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covariance is prediction by some studies into loop quantum cosmology.

I firstly find the minimally-deformed model for a scalar-tensor theory, thereby establish-
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that the momenta and spatial derivatives from gravity and matter must combine in a

very specific form. It suggests that the deformation should be equally affected by matter

field derivatives as it is by gravitational curvature. Finally, I derive the deformed gravita-

tional action to all orders, and find how intrinsic and extrinsic curvatures differently affect

the deformation. The deformation seems to be required to satisfy a non-linear equation

usually found in fluid mechanics.
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Chapter 1

Introduction

In this thesis I investigate deformed general relativity, which is a semi-classical model

attempting to capture the leading effects of a correction to general relativity predicted

in some studies of loop quantum gravity. It uses the methods of canonical gravity but

with space-time covariance deformed by a phase-space function. By assuming a general

deformation, I find the general models which are consistent with it, demonstrating multiple

routes which can be taken to find them.

Before going into more depth on this, I must first discuss the motivations for this invest-

igation.

1.1 The need for a theory of quantum gravity

It is known that matter fields are quantised due to the remarkable agreement of experi-

mental results with quantum field theory [1–3]. There have been some attempts to allow

for classical gravity to couple to quantum fields at a fundamental level [4, 5], and some

interesting phenomena have been discovered from considering effective models of quantum

fields on a curved space-time [6–8]. However, it is generally expected that gravity must

be quantised too [9, 10].

The gravitational field, like all other fields, therefore must be quantized, or

else the logical structure of quantum field theory must be profoundly altered,

or both. [11, B. DeWitt]
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Besides gravity being known to couple to quantum fields, there are known limitations

to the current common understanding. General relativity predicts its own demise due to

singularities arising in the equations describing black holes and the very early universe [12].

They are known to exist due to robust experimental observations supporting the existence

of black holes [13] and supporting an early universe which closely matches what is predicted

of a hot big bang [14]. These phenomena exist at the intersection of general relativity and

quantum mechanics since they involve both massive systems and small scales. It seems

they cannot be fully understood without a framework which consistently bridges the gap.

As a precedent for the singularity problem, classical mechanics could not sufficiently ac-

count for experimental results showing that atoms contained small, massive nuclei orbited

by electrons (the Nagaoka-Rutherford model). This is due to accelerating point charges

(electric field singularities) being known to emit radiation as per the Landau formula, and

therefore an electron orbit should radiatively decay, causing atoms to be unstable. How-

ever, the development of quantum mechanics resolved this by introducing discrete and

stationary orbitals in the Bohr model. The hope is that quantising gravity will similarly

cure it of some of its pathologies.

One might not want to jettison all that is good about general relativity in pursuit of a

quantised theory. The key underlying idea, equivalence of all frames, is considered a philo-

sophically and aesthetically satisfying aspect. Conversely, the requirement in the ortho-

dox interpretation of quantum mechanics for an external observer is considered troubling,

hence why Einstein spent much of the latter part of his career challenging it [15].

One crucial sticking point in reconciling general relativity and quantum mechanics is the

problem of time [16,17]. In quantum mechanics time is a fixed external parameter, in gen-

eral relativity it is internal to the system and is not uniquely defined. These are seemingly

incommensurable differences, and to bridge the gap requires significant compromise.

The solution in canonical gravity for reconciling the two is to split space-time at the

formal level, but include symmetry requirements so that the full general covariance is kept

implicitly [10, 18, 19]. One is left with a description of a spatial slice evolving through

time rather than one of a static and eternal bulk. These methods are often required
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for numerically simulating general relativity due to the necessity of specifying a time

coordinate when setting up an evolution simulation.

This introduces on each spatial manifold a conserved quantity or ‘constraint’ given by

ϕI → 0 for each dimension of time and space, analogous to a generalisation of the con-

servation of energy and momentum. These constraints form an algebra which contains

important information about the geometric nature of space-time, and is of the form

{ϕI , ϕJ} = fKIJϕK [10, 20]. This is a Lie algebroid which describes the relationships

between the constraints and generates transformations between different choices of co-

ordinates [21,22].

The important {C,C} part of this algebra ensures that the spatial manifold evolving

through time is equivalent to a stack of spatial manifolds embedded in a geometric space-

time manifold.

In this more general case of gravitation in interaction with other fields, [the

equation1] not only guarantees the embeddability of the 3-geometries in a

space-time but also ensures that these additional fields evolve consistently

within this space-time. [23, C. Teitelboim]

This part of the algebra is what I am going to consider to be deformed, but where does

this hypothesis come from?

1.2 Loop quantum gravity

Though there are several candidates for a theory of quantum gravity, I am going to only

consider loop quantum gravity [24, 25]. There are other somewhat related theories which

also deal directly with quantising gravity, such as: causal dynamical triangulations [26];

causal set theory [27]; group field theory [28]; and asymptotically safe gravity [29]. The

main alternative candidate is string theory and its variants, which prioritises bringing

gravity into the established framework for quantum particles in order to create a unified

theory [30,31].
1the equation referenced in the quote as the same as (2.13c)
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Loop quantum gravity focuses on maintaining some key concepts from general relativity

such as background independence and local dynamics throughout the process of combin-

ing gravity and quantum mechanics. It describes space-time as not being a continuous

manifold, but instead being a network of nodes connected by ordered links with quantum

numbers for geometrical quantities such as volume. Such a network is not merely embed-

ded in space but is space itself. As such, due to the quantisation of geometry, one cannot

shrink the length of a link between nodes to being infinitesimal as in the classical case.

If general relativity is truly the classical limit of loop quantum gravity, then there should

be a semi-classical limit where the dynamics are well approximated by general relativity

with minor quantum corrections. These should become larger at small scales and in regions

of high curvature.

A closely related theory is loop quantum cosmology, which uses concepts and techniques

from loop quantum gravity and applies them directly at the cosmological level by using

midi-superspace models [32, 33]. That is, by quantising a universe which already has

certain symmetries assumed such as isotropy to simplify the process. There has been

some progress towards proving that loop quantum gravity can be symmetry-reduced to

loop quantum cosmology, but as yet this has not been shown definitively [34,35].

For models of loop quantum cosmology to be self-consistent and anomaly-free while in-

cluding some of the interesting effects from the discrete geometry, it seems that the

algebra of constraints must be deformed. Specifically, some of the structure functions

become more dependent on the phase space variables through a deformation function

fKIJ(q) → β(q, p)fKIJ(q) [36–42]. Deforming rather than breaking the algebra in principle

maintains general covariance but the transformations between different choices of co-

ordinates become highly non-linear [43]. It becomes less clear to what extent one can still

interpret space-time geometrically, at least in terms of classical notions of geometry.

However, there is ambiguity in the correct choice of variables used for loop quantum

gravity. The results cited in the previous paragraph are for real variables for which there

has been significant difficulty including matter and local degrees of freedom [44]. The

main alternative, self-dual variables, have had some positive results for including those
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degrees of freedom without deforming the constraint algebra [45], but might not have the

desired quality of resolving curvature singularities [46].

Interesting predictions coming from loop quantum gravity include: a bouncing universe

[47]; black hole singularity resolution and transition to white holes [48]; and signature

change of the effective metric [41]. Some of these predictions are closely associated with a

deformation of classical symmetries in regions of high energy density.

1.3 Why study deformed general relativity?

Deformed general relativity builds directly from the idea that the constraint algebra is

deformed [49]. It is constructed by taking the deformed constraint algebra, and finding a

corresponding model which includes local degrees of freedom a priori. This can be done

because, if one starts from an algebra and makes some reasonable assumptions, one can

deduce the general form of all the constraints [21,50]. This should provide a more intuitive

understanding of how the deformation affects dynamics and may provide a guide for how

to include the problematic degrees of freedom when working with real variables in loop

quantum gravity.

The constraint algebra is important because, as said previously, it closely relates to the

structure of space-time [23]. Quantum geometry will behave differently to classical geo-

metry, and deformed general relativity attempts to capture some of the effects in a semi-

classical model which is more amenable to phenomenological investigations.

Phenomenological models which are comparable to deformed general relativity, such as

deformed special relativity [51] and rainbow gravity [52], struggle to go beyond describing

individual particles coupled to an energy-dependent metric. They can suffer from a break-

down of causality [53], or find it difficult to describe multi-particle states [54]. Deformed

general relativity does not suffer from these problems by construction.
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1.4 Overview of this thesis

The main focus of this thesis is to investigate how to construct a self-consistent model

of deformed general relativity using canonical methods and metric variables. I review

important concepts and methodology in chapter 2. In chapter 3, I find the minimally-

deformed model for a scalar-tensor theory, establishing a classical reference point. Then in

chapter 4, I derive the deformed gravitational action which includes the lowest non-trivial

order of perturbative curvature corrections coming from the deformation. In chapter 5,

I derive the deformed scalar-tensor constraint to all orders and I find that the momenta

and space derivatives must combine in a specific form. Finally, in chapter 6, I find the

deformed gravitational action to all orders, and find how intrinsic and extrinsic curvatures

differently affect the deformation. I identify some of the cosmological consequences for the

significant results of each chapter.

There are several research questions which I attempt to answer in this thesis. How are

the form of the deformation function and the form of the model related? In particular,

what is the deformed scalar-tensor Hamiltonian and what is the deformed gravitational

Lagrangian, using either perturbative or non-perturbative methods? How do they relate

to the classical limit and to each other? How can matter fields be incorporated in deformed

models? How does the deformation function depend on curvature, and is it different for

intrinsic and extrinsic curvatures?

The research chapters 3 and 4 are adapted from the previously published papers [55]

and [56], respectively. The other research chapters, 5 and 6, were recently submitted for

publication [57,58]

1.5 Wider impact

This study is directly motivated by the prediction of a deformed constraint algebra ap-

pearing in loop quantum cosmology [36–42]. As such it should provide insight into the

lingering questions of how matter and local degrees of freedom need to be incorporated
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into the motivating theory in the presence of a deformation, and how spatial and time

derivatives are differently affected.

There are also potentially wider implications for this study. For example, it has been

shown that taking the deformed constraint algebra to the flat-space limit gives a deformed

version of the Poincaré algebra, which leads to a modified dispersion relation [46,59]. This

might indicate something such as a variable speed of light or an observer-independent

energy scale. In this respect it is similar to the phenomenological models of deformed

special relativity [51] and rainbow gravity [52].

The deformation might indicate a non-commutative character to geometry [60,61] although

apparently not a multifractional one [62]. It might represent a variable dimensionality

of space-time and a running of the spectral dimension [63]. The deformation function

may change sign, as suggested in the motivating studies [41]. This makes the hyperbolic

equations become elliptical and implies a phase transition from classical Lorentzian space-

time to an effectively Euclidean quantum regime [22, 64]. It therefore may be a potential

mechanism for the Hartle-Hawking no-boundary proposal [65].
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Chapter 2

Methodology

In this thesis I am primarily building on preceding work done by others [21, 49, 50] and

elaborating on previously published material [55, 56].

2.1 Space-time decomposition

Quantum mechanics naturally works in the canonical or Hamiltonian framework. The

canonical framework takes variables defined at a certain time and evolves them through

time. That evolution defines a canonical momentum for each variable. To make general

relativity more amenable to quantum mechanics, one must likewise make a distinction

between the time dimension and the spatial dimensions. So I foliate the bulk space-time

manifold M into a stack of labelled spatial hypersurfaces, Σt. I assume it is globally

hyperbolic, so topologically M = Σ× R [10, 18,19].

A future-pointing vector normal to the spatial hypersurface Σt is defined such that

gabn
anb = −1. The spatial slices Σt are themselves Riemannian manifolds with an in-

duced metric qab = gab + nanb, such that qabnb = 0. The spatial metric has an inverse

defined as qab = gab + nanb, so that qba := qacq
bc = δba + nan

b acts as a spatial1 projection

tensor.

If the spatial foliation, and therefore the spatial coordinates, are arbitrary, the time-

evolution vector field ta cannot be uniquely determined by the time function t. One can
1by ‘spatial’, I mean tangential to the spatial manifold
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project it into its normal and spatial components, defining the lapse function N = −nata,

and the spatial shift vector Na = qab t
b. Therefore, ta = Nna +Na.

Since the coordinates are arbitrary, it is convenient to take the normal to the spatial

surface as the time-like direction for defining velocities rather than using the time-vector

itself. Therefore,

vab := Lnqab =
1

N

(
q̇ab − 2∇(aNb)

)
, νI := LnψI =

1

N

(
ψ̇I −Na∂aψI

)
, (2.1)

where Ẋ := LtX, and the extrinsic curvature of the spatial slice is related to this by

Kab =
1
2vab.

2.2 Canonical formalism

I take a general first-order action for a model with dynamical fields ψI , and non-dynamical

fields λI ,

S =

∫
d4xL (ψI , ∂aψI , λI) , (2.2)

where ∂aψI :=
∂ψI
∂xa

=: ψI,a. Varying the action with respect to each field, fixing the

variation at the boundaries, and imposing the principle of least action,

δS

δψI
≈ 0,

δS

δλI
≈ 0, (2.3)

gives the Euler-Lagrange equations of motion,

0 ≈ ∂L

∂ψI
− ∂a

(
∂L

∂(∂aψI)

)
, (2.4a)

0 ≈ ∂L

∂λI
. (2.4b)

The approximation symbol is used to indicate something that is true in the dynamical

regime, or ‘on-shell’, rather than something that is true kinematically, or ‘off-shell’. The

non-dynamical fields λI can be seen to produce constraints on the system given by (2.4b),

they are also known as Lagrange multipliers.
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Making a space-time decomposition as in section 2.1, one can define the canonical momenta

of each field,

πIψ :=
δS

δψ̇I
=

∂L

∂ψ̇I
, πIλ :=

δS

δλ̇I
=

∂L

∂λ̇I
. (2.5)

Since L does not depend on λ̇I , one can see that πIλ ≈ 0 are primary constraints on the

system. If the matrix ∂2L

∂ψ̇I∂ψ̇J
is non-degenerate, then the above equation can be inverted

to find ψ̇I = ψ̇I(ψJ , π
J
ψ, λJ), and so one can replace the time derivatives in the action.

Making a Legendre transform to find the Hamiltonian associated to this action,

H =

∫
dtd3x

(∑
I

ψ̇Iπ
I
ψ +

∑
I

µλIπ
I
λ

)
− S, (2.6)

where µλI is a coefficient which acts like a Lagrange multiplier. The Poisson bracket of a

quantity with the Hamiltonian equals the time derivative of that quantity on-shell,

Ḟ ≈ {F,H} =

∫
d3x

{∑
I

δF

δψI(x)

δH

δπIψ(x)
+
∑
I

δF

δλI(x)

δH

δπIλ(x)

}
− (F ↔ H) , (2.7)

and if F ≈ 0 should be true at all times, then Ḟ ≈ 0 must also be true [20]. Therefore,

evaluating {πIλ,H} either gives back a function of the primary constraints πJλ , produces a

secondary constraint ϕI(ψJ , πJψ, λJ) ≈ 0, or gives a specific form for the coefficients of the

constraints µI . The equations (2.4b) appear here as secondary constraints.

I repeat the process with {ϕI ,H} until I have found all the constraints on the system, at

which point there is no need to differentiate between primary and secondary constraints,

and I have found the generalised Hamiltonian,

H⋆ =

∫
dtd3x

(∑
I

ψ̇Iπ
I
ψ +

∑
I

µIϕI

)
− S ≈ H. (2.8)

The set of constraints has a Poisson bracket structure

{ϕI , ϕJ} = fKIJϕK + αIJ , αIJ /∈ {ϕK}, (2.9)

and if αIJ ̸= 0 then some of ϕI are what are called ‘second-class’ constraints, in which case
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some of the coefficients µI are uniquely determined. If αIJ = 0 then all of ϕI are ‘first-

class’, in which case the constraints not only restrict the values of the dynamical fields,

but also generate gauge transformations [10,20]. This is because, in general the evolution

(2.7) will depend on µI . For an undetermined µI to influence the mathematics but not

the physical observables, a change of its value must correspond to a gauge transformation

generated by the relevant first-class constraint.

For classical general relativity, the action does not depend on Ṅ or Ṅa (up to bound-

ary terms) and is only linearly dependent on N and Na.2 As such, there are primary

constraints given by πN and πNa , which generate secondary constraints known as the

Hamiltonian constraint and diffeomorphism constraint respectively,

C :=
δH

δN
= {H,πN} , Da :=

δH

δNa
=
{
H,πNa

}
, (2.10)

which are all first-class constraints. This means that N and Na are gauge functions

which do not affect the observables, and therefore the spatial slicing does not affect the

dynamics. The theory is background independent and the constraints generate gauge

transformations3,

{F,C[N ]} = NLnF, {F,Da[N
a]} = LNF. (2.11)

The Hamiltonian can be rewritten as a sum of the constraints up to a boundary term,

H =

∫
dtd3x

(
NC +NaDa + µNπN + µaNπ

N
a

)
. (2.12)

Considering the Poisson bracket structure of these constraints, given by (2.9) with

ϕI ∈ {C,Da}, one finds that they form a Lie algebroid4 [22],
2Or rather, it is only linearly dependent on N and Na when velocities are represented by normal

derivatives (2.1).
3The square brackets indicates the constraint is ‘smeared’ over the spatial surface using the function in

the brackets, e.g. C[N ] =
∫

d3xN(x)C(x).
4‘Algebroid’ refers to the fact that some of the structure coefficients fKIJ are phase space functions
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{
Da[N

a
1 ], Db[N

b
2 ]
}
= Da

[
LN2N

a
1

]
, (2.13a){

C[N1], Da[N
a
2 ]
}
= C

[
LN2N1

]
, (2.13b){

C[N1], C[N2]
}
= Da

[
qab (N1∂bN2 − ∂bN1N2)

]
. (2.13c)

where (N1, N
a
1 ) and (N2, N

a
2 ) each represent the lapse and shift of two different hypersur-

face transformations. As interpreted in ref. [23], (2.13a) shows that Da is the generator of

spatial morphisms, (2.13b) shows that C is a scalar density of weight one (as defined in

appendix B) and (2.13c) specifies the form of C such that it ensures the embeddability of

the spatial slices in space-time geometry.

2.3 Choice of variables

Classical canonical general relativity can be formulated equivalently using different vari-

ables. There is geometrodynamics, which uses the spatial metric and its canonical mo-

mentum (qab, p
cd), the latter of which is directly related to extrinsic curvature,

pab =
ω

2

√
q
(
Kab −Kqab

)
, (2.14)

where q := det qab and ω is the gravitational coupling. An alternative is connection

dynamics, which uses the Ashtekar-Barbero connection and densitised triads (AIa, E
b
J),

where capital letters signify internal indices rather than coordinate indices [66, 67]. This

can be related to geometrodynamics by using the equations [10],

q δIJ = qabE
a
IE

b
J , (2.15a)

AIa = ΓIa + γBIK
I
a , (2.15b)

ΓIa =
1

2
√
q
qbcϵ

IJKEbJ∇a

(
EcK√
q

)
, (2.15c)

KI
a =

1
√
q
δIJKabE

b
J , (2.15d)
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where γBI is the Barbero-Immirzi parameter and ϵIJK is the covariant Levi-Civita tensor.

The exact value of γBI should not affect the dynamics [68].

The other alternative I mention here is loop dynamics, which uses holonomies of the

connection and gravitational flux (hℓ[A], F
I
ℓ [E]). Classically, hℓ[A] is given by the path-

ordered exponential of the connection integrated along a curve ℓ and F Iℓ [E] is the flux

of the densitised triad through a surface that the curve ℓ intersects. If ℓ is taken to be

infinitesimal, one can easily relate loop dynamics and connection dynamics because then

hℓ = 1 +A(ℓ̇) +O(|ℓ|2) [25, p. 21].

When each set of variables is quantised, they are no longer equivalent, for example the value

of γBI does now affect the dynamics [46,69]. For complex γBI, care has to be taken to make

sure the classical limit is real general relativity, rather than complex general relativity.

Significantly, quantising loop variables (loop quantum gravity) discretises geometry, and

so ℓ cannot be taken to be infinitesimal [25, p. 105].

In this work, I choose to use metric variables to build a semi-classical model of gravity.

This is because the comparison to other modified gravity models should be clearer, and

there is no ambiguity arising from γBI.

2.4 Higher order models of gravity

In four dimensions, the Einstein-Hilbert action for general relativity is given by

S =
ω

2

∫
d4x

√
−g (4)R. (2.16)

where ω = 1/8π◦G is the gravitational coupling and g := det gab. The integrand is the four

dimensional Ricci curvature scalar which is contracted from the Riemann curvature tensor
(4)R := (4)Rabacg

bc. For any Riemannian manifold, this is defined using the commutator of

two covariant derivatives of an arbitrary vector,

∇c∇dA
a −∇d∇cA

a = RabcdA
b. (2.17)
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There are many reasons why theoretical physicists seek to find models of gravity which

go beyond the Einstein-Hilbert action. For instance, mysteries known as dark matter

[70] and dark energy [71] may originate with gravity behaving differently than expected

rather than being due to unknown dark substances [72]. The indication that there was a

period of inflationary expansion in the early universe has also caused a search for relevant

models [73, 74]. Moreover, the classical equations of gravity predict their own demise in

extraordinary circumstances such as in a black hole or at a hot big bang. A theory of

gravity that solves these problems to which classical general relativity is the low-curvature,

large-scale limit may have a semi-classical regime where corrections appear, at leading

orders, similar to these theories of modified gravity [73,75,76].

One way of attempting to find alternative models of gravity is by constructing actions

from higher order combinations of the Riemann tensor, so you instead have the general

action

S =
ω

2

∫
d4x

√
−gF

(
(4)Rabcd

)
. (2.18)

To bring this in line with the space-time split, I replace the determinant, g = −N2q. The

Riemann tensor must be decomposed by projecting it along its normal and tangential

components relative to the spatial slice,

qeaq
f
b q

g
c q
h
d
(4)Refgh =

1

4
vacvbd −

1

4
vadvbc +

(3)Rabcd, (2.19a)

qeaq
f
b q

g
cn

h (4)Refgh =
1

2
∇avbc −

1

2
∇bvac, (2.19b)

qean
fqgbn

h (4)Refgh = −1

2
Lnvab +

1

4
qbcvacvbd +

1

N
∇(a∇b)N. (2.19c)

These identities are respectively known as the Gauss equation, the Codazzi equation, and

the Ricci equation [10,77]. All other projections vanish due to the tensor’s antisymmetry.

As can be seen from (2.19c), there are second order time derivatives included in the

Riemann tensor. Including second order time derivatives in an action is problematic

because it may introduce the Ostrogradsky instability [78]. To demonstrate what this
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means, I take a one dimensional model action,

S =

∫
dtL (q, q̇, q̈) , (2.20)

I cannot find the associated Hamiltonian when there are time derivatives higher than

second order, and the Euler-Lagrange equations may involve fourth order time derivatives,

0 ≈ ∂L

∂q
− d

dt

(
∂L

∂q̇

)
+

d2

dt2

(
∂L

∂q̈

)
, (2.21)

if ∂
2L

∂q̈2
̸= 0. So I must introduce an additional variable to absorb the higher order terms.

The Ostrogradsky method [79] is to replace q̇ with an independent variable v.

S =

∫
dt {L (q, v, v̇) + ψ (v − q̇)} , (2.22)

however, I instead do this slightly differently for reasons which will be apparent later.

Following the method used in ref. [77, 80] and using variables like in ref. [81], I instead

replace q̈ with an auxiliary variable a,

S =

∫
dt {L (q, q̇, a) + ψ (q̈ − a)} , (2.23)

and integrate by parts to move the second order time derivative to the Lagrange multiplier

ψ, promoting it to a dynamical variable,

S =

∫
dt
{
L (q, q̇, a)− q̇ψ̇ − ψa

}
, (2.24)

which gives the canonical momenta,

p :=
δS

δq̇
=
∂L

∂q̇
− ψ̇, π :=

δS

δψ̇
= −q̇, πa :=

δS

δȧ
= 0. (2.25)
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So I can invert these definitions to find the velocities in terms of the momenta. Then make

a Legendre transform to find the Hamiltonian,

H =

∫
dt
(
q̇p+ ψ̇π + µaπa

)
− S,

=

∫
dt {−pπ + µaπa − L (q, π, a) + ψa} ,

(2.26)

where µa is a Lagrange multiplier. The equation of motion for a produces the secondary

constraint ϕ =
∂L

∂a
− ψ ≈ 0. Finding {ϕ,H} ≈ 0 produces an equation for µa and therefore

ϕ is a second-class constraint and a is uniquely determined. The constraint can be solved

for a (q, ψ, π) as long as ∂
2L

∂a2
̸= 0 and this can be substituted into the Hamiltonian without

incident, in which case I find,

H =

∫
dt {−pπ − L (q, ψ, π) + ψ a (q, ψ, π)} (2.27)

which is only linear in p. This means that the energy is unbounded from below and above,

and so the model may be unstable [79]. For specific models of this kind rather than this

simple example, I can find a well behaved Hamiltonian if there are sufficient restrictions

on the values that ψ can take [81].

If I do have a well behaved Hamiltonian, it is clear that the higher order derivative action

L(q, q̇, q̈) contains an additional degree of freedom, which has been absorbed by ψ.

2.4.1 Non-minimally coupled scalar from F
(
(4)R
)

gravity

In ref. [77,80], it was shown how to find the Hamiltonian form of any F
(
(4)Rabcd

)
action.

The Riemann tensor is split into its normal and tangential components (2.19), and aux-

iliary tensors are introduced as in (2.23). The tensor which is the Lagrange multiplier of

(2.19c) becomes dynamical by integrating by parts. This turns the action into being first

order in time derivatives, and therefore one can find the associated Hamiltonian. This

field contains the additional degrees of freedom allowed by the higher order derivatives.

