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Abstract
The D-CTC condition, introduced by David Deutsch as a condition to be fulfilled 
by analogues for processes of quantum systems in the presence of closed timelike 
curves, is investigated for classical statistical (non-quantum) bi-partite systems. It is 
shown that the D-CTC condition can generically be fulfilled in classical statistical 
systems, under very general, model-independent conditions. The central property 
used is the convexity and completeness of the state space that allows it to general-
ize Deutsch’s original proof for q-bit systems to more general classes of statistically 
described systems. The results demonstrate that the D-CTC condition, or the condi-
tions under which it can be fulfilled, is not characteristic of, or dependent on, the 
quantum nature of a bi-partite system.

Keywords  Closed timelike curves · Classical statistical systems · Ergodicity

1  Introduction

In a seminal paper [1], David Deutsch introduced a condition (henceforth referred to 
as D-CTC condition) that is supposed to capture the meaning of processes “running 
back in time” in bi-partite quantum systems (and more generally, in multi-partite 
quantum systems, or quantum circuits). In its simplest form, it can be described as 
follows: Assume a bi-partite quantum mechanical system given, consisting of a Hil-
bert space H = HA ⊗HB composed of the Hilbert spaces of two subsystems. More-
over, suppose that U is a unitary operator on H, which is viewed as describing (the 
result of) a dynamical interaction between the two systems, akin to a time evolution 
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operator, or a scattering matrix. Furthermore, let �A be a density matrix on HA, or 
synonymously, a state on the “A”-part of the system with expectation values

for all bounded linear operators � on HA where we have written TrA to emphasize 
that the trace is to be understood with respect to the Hilbert space HA . Relative to 
these data, a density matrix � on H is said to fulfill the D-CTC condition if the fol-
lowing two conditions are fulfilled (see Fig. 1): 

(1)	    The partial state induced by � on the “A”-part of the system (prior to the inter-
action U taking effect) equals ⟨.⟩A, i.e. 

 holds for all bounded linear operators � on HA (with �B denoting the identity 
operator on HB ). Equivalently, �A equals ��HB (�), the partial trace of � taken 
with respect to HB . Note that in the previous equation, the trace Tr appearing 
on the left hand side is taken on the full Hilbert space H = HA ⊗HB.

(2)	 The partial state induced by � on the “B”-part of the system (prior to the interac-
tion U) returns to itself after the interaction U has taken effect, i.e. 

 holds for all bounded linear operators � on HB (with �A now denoting the iden-
tity operator on HA).

In his proof that the D-CTC condition can always be fulfilled when the Hilbert 
spaces HA and HB are both finite-dimensional, Deutsch uses that the map

⟨�⟩A = TrA(�A�)

Tr(𝜚(�⊗ �B)) = TrA(𝜚A�)

Tr(𝜚U∗(�A ⊗ �)U) = Tr(𝜚(�A ⊗ �))

S ∶ 𝜚B ↦ 𝗍𝗋HA (U(𝜚A ⊗ 𝜚B)U
∗)

Fig. 1   A process in a quan-
tum circuit is represented a 
unitary operator U describing 
the dynamical coupling of two 
system parts (denoted by A and 
B). U takes initial states (prior to 
interaction) to final states (after 
the interaction has taken effect); 
that process is supposed to 
take a time duration T. A “step 
backward in time” is symbolized 
by −T  ; the B-part of the result 
of the process (i.e. the partial 
state on the B system after the 
interaction) is again fed into the 
process as initial state of the 
B-part
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on the set of density matrices �B on HB has a fixed point. However, what is actu-
ally being used (and allows the fixed point argument to be applied) is that for quan-
tum mechanical systems, the state space is always convex and complete: It allows 
for classical statistical (or probabilistic) mixtures of states, and limits (in a suita-
ble sense) thereof. In other words, the D-CTC condition, and the question to which 
extent it can be fulfilled, is not primarily sensitive to, or dependent on, genuinely 
quantum mechanical properties of a bi-partite system, such as quantum mechani-
cal superpositions (interference effects), uncertainty relations or entanglement, 
but really on the convexity and completeness of the state space of the systems in 
question. Therefore, the D-CTC condition can also be fulfilled in classical (i.e. 
non-quantum) statistical physical theories, such as classical statistical mechanics, 
under very general, physically realistic conditions; it is the purpose of this article 
to demonstrate that fact at an appreciable level of mathematical generality and rig-
our. The authors of [2] reach at a related conclusion, however based on a different 
reasoning than presented in this article; they argue that in the limit of large Hilbert 
space dimension of the “B” system part, the D-CTC condition becomes classical. In 
[3], the authors indicate that the D-CTC condition can be staged in a far more gen-
eral formal framework than that of quantum mechanics. The feature of the D-CTC 
condition to be primarily dependent on the ability to form classical statistical mix-
tures of states has also been observed in [4]. That same article also discusses related 
investigations of classical “billiard ball” collisions wherein one of the balls enters a 
“wormhole”-type time machine and re-emerges “prior to entering” exactly such as 
to be kicked by the other ball into the time machine [5–7]. Such scenarios may be 
viewed as particular classical counterparts of the D-CTC set-up (or rather—histori-
cally more correctly—the D-CTC approach ought to be seen as an attempt at pro-
viding a quantum analogue for such “billiard-ball-collisions-with-wormhole-time-
machines” set-ups) but we will not follow this line of analogy in the present article. 
See, however, Sect. 5 for further remarks.

The D-CTC condition is always presented in the context of quantum physics1 or 
of quantum computational considerations (as a sample, see the publications [1, 2, 
10–15], see also references therein). Therefore, it seems well worth pointing out, 
and demonstrating, that it is basically of a statistical, but not necessarily quantum 
physical nature.

In a recent paper [16] (see also [17] for a summary), we have investigated the 
D-CTC condition in the setting of operator-algebraic quantum field theory [18]. It 
is useful to briefly outline some of the basic elements of that approach as it helps 
to make parallels between the D-CTC condition as formulated above for quantum 

1  The article [8] portrays quantum mechanics as a natural mechanism for avoiding paradoxes that would 
occur in the presence of CTCs in the framework of classical physics; however in [4] it is pointed out 
that forming statistical mixtures would in a similar way allow it to avoid those paradoxes. Nevertheless, 
linking the D-CTC condition with quantum physics has become a commonplace because of its origins 
and potential consequences in quantum computing (see references cited above), and seems to have also 
gained traction in popular culture: In [9], the lead character Tony Stark verbally mentions “the Deutsch 
proposition” in an attempt of the protagonists to travel back to the past using a fictional time machine 
based on quantum physics.
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mechanical systems, and the classical statistical physics case to be considered in this 
article, more easily visible.

In the operator-algebraic approach to relativistic quantum field theory [18], there 
is for any system (quantum field) a C∗-algebra A whose self-adjoint elements cor-
respond to observables of the system. In most cases, it is no major restriction to sup-
pose that A is a subalgebra of some �(H) , the algebra of all bounded operators on 
an (infinite dimensional) Hilbert space H . It is also usually assumed that A contains 
an algebraic unit element denoted by 1; if A ⊂ �(H) , that would be the unit opera-
tor on H . Supposing that the spacetime on which the quantum field propagates is 
Minkowski spacetime (however, the general setting allows for choosing more gen-
eral, curved spacetimes instead), it is assumed that for any finite (that is, relatively 
compact) open region O in spacetime there is a C∗ subalgebra A(O) of A contain-
ing the observables that can be measured at times and locations within O, including 
1. In keeping with this set-up, it is further assumed that A(O1) ⊂ A(O2) whenever 
O1 ⊂ O2 . This property is called isotony. Another assumption is locality, meaning 
that �� = �� for all � ∈ A(OA) and � ∈ A(OB) provided that the spacetime regions 
OA and OB are causally separated, i.e. there is no causal curve beginning in OA and 
ending OB . Particularly in this situation where OA and OB are causally separated, one 
may take the pair of algebras A(OA) and A(OB) as the mathematical model of a 
causally separated bi-partite system, with A(OA) and A(OB) playing roles analogous 
to �(HA) and �(HB) in the quantum mechanical setting outlined at the beginning.

