change after this transformation, but

the Hodge dual ∗Fp does, since

(∗F )µp+1···µd =

√
−G
p!

εµ1···µpµp+1...µdG
µ1ν1 · · ·GµpνpFν1···νp , (A.38)

so that

∗F =
1

(n− p)!
(∗F )µp+1···µddx

µp+1 ∧ · · · ∧ dxµd , (A.39)

and in the Einstein frame we have

(∗F )Eµp+1···µd = e(p−5)φ/2(∗F )µp+1···µd . (A.40)
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