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Abstract

The D-CTC condition, introduced by David Deutsch as a condition to be fulfilled
by analogues for processes of quantum systems in the presence of closed timelike
curves, is investigated for classical statistical (non-quantum) bi-partite systems. It is
shown that the D-CTC condition can generically be fulfilled in classical statistical
systems, under very general, model-independent conditions. The central property
used is the convexity and completeness of the state space that allows it to general-
ize Deutsch’s original proof for g-bit systems to more general classes of statistically
described systems. The results demonstrate that the D-CTC condition, or the condi-
tions under which it can be fulfilled, is not characteristic of, or dependent on, the
quantum nature of a bi-partite system.

Keywords Closed timelike curves - Classical statistical systems - Ergodicity

1 Introduction

In a seminal paper [1], David Deutsch introduced a condition (henceforth referred to
as D-CTC condition) that is supposed to capture the meaning of processes “running
back in time” in bi-partite quantum systems (and more generally, in multi-partite
quantum systems, or quantum circuits). In its simplest form, it can be described as
follows: Assume a bi-partite quantum mechanical system given, consisting of a Hil-
bert space H = H, @ H composed of the Hilbert spaces of two subsystems. More-
over, suppose that U is a unitary operator on H, which is viewed as describing (the
result of) a dynamical interaction between the two systems, akin to a time evolution
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operator, or a scattering matrix. Furthermore, let o, be a density matrix on H,, or
synonymously, a state on the “A”-part of the system with expectation values

for

(a), = Try(0,2)

all bounded linear operators a on H, where we have written Tr, to emphasize

that the trace is to be understood with respect to the Hilbert space H,. Relative to
these data, a density matrix ¢ on H is said to fulfill the D-CTC condition if the fol-
lowing two conditions are fulfilled (see Fig. 1):

(1)

2

The partial state induced by ¢ on the “A”-part of the system (prior to the inter-
action U taking effect) equals (.)4, i.e.

Tr(o(a ® 15)) = Try(04a)

holds for all bounded linear operators a on H, (with 15 denoting the identity
operator on Hy). Equivalently, o, equals tr’% (), the partial trace of ¢ taken
with respect to . Note that in the previous equation, the trace Tr appearing
on the left hand side is taken on the full Hilbert space H = H, ® Hp.

The partial state induced by ¢ on the “B”-part of the system (prior to the interac-
tion U) returns to itself after the interaction U has taken effect, i.e.

Tr(eU* (1, @ b)U) = Tr(o(1, @ b))

holds for all bounded linear operators b on H (with 1, now denoting the iden-
tity operator on H,).

In his proof that the D-CTC condition can always be fulfilled when the Hilbert

spaces H, and Hj are both finite-dimensional, Deutsch uses that the map
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on the set of density matrices gz on Hjy has a fixed point. However, what is actu-
ally being used (and allows the fixed point argument to be applied) is that for quan-
tum mechanical systems, the state space is always convex and complete: It allows
for classical statistical (or probabilistic) mixtures of states, and limits (in a suita-
ble sense) thereof. In other words, the D-CTC condition, and the question to which
extent it can be fulfilled, is not primarily sensitive to, or dependent on, genuinely
quantum mechanical properties of a bi-partite system, such as quantum mechani-
cal superpositions (interference effects), uncertainty relations or entanglement,
but really on the convexity and completeness of the state space of the systems in
question. Therefore, the D-CTC condition can also be fulfilled in classical (i.e.
non-quantum) statistical physical theories, such as classical statistical mechanics,
under very general, physically realistic conditions; it is the purpose of this article
to demonstrate that fact at an appreciable level of mathematical generality and rig-
our. The authors of [2] reach at a related conclusion, however based on a different
reasoning than presented in this article; they argue that in the limit of large Hilbert
space dimension of the “B” system part, the D-CTC condition becomes classical. In
[3], the authors indicate that the D-CTC condition can be staged in a far more gen-
eral formal framework than that of quantum mechanics. The feature of the D-CTC
condition to be primarily dependent on the ability to form classical statistical mix-
tures of states has also been observed in [4]. That same article also discusses related
investigations of classical “billiard ball” collisions wherein one of the balls enters a
“wormhole”-type time machine and re-emerges “prior to entering” exactly such as
to be kicked by the other ball into the time machine [5-7]. Such scenarios may be
viewed as particular classical counterparts of the D-CTC set-up (or rather—histori-
cally more correctly—the D-CTC approach ought to be seen as an attempt at pro-
viding a quantum analogue for such “billiard-ball-collisions-with-wormhole-time-
machines” set-ups) but we will not follow this line of analogy in the present article.
See, however, Sect. 5 for further remarks.

The D-CTC condition is always presented in the context of quantum physics' or
of quantum computational considerations (as a sample, see the publications [1, 2,
10-15], see also references therein). Therefore, it seems well worth pointing out,
and demonstrating, that it is basically of a statistical, but not necessarily quantum
physical nature.

In a recent paper [16] (see also [17] for a summary), we have investigated the
D-CTC condition in the setting of operator-algebraic quantum field theory [18]. It
is useful to briefly outline some of the basic elements of that approach as it helps
to make parallels between the D-CTC condition as formulated above for quantum

! The article [8] portrays quantum mechanics as a natural mechanism for avoiding paradoxes that would
occur in the presence of CTCs in the framework of classical physics; however in [4] it is pointed out
that forming statistical mixtures would in a similar way allow it to avoid those paradoxes. Nevertheless,
linking the D-CTC condition with quantum physics has become a commonplace because of its origins
and potential consequences in quantum computing (see references cited above), and seems to have also
gained traction in popular culture: In [9], the lead character Tony Stark verbally mentions “the Deutsch
proposition” in an attempt of the protagonists to travel back to the past using a fictional time machine
based on quantum physics.
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mechanical systems, and the classical statistical physics case to be considered in this
article, more easily visible.

In the operator-algebraic approach to relativistic quantum field theory [18], there
is for any system (quantum field) a C*-algebra .4 whose self-adjoint elements cor-
respond to observables of the system. In most cases, it is no major restriction to sup-
pose that A is a subalgebra of some B(H), the algebra of all bounded operators on
an (infinite dimensional) Hilbert space 7. It is also usually assumed that A contains
an algebraic unit element denoted by 1; if A C B(H), that would be the unit opera-
tor on H. Supposing that the spacetime on which the quantum field propagates is
Minkowski spacetime (however, the general setting allows for choosing more gen-
eral, curved spacetimes instead), it is assumed that for any finite (that is, relatively
compact) open region O in spacetime there is a C* subalgebra A(O) of A contain-
ing the observables that can be measured at times and locations within O, including
1. In keeping with this set-up, it is further assumed that .A(O,) C .A(O,) whenever
O, C O,. This property is called isofony. Another assumption is locality, meaning
that ab = ba for all a € .A(O,) and b € A(Op) provided that the spacetime regions
O, and Oy are causally separated, i.e. there is no causal curve beginning in O, and
ending Oj. Particularly in this situation where O, and Oy are causally separated, one
may take the pair of algebras .A(O,) and A(Op) as the mathematical model of a
causally separated bi-partite system, with .A(O,) and .A(Op) playing roles analogous
to B(H,) and B(Hj) in the quantum mechanical setting outlined at the beginning.