Another important ingredient of the operator-algebraic approach are states. A 
state is any expectation value functional � ↦ ⟨�⟩ (� ∈ A) on the algebra of observ-
ables A, and therefore, by definition, � ↦ ⟨�⟩ is linear, and fulfills ⟨�∗�⟩ ≥ 0 for all 
� ∈ A, as well as ⟨�⟩ = 1 . Usually, if A is contained in some �(H), one considers 
only normal states which arise from density matrices; in other words, a state is nor-
mal if it is of the form

for some density matrix � on the Hilbert space H.
One may now reformulate the D-CTC condition in the operator-algebraic set-

ting as follows. As mentioned, one starts from an observable algebra A ⊂ �(H) for 
some Hilbert space H, together with observable algebras A(OA) and A(OB) for two 
causally separated spacetime regions OA and OB, representing the observables of a 
causally separated bi-partite system. Further data assumed given are a normal state 
⟨�⟩A = Tr(�A�) (� ∈ A(OA)) on A(OA) (on the “A”-part of the full system) induced 
by a density matrix �A on H, and a unitary operator U on H . Given these data, a state 
⟨�⟩ = Tr(��) (� ∈ A) is said to fulfill the D-CTC condition if the following two 
conditions are fulfilled: 

	 (I)	 The partial state of ⟨.⟩ on A(OA) coincides with ⟨.⟩A, i.e. 

⟨�⟩ = ⟨�⟩� = Tr(��) (� ∈ A)

⟨�⟩ = ⟨�⟩A (� ∈ A(OA))
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	 (II)	 The partial state of ⟨.⟩ on A(OB) returns to itself after the action of the unitary 
U has taken effect, i.e. 

The analogy with the D-CTC condition with the quantum mechanical case described 
above should be clear on noting that, since both A(OA) and A(OB) are in a defined 
way subalgebras of the larger C∗-algebra A (or of �(H) ), and all the algebras share 
the common algebraic unit element �, the � ∈ A(OA) here is analogous to the �⊗ � 
above, and similarly the � ∈ A(OB) here is analogous to the �⊗ � above. We men-
tion however that in general, in quantum field theory the operator algebra generated 
by A(OA) and A(OB) in �(H) need not equal (up to identification) the tensor product 
A(OA)⊗A(OB) . A precise statement would require introducing von Neumann alge-
bras at this point which we shall not embark on. Nevertheless, there are criteria as 
to when such an equality actually does hold, known as split property or statistical 
independence of states. We will not further discuss these matters here but refer to 
[18–20] and references cited there for full details.

The results obtained in [16, 17] are, roughly, as follows (we give here a mainly 
qualitative description and refer to the cited references for full details). States fulfilling 
the D-CTC condition cannot be found if the states are also required to fulfill a Reeh-
Schlieder like property [18] which implies a strong form of entanglement [21]. On the 
other hand, if the local algebras of observables fulfill the split property just mentioned, 
then one can always find states fulfilling the D-CTC condition approximately to any 
prescribed precision. Since the assumptions are met for a wide range of quantum field 
theories on globally hyperbolic spacetimes which do not admit closed timelike curves, 
the latter result makes it doubtful if the D-CTC condition actually relates to quantum 
processes based on the presence of closed timelike curves in the sense of general rela-
tivity. The present work casts doubts on whether the D-CTC condition has quantum 
physics at its core. We will address these points in a discussion towards the end in 
Sect. 5.

We now turn to describing the content of the present work. In Sect. 2, we will 
summarize some basics of commutative C∗-algebras which, in an operator algebraic 
approach, are used as algebras of observables of classical (non-quantum) statistical 
systems. The relation to functions (random variables) on locally compact or compact 
topological Hausdorff spaces and probability measures (states)—through the Riesz 
Representation Theorem and the Gelfand–Naimark Theorem—is also discussed. We 
have relied on the references [22–25] for our presentation which, on one hand, is 
included to make this work self-contained and to introduce the concepts and nota-
tion needed, and on the other hand, to explain some points that need to be taken care 
of when considering limits of states on certain commutative C∗-algebras and the 
question if they still arise from probability measures. We take up on this topic again 
in Sect. 3 where the concept of classical statistical bi-partite systems is introduced. 
A criterion ensuring that limits of sequences of probability measures exist on Cb(X) , 
the C∗-algebra of bounded continuous functions on a locally compact metric space 
X, and are again probability measures, is provided by Prohorov’s Theorem [26, 27] 
and we use it in Theorem 3.2. In our Theorem 3.1 presented before in Sect. 3, we 

⟨U∗
�U⟩ = ⟨�⟩ (� ∈ A(OB))
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prove a very general statement to the effect that the D-CTC condition for classical 
statistical bi-partite systems is fulfilled but with states in an abstract C∗-algebraic 
sense which need not be given by probability measures. As indicated, Theorem 3.2 
is more specific in that it establishes that the states fulfilling the D-CTC condition 
are given by probability measures under certain assumptions. A simple example in 
form of a two-body problem interacting by a binding central potential is discussed 
in Sect. 4 to illustrate properties of the states fulfilling the D-CTC condition con-
structed in Theorems 3.1 and 3.2. The example will also serve to point out a relation 
to ergodicity. In the last section, we collect discussion and conclusion, relating our 
results also to other literature.

2 � Commutative C∗‑Algebras and Classical Statistical Systems

2.1 � Generalities

Physical systems that are subject to a statistical description of their measurement val-
ues, but are classical in the sense of not being quantum systems, have observable alge-
bras which are commutative (or Abelian). Let us denote a generic commutative C∗

-algebra by � . Commutativity means that �� = �� for all � , � ∈ � and consequently, 
there are no uncertainty relations among the elements of � which would be indicative 
of a quantum theory. Likewise, there is no entanglement. Assuming that there is a unit 
element � contained in � , a state on � is defined as a linear functional ⟨.⟩ ∶ 𝖠 → ℂ , 
𝖿 ↦ ⟨𝖿⟩ fulfilling ⟨�∗�⟩ ≥ 0 (positivity) and ⟨�⟩ = 1 (normalization). We recall the the 
well-known fact that any state w on a C∗-algebra (commutative or not) is norm-con-
tinuous: |w(�)| ≤ ||� || for all � where ||� || is the C∗-algebra norm of � [24]. It is worth 
mentioning that C∗-algebras are algebras over ℂ (as field of numbers) but that, as in 
quantum mechanics, only their hermitean elements, fulfilling �∗ = � , are considered 
as observables yielding real-valued expectation values w(�) = ⟨�⟩ upon evaluation on 
states.