To include tensor contractions such as (4)Rab (4)Rab and (4)Rabcd (4)Rabcd produces several

additional degrees of freedom, and requires considering spatial derivatives of velocity or
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momenta because of (2.19b). For the sake of simplicity, in this chapter and throughout

the thesis, I will only consider models which are comparable with F
(
(4)R

)
. So the action

is given by,

S =
ω

2

∫
dtd3xN

√
q
{
F (ρ) + ψ

(
(4)R− ρ

)}
. (2.28)

I decompose the Ricci scalar using (2.19),

(4)R = R+ qabLnvab +
1

4
v2 − 3

2
vabv

ab − 2

N
∆N, R = (3)R, (2.29)

where ∆ := qab∇a∇b. Then integrate the action (2.28) by parts to move the second order

time derivative to ψ,

S =
ω

2

∫
dtd3xN

√
q

{
F (ρ) + ψ

(
R−K − 2

N
∆N − ρ

)
− νv

}
, (2.30)

where q := det qab, ν := Lnψ, and K :=
(
v2 − vabv

ab
)
/4 is the standard extrinsic curvature

contraction. The conjugate momenta are,

pab :=
δS

δq̇ab
=

1

N

δS

δvab

=
ω

2

√
q

{
ψ

2
vcd

(
Qabcd − qabqcd

)
− νqab

}
,

(2.31a)

π :=
δS

δψ̇
=

1

N

δS

δν
=

−ω
2

√
q v, (2.31b)

where Qabcd := qa(cqd)b for convenience. I can invert these to find,

vab =
2

ω
√
q

(
2

ψ
pT
ab − qabπ

)
, ν =

2

3ω
√
q
(ψπ − p) . (2.32)

where I have separated the trace and the traceless parts of the momentum,

pab = pabT +
1

3
qabp. (2.33)
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I Legendre transform the action to find the associated Hamiltonian,

H =

∫
d3x

(
q̇abp

ab + ψ̇π + µρπρ + µNπN + µNa π
a
N

)
− S,

=

∫
d3x

(
NC +NaDa + µρπρ + µNπN + µNa π

a
N

)
,

(2.34)

with the corresponding Hamiltonian constraint,

C :=
δH

δN
=

2

ω
√
q

(
1

ψ
P − 1

3
pπ +

ψ

6
π2
)
+
ω
√
q

2

(
ψρ− ψR− F (ρ) + 2∆ψ

)
, (2.35)

where P := pT
abp

ab
T . Finding {πρ,H} gives a secondary constraint,

ϕρ =
ω

2
N
√
q
(
ψ − F ′ (ρ)

)
≈ 0, (2.36)

which is second-class. It can be solved to find ρ(ψ) as long as F ′′ ̸= 0, in which case we

can find the Hamiltonian constraint in terms of only the metric and the scalar field ψ.

This leaves me with a term depending on ψ which acts like a scalar field potential,

Ugeo (ψ) =
ω

2

(
ψρ (ψ)− F

(
ρ (ψ)

))
=
ω

2

{
ψ
(
F ′)−1

(ψ)− F
((
F ′)−1

(ψ)
)}
, (2.37)

which I call the geometric scalar potential. As I will further elaborate in section 3, this

scalar-tensor model I have derived from an F
(
(4)R

)
model of gravitation is equivalent

to letting the gravitational coupling in the Einstein-Hilbert action become dynamical,

ω → ωψ.

So models of gravity that have an action which is an arbitrary function of the space-

time curvature scalar (4)R can be converted into a scalar-tensor theory in the Hamiltonian

formalism. The structure of general covariance underlying general relativity should be

preserved in these models, though they do contain an additional degree of freedom.



Chapter 2. Methodology 19

2.5 Deformed constraint algebra

As previously mentioned in section 1.2, loop quantum cosmology predicts that the sym-

metries of general relativity should be deformed in a specific way in the semi-classical

limit [36–42]. This appears from incorporating loop variables in a mini-superspace model,

but specifying that all anomalies αIJ in (2.9) vanish while allowing counter-terms to de-

form the classical form of the algebra. This ensures that the constraints are first-class,

retaining the gauge invariance of the theory and of the arbitrariness of the lapse and shift.

If anomalous terms were to appear in the constraint algebra, then the gauge invariance

would be broken and the constraints could only be solved at all times for specific N or

Na. This means that there would a privileged frame of reference, and therefore no general

covariance.

In the referenced studies, it is strongly indicated that the bracket of two Hamiltonian

constraints (2.13c) is deformed by a phase space function β,

{C[N1], C[N2]} = Da[βq
ab (N1∂bN2 − ∂bN1N2)]. (2.38)

This has not been shown generally, but has been shown for several models independently.

There are no anomalies in the constraint algebra, so a form of general covariance is pre-

served. However, it may be that the interpretation of a spatial manifold evolving with

time being equivalent to a foliation of space-time (also known as ‘embeddability’) is no

longer valid.

These deformations only appear to be necessary for models when the Barbero-Immirzi

parameter γBI is real. For self-dual models, when γBI = ±i, this deformation does not

appear necessary [45]. However, self-dual variables are not desirable in other ways. They

do not seem to resolve curvature singularities as hoped, and obtaining the correct classical

limit is non-trivial [46]. Because of this, even though I use metric variables in this work,

considering β ̸= 1 and ensuring the correct classical limit means there should be relevance

to the models of loop quantum cosmology with real γBI.
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2.6 Derivation of the distribution equation

From the constraint algebra, I am able to find the specific form of the Hamiltonian con-

straint C for a given deformation β. The diffeomorphism constraint Da is not affected

when the deformation is a weightless scalar5 and so is completely determined as shown in

appendix B. With Da and β as inputs, I can find C by manipulating (2.38).

Firstly, I must find the unsmeared form of the deformed algebra. At this point I do not

need to specify my canonical variables, and leave them merely as (qI , pI),

0 = {C[N1], C[N2]} −Da[βq
ab (N1∂bN2 − ∂bN1N2)], (2.39a)

=

∫
d3z

{∑
I

δC[N1]

δqI(z)

δC[N2]

δpI(z)
− (DaβN1∂aN2)z

}
− (N1 ↔ N2) . (2.39b)

Take the functional derivatives with respect to N1(x) and N2(y),

0 =
∑
I

∫
d3z

δC(x)

δqI(z)

δC(y)

δpI(z)
− (Daβ∂a)x δ (x, y)− (x↔ y) , (2.40)

where δ(x, y) is the three dimensional Dirac delta distribution6. If I note that I will only

consider constraints without spatial derivatives on momenta, this simplifies,

0 =
∑
I

δC(x)

δqI(y)

∂C

∂pI

∣∣∣∣
y

− (βDa∂a)x δ (x, y)− (x↔ y) . (2.41)

For when I wish to derive the action instead of the constraint, I can transform the equation

by noting that,
δC[N ]

δqI
= −δL[N ]

δqI
, NvI =

δC[N ]

δpI
, (2.42)

where vI := LnqI and the Lagrangian is here defined such that S =
∫

dtd3xNL. I

substitute these into (2.39b), then take the functional derivatives to remove N1 and N2,

0 =
∑
I

δL(x)

δqI(y)
vI(y) + (βDa∂a)x δ (x, y)− (x↔ y) . (2.43)

5See appendix B for information about weight.
6Defined such that δqI (x)

δqI (y)
= δ(x, y). It is non-zero when xa = ya, behaves as a scalar with respect to

its first argument and as a scalar density with respect to its second argument.
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To find a useful form for this, I need to use a specific form for the diffeomorphism con-

straint. Because it depends on momenta, I must replace them using,

pI :=
δS

δq̇I
=

1

N

δL[N ]

δvI
, (2.44)

and, as before, if I note that I will only consider actions without spatial derivatives of

momenta this simplifies to

pI =
∂L

∂vI
. (2.45)

Therefore, substituting the diffeomorphism constraint found in appendix B and momenta

(2.45) into (2.43), I find the distribution equation which can be used for restricting the

form of the deformed action.

So, the key equations I use as a basis for finding the action or constraint for deformed

general relativity are (2.41) and (2.43).

2.7 Order of the deformed action and constraint

I can determine the relationship between the order of the deformation function and the

order of the associated constraint (or action) by comparing orders of momenta (or velocity).

2.7.1 Hamiltonian route

As an example, take the distribution equation (2.41) with only a scalar field,

0 =
δC(x)

δψ(y)

∂C

∂π

∣∣∣∣
y

− (βπ∂aψ∂a)x δ (x, y)− (x↔ y) , (2.46)

where I have used the diffeomorphism constraint (B.6). I take a simplified model with

two spatial derivatives represented by ∆, only taking even orders of derivatives because of

assuming spatial parity. I take the distribution equation (2.46) and put it into schematic

form,

0 =
∂C

∂∆

∂C

∂π
− β π. (2.47)
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so that I can consider orders of π in a way analogous to dimensional analysis. This equation

must be satisfied independently at each order of momenta, so I isolate the coefficient of

πn,

0 =

nC∑
m=1

m
∂C(n−m+1)

∂∆
C(m) − β(n−1), (2.48)

where I have expanded the constraint and deformation,

C =

nC∑
m=0

C(m)πm, β =

nβ∑
m=0

β(m)πm. (2.49)

The highest order contribution to (2.48) comes when m = nC and n−m+ 1 = nC , in

which case n = 2nC − 1. This is the highest order at which β won’t automatically be

constrained to vanish, so I find its highest order of momenta to be nβ = 2nC − 2. However,

this result does not take into account the fact that the combined order of momenta and

spatial derivatives may be restricted. If this is the case (as is found in chapter 5), then

the highest order contribution to the (2.48) will be when n−m+ 1 = nC − 2, in which

case I find the relation

2nC − nβ = 4. (2.50)

I see that a deformed second order constraint only requires considering a zeroth order

deformation as I do in chapter 3, but a fourth order constraint requires considering a

fourth order deformation. I consider the constraint to general order in chapter 5. Note

that this relation suggests there are higher order deformations which allow for constraints

given by finite order polynomials.

2.7.2 Lagrangian route

Consider the distribution equation (2.43) with only a scalar field,

0 =
δL(x)

δψ(y)
ν(y) +

(
β
∂L

∂ν
∂aψ∂a

)
x

δ(x, y)− (x↔ y) , (2.51)
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where I have used the diffeomorphism constraint (B.6) and the momentum definition

(2.45). Let me consider a simplified model to match the derivative orders for the de-

formation and the derivative orders for the Lagrangian in a way analogous to dimensional

analysis. First order time derivatives are given by ν and two orders of spatial derivatives

are given by ∆. I can collect terms in the distribution equation of the same order of time

derivatives as they are linearly independent. Schematically, the distribution equation is

given by,

0 =
∂L

∂∆
ν +

∂L

∂ν
β, (2.52)

and expanding the Lagrangian and deformation in powers of ν,

L =

nL∑
m=0

L(m)νm, β =

nβ∑
m=0

β(m)νm, (2.53)

the coefficient of νn is then given by,

0 =
∂L(n−1)

∂∆
+

nβ∑
m=0

(n−m+ 1)L(n−m+1)β(m). (2.54)

I can relabel and rearrange to find a schematic solution for the highest order of L appearing

here,

L(n) =
−1

nβ(0)

{
∂L(n−2)

∂∆
+

nβ∑
m=1

(n−m)β(m)L(n−m)

}
. (2.55)

I can see that if nβ > 0, then this equation is recursive and nL → ∞ because there is no

natural cut-off, suggesting that L is required to be non-polynomial. If I wish to truncate

the action at some order, then it must be treated as an perturbative approximation. I

consider a perturbative fourth order action in chapter 4, and the completely general action

in chapter 6.

2.8 Cosmology

Since the main motivations for this study centre around cosmological implications of the

deformed constraint algebra, I need to lay out how I find the cosmological dynamics of a
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model. I restrict to an isotropic and homogeneous space, using the Friedmann-Lemaître-

Robertson-Walker metric (FLRW),

qab = a2(t)Σab, a = (det qab)1/6 Na = 0, (2.56)

where Σab is time-independent and describes a three dimensional spatial slice with constant

curvature k. When space is flat, k = 0, this is given by Σab = δab. The normal derivative

of the spatial metric is given by,

vab =
2

N
aȧΣab, ∴ K =

6ȧ2

a2N2
=:

6

N2
H2, (2.57)

where H is the Hubble expansion rate, and the Ricci curvature scalar is given by,

R =
6k

a2
. (2.58)

When using canonical coordinates, the metric momentum is given by

pab = p̄Σab, p̄ =
(

det pab
)1/3

, (2.59)

which changes the metric’s commutation relation,

{
qab(x), p

cd(y)
}
= δcdab(x)δ(x, y) →

{
a(x), p̄(y)

}
=
δ(x, y)

6a(x)
, (2.60)

where δcdab := δc(aδ
d
b). The spatial derivatives of matter fields vanish, ∂aψI = 0. One may

couple a perfect fluid to the metric by including the energy density ρ in the constraint or

the action [82],

C ⊃ a3ρ, L ⊃ −a3ρ, (2.61)

which must satisfy the continuity equation,

ρ̇+ 3Hρ (1 + wρ) = 0, (2.62)
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where wρ is the perfect fluid’s cosmological equation of state, the ratio of the pressure

density to the energy density.

For investigations into whether there are implications for the hypothesised inflationary

period in the very early universe, I must define what is considered to be a period of

inflation. The simple definition is when the finite scale factor is both expanding and

accelerating, ȧ > 0 and ä > 0.

As said above, loop quantum cosmology with real variables seems to predict a big bounce

instead of a big bang or crunch. In this thesis, I take the very literal interpretation of

this (as found in ref. [83]) and define a bounce as a turning point for a finite scale factor,

a > 0, ȧ = 0 and ä > 0. This definition may be usable, but it is not ideal. If a bounce does

indeed happen when β < 0, as predicted in the literature, then this is when the effective

metric signature is Euclidean, when ȧ may be a complex number.

Ideally, I would like to extract cosmological observables such as the primordial scalar

index to find phenemenological constraints [84]. However, to calculate the power spectra

of primordial fluctuations would require adapting the cosmological perturbation theory

formalism to ensure it is valid for deformed covariance, something which would probably

be highly non-trivial. Unfortunately, there was not enough time to investigate this.
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Chapter 3

Second order scalar-tensor model

and the classical limit

In this chapter, I derive the general form of a minimally-deformed, non-minimally-coupled

scalar-tensor model which includes up to two orders in momenta or time derivatives. This

allows me to demonstrate that the higher order gravity model derived in section 2.4.1

does not deform the constraint algebra or general covariance, and therefore show how the

deformed models derived in subsequent chapters are distinct. For those later chapters,

this minimally-deformed model provides a useful reference point. This chapter is adapted

from work I previously published in ref. [55].

I find the form of the model by deriving restrictions on the constraint using (2.41) and then

transform to find the action. It would be completely equivalent to derive the action first,

because the minimally deformed case maintains a linear relationship between velocities and

momenta, meaning that the transformation between the action and constraint is trivial.

After finding the constraint and action, I look at some of the cosmological implications in

section 3.3, especially the interesting influence of the non-minimal coupling of the scalar

field.

I use the structure of the scalar-tensor constraint which is a parameterisation of F ((4)R),

(2.35), to guide the structure of my general ansatz for a spatial metric coupled to several

scalar fields. I include spatially covariant terms up to second order in momenta or spatial
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derivatives, and ignore terms linear in momenta,

C = C∅ + C(R)R+ C
(p2)
abcdp

abpcd + C(pπI)pπI

+ C(ψ′
Iψ

′
J )
∂aψI∂

aψJ + C(ψ′′
I )
∆ψI + C(πIπJ )πIπJ ,

(3.1)

with summation over I and J implied. I have included C(ψ′
Iψ

′
J )

because it appears in the

constraint for minimally coupled scalar fields [10, p. 62]. I aimed to define the most general

ansatz for a scalar-tensor constraint containing up to two orders in derivatives which

is covariant under general spatial diffeomorphisms, as well as under time reversal, and

preserves spatial parity. Each coefficient is potentially a function of q and ψI , allowing for

non-minimal coupling. The spatial indices of C(p2)
abcd only represent different combinations

of the metric. The zeroth order term might include terms such as scalar field potentials

or perfect fluids, and it behaves as a generalised potential C∅ =
√
q U(q, ψI).

3.1 Solving the distribution equation

I substitute into the distribution equation (2.41) my ansatz for a second order constraint

(3.1), the diffeomorphism constraint from (B.6) and (B.11), and a zeroth order deformation

β (q, ψ),

0 =
δC0(x)

δqab(y)

(
2pcdC

(p2)
abcd + πqabC

(pπ)
)
y
+
δC0(x)

δψ(y)

(
pC(pπ) + 2π C(π2)

)
y

+
{
2β
(
∂bp

ab + Γabcp
bc
)
− β∂aψ π

}
x
∂a(x)δ(x, y)− (x↔ y) ,

(3.2)

where C0 is the part of the constraint without momenta. From here there are two routes

to solution, by focusing on either the pab and π components. I must do both to find all

consistency conditions on the coefficients of the Hamiltonian constraint.
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3.1.1 pab sector

To proceed to the metric momentum sector, I take (3.2) and find the functional derivative

with respect to pab(z),

0 =

(
2
δC0(x)

δqcd(y)
C

(p2)
abcd(y) +

δC0(x)

δψ(y)
C

(pπ)
ab (y)

)
δ(z, y)

+ 2β(x)
{(
δc(a∂b)

)
x
δ(z, x) + Γcab(x)δ(z, x)

}
∂c(x)δ(x, y)− (x↔ y) ,

(3.3)

where I explicitly show the coordinate of the partial derivative as ∂a(y) :=
∂

∂ya
because the

distinction is important when integrating by parts. I then proceed by moving derivatives

away from δ(z, y) terms and discarding total derivatives,

0 =

(
2
δC0(x)

δqcd(y)
C

(p2)
abcd(y) +

δC0(x)

δψ(y)
C

(pπ)
ab (y) + 2∂c(y)

[(
βδc(a∂b)

)
y
δ(y, x)

]
− 2
(
βΓcab∂c

)
y
δ(y, x)

)
δ(z, y)− (x↔ y) ,

(3.4)

which can be rewritten as,

0 = Aab(x, y)δ(z, y)−Aab(y, x)δ(z, x). (3.5)

Integrating over y, I find that part of the equation can be combined into a tensor dependent

only on x,

0 = Aab(x, z)− δ(z, x)

∫
d3yAab(y, x),

= Aab(x, z)− δ(z, x)Aab(x), where Aab(x) =
∫

d3yAab (y, x) .

(3.6)

Substituting in the definition of Aab(x, z) then relabelling,

0 = 2
δC0(x)

δqcd(y)
C

(p2)
abcd(y) +

δC0(x)

δψ(y)
C

(pπ)
ab (y) + 2∂c(y)

[(
βδc(a∂b)

)
y
δ(y, x)

]
− 2 (βΓcab∂c)y δ(y, x)−Aab(x)δ(y, x).

(3.7)
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Multiplying by an arbitrary test tensor θab (y), then integrating by parts over y, I get

0 = θab (· · · )ab + ∂cθ
ab

{
2C

(p2)
abde

∂C0

∂qde,c
+ 4∂dC

(p2)
abef

∂C0

∂qef,cd
+ C

(pπ)
ab

∂C0

∂ψ,c

+2∂dC
(pπ)
ab

∂C0

∂ψ,cd
+ 2δc(a∂b)β + 2βΓcab

}
+ ∂cdθ

ab

{
2C

(p2)
abef

∂C0

∂qef,cd
+ C

(pπ)
ab

∂C0

∂ψ,cd
+ 2βδcdab

}
,

(3.8)

where I do not need to consider the zeroth derivative terms because they do not produce

restrictions on the form of the constraint. Since θab is arbitrary beyond the symmetry of

its indices, each unique contraction of it forms a linearly independent equation.

To calculate the derivatives of C0, I must use the decomposition of the Riemann tensor

(A.6) and the second covariant derivative of the metric variation expressed in terms of

partial derivatives (A.9). This gives,

∂C0

∂ψ,ab
= C(ψ′′)q

ab,
∂C0

∂ψ,a
= 2C(ψ′2)∂

aψ − C(ψ′′)Γ
a,

∂C0

∂qab,cd
= C(R)Φ

abcd,

∂C0

∂qab,c
= C(ψ′′)

(
1

2
qab∂cψ − qc(a∂b)ψ

)
− C(R)Φ

defg
(
Γcfgδ

ab
de + 4δ

(a
(dΓ

b)
e)(fδ

c
g)

)
,

(3.9)

where Φabcd = Qabcd − qabqcd as found in (A.8). Note thatQabcd := qa(cqd)b and δabde := δ
(a
d δ

b)
e .

I evaluate the coefficient of ∂dcθab and find the linearly independent components,

qab∂
2θab : 0 = −2C(R)

(
2C(p2∥) + C(p2x)

)
+ C(ψ′′)C

(pπ), (3.10a)

∂abθ
ab : 0 = C(R)C

(p2x) + β, (3.10b)
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where I have decomposed the constraint coefficient C(p2)
abcd = qabqcdC

(p2∥) + QabcdC
(p2x).

Then evaluating similarly for ∂cθab,

qab∂
cψ∂cθ

ab : 0 = 2
(
C(ψ′2) + C(ψ′′)∂ψ

)
C(pπ) +

(
C(ψ′′) − 8C(R)∂ψ

)
C(p2∥)

+
(
C(ψ′′) − 4C(R)∂ψ

)
C(p2x),

(3.11a)

∂bψ∂aθ
ab : 0 =

(
−C(ψ′′) + 2C(R)∂ψ

)
C(p2x) + ∂ψβ, (3.11b)

Xb∂aθ
ab : 0 = C(R) (1 + 2∂q)C

(p2x) + ∂qβ, (3.11c)

Xcqab∂cθ
ab : 0 = −2C(R) (1 + 4∂q)

(
2C(p2∥) + C(p2x)

)
(3.11d)

+ C(ψ′′) (1 + 4∂q)C
(pπ), (3.11e)

where ∂ψ :=
∂

∂ψ
, ∂q :=

∂

∂ log q and Xa := qbc∂aqbc. Note that the equations for ∂cqab∂cθab,

∂aqbc∂
cθab and qab∂

dqcd∂
cθab are not included because they are identical to (3.10).

Using (3.10b) to solve for C(p2x), then substituting it into (3.11c), I find,

∂ logC(R)

∂ log q =
1

2

(
1 +

∂ logβ
∂ log q

)
, (3.12)

which is solved by C(R) (q, ψ) = f (ψ)
√
q |β (q, ψ)|, where f(ψ) is some unknown function.

If I solve (3.10) for C(p2∥) and C(p2x), then substitute them into (3.11e), I find a similar

equation to the one above for C(R), and therefore C(ψ′′) (q, ψ) = f(ψ′′) (ψ)
√
q |β (q, ψ)|.

Taking (3.11b) then substituting in for C(p2x), C(R) and C(ψ′′), I find that

f(ψ′′) (ψ) = −2∂ψf (ψ),

C(R) = f
√
q |β|, C(ψ′′) = −2∂ψf

√
q |β|, (3.13a)

C(p2x) =
−σβ
f

√
|β|
q
, C(p2∥) =

σβ
2f

√
|β|
q

−
∂ψf

2f
C(pπ), (3.13b)

where σβ := sgn(β), which is all the conditions which can be obtained from the metric

momentum sector of the distribution equation. The remaining conditions must be found

in the scalar momentum sector.
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3.1.2 π sector

Similar to subsection 3.1.1 above, I take the functional derivative of (3.2) with respect to

π(z),

0 =

(
δC0(x)

δqab(y)
C

(pπ)
ab (y) + 2

δC0(x)

δψ(y)
C(π2)(y)

)
δ(z, y)

− (β∂aψ∂a)x δ(x, y)δ(z, x)− (x↔ y) ,

(3.14)

then exchange terms to find the coefficient of δ(z, y),

0 =

(
δC0(x)

δqab(y)
C

(pπ)
ab (y) + 2

δC0(x)

δψ(y)
C(π2)(y)

+ (β∂aψ∂a)y δ(y, x)
)
δ(z, y)− (x↔ y) ,

(3.15)

which can be rewritten as,

0 = A(x, y)δ(z, y)−A(y, x)δ(z, x), (3.16a)

0 = A(x, z)− δ(z, x)

∫
d3yA(y, x), (3.16b)

= A(x, z)− δ(z, x)A(x), where A(x) =
∫

d3yA (y, x) , (3.16c)

leading to

0 =
δC0(x)

δqab(y)
C

(pπ)
ab (y) + 2

δC0(x)

δψ(y)
C(π2)(y) + (β∂aψ∂a)y δ(y, x)−A(x)δ(y, x). (3.17)

Multiplying by an arbitrary test function η(y), then integrating by parts over y, I get

0 = η (· · · ) + ∂abη

(
C

(pπ)
cd

∂C0

∂qcd,ab
+ 2C(π2) ∂C0

∂ψ,ab

)
+ ∂aη

(
C

(pπ)
bc

∂C0

∂qbc,a
+ 2∂bC

(pπ)
cd

∂C0

∂qcd,ab
+ 2C(π2) ∂C0

∂ψ,a
+ 4∂bC

(π2) ∂C0

∂ψ,ab
− β∂aψ

)
.

(3.18)
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I then substitute in (3.9) to find the linearly independent conditions,

∂2η : 0 = C(R)C
(pπ) − C(ψ′′)C

(π2), (3.19a)

∂aψ∂aη : 0 =

(
1

2
C(ψ′′) − 4C(R)∂ψ

)
C(pπ) + 4

(
C(ψ′2) + C(ψ′′)∂ψ

)
C(π2) − β, (3.19b)

Xa∂aη : 0 = C(R) (1 + 4∂q)C
(pπ) − C(ψ′′) (1 + 4∂q)C

(π2). (3.19c)

Note that there is another condition from ∂bqab∂
aη, but it is identical to (3.19a).