Another important ingredient of the operator-algebraic approach are states. A
state is any expectation value functional a — (a) (a € A) on the algebra of observ-
ables A, and therefore, by definition, a — (a) is linear, and fulfills (a*a) > 0 for all
a € A, as well as (1) = 1. Usually, if A is contained in some B(H), one considers
only normal states which arise from density matrices; in other words, a state is nor-
mal if it is of the form

(a) =(a), =Tr(ea) (a€A)

for some density matrix ¢ on the Hilbert space H.

One may now reformulate the D-CTC condition in the operator-algebraic set-
ting as follows. As mentioned, one starts from an observable algebra A C B(H) for
some Hilbert space H, together with observable algebras .A(0,) and A(Op) for two
causally separated spacetime regions O, and Oy, representing the observables of a
causally separated bi-partite system. Further data assumed given are a normal state
(a), = Tr(p,a) (a € .A(0,))on A(O,) (on the “A”-part of the full system) induced
by a density matrix g, on H, and a unitary operator U on H. Given these data, a state
(¢) =Tr(oc) (c € A)is said to fulfill the D-CTC condition if the following two
conditions are fulfilled:

(I) The partial state of {.) on A(O,) coincides with (.),, i.e.
(a) =(a), (a€ . A0y)
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(II)  The partial state of {.) on .A(Op) returns to itself after the action of the unitary
U has taken effect, i.e.

(U™DU) = (b) (b€ A(Op))

The analogy with the D-CTC condition with the quantum mechanical case described
above should be clear on noting that, since both .4(0,) and A(Op) are in a defined
way subalgebras of the larger C*-algebra A (or of B()), and all the algebras share
the common algebraic unit element 1, the a € .A(O,) here is analogous to the a ® 1
above, and similarly the b € A(Op) here is analogous to the 1 ® b above. We men-
tion however that in general, in quantum field theory the operator algebra generated
by A(0,) and A(Op) in B(H) need not equal (up to identification) the tensor product
A(0,) ® A(Op). A precise statement would require introducing von Neumann alge-
bras at this point which we shall not embark on. Nevertheless, there are criteria as
to when such an equality actually does hold, known as split property or statistical
independence of states. We will not further discuss these matters here but refer to
[18-20] and references cited there for full details.

The results obtained in [16, 17] are, roughly, as follows (we give here a mainly
qualitative description and refer to the cited references for full details). States fulfilling
the D-CTC condition cannot be found if the states are also required to fulfill a Reeh-
Schlieder like property [18] which implies a strong form of entanglement [21]. On the
other hand, if the local algebras of observables fulfill the split property just mentioned,
then one can always find states fulfilling the D-CTC condition approximately to any
prescribed precision. Since the assumptions are met for a wide range of quantum field
theories on globally hyperbolic spacetimes which do not admit closed timelike curves,
the latter result makes it doubtful if the D-CTC condition actually relates to quantum
processes based on the presence of closed timelike curves in the sense of general rela-
tivity. The present work casts doubts on whether the D-CTC condition has quantum
physics at its core. We will address these points in a discussion towards the end in
Sect. 5.

We now turn to describing the content of the present work. In Sect. 2, we will
summarize some basics of commutative C*-algebras which, in an operator algebraic
approach, are used as algebras of observables of classical (non-quantum) statistical
systems. The relation to functions (random variables) on locally compact or compact
topological Hausdorff spaces and probability measures (states)—through the Riesz
Representation Theorem and the Gelfand—Naimark Theorem—is also discussed. We
have relied on the references [22-25] for our presentation which, on one hand, is
included to make this work self-contained and to introduce the concepts and nota-
tion needed, and on the other hand, to explain some points that need to be taken care
of when considering limits of states on certain commutative C*-algebras and the
question if they still arise from probability measures. We take up on this topic again
in Sect. 3 where the concept of classical statistical bi-partite systems is introduced.
A criterion ensuring that limits of sequences of probability measures exist on C,(X),
the C*-algebra of bounded continuous functions on a locally compact metric space
X, and are again probability measures, is provided by Prohorov’s Theorem [26, 27]
and we use it in Theorem 3.2. In our Theorem 3.1 presented before in Sect. 3, we
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prove a very general statement to the effect that the D-CTC condition for classical
statistical bi-partite systems is fulfilled but with states in an abstract C*-algebraic
sense which need not be given by probability measures. As indicated, Theorem 3.2
is more specific in that it establishes that the states fulfilling the D-CTC condition
are given by probability measures under certain assumptions. A simple example in
form of a two-body problem interacting by a binding central potential is discussed
in Sect. 4 to illustrate properties of the states fulfilling the D-CTC condition con-
structed in Theorems 3.1 and 3.2. The example will also serve to point out a relation
to ergodicity. In the last section, we collect discussion and conclusion, relating our
results also to other literature.

2 Commutative C*-Algebras and Classical Statistical Systems
2.1 Generalities

Physical systems that are subject to a statistical description of their measurement val-
ues, but are classical in the sense of not being quantum systems, have observable alge-
bras which are commutative (or Abelian). Let us denote a generic commutative C*
-algebra by A. Commutativity means that fg = gf for all f,g € A and consequently,
there are no uncertainty relations among the elements of A which would be indicative
of a quantum theory. Likewise, there is no entanglement. Assuming that there is a unit
element 1 contained in A, a state on A is defined as a linear functional {.) : A - C,
f — (f) fulfilling (f*f) > O (positivity) and (1) = 1 (normalization). We recall the the
well-known fact that any state w on a C*-algebra (commutative or not) is norm-con-
tinuous: |w(f)| < ||f|| for all f where ||f|| is the C*-algebra norm of f [24]. It is worth
mentioning that C*-algebras are algebras over C (as field of numbers) but that, as in
quantum mechanics, only their hermitean elements, fulfilling f* = f, are considered
as observables yielding real-valued expectation values w(f) = (f) upon evaluation on
states.