We shall now adopt the mathematical notation and denote a state as w ∶ 𝖠 → ℂ so 
that w(�) = ⟨�⟩ (� ∈ �) , since this notation has some advantages. It is easy to notice 
that the set of states on � , henceforth denoted as S = �∗

+
 , is closed under finite convex 

combinations, i.e. if w1,… ,wn are finitely many states on � and �1,… , �n are non-
negative numbers such that 

∑n

k=1
�k = 1 , then the convex sum 

∑n

k=1
�kwk that can be 

formed from the given states is again a state on � . A state is called pure if it can be rep-
resented in this convex sum form if, and only if, all the wk coincide; or equivalently, iff 
all �k = 0 except for exactly one �k′ which therefore must be equal to 1. A state which is 
not pure is called mixed. Furthermore, the set of states is closed with respect to taking 
weak limits: Suppose that {w�}�∈K is a generalized sequence of states w� ∈ S  , where 
K is an arbitrary directed set. The generalized sequence {w�}�∈K is called weakly con-
vergent (strictly speaking, weak-*-convergent) if lim� w�(�) exists for every � ∈ � . 
Then

w(�) = lim
�

w�(�) (� ∈ �)
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is again a state on � . We mention also that S  is weakly compact by the 
Banach–Alaoglu–Theorem [28], which entails that, whenever {w�}�∈K is a general-
ized sequence in S  , then it admits a weakly convergent generalized subsequence 
{w�(� )}�∈Z (with suitable directed index set Z).

An operation is any map � ∶ S → S  which preserves convexity, meaning that

for all finite convex sums of states. Moreover, we will assume operations to 
be weakly continuous2 which is defined as follows: � is weakly continuous 
if, for all weakly converging generalized sequences {w�}�∈K of states in S  , 
also {�(w�)}�∈K is a weakly converging generalized sequence of states, with 
lim� �(w�)(�) = �(lim� w�)(�) for all � ∈ � . We will see some examples soon; obvi-
ously, if � ∶ 𝖠 → 𝖠 is a C∗-algebra morphism which preserves the unit element, then 
its dual map �∗(w)(�) = w(�(�)) is an operation.

2.2 � The Gelfand–Naimark Theorem

The next step is to summarize the content of the Gelfand–Naimark theorem (see 
Lemma 2 in [29]) which characterizes commutative C∗-algebras as sets of number-
valued functions and the states as probability measures. To this end, we largely fol-
low the presentations of [22–24] which we recommend for further reading.

Let � denote a commutative C∗-algebra with unit element � . Then the Gel-
fand–Naimark theorem asserts that there is a compact topological Hausdorff space X 
and a C∗-algebra isomorphism � ∶ 𝖠 → C0(X) which preserves the unit. Here, C0(X) 
is the vector space of all continuous functions on X taking values in ℂ ; endowing it 
with the pointwise product (fg)(x) = f (x)g(x) (x ∈ X) as an algebra product and com-
plex conjugation as the *-operation, and taking as C∗-norm ||f ||∞ = supx∈X |f (x)| , 
C0(X) is a commutative C∗-algebra. Its unit element clearly is the function 1(x) = 1 
(x ∈ X) taking identically the value 1. Moreover, for any state w on � , the induced 
state w�(f ) = w(�−1(f )) on C0(X) is given by a probability measure �w defined on 
the Borel sets of X:

A probability measure is normalized so that ∫
X
1 d�w = 1 . Furthermore, a state w 

on � is pure if and only if the measure �w is concentrated at a single point x0 in X 
(a “Dirac measure”), that is, w�(f ) = f (x0) for all f ∈ C0(X) . Therefore, the Gel-
fand transform 𝖿 ↦ f  , f (x) = wx(�) , where the wx ( x ∈ X ) range over the set of pure 
states on � , provides the concrete realization of the isomorphism � . Any homeo-
morphism F ∶ X → X gives rise to a C∗-isomorphism AF ∶ C0(X) → C0(X) given 

�

(
n∑

k=1

�kwk

)
=

n∑

k=1

�k�(wk)

w�(f ) = ∫X

f (x) d�w(x) (f ∈ C0(X)).

2  Strictly speaking, the continuity property defined here is weak-*-continuity.
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by AF(f ) = f◦F−1 and one has AF(1) = 1 ; pulling AF back by � renders a C∗-algebra 
isomorphism �F of � given by �F = �−1

◦AF◦� which preserves the unit element � . 
Consequently, the dual map �F = �∗

F
 is an operation on the set of states on � . On the 

Borel measures of X, this operation is given as � ↦ A∗
F
(�) = �◦F which can be seen 

from the measure-transformation equation (cf. [25, Theorem 12.46])

Consequently, for a commutative C∗-algebra, operations on the set of states arise 
from bijective homeomorphisms in the indicated way. There are also operations typ-
ically not arising in this way. A simple example is � ∶ w ↦

1

2
(w0 + w) where w0 is 

any fixed but arbitrary state. Another class of examples concerns operations on a 
particular set of states. Assume that a commutative C∗-algebra with unit element 
is given as C0(X) for a compact Hausdorff space X, and select any state w0 , i.e. a 
probability measure �0 on the Borel sets of X. Then the Hilbert space of the GNS 
representation (see Theorem 1 in [29], or Theorem 3.3.3 in [24] for a more modern 
version)3 is given as L2(X,�0) where at this point, one should bear in mind that the 
L2 space is formed by equivalence classes of square-integrable functions on X where 
functions are defined as equivalent iff they deviate on sets of zero �0 measure. With 
respect to the chosen �0 , one can introduce normal states w�(f ) = Tr(�f ) (f ∈ C0(X)) 
where � is any density matrix on the Hilbert space L2(X,�0) and f ∈ C0(X) acts as 
multiplication operator on L2(X,�0) . Then any unitary linear operator U on L2(X,�0) 
induces the operation �U ∶ w� ↦ wU�U∗ on the set of normal states with respect to �0

.4 As a side note, a formulation of classical (statistical) mechanics in a related L2
-space setting appears in [30]; it also serves as a starting point in the so-called geo-
metric quantization [31].

2.3 � The Case of � = Cb(X) for X Non‑compact

The discussion up to now should have clarified the bijective relation between com-
muntative C∗-algebras with unit element and their states, and the algebras C0(X) 
on compact Hausdorff spaces X and the probability measures on the correspond-
ing Borel sets. The latter mathematical framework is the starting point of classical 
statistical theories. Here, X usually contains the (classical) degrees of freedom of a 
physical system; in fact, most commonly X = T∗Q is the phase space of a system 
whose degrees of freedom can move in some smooth manifold Q. In this situation, 
there arises the difficulty that even if Q happens to be compact (which needn’t be 
the case), T∗Q is not. Therefore, we are confronted with the circumstance that in 

∫X

f◦F−1 d� = ∫X

f d(�◦F) (f ∈ C0(X)).

3  Given any C∗-algebra A (not necessarily commutative) containing a unit element, and a state � on A , 
the GNS representation is a triple (H,�,Ω) where H is a Hilbert space, � is a unital *-representation of 
A by bounded linear operators on H and Ω is a unit vector in H so that �(�) = ⟨Ω,�(�)Ω⟩ holds for all 
� ∈ A , and �(A)Ω is dense in H . For every state on a unital C∗-algebra there is such a GNS representa-
tion and it is unique up to unitary equivalence.
4  Such an operation is in general only weakly sequentially continuous.
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many physically relevant cases, X isn’t in a natural way compact. This issue is of 
some concern for us because it has some consequences for the convergence of states 
which we need to consider in order to obtain solutions to the D-CTC problem in the 
following section.