I can solve (3.19a) for C(pπ) = C(ψ′′)C
(π2)/C(R), and then substitute into (3.19b) to find,

0 = C(π2)

{
C(ψ′2) − ∂ψC(ψ′′) +

C(ψ′′)

C(R)

(
∂ψC(R) +

C(ψ′′)

8

)}
− β

4
, (3.20)

which I can solve for C(π2), and is the same conclusion I get from (3.11a) (though I did

not explicitly write it above because it is simpler to write it here). The condition (3.19c)

is solved when I substitute in all my results so far,

C(π2) =
σβ
4

√
|β|
q

{
C(ψ′2)√
q |β|

+ 2f ′′ − 3f ′2

2f

}−1

, (3.21a)

C(pπ) =
−σβf ′

2f

√
|β|
q

{
C(ψ′2)√
q |β|

+ 2f ′′ − 3f ′2

2f

}−1

, (3.21b)

and if I collect all of the coefficients, I find the Hamiltonian constraint,

C =
√
q |β|

(
fR− 2f ′∆ψ

)
+ C(ψ′2)∂aψ∂

aψ + C∅

+ σβ

√
|β|
q

 1

f

(
p2

6
− P

)
+

1

4

(
π − f ′

f
p

)2
(
C(ψ′2)√
q |β|

+ 2f ′′ − 3f ′2

2f

)−1
 ,

(3.22)

so the freedom in any (3 + 1) dimensional scalar-tensor theory with time symmetry

and minimally deformed general covariance comes down to the choice of f (ψ), β (q, ψ),

C(ψ′2) (q, ψ) and the zeroth order term C∅(q, ψ). It is convenient to make a redefinition,

C(ψ′2) = g (q, ψ)
√
q |β|, where I have made the scalar weight and expected dependence on

β explicit. It is worth remembering that this is an assumption, and that g could be a

function of β. It is also convenient to treat the zeroth order term as a general potential,
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and to extract the scalar density, C∅ =
√
q U(q, ψ).

I find the effective Lagrangian associated with this Hamiltonian constraint by performing

a Legendre transformation,

L =
√
q |β|

{
f

(
K
β

−R

)
+ f ′

(
νv

β
+ 2∆ψ

)
+
(
g + 2f ′′

) ν2
β

−g ∂aψ∂aψ − U√
|β|

}
.

(3.23)

Integrating by parts at the level of the action does not affect the dynamics because it only

eliminates boundary terms. This allows me to find the effective form of the Lagrangian,

with a space-time decomposition and without second order time derivatives. I can also do

this in the opposite direction to find the covariant form of the above effective Lagrangian,

Lcov =
√
q |β|

(
−f (4,β)R−

(
g + 2f ′′

)
∂(4,β)µ ψ ∂µ(4,β)ψ

)
−√

q U, (3.24)

where the deformed four dimensional Ricci scalar and partial derivative are given by,

(4,β)R = R+
σβ√
|β|
qabLn

(
vab√
|β|

)
+

1

4β
v2 − 3

4β
vabvab −

2∆
(√

|β|N
)

√
|β|N

, (3.25a)

∂(4,β)µ ψ ∂µ(4,β)ψ = ∂aψ ∂
aψ − 1

β
ν2. (3.25b)

If this is compared to (2.29), I see that the deformation seems to have transformed the

effective lapse function N →
√

|β|N , and transformed the effective normalisation of the

normal vector to gµνnµnν = −σβ. Here is where I see the effective signature change which

comes from the deformation.

It is useful to take the Lagrangian in covariant form and use it to redefine the coupling

functions so that minimal coupling is when the functions are equal to unity, f = −1
2ωR

and g = −1
2ωψ + ω′′

R,

Lcov =
1

2

√
q |β|

(
ωR(ψ)

(4,β)R− ωψ(q, ψ) ∂
(4,β)
µ ψ ∂µ(4,β)ψ

)
−√

q U (q, ψ) , (3.26)
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so the effective forms of the constraint and Lagrangian are given by,

L =
1

2

√
q |β|

{
ωR

(
R− K

β

)
− ω′

R

(
νv

β
+ 2∆ψ

)
+
ωψν

2

β

−
(
ωψ + 2ω′′

R

)
∂aψ∂

aψ
}
−√

q U,

(3.27a)

C =
√
q |β|

{
2σβ
qωR

(
P − p2

6

)
− ωR

2
R+

σβ
2q

(
π −

ω′
R

ωR
p

)2(
ωψ +

3ω′2
R

2ωR

)−1

+ω′
R∆ψ +

(ωψ
2

+ ω′′
R

)
∂aψ∂

aψ
}
+

√
q U,

(3.27b)

which is the main result of this section in its most useful form.

Since I have non-minimal coupling, I am working in the Jordan frame. I can get to the

Einstein frame by making a specific conformal transformation which absorbs the coupling

ωR by setting qab = ωR q̃ab and N = ω
−1/2
R Ñ ,

L̃ =
1

2

√
q̃ |β|

{(
R̃− K̃

β

)
+

(
ωψ
ωR

+
3ω′2

R

2ω2
R

)(
ν̃2

β
− q̃ab∂aψ∂bψ

)}
−
√
q̃

(
U

ω2
R

)
, (3.28)

where variables with tildes are Einstein-frame quantities. So the Einstein frame couplings

are given by ω̃R = 1, ω̃ψ =
(
ωψωR + 3ω′2

R/2
)
/ω2

R, and the potential by Ũ = U/ω2
R.

When the term ‘Einstein frame’ is used elsewhere in the literature, it often refers to an

action which is transformed further so that the effective scalar coupling is also unity. I

can make this transformation to a minimally coupled scalar φ by solving the differential

equation,
∂φ

∂ψ
=

√
ωψ
ωR

+
3

2

(
∂ψωR
ωR

)2

, (3.29)

for example, when ωψ = 0, this is solved by φ (ψ) =

√
3

2
logωR (ψ) sgn(∂ψ logωR (ψ)). For

the parameterisation of F ((4)R) given in section 2.4.1, ωR = ωψ, and the transformation

is given by ψ (φ) ∝ eφ
√

2/3 as long as ψ > 0.
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3.2 Multiple scalar fields

Consider the case of multiple scalar fields. I start from the distribution equation as before,

but label the scalar field variables with an index. Proceeding like in section 3.1.1 by taking

functional derivatives with respect to pab and then integrating by parts with test function

θab, I obtain the conditions,

∂abθ
ab : 0 = C(R)C

(p2x) + β, (3.30a)

qab∂
2θab : 0 = −2C(R)

(
2C(p2∥) + C(p2x)

)
+
∑
I

C(ψ′′
I )
C(pπI), (3.30b)

Xb∂aθ
ab : 0 = C(R) (1 + 2∂q)C

(p2x) + ∂qβ, (3.30c)

∂bψI∂aθ
ab : 0 =

(
C(ψ′′

I )
− 2C(R)∂ψI

)
C(p2x) − ∂ψIβ, (3.30d)

qab∂
cψI∂cθ

ab : 0 =
(
C(ψ′′

I )
− 8C(R)∂ψI

)
C(p2∥) +

(
C(ψ′′

I )
− 4C(R)∂ψI

)
C(p2x)

+2
(
C(ψ′2

I ) + C(ψ′′
I )
∂ψI

)
C(pπI) +

∑
J ̸=I

(
C(ψ′

Iψ
′
J )

+ C(ψ′′
J )
∂ψI

)
C(pπJ ).

(3.30e)

I note that there are other independent terms, but they do not produce any extra condi-

tions. Likewise, if I follow the route taken in section 3.1.2, taking the functional derivative

with respect to πI then integrating by parts with test function ηI , I find the conditions,

∂2ηI : 0 = C(R)C
(pπI) − C(ψ′′

I )
C(π2

I ) − 1

2

∑
J ̸=I

C(ψ′′
J )
C(πIπJ ), (3.31a)

Xa∂aηI : 0 = C(R) (1 + 4∂q)C
(pπI) − C(ψ′′

I )
(1 + 4∂q)C

(π2
I )

− 1

2

∑
J ̸=I

C(ψ′′
J )
(1 + 4∂q)C

(πIπJ ),
(3.31b)

∂aψI∂aηI : 0 =

(
1

2
C(ψ′′

I )
− 4C(R)∂ψI

)
C(pπI) + 4

(
C(ψ′2

I ) + C(ψ′′
I )
∂ψI

)
C(π2

I )

+
∑
J ̸=I

(
C(ψ′

Iψ
′
J )

+ 2C(ψ′′
J )
∂ψI

)
C(πIπJ ) − β,

(3.31c)

∂aψJ ̸=I∂aηI : 0 =

(
1

2
C(ψ′′

J )
− 2C(R)∂ψJ

)
C(pπI) + 2

(
C(ψ′

Iψ
′
J )

+ 2C(ψ′′
I )
∂ψJ

)
C(π2

I )

+2
(
C(ψ′2

J ) + C(ψ′′
J )
∂ψJ

)
C(πIπJ ) +

∑
K ̸=I,J

(
C(ψ′

Jψ
′
K) + 2C(ψ′′

K)∂J

)
C(πIπK),

(3.31d)
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and similar to above, there are other independent terms which do no produce any unique

conditions.

To solve this system of equations I must make assumptions, in particular about the rela-

tionship between the scalar fields. One choice might be to assume an O (N) symmetry,

where the coupling and deformation would only depend on the absolute value of the scalar

field multiplet |ψ| =
√∑

I ψ
2
I , and relationships between the C(ψ′

Iψ
′
J )

coefficients could be

assumed.

However, I instead choose to take one non-minimally coupled field (ψ, πψ) and one minim-

ally coupled field (φ, πφ) with no cross-terms in the spatial derivative sector, C(φ′ψ′) = 0.

The minimally coupled field only appears in terms other than the potential U (q, ψ, φ)

through the deformation function β(q, ψ, φ). For example, C(R) = C(R) (q, ψ, β).

Solving (3.30a) and (3.30c) gives me,

C(R) = f (ψ)
√
q |β (q, ψ, φ)|, C(p2x) =

−1

f (ψ)

√
|β (q, ψ, φ)|

q
, (3.32)

as before. Substituting these into (3.30b) and (3.30d) gives me,

C(ψ′′) = −2f ′
√
q |β|, C(φ′′) = 0, C(p2∥) =

σβ
2f

√
|β|
q

− f ′

2f
C(pπψ), (3.33)

and the remaining conditions are,

C(pπψ) =
−σβf ′

2f

√
|β|
q

{
C(ψ′2)√
q |β|

+ 2f ′′ − 3f ′2

2f

}−1

(3.34a)

C(πφπψ) =
−∂φβ ∂ψf
4C(φ′2)


2C(ψ′2)√

q|β|

(
1−

∂ logC(ψ′2)
∂ logβ

)
+ 2f ′′ − 3f ′2

2f[
C(ψ′2)√
q|β|

+ 2f ′′ − 3f ′2

2f

]2
 , (3.34b)

C(π2
φ) =

β

4C(φ′2)
, C(pπφ) = −f

′

f
C(πφπψ). (3.34c)

I note that the constraint is significantly simpler if I assume C(φ′2) = gφ (ψ)
√
q |β| and

C(ψ′2) = gψ (ψ)
√
q |β|, where gφ and gψ are arbitrary functions. In this case the whole
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Hamiltonian constraint is

C =
√
q |β|

(
fR− 2f ′∆ψ + gφ∂aφ∂

aφ+ gψ∂aψ∂
aψ
)
+
√
q U

+ σβ

√
|β|
q

 π2φ
4gφ

+
1

f

(
p2

6
− P

)
+

(
πψ − f ′

f p
)(

πψ − f ′

f p−
f ′∂φβ
βgφ

πφ

)
4
(
gψ + 2f ′′ − 3f ′2

2f

)
 ,

(3.35)

and the associated Lagrangian density is

L =
√
q |β|

{
f

(
K
β

−R

)
+ f ′

(
νψv

β
+ 2∆ψ

)
+

(
ĝψ
h

+
3f ′2

2f

)
ν2ψ
β

−gψ∂aψ∂aψ +
gφ
hβ

ν2φ − gφ∂aφ∂
aφ+

f ′∂φβ

hβ
νφνψ

}
−√

q U,

(3.36a)

ĝψ = gψ + 2f ′′ − 3f ′2

2f
, h = 1− f ′2∂φβ

2

4gφĝψβ2
. (3.36b)

If β does not depend on φ, then this can be simplified greatly, in which case the effective

and covariant forms of the Lagrangian are given by,

L =
1

2

√
q |β|

{
ωR

(
R− K

β

)
− ω′

R

(
νψv

β
+ 2∆ψ

)
+ ωφ

(
ν2φ
β

− ∂aφ∂
aφ

)

+
ωψν

2
ψ

β
−
(
ωψ + 2ω′′

R

)
∂aψ∂

aψ

}
−√

q U,

(3.37a)

Lcov =
1

2

√
q |β|

(
ωR

(4,β)R− ωψ ∂
(4,β)
µ ψ∂µ(4,β)ψ − ωφ ∂

(4,β)
µ φ∂µ(4,β)φ

)
−√

q U, (3.37b)

where ωR = −2f , ωψ = 2 (gψ + 2f ′′), ωφ = 2gφ. Therefore, when I assume that the minim-

ally coupled scalar field can also be considered to be minimally coupled to the deformation

function, I find that the action simplifies to the expected form. It would be interesting

to see what effects appear for scalar field multiplets, especially for non-Abelian symmet-

ries, but that is beyond the scope of this study. Instead, I now turn to studying the

cosmological dynamics of my results.
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3.3 Cosmology

To find the cosmological dynamics, I restrict to a flat, homogeneous, and isotropic metric

in proper time (N = 1). I also assume that β does not depend on the minimally coupled

scalar field φ for the sake of simplicity. From (3.37), I find the Friedmann equation, which

can be written in two equivalent forms,

H
(
ωRH+ ω′

Rψ̇
)
=

1

3

(ωψ
2
ψ̇2 +

ωφ
2
φ̇2 + σβ

√
|β|U

)
, (3.38a)(

ωRH+
1

2
ω′
Rψ̇

)2

=
1

3

[
1

2

(
ωRωψ +

3

2
ω′2
R

)
ψ̇2 +

ωRωφ
2

φ̇2 + σβωR
√

|β|U
]
. (3.38b)

From (3.38b) I see that ωRωψ + 3ω′2
R/2 ≥ 0 and ωRωφ ≥ 0 are necessary when U → 0 to

ensure real-valued fields. If I compare this condition to the Einstein frame Lagrangian

(3.28), I can see that it is also the condition which follows from insisting that the scalar

field ψ is not ghost-like in that frame. Similarly, I see that σβωR > 0 is necessary when

ψ̇, φ̇→ 0.

For the reasonable assumption that the minimally coupled field φ does not affect the de-

formation function β, the only way that field is modified is through a variable maximum

phase speed c2φ = β. Due to this minimal modification, it does not produce any of the cos-

mological phenomena I am interested in (bounce, inflation) through any novel mechanism.

Therefore, I will ignore this field for the rest of the chapter.

I find the equations of motion by varying the Lagrangian (3.37) with respect to the fields.

For the simple undeformed case β = 1 the equations are given by,

(
ωRωψ +

3

2
ω′2
R

)
ψ̈ = −3ψ̇H

(
ωRωψ + ω′2

R

)
− ωR∂ψU +

3

2
ωRω

′
RH2

−1

2
ψ̇2

(
ωRω

′
ψ +

3

2
ω′
Rωψ + 3ω′

Rω
′′
R

)
+

3

2
ω′
R

(
1 +

a

3

∂

∂a

)
U,

(3.39a)

(
ωRωψ +

3

2
ω′2
R

)
ä

a
= −1

2
H2
(
ωRωψ + 3ω′2

R

)
+
ωψ
2

(
1 +

a

3

∂

∂a

)
U

−1

4
ψ̇2
(
ω2
ψ + 2ωψω

′′
R − ω′

ψω
′
R

)
+

1

2
ω′
Rωψψ̇H−

ω′
R

2
∂ψU,

(3.39b)
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where I can see from the equations of motion that the model breaks down if

ωRωψ + 3ω′2
R/2 → 0 because it will tend to cause |ψ̈| → ∞ and |ä| → ∞.

3.3.1 Bounce

I will address the question of whether there are conditions under which there can be a big

bounce as defined in section 2.8. I find in chapter 4 (and in ref. [56]) that a deformation

function which depends on curvature terms can generate a bounce. Elsewhere in the

literature on loop quantum cosmology the bounce happens in a regime when β < 0 because

the terms depending on curvature or energy density overpower the zeroth order terms

[40, 41]. However, I am not including derivatives in the deformation here so the effect

would have to come from the non-minimal coupling of the scalar field or the zeroth order

deformation.

I take ȧ = 0 for finite a, include a deformation and I ignore the minimally coupled field

for simplicity. From the Friedmann equation (3.38) I find,

0 =
ωψ
2
ψ̇2 + σβ

√
|β|U, (3.40)

which implies that σβωψ < 0 for a bounce because otherwise the equation cannot balance

for U > 0 and ψ ∈ R. Substituting (3.40) into the full equation of motion for the scale

factor, and demanding that ä > 0 to make it a turning point, I find the following conditions,

σβωψ < 0, (3.41a)

ωRωψ +
3

2
ω′2
R > 0, (3.41b)

σβ
√
|β|
(
ωψ + 2ω′′

R

)
U −

σβω
′
R

2ωψ
∂ψ

(√
|β|ωψU

)
+
aβ

6

∂

∂a

(
ωψU√
|β|

)
> 0, (3.41c)

from which I can determine what the coupling functions, deformation and potential must

be for a bounce. For example, if I look at the minimally coupled case, when ωR = ωψ = 1,
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and assume that U > 0, I can see that the conditions are given by,

σβ < 0,
∂ log

(
|β|−1/2 U

)
∂ log a < −6. (3.42)

Since I must have β → 1 in the classical limit and σβ < 0 at the moment of the bounce,

then β must change sign at some point. Therefore, a universe which bounces purely due

to a zeroth order deformation must have effective signature change. Another example is

obtained by assuming scale independence and choosing β = 1 and U > 0. In this case the

bounce conditions become,

ωψ < 0, ωψωR +
3

2
ω′2
R > 0, ωψ + 2ω′′

R − 1

2
ω′
R∂ψ log (ωψU) > 0, (3.43)

which I can use to find a model which bounces purely due to a scale-independent non-

minimally coupled scalar. I present this model in subsection 3.3.5.

3.3.2 Inflation

Now consider the inflationary dynamics. For simplicity I assume that inflation will come

from a scenario similar to slow-roll inflation with possible enhancements coming from the

non-minimal coupling or the deformation. The conditions for slow-roll inflation are,

ψ̇2 ≪ U,
∣∣∣ψ̈∣∣∣≪ ∣∣∣ψ̇H∣∣∣ , ∣∣∣Ḣ∣∣∣≪ H2, (3.44)

assuming the couplings, potential and deformation are scale independent and the deform-

ation is positive, I get the following slow roll equations,

H ≃

√
β1/2U

3ωR
, (3.45a)

ψ̇ ≃ −

√
β1/2U

3ωR

 ∂ψ log
(

U
β1/2ω2

R

)
ωψ
ωR

+
ω′2
R

ω2
R
+

β′ω′
R

2βωR

 , (3.45b)
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and define the slow-roll parameters,

ϵ :=
−Ḣ
H2

, η :=
−Ḧ
HḢ

, ζ :=
−ψ̈
ψ̇H

, (3.46)

which, under slow-roll conditions are given by,

ϵ ≃
∂ψ log

(
β1/2U
ωR

)
∂ψ log

(
U

β1/2ω2
R

)
2
(
ωψ
ωR

+
ω′2
R

ω2
R
+

β′ω′
R

2βωR

) (3.47a)

η ≃

 ∂ψ log
(

U
β1/2ω2

R

)
ωψ
ωR

+
ω′2
R

ω2
R
+

β′ω′
R

2βωR

 ∂ψ log ϵ+ 2ϵ, (3.47b)

ζ ≃ ∂ψ

 ∂ψ log
(

U
β1/2ω2

R

)
ωψ
ωR

+
ω′2
R

ω2
R
+

β′ω′
R

2βωR

+ ϵ, (3.47c)

where a prime indicates a partial derivative with respect to ψ, i.e. β′ = ∂ψβ. The slow-roll

regime ends when the absolute value of any of these three parameters approaches unity.

Defining N to mean the number of e-folds from the end of inflation, a (t) = aende
−N (t), I

find that,

N = −
∫ t

tend

dtH = −
∫ ψ

ψend

dψH
ψ̇
, (3.48)

and using the slow-roll approximation,

N ≃
∫ ψ

ψend

dψ
ωψ
ωR

+
ω′2
R

ω2
R
+

β′ω′
R

2βωR

∂ψ log
(

U
β1/2ω2

R

) , (3.49)

which can be solved once I specify the form of the couplings, deformation and potential.

I cannot find equations for observables such as the spectral index ns because it would

require investigating how the cosmological perturbation theory is modified in the presence

of non-minimal coupling and deformed general covariance. Beyond this, it is difficult to

make general statements about the dynamics unless I restrict to a given model, so I will

now consider some models and discuss their specific dynamics.
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3.3.3 Geometric scalar model

As demonstrated in the previous chapter, section 2.4.1, the geometric scalar model comes

from parameterising F
(
(4)R

)
gravity so that the additional degree of freedom of the scalar

curvature is instead embodied in a non-minimally coupled scalar field ψ [77, 80]. Its

couplings are given by ωR = ψ and ωψ = 0. This model is a special case of the Brans-

Dicke model, which has ωψ = ω0/ψ, when the Dicke coupling constant ω0 vanishes. I can

add in a minimally coupled scalar field with ωφ = 1 and thereby see the effect of this

scalar-tensor gravity on the matter sector. However, I set ωφ = 0 because it does not

significantly affect my results.

The effective action for this model is given by,

Lgeo =
1

2

√
q |β|

{
ψ

(
R− K

β

)
−
νψv

β
− 2∆ψ

}
−√

q U (ψ) , (3.50a)

U (ψ) =
ψ

2

(
F ′)−1

(ψ)− 1

2
F
((
F ′)−1

(ψ)
)
, (3.50b)

where F refers to the F
(
(4)R

)
function which has been parameterised. The equations of

motion when β → 1 are given by,

H
(
ψH+ ψ̇

)
=

1

3
U, (3.51a)

ä

a
= −H2 +

1

3

∂U

∂ψ
, (3.51b)

ψ̈ = −2ψ̇H+ ψH2 +

(
1 +

a

3

∂

∂a
− 2ψ

3

∂

∂ψ

)
U, (3.51c)

from which I can see that the scalar field has very different dynamics compared to minim-

ally coupled scalars. This reflects its origin as a geometric degree of freedom rather than

a purely matter field.

Looking at inflation, the geometric scalar model with a potential corresponding to the

Starobinsky model,

F
(
(4)R

)
= (4)R+

1

2M2
(4)R2 → U =

M2

4
(ψ − 1)2 , (3.52)
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(a) Scale factor (Logarithmic) (b) Scale factor

(c) Scalar field

Figure 3.1: Inflation from the geometric scalar model version of the
Starobinsky model through slow-roll of the non-minimally coupled scalar
field. For the scale factor, I compare the Jordan and Einstein frames be-
cause the coupling causes the former to oscillate unusually. Initial condi-

tions, a = 1, ψ = 20, ψ̇ = 0, M = 1.

can indeed cause inflation through a slow-roll of the scalar field down its potential. The

non-minimal coupling of the scalar to the metric also causes the scale factor to oscillate

unusually, however. It is interesting to compare in Fig. 3.1 the scale factor in the Jordan

frame, a, and the conformally transformed scale factor in the Einstein frame, ã = a
√
ωR.

Assuming ψ > 1 during inflation, the slow-roll parameters (3.47) are given by,

ϵ ≃ ψ + 1

(ψ − 1)2
, η ≃ −2

ψ2 − 1
, ζ ≃ 1

ψ − 1
, (3.53)

so the slow-roll regime of inflation ends at ψ ≈ 3 when ϵ→ 1. The equation for the number

of e-folds of inflation in the slow-roll regime (3.49) is given by N ≃ 1

2

(
ψ − ψend − log ψ

ψend

)
.
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(a) (b)

Figure 3.2: A contour plot of ωRωψ + 3ω′2
R/2 for the non-minimally en-

hanced scalar model is shown in (a). In (b), the red region is when the
metric becomes ghost-like (when ωR < 0). In both, the white regions are
forbidden because it is where ωRωψ + 3ω′2

R/2 < 0, implying imaginary fields.
The green region is the region of well-behaved evolution.

3.3.4 Non-minimally enhanced scalar model

Unlike the geometric scalar model considered above, the non-minimally enhanced scalar

model (NES) from [85], takes a scalar field from the matter sector and introduces a non-

minimal coupling rather than extracting a degree of freedom from the gravity sector. The

coupling functions are given by ωR = 1 + ξψ2, ωψ = 1 and ωφ = 0. The strength of the

quadratic non-minimal coupling is determined by the constant ξ. The deformed effective

Lagrangian for this model is given by,

LNES =
√
q |β|

{
1

2

(
1 + ξψ2

)(
R− K

β

)
+

1

2

(
ν2ψ
β

− ∂aψ∂
aψ

)

−2ξ

(
ψνψv

2β
+ ψ∆ψ + ∂aψ∂

aψ

)}
−√

q U (ψ) .