We shall now adopt the mathematical notation and denote a state as w : A — C so
that w(f) = (f) (f € A), since this notation has some advantages. It is easy to notice
that the set of states on A, henceforth denoted as . = Aj‘r, is closed under finite convex
combinations, i.e. if wy,...,w, are finitely many states on A and 4,, ..., 4, are non-
negative numbers such that 37/ A, = 1, then the convex sum Y,'_, A,w, that can be
formed from the given states is again a state on A. A state is called pure if it can be rep-
resented in this convex sum form if, and only if, all the w;, coincide; or equivalently, iff
all 4, = 0 except for exactly one 4,, which therefore must be equal to 1. A state which is
not pure is called mixed. Furthermore, the set of states is closed with respect to taking
weak limits: Suppose that {w, } .« is a generalized sequence of states w,. € ./, where
KC is an arbitrary directed set. The generalized sequence {w, } .« is called weakly con-
vergent (strictly speaking, weak-*-convergent) if lim, w(f) exists for every f € A.
Then

w(f) =limw(f) (f €A)
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is again a state on A. We mention also that . is weakly compact by the
Banach—Alaoglu—Theorem [28], which entails that, whenever {w, } .« is a general-
ized sequence in ., then it admits a weakly convergent generalized subsequence
{We()}cez (With suitable directed index set Z).

An operation is any map 7 : . —» . which preserves convexity, meaning that

T(Z Akwk> = 2 At(wy)
k=1 k=1

for all finite convex sums of states. Moreover, we will assume operations to
be weakly continuous’ which is defined as follows: 7 is weakly continuous
if, for all weakly converging generalized sequences {w,}, o of states in .7,
also {z(w,)}.ex 15 a weakly converging generalized sequence of states, with
lim, z(w,)(f) = r(lim, w)(f) for all f € A. We will see some examples soon; obvi-
ously, if@ : A — Ais a C*algebra morphism which preserves the unit element, then
its dual map a*(w)(f) = w(a(f)) is an operation.

2.2 The Gelfand-Naimark Theorem

The next step is to summarize the content of the Gelfand—Naimark theorem (see
Lemma 2 in [29]) which characterizes commutative C*-algebras as sets of number-
valued functions and the states as probability measures. To this end, we largely fol-
low the presentations of [22—24] which we recommend for further reading.

Let A denote a commutative C*-algebra with unit element 1. Then the Gel-
fand—Naimark theorem asserts that there is a compact topological Hausdorff space X
and a C*-algebra isomorphism ¢ : A — C°(X) which preserves the unit. Here, C°(X)
is the vector space of all continuous functions on X taking values in C; endowing it
with the pointwise product (fg)(x) = f(x)g(x) (x € X) as an algebra product and com-
plex conjugation as the *-operation, and taking as C*-norm ||f||,, = sup,ex [f®)l,
C%(X) is a commutative C*-algebra. Its unit element clearly is the function 1(x) = 1
(x € X) taking identically the value 1. Moreover, for any state w on A, the induced
state w?(f) = w(¢~'(f)) on C°(X) is given by a probability measure ,, defined on
the Borel sets of X:

w(f) = / f@du, ) (e cX)).
X

A probability measure is normalized so that fx 1dp,, = 1. Furthermore, a state w
on A is pure if and only if the measure y,, is concentrated at a single point x; in X
(a “Dirac measure”), that is, w?(f) = f(x,) for all f € C%(X). Therefore, the Gel-
fand transform f — f, f(x) = w,(f), where the w, (x € X) range over the set of pure
states on A, provides the concrete realization of the isomorphism ¢. Any homeo-
morphism F : X — X gives rise to a C*isomorphism Ay : C°(X) — C°X) given

2 Strictly speaking, the continuity property defined here is weak-*-continuity.
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by Ap(f) = foF~'and one has Ap(1) = 1; pulling A back by ¢ renders a C*-algebra
isomorphism a of A given by a = ¢~'oA 0¢ which preserves the unit element 1.
Consequently, the dual map 7, = a7. is an operation on the set of states on A. On the
Borel measures of X, this operation is given as u — A7(#) = poF which can be seen
from the measure-transformation equation (cf. [25, Theorem 12.46])

/ foF ' du = / fd(uoF) (f € C°(X)).
X X

Consequently, for a commutative C*-algebra, operations on the set of states arise
from bijective homeomorphisms in the indicated way. There are also operations typ-
ically not arising in this way. A simple example is 7 : w — %(WO + w) where wy, is
any fixed but arbitrary state. Another class of examples concerns operations on a
particular set of states. Assume that a commutative C*-algebra with unit element
is given as C%(X) for a compact Hausdorff space X, and select any state w, i.e. a
probability measure y, on the Borel sets of X. Then the Hilbert space of the GNS
representation (see Theorem 1 in [29], or Theorem 3.3.3 in [24] for a more modern
version)® is given as L>(X, Ho) where at this point, one should bear in mind that the
L? space is formed by equivalence classes of square-integrable functions on X where
functions are defined as equivalent iff they deviate on sets of zero y, measure. With
respect to the chosen g, one can introduce normal states w ,(f) = Tr(of ) (f € C'(X))
where ¢ is any density matrix on the Hilbert space L*(X, Hp) and f € C9%(X) acts as
multiplication operator on L*(X, Ho). Then any unitary linear operator U on LA(X, Ho)
induces the operation z;; : w, = wy,,« on the set of normal states with respect to p,
4 As a side note, a formulation of classical (statistical) mechanics in a related L?
-space setting appears in [30]; it also serves as a starting point in the so-called geo-
metric quantization [31].

2.3 The Case of A = C,(X) for X Non-compact

The discussion up to now should have clarified the bijective relation between com-
muntative C*-algebras with unit element and their states, and the algebras C°(X)
on compact Hausdorff spaces X and the probability measures on the correspond-
ing Borel sets. The latter mathematical framework is the starting point of classical
statistical theories. Here, X usually contains the (classical) degrees of freedom of a
physical system; in fact, most commonly X = 7*Q is the phase space of a system
whose degrees of freedom can move in some smooth manifold Q. In this situation,
there arises the difficulty that even if Q happens to be compact (which needn’t be
the case), T*Q is not. Therefore, we are confronted with the circumstance that in

3 Given any C*-algebra A (not necessarily commutative) containing a unit element, and a state @ on A,
the GNS representation is a triple (H, z, ) where H is a Hilbert space, x is a unital *-representation of
A by bounded linear operators on H and Q is a unit vector in H so that w(a) = (Q, z(a)Q2) holds for all
a € A, and 7(A)Q is dense in H. For every state on a unital C*-algebra there is such a GNS representa-
tion and it is unique up to unitary equivalence.

4 Such an operation is in general only weakly sequentially continuous.
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many physically relevant cases, X isn’t in a natural way compact. This issue is of
some concern for us because it has some consequences for the convergence of states
which we need to consider in order to obtain solutions to the D-CTC problem in the
following section.