Therefore, assume now that X is a locally compact Hausdorff topological 
space, and define C0(X) as the set of all continuous functions f ∶ X → ℂ that van-
ish at infinity, i.e. given f ∈ C0(X) , there is for every 𝜀 > 0 some compact set K 
such that |f (x)| < 𝜀 for all x ∈ X�K . Using the same definitions for the algebraic 
operations as for C0(X) , the set C0(X) is a commutative C∗-algebra with C∗-norm 
||f ||∞ = sup {|f (x)| ∶ x ∈ X} . If X is compact, then C0(X) = C0(X) (cf. [25, Sect. 
(7.13a)]), but if X is not compact, then C0(X) is a commutative C∗-algebra without 
an algebraic unit element. One can still define probability measures � on the Borel 
sets of X as the Borel measures that have unit weight, �(X) = 1 . This is equivalent 
to requiring that the positive functional w(f ) = ∫

X
f d� ( f ∈ C0(X) ) induced by � on 

C0(X) has unit norm, that is, ||w|| = 1 where ||w|| = sup {|w(f )| ∶ ||f ||∞ = 1}.
The Gelfand–Naimark theorem which has been stated above for the case of a 

commutative C∗-algebra � with an algebraic unit element has the following exten-
sion to the case that � doesn’t possess an algebraic unit element: There is a locally 
compact Hausdorff space X and a C∗-algebraic isomorphism � ∶ 𝖠 → C0(X) which 
again is given by the Gelfand transform; so any state w on � (where the normaliza-
tion condition, in absence of the algebraic unit � , is replaced by the condition that w 
has unit norm, ||w|| = 1 ) induces a state w�(f ) = w(�−1(f )) ( f ∈ C0(X) ) on C0(X) 
which is given by a probability measure on the Borel sets of X (this is exactly the 
statement of the Riesz’ Representation Theorem, see e.g. [25, Theorem 12.36]), and 
the pure states on � are exactly those which arise as probability measures concen-
trated at single points of X.

For any locally compact Hausdorff space X, C0(X) is naturally a C∗-subalgebra 
of Cb(X) , the set of all bounded continuous functions f ∶ X → ℂ . Clearly, Cb(X) 
becomes a C∗-algebra using the analogous algebraic operations as defined previously 
for C0(X) , and again, ||f ||∞ = sup {|f (x)| ∶ x ∈ X} as C∗-norm. However, Cb(X) con-
tains an algebraic unit element given by the function taking the constant value 1, 
similarly as for C0(X) for a compact X. While in the case that X is not compact, 
C0(X) is a proper C∗-subalgebra of Cb(X) , any state w on C0(X) , by being induced by 
a probability measure on the Borel sets of X, extends uniquely to a state on Cb(X) , 
complying with the normalization condition w(1) = 1 . Since Cb(X) is a commuta-
tive C∗-algebra with an algebraic unit element, by the Gelfand–Naimark theorem it 
is isomorphic to C0(X̂) for a particular compact Hausdorff space X̂ , the Stone-Čech 
compactification of X. In fact, for any locally compact Hausdorff space X, “extend-
ing” C0(X) to Cb(X) can be viewed as the “standard model” of the Stone-Čech com-
pactification. We refer to the references [22–24] for further discussion and refer-
ences on this point.

We therefore choose the commutative C∗-algebra Cb(X) with a locally compact 
(but not necessarily compact) Hausdorff space X as the most suitable and versatile 
version of an observable algebra for a classical statistical system since.

There are the following rationales for that choice: 
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	 (i)	 As already mentioned, we view the phase space T∗Q of a mechanical system 
as the standard example for X, and T∗Q isn’t compact in a natural way.

	 (ii)	 Cb(X) contains an algebraic unit element while C0(X) does not for non-com-
pact X. However, having a unit is important since it allows to approximate 
unbounded functions, which often represent important observables such as the 
Hamilton function H (assumed continuous), by elements of Cb(X) at the level 
of expectation values. Namely, in the presence of a unit 1, one can form the 
resolvents (1 + �H2)−1 (𝜖 > 0) , and then the functions H� = (1 + �H2)−1H are 
in Cb(X) and for sufficiently regular states one obtains lim�→0 w(H�) = w(H) . 
Therefore, we see Cb(X) , possessing a unit element, as preferred since it allows 
the approximation of unbounded observables in a canonical way.

	 (iii)	 We wish to explore the D-CTC condition in the setting of classical probability 
theory where, by definition, the states are given by probability measures. As 
mentioned, any state on C0(X) is actually induced by a probability measure 
according to Riesz’ theorem, and it extends to a state, induced by the same 
probability measure, on Cb(X) . Therefore, we are not missing any states by 
choosing Cb(X) as observable algebra instead of C0(X).

It should be obvious that the operations on states considered previously for C0(X) 
with a compact X, in particular those induced by bijective homeomorphisms of 
X, have their completely analogous counterparts also in the case of Cb(X) with 
locally compact X.

However, if X is not compact, then there are states on the C∗-algebra Cb(X) 
which are not given by probability measures on the Borel sets on X. Consider as 
a particular example the case X = ℝ , and the sequence of states on Cb(ℝ) given 
by wn(f ) = f (n) ( n ∈ ℕ ), i.e. the point-measures concentrated at the integers. If 
this sequence of states is restricted to C0(ℝ) , it converges for n → ∞ to the zero-
functional, limn→∞ wn(f ) = 0 for all f ∈ C0(ℝ) . Clearly, this functional is not 
induced by a probability measure and therefore the wn (or any generalized sub-
sequence) do not converge weakly to a state on C0(ℝ) . On the other hand, by the 
Banach–Alaoglu Theorem mentioned before, there is a generalized subsequence 
{n(�)}�∈K in ℕ with lim� n(�) = ∞ so that the generalized subsequence {wn(�)}�∈K 
of states on Cb(ℝ) converges weakly to a state w(f ) = lim� wn(�)(f ) . That state w 
isn’t induced by a probability measure on the Borel sets of ℝ since w(1) = 1 while 
w(f ) = 0 for all f ∈ C0(ℝ) . One may argue that such states have pathological 
properties and therefore aren’t induced by probability measures and should not 
be regarded as physically realistic states. In order to make the distinction visible 
in the notation we will, for the commutative C∗-algebra � = Cb(X) , denote the set 
of all C∗-algebraic states by S  as before, and denote the set of states induced by 
probability measures by S (P) . If X isn’t compact, then S (P) is a proper subset of 
S .

The arguments leading to the results on the generic solvability of the D-CTC 
problem for classical bi-partite statistical systems that we shall derive in the next 
section make considerable use of the convergence of (generalized) sequences of 
states. Having made the point that we consider Cb(X) with a possibly non-compact 
X as algebra of observables, we would like to specify criteria ensuring that solutions 
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to the D-CTC problem for classical bi-partite statistical systems are given by states 
which actually are induced by probability measures. As we will see in the next sec-
tion, the condition of “tightness” on sequences of probability measures in combina-
tion with Prohorov’s Theorem [26, 27] provide such criteria.

3 � Classical Statistical Bi‑Partite Systems and the D‑CTC Condition

We define a classical statistical bi-partite system to consist of a direct product 
X = XA × XB where XA and XB are locally compact, Hausdorff topological spaces 
(or, for one of our results below, metric spaces). Then X is also a locally compact 
Hausdorff space (res., metric space). We usually think of XA and XB as containing 
the degrees of freedom of two system parts labelled “A” and “B”, e.g. XA = T∗QA 
and XB = T∗QB might be phase spaces over finite dimensional configuration mani-
folds of many particle systems. The system parts are independent but can be coupled 
dynamically. Then we take as observable algebras of the subsystems �A = Cb(XA) 
and �B = Cb(XB) ; the observable algebra of the full system will be � = Cb(X) . Here, 
one can think of functions on phase space as the classical example.