(3.54)

For some negative values of ξ, there are values of ψ which are forbidden if I am to keep

my variables real, shown in Fig. 3.2.
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The equations of motion for this model when it is undeformed are given by,

(
1 + ξψ2

)
H2 + 2ξψψ̇H =

1

3

(
1

2
ψ̇2 + U

)
, (3.55a)

(
1 + (1 + 6ξ) ξψ2

) ä
a
=

−1

2
H2
(
1 + (1 + 12ξ) ξψ2

)
− 1 + 4ξ

4
ψ̇2

+ ξψψ̇H+
1

2

(
1 +

a

3

∂

∂a

)
U + ξψ∂ψU,

(3.55b)

(
1 + (1 + 6ξ) ξψ2

)
ψ̈ = −3ψ̇H

(
1 + (1 + 4ξ) ξψ2

)
−
(
1 + ξψ2

)
∂ψU

+ 3ξψ

((
1 + ξψ2

)
H2 − 1 + 4ξ

2
ψ̇2 + U +

a

3

∂U

∂a

)
.

(3.55c)

and I proceed to use them to consider this model’s inflationary dynamics. For a power-law

potential U = λ
n |ψ|

n and ξ > 0, the slow-roll parameter which reaches unity first is ϵ at

ψend ≃ ±n√
2 + n (6− n) ξ

. The number of e-folds from the end of inflation is given by,

NNES (ψ) ≃
∫ ψ

ψend

dφ
φ
(
1 + (1 + 4ξ) ξφ2

)
(1 + ξφ2) (n+ (n− 4) ξφ2)

, (3.56)

and if I specify that n = 4, I find

NNES ≃ 1 + 4ξ

8
ψ2 − 1 +

1

2
log 1 + 12ξ

(1 + 4ξ) (1 + ξψ2)
, (3.57)

and the presence of ξ in the dominant first term shows how the non-minimal coupling

enhances the amount of inflation. If I compare this result to numerical solutions in Fig. 3.3,

I see this effect.

The slow-roll approximation works less well as ξ increases. I can see this when I look at

Fig. 3.3(b) where I compare the slow-roll approximation to when I numerically determine

the end of inflation, i.e. when ϵ = −Ḣ/H2 = 1.

I must be wary when dealing with this model, because the coupling can produce an effective

potential which is not bounded from below. If I substitute the Friedmann equation (3.55a)

into (3.55b) and (3.55c) I can find effective potential terms. These terms are those which

do not vanish when all time derivatives are set to zero, and I can infer what bare potential

they effectively behave like. If the bare potential is U = λψ2/2, then the effective potential
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(a) (b)

Figure 3.3: For the non-minimally enhanced scalar model with U = ψ4/4,
(a) shows numerical solutions of inflation for different coupling strengths.
Initial conditions, ψ = 20, ψ̇ = 0, H > 0. In (b), N for ψ = 20 is compared
for the numerical solutions (red crosses) and the analytical solution in the

slow-roll approximation (3.57) (blue line).

term in the scalar equation behaves like

Uψ =
−λψ2

2 (1 + 6ξ)
+
λ (1 + 3ξ)

ξ (1 + 6ξ)2
log
(
1 + (1 + 6ξ) ξψ2

)
, (3.58)

which is not bounded from below when ξ > 0 and λ > 0 and is therefore unstable. More

generally, there are local maxima in the effective potential at ψ = ±
√

n

ξ (4− n)
, so for

ξ > 0 the model is stable for bare potentials which are of quartic order or higher.

3.3.5 Bouncing scalar model

As I said in subsection 3.3.1, I have taken the bounce conditions and constructed a model

which bounces purely from the non-minimal coupling. This model consists of a non-

minimally coupled scalar with periodic symmetry. My couplings are given by ωR = cosψ

and ωψ =
1 + b cosψ

1 + b
, where b is some real constant, and for simplicity I ignore deform-

ations and the minimally coupled scalar field. The bouncing scalar model Lagrangian in
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(a) Scale factor (b) Scalar

(c) Scalar coupling (zoomed)

Figure 3.4: Cosmological bounce generated by non-minimally coupled
scalar field with b = 2 and U = sin2 (ψ/2). Initial conditions, ψ = 0, ψ̇ =

1/25, H < 0

covariant and effective forms are given by,

LBS,cov =
√
q

(
cosψ
2

(4)R− 1 + b cosψ
2 (1 + b)

∂µψ∂
µψ − U

)
, (3.59a)

LBS =

√
q

2

(
cosψ (R−K) + sinψ (νv + 2∆ψ) +

(
1 + b cosψ

1 + b

)
ν2

+

(
(2 + b) cosψ − 1

1 + b

)
∂aψ∂

aψ − 2U

)
.

(3.59b)

As confirmed by numerically evolving the equations of motion, I know from the bouncing

conditions (3.41) that this model will bounce when b > 1 because then there is a value

of ψ for which ωψ < 0. As I show in Fig. 3.4, the collapsing universe excites the scalar

field so much that it ‘tunnels’ through to another minima of the potential. The bounce

happens when the field becomes momentarily ghost-like, when ωψ < 0.

I can construct other models which produce a bounce purely through non-minimal coup-

ling by having any U (ψ) with multiple minima and couplings of the approximate form
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ω ∼ 1− U . However, to ensure the scalar does not attempt to tunnel through the po-

tential to infinity and thereby not prevent collapse, the coupling functions must be-

come negative only for values of ψ between stable minima. For example, for the Z2

potential U (ψ) = λ
(
ψ2 − 1

)2, couplings which are guaranteed to produce a bounce are

ωR (ψ) = ωψ (ψ) = 1− e−ψ
2
U (ψ) when λ > 1.

3.4 Summary

In this chapter I have presented my calculation of the most general action for a second-

order non-minimally coupled scalar-tensor model which satisfies a minimally deformed

general covariance. I presented a similar calculation which involves multiple scalar fields.

I showed how the magnitude of the deformation can be removed by a transformation of

the lapse function, but the sign of the deformation and the associated effective signature

change cannot be removed.

I explored the background dynamics of the action, in particular showing the conditions

required for either a big bounce or a period of slow-roll inflation. By specifying the free

functions I showed how to regain well-known models from my general action. In particular

I discussed the geometric scalar model, which is a parameterisation of F
(
(4)R

)
gravity

and related to the Brans-Dicke model; and I discussed the non-minimally enhanced scalar

model of a conventional scalar field with quadratic non-minimal coupling to the curvature.

I presented a model which produces a cosmological bounce purely through non-minimal

coupling of a periodic scalar field to gravity. I also provided the general method of pro-

ducing similar models without a periodic symmetry. I did not consider in detail the effect

that the deformation has on the cosmological dynamics. However, I did show that a big

bounce which is purely due to a zeroth order deformation necessarily involves effective

signature change.

Perhaps most importantly, I have established the minimally-deformed low-curvature limit

that the subsequent chapters refer to.
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Chapter 4

Fourth order perturbative

gravitational action

As I showed in section 2.7.2, the deformed action doesn’t seem to naturally have a cut-off

for higher powers of derivatives, and it must either be considered completely in general or

treated perturbatively as a polynomial expansion. In this chapter I will treat it perturb-

atively in order to find the lowest order corrections which are non-trivial. This chapter is

mostly adapted from a previously published paper [56].

Firstly, I solve the distribution equation for the deformed gravitational action in sec-

tion 4.1. Then I specify the variables used to construct the action and thereby find the

conditions restricting its form in section 4.2. Afterwards, I progressively restrict the action

when it is perturbatively expanded to fourth order in derivatives section 4.3. Finally, I

investigate the cosmological consequences of the results in section 4.4.

4.1 Solving the action’s distribution equation

The general deformed action must satisfy the distribution equation (2.43),

0 =
δL(x)

δqab(y)
vab(y) +

∑
I

δL(x)

δψI(y)
νI(y) + (βDa∂a)x δ (x, y)− (x↔ y) . (4.1)
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I restrict to the case when there is only a metric field, for which the diffeomorphism

constraint is given by (B.11),

Da = −2∇bp
ab = −2

(
δa(b∂c) + Γabc

) ∂L

∂vbc
. (4.2)

Firstly, I integrate (4.1) by parts to move spatial derivatives from L and onto the delta

functions. I discard the surface term and find,

0 =
δL(x)

δqab(y)
vab(y)− 2

(
β
∂L

∂vbc
Γabc∂a

)
x

δ(x, y)

+ 2

(
∂L

∂vab
∂b

)
x

[(β∂a)x δ(x, y)]− (x↔ y) ,

(4.3)

from this I take the functional derivative with respect to vab(z) (after relabelling the other

indices),

0 =
δL(x)

δqab(y)
δ(y, z) +

{
δ∂L(x)

δqcd(y)∂vab(x)
vcd(y)

+2

[
∂

∂vab

(
∂dβ

∂L

∂vcd
− β

∂L

∂vde
Γcde

)
∂c +

∂

∂vab

(
β
∂L

∂vcd

)
∂cd

]
x

δ(x, y)

}
δ(x, z)

+ 2

(
∂β,d
∂vab,e

∂L

∂vcd

)
x

∂c(x)δ(x, y)∂d(x)δ(x, z)− (x↔ y) .

(4.4)

I move the derivative from δ(x, z) and exchange some terms using the (x↔ y) symmetry

to find it in the form,

0 = Aab(x, y)δ(y, z)−Aab(y, x)δ(x, z), (4.5)

where,

Aab(x, y) =
δL(x)

δqab(y)
− vcd(x)

δ∂L(y)

δqcd(x)∂vab(y)
+ 2

{
∂

∂vab

(
β
∂L

∂vde
Γcde − ∂dβ

∂L

∂vcd

)
∂c

− ∂

∂vab

(
β
∂L

∂vcd

)
∂cd + ∂e

(
∂β,d
∂vab,e

∂L

∂vcd

)
∂c

}
y

δ(y, x).

(4.6)
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Integrating over y, I find that part of the equation can be combined into a tensor dependent

only on x,

0 = Aab(x, z)− δ(z, x)

∫
d3yAab(y, x),

= Aab(x, z)− δ(z, x)Aab(x), where Aab(x) =
∫

d3yAab (y, x) .

(4.7)

Substituting in the definition of Aab(x, z) then relabelling,

0 =
δL(x)

δqab(y)
− vcd(x)

δ∂L(y)

δqcd(x)∂vab(y)
+ 2

{
∂

∂vab

(
β
∂L

∂vde
Γcde − ∂dβ

∂L

∂vcd

)
∂c

− ∂

∂vab

(
β
∂L

∂vcd

)
∂cd + ∂e

(
∂β,d
∂vab,e

∂L

∂vcd

)
∂c

}
y

δ(y, x)−Aab(x)δ(x, y).

(4.8)

To find this in terms of one independent variable, I multiply by the test tensor θab(y) and

integrate by parts over y,

0 =
∂L

∂qab
θab +

∂L

∂qab,c
∂cθab +

∂L

∂qab,cd
∂cdθab − vcd

∂2L

∂qcd∂vab
θab

+ vcd∂e

(
∂2L

∂qcd,e∂vab
θab

)
− vcd∂ef

(
∂2L

∂qcd,ef∂vab
θab

)
+ 2∂c

{
θab

∂

∂vab

(
∂dβ

∂L

∂vcd
− β

∂L

∂vde
Γcde

)
− θab∂e

(
∂β,d
∂vab,e

∂L

∂vcd

)}
+ 2∂cd

{
θab

∂β,e
∂vab,(c

∂L

∂vd)e
− θab

∂

∂vab

(
β
∂L

∂vcd

)}
−Aabθab.

(4.9)

Then collecting derivatives of θab,

0 = θab (· · · )ab + ∂cθab

{
∂L

∂qab,c
+ vde

∂2L

∂qde,c∂vab
− 2vef∂d

(
∂2L

∂qef,cd∂vab

)
+2

∂

∂vab

(
∂dβ

∂L

∂vcd
− β

∂L

∂vde
Γcde

)
− 4∂d

[
∂

∂vab

(
β
∂L

∂vcd

)]
+ 2∂e

(
∂β,d
∂vab,c

∂L

∂vde

)}
+ ∂cdθab

{
∂L

∂qab,cd
− vef

∂2L

∂qef,cd∂vab
− 2

∂

∂vab

(
β
∂L

∂vcd

)
+ 2

∂β,e
∂vab,(c

∂L

∂vd)e

}
,

(4.10)

where I have discarded the terms containing θab without derivatives, because they do not

provide any restrictions on the form of the action. This is simplified by noting that ∂c and
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∂

∂vab
commute, and that ∂β,e

∂vab,c
= δce

∂β

∂vab
. Therefore, the solution is given by,

0 = θab (· · · )ab + ∂cθab

{
∂L

∂qab,c
+ vde

∂2L

∂qde,c∂vab
− 2vef∂d

(
∂2L

∂qef,cd∂vab

)
−2Γcde

∂

∂vab

(
β
∂L

∂vde

)
− 2∂dβ

∂2L

∂vab∂vcd
− 4β∂d

(
∂2L

∂vab∂vcd

)
−2

∂β

∂vab
∂d

(
∂L

∂vcd

)}
+ ∂cdθab

{
∂L

∂qab,cd
− vef

∂2L

∂qef,cd∂vab
− 2β

∂2L

∂vab∂vcd

}
.

(4.11)

At this point I need to make some assumptions about the form of the action before I can

use this equation to restrict its form.

4.2 Finding the conditions on the action

Firstly, the variables used for the action and deformation must be determined. I am

considering only the spatial metric field qab and its normal derivative vab, and for simplicity

I am only considering tensor contractions which contain up to second order in derivatives,

as previously stated in section 2.4.1. The only covariant quantities I can form up to

second order in derivatives from the spatial metric are the determinant q = det qab and

the Ricci curvature scalar R. The normal derivative can be split into its trace and traceless

components, vab = vT
ab +

1
3vqab, so it can form scalars from the trace v and a variety of

contractions of the traceless tensor vT
ab. However, to second order I only need to consider

w := QabcdvT
abv

T
cd = vT

abv
ab
T .

Substituting these variables into (4.11), the resulting equation contains a series of unique

tensor combinations. The test tensor θab is completely arbitrary so the coefficient of each

unique tensor contraction with it must independently vanish if the whole equation is to

be satisfied.

Firstly, I focus on the terms depending on the second order derivative ∂cdθab. I evaluate

each individual term in appendix C. Substituting (C.3) into (4.11), I find the following
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independent conditions,

qab∂2θab : 0 =
∂L

∂R
− 2v

3

∂2L

∂R∂v
+ 2β

(
∂2L

∂v2
− 2

3

∂L

∂w

)
, (4.12a)

Qabcd∂cdθab : 0 =
∂L

∂R
− 4β

∂L

∂w
, (4.12b)

qabvcdT ∂cdθab : 0 =
∂2L

∂R∂v
+ 4β

∂2L

∂w∂v
, (4.12c)

vabT ∂
2θab : 0 =

v

3

∂2L

∂R∂w
− β

∂2L

∂v∂w
, (4.12d)

vabT v
cd
T ∂cdθab : 0 =

∂2L

∂R∂w
+ 4β

∂2L

∂w2
. (4.12e)

Before I analyse these equations, I will find the conditions from the first order derivative

part of (4.11). There are many complicated tensor combinations that need to be con-

sidered, so for convenience I define Xa := qbc∂aqbc and Ya := qbc∂cqab. I evaluate the

individual terms in appendix C. When I substitute the results (C.4) into (4.11), I once

again find a series of unique tensor combinations with their own coefficient which vanishes

independently. Most of these conditions are the same as those found in (4.12) so I won’t

bother duplicating them again here. However, I do find the following new conditions,

Xa∂bθab : 0 =
∂L

∂R
− 4 (∂qβ + 2β∂q)

∂L

∂w
, (4.13a)

qabXc∂cθab : 0 =
−1

2

∂L

∂R
+
v

3
(4∂q − 1)

∂2L

∂v∂R
+
∂β

∂v
(1− 2∂q)

∂L

∂v

+ (β − 2∂qβ − 4β∂q)

(
∂2L

∂v2
− 2

3

∂L

∂w

)
,

(4.13b)

vabT X
c∂cθab : 0 =

v

3
(4∂q − 1)

∂2L

∂w∂R
+
∂β

∂w
(1− 2∂q)

∂L

∂v

+ (β − 2∂qβ − 4β∂q)
∂2L

∂v∂w
,

(4.13c)

qabvcdT Xd∂cθab : 0 = (1− 2∂q)
∂2L

∂v∂R
− 4 (∂qβ + 2β∂q)

∂2L

∂v∂w
− 4

∂β

∂v
∂q
∂L

∂w
, (4.13d)

vabT v
cd
T Xd∂cθab : 0 = (1− 2∂q)

∂2L

∂w∂R
− 4 (∂qβ + 2β∂q)

∂2L

∂w2
− 4

∂β

∂w
∂q
∂L

∂w
, (4.13e)

qabvcdT Yd∂cθab : 0 = 2β
∂2L

∂v∂w
+
∂β

∂v

∂L

∂w
, (4.13f)

vabT v
cd
T Yd∂

cθab : 0 = 2β
∂2L

∂w2
+
∂β

∂w

∂L

∂w
, (4.13g)
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∂aF∂bθab : 0 =

(
∂β

∂F
+ 2β

∂

∂F

)
∂L

∂w
, (4.13h)

qab∂cF∂cθab : 0 =
2v

3

∂3L

∂F∂v∂R
− ∂β

∂v

∂2L

∂F∂v

−
(
∂β

∂F
+ 2β

∂

∂F

)(
∂2L

∂v2
− 2

3

∂L

∂w

)
,

(4.13i)

vabT ∂
cF∂cθab : 0 =

2v

3

∂3L

∂F∂w∂R
− ∂β

∂w

∂2L

∂F∂v
−
(
∂β

∂F
+ 2β

∂

∂F

)
∂2L

∂v∂w
, (4.13j)

qabvcdT ∂dF∂cθab : 0 =
1

2

∂3L

∂F∂v∂R
+
∂β

∂v

∂2L

∂F∂w
+

(
∂β

∂F
+ 2β

∂

∂F

)
∂2L

∂v∂w
, (4.13k)

vabT v
cd
T ∂dF∂cθab : 0 =

1

2

∂3L

∂F∂w∂R
+
∂β

∂w

∂2L

∂F∂w
+

(
∂β

∂F
+ 2β

∂

∂F

)
∂2L

∂w2
, (4.13l)

where F ∈ {v, w,R}.

By this point, I have accumulated all conditions on the form of the Lagrangian for my

choice of variables. The next step is to try and consolidate them.

4.3 Evaluating the fourth order perturbative action

For this section, I construct an ansatz for the action and deformation that is explicit in

being a perturbative expansion. For each time derivative above the classical solution, I

include the small parameter ε, and consider up to O
(
ε2
)
. I consider two orders because

in models of loop quantum cosmology which have deformed covariance, the holonomy

corrections to the action expand into even powers of time derivatives [39, 42]. Therefore,

considering a fourth order action and a second order deformation should include the nearest

higher-order terms in an expansion of those holonomy functions. Therefore I write,

L = L0 + L(v)v + L(w)w + L(v2)v
2 + ε

(
L(vw)vw + L(v3)v

3
)

+ ε2
(
L(w2)w

2 + L(v2w)v
2w + L(v4)v

4
)
+O(ε3),

(4.14a)

β = β0 + εβ(v)v + ε2
(
β(v2)v

2 + β(w)w
)
+O(ε3), (4.14b)

where each coefficient is potentially a function of q and R.
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I take the condition from Qabcd∂cdθab, (4.12b) and truncate to O(ε2). Separating different

powers of v and w, it gives the following conditions for the Lagrangian coefficients,

ε2w2 : ∂RL(w2) = 0, ε2v2w : ∂RL(v2w) = 0, ε2v4 : ∂RL(v4) = 0,

εvw : ∂RL(vw) = 0, εv3 : ∂RL(v3) = 0,

(4.15a)

w : ∂RL(w) = 4ε2
(
β(w)L(w) + 2β0L(w2)

)
,

v2 : ∂RL(v2) = 4ε2
(
β(v2)L(w) + β(v)L(vw) + β0L(v2w)

)
,

v : ∂RL(v) = 4ε
(
β(v)L(w) + β0L(vw)

)
.

(4.15b)

So from the five conditions in (4.15a), one can see that terms with three or four time

derivatives must not contain any spatial derivatives. From the three conditions in (4.15b),

one can see that including R in these coefficients requires including a factor of ε for

every combined derivative order above two. Therefore, the spatial derivatives must be

treated equally with time derivatives when one is performing a perturbative expansion, as

expected. So I can now further expand the ansatz to include explicit factors of R,

L = L∅ + L(v)v + L(w)w + L(v2)v
2 + L(R)R+ ε

(
L(vw)vw + L(v3)v

3

+L(vR)vR
)
+ ε2

(
L(w2)w

2 + L(v2w)v
2w + L(v4)v

4 + L(wR)wR

+L(v2R)v
2R+ L(R2)R

2
)
+O(ε3),

(4.16a)

β = β∅ + εβ(v)v + ε2
(
β(v2)v

2 + β(w)w + β(R)R
)
+O(ε3), (4.16b)

where each coefficient is potentially a function of q. I now substitute this ansatz into the

conditions found for the action so that its form can be progressively restricted. Look-

ing once again at the condition from Qabcd∂cdθab (4.12b), one finds it is satisfied by the
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following solutions,

∅ : L(w) =
L(R)

4β∅
, (4.17a)

εv : L(vw) =
1

4β2∅

(
β∅L(vR) − 4β(v)L(R)

)
, (4.17b)

ε2R : L(wR) =
1

4β2∅

(
2β∅L(R2) − 2β(R)L(R)

)
, (4.17c)

ε2v2 : L(v2w) =
1

4β3∅

{
β2∅L(v2R) − β∅β(v)L(vR) +

(
β2(v) − β∅β(v2)

)
L(R)

}
, (4.17d)

ε2w : L(w2) =
1

32β3∅

{
2β∅L(R2) −

(
β(R) + 4β∅β(w)

)
L(R)

}
, (4.17e)

and then looking at the condition from vabT ∂
2θab, (4.12d),

ε : L(vR) =
β(v)L(R)

β∅
, (4.18a)

ε2v : L(v2R) =
1

6β2∅

{
2β∅L(R2) +

(
6β∅β(v2) − β(R)

)
L(R)

}
, (4.18b)

where (4.18a) and (4.17b) combine to give L(vw) = 0. Then looking at the condition from

qabvcdT ∂cdθab, (4.12c)

ε : β(v) = 0, (4.19a)

ε2v : L(R2) =
L(R)

2β∅

(
β(R) − 3β∅β(v2)

)
, (4.19b)

one can see that L(vR) = 0 and therefore all the third order terms all vanish. Looking at

the condition from qab∂2θab, (4.12a),

∅ : L(v2) =
−L(R)

6β∅
, (4.20a)

εv : L(v3) = 0, (4.20b)

ε2w : β(v2) =
−2

3
β(w), (4.20c)

ε2v2 : L(v4) =
−β(w)L(R)

36β2∅
, (4.20d)
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and then from Xa∂bθab, (4.13a),

∅ : L(R) = f
√
q |β∅|, (4.21a)

ε2R : β(w) = b−
β(R)

4β∅
, (4.21b)

where f and b arise as integration constants. From qabXc∂cθab, (4.13b),

εv : L(v) = ξ
√
q, (4.22)

where ξ is also an integration constant. Finally, the condition from ∂aR∂bθab, (4.13h),

means that

ε : b = 0. (4.23)

From this point on the remaining equations don’t provide any new conditions on the

Lagrangian coefficients.

To make sure the classical limit of the result matches the action found in chapter 3, I

set f = ω/2, and replace the normal derivatives with the standard extrinsic curvature

contraction K =
v2

6
− w

4
. Therefore, the fourth order perturbative gravitational action is

given by,

L = L∅ + ξv
√
q +

ω

2

√
q |β∅|

{
R− K

β∅
−
ε2β(R)

4β∅

(
R+

K
β∅

)2
}

+O
(
ε3
)
, (4.24)

with the associated deformation

β = β∅ + ε2β(R)

(
R+

K
β∅

)
+O

(
ε3
)
. (4.25)

So the remaining freedom in the action comes down to the constants ξ and ω, the functions

β∅ and β(R). There is also a term which doesn’t affect the kinematic structure and acts

like a generalised notion of a potential, so can be rewritten as L∅(q) = −√
q U(q).
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4.4 Cosmology

In this section I find the cosmological implications of the nearest order corrections coming

from the deformation to general covariance. Since it is a perturbative expansion, the

results when the corrections become large should be taken to be indicative rather than

predictive.

I restrict to a flat FLRW metric as in section 2.8,

L = −a3U(a)− 3σ∅ωa
3

N2
√

|β∅|
H2

(
1 +

3ε2β2
2N2β∅

H2

)
+O

(
ε3
)
, (4.26)

where a is the scale factor, H = ȧ/a is the Hubble expansion rate, σ∅ := sgn(β∅), and

β2 = β(R)/β∅ is the coefficient of K in the deformation.

I couple this to matter with energy density ρ and pressure density P = wρρ. I Legendre

transform the effective Lagrangian to find the Hamiltonian. Imposing the Hamiltonian

constraint C ≈ 0 gives us

1

N2
H2

(
1 +

9ε2β2
2β∅N2

H2

)
=
σ∅
3ω

√
|β∅|U, (4.27)

which can be solved to find the modified Friedmann equation,

1

N2
H2 =

2σ∅
√

|β∅|
3ω(1 + α)

U, (4.28)

where the correction factor is

α :=

√
1 +

6ε2β2

ω
√
|β∅|

U. (4.29)

Going back to the effective Lagrangian, and varying it with respect to the scale factor, I

find the Euler-Lagrange equation of motion. When I substitute in Eq. (4.28), I get the
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acceleration equation

ä

aN2
=
σ∅
√
|β∅|

6α
U

{
2 +

∂ logU
∂ log a + 2

∂ logN
∂ log a +

1

2

∂ logβ∅
∂ log a

+2

(
α− 1

α+ 1

)[
1 +

∂ logN
∂ log a − 1

2

∂

∂ log a log
(
β2
β∅

)]}
.