Therefore, assume now that X is a locally compact Hausdorff topological
space, and define Cy(X) as the set of all continuous functions f : X — C that van-
ish at infinity, i.e. given f € Cy(X), there is for every € > 0 some compact set K
such that [f(x)| < € for all x € X\K. Using the same definitions for the algebraic
operations as for C°(X), the set Cy(X) is a commutative C*-algebra with C*-norm
IIfllo = sup {lf(x)| : x € X}. If X is compact, then Cy(X) = C*(X) (cf. [25, Sect.
(7.13a)]), but if X is not compact, then Cy(X) is a commutative C*-algebra without
an algebraic unit element. One can still define probability measures y on the Borel
sets of X as the Borel measures that have unit weight, x#(X) = 1. This is equivalent
to requiring that the positive functional w(f) = fx fdu (f € Cy(X)) induced by p on
Cy(X) has unit norm, that is, ||w|| = 1 where ||w|| = sup {|w()| : ||f|lo =1}

The Gelfand—Naimark theorem which has been stated above for the case of a
commutative C*-algebra A with an algebraic unit element has the following exten-
sion to the case that A doesn’t possess an algebraic unit element: There is a locally
compact Hausdorff space X and a C*-algebraic isomorphism ¢ : A — C,(X) which
again is given by the Gelfand transform; so any state w on A (where the normaliza-
tion condition, in absence of the algebraic unit 1, is replaced by the condition that w
has unit norm, |[w|| = 1) induces a state w?(f) = w(¢~'(f)) (f € Cy(X)) on Cy(X)
which is given by a probability measure on the Borel sets of X (this is exactly the
statement of the Riesz’ Representation Theorem, see e.g. [25, Theorem 12.36]), and
the pure states on A are exactly those which arise as probability measures concen-
trated at single points of X.

For any locally compact Hausdorff space X, Cy(X) is naturally a C*-subalgebra
of C,(X), the set of all bounded continuous functions f : X — C. Clearly, C,(X)
becomes a C*-algebra using the analogous algebraic operations as defined previously
for Cy(X), and again, | |||, = sup {|f(x)| : x € X} as C*-norm. However, C,(X) con-
tains an algebraic unit element given by the function taking the constant value 1,
similarly as for C°(X) for a compact X. While in the case that X is not compact,
Cy(X) is a proper C*-subalgebra of C,(X), any state w on C,(X), by being induced by
a probability measure on the Borel sets of X, extends uniquely to a state on C,(X),
complying with the normalization condition w(1) = 1. Since C,(X) is a commuta-
tive C*-algebra with an algebraic unit element, by the Gelfand—Naimark theorem it
is isomorphic to CO(X) for a particular compact Hausdorff space X, the Stone-Cech
compactification of X. In fact, for any locally compact Hausdorff space X, “extend-
ing” Cy(X) to C,(X) can be viewed as the “standard model” of the Stone-Cech com-
pactification. We refer to the references [22-24] for further discussion and refer-
ences on this point.

We therefore choose the commutative C*-algebra C,(X) with a locally compact
(but not necessarily compact) Hausdorff space X as the most suitable and versatile
version of an observable algebra for a classical statistical system since.

There are the following rationales for that choice:
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(i) As already mentioned, we view the phase space T*Q of a mechanical system
as the standard example for X, and 7*Q isn’t compact in a natural way.

(i) C,(X) contains an algebraic unit element while C,(X) does not for non-com-
pact X. However, having a unit is important since it allows to approximate
unbounded functions, which often represent important observables such as the
Hamilton function H (assumed continuous), by elements of C,,(X) at the level
of expectation values. Namely, in the presence of a unit 1, one can form the
resolvents (1 + eH?)~! (e > 0), and then the functions H, = (1 + eH*)™'H are
in C,(X) and for sufficiently regular states one obtains lim__,, w(H,) = w(H).
Therefore, we see C,,(X), possessing a unit element, as preferred since it allows
the approximation of unbounded observables in a canonical way.

(iii) 'We wish to explore the D-CTC condition in the setting of classical probability
theory where, by definition, the states are given by probability measures. As
mentioned, any state on Cy(X) is actually induced by a probability measure
according to Riesz’ theorem, and it extends to a state, induced by the same
probability measure, on C,(X). Therefore, we are not missing any states by
choosing C,(X) as observable algebra instead of C(X).

It should be obvious that the operations on states considered previously for C°(X)
with a compact X, in particular those induced by bijective homeomorphisms of
X, have their completely analogous counterparts also in the case of C,(X) with
locally compact X.

However, if X is not compact, then there are states on the C*-algebra C,(X)
which are not given by probability measures on the Borel sets on X. Consider as
a particular example the case X = R, and the sequence of states on C,(R) given
by w,(f) =f(n) (n € N), i.e. the point-measures concentrated at the integers. If
this sequence of states is restricted to C,(R), it converges for n — oo to the zero-
functional, lim,_  w,(f) =0 for all f € Cy(R). Clearly, this functional is not
induced by a probability measure and therefore the w, (or any generalized sub-
sequence) do not converge weakly to a state on Cy(R). On the other hand, by the
Banach—Alaoglu Theorem mentioned before, there is a generalized subsequence
{n(x)}cex in N with lim, n(x) = oo so that the generalized subsequence {w,}ex
of states on C,(R) converges weakly to a state w(f) = lim, w,,,(f). That state w
isn’t induced by a probability measure on the Borel sets of R since w(1) = 1 while
w(f) =0 for all f € Cy(R). One may argue that such states have pathological
properties and therefore aren’t induced by probability measures and should not
be regarded as physically realistic states. In order to make the distinction visible
in the notation we will, for the commutative C*-algebra A = C,(X), denote the set
of all C*-algebraic states by .# as before, and denote the set of states induced by
probability measures by .. If X isn’t compact, then .#'” is a proper subset of
.

The arguments leading to the results on the generic solvability of the D-CTC
problem for classical bi-partite statistical systems that we shall derive in the next
section make considerable use of the convergence of (generalized) sequences of
states. Having made the point that we consider C,(X) with a possibly non-compact
X as algebra of observables, we would like to specify criteria ensuring that solutions
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to the D-CTC problem for classical bi-partite statistical systems are given by states
which actually are induced by probability measures. As we will see in the next sec-
tion, the condition of “tightness” on sequences of probability measures in combina-
tion with Prohorov’s Theorem [26, 27] provide such criteria.

3 Classical Statistical Bi-Partite Systems and the D-CTC Condition

We define a classical statistical bi-partite system to consist of a direct product
X =X, X X where X, and Xj are locally compact, Hausdorff topological spaces
(or, for one of our results below, metric spaces). Then X is also a locally compact
Hausdorft space (res., metric space). We usually think of X, and X as containing
the degrees of freedom of two system parts labelled “A” and “B”, e.g. X, = T*Q,
and X = T*Qj might be phase spaces over finite dimensional configuration mani-
folds of many particle systems. The system parts are independent but can be coupled
dynamically. Then we take as observable algebras of the subsystems A, = C,(X,)
and Ap = C,(Xp); the observable algebra of the full system will be A = C,,(X). Here,
one can think of functions on phase space as the classical example.