Then � = Cb(X) contains the C∗-subalgebra ��⊗ generated by all elements f of the 
form

where N ∈ ℕ and fj ∈ Cb(XA) and gj ∈ Cb(XB) where the tensor product is defined 
by fj ⊗ gj(xA, xB) = fj(xA)gj(xB) for all xA ∈ XA , xB ∈ XB . We will also write 
��⊗ = Cb(XA)�⊗Cb(XB) . Note that ��⊗ contains the unit element of � = Cb(X).

If wA is a state on Cb(XA) and wB is a state on Cb(XB) , then one can define the 
product state w on ��⊗ by setting

and extension by linearity. In the case that ��⊗ is a proper C∗-subalgebra of Cb(X) , 
one can still extend the product state w to a state on � = Cb(X) ([24, Prop. 3.1.6]) 
which however need not be unique. We call any such state a product state extension 
of wA and wB (to � = Cb(X)).

If wA and wB are states induced by probability measures �A and �B on the Borel 
sets of XA and XB respectively, then there is a unique product state w induced by a 
unique probability measure � = �A × �B , the product measure of �A and �B , on the 
Borel sets of X. The product measure is determined by

for Borel sets O of XA and P of XB (see Sect. 21 in [25]). We now turn to our results 
establishing that the D-CTC condition can be fulfilled in classical statistical bi-
partite systems in great generality. In Theorem  3.1 we prove a statement to this 
end entirely set in the C∗-algebraic framework, where the states aren’t necessarily 

f =

N∑

j=1

fj ⊗ gj

w(f ⊗ g) = wA(f )wB(g) (f ∈ Cb(XA), g ∈ Cb(XB))

(�A × �B)(O × P) = �A(O)�B(P)
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induced by probability measures. Then we present another version in Theorem 3.2 
where the states are induced by probability measures; it is for this result that we 
make use of Prohorov’s Theorem, summarized below in this section. In the remark 
following the statement of Theorem  3.1, we explain how the formulation of the 
D-CTC condition given here connects to (and is, in fact, more general than) that of 
[1, 16].

Theorem 3.1  Let X = XA × XB define a classical statistical bi-partite system where 
XA and XB are locally compact, Hausdorff topological spaces. Let � ∶ S → S  be an 
operation and let wA ∈ SA be a state (in the C∗-algebraic sense) on Cb(XA).

Then there is a state w ∈ S  on Cb(X) (in the C∗-algebraic sense) with the 
properties

Remark  (3.1.A)     In line with the terminology in [16], we say that a state w with 
the properties (3.1) and (3.2) fulfills the D-CTC condition, or is a solution to the 
D-CTC problem, with respect to the given X = XA × XB , � and wA.

(3.1.B)   In Sect. 1—where the D-CTC condition of [1] has been summarized—
and in [16], the operations are always induced by unitary operators on some Hilbert 
space on which the algebra of observables is represented; in other words, they are of 
the form �(⟨.⟩) = ⟨U∗.U⟩ with a unitary operator U. The setting here is more general 
in that this assumption is not being made. In contrast, another assumption on opera-
tions which enters here is that the operations are assumed to be weakly continuous 
in the sense described above which is a natural assumption in the context of states 
on C∗-algebras. That is not always a natural assumption when operations are induced 
by unitary operators where usually weak sequential continuity is a more natural 
requirement. Theorem 3.2 below actually only requires weak sequential continuity 
of the operation �.

(3.1.C)     If both XA and XB are compact, then the state w is induced by a prob-
ability measure according to the Gelfand–Naimark theorem. One can deduce this 
also from Theorem 3.2, since the tightness assumptions entering in Theorem 3.2 are 
automatically fulfilled if both XA and XB are compact.

Proof of Theorem 3.1  The proof is analogous to the proof given in [16] in the oper-
ator-algebraic quantum field theory context, which in turn is based on the idea of 
the proof by Deutsch for the quantum mechanical case in finite-dimensional Hilbert 
spaces [1].

Choose any state w◦

B
 in SB and define the state �1 in S  by choosing a product 

state extension of wA and w◦

B
 , thence obeying

(3.1)w(fA ⊗ 1) = wA(fA) (fA ∈ Cb(XA)) and

(3.2)𝜏(w)(1⊗ fB) = w(1⊗ fB) (fB ∈ Cb(XB)).

𝜑1(fA ⊗ fB) = wA(fA)w
◦

B
(fB), fA ∈ Cb(XA), fB ∈ Cb(XB).
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Then define a sequence of states �n ( n ∈ ℕ ) in S  inductively choosing product state 
extensions of wA and the partial state fB ↦ 𝜏(𝜑n)(1⊗ fB) , so that

Note that, as �(�n) is in S  , the partial state fB ↦ 𝜏(𝜑n)(1⊗ fB) is in SB 
which then implies that one may choose a product state extension �n+1 from 
��⊗ = Cb(XA)�⊗Cb(XB) to � = Cb(X) . Without additional conditions however, the 
product state extensions might be non-unique. The definition of the �n implies for all 
n ∈ ℕ (notwithstanding their potential non-unique extension to � = Cb(X)),

entailing 𝜑n(fA ⊗ 1) = wA(fA) for all fA ∈ Cb(XA) . Moreover, we have

for all n ∈ ℕ.
Another sequence of states w(N) in S  ( N ∈ ℕ ) will then be defined from the �n by 

an averaging procedure:

It then follows immediately from the properties of the �n that

and furthermore, using (3.3),

Owing to the Banach–Alaoglu theorem [28] that we have already mentioned in the 
previous section, there is a generalized sequence {N�}�∈K , where K is some directed 
index set, such that lim� N� = ∞ and such that

for some state w ∈ S .

𝜑n+1(fA ⊗ fB) = wA(fA) ⋅ 𝜏(𝜑n)(1⊗ fB) (n ∈ ℕ).

𝜑n+1(fA ⊗ 1) = wA(fA) ⋅ 𝜏(𝜑n)(1⊗ 1) = wA(fA),

𝜑1(fA ⊗ 1) = wA(fA)w
◦

B
(1) = wA(fA),

(3.3)𝜑n+1(1⊗ fB) = 𝜏(𝜑n)(1⊗ fB) (fB ∈ Cb(XB))

(3.4)w(N)(f ) =
1

N

(
N∑

n=1

�n(f )

)
(f ∈ Cb(X)).

(3.5)w(N)(fA ⊗ 1) = wA(fA) (fA ∈ Cb(XA), N ∈ ℕ),

(3.6)

|||𝜏(w(N))(1⊗ fB) − w(N)(1⊗ fB)
||| =

||||||

1

N

(
N∑

n=1

𝜏(𝜑n)(1⊗ fB) − 𝜑n(1⊗ fB)

)||||||
=
||||
1

N

(
𝜑N+1(1⊗ fB) − 𝜑1(1⊗ fB)

)||||
≤ 2

N
||fB||∞ (fB ∈ Cb(XB), N ∈ ℕ)

lim
�

wN�
(f ) = w(f ) (f ∈ Cb(X))
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In view of (3.5) and (3.6), and observing the assumed continuity of � which 
asserts that lim� �(wN�

)(f ) = �(lim� wN�
)(f ) for all f ∈ Cb(X) , one now obtains that 

w has the properties claimed in the statement above,

This proves the Theorem. 	� ◻

For the remaining part of this section, we introduce some definitions, following 
[27].

Let � be a probability measure on the Borel sets of a metric space X. The meas-
ure is called tight if for any given 𝜀 > 0 there is a compact subset K of X such that 
𝜇(X�K) < 𝜀.