(4.30)

If I take a perfect fluid, then U = ρ, where ρ is the fluid’s energy density, which satisfies

the continuity equation

ρ̇+ 3Hρ(1 + wρ) = 0. (4.31)

where wρ is the perfect fluid’s equation of state. Note that there are corrections to the

matter sector due to the modified constraint algebra [86, 87], as shown for scalar fields in

other chapters. However, these have not been included here, as it is not known how the

deformation would affect a perfect fluid.

Since ε is a small parameter, it can be used to expand Eq. (4.28),

1

N2
H2 =

σ∅
√
|β∅|

3ω
ρ

(
1 +

3ε2β2

ω
√

|β∅|
ρ

)
+O

(
ε3
)
, (4.32)

and expanding the bracket in Eq. (4.30) to first order, it can be seen that ä/a > 0 when

wρ < wa, where

wa =
−1

3

{
1− 1

2

∂ logβ∅
∂ log a +

6ε2β2

ω
√
|β∅|

ρ

[
1− 1

2

∂

∂ log a log
(
β2
β∅

)]}
, (4.33)

having set N = 1, so this is applicable for cosmic time.

When β2 < 0, the modified Friedmann equation (4.32) suggests a big bounce rather than

a big bang at high energy density, since ȧ → 0 when a > 0 and ä > 0 is possible when

ρ→ ρc where

ρc =
ω
√
|β∅|

6ε2 |β2|
. (4.34)

This requires either ρc to be constant, or for it to diverge at a slower rate than ρ as a→ 0.

Let me emphasise that the bounce is found considering only holonomy corrections mani-

festing as higher-order powers of of second-order derivatives and not considering ignoring
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higher-order derivatives. The equations (4.32) and (4.33) have been expanded to leading

order in β2, so I should be cautious about the regime of their validity. Note that the

Lagrangian is also an expansion; β2 is a coefficient of the fourth order term and appears

only linearly, I conclude that there is no good reason why I should have more trust in

equations such as (4.28) or (4.30) simply because they contain higher orders. In Ref. [47],

Ashtekar, Pawlowski and Singh write their effective Friedmann equation with leading or-

der corrections (which is the same as (4.32)) and say that it holds surprisingly well even

for ρ ≈ ρc, the regime when the perturbative expansion should break down (I should note

that their work refers only to the case where wρ = 1, and does not say whether this is true

generally).

4.4.1 Linking the β function to LQC

I need to know β∅(a) and β2(a) in order to make progress beyond this point, so I compare

my results to those found in previous investigations. In Ref. [42], Cailleteau, Linsefors

and Barrau have found information about the correction function when inverse-volume

and holonomy effects are both included in a perturbed FLRW system. Their equation

(Eq. (5.18) in Ref. [42]) gives (rewritten slightly)

β(a, ȧ) = f(a)Σ(a, ȧ)
∂2

∂ȧ2

{
γ∅(a, ȧ)

(
sin[γBIµ(a)ȧ]

γBIµ(a)

)2
}
, (4.35)

where γBI is the Barbero-Immirzi parameter, γ∅ is the function which contains information

about inverse-volume corrections, Σ(a, ȧ) depends on the form of γ∅, and f(a) is left

unspecified. I just consider the case where γ∅ = γ∅(a), in which case Σ = 1/
(
2
√
γ∅
)

and

µ = aδ−1
√
γ∅♢. The constant ♢ is usually interpreted as being the “area gap” derived in

loop quantum gravity. I leave δ unspecified for now, because different quantisations of loop

quantum cosmology give it equal to different values in the range [0, 1]. Equation (4.35)

now becomes

β = f
√
γ∅ cos

(
2γBI

√
γ∅♢aδH

)
, (4.36)
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The “old dynamics” or “µ0 scheme” corresponds to δ = 1, and the favoured “improved

dynamics” or “µ̄ scheme” corresponds to δ = 0 [88, 89]. In the semi-classical regime,

H
√
♢ ≪ 1, so I can Taylor expand this equation for the correction function to get

β = f
√
γ∅ − 2γ2BI♢a2δf(γ∅)3/2H2 +O

(
♢2
)
. (4.37)

The way that γ∅ is defined is that it multiplies the background gravitational term in the

Hamiltonian constraint relative to the classical form. Since I am assuming γ∅ = γ∅(a),

I can isolate it by taking the Lagrangian (4.26) and setting β2 = 0. If I then Legendre

transform to find a Hamiltonian expressed in terms of the momentum of the scale factor,

I find that it is proportional to
√
|β∅|. Thus, I conclude that γ∅ =

√
|β∅| when γ∅ is just

a function of the scale factor. Using this to compare (4.37) to (4.25),

β = β∅ + 6ε2β2H2 +O
(
ε3
)
, (4.38)

I find that f = σ∅ |β∅|3/4, and therefore f = σ∅γ
3/2
∅ . From this, I can now deduce the

form of the coefficient for the higher-order corrections,

ε2β2 =
−σ∅
3

γ2BI♢a2δγ3∅. (4.39)

The exact form of γ∅(a) is uncertain, and the possible forms that have been found also

contain quantisation ambiguities. The form given by Bojowald in Ref. [90] is

γ∅ =
3r1−l

2l

{
(r + 1)l+2 − |r − 1|l+2

l + 2
− r

(r + 1)l+1 − sgn(r − 1)|r − 1|l+1

l + 1

}
, (4.40)

where l ∈ (0, 1), r = a2/a2⋆ and a⋆ is the characteristic scale of the inverse-volume correc-

tions, related to the discreteness scale. I will only use the asymptotic expansions of this

function, namely

γ∅ ≈


1 +

(2− l)(1− l)

10

(
a

a⋆

)−4

, if a≫ a⋆

3

1 + l

(
a

a⋆

)2(2−l)
, if a≪ a⋆

(4.41)
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and even then I will only take γ∅ ≈ 1 for a ≫ a⋆, since the correction quickly becomes

vanishingly small. I replace the area gap with a dimensionless parameter ♢̃ = ♢ω which

is of order unity. The modified Friedmann equation (4.32) is now given by

H2 =
σ∅γ∅
3ω

ρ

(
1−

σ∅γ
2
BI♢̃

3ω2
a2δγ2∅ρ

)
, (4.42)

which I need to compare for different types of matter. First of all I will consider a perfect

fluid, and then I will consider a scalar field with a power-law potential.

4.4.2 Perfect fluid

I consider the simple case of a perfect fluid. Solving the continuity equation (2.62) gives

us the energy density as a function of the scale factor,

ρ(a) = ρ0a
−3(1+wρ). (4.43)

To investigate whether there can be a big bounce, I insert this into Eq. (4.42), which

becomes of the form

H2 ∝ a−3(1+wρ)

(
1−

γ2BI♢̃
3ω2

ρ0a
Θ

)
, (4.44)

where Θ depends on which regime of (4.41) we are in, namely

Θ =


2δ − 3(1 + wρ), if a≫ a⋆,

2δ + 4(2− l)− 3(1 + wρ), if a≪ a⋆,

(4.45)

and I simply ignored the constant coefficients for a ≪ a⋆. Whether a bounce happens

depends on whether H → 0 when a > 0, which would happen if the higher-order correction

in the modified Friedmann equation became dominant for small values of a, i.e. if Θ < 0,

which is also required to match the classical limit. The reason this is required is because

ρ needs to diverge faster than ρc as a → 0 in order for there to be a bounce. This will
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happen when wρ > wb, where

wb =


− 1 +

2

3
δ, if a≫ a⋆

− 1 +
2

3
δ +

4

3
(2− l), if a≪ a⋆

(4.46)

which means that, if the bounce does not happen in the a≫ a⋆ regime, the inverse-volume

corrections make the bounce less likely to happen. If I use the favoured value of δ = 0,

and assume l = 1, then wb = 1/3 and so wρ still needs to be greater than that found

for radiation in order for there to be a bounce. A possible candidate for this would be a

massless (or kinetic-dominated) scalar field, where wρ = 1.

Another aspect to investigate is whether the conditions for inflation are modified. Taking

(4.33), I see that acceleration happens when wρ < wa, where

wa =


− 1

3
+

2γ2BI♢̃
9ω2

(1− δ)ρ0a
Θ, if a≫ a⋆

1− 2l

3
−

2γ2BI♢̃
ω2a

4(2−l)
⋆

1 + δ − l

(1 + l)2
ρ0a

Θ, if a≪ a⋆

(4.47)

so the range of values of wρ which can cause accelerated expansion is indeed modified.

Holonomy-type corrections increase the range since Θ ≤ 0, and so may inverse-volume

corrections. However, the latter also seems to include a cut-off when the last term of

Eq. (4.47) in the a ≪ a⋆ regime dominates. Since a bounce requires ȧ = 0 and ä > 0,

the condition wb < wρ < wa must be satisfied and so it must happen before the cut-off

dominates if it is to happen at all.

4.4.3 Scalar field

I now investigate the effects that the inverse-volume and holonomy corrections can have

when I couple gravity to an undeformed scalar field. In this case, the energy and pressure

densities are given by

ρ =
1

2
φ̇2 + U(φ), P =

1

2
φ̇2 − U(φ), (4.48)
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and the continuity equation gives us the equation of motion for the scalar field,

φ̈+ 3Hφ̇+ U ′ = 0, (4.49)

where U ′ =
∂U

∂φ
.

Let us investigate the era of slow-roll inflation. Using the assumptions |φ̈/U ′| ≪ 1 and
1
2 φ̇

2 ≪ U , I have the slow-roll equations,

φ̇ =
−U ′

3H
, (4.50a)

H2 =
σ∅γ∅
3ω

U

(
1−

σ∅γ
2
BI♢̃

3ω2
a2δγ2∅U

)
. (4.50b)

If I substitute (4.50b) into (4.50a), take the derivative with respect to time and substitute

in (4.50b) and (4.50a) again, I find

φ̈

U ′ =
1

3
η,

φ̇2

2U
=

1

3
ϵ, (4.51)

where the slow-roll parameters are

η :=
1

1− ς

(
ω

γ∅

U ′′

U
− (1− 2ς)ϵ+ χ− δς

)
, (4.52a)

ϵ :=
1

1− ς

ω

2γ∅

(
U ′

U

)2

, (4.52b)

χ :=
1− 3ς

2

∂ log γ∅
∂ log a (4.52c)

ς :=
γ2BI♢̃
3ω2

a2δγ2∅U, (4.52d)

and the conditions for slow-roll inflation are

|η| ≪ 1, ϵ≪ 1, |χ| ≪ 1, |ς| ≪ 1. (4.53)

I would like to investigate how these semi-classical effects affect the number of e-folds of

the scale factor during inflation. The number of e-folds before the end of inflation N (φ)
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is defined by a(φ) = aende
−N (φ), where

N (φ) = −
∫ φ

φend

dφH
φ̇

=

∫ φ

φend

dφγ∅U
ωU ′

(
1−

γ2BI♢̃
3ω2

a2δγ2∅U

)
. (4.54)

If I remove the explicit dependence on a from the integral by setting δ = 0 and γ∅ = 1

(i.e. taking only a certain form of holonomy corrections and ignoring inverse-volume

corrections), and choose a power-law potential

U(φ) =
λ

n
φn =

λ̃

n
φnω2−n

2 , (4.55)

where λ̃ > 0 and n/2 ∈ N, then the number of e-folds before the end of inflation is

N (φ) =
1

2nω

(
φ2 − φ2

end
)
−

γ2BI♢̃λ̃
3n2(n+ 2)ω1+n

2

(
φ2+n − φ2+n

end
)
. (4.56)

If I take the approximation that slow-roll inflation is valid beyond the regime specified

by (4.53), then I can calculate a value for the maximum number of e-folds by starting

inflation at the big bounce,

Nmax =
1

2n


(

3n

γ2BI♢̃λ̃

) 2
n

−
φ2

end
ω


−

γ2BI♢̃λ̃
3n2(n+ 2)


(

3n

γ2BI♢̃λ̃

)1+ 2
n

−
(
φ2

end
ω

)1+n
2

 ,

(4.57)

and if I can assume φ2
end/ω ≪ 1, then

Nmax =
1

2(n+ 2)

(
3n

γ2BI♢̃λ̃

)2/n

. (4.58)

Let us now find the attractor solutions for slow-roll inflation. Substituting the Hubble

parameter (4.42) into the equation of motion for the scalar field (4.49), I obtain

φ̈+ φ̇

√√√√3γ∅
ω

(
1

2
φ̇2 + U

){
1−

γ2BI♢̃
3ω2

a2δγ2∅

(
1

2
φ̇2 + U

)}
+ U ′ = 0. (4.59)
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I can remove the explicit scale-factor dependence of the equation by setting δ = 0 and

γ∅ = 1 (the same assumptions as I used to find N ). Then substituting in the power-law

potential (4.55) I get

φ̈+ φ̇

√√√√ 3

ω

(
1

2
φ̇2 +

λ

n
φn
){

1−
γ2BI♢̃
3ω2

(
1

2
φ̇2 +

λ

n
φn
)}

+ λφn−1 = 0, (4.60)

which is applicable only for the region where ρ is below a critical value,

1−
γ2BI♢̃
3ω2

(
1

2
φ̇2 +

λ

n
φn
)
> 0, (4.61)

otherwise H and φ̇ are complex. I use this equation to plot phase space trajectories in

Fig. 4.1.

I can find the slow-roll attractor solution for |φ̈φ1−n/λ| ≪ 1 and 1
2 φ̇

2 ≪ λ
nφ

n,

φ̇ ≈ −
√
nλω

3
φ
n
2
−1

(
1−

γ2BI♢̃λ
3nω2

φn

)−1/2

, (4.62)

where the term in the bracket is the correction to the classical solution. Looking at

Fig. 4.1(b) and 4.1(d), I conclude that the attractor solutions diverge from a linear rela-

tionship as they approach the boundary.

The condition for acceleration for the case I am considering here is

wρ < wa =
−1

3

{
1−

2γ2BI♢̃
3ω2

(
1

2
φ̇2 +

λ

n
φn
)}

(4.63)

where we can define the effective equation of state as wρ = P (φ)/ρ(φ) using (4.48). I

plot in Fig. 4.2 this region on the phase space of the scalar field to see how accelerated

expansion can happen in a wider range than in the classical case. In order to be able to

solve the equations and make plots, I have neglected non-zero values of δ and non-unity

values of γ∅. It may be that in these cases the big bounce and inflation are no longer

inevitable, as was found for the perfect fluid.
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4.5 Discussion

In this chapter, I calculated the general conditions on a deformed action which has been

formed from the variables (q, v, w,R). I then found the nearest-order curvature corrections

coming from the deformation by solving these conditions for a fourth order action. I found

that these corrections can act as a repulsive gravitational effect which may produce a big

bounce.

When coupling gravity to a perfect fluid, the effects that the quantum corrections have

depend on the equation of state, but inflation and a big bounce are possible. I coupled

deformed gravity to an undeformed scalar in this preliminary investigation into higher

order curvature corrections. I investigated slow-roll inflation and a big bounce in the

presence of this scalar field. In chapter 5, I find that scalar fields must be deformed in

much the same way as the metric. Therefore, these results might be interesting on some

level, but cannot be taken too literally. Unfortunately, there was simply not enough time

to research the fully deformed cases, hence why this material remains.
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(a) Full phase space for U(φ) = λφ2/2 (b) Attractor solution for U(φ) = λφ2/2

(c) Full phase space for U(φ) = λφ4/4 (d) Attractor solution for U(φ) = λφ4/4

Figure 4.1: Line integral convolution plots showing trajectories in phase
space for a scalar field with potential λφn/n with holonomy corrections.
The hue at each point indicates the magnitude of the vector (φ̇, φ̈), with
blue indicating low values. The trajectories do not extend outside of the
region (4.61). The attractor solution (the trajectory approached by a wide
range of inital conditions) is well approximated by (4.62), corresponding to
slow-roll inflation. I use λ̃ = (8π◦)

(4−n)/2, ♢̃ =
√
3γBI/4, δ = 0, γ∅ = 1.

Plots are in Planck units, ω = 1/8π◦
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(a) Accelerating values of wρ for U(φ) = λφ2/2 (b) Accelerating values of wρ for U(φ) = λφ4/4

Figure 4.2: Contour plots showing the region in scalar phase space sat-
isfying the condition for accelerated expansion when holonomy corrections
are included (4.63). The dashed line indicates the classical acceleration con-
dition wa = −1/3 and the dotted line indicates the bounce boundary. The
white line indicates the slow-roll solution (4.62). The contours indicate the
value of wρ by their colour, and the most blue contour is for wρ ≈ 0.2. I use
λ̃ = (8π◦)

(4−n)/2, ♢̃ =
√
3γBI/4, δ = 0, γ∅ = 1. Plots are in Planck units,

ω = 1/8π◦.
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Chapter 5

Deformed scalar-tensor constraint

to all orders

In this chapter I find the most general gravitational constraint which satisfies the deformed

constraint algebra. To find the constraint is easier than finding the action, so I also include

a non-minimally coupled scalar field in order to find the most general deformed scalar-

tensor constraint. This material has not been previously published.

As stated in chapter 2, I am not looking for models with degrees of freedom beyond a simple

scalar-tensor model. Since actions which contain Riemann tensor squared contractions

introduce additional tensor degrees of freedom [77], I automatically do not consider such

terms here. This means I only need to expand the constraint using variables which are

tensor contractions containing up to two orders of spatial derivatives or up to two in

momenta. It also means I do not need to consider spatial derivatives of momenta in the

constraint. Therefore, for a metric tensor field
(
qab, p

cd
)

and a scalar field (ψ, π), I expand

the constraint into the following variables,

q = det qab, p = qabp
ab, P = Qabcdp

ab
T p

cd
T , R,

ψ, π, ∆ := qab∇a∇bψ = ∂2ψ − qabΓcab∂cψ, γ := qab∇aψ∇bψ = ∂aψ∂aψ,

(5.1)

where pabT := pab − 1
3pq

ab is the traceless part of the metric momentum. Therefore, I start

with the constraint given by C = C(q, p,P, R, ψ, π,∆, γ). I must solve the distribution
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equation again to find the equations which restrict the form of the constraint. The cal-

culations in this chapter generalise those presented in chapter 3 where the minimally

deformed scalar-tensor constraint was regained from the constraint algebra.

5.1 Solving the distribution equation

Starting from (2.41), I have the general distribution equation for a Hamiltonian constraint,

without derivatives of the momenta, which depends on a metric tensor and a scalar field,

0 =
δC(x)

δqab(y)

∂C

∂pab

∣∣∣∣
y

+
δC(x)

δψ(y)

∂C

∂π

∣∣∣∣
y

− (βDa∂a)x δ (x, y)− (x↔ y) . (5.2)

To solve this I will take the functional derivative with respect to a momentum variable,

manipulate a few steps and then integrate with a test tensor to find several equations

which the constraint must satisfy. Since I have two fields, I must do this procedure twice.

The first route I consider will be where I take the derivative with respect to the metric

momentum.

5.1.1 pab route

Starting from the distribution equation (5.2), relabel indices, then take the functional

derivative with respect to pab(z),

0 =
δC(x)

δqcd(y)

∂2C

∂pab∂pcd

∣∣∣∣
y

δ(z, y) +
δ∂C(x)

δqcd(y)∂pab(x)

∂C

∂pcd

∣∣∣∣
y

δ(z, x)

+
δC(x)

δψ(y)

∂2C

∂pab∂π

∣∣∣∣
y

δ(z, y) +
δ∂C(x)

δψ(y)∂pab(x)

∂C

∂π

∣∣∣∣
y

δ(z, x)

− ∂c(x)δ(x, y)

(
∂(βDc)

∂pab
+ β

∂Dc

∂pab,d
∂d

)
x

δ(z, x)− (x↔ y) .

(5.3)

Move derivatives and discard surface terms so that it is reorganised into the form,

0 = Aab(x, y)δ(z, y)−Aab(y, x)δ(z, x), (5.4)
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where,

Aab(x, y) =
δC(x)

δqcd(y)

∂2C

∂pab∂pcd

∣∣∣∣
y

− δ∂C(y)

δqcd(x)∂pab(y)

∂C

∂pcd

∣∣∣∣
x

+
δC(x)

δψ(y)

∂2C

∂pab∂π

∣∣∣∣
y

− δ∂C(y)

δψ(x)∂pab(y)

∂C

∂π

∣∣∣∣
x

+

(
∂(βDc)

∂pab
∂c

)
y

δ(y, x)− ∂d(y)


(
β
∂Dc

∂pab,d
∂c

)
y

δ(y, x)

 .

(5.5)

If I take (5.4) and integrate over y, I can find Aab(x, y) in terms of a function dependent

on only a single independent variable,

0 = Aab(x, z)−Aab(x)δ(z, x), where, Aab(x) =
∫

d3yAab(y, x). (5.6)

I then multiply this by an arbitrary, symmetric test tensor θab(z), integrate over z, and

separate out different orders of derivatives of θab,

0 = θab (· · · )ab + ∂cθ
ab

{
∂C

∂qef,c

∂2C

∂pab∂pef
+ 2

∂2C

∂qef,cd
∂d

(
∂2C

∂pabpef

)
+
∂C

∂pef
∂2C

∂qef,c∂pab
− 2

∂C

∂pef
∂d

(
∂2C

∂qef,cd∂pab

)
+

∂C

∂ψ,c

∂2C

∂pab∂π

+2
∂C

∂ψ,cd
∂d

(
∂2C

∂pab∂π

)
+
∂C

∂π

∂2C

∂ψ,c∂pab
− 2

∂C

∂π
∂d

(
∂2C

∂ψ,cd∂pab

)
−∂(βD

c)

∂pab
− ∂d

(
β
∂Dd

∂pab,c

)}
+ ∂cdθ

ab

{
∂C

∂qef,cd

∂2C

∂pab∂pef

− ∂C

∂pef
∂2C

∂qef,cd∂pab
+

∂C

∂ψ,cd

∂2C

∂pab∂π
− ∂C

∂π

∂2C

∂ψ,cd∂pab
− β

∂Dc

∂pab,d

}
.

(5.7)

As done in previous chapters, I disregard the term zeroth order derivative of θab because

it does not provide useful information.