Then A = C,(X) contains the C*-subalgebra Ag generated by all elements f of the
form

N
f=21®s
=1

where N € Nand f; € C,(X,) and g; € C,(Xp) where the tensor product is defined
by f; ® g;(x4,xp) = fi(x4)g;(xp) for all x, € Xy, xz € Xz We will also write
Ag = Cp(X,)®C,,(Xp). Note that Ag contains the unit element of A = C,,(X).

If w, is a state on C,(X,) and wy is a state on C,(Xj), then one can define the
product state w on Ag by setting

wf ® &) =w,(Hwp(e) (FeC(Xy), geC(Xp)

and extension by linearity. In the case that Ag is a proper C*-subalgebra of C,(X),
one can still extend the product state w to a state on A = C,(X) ([24, Prop. 3.1.6])
which however need not be unique. We call any such state a product state extension
of w, and wy (to A = C,(X)).

If w, and wy are states induced by probability measures p, and uy on the Borel
sets of X, and Xj respectively, then there is a unique product state w induced by a
unique probability measure yu = p, X pp, the product measure of p, and pg, on the
Borel sets of X. The product measure is determined by

(g X up)(O X P) = pus(O)up(P)

for Borel sets O of X, and P of X (see Sect. 21 in [25]). We now turn to our results
establishing that the D-CTC condition can be fulfilled in classical statistical bi-
partite systems in great generality. In Theorem 3.1 we prove a statement to this
end entirely set in the C*-algebraic framework, where the states aren’t necessarily
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induced by probability measures. Then we present another version in Theorem 3.2
where the states are induced by probability measures; it is for this result that we
make use of Prohorov’s Theorem, summarized below in this section. In the remark
following the statement of Theorem 3.1, we explain how the formulation of the
D-CTC condition given here connects to (and is, in fact, more general than) that of
[1, 16].

Theorem 3.1 Let X = X, X X define a classical statistical bi-partite system where
X, and Xy are locally compact, Hausdorff topological spaces. Let v . . — . be an
operation and let w, € # be a state (in the C*-algebraic sense) on C,(X,).

Then there is a state w € . on Cy(X) (in the C*-algebraic sense) with the
properties

w(fy ® ) =wy(fy)  (fy € Cp(X,)) and 3.1)

w1 ®fp) =wl ®fp)  (fp € Cy(Xp)). (3.2

Remark (3.1.A) In line with the terminology in [16], we say that a state w with
the properties (3.1) and (3.2) fulfills the D-CTC condition, or is a solution to the
D-CTC problem, with respect to the given X = X, X Xp, 7 and w.

(3.1.B) In Sect. 1—where the D-CTC condition of [1] has been summarized—
and in [16], the operations are always induced by unitary operators on some Hilbert
space on which the algebra of observables is represented; in other words, they are of
the form z({.)) = (U*.U) with a unitary operator U. The setting here is more general
in that this assumption is not being made. In contrast, another assumption on opera-
tions which enters here is that the operations are assumed to be weakly continuous
in the sense described above which is a natural assumption in the context of states
on C*-algebras. That is not always a natural assumption when operations are induced
by unitary operators where usually weak sequential continuity is a more natural
requirement. Theorem 3.2 below actually only requires weak sequential continuity
of the operation 7.

(3.1.C)  If both X, and X are compact, then the state w is induced by a prob-
ability measure according to the Gelfand—Naimark theorem. One can deduce this
also from Theorem 3.2, since the tightness assumptions entering in Theorem 3.2 are
automatically fulfilled if both X, and X are compact.

Proof of Theorem 3.1 The proof is analogous to the proof given in [16] in the oper-
ator-algebraic quantum field theory context, which in turn is based on the idea of
the proof by Deutsch for the quantum mechanical case in finite-dimensional Hilbert
spaces [1].

Choose any state wj, in ./ and define the state ¢, in .¥’ by choosing a product
state extension of w, and wy, thence obeying

@1(fs ®fp) = walfwp(fp),  fa € Co(Xy), fp € Cp(Xp).
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Then define a sequence of states ¢, (n € N) in .# inductively choosing product state
extensions of w, and the partial state f; — 7(@,)(1 ® f3), so that

@1y ®fp) =wi(fy) - (@)1 Qfp) (neN).

Note that, as 7(¢@,) is in .7, the partial state fz — 7(@,)(1 ®fp) is in F
which then implies that one may choose a product state extension ¢,,; from
Ag = Cb(XA)@)Cb(XB) to A = C,(X). Without additional conditions however, the
product state extensions might be non-unique. The definition of the ¢, implies for all
n € N (notwithstanding their potential non-unique extension to A = C,(X)),

@1 (fa @ 1) =wy(fy) - (@, )1 ® 1) = wy(fy),
P(fa® 1) = WA(fA)W;(l) =wy(fa)s

entailing @, (f; ® 1) = w,(f,) for all f; € C,(X,). Moreover, we have
@1 (1®fp) =1(@ )1 ®fp) (fp € Cp(Xp)) 3.3)

foralln € N.
Another sequence of states wy, in . (N € N) will then be defined from the ¢, by
an averaging procedure:

N
won () = }V(Z (pm) (f € C,(X)). (34)
n=1

It then follows immediately from the properties of the ¢, that
wnfa ® D) =wy(fy)  (fy € Cp(Xy), NEN), (3.5)

and furthermore, using (3.3),

n=1

N
Twy)(1 & f) — woy)(1 ®fB)| = ‘%(2 (@)1 ® fp) — @, (1 ®f3)>‘

=[Flernt ®m —eoh)

<ille GG NEN)
(3.6)

Owing to the Banach—Alaoglu theorem [28] that we have already mentioned in the
previous section, there is a generalized sequence {N, },cx, Where K is some directed
index set, such that lim,. N, = oo and such that

limwy () =w(f)  (f € C,(X)

for some state w € .¥.
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In view of (3.5) and (3.6), and observing the assumed continuity of = which
asserts that lim, z(wy )(f) = z(lim wy )(f) for all f € C,(X), one now obtains that
w has the properties claimed in the statement above,

wifa ® D =w,(fy)  (f, € C(X,)) and 3.7
w1 ®fp) =w(l ®fp)  (f € C,(Xp)). (3.8)
This proves the Theorem. O

For the remaining part of this section, we introduce some definitions, following
[27].

Let u be a probability measure on the Borel sets of a metric space X. The meas-
ure is called right if for any given € > 0 there is a compact subset K of X such that
uX\K) < e.