Similarly, a sequence {�n}n∈ℕ of probability measures defined on the Borel sets 
of a metric space X is called tight if for any given 𝜀 > 0 there is some compact sub-
set K of X such that

Let XA and XB are metric spaces, X = XA × XB , and let � be a probability measure on 
the Borel sets of X. Then one can define the marginals of �,

for Borel sets O of XA and Borel sets P of XB . Both �(A) and �(B) are probability 
measures.

For later use, we put on record the following statement (see [27], Prob. 5.9).

Lemma 3.1  Let XA and XB be metric spaces and let {�n}n∈ℕ be a sequence of prob-
ability measures on the Borel sets of X = XA × XB.

Then {�n}n∈ℕ is tight if and only if the sequences of marginals {�(A)
n
}n∈ℕ and 

{�(B)
n
}n∈ℕ are both tight.

We shall also make use of the following result.
Prohorov’s Theorem [26, 27]
Suppose that X is a locally compact metric space and that {�n}n∈ℕ is a sequence 

of probability measures on the Borel sets of X.
If {�n}n∈ℕ is tight, then it is weakly relatively compact: There are a probability 

measure � on the Borel sets of X and a subsequence {�n(k)}k∈ℕ which converges 
weakly on Cb(X) to � , i.e.

(3.7)w(fA ⊗ 1) = wA(fA) (fA ∈ Cb(XA)) and

(3.8)𝜏(w)(1⊗ fB) = w(1⊗ fB) (fB ∈ Cb(XB)).

(3.9)sup
n∈ℕ

𝜇n(X�K) < 𝜀.

(3.10)�(A)(O) = �(O × XB), �(B)(P) = �(XA × P)

(3.11)lim
k→∞ ∫X

f d�n(k) = ∫X

f d� (f ∈ Cb(X)).
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Theorem 3.2  Let X = XA × XB define a classical statistical bi-partite system where 
XA and XB are locally compact metric spaces.

Let � ∶ S
(P) → S

(P) be an operation on the state space of Cb(X) induced by 
probability measures on the Borel sets of X, and let w

A
∈ S

(P)

A
 be a state on Cb(XA) 

which is induced by a probability measure �A on the Borel sets of XA , assumed to be 
tight.

Suppose also that there is a state w◦

B
∈ S

(P)

B
 on Cb(XB) which is induced by a 

probability measure �◦

B
 on the Borel sets of XB , with the property that the sequence 

of probability measures

on the Borel sets P of XB is tight.

Then there is a state w ∈ S
(P) induced by a probability measure � on the Borel 

sets of X such that

Proof  Using w◦

B
 , the sequence of states �n and whence, the sequence of states 

w(N) ∈ S
(P) ( N ∈ ℕ ) is constructed as in the proof of Theorem 3.1. It follows easily 

from the assumptions that the states w(N) on Cb(X) are indeed induced by probability 
measures, denoted �(N) . We wish to show that the sequence {�(N)}N∈ℕ is tight. 
According to Lemma 3.1, this follows once it is shown that the sequences of margin-
als {�(A)

(N)
}N∈ℕ and {�(B)

(N)
}N∈ℕ are both tight. Making use of (3.5), one can see that

and as �A has been assumed to be tight, tightness follows for {�(A)

(N)
}N∈ℕ . Similarly, 

(3.3) shows that

holds for all Borel sets P of XB . Since the sequence {�(n)

B
}n∈ℕ is by assumption tight, 

the same can easily be concluded for the averaged sequence {�(B)

(N)
}N∈ℕ . Hence, the 

sequence of probability measures {�(N)}N∈ℕ is tight. It can therefore be concluded 
from Prohorov’s Theorem that there is a subsequence {�(N(k))}k∈ℕ which converges 
weakly to a probability measure � on the Borel sets of X. Then (3.12) follows from 

�
(n)

B
(P) = �n(�A × �◦

B
)(XA × P) (n ∈ ℕ)

(3.12)w(fA ⊗ 1) = wA(fA) (fA ∈ Cb(XA)) and

(3.13)𝜏(w)(1⊗ fB) = w(1⊗ fB) (fB ∈ Cb(XB)).

(3.14)�
(A)

(N)
= �A (N ∈ ℕ)

(3.15)�
(B)

(N)
(P) =

1

N

N∑

n=1

�n(�A × �◦

B
)(XA × P)

(3.16)=
1

N

N∑

n=1

�
(n)

B
(P)
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(3.14), and (3.13) is obtained using (3.6) in combination with the weak continuity of 
� as in the final part of the proof of Theorem 3.1. 	�  ◻

4 � A Simple Example—And Ergodicity

The Cesáro-type limit which enters in the construction of the state w fulfilling the 
D-CTC condition in Theorems 3.1 and 3.2 is very reminiscent of the discrete time-step 
evolution averaged limit which is a standard way of obtaining invariant states under 
a transformation. From this perspective, the construction of w is related to Birkhoff’s 
ergodic theorem [32, Theorem 5.1.1]. In this section, we elaborate a bit on this relation, 
considering a very simple example: the two-body problem with a spherically symmet-
ric central potential coupling two point masses (particles) in Hamiltonian mechanics. 
Thus, we have XA = XB = T∗(ℝ3) ≃ ℝ

3 ×ℝ
3 as phase spaces for the particles labelled 

“A” and “B”, with Hamiltonian function

with particle masses mA and mB , and V ∶ ℝ>0 → ℝ a smooth function. Vex(qA, qB) 
is an external potential and � ≥ 0 is a coupling constant. The coupling constant is 
introduced mainly to distinguish two cases: � = 0 , i.e. the center-of-mass moves 
freely, and � = 1 , where the center-of-mass moves under the influence of the 
external potential. We think of Newtonian-type potentials like V(r) = −�∕r and 
Vex(qA, qB) = −(�A∕|qA| + �B∕|qB|) where 𝛼, 𝛽A, 𝛽B > 0 ; however more general 
(binding, central) potentials are also possible. For the Newtonian-like potentials, we 
would exclude configurations with qA = 0 , qB = 0 and qA = −qB.

In the case of � = 0 , the trajectories of bound states (excluding head-on collision) 
correspond to closed ellipses on which the particles travel in their configuration spaces 
around the center-of-mass as focal point. For more general binding potentials V, peri-
helion shifts may occur for bound states, so that the trajectories of the particles in their 
configuration spaces are rosettae revolving around the center-of-mass in a common 
orbital plane.

For � = 1 , the trajectories of the bound states are approximately similar; however the 
center-of-mass trajectory is almost an ellipse with the center of the potential at qA = 0 
and qB = 0 as focal point. This case corresponds to a planet (the “A”-system) with a 
moon or satellite (the “B” system) that are bound in the gravitational field of a very 
heavy central star which under the mutual gravitational interaction remains almost at 
rest and can therefore be effectively described as an external potential. (For this to be 
a good approximation, the stellar mass is to be very much larger than mA and mB , and 
also |qA| and |qB| are to be very much larger than |qA − qB|.)

Then let Ft ∶ XA × XB → XA × XB denote the phase flow map for the two-body sys-
tem with the Hamiltonian function H� , taking phase space points from some “initial” 
time ti to some “final” time tf = ti + t . It induces the C∗-algebra isomorphism

H�(qA, pA;qB, pB) =
1

2mA

|pA|2 +
1

2mB

|pB|2 + V(|qA − qB|) + �Vex(qA, qB)
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on the phase space functions, and in turn it induces the operation

on the state space S  of Cb(XA × XB) . Note that one also has �
t
∶ S

(P) → S
(P) , i.e. it 

maps the set of probability measures on the Borel sets of X = XA × XB to itself.
We wish to illustrate the significance of the tightness assumption in Theorem 3.2. 