Before I can attempt to interpret this equation, I must first separate out all the dif-

ferent tensor combinations that there are. Because θab is arbitrary, the coefficients

of each unique tensor combination must vanish independently. When I substitute in

C = C(q, p,P, R, ψ, π,∆, γ), there are many complicated tensor combinations that need

to be considered, so for convenience I define Xa := qbc∂aqbc.
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I evaluate each term in the ∂cdθab bracket, and write them in (D.2), in appendix D. So

the linearly independent terms depending on ∂cdθ
ab produce the following conditions,

∂abθ
ab : 0 =

∂C

∂R

∂C

∂P
+ β, (5.8a)

qab∂
2θab : 0 =

∂C

∂p

∂2C

∂p∂R
− ∂C

∂R

(
∂2C

∂p2
+

1

3

∂C

∂P

)
+

1

2

∂C

∂∆

∂2C

∂π∂p
− 1

2

∂C

∂π

∂2C

∂p∂∆
,

(5.8b)

qabp
cd
T ∂cdθ

ab : 0 =
∂C

∂R

∂2C

∂p∂P
− ∂C

∂P
∂2C

∂p∂R
, (5.8c)

pT
ab∂

2θab : 0 =
∂C

∂p

∂2C

∂P∂R
− ∂C

∂R

∂2C

∂p∂P
+

1

2

∂C

∂∆

∂2C

∂π∂P
− 1

2

∂C

∂π

∂2C

∂P∂∆
, (5.8d)

pT
abp

cd
T ∂cdθ

ab : 0 =
∂C

∂R

∂2C

∂P2
− ∂C

∂P
∂2C

∂P∂R
. (5.8e)

I then evaluate each term in the ∂cθab bracket of (5.7) and write them in (D.3). There

are many unique terms which should be considered here, but in this case most of these

are already solved by a constraint which satisfies (5.8). So the equations containing new

information are,

∂aψ∂bθ
ab : 0 =

(
2
∂C

∂R
∂ψ − ∂C

∂∆

)
∂C

∂P
+ ∂ψβ, (5.9a)

qab∂
cψ∂cθ

ab : 0 =

(
1

2

∂C

∂∆
− 4

∂C

∂R
∂ψ

)(
∂2C

∂p2
+

1

3

∂C

∂P

)
+

1

2

∂C

∂∆

∂C

∂P

+
∂C

∂p

(
1

2

∂2C

∂p∂∆
+ 4∂ψ

∂2C

∂p∂R

)
+ 2

(
∂C

∂γ
+
∂C

∂∆
∂ψ

)
∂2C

∂π∂p

+ 2
∂C

∂π

(
∂2C

∂p∂γ
− ∂ψ

∂2C

∂p∂∆

)
− π

∂β

∂p
,

(5.9b)

pT
ab∂

cψ∂cθ
ab : 0 =

(
1

2

∂C

∂∆
− 4

∂C

∂R

)
∂2C

∂p∂P
+
∂C

∂p

(
1

2

∂2C

∂P∂∆
+ 4∂ψ

∂2C

∂P∂R

)
+2

(
∂C

∂γ
+
∂C

∂∆
∂ψ

)
∂2C

∂π∂P
+ 2

∂C

∂π

(
∂2C

∂P∂γ
− ∂ψ

∂2C

∂P∂∆

)
− π

∂β

∂P
,

(5.9c)

qabp
cd
T ∂dψ∂cθ

ab : 0 =

(
2
∂C

∂R
∂ψ − ∂C

∂∆

)
∂2C

∂p∂P
− ∂C

∂P

(
2∂ψ

∂2C

∂p∂R
+

∂2C

∂p∂∆

)
(5.9d)

pT
abp

cd
T ∂dψ∂cθ

ab : 0 =

(
2
∂C

∂R
∂ψ − ∂C

∂∆

)
∂2C

∂P2
− ∂C

∂P

(
2∂ψ

∂2C

∂P∂R
+

∂2C

∂P∂∆

)
(5.9e)
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Xa∂bθ
ab : 0 =

∂C

∂R
(1 + 2∂q)

∂C

∂P
+ ∂qβ, (5.9f)

qabX
c∂cθ

ab : 0 =
∂C

∂p
(4∂q − 1)

∂2C

∂p∂R
− ∂C

∂R
(4∂q + 1)

(
∂2C

∂p2
+

1

3

∂C

∂P

)
+

1

2

∂C

∂π
(1− 4∂q)

∂2C

∂∆∂p
+

1

2

∂C

∂∆
(1 + 4∂q)

∂2C

∂π∂p
− 1

3
p
∂β

∂p
,

(5.9g)

pT
abX

c∂cθ
ab : 0 =

∂C

∂p
(4∂q − 1)

∂2C

∂P∂R
− ∂C

∂R
(4∂q + 1)

∂2C

∂P∂p

+
1

2

∂C

∂π
(1− 4∂q)

∂2C

∂P∂∆
+

1

2

∂C

∂∆
(1 + 4∂q)

∂2C

∂P∂π
− 1

3
p
∂β

∂P
,

(5.9h)

qabp
cd
T Xd∂cθ

ab : 0 =
∂C

∂R
(1 + 2∂q)

∂2C

∂p∂P
+
∂C

∂P
(1− 2∂q)

∂2C

∂p∂R
, (5.9i)

pT
abp

cd
T Xd∂cθ

ab : 0 =
∂C

∂R
(1 + 2∂q)

∂2C

∂P2
+
∂C

∂P
(1− 2∂q)

∂2C

∂P∂R
, (5.9j)

∂aF∂bθ
ab : 0 = 2

∂C

∂R

∂2C

∂F∂P
+
∂β

∂F
, (5.9k)

qab∂
cF∂cθ

ab : 0 = 2
∂C

∂p

∂3C

∂F∂p∂R
− 2

∂C

∂R

∂

∂F

(
∂2C

∂p2
+

1

3

∂C

∂P

)
+
∂C

∂∆

∂3C

∂F∂p∂π
− ∂C

∂π

∂3C

∂F∂p∂∆
+

1

3
δpF
∂β

∂p
,

(5.9l)

pT
ab∂

cF∂cθ
ab : 0 = 2

∂C

∂p

∂3C

∂F∂P∂R
− 2

∂C

∂R

∂3C

∂F∂p∂P

+
∂C

∂∆

∂3C

∂F∂P∂π
− ∂C

∂π

∂3C

∂F∂P∂∆
+

1

3
δpF
∂β

∂P
,

(5.9m)

qabp
cd
T ∂dF∂cθ

ab : 0 =
∂C

∂R

∂3C

∂F∂p∂P
− ∂C

∂P
∂3C

∂F∂p∂R
, (5.9n)

pT
abp

cd
T ∂cFθ

ab : 0 =
∂C

∂R

∂3C

∂F∂P2
− ∂C

∂P
∂3C

∂F∂P∂R
, (5.9o)

where F ∈ {p,P, R,∆, γ}. These conditions strongly restrict the form of the constraint,

but before I attempt to consolidate them I must find the conditions coming from the scalar

field.
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5.1.2 π route

Similar to the calculation using the metric momentum, I return to the distribution equation

(5.2) and take the functional derivative with respect to π(z),

0 =
δC(x)

δqab(y)

∂2C

∂π∂pab

∣∣∣∣
y

δ(z, y) +
δ∂C(x)

δqab(y)∂π(x)

∂C

∂pab

∣∣∣∣
y

δ(z, x)

+
δC(x)

δψ(y)

∂2C

∂π2

∣∣∣∣
y

δ(z, y) +
δ∂C(x)

δψ(y)∂π(x)

∂C

∂π

∣∣∣∣
y

δ(z, x)

− δ(z, x)

(
∂(βDa)

∂π
∂a

)
x

δ(x, y)− (x↔ y) ,

(5.10)

which can be rewritten as,

0 = A(x, y)δ(z, y)−A(y, x)δ(z, x), (5.11)

where,

A(x, y) =
δC(x)

δqab(y)

∂2C

∂π∂pab

∣∣∣∣
y

− δ∂C(y)

δqab(x)∂π(y)

∂C

∂pab

∣∣∣∣
x

+
δC(x)

δψ(y)

∂2C

∂π2

∣∣∣∣
y

− δ∂C(y)

δψ(x)∂π(y)

∂C

∂π

∣∣∣∣
x

+

(
∂(βDa)

∂π
∂a

)
y

δ(y, x),

(5.12)

and similar to above, (5.11) can be solved to find 0 = A(x, z)−A(x)δ(x, z). Multiply this

by a test scalar field η(z) and integrate over z,

0 = η (· · · ) + ∂aη

{
∂C

∂qcd,a

∂2C

∂π∂pcd
+ 2

∂C

∂qcd,ab
∂b

(
∂2C

∂π∂pcd

)
+

∂C

∂pcd
∂2C

∂qcd,a∂π

−2
∂C

∂pcd
∂2C

∂qcd,ab∂π
+

∂C

∂ψ,a

∂2C

∂π2
+ 2

∂C

∂ψ,ab
∂b

(
∂2C

∂π2

)
+
∂C

∂π

∂2C

∂ψ,a∂π

−2
∂C

∂π
∂b

(
∂2C

∂ψ,ab∂π

)
− ∂(βDa)

∂π

}
+ ∂abη

{
∂C

∂qcd,ab

∂2C

∂π∂pcd
− ∂C

∂pcd
∂2C

∂qcd,ab∂π
+

∂C

∂ψ,ab

∂2C

∂π2
− ∂C

∂π

∂2C

∂ψ,ab∂π

}
.

(5.13)
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I evaluate each of the terms for ∂abη, and write them in (D.4). From these, I find the

independent equations,

∂2η : 0 =
∂C

∂p

∂2C

∂π∂R
− ∂C

∂R

∂2C

∂π∂p
+

1

2

∂C

∂∆

∂2C

∂π2
− 1

2

∂C

∂π

∂2C

∂∆∂π
, (5.14a)

pabT ∂abη : 0 =
∂C

∂R

∂2C

∂π∂P
− ∂C

∂P
∂2C

∂π∂R
. (5.14b)

Then, I evaluate all the terms for ∂aη, and write them in (D.5). Therefore, ignoring terms

solved by (5.14), the equations I get from ∂aη are,

∂aψ∂aη : 0 =

(
1

2

∂C

∂∆
− 4

∂C

∂R
∂ψ

)
∂2C

∂π∂p
+
∂C

∂p

(
1

2

∂2C

∂∆∂π
+ 4∂ψ

∂2C

∂R∂π

)
+2

(
∂C

∂γ
+
∂C

∂∆
∂ψ

)
∂2C

∂π2
+ 2

∂C

∂π

(
∂2C

∂γ∂π
− ∂ψ

∂2C

∂∆∂π

)
−
(
β + π

∂β

∂π

)
,

(5.15a)

pabT ∂bψ∂aη : 0 =

(
∂C

∂R
∂ψ − 1

2

∂C

∂∆

)
∂2C

∂π∂P
− ∂C

∂P

(
∂ψ

∂2C

∂π∂R
+

1

2

∂2C

∂π∂∆

)
, (5.15b)

Xa∂aη : 0 =
∂C

∂p
(4∂q − 1)

∂2C

∂π∂R
− ∂C

∂R
(4∂q + 1)

∂2C

∂π∂p

+
1

2

∂C

∂∆
(1 + 4∂q)

∂2C

∂π2
+

1

2

∂C

∂π
(1− 4∂q)

∂2C

∂π∂∆
− 1

3
p
∂β

∂π
,

(5.15c)

pabT Xb∂aη : 0 =
∂C

∂R
(1 + 2∂q)

∂2C

∂π∂P
+
∂C

∂P
(1− 2∂q)

∂2C

∂π∂R
, (5.15d)

∂aF∂aη : 0 =
∂C

∂p

∂3C

∂F∂π∂R
− ∂C

∂R

∂3C

∂F∂π∂R
+

1

2

∂C

∂∆

∂3C

∂F∂π2

− 1

2

∂C

∂π

∂3C

∂F∂π∂∆
+

1

6
δpF
∂β

∂π
,

(5.15e)

pabT ∂bF∂aη : 0 =
∂C

∂R

∂3C

∂F∂π∂P
− ∂C

∂P
∂3C

∂F∂π∂R
, (5.15f)

where F ∈ {p,P, R,∆, γ}. Now that I have all of the conditions restricting the form of

the constraint, I can move on to consolidating and interpreting them.

5.2 Solving for the constraint

Now I have the full list of equations, I seek to find the restrictions on the form of C they

impose. Firstly, I use the condition from ∂abθ
ab, (5.8a) to find

∂C

∂R
= −β

(
∂C

∂P

)−1

, (5.16)



Chapter 5. Deformed scalar-tensor constraint to all orders 77

which I substitute into the equation from pT
abp

cd
T ∂cdθ

ab, (5.8e),

0 =
∂C

∂R

∂2C

∂P2
− ∂C

∂P
∂2C

∂P∂R

= −2β

(
∂C

∂P

)−1 ∂2C

∂P2
+
∂β

∂P

= β
∂

∂P
log
{
β

(
∂C

∂P

)−2
}
,

(5.17)

and because β → 1 in the classical limit and so cannot vanish generally, I find that,

β = b1

(
∂C

∂P

)2

, where ∂b1
∂P

= 0. (5.18)

Substituting this back into (5.16) gives me ∂C

∂R
= −b1

∂C

∂P
, and from this I can find the

first restriction on the form of the constraint,

C(q, p,P, R, ψ, π,∆, γ) = C1(q, p, ψ, π,∆, γ, χ1),

where χ1 := P −
∫ R

0
b1(q, p, x, ψ, π,∆, ψ)dx.

(5.19)

Substituting this into the condition from ∂aF∂bθ
ab, (5.9k), gives

0 =
∂b1
∂F

(
∂C1

∂χ1

)2

, for F ∈ {p,P, R, π,∆, γ}, (5.20)

and therefore b1 must only be a function of q and ψ. Substituting this into (5.19) leads to

χ1 = P − b1R. Turning to the condition from Xa∂bθ
ab, (5.9f), I find

0 =

(
∂C1

∂χ1

)2

(∂q − 1) b1, (5.21)

which is solved by b1(q, ψ) = q b2(ψ). This is as expected because it means both terms in

χ1 have a density weight of two. From this I see that the condition coming from ∂aψ∂bθ
ab,

(5.9a), gives

0 =
∂C1

∂χ1

(
qb′2

∂C1

∂χ1
− ∂C1

∂∆

)
(5.22)
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which provides further restrictions on the form of the constraint,

C = C2(q, p, ψ, π, γ, χ2), χ2 := P − q
(
b2R− b′2∆

)
. (5.23)

Look at the condition from pT
ab∂

2θab, (5.8d),

0 =
∂C

∂p

∂2C

∂P∂R
− ∂C

∂R

∂2C

∂p∂P
+

1

2

∂C

∂∆

∂2C

∂π∂P
− 1

2

∂C

∂π

∂2C

∂P∂∆
,

= qb2

{
−∂C2

∂p

∂2C2

∂χ2
2

+
∂C2

∂χ2

∂2C

∂p∂χ2
+

b′2
2b2

(
∂C2

∂χ2

∂2C2

∂π∂χ2
− ∂C2

∂π

∂2C2

∂χ2
2

)}
= qb2

∂C2

∂χ2

(
∂C2

∂p
+

b′2
2b2

∂C2

∂π

)
∂

∂χ2
log
{(

∂C2

∂p
+

b′2
2b2

∂C2

∂π

)(
∂C2

∂χ2

)−1
}
,

(5.24)

and because b2 is a non-zero constant in the classical limit, this can be integrated to find

∂C2

∂p
+

b′2
2b2

∂C2

∂π
= g1(q, p, ψ, π, γ)

∂C2

∂χ2
, (5.25)

where g1 is a unknown function arising as an integration constant, and needs to be de-

termined. This provides a further restriction on the form of the constraint,

C = C3 (q, ψ, γ,Π, χ3) , Π := π − b′2
2b2

p,

χ3 := P − q
(
b2R− b′2∆

)
+

∫ p

0
g1

(
q, x, ψ,Π+

b′2
2b2

x, γ

)
dx.

(5.26)

Substituting this into the condition from ∂2η, (5.14a), gives

0 = q b2

(
∂C3

∂χ3

)2 ∂

∂π
g1 (q, p, ψ, π, γ) , (5.27)

and therefore,

χ3 = P − q
(
b2R− b′2∆

)
+

∫ p

0
g1 (q, x, ψ, γ)dx. (5.28)

Evaluating the condition from qab∂
2θab, (5.8b), gives

0 =
1

3
qb2

(
∂C3

∂χ3

)2(
1 + 3

∂

∂p

)
g1 (q, p, ψ, γ) , (5.29)
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which can be integrated to find g1 = g2 (q, ψ, γ)− p/3 and therefore (5.28) becomes,

χ3 = P − 1

6
p2 + g2 p− q

(
b2R− b′2∆

)
. (5.30)

Then look at the condition from pT
abX

c∂cθ
ab, (5.9h), from which can be found

0 = 2qb2
∂C3

∂χ3

∂2C3

∂χ2
3

(2∂q − 1) g2, (5.31)

which can be solved by, g2 (q, ψ, γ) =
√
q g3 (ψ, γ) if we assume that ∂

2C3

∂χ2
3

̸= 0 generally,

which is true for any deformation dependent on curvature ∂β

∂χ3
̸= 0. This is what is

expected for the density weight of each term in χ3 to match.

I now look at the condition for pT
ab∂

cγ∂cθ
ab, which is (5.9m) with F = γ,

0 = q3/2b2
∂g3
∂γ

∂C3

∂χ3

∂2C3

∂χ2
3

, (5.32)

which is true when g3 = g3 (ψ).

At this point it gets harder to progress further as I have done so far. To review, I have

restricted the constraint and deformation to the forms,

C (q, p,P, R, ψ, π,∆, γ) = C3 (q, ψ,Π, γ, χ3) , β = q b2 (ψ)

(
∂C3

∂χ3

)2

,

Π = π − b′2
2b2

p, χ3 = P − 1

6
p2 + p

√
q g3 (ψ)− q

(
b2R− b′2∆

)
,

(5.33)

which satisfies all the conditions in (5.8), (5.14), (5.15) and (5.9) apart from the conditions

for qab∂cψ∂cθab, (5.9b), and ∂aψ∂aη, (5.15a). As it stands, these conditions are not easy

to solve.
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5.2.1 Solving the fourth order constraint to inform the general case

To break this impasse, I use a test ansatz for the constraint which contains up to four

orders in momenta,

C3 → C0 + C(Π)Π+ C(Π2)Π
2 + C(Π3)Π

3 + C(Π4)Π
4

+ C(χ)χ3 + C(χ2)χ
2
3 + C(Πχ)Πχ3 + C(Π2χ)Π

2χ3,

(5.34)

where each coefficient is an unknown function to be determined dependent on q, ψ and

γ. There is an asymmetric term included in χ3 determined by the function g3 (ψ), so I do

not restrict myself to only even orders of momenta, unlike section 3.

Substituting this into (5.15a), I can separate out the multiplier of each unique combination

of variables as an independent equation. For each of the terms which are the multipliers of

5 or 6 orders of momenta, I find a condition specifying that the constraint coefficients for

terms 3 or 4 orders of momenta must not depend on γ, e.g. ∂

∂γ
C(χ2) = 0, ∂

∂γ
C(Π3) = 0.

Since γ depends on two spatial derivatives, I see that each term in the constraint must

not depend on a higher order of spatial derivatives than it does momenta. If I include

higher orders of spatial derivatives in the ansatz, I quickly find them ruled out in a similar

fashion. Therefore, I use this information to further expand my ansatz,

C3 → C∅ + C(γ)γ + C(γ2)γ
2 + C(Π)Π+ C(Πγ)Πγ + C(Π2)Π

2

+ C(Π2γ)Π
2γ + C(Π3)Π

3 + C(Π4)Π
4 + C(χ)χ3 + C(χγ)χ3γ + C(χ2)χ

2
3

+ C(Πχ)Πχ3 + C(Π2χ)Π
2χ3,

(5.35)

where each coefficient is now an unknown function of q and ψ.

One can find all the necessary conditions from (5.15a), for which the solution also satisfies

(5.9b). I will show a route which can taken to progressively restrict C. The condition

coming from P2 is solved if

C(Π2χ) =
1

2
C(χ2)

(
C(χγ)

2qb2C(χ2)
+

7b′22
8b22

− b′′2
b2

)−1

, (5.36)
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the condition from γ2 is solved by,

C(Π2γ) =
1

4
C(χγ)

(
2C(γ2)

b2C(χγ)
+

7b′22
8b22

− b′′2
b2

)−1

, (5.37)

the condition from γP is solved by,

C(γ2) =
C2
(χγ)

4C(χ2)
, (5.38)

the condition from π4 is solved by,

C(Π4) =
1

16
C(χ2)

(
C(χγ)

2qb2C(χ2)
+

7b′22
8b22

− b′′2
b2

)−1

, (5.39)

and all the other conditions coming from four momenta are solved. Turning to the third

order, the condition from πP is solved by,

C(Π3) =
1

12

{
C(Πχ)

[
1

qb2

(
3C(χγ)

2C(χ2)
−

2C(Πγ)

C(Πχ)

)
+

7b′22
8b22

− b′′2
b2

]

−√
qC(χ2)

(
4g′3 −

3g3b
′
2

b2

)}(
C(χγ)

2qb2C(χ2)
+

7b′22
8b22

− b′′2
b2

)−2

,

(5.40)

and the condition from πγ is solved by,

C(Πγ) =
C(Πχ)C(χγ)

2C(χ2)
, (5.41)

and the condition from π3 is solved by,

C(Πχ) =
−1

2

√
qC(χ2)

(
4g′3 −

3g3b
′
2

b2

)(
C(χγ)

2qb2C(χ2)
+

7b′22
8b22

− b′′2
b2

)−1

, (5.42)
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which completes all the terms from third order. The only new condition coming from

second order is solved by,

C(Π2) =

{
1

4
C(Πχ)

[
1

qb2

(
C(χγ)

C(χ2)
−
C(γ)

C(χ)

)
+

7b′22
8b22

− b′′2
b2

]

+
1

16
qC(χ2)

(
4g′3 −

3g3b
′
2

b2

)2
}(

C(χγ)

2qb2C(χ2)
+

7b′22
8b22

− b′′2
b2

)−2

,

(5.43)

and the only new condition coming from first order is solved by,

C(Π) =
−1

4

√
qC(χ)

(
4g′3 −

3g3b
′
2

b2

){
1

qb2

(
C(χγ)

C(χ2)
−
C(γ)

C(χ)

)
+

7b′22
8b22

− b′′2
b2

}

×

(
C(χγ)

2qb2C(χ2)
+

7b′22
8b22

− b′′2
b2

)−2

,

(5.44)

and from the zeroth order,

C(χγ) =
2C(γ)C(χ2)

C(χ)
, (5.45)

When all of these terms are combined, I find the solution for the fourth order constraint,

C = C∅ +C(χ)

(
χ3 +

Π(Π− Ξ)

4Ω
+
C(γ)

C(χ)
γ

)
+C(χ2)

(
χ3 +

Π(Π− Ξ)

4Ω
+
C(γ)

C(χ)
γ

)2

, (5.46)

where

Ω =
C(γ)

b2qC(χ)
+

7b′22
8b22

− b′′2
b2
, Ξ =

√
q

(
4g′3 −

3g3b
′
2

b2

)
. (5.47)

If this solution is generalised to all orders,

C = C4 (q, ψ, χ4) , χ4 = P − 1

6
p2+

√
qpg3− q

(
b2R− b′2∆

)
+

Π(Π− Ξ)

4Ω
+
C(γ)

C(χ)
γ, (5.48)

one can check that it satisfies all the conditions from (5.8), (5.14), (5.15) and (5.9). It is

possible that directly generalising from the fourth order constraint rather than continuing

to work generally means that this is not the most general solution. However, at least I

now know a form of the constraint which can solve all the conditions.
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Now that I have a form for the general constraint, I seek to compare it to the low-

curvature limit, when C → χ4Cχ + C∅, and match terms with that found previously

(3.27) in chapter 3 and [55]. I find that,

b2 =
σβω

2
R

4
, σβ := sgn(β) = sgn(β∅).

Cχ =
2σβ
ωR

√
|β∅|
q
, Cγ =

√
q |β∅|

(ωψ
2

+ ω′′
R

)
,

(5.49)

For convenience, I redefine the function determining the asymmetry, g3 = ξ/2, and I ex-

pand the constraint in terms of the weightless (or ‘de-densitised’) scalar R := χ4/q. This

means that the general form of the deformed constraint is given by,

C = C (q, ψ,R) , β =
σβ
q

(
∂C

∂R

)2

, (5.50a)

R :=
2σβ
qωR

(
P − 1

6
p2
)
− ωR

2
R+ ω′

R∆ψ +
(ωψ

2
+ ω′′

R

)
∂aψ∂aψ,

+
σβωR

ωψωR + 3
2ω

′2
R

{
1

2q

(
π −

ω′
R

ωR
p

)2

+
ξ
√
q

[
ωψ
ωR

p+
3ω′

R

2ωR
π − ξ′

ξ

(
π −

ω′
R

ωR
p

)]}
.

(5.50b)

It is probably more appropriate to see the deformation function itself as the driver of

deformations to the constraint, so I rearrange (5.50a),

∂C

∂R
=
√
q |β|, (5.51)

which can be integrated to find,

C =

∫ R

0

√
q |β(q, ψ, r)|dr + C∅(q, ψ). (5.52)

From either form of the general solution (5.50a) or (5.52), one can now understand

the meaning of (2.50), which relates the order of the constraint and the deformation,

2nC − nβ = 4. The differential form (5.50a) is like nβ = 2 (nC − 2), and the integral form

(5.52) is like nC = 2 + nβ/2.

From the integral form of the solution (5.52), I can now check a few examples of what con-

straint corresponds to certain deformations. Here are a few examples of easily integrable
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functions with the appropriate limit,

β = β∅ (1 + β2R)n

→ C = C∅ +


2
√
q |β∅|

(n+ 2)β2

{
sgn(1 + β2R) |1 + β2R|

n+2
2 − 1

}
, n ̸= −2,√

q |β∅|
β2

sgn(1 + β2R) log |1 + β2R| , n = −2,

≃ C∅ +
√
q |β∅|

{
R+

nβ2
4

R2 + · · ·
}
.

(5.53)

β = β∅e
β2R → C = C∅ +

2
√
q |β∅|
β2

(
eβ2R/2 − 1

)
≃ C∅ +

√
q |β∅|

(
R+

β2
4
R2 + · · ·

)
,

(5.54)

β = β∅sech2 (β2R) → C = C∅ +

√
q |β∅|
β2

gd (β2R) ,

≃ C∅ +
√
q |β∅|

(
R− β22

6
R3 + · · ·

)
,

(5.55)

where gd(x) :=
∫ x
0 dt sech(t) is the Gudermannian function. Most other deformation func-

tions would need to be integrated numerically to find the constraint. As can be seen from

the small R expansions, it would be possible to constrain β∅ and β2 phenomenologically

but the asymptotic behaviour of β would be difficult to determine.

The simplest constraint that can be expressed as a polynomial of R that contains higher

orders than the classical solution is given by,

β = β∅ (1 + β2R)2 → C = C∅ +
√
q |β∅|

(
R+

β2
2
R2

)
, (5.56)

which is equivalent to the fourth order constraint found in (5.46).

5.3 Looking back at the constraint algebra

For this deformed constraint to mean anything, it must not reduce to the undeformed

constraint through a simple transformation. If I write the constraint as a function of the

undeformed vacuum constraint C̄ =
√
qR, I see that the deformation in the constraint
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algebra can be absorbed by a redefinition of the lapse functions,

{C[N ], C[M ]} =

∫
dxdyN(x)M(y){C(x), C(y)}, (5.57a)

=

∫
dxdy

(
N
∂C

∂C̄

)
x

(
M
∂C

∂C̄

)
y

{C̄(x), C̄(y)}, (5.57b)

=

∫
dxdy

(
σ∂CN̄

)
x

(
σ∂CM̄

)
y
{C̄(x), C̄(y)}, (5.57c)

= {C̄[σ∂CN̄ ], C̄[σ∂CM̄ ]}, (5.57d)

where N̄ := N
∣∣∂C/∂C̄∣∣, M̄ := M

∣∣∂C/∂C̄∣∣ and σ∂C := sgn(∂C/∂C̄), because the lapse

functions should remain positive. The other side of the equality,

Da[βq
ab(N∂bM − ∂bNM)], =

∫
dxDaβq

ab(N∂bM − ∂bNM)

=

∫
dxDaσβ

(
∂C

∂C̄

)2

(N∂bM − ∂bNM)

=

∫
dxDaσβ(N̄∂bM̄ − ∂bN̄M̄),

= Da[σβq
ab(N̄∂bM̄ − ∂bN̄M̄)],

(5.58)

which I can combine to show the that the following two equations are equivalent,

{C[N ], C[M ]} = Da[βq
ab(N∂bM − ∂bNM)], (5.59a)

{C̄[σ∂CN̄ ], C̄[σ∂CM̄ ]} = Da[σβq
ab(N̄∂bM̄ − ∂bN̄M̄)]. (5.59b)

The two σ∂C on the left side should cancel out, but they are included here to show the

limit to the redefinition of the lapse functions. While it may seem like I have regained

the undeformed constraint algebra up to the sign σβ with a simple transformation, it

shouldn’t be taken to mean that this is actually the algebra of constraints. That is, the

above equation doesn’t ensure that C̄ ≈ 0 instead of C ≈ 0 when on-shell. The surfaces

in phase space described by C̄ = 0 and C = 0 are different in general.
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5.4 Cosmology

I restrict to an isotropic and homogeneous space to find the background cosmological

dynamics, following the definitions in section 2.8. Writing the constraint as C = C(a, ψ,R)

where R = R(a, ψ, p̄, π), the equations of motion are given by,

ȧ

N
=

1

6a

∂R
∂p̄

∂C

∂R
,

˙̄p

N
=

−1

6a

(
∂C

∂a
+
∂R
∂a

∂C

∂R

)
,

ψ̇

N
=
∂R
∂π

∂C

∂R
,

π̇

N
= −∂C

∂ψ
− ∂R
∂ψ

∂C

∂R
,

(5.60)

into which I can substitute ∂C

∂R
= a3

√
|β|. When I assume minimal coupling (ω′

R = 0,

ω′
ψ = 0) and time-symmetry (ξ = 0), the equations of motion become,

R →
−3σβ p̄

2

ωRa2
− 3kωR

a2
+

σβπ
2

2ωψa6
,

ȧ

N
=

−σβ p̄
ωR

√
|β|, ψ̇

N
=

σβπ

ωψa3

√
|β|, π̇

N
= −∂C

∂ψ
,

˙̄p

N
=

−1

6a

∂C

∂a
− a
√

|β|
(
σβ p̄

2

ωRa2
+
kωR
a2

−
σβπ

2

2ωψa6

)
.