Similarly, a sequence {y, },n Of probability measures defined on the Borel sets
of a metric space X is called tight if for any given £ > O there is some compact sub-
set K of X such that

X\K .
ilelg H(X\K) < € (3.9)
Let X, and X are metric spaces, X = X, X X, and let u be a probability measure on
the Borel sets of X. Then one can define the marginals of p,

uY0) = u(OxXp), pu®P)=puX,xP) (3.10)

for Borel sets O of X, and Borel sets P of X, Both u and u® are probability
measures.
For later use, we put on record the following statement (see [27], Prob. 5.9).

Lemma 3.1 Let X, and Xg be metric spaces and let { i, },cn be a sequence of prob-
ability measures on the Borel sets of X = X, X Xp.

Then {u,},en is tight if and only if the sequences of marginals { Mf,A)}neN and
{u®},en are both tight.

We shall also make use of the following result.

Prohorov’s Theorem [26, 27]

Suppose that X is a locally compact metric space and that { u,, } o 1S @ sequence
of probability measures on the Borel sets of X.

If {u,},en 1s tight, then it is weakly relatively compact: There are a probability
measure y on the Borel sets of X and a subsequence {4, }en Which converges
weakly on C,(X) to u, i.e.

k—o0

lim /fdun(k> = /fdu (f € Cp(X)). 3.11)
X X
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Theorem 3.2 Let X = X, X X define a classical statistical bi-partite system where
X, and Xy are locally compact metric spaces.

Let  : P - 7P be an operation on the state space of C,(X) induced by
probability measures on the Borel sets of X, and let w, € .7, A(P) be a state on Cy(X,)
which is induced by a probability measure u, on the Borel sets of X,, assumed to be
tight.

Suppose also that there is a state wy, € LVB(P) on C,(Xg) which is induced by a
probability measure pg, on the Borel sets of Xp, with the property that the sequence
of probability measures

PP((P) = (g x uPX, X P)  (nE€N)

on the Borel sets P of X is tight.

Then there is a state w € .7 induced by a probability measure u on the Borel
sets of X such that

wify ® D =w,(fy) (4 € C(X,)) and (3.12)

WA ®fp) =w(l ®fz) (fzp € C,(Xp)). (3.13)

Proof Using w;, the sequence of states ¢, and whence, the sequence of states
Wy € 7® (N € N) is constructed as in the proof of Theorem 3.1. It follows easily
from the assumptions that the states wy, on C,,(X) are indeed induced by probability
measures, denoted 4 ). We wish to show that the sequence {py,}yey s tight.
According to Lemma 3.1, this follows once it is shown that the sequences of margin-
als { ,ugf])) }ven and { ygf,)) } ven are both tight. Making use of (3.5), one can see that

Hop=Hs (NEN) (3.14)

and as p, has been assumed to be tight, tightness follows for {/4;:,;} Nen- Similarly,
(3.3) shows that

N
1 n o
Hoy(P) = z_; T"(Hy X U)Xy X P) (3.15)
N
-1 (n)
== ; Hy (P) (3.16)

holds for all Borel sets P of X. Since the sequence { ug') }nen 1S by assumption tight,
the same can easily be concluded for the averaged sequence {uéf,))} ~en- Hence, the
sequence of probability measures { yy, }yey 18 tight. It can therefore be concluded
from Prohorov’s Theorem that there is a subsequence { 4y }reny Which converges
weakly to a probability measure u on the Borel sets of X. Then (3.12) follows from
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(3.14), and (3.13) is obtained using (3.6) in combination with the weak continuity of
7 as in the final part of the proof of Theorem 3.1. a

4 A Simple Example—And Ergodicity

The Cesaro-type limit which enters in the construction of the state w fulfilling the
D-CTC condition in Theorems 3.1 and 3.2 is very reminiscent of the discrete time-step
evolution averaged limit which is a standard way of obtaining invariant states under
a transformation. From this perspective, the construction of w is related to Birkhoft’s
ergodic theorem [32, Theorem 5.1.1]. In this section, we elaborate a bit on this relation,
considering a very simple example: the two-body problem with a spherically symmet-
ric central potential coupling two point masses (particles) in Hamiltonian mechanics.
Thus, we have X, = X, = T*(R?) ~ R? x R? as phase spaces for the particles labelled
“A” and “B”, with Hamiltonian function

1 1
H;(q4Pa398-PB) = e |17A|2 + —|PB|2 + V(lgs — ggl) + AVe(q4-g5)
my 2myg

with particle masses m, and mg, and V : R,; — R a smooth function. V,,(q4,gp)
is an external potential and A > 0 is a coupling constant. The coupling constant is
introduced mainly to distinguish two cases: A =0, i.e. the center-of-mass moves
freely, and A =1, where the center-of-mass moves under the influence of the
external potential. We think of Newtonian-type potentials like V(r) = —a/r and
Vex(@a>a5) = —(Ba/lqsl + Bg/1qp!) where a, By, g > 0; however more general
(binding, central) potentials are also possible. For the Newtonian-like potentials, we
would exclude configurations with g, = 0, g = 0 and g4, = —g5.

In the case of A = 0, the trajectories of bound states (excluding head-on collision)
correspond to closed ellipses on which the particles travel in their configuration spaces
around the center-of-mass as focal point. For more general binding potentials V, peri-
helion shifts may occur for bound states, so that the trajectories of the particles in their
configuration spaces are rosettae revolving around the center-of-mass in a common
orbital plane.

For A = 1, the trajectories of the bound states are approximately similar; however the
center-of-mass trajectory is almost an ellipse with the center of the potential at g, = 0
and g = 0 as focal point. This case corresponds to a planet (the “A”-system) with a
moon or satellite (the “B” system) that are bound in the gravitational field of a very
heavy central star which under the mutual gravitational interaction remains almost at
rest and can therefore be effectively described as an external potential. (For this to be
a good approximation, the stellar mass is to be very much larger than m, and my, and
also|g,|and |g| are to be very much larger than|g, — ggl.)

Then let F, : X, X Xz — X, X Xj denote the phase flow map for the two-body sys-
tem with the Hamiltonian function H,, taking phase space points from some “initial”
time 7; to some “final” time #, = 7; + 7. It induces the C*-algebra isomorphism
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A f =foF 1 (f € Cy(X, X Xp))
on the phase space functions, and in turn it induces the operation
(zw)(f) = w(A,f)

on the state space .7 of C,(X, X X;). Note that one also has 7, : .7 — @) je. it
maps the set of probability measures on the Borel sets of X = X, X X, to itself.

We wish to illustrate the significance of the tightness assumption in Theorem 3.2.
Let us look at phase space points x, = (g, ;,P4,;) and xz = (gp;, pp,;) at “initial” time
t,. The points correspond to pure states on C,(X,) and C,(Xp), induced by Dirac-
measures 6, and 6, concentrated at x, and xg, respectively. The configuration space
points g, and g correspond to the inertial coordinates of the particles.