Let us look at phase space points xA = (qA,i, pA,i) and xB = (qB,i, pB,i) at “initial” time 
ti . The points correspond to pure states on Cb(XA) and Cb(XB) , induced by Dirac-
measures �xA and �xB concentrated at xA and xB , respectively. The configuration space 
points qA and qB correspond to the inertial coordinates of the particles.

Assume first that � = 0 . Then, given any xA , it is always possible to find an xB 
so that the resulting particle trajectories form a bound system, but in general, the 
center-of-mass will then move with a constant (non-zero) velocity. In this case one 
cannot expect that the sequence of measures5 �n

t
(�xA × �xB ) (n ∈ ℕ) will be tight 

because (i) of the validity of Liouville’s theorem and (ii) the support of these meas-
ures in the q-components remains within a ball of sufficiently large, fixed radius 
around the center of mass at time n ⋅ t , so it moves to infinity as n → ∞ . (One could 
compensate that by re-defining Ft so as to subtract the center-of-mass motion, but 
that re-definition depends on the choice of xA and xB.)

Consider now the case � = 1 . Then there are a non-empty open set Y and a com-
pact set K in X = XA × XB so that Fn

t
(Y) ⊂ K for all n ∈ ℕ . Therefore, whenever one 

chooses a point xA ∈ XA that is in the A-component of Y, there is some xB in XB 
with (xA, xB) ∈ Y  . Consequently, one obtains that the sequence of marginal meas-
ures P ↦ �n(�xA × �xB)(XA × P) (n ∈ ℕ) is tight because all of these measures have 
their support in the B-component projection of K, which is a compact subset of XB . 
Hence, in this setting, we can apply Theorem 3.2. As already explained, � is identi-
fied with �t , and we may choose wA as being induced by a probability measure �xA 
for a phase space point xA that is part of a bound state in Y as just explained; there 
is actually a wide range of choice for such xA . Then we may choose w◦

B
 as any �xB so 

that (xA, xB) ∈ Y  . As discussed, the assumptions of Theorem 3.2 are fulfilled, and 
there is a state w given by a probability measure on the Borel sets of X so that the 
properties (3.12) and (3.13) are fulfilled. On the other hand, if one chooses �xA for wA 
as before, but selects as w◦

B
 a �xB so that (xA, xB) does not correspond to a bound state, 

one cannot expect that the required tightness assumption is fulfilled, by a reasoning 
similar to the � = 0 case before.

In the case � = 1 and (xA, xB) ∈ Y  , let us try to understand the properties of the 
state w constructed in Theorem 3.2 with the properties (3.12) and (3.13). To this 
end, to ease the illustration, we consider a very much simplified situation. We 
assume that mA is very much larger than mB so that the motion of the “A” particle 

A
t
f = f◦F

−1
t

(f ∈ C
b
(X

A
× X

B
))

(�
t
w)(f ) = w(A

t
f )

5  Here we slightly abuse notation and identify states with the measures by which they are induced; 
instead of �n

t
(�

x
A
× �

x
B
) we should write, more correctly, the transformed measures (�

x
A
× �

x
B
)◦Fn

t
.
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coincides to very good approximation with the center-of-mass motion. Further-
more, we assume that |qA| is extremely large so that, even for a very high number 
of orbits of the “B” particle around the “A” particle, the center-of-mass motion is 
approximately a free motion. This corresponds to a satellite, or “piece of rock” 
(“B” particle) orbiting a planet (“A” particle) which is on a very remote orbit 
around a star. We assume that the orbital planes are coincident, and that the orbit 
of the satellite around the planet is, to good approximation, circular. Then we 
consider the measures (3.15) constructed in Theorem 3.2 for the present situation,

and change to inertial coordinates qA , qB in which (according to our simplifying 
assumptions) the planet is approximately at rest. The measures �(B)

(N)
 depend, of 

course, on how t is chosen. For the assumed (approximately) circular orbit, let T 
denote the orbital period. There are several cases that one can consider: 

	 (i)	 t = kT  for some k ∈ ℕ . Then �n
t
(�xA × �xB )(XA × P) is independent of n for all 

n ∈ ℕ since we have (in our approximation) Ft(xA, xB) = (xA, xB) in this case. 
Therefore, �(B)

(N)
= (�xA × �xB )(XA × P) is also independent of N: Applying �t just 

reproduces the initial phase space points.
	 (ii)	 t = kT∕� for some k,� ∈ ℕ . Then F�

t
(xA, xB) = (xA, xB) and hence 

�t(
∑�

j=1
(�xA × �xB)(XA × P) =

∑�

j=1
�
j

t (�xA × �xB)(XA × P)  .  T h e r e f o r e , 
�
(B)

(m⋅𝓁)
(P) = �

(B)

(𝓁)
(P) for all m ∈ ℕ.

		    Thus, in case (i), there is a state w fulfilling (3.12) and (3.13) whose partial 
state on the “B”-part of the system, at initial time ti , is given just by �xB . In 
case (ii), there is a state w fulfilling (3.12) and (3.13) with partial state on the 
“B”-part given by 

where (x
A
, x

B
(t�)) = F

t�
(x

A
, x

B
). This “statistical mixture of phase space 

points” can be represented as � copies of the B-particle, i.e. � identical satel-
lites, each on the same circular orbit, separated in position and momenta by a 
1∕� fraction of the orbit, so that this phase space distribution gets mapped to 
itself under the phase space map F�

kT∕�
 . Quite clearly, the cases (i) and (ii) 

correspond to periodic orbits of the (effective) motion of the satellite around 
the planet.

	 (iii)	 t = rT  with r irrational. In this case, there are no “periods” in the sequence 
�
(B)

(N)
 ( N ∈ ℕ ) and thus any state w constructed in the proof of Theorem 3.2 with 

the properties (3.12) and (3.13) can be deduced to be induced, on the “B”-part 
of the system, by a measure P ↦ �(XA × P) which is supported on a dense set 
on the circular orbit of the satellite around the planet. This follows since on 
the circle, the irrational rotations (1) are known to produce dense orbits under 

(4.1)�
(B)

(N)
(P) =

1

N

N∑

n=1

�n
t
(�xA × �xB)(XA × P).

1

�

�∑

j=1

�xB(jkT∕�)
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successive applications by a classic result of Kronecker [32, Theorem 3.2.3] 
and they (2) are ergodic with respect to the Lebesgue-measure on the the 
circle [32, Theorem 3.5.7].

The three cases are illustrated in Fig. 2. For an interactive illustration, see [33]
Thus, under the very idealized assumptions made for the simplified situation 

as described, there is actually a state w fulfilling the D-CTC condition for all Ft 
( t ∈ ℝ ): The ergodic state, obtained by the construction of w in Theorem 3.1 for the 
case that � = �t� induced by Ft′ for any t� = rT  with r irrational. This amounts to tak-
ing the Lebesgue measure on the circular trajectory of the satellite. It is worth point-
ing out that in [3] (Appendix B), solutions to the D-CTC problem in a more general 
formal framework are also obtained by means of an ergodic averaging.