(5.61)

To find the Friedmann equation, find the equation for H2/N2, and substitute in for R,

H2

N2
= |β| p̄

2

ω2
R

= β

(
−R
3ωR

− k

a2
+

σβπ
2

6ωRωψa6

)
, (5.62)

and when the constraint is solved, C ≈ 0, then R can be found in terms of C∅ .

5.4.1 Cosmology with a perfect fluid

I here find the deformed Friedmann equations for various forms of the deformation. For

simplicity, I ignore the scalar field and include a perfect fluid C∅ = a3ρ(a). From the
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deformation function β = β∅ (1 + β2R)n, solving the constraint (5.53) gives

R =


σ2
β2

{
σ2 −

(n+ 2)σ2β2ρ

2
√
|β∅|

}n+2
2

− 1

β2
, n ̸= −2,

σ2
β2

exp
(
−σ2β2ρ√

|β∅|

)
− 1

β2
, n = −2,

(5.63)

where σ∅ := sgn(β∅) and σ2 := sgn(1 + β2R). When I simplify by assuming σ2 = 1, the

Friedmann equation is given by,

H2

N2
=



(
β∅

3ωRβ2

[
1−

(
1− ρ

ρc(n)

) 2
n+2

]
− kβ∅

a2

)(
1− ρ

ρc(n)

) 2n
n+2

, n ̸= −2,(
β∅

3ωRβ2

[
1− exp

(
−β2ρ√
|β∅|

)]
− kβ∅

a2

)
exp

(
2β2ρ√
|β∅|

)
n = −2,

(5.64)

where ρc(n) =
2
√
|β∅|

β2 (n+ 2)
. To see the behaviour of the modified Friedmann equation for

different values of n, look at Fig. 5.1(a). For n > 0, the Hubble rate vanishes as the universe

approaches the critical energy density, this indicates that a collapsing universe reaches a

turning point at which point the repulsive effect causes a bounce. For 0 > n > −2, there

appears a sudden singularity in H at finite ρ (therefore finite a). In the ρ→ ∞ limit,

H2 ∼ e2ρ when n = −2 and H2 ∼ ρ
2n
n+2 when n < −2.

The singularities for 0 > n > −2 appear to be similar to sudden future singularities

characterised in [83, 91]. However, the singularities here might instead be called sudden

‘past’ singularities as they happen when a is small (but non-zero) and ρ is large. Moreover,

they happen for any perfect fluid with w > −1, i.e. including matter and radiation.

For the deformation function β = β∅ exp (β2R) from (5.54), solving the constraint gives,

R =
2

β2
log
(
1− β2ρ

2
√
|β∅|

)
, (5.65)

and the Friedmann equation is given by,

H2

N2
=

{
−2β∅
3ωRβ2

log
(
1− β2ρ

2
√
|β∅|

)
− kβ2

a2

}(
1− β2ρ

2
√

|β∅|

)2

. (5.66)
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(a) β = β∅ (1 + β2R)n (b) β ∼ expR

Figure 5.1: Behaviour of the Friedmann equation for various deformation
functions β(R) when k = 0.

and a critical density appears for ρ→
2
√

|β∅|
β2

.

For the deformation function β = β∅sech2 (β2R) from (5.55), solving the constraint gives,

R =
−1

β2
gd−1

(
β2ρ√
|β∅|

)
. (5.67)

Substituting this back into the deformation function gives,

β = β∅ cos2
(

β2ρ√
|β∅|

)
(5.68)

and the Friedmann equation is given by

H2

N2
=

{
β∅

3ωRβ2
gd−1

(
β2ρ√
|β∅|

)
− kβ∅

a2

}
cos2

(
β2ρ√
|β∅|

)
. (5.69)

where there is a critical density1, ρ→
π◦
√

|β∅|
2β2

.

These exponential-type deformation functions that I consider all predict a upper limit

on energy density. To illustrate this, I plot the modified Friedmann equations for these

functions in Fig. 5.1(b).
1where π◦ ≈ 3.14.
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5.4.2 Cosmology with a minimally coupled scalar field

Since the metric and scalar kinetic terms must combine into one quantity, R, a deformation

function should not affect the relative structure between fields. To illustrate this, take a

free scalar field (without a potential) which is minimally coupled to gravity, and assume no

perfect fluid component. This means that the generalised potential term C∅ will vanish,

in which case solving the constraint, C ≈ 0, merely implies R = 0. Consequently, since

the deformation function β is a function of R, the only deformation remaining will be the

zeroth order term β = β∅ (q, ψ). Combining the equations of motion (5.61) allows me to

find the Friedmann equation,

H2

N2
=

ωψψ̇
2

6ωRN2
− kβ∅

a2
, (5.70)

that is, the minimally-deformed case. For β ̸= β∅, it is required that R must not vanish,

which itself requires that C∅ must be non-zero. Therefore, for the dynamics to depend on

a deformation which is a function of curvature, there must be a non-zero potential term

which acts as a background against which the fields are deformed.

5.4.3 Deformation correspondence

As discussed in the perturbative action chapter 4, the form of the deformation used in the

literature which includes holonomy effects is given by the cosine of the extrinsic curvature

[40–42]. Of particular importance to this is that the deformation vanishes and changes

sign for high values of extrinsic curvature. Since the extrinsic curvature is proportional to

the Hubble expansion rate, write the deformation (4.36) here as,

β = β∅ cos (βkH) . (5.71)

I wish to find C(R) and β(R) associated with this deformation of form β(K). To do so, I

need to find the relationship between the Hubble parameter H = ȧ/a and the momentum

p̄, and thereby infer the form of β(R). Then, using (5.52) I can find the constraint C(R).
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So, using the equations of motion (5.61), I find

h = r
√

|cosh|, where, h := βkH, r := −
Nσβ p̄

ωRa
βk
√
|β∅|, (5.72)

this is an implicit equation which cannot be solved analytically for h(r), and so must be

solved numerically.

For the general relation h = r
√
|β(h)|, there are similar β functions which can be trans-

formed analytically. One example is β(h) = 1− 4π−2
◦ h2, which also has the same limits of

β(0) = 1 and β(h→ ±π◦/2) = 0, and can be transformed to find β(r) =
(
1 + 4π−2

◦ r2
)−1.

In Fig. 5.2, I plot β(h) and h(r) in the region |h| ≤ π◦/2. After making the transformation,

I find β(r). Note that, unlike for h, β does not vanish for finite r. So it seems that a

deformation which vanishes for finite extrinsic curvature does not necessarily vanish for

finite intrinsic curvature or metric momenta (at least not in the isotropic and homogeneous

case). In this respect, it matches the dynamics found for exponential-form deformations

in Fig. 5.1.

Returning to the solution for the constraint, (5.52), reducing it to depending on only a

and p̄ gives

C =
−6a

ωR

∫ p̄

0
dp′ σβp′

√
|β (a, p′)|+ C∅ (a) , (5.73)

and transforming from p̄ to r as defined in (5.72), while making the assumptions σβ = 1,

N = 1, β∅ = 1, and βk ∼ constant, this becomes

C =
−6ωRa

3

β2k
Ck(r) + C∅(a), Ck(r) :=

∫ r

0
dr′ r′

√
β(r′). (5.74)

I numerically integrate the solution for β(r) found for when β = cos(h). I plot the function

Ck(r) in Fig. 5.2(d).

If instead of the extrinsic curvature itself, the deformation is a cosine of the standard

extrinsic curvature contraction, β = cosβkK ∼ cosh2, it still cannot be transformed

analytically. However, it does match the function β(h) = 1−4π−2
◦ h4 well, as I have plotted

in Fig. 5.3. However, numerically finding the constraint for these two deformations, then

considering the low R limit, I see that C ∼ R2 + C∅. Therefore, this deformation can
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(a) β (h) (b) h(r)

(c) β (r) (d) Ck (r)

Figure 5.2: Plot showing the process of starting from a deformation β(h)
(a), transforming h(r) (b), finding the new form of the deformation β(r)
(c), and finding the kinetic part of the constraint Ck(r) (d). I include the
function β = 1− 4π−2

◦ h2 (blue dashed line) because it has the same limits
as β = cosh (red solid line) for the region |h| ≤ π◦/2 but the transformation

can be done analytically

be ruled out if C ∼ R + C∅ is known to be the low curvature limit of the Hamiltonian

constraint.

Considering the function β(h) = 1−4π−2
◦ h2 in Fig. 5.2, transforming from h to K and from

r to R to R, we can see the correspondence between different limits of the deformation

function,

β (K, 0) = 1− β2K, → β (0, R) =
1

1 + β2R
. (5.75)

This is what I found in chapter 6, where the general form of this particular deformation is

actually the product of these two limits. However, for non-linear deformation functions,

β(K, R) cannot be determined so easily from β(K, 0) and β(0, R). That being said, given

β(R), the dependence on K could be found by simply solving and evolving the equations

of motion.
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(a) β (h) (b) β (r)

Figure 5.3: Plot showing transformations for the deformations given by
β(h) = cosh2 (red solid line) and β(h) = 1− 4π−2

◦ h4 (blue dashed line).

5.5 Discussion

In this chapter, I have found the general form that a deformed constraint can take for

non-minimally coupled scalar-tensor variables. The momenta and spatial derivatives for

all fields must maintain the same relative structure in how they appear compared to

the minimally-deformed constraint. This means that the constraint is a function of the

fields and the general kinetic term R. The freedom within this kinetic term comes down

to the coupling functions. While a lapse function transformation can apparently take the

constraint algebra back to the undeformed form, this seems to be merely a cosmetic change

as it does not in fact alter the Hamiltonian constraint itself.

I have shown how to obtain the cosmological equations of motion, and given a few simple

examples of how they are modified. For some deformation functions, a upper bound on

energy density appears, which probably generates a cosmological bounce. For other de-

formation functions, a sudden singularity in the expansion appears when the deformation

diverges for high densities. I have shown that deformations to the field dynamics requires

a background general potential against which the deformation must be contrasted.

Using the cosmological equations of motion, I made contact with the holonomy-generated

deformation which is a cosine of the extrinsic curvature. Through this, I have demonstrated

how the relationship of momenta and extrinsic curvature becomes non-linear with a non-

trivial deformation. It seems that when the deformation produces an upper bound on

extrinsic curvature, there does not seem to be an upper bound on intrinsic curvature or
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momenta.
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Chapter 6

Deformed gravitational action to

all orders

As shown in section 2.7, the deformed action must be calculated either perturbatively, as

has been done in chapter 4, or completely generally. It appears that this is because it

does not permit a closed polynomial solution when the deformation depends on curvature.

In this chapter I attempt this general calculation. This material has been subsequently

published in ref. [57].

Take the equations (4.12) and (4.13), which solve the distribution equation for the grav-

itational action when I expand it in terms of the variables (q, v, w,R), and see what can

be deduced about the action when it is treated non-perturbatively.

Start with the equation for ∂aF∂bθab where F ∈ {v, w,R}, (4.13h), this can be rewritten

as

0 = β

(
∂L

∂w

)2 ∂

∂F
log
{
β

(
∂L

∂w

)2
}
, (6.1)

which implies that

β

(
∂L

∂w

)2

= λ1(q), (6.2)

and so I can solve up to a sign, σL := sgn
(
∂L

∂w

)
,

∂L

∂w
= σL

√∣∣∣∣λ1β
∣∣∣∣. (6.3)
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Then, from Qabcd∂cdθab, (4.12b), I find

∂L

∂R
= 4β

∂L

∂w
= 4σLσβ

√
|λ1β|, (6.4)

where σβ := sgn(β(q, v, w,R)). If I then compare the second derivative of the action,
∂2L

∂w∂R
, using both equations, I find a nonlinear partial differential equation for the de-

formation function,

0 =
∂β

∂R
+ 4β

∂β

∂w
, (6.5)

which is the same form as Burgers’ equation for a fluid with vanishing viscosity [92].

However, before I attempt to interpret this, I will find further restrictions on the action

and deformation.

I now seek to find how the trace of the metric’s normal derivative, v, appears. Take the

condition for vabT ∂
2θab, (4.12d)

0 =
v

3

∂2L

∂R∂w
− β

∂2L

∂v∂w
=
σL
2

√∣∣∣∣λ1β
∣∣∣∣ (4v

3

∂β

∂w
+
∂β

∂v

)
(6.6)

which I can solve to find that β = β (q, w̄, R), where w̄ = w−2v2/3. So in the deformation,

the trace v must always be paired with the traceless tensor squared w like this. I can see

that this is related to the standard extrinsic curvature contraction by w̄ = −4K. To find

how the trace appears in the action, I look at the condition from qab∂2θab, (4.12a),

0 =
∂L

∂R
− 2v

3

∂2L

∂v∂R
+ 2β

(
∂2L

∂v2
− 2

3

∂L

∂w

)
(6.7)

inputting my solutions so far, I can solve for the second derivative with respect to the

trace,
∂2L

∂v2
=

−4σL
3

√∣∣∣∣λ1β
∣∣∣∣ (1− v

2

∂β

∂v

)
. (6.8)

I integrate over v to find the first derivative,

∂L

∂v
=

−4vσL
3

√∣∣∣∣λ1β
∣∣∣∣+ ξ1(q, w,R) =

−4v

3

∂L

∂w
+ ξ1(q, w,R). (6.9)
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To make sure that the solutions (6.3), (6.4) and (6.9) match for the second derivatives
∂2L

∂v∂R
and ∂2L

∂v∂w
, I find that ξ1 = ξ1(q). Therefore, from this I can see that the action

should have the metric normal derivatives appear in the combined form w̄ apart from a

single linear term L ⊃ vξ1(q).

I now just have to see what conditions there are on how the metric determinant appears

in the action. First I have the condition from Xa∂bθab, (4.13a),

0 =
∂L

∂R
− 4 (∂qβ + 2β∂q)

∂L

∂w
,

= 4σLσβ
√
|λ1β|

(
1− ∂qλ1

λ1

)
,

∴ λ1(q) = qλ2,

(6.10)

and second I have the condition from vabT X
c∂cθab, (4.13c),

0 =
v

3
(4∂q − 1)

∂2L

∂w∂R
+
∂β

∂w
(1− 2∂q)

∂L

∂v
+ (β − 2∂qβ − 4β∂q)

∂2L

∂v∂w
,

=
∂β

∂w
(ξ1 − 2∂qξ1) , ∴ ξ1(q) = ξ2

√
q,

(6.11)

and both these results show that my action will indeed have the correct density weight

when β → 1, that is L ∝ √
q.

All the remaining conditions from the distribution equation that have not been explicitly

referenced are solved by what I have found so far, so to make progress I must now attempt

to consolidate my equations to find an explicit form for the action. If I integrate (6.3), I

find

L = σL
√
|qλ2|

∫ w̄

0

dx√
|β(q, x,R)|

+ f1(q, v, R), (6.12)

and then if I match the derivative of this with respect to v with (6.9), I find the v part of

the second term,

f1(q, v, R) = vξ2
√
q + f2(q,R). (6.13)

If I then match the derivative of (6.12) with respect to R with (6.4), I see that

∂L

∂R
= 4σLσβ

√
|qλ2β| =

∂f2
∂R

− σL
2

√
|qλ2|

∫ w̄

0

σβ dx
|β(q, x,R)|3/2

∂

∂R
β(q, x,R) (6.14)
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and using (6.5) to change the derivative of β,

4σLσβ
√
|qλ2β| =

∂f2
∂R

+ 2σL
√

|qλ2|
∫ w̄

0

dx√
|β(q, x,R)|

∂

∂x
β(q, x,R), (6.15)

and so I can change the integration variable,

4σLσβ
√

|qλ2β| =
∂f2
∂R

+ 2σL
√

|qλ2|
∫ β(q,w̄,R)

β(q,0,R)

db√
|b|
, (6.16)

the upper integration limit cancels with the left hand side of the equality, and therefore

∂f2
∂R

= 4σL sgn(β(q, 0, R))
√

|qλ2β(q, 0, R)|. (6.17)

Then integrating this over R,

f2(q,R) = 4σL
√
|qλ2|

∫ R

0
sgn(β(q, 0, r))

√
|β(q, 0, r)|dr + f3(q), (6.18)

which means that finally I have my solution for the general action,

L = σL
√
|qλ2|

(∫ w̄

0

dx√
|β(q, x,R)|

+ 4

∫ R

0
sgn(β(q, 0, r))

√
|β(q, 0, r)|dr

)

+ vξ2
√
q + f3(q).

(6.19)

Now, I test this with a zeroth order deformation so I can match terms with my previous

results. Using β = β∅(q),

L = σL
√
|qλ2|

(
w̄√
|β∅|

+ 4R sgn(β∅)
√

|β∅|

)
+ vξ2

√
q + f3(q), (6.20)

comparing this to (4.24) and using w̄ = −4K leads to

σL = σβ,
√

|λ2| =
ω

8
, ξ2 = ξ, f3 = −√

qV (q), (6.21)
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and therefore, the full solution is given by,

L =
ωσβ

√
q

2

(∫ R

0
sgn(β(q, 0, r))

√
|β(q, 0, r)|dr −

∫ K

0

dk√
|β(q, k,R)|

)

+
√
q (vξ − V (q)) ,

(6.22)

and the deformation function must satisfy the non-linear partial differential equation,

0 =
∂β

∂R
− β

∂β

∂K
. (6.23)

By performing a Legendre transform, I can see that the Hamiltonian constraint associated

with this action is given by,

C =
ωσβ

√
q

2

{∫ K

0

dk√
|β(q, k,R)|

− 2K√
|β(q,K, R)|

−
∫ R

0
sgn(β(q, 0, r))

√
|β(q, 0, r)|dr

}
+
√
q V,

(6.24)

6.1 Solving for the deformation

The nonlinear partial differential equation for the deformation function is an unexpected

result, and invites a comparison to a very different area of physics. I can compare it to

Burgers’ equation for nonlinear diffusion, [92],

∂u

∂t
+ u

∂u

∂x
= η

∂2u

∂x2
, (6.25)

(where u is a density function), and see that the deformation equation is very similar

to the limit of vanishing viscosity η → 0. This equation is not trivial to solve because

it can develop discontinuities where the equation breaks down, termed ‘shock waves’.

Returning to my own equation (6.23), I analyse its characteristics. It implies that there

are trajectories parameterised by s given by

dq
ds = 0,

dR
ds = 1,

dK
ds = −β (q,K, R) , (6.26)
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along which β is constant. These trajectories have gradients given by,

dR
dK =

−1

β (q,K, R)
(6.27)

and because β is constant along the trajectories, they are a straight line in the (K, R)

plane. I must have an ‘initial’ condition in order to solve the equation, and because R

is here the analogue of −t in (6.25) I define the initial function when R = 0, given by

β(q,K, 0) =: α(q,K). Since there are trajectories along which β is constant, I can use α

to solve for R(K) along those curves, given an initial value K0,

R =
K0 −K
α(K0)

. (6.28)

Reorganising to get, K0 = K + Rα(K0), and then substituting into β, this leads to the

implicit relation,

β(q,K, R) = α (q,K +Rβ(q,K, R)) . (6.29)

I invoke the implicit function theorem to calculate the derivatives of β,

∂β

∂K
=

α′

1−Rα′ ,
∂β

∂R
=

−βα′

1−Rα′ , (6.30)

which show that a discontinuity develops when Rα′ → 1. This is the point where the

characteristic trajectories along which β is constant converge to form a caustic. Beyond

this point, β seems to become a multi-valued function.

An analytic solution to β only exists when α is linear,

α = α1(q) + α2(q)K, β =
α1(q) + α2(q)K
1− α2(q)R

, (6.31)

and when α2(q) is small, I can expand β into a series,

β ≃ α1 + α2 (K + α1R)
∞∑
n=0

Rnαn2 , (6.32)

and by comparing this to the perturbative deformation found previously, (4.25), I can see
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(a) β (b) ∂β/∂K (c) ∂β/∂R

Figure 6.1: Numerically solved deformation function for initial function
α = tanh (ωK). The numerical evolution breaks for R > ω because a
discontinuity has developed. The initial function is indicated by the black

line. The plots are in ω = 1 units.

the correspondence α1 = β∅ and α2 = ε2β(R)/β∅ = ε2β2. For other initial functions, I

must numerically solve the deformation. As a test, in Fig. 6.1, I numerically solve for β

when α = tanh (ωK). I see that, as R increases, the positive gradient in K intensifies to

form a discontinuity, and softens as R decreases.

I have also numerically solved for the deformation when the initial function is given by

α = cos (ωK), shown in Fig. 6.2. This function is motivated by loop quantum cosmology

models with holonomy corrections [40–42]. As with the tanh numerical solution in Fig. 6.1,

I see the positive gradient intensify and the negative gradient soften. I could not evolve

the equations past the formation of the shock wave so I cannot say for certain whether a

periodicity emerges in R, but I can compare the cross sections for β in Fig. 6.2(d).

This cross section appears to match what was found in section 5.4.3 when I attempted to

find the correspondence between β(K, 0) and β(R). It would seem that β(0, R) should be

a non-vanishing function of the shape as shown in Fig. 5.2(c).

When the inviscid Burgers’ equation is being simulated in the context of fluid dynamics,

a choice must be made on how to model the shock wave [92]. The direct continuation of

the equation means that the density function u becomes multi-valued, and the physical

intepretation of it as a density breaks down. The alternative is to propagate the shock

wave as a singular object, which requires a modification to the equations.

Considering my case of the deformation function, allowing a shock wave to propagate

does not seem to make sense. It might require being able to interpret β as a density
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(a) β (b) ∂β/∂K

(c) ∂β/∂R (d) β cross sections

Figure 6.2: Numerically solved deformation function with an initial func-
tion α = cos (ωK) and periodic boundary conditions. The numerical evolu-
tion breaks for |R| > ω because discontinuities have developed. The initial

function is indicated by the black line. The plots are in ω = 1 units.

function and the space of (K, R) to be interpreted as a medium. Whether or not the shock

wave remains singular or becomes multi-valued, the most probable interpretation is that

it represents a disconnection between different branches of curvature configurations. That

is, for a universe to transition from one side of the discontinuity to the other may require

taking an indirect path through the phase space.

6.2 Linear deformation

If I take the analytic solution for the deformation function when its initial condition is

linear (6.31), I can substitute it into the general form for the gravitational action (6.22).

If I assume I am in a region where 1− α2R > 0, I get the solution,

L =
ω
√
q

α2

{
sgn

(
1 +

α2K
α1

)√
|α1| −

√
|α1+α2K|

√
|1−α2R|

}
+
√
q (vξ−V ) , (6.33)



Chapter 6. Deformed gravitational action to all orders 102

and expanding in series for small α2 when I am in a region where |α1| ≫ |α2K|,

L =
ω

2

√
q |α1|

(
R− K

α1
− α2

4

(
R+

K
α1

)2

+O
(
α3
2

))
+
√
q (vξ − V ) , (6.34)

which matches exactly the fourth order perturbative action I found previously (4.24). The

Hamiltonian constraint associated with the non-perturbative action can be found from

(6.24), and then I can solve for K when the constraint vanishes (as long as I specify that

it must be finite in the limit α2 → 0),

K =

{
2

ω
sgn(α1)

√
|α1|V

(
1− α2V

2ω
√
|α1|

)
− α1R

}(
1− α2V

ω
√
|α1|

)−2

, (6.35)

and if I restrict to the FLRW metric and a perfect fluid as in section 2.8, I find the modified

Friedmann equation,

H2

N2
=

{
sgn(α1)

√
|α1|

3ω
ρ

(
1− α2ρ

2ω
√
|α1|

)
− α1k

a2

}(
1− α2ρ

ω
√
|α1|

)−2

. (6.36)

There is a correction term similar to that found for the fourth order perturbative action

which suggests there could be a bounce when ρ→ 2ω
√
|α1|/α2. However, there is also an

additional factor which causes H to diverge when ρ → ω
√
|α1|/α2, which is before that

potential bounce.

This is directly comparable to the modified Friedmann equation found for the deformation

function β(R) = β∅ (1 + β2R)−1, (5.64) investigated in section 5.4.1, with α1 = β∅ and

α2 = ωβ2/2. As is found here, those results suggested a sudden singularity where H

diverges when a and ρ remain finite.