Assume first that A = 0. Then, given any x,, it is always possible to find an x,
so that the resulting particle trajectories form a bound system, but in general, the
center-of-mass will then move with a constant (non-zero) velocity. In this case one
cannot expect that the sequence of measures’ T:’((SXA X 6x3) (n € N) will be tight
because (i) of the validity of Liouville’s theorem and (ii) the support of these meas-
ures in the g-components remains within a ball of sufficiently large, fixed radius
around the center of mass at time 7 - ¢, so it moves to infinity as n — oo0. (One could
compensate that by re-defining F, so as to subtract the center-of-mass motion, but
that re-definition depends on the choice of x, and x.)

Consider now the case 4 = 1. Then there are a non-empty open set Y and a com-
pact set K in X = X, X Xp so that F'(Y) C K for all n € N. Therefore, whenever one
chooses a point x, € X, that is in the A-component of Y, there is some x; in X
with (x4,x5) € Y. Consequently, one obtains that the sequence of marginal meas-
ures P — r”(éxA X 5xB)(X 4w X P) (n € N) is tight because all of these measures have
their support in the B-component projection of K, which is a compact subset of Xj.
Hence, in this setting, we can apply Theorem 3.2. As already explained, 7 is identi-
fied with 7,, and we may choose w, as being induced by a probability measure 6,
for a phase space point x, that is part of a bound state in Y as just explained; there
is actually a wide range of choice for such x,. Then we may choose wy, as any §, so
that (x4,xz) € Y. As discussed, the assumptions of Theorem 3.2 are fulfilled, and
there is a state w given by a probability measure on the Borel sets of X so that the
properties (3.12) and (3.13) are fulfilled. On the other hand, if one chooses 6xA for w,
as before, but selects as w;; a 5x3 so that (x,, xz) does not correspond to a bound state,
one cannot expect that the required tightness assumption is fulfilled, by a reasoning
similar to the A = O case before.

In the case 4 = 1 and (x4,x3) € Y, let us try to understand the properties of the
state w constructed in Theorem 3.2 with the properties (3.12) and (3.13). To this
end, to ease the illustration, we consider a very much simplified situation. We
assume that m, is very much larger than my so that the motion of the “A” particle

5 Here we slightly abuse notation and identify states with the measures by which they are induced;
instead of (6, X 6,) we should write, more correctly, the transformed measures (5, X 6, )oF7.
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coincides to very good approximation with the center-of-mass motion. Further-
more, we assume that |g,| is extremely large so that, even for a very high number
of orbits of the “B” particle around the “A” particle, the center-of-mass motion is
approximately a free motion. This corresponds to a satellite, or “piece of rock”
(“B” particle) orbiting a planet (“A” particle) which is on a very remote orbit
around a star. We assume that the orbital planes are coincident, and that the orbit
of the satellite around the planet is, to good approximation, circular. Then we
consider the measures (3.15) constructed in Theorem 3.2 for the present situation,

N
M (P) = Z 7'(8,, X 8, (X4 X P). @.1)

n=1

and change to inertial coordinates g4, gz in which (according to our simplifying
assumptions) the planet is approximately at rest. The measures ”Ef/)) depend, of
course, on how ¢ is chosen. For the assumed (approximately) circular orbit, let T
denote the orbital period. There are several cases that one can consider:

() t=KT for some k € N. Then 7;'(6,, X 6, )(X, X P) is independent of » for all
n € Nsince we have (in our approximation) F,(x,, xz) = (x4, xp) in this case.
Therefore, ”(N) (6, X 6, )(X, X P)is also independent of N: Applying 7, just
reproduces the initial phase space points.

(i) t= kT/f for some k,Z € N. Then F (x4,xp) = (x4,xz) and hence
T(B; XAXS )X, X P) = 2—1 (5AX53)(XA><P) Therefore,
y(m f)(P) ,u(f)(P) forallm e N

Thus, in case (i), there is a state w fulfilling (3.12) and (3.13) whose partial
state on the “B”-part of the system, at initial time 7;, is given just by 6, . In
case (ii), there is a state w fulfilling (3.12) and (3.13) with partial state on the
“B”-part given by

13
i
= 2
=

where (x4, xp(t")) = F,(x4,xp). This “statistical mixture of phase space

points” can be represented as £ copies of the B-particle, i.e. ¢ identical satel-

lites, each on the same circular orbit, separated in position and momenta by a

1/¢ fraction of the orbit, so that this phase space distribution gets mapped to

itself under the phase space map F' kT e Quite clearly, the cases (i) and (ii)
correspond to periodic orbits of the (effective) motion of the satellite around
the planet.

(iii) ¢ = rT with r irrational. In this case, there are no “periods” in the sequence
ygf,)) (N € N) and thus any state w constructed in the proof of Theorem 3.2 with
the properties (3.12) and (3.13) can be deduced to be induced, on the “B”-part
of the system, by a measure P — u(X, X P) which is supported on a dense set
on the circular orbit of the satellite around the planet. This follows since on

the circle, the irrational rotations (1) are known to produce dense orbits under
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'
N

Fig. 2 Illustration of the three cases (i), (ii) and (iii) for the distribution of the state w on the “B”-part of
the system at initial time #; mentioned in the text, from left to right. For case (i), the initial position g ; of
the “satellite” on the circular orbit is depicted by the blue dot and its initial momentum py; is represented
by the arrow. Case (ii) shows a distribution for k = 4, with four copies of the “satellite” separated by
moving the phase space points by 7/4 on the orbit. In case (iii), one obtains a dense distribution over the
orbit; the momenta are not indicated (Color figure online)

successive applications by a classic result of Kronecker [32, Theorem 3.2.3]
and they (2) are ergodic with respect to the Lebesgue-measure on the the
circle [32, Theorem 3.5.7].

The three cases are illustrated in Fig. 2. For an interactive illustration, see [33]

Thus, under the very idealized assumptions made for the simplified situation
as described, there is actually a state w fulfilling the D-CTC condition for all F,
(t € R): The ergodic state, obtained by the construction of w in Theorem 3.1 for the
case that 7 = 7, induced by F, for any ¢’ = rT with r irrational. This amounts to tak-
ing the Lebesgue measure on the circular trajectory of the satellite. It is worth point-
ing out that in [3] (Appendix B), solutions to the D-CTC problem in a more general
formal framework are also obtained by means of an ergodic averaging.