Going back to the days of the very inception of ideas on ergodicity, when think-
ing of a satellite orbiting a planet, the rings of the planet Saturn are an example 
that one might envisage as an approximate realization of the ergodic state. (This 
“example” appears in publications of Boltzmann, see [34] for references and discus-
sion.) Indeed, if one evolves the ring system by an arbitrary time-step, it appears 
unchanged, at least at scales larger than about 10 km which is tiny compared to the 
dimensions of the ring orbits—at scales larger than around 10 km, the rings, which 
are mostly formed by rocks and pieces of ice of various sizes between the millim-
eter and kilometer scale, appear almost homogeneous in the angular direction (while 
there are significant density variations in the radial direction) [35]. (It should be 
noted that the dynamics of the rings of Saturn is only approximately ergodic, see 
e.g. [35, 36] and literature cited there for investigations on this problem.) However, 
our discussion in this section should serve to illustrate that the D-CTC condition is 
nothing extraordinary in classical statistical mechanics, that it relates to ergodicity 
and can be viewed as approximately realized in macroscopic physical systems at 
appropriate scales.

Fig. 2   Illustration of the three cases (i), (ii) and (iii) for the distribution of the state w on the “B”-part of 
the system at initial time ti mentioned in the text, from left to right. For case (i), the initial position qB,i of 
the “satellite” on the circular orbit is depicted by the blue dot and its initial momentum pB,i is represented 
by the arrow. Case (ii) shows a distribution for k = 4 , with four copies of the “satellite” separated by 
moving the phase space points by T/4 on the orbit. In case (iii), one obtains a dense distribution over the 
orbit; the momenta are not indicated (Color figure online)
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5 � Discussion and Conclusion

We have shown that the D-CTC condition is generically fulfilled for classical statisti-
cal bi-partite systems, under very general (yet mathematically precise) conditions. The 
D-CTC condition originated from Deutsch’s proposal for giving a description of what 
it means that parts of quantum systems undergo processes that might be viewed as ana-
logues to “going backwards in time”. However, whether or not that condition can be 
fulfilled rests mainly on convexity and completeness of the space of states of a system, 
irrespective of its quantum or classical nature. Moreover, in the light of the results of 
[16], as we have indicated in Sect. 1, one might also doubt if the D-CTC condition 
actually says very much about closed timelike curves as they are understood in gen-
eral relativity. This may call into question if the D-CTC condition really is a means of 
“treating time travel quantum mechanically” (title of the article [11]) or if statements 
like “quantum mechanics therefore allows for causality violation without paradoxes 
whilst remaining consistent with relativity” [37] are well-founded.

The starting point of Deutsch’s discussion was a classical system where the states 
consist of finite sequences of “bits”, i.e. the state space is a discrete, finite set, not 
admitting convex combinations. That assumption restricts the choice of states fulfilling 
the D-CTC considerably, as is shown in an example in [1]. In contrast, taking “q-bits” 
as the “quantized” version of a classical “bit” system naturally renders a convex and 
complete state space so that the D-CTC problem generically has many solutions. Nev-
ertheless, it is rather the possibility to take classical statistical mixtures of states than 
anything specifically quantum mechanical that warrants solutions to the D-CTC con-
dition in a q-bit system. Allowing classical statistical mixtures of “bit” states would 
have the same effect to this end. (However, in applications, “bit” states are introduced 
exactly for the purpose of avoiding uncertainties in state discrimination that may occur 
e.g. in the form of classical mixtures of states, so that from that perspective, forming 
statistical mixtures doesn’t appear natural for “bit” state systems. Yet it is a viable theo-
retical possibility.)

Therefore, one should be careful not to jump to explanations as to why the D-CTC 
condition is fulfilled in quantum systems which rely on typical features of quantum sys-
tems or their behaviour in spacetime (e.g. interference or uncertainty relations) as this 
does not relate to what the D-CTC condition—or the fact that it can be generically 
fulfilled—is based on; such explanations may result in inadequate interpretations and 
are therefore misleading. We would regard the attempt in [1] to give an explanation for 
the solvability of the D-CTC problem in quantum mechanics based on a many-worlds 
interpretation, in this sense, as unconvincing (it has elsewhere been criticized on other 
grounds [38]).

Yet, the fact that the D-CTC condition can generically be solved in q-bit systems 
can open interesting aspects for quantum computing and quantum communication [1, 
2, 10–15]. In this context, the central point of investigation is—using the notation of 
the beginning part of Sect. 1—the question what “output” states on the “A” part of the 
bi-partite system,

⟨�⟩Ã = TrA(𝜚A�) = Tr(𝜚U∗(�⊗ �)U),
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can be derived from the density matrix � fulfilling the D-CTC condition for a given 
unitary U on the full system, and an “input” state ⟨�⟩A = TrA(�A�) on the “A” part 
of the system. In other words, the investigation is on the map 𝜙 ∶ 𝜚A ↦ 𝜚A for given 
U. There are some difficulties here. First, since � is not uniquely determined by U 
and �A , � is not naturally defined as a map on the state space of the “A” part of the 
bi-partite quantum mechanical system. Secondly, given that a map � can be deter-
mined by imposing additional selection criteria, if � is constructed as in [1], then � 
fails to be convex, i.e. it isn’t an operation. This is also to be expected in the classical 
(measure-theoretic) framework which we have considered in the present article in 
the sense that in general, the dependence of the state w in the proof of Theorems 3.1 
and 3.2 and of the partial state w̃A(fA) = 𝜏(w)(fA ⊗ 1) is not convex in the given state 
wA on the “A”-part of the system.

That failure of � to be convex in �A is in the literature usually referred to by saying 
that (solutions to the) D-CTC condition are “non-linear” in the input state �A , and it 
has been discussed that this may impede the utility of the solvability of the D-CTC 
problem for the purposes of quantum computing. For considerable further investiga-
tion on this issue, see again the articles just cited, and also references given there. A 
contention expressed in [2] is that due to the failure of � to be convex, the D-CTC 
condition is incomplete. Basically, that is also our conclusion, however potentially 
at a more fundamental level, in the sense that the D-CTC condition doesn’t depend 
on typically quantum mechanical features of a bi-partite system. When claiming that 
quantum mechanics is an important ingredient in avoiding the notorious paradoxes 
of time travel, but then implementing that formally at the level of the D-CTC condi-
tion which is not sensitive to whether a bi-partite system is of quantum mechanical 
nature or not, and instead just depends on its basic statistical properties, something 
seems to be missing.

Concerning the possibility that the D-CTC condition isn’t sufficiently complete or 
specific to really allow statements connecting quantum processes and closed time-
like curves, we have commented in [16] that a possible approach could be to include 
spacetime localization into the description, in the spirit of the algebraic framework 
of quantum field theory as sketched in Sect.  1. Still, one would have to connect 
locality properties of the unitary operator U, or of the operation � with the locality 
properties of the observables. In the present paper, we have not considered locality 
properties of the observables and that is, in a certain sense, an omission. Therefore, 
it would be interesting to see if, and how, our results might extend to the analysis of 
billiard ball collisions in the presence of wormhole-type time machines [5–7].

In [17] we have pointed out that the results in [16] (as well as in [17]) on whether 
the D-CTC condition can be fulfilled or not depend very much on the assumptions 
made, and on whether one insists that the D-CTC condition is fulfilled exactly, or 
just approximately (to arbitrary precision). In fact the question of the adequate math-
ematical idealization is a common problem when trying to explore unchartered ter-
ritory in physics by theoretical methods. In the context of the question if one may 
ascribe physical reality to anything which one might bear the properties of a “time 
machine”, i.e. processes which can be interpreted as brought about by the presence 
of closed timelike curves, the problem of what constitutes an adequate mathematical 
idealization acquires considerable importance, and we think that one of the inspiring 
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aspects about the investigation of the D-CTC condition is to highlight that issue, and 
potentially gain some insight.
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