Going back to the days of the very inception of ideas on ergodicity, when think-
ing of a satellite orbiting a planet, the rings of the planet Saturn are an example
that one might envisage as an approximate realization of the ergodic state. (This
“example” appears in publications of Boltzmann, see [34] for references and discus-
sion.) Indeed, if one evolves the ring system by an arbitrary time-step, it appears
unchanged, at least at scales larger than about 10 km which is tiny compared to the
dimensions of the ring orbits—at scales larger than around 10 km, the rings, which
are mostly formed by rocks and pieces of ice of various sizes between the millim-
eter and kilometer scale, appear almost homogeneous in the angular direction (while
there are significant density variations in the radial direction) [35]. (It should be
noted that the dynamics of the rings of Saturn is only approximately ergodic, see

g. [35, 36] and literature cited there for investigations on this problem.) However,
our discussion in this section should serve to illustrate that the D-CTC condition is
nothing extraordinary in classical statistical mechanics, that it relates to ergodicity
and can be viewed as approximately realized in macroscopic physical systems at
appropriate scales.
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5 Discussion and Conclusion

We have shown that the D-CTC condition is generically fulfilled for classical statisti-
cal bi-partite systems, under very general (yet mathematically precise) conditions. The
D-CTC condition originated from Deutsch’s proposal for giving a description of what
it means that parts of quantum systems undergo processes that might be viewed as ana-
logues to “going backwards in time”. However, whether or not that condition can be
fulfilled rests mainly on convexity and completeness of the space of states of a system,
irrespective of its quantum or classical nature. Moreover, in the light of the results of
[16], as we have indicated in Sect. 1, one might also doubt if the D-CTC condition
actually says very much about closed timelike curves as they are understood in gen-
eral relativity. This may call into question if the D-CTC condition really is a means of
“treating time travel quantum mechanically” (title of the article [11]) or if statements
like “quantum mechanics therefore allows for causality violation without paradoxes
whilst remaining consistent with relativity” [37] are well-founded.

The starting point of Deutsch’s discussion was a classical system where the states
consist of finite sequences of “bits”, i.e. the state space is a discrete, finite set, not
admitting convex combinations. That assumption restricts the choice of states fulfilling
the D-CTC considerably, as is shown in an example in [1]. In contrast, taking “q-bits”
as the “quantized” version of a classical “bit” system naturally renders a convex and
complete state space so that the D-CTC problem generically has many solutions. Nev-
ertheless, it is rather the possibility to take classical statistical mixtures of states than
anything specifically quantum mechanical that warrants solutions to the D-CTC con-
dition in a g-bit system. Allowing classical statistical mixtures of “bit” states would
have the same effect to this end. (However, in applications, “bit” states are introduced
exactly for the purpose of avoiding uncertainties in state discrimination that may occur
e.g. in the form of classical mixtures of states, so that from that perspective, forming
statistical mixtures doesn’t appear natural for “bit” state systems. Yet it is a viable theo-
retical possibility.)

Therefore, one should be careful not to jump to explanations as to why the D-CTC
condition is fulfilled in quantum systems which rely on typical features of quantum sys-
tems or their behaviour in spacetime (e.g. interference or uncertainty relations) as this
does not relate to what the D-CTC condition—or the fact that it can be generically
fulfilled—is based on; such explanations may result in inadequate interpretations and
are therefore misleading. We would regard the attempt in [1] to give an explanation for
the solvability of the D-CTC problem in quantum mechanics based on a many-worlds
interpretation, in this sense, as unconvincing (it has elsewhere been criticized on other
grounds [38]).

Yet, the fact that the D-CTC condition can generically be solved in g-bit systems
can open interesting aspects for quantum computing and quantum communication [1,
2, 10-15]. In this context, the central point of investigation is—using the notation of
the beginning part of Sect. |—the question what “output” states on the “A” part of the
bi-partite system,

(a); = Try(0,a) = Tr(eU* (@ ® 1)U),
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can be derived from the density matrix ¢ fulfilling the D-CTC condition for a given
unitary U on the full system, and an “input” state (a), = Tr,(¢,a) on the “A” part
of the system. In other words, the investigation is on the map ¢ : ¢4 — ¢, for given
U. There are some difficulties here. First, since ¢ is not uniquely determined by U
and ¢4, ¢ is not naturally defined as a map on the state space of the “A” part of the
bi-partite quantum mechanical system. Secondly, given that a map ¢ can be deter-
mined by imposing additional selection criteria, if ¢ is constructed as in [1], then ¢
fails to be convex, i.e. it isn’t an operation. This is also to be expected in the classical
(measure-theoretic) framework which we have considered in the present article in
the sense that in general, the dependence of the state w in the proof of Theorems 3.1
and 3.2 and of the partial state w,(f,) = 7(w)(f, @ 1) is not convex in the given state
w, on the “A”-part of the system.

That failure of ¢ to be convex in g, is in the literature usually referred to by saying
that (solutions to the) D-CTC condition are “non-linear” in the input state ¢,, and it
has been discussed that this may impede the utility of the solvability of the D-CTC
problem for the purposes of quantum computing. For considerable further investiga-
tion on this issue, see again the articles just cited, and also references given there. A
contention expressed in [2] is that due to the failure of ¢ to be convex, the D-CTC
condition is incomplete. Basically, that is also our conclusion, however potentially
at a more fundamental level, in the sense that the D-CTC condition doesn’t depend
on typically quantum mechanical features of a bi-partite system. When claiming that
quantum mechanics is an important ingredient in avoiding the notorious paradoxes
of time travel, but then implementing that formally at the level of the D-CTC condi-
tion which is not sensitive to whether a bi-partite system is of quantum mechanical
nature or not, and instead just depends on its basic statistical properties, something
seems to be missing.

Concerning the possibility that the D-CTC condition isn’t sufficiently complete or
specific to really allow statements connecting quantum processes and closed time-
like curves, we have commented in [16] that a possible approach could be to include
spacetime localization into the description, in the spirit of the algebraic framework
of quantum field theory as sketched in Sect. 1. Still, one would have to connect
locality properties of the unitary operator U, or of the operation = with the locality
properties of the observables. In the present paper, we have not considered locality
properties of the observables and that is, in a certain sense, an omission. Therefore,
it would be interesting to see if, and how, our results might extend to the analysis of
billiard ball collisions in the presence of wormhole-type time machines [5-7].

In [17] we have pointed out that the results in [16] (as well as in [17]) on whether
the D-CTC condition can be fulfilled or not depend very much on the assumptions
made, and on whether one insists that the D-CTC condition is fulfilled exactly, or
just approximately (to arbitrary precision). In fact the question of the adequate math-
ematical idealization is a common problem when trying to explore unchartered ter-
ritory in physics by theoretical methods. In the context of the question if one may
ascribe physical reality to anything which one might bear the properties of a “time
machine”, i.e. processes which can be interpreted as brought about by the presence
of closed timelike curves, the problem of what constitutes an adequate mathematical
idealization acquires considerable importance, and we think that one of the inspiring
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aspects about the investigation of the D-CTC condition is to highlight that issue, and
potentially gain some insight.
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