6.3 Discussion

I have found the general form of the deformed gravitation action when considering tensor

combinations of derivatives up to second order. The way in which the deformation, and

thereby the action, depends on the extrinsic and intrinsic curvature was found to be highly
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non-linear. Curiously, its form matches an equation found in fluid dynamics. The meaning

of this comparison is far from clear.

For different initial functions, I numerically solved for the deformation function until a

discontinuity formed. The meaning of this discontinuity is not clear, but might manifest

as a barrier across which paths through phase space cannot cross.
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Chapter 7

Conclusions

I have attempted to thoroughly investigate the effects that a quantum-motivated deforma-

tion to the hypersurface deformation algebra of general relativity has in the semi-classical

limit. Starting from the algebra, I have shown how to regain a deformed gravitational

action or a deformed scalar-tensor constraint.

Finding the minimally-deformed version of a non-minimally coupled scalar-tensor model,

I was able to establish the classical low-curvature reference point. I was able to show how

the higher-order curvature terms arising from a deformation are qualitatively different

from conventional higher-order terms which can absorbed by a non-minimally coupled

scalar field. I also investigated some of the interesting effects which non-minimal coupling

has on cosmology.

As a first step towards including higher-order curvature terms coming from a deformation,

I derived the fourth order gravitational action perturbatively. The nearest order correc-

tions demonstrate a change in the relative structure between time and space since the

higher order curvature terms appear with a different sign. I investigated the cosmological

implications of the higher order terms, albeit while using the assumption that the action

found perturbatively could be extended beyond the perturbative regime.

In attempting to find the deformed scalar-tensor constraint to any order, I was able to

show how the momenta and spatial derivatives maintain the same relative kinetic struc-

ture. Interestingly, the way the scalar field and gravitational kinetic terms combine must

also be unchanged. That is to say that higher order gravitational terms are necessarily
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accompanied by higher order scalar terms of the same form. The main consequence of this

seems to be that a potential term (in a general sense) must be present for a deformation

of the kinetic terms to affect the dynamics. By testing different deformation functions, I

was able to show what kinds of cosmological effects should be expected. Interestingly, the

deformations which cause a big bounce seem to be required to vanish, but are not required

to change sign.

For the final chapter, I derived the general deformed gravitational action. The way the

deformation function is differently affected by extrinsic and intrinsic curvature (or, equi-

valently, by time and space derivatives) was found to be similar to a differential equation

which usually appears in fluid mechanics. Discontinuities in the deformation function

seem to be inevitable, but the interpretation of what they mean is not clear. By checking

the nearest order perturbative corrections, I was able to validate the perturbative action

derived in an earlier chapter.

One of the original motivations of this study was to provide insight into the problem of

incorporating spatial derivatives, local degrees of freedom and matter fields into models

of loop quantum cosmology which deform space-time covariance. From my results, it

would seem that the problem comes from considering the kinetic terms as separable, or

as differently deformed. The kinetic term, when constructed with canonical variables,

cannot have its internal structure deformed beyond a sign. The deformation can only

be a function of the combined term, which means that matter field derivatives deform

the space-time covariance in a similar way to curvature. This may strike at the heart of

the way the loop quantisation project, which attempts to first find a quantum theory of

gravity, typically adds in matter as an afterthought.

That being said, there are important caveats to this work which must be kept in mind. The

fact that I used metric variables rather than the preferred connection or loop variables

might limit the applicability of my results when comparing to the motivating theory.

Moreover, the deformation of the constraint algebra is only predicted for real values of

γBI. I also only considered combinations of derivatives or momenta that were a maximum

of two orders, when higher order combinations and higher order derivatives are likely to
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appear in true quantum corrections.

As said in the introduction, 1, there are potentially wider implications for this study.

The deformation can lead to a modified dispersion relation, possibly indicating a variable

speed of light or an invariant energy scale. It might be related to non-classical geometric

qualities such a non-commutativity or scale-dependent dimensionality. In the literature,

it is indicated that the deformation function may change sign, implying a transition from

a Lorentzian to a Euclidean geometry at high densities. In such a way, it might be a

potential mechanism for the Hartle-Hawking no-boundary proposal.
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Appendix A

Decomposing the curvature

In our calculations, we need to decompose the three dimensional Riemann curvature fre-

quently, so we collect the relevant identities in this appendix.

The Riemann tensor is defined as the commutator of two covariant derivatives of a vector

∇c∇dA
a −∇d∇cA

a = RabcdA
b, (A.1)

and can be given in terms of the Christoffel symbols,

Rabcd = ∂cΓ
a
db − ∂dΓ

a
cb + ΓaceΓ

e
db − ΓadeΓ

e
cb, (A.2)

which are given by

Γabc = qad∂(bqc)d −
1

2
∂aqbc, (A.3)

The variation of the Riemann tensor is given by the Palatini equation,

δRabcd = ∇cδΓ
a
db −∇dδΓ

a
cb, (A.4)

where the variation of the connection is

δΓabc = qad∇(bδqc)d −
1

2
∇aδqbc, (A.5)
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from which we can calculate,

δRabcd = Θa ef
bcd δqef +Φa efgh

bcd ∇efδqgh (A.6)

where we’ve defined the useful tensors,

Θa ef
bcd =

−1

2

(
qa(eR

f)
bcd + δ

(e
b R

f)a
cd

)
, (A.7a)

Φa efgh
bcd =

1

2

(
qa(eδ

f)
d δ

gh
bc + qa(gδ

h)
d δ

ef
bc − qa(eδf)c δ

gh
bd − qa(gδh)c δ

ef
bd

)
, (A.7b)

but contracted versions of these are more useful,

Θcd
ab := δefabΘ

g cd
egf =

1

2

(
QcdefRe(ab)f + δ

(c
(aR

d)
b)

)
, qcdΘ

cd
ab = 0, qabΘcd

ab = 0, (A.8a)

Φcdefab := δghabΦ
i cdef
gih =

1

2

(
qc(eδ

f)d
ab + qd(eδ

f)c
ab − qcdδefab − qefδcdab

)
, (A.8b)

Φabcd := qefΦabcdef = Qabcd − qabqcd. (A.8c)

To decompose the Riemann tensor in terms of partial derivatives, use this formula for

decomposing the second covariant derivative of the variation of the metric,

∇d∇cδqab = ∂d∂cδqab + ∂gδqef

(
−Γgdcδ

ef
ab − 4δ

(e
(aΓ

f)
b)(cδ

g
d)

)
+ δqef

(
−2∂dΓ

(e
c(aδ

f)
b) + 2ΓgdcΓ

(e
g(aδ

f)
b) + 2Γgd(aδ

(e
b)Γ

f)
cg + 2Γ

(e
d(aΓ

f)
b)c

)
.

(A.9)

The two equations we need most are the derivative of the Ricci scalar with respect to the

first and second spatial derivative of the metric, and we can find these from combining the
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above equations,

∂R

∂(∂d∂cqab)
=
∂(∇h∇gqef )

∂(∂d∂cqab)

∂R

∂(∇h∇gqef )
= δdhδ

c
gδ
ab
efΦ

efgh = Φabcd

∴ ∂R

∂qab,cd
= Φabcd = Qabcd − qabqcd, (A.10a)

∂R

∂(∂cqab)
=
∂(∇h∇gqef )

∂(∂cqab)

∂R

∂(∇h∇gqef )
=
(
−Γcghδ

ab
ef − 4δ

(a
(eΓ

b)
f)(gδ

c
h)

)
Φefgh,

∴ ∂R

∂qab,c
=

3

2
Qabde∂cqde −Qedc(a∂b)qde

+ qabY c − 2qc(bY a) − 1

2
qabXc + qc(bXa),

(A.10b)

where Xa := qbc∂aqbc and Ya := qbc∂(cqb)a = ∂bqba.
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Appendix B

The general diffeomorphism

constraint

I start from the assumption that the equal-time slices of our foliation are internally dif-

feomorphism covariant. That is to say that spatial transformations and distortions are

not deformed by the deformation of the constraint algebra. As such, the Hamiltonian

constraint is susceptible to deformation and the diffeomorphism constraint is not. There-

fore I need to consider what form the diffeomorphism constraint has. In the hyperspace

deformation algebra (2.13), the diffeomorphism constraint forms a closed sub-algebra,

{Da[N
a], Db[M

b]} = Da[LMNa]. (B.1)

This equation shows that the diffeomorphism constraint is the generator of spatial diffeo-

morphisms (hence the name),

{F,Da[N
a]} = LNF, (B.2)

for any phase space function F . Using this relation, I can determine the unique form of

the constraint for any field content.

For these calculations, I must include the concept of a tensor density, which does not

transform under a change of coordinates as a tensor does. A tensor density of weight
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wΨ ∈ R transforms under the change xa → x′a
′ ,

Ψ
′ b′1...b′i
a′1...a

′
j
=

∣∣∣∣det
(
∂xc

∂x′ c′

)∣∣∣∣wΨ

Ψb1...bi
a1...aj

∂x′ b
′
1

∂xb1
· · · ∂x

′ b′i

∂xbi
∂xa1

∂x′ a
′
1
· · · ∂x

aj

∂x′ a
′
j

, (B.3)

and one can ‘de-densitise’ to find a tensor1 by multiplying it by q−wΨ/2, because √
q is a

scalar density of weight one [10, p.2̃76]. The integration measure d3x has a weight of −1,

so for an integral to be appropriately tensorial, the integrand must have a weight of +1,

e.g.
∫

d3x
√
q. Since making a Legendre transformation requires using the term

∫
d3x ψ̇ π

for a conjugate pair (ψ, π), when the variable ψ is of weight wψ, the momentum π is of

weight 1− wψ.

B.1 Diffeomorphism constraint for a scalar field

I consider a scalar field (ψ, π). Take (B.2) with F = ψ,

{ψ(x), Da[N
a]} =

∫
d3yNa(y)

δDa(y)

δπ(x)
,

= Na∂Da

∂π
− ∂b

(
Na∂Da

∂π,b

)
+ ∂bc

(
Na ∂Da

∂π,bc

)
+ . . .

= Na

{
∂Da

∂π
− ∂b

(
∂Da

∂π,b

)
+ ∂bc

(
∂Da

∂π,bc

)}
+ ∂bN

a

{
−∂Da

∂π,b
+ 2∂c

(
∂Da

∂π,bc

)}
+ ∂bcN

a

(
∂Da

∂π,bc

)
+ . . . ,

(B.4a)

LNψ = Na∂aψ, (B.4b)

comparing these two equations, one can easily see that

∂Da

∂π
= ∂aψ,

∂Da

∂π,b
= 0,

∂Da

∂π,bc
= 0. (B.5)

Checking what result I get for F = π merely produces the same equations and therefore

the diffeomorphism constraint for a scalar field is given by,

Da = π∂aψ. (B.6)
1a tensor is a tensor density of weight zero, which I sometimes also call weightless. If something is called

a tensor density without any reference to its weight, it is probably of weight one.
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I considered up to second order spatial derivatives here as a demonstration, but no diffeo-

morphism constraint goes beyond first order, so I will not bother with them for further

equations below.

B.2 Diffeomorphism constraint for a vector

I consider a weightless contravariant vector (Aa, Pb). Take (B.2) with F = Aa,

{Aa(x), Db[N
b]} =

∫
d3yN b(y)

δDb(y)

δPa(x)
,

= N b∂Db

∂Pa
− ∂c

(
N b ∂Db

∂Pa,c

)
+ . . .

= N b

{
∂Db

∂Pa
− ∂c

(
∂Db

∂Pa,c

)}
+ ∂cN

b

(
− ∂Db

∂Pa,c

)
+ . . .

(B.7a)

LNAa = N b∂bA
a −Ab∂bN

a, (B.7b)

looking at the derivative of Na, I can see that ∂Db
∂Pa,c

= δabA
c, and substituting this back

into the equation I find, ∂Db
∂Pa

= δab ∂cA
c + ∂bA

a. If I check with F = Pa I find the same

equations, leading us to the diffeomorphism constraint

Da = Pb∂aA
b + ∂b (PaA

a) . (B.8)

B.3 Diffeomorphism constraint for a tensor

I consider a rank-2 tensor defined on a three dimensional spatial manifold
(
qab, p

cd
)
. I use

the example of the metric, but our result is general. Test (B.2) using F = qab,

{qab(x), Dc[N
c]} =

∫
d3yN c(y)

δDc(y)

δpab(x)
,

= N c ∂Dc

∂pab
− ∂d

(
N c ∂Dc

∂pab,d

)
+ . . .

= N c

{
∂Dc

∂pab
− ∂d

(
∂Dc

∂pab,d

)}
+ ∂dN

c

(
−∂Dc

∂pab,d

)
+ . . .

(B.9a)

LNqab = N c∂cqab + 2qc(b∂a)N
c, (B.9b)
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looking at the derivative of Na, I can see that ∂Dc
∂pab,d

= −2qc(bδ
d
a), and substituting this back

into the equation I find, ∂Dc
∂pab

= ∂cqab − 2∂(aqb)c. If I check with F = pab I find the same

equations, leading us to the diffeomorphism constraint

Da = pbc∂aqbc − 2∂(c

(
qb)ap

bc
)
, (B.10)

and for the specific example of the metric, this reduces to

Da = −2qab∇cp
bc. (B.11)

B.4 Diffeomorphism constraint for a tensor density

For the general case of a tensor density with n covariant indices, m contravariant indices

and weight wΨ,
(
Ψb1···bm
a1···an ,Π

c1···cn
d1···dm

)
where the canonical momentum has weight 1 − wΨ,

the associated diffeomorphism constraint is given by,

Da = Πb1···bnc1···cm∂aΨ
c1···cm
b1···bn − wΨ ∂a

(
Πb1···bnc1···cmΨ

c1···cm
b1···bn

)
− n∂(b1

(
Ψc1···cm
b2···bn)aΠ

b1···bn
c1···cm

)
+m∂(c1

(
Πb1···bnc2···cm)aΨ

c1···cm
b1···bn

)
.

(B.12)
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Appendix C

Fourth order perturbative

gravitational action: Extras

For convenience, I use the definitions,

Xa = qbc∂aqbc, Ya = qbc∂cqba = ∂bqab, Za = vbcT ∂aqbc, Wa = vbcT ∂cqba. (C.1)

Evaluating each term in the ∂cdθab bracket of (4.11), by substituting in the variables

q := det qab, v := qabvab, w := vabv
ab − 1

3
v2, R := qbcRabac (C.2)

and using the equations derived for decomposing R in appendix A,

∂L

∂qab,cd
=
(
Qabcd − qabqcd

) ∂L
∂R

, (C.3a)

vef
∂2L

∂qef,cd∂vab
=

(
vcdT − 2

3
vqcd

)(
qab

∂2L

∂v∂R
+ 2vabT

∂2L

∂w∂R

)
, (C.3b)

∂2L

∂vab∂vcd
= qabqcd

(
∂2L

∂v2
− 2

3

∂L

∂w

)
+ 2Qabcd

∂L

∂w

+ 2
(
qabvcdT + vabT q

cd
) ∂2L

∂v∂w
+ 4vabT v

cd
T
∂2L

∂w2
.

(C.3c)
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Evaluating each term in the ∂cθab bracket of (4.11),

∂L

∂qab,c
=
∂L

∂R

(
3

2
Qabde∂cqde − qc(dqe)(a∂b)qde

+qabY c − 1

2
qabXc − 2qc(aY b) + qc(aXb)

)
,

(C.4a)

vef
∂2L

∂qef,c∂vab
=

(
3

2
Zc −W c − 2vcdT Yd + vcdT Xd +

v

3
Xc

)
×
(
qab

∂2L

∂v∂R
+ 2vabT

∂2L

∂w∂R

)
,

(C.4b)

vef∂d

(
∂2L

∂qef,cd∂vab

)
=

(
vcdT − 2v

3
qcd
){(

qab∂d −Qabef∂dqef

) ∂2L

∂v∂R

+2
(
vabT ∂d +Qabef∂dv

T
ef − 2v

e(a
T qb)f∂dqef

) ∂2L

∂w∂R

}
+
(
Zc −W c +

v

3
Xc +

v

3
Y c − vcdT Yd

)(
qab

∂2L

∂v∂R
+ 2vabT

∂2L

∂w∂R

)
,

(C.4c)

Γcde
∂2L

∂vab∂vde
=

(
Y c − 1

2
Xc

){
qab
(
∂2L

∂v2
− 2

3

∂L

∂w

)
+ 2vabT

∂2L

∂v∂w

}
+
(
2qcdqe(a∂b)qde −Qabde∂cqde

) ∂L
∂w

+ (2W c − Zc)

(
qab

∂2L

∂v∂w
+ 2vabT

∂2L

∂w2

)
,

(C.4d)

Γcde
∂β

∂vab

∂L

∂vcd
=

(
qab

∂β

∂v
+ 2vabT

∂β

∂w

){(
Y c − 1

2
Xc

)
∂L

∂v
+ (2W c − Zc)

∂L

∂w

}
, (C.4e)

∂dβ
∂2L

∂vab∂vcd
= ∂cβ

{
qab
(
∂2L

∂v2
− 2

3

∂L

∂w

)
+ 2vabT

∂2L

∂v∂w

}
+ 2qc(a∂b)β

∂L

∂w

+ 2vcdT ∂dβ

(
qab

∂2L

∂v∂w
+ 2vabT

∂2L

∂w2

)
,

(C.4f)

∂d

(
∂2L

∂vab∂vcd

)
=
(
qab∂c − qabY c −Qabef∂cqef

)(∂2L
∂v2

− 2

3

∂L

∂w

)
+ 2

(
qc(a∂b) − qc(aY b) − qc(eqf)(a∂b)qef

) ∂L
∂w

+ 2
{
qab
(
vcdT ∂d − vcdT Yd −W c + qcd∂evT

de

)
+ vabT ∂

c − vabT Y
c

+Qabef
(
∂cvT

ef − vcdT ∂dqef
)
− 2v

e(a
T qb)f∂cqef

} ∂2L

∂v∂w

+ 4
{
vabT

(
vcdT ∂d −W c − vcdT Yd + qcd∂evT

de

)
+QabefvcdT ∂dv

T
ef − 2v

e(a
T qb)fvcdT ∂dqef

} ∂2L
∂w2

,

(C.4g)
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∂β

∂vab
∂d

(
∂L

∂vcd

)
=

(
qab

∂β

∂v
+ 2vabT

∂β

∂w

)
×
{
(∂c − Y c)

∂L

∂v
+ 2

(
vcdT ∂d + qcd∂evT

de − vcdT Yd −W c
) ∂L
∂w

}
.

(C.4h)
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Appendix D

Deformed scalar-tensor constraint

to all orders: Extras

Use the following definitions for convenience,

Xa = qbc∂aqbc, Ya = qbc∂cqba = ∂bqab, Za = pbcT ∂aqbc, Wa = pbcT ∂cqba. (D.1)

Evaluating each term in the ∂cdθab bracket of (5.7),

∂C

∂qef,cd

∂2C

∂pab∂pcd
= 2δcdab

∂C

∂R

∂C

∂P
− 2qabq

cd∂C

∂R

(
∂2C

∂p2
+

1

3

∂C

∂P

)
+ 2

(
qabp

cd
T − 2pT

abq
cd
) ∂C
∂R

∂2C

∂p∂P
+ 4pT

abp
cd
T
∂C

∂R

∂2C

∂P2

(D.2a)

− ∂C

∂pef
∂2C

∂qef,cd∂pab
= 2

(
qcd

∂C

∂p
− pcdT

∂C

∂P

)(
qab

∂2C

∂p∂R
+ 2pT

ab

∂2C

∂P∂R

)
(D.2b)

∂C

∂ψ,cd

∂2C

∂pab∂π
= qcd

∂C

∂∆

(
qab

∂2C

∂p∂π
+ 2pT

ab

∂2C

∂P∂π

)
(D.2c)

− ∂C

∂π

∂2C

∂ψ,cd
∂pab = −∂C

∂π
qcd
(
qab

∂2C

∂p∂∆
+ 2pT

ab

∂2C

∂P∂∆

)
(D.2d)

− β
∂Dc

∂pab,d
= 2βδcdab, (D.2e)
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Evaluating each term in the ∂cθab bracket of (5.7),

∂C

∂qef,c

∂2C

∂pab∂pef
=
∂C

∂∆

{
qab

[
∂cψ

(
1

2

∂2C

∂p2
+

2

3

∂C

∂P

)
− 2pcdT ∂dψ

∂2C

∂p∂P

]
−2δc(a∂b)ψ

∂C

∂P
+ pT

ab

[
∂cψ

∂2C

∂p∂P
− 4pcdT ∂dψ

∂2C

∂P2

]}
+
∂C

∂R

{
∂C

∂P

[
3∂cqab − 2qcd∂(aqb)d + 2qabY

c − qabX
c − 4δc(aYb) + 2δc(aXb)

]
+qabX

c

(
∂2C

∂p2
− 2

3

∂C

∂P

)
+ 2pT

abX
c ∂

2C

∂p∂P

+
(
3Zc − 2W c − 4pcdT Yd + 2pcdT Xd

)(
qab

∂2C

∂p∂P
+ 2pT

ab

∂2C

∂P2

)}
,

(D.3a)

∂2C

∂qef,cd
∂d

(
∂2C

∂pab∂pef

)
=
∂C

∂R

{
[qab (Y

c −Xc − 2∂c)− 2∂cqab]

(
∂2C

∂p2
− 2

3

∂C

∂P

)
+2
(
δc(a∂b) − qab∂

c + qcd∂(aqb)d + δc(aYb) − 2∂cqab

) ∂C
∂P

+ 2
[
qab

(
pcdT ∂d + ∂dp

cd
T

+W c − Zc + pcdT Yd
)
+ pcdT ∂dqab + pT

ab (Y
c −Xc − 2∂c)− 2Qabde∂

cpdeT

−4∂cqd(ap
T d
b)

] ∂2C

∂p∂P
+ 4

[
Qabefp

cd
T ∂dp

ef
T + 2pcdT ∂dqe(ap

T e
b)

+pT
ab

(
∂dp

cd
T +W c − Zc + pcdT Yd + pcdT ∂d

)] ∂2C
∂P2

}
,

(D.3b)

∂C

∂pef
∂2C

∂qef,c∂pab
=

{
∂C

∂p

[
Xc ∂

∂R
+

1

2
∂cψ

∂

∂∆

]
+
∂C

∂P

[(
3Zc − 2W c − 4pcdT Yd

) ∂

∂R
− 2pcdT ∂dψ

∂

∂∆

]}(
qab

∂C

∂p
+ 2pT

ab

∂C

∂P

)
+2pcdT

∂C

∂P

{
qab∂d

∂2C

∂p∂R
+ 2pT

ab∂d
∂2C

∂P∂R

}
,

(D.3c)

∂C

∂pef
∂d

(
∂2C

∂qef,cd∂pab

)
=
∂C

∂p

{
[qab (X

c + Y c − 2∂c)− 2∂cqab]
∂2C

∂p∂R

+2
[
pT
ab (X

c + Y c − 2∂c)− 2Qabef∂
cpefT − 4∂cqd(ap

T d
b)

] ∂2C

∂P∂R

}
+2

∂C

∂P

{[
qab

(
Zc−W c−pcdT Yd+pcdT ∂d

)
+ pcdT ∂dqab

] ∂2C

∂p∂R

+2
[
pT
ab

(
Zc−W c−pcdT Yd+pcdT ∂d

)
+Qabefp

cd
T ∂dp

ef
T + 2pcdT ∂dqe(ap

T e
b)

] ∂2C

∂P∂R

}
,

(D.3d)

∂C

∂ψ,c

∂2C

∂π∂pab
=

{
2∂cψ

∂C

∂γ
+

(
1

2
Xc − Y c

)
∂C

∂∆

}(
qab

∂C

∂π∂p
+ 2pT

ab

∂C

∂π∂P

)
, (D.3e)
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∂C

∂ψ,cd
∂d

(
∂2C

∂π∂pab

)
=
∂C

∂∆

{
(∂cqab + qab∂

c)
∂2C

∂π∂p

+2
(
Qabef∂

cpefT + 2∂cqd(ap
T d
a) + pT

ab∂
c
) ∂2C

∂π∂P

}
,

(D.3f)

∂C

∂π
∂d

(
∂2C

∂ψ,cd∂pab

)
=
∂C

∂π

{
(qab∂

c + ∂cqab − qabY
c)

∂2C

∂p∂∆

+2
(
Qabef∂

cpefT + 2∂cqd(ap
T d
b) + pT

ab∂
c − pT

abY
c
) ∂2C

∂P∂∆

}
,

(D.3g)

∂(βDc)

∂pab
= β

(
∂cqab − 2qcd∂(aqb)d

)
+

(
qab

∂β

∂p
+ 2pT

ab

∂β

∂P

)
×
(
π∂cψ − 2∂dp

cd
T − 2

3
∂cp− 2W c + Zc +

1

3
pXc

)
,

(D.3h)

∂d

(
β
∂Dc

∂pab,d

)
= −2δc(a∂b)β, (D.3i)

Evaluating each term in the ∂cdηab bracket of (5.13),

∂C

∂qcd,ab

∂2C

∂π∂pcd
=
∂C

∂R

(
−2qab

∂2C

∂π∂p
+ 2pabT

∂2C

∂π∂P

)
, (D.4a)

∂C

∂pcd
∂2C

∂qcd,ab∂π
=

∂2C

∂R∂π

(
−2qab

∂C

∂p
+ 2pabT

∂C

∂P

)
, (D.4b)

∂C

∂ψ,ab

∂2C

∂π2
− ∂C

∂π

∂2C

∂ψ,ab∂π
= qab

(
∂C

∂∆

∂2C

∂π2
− ∂C

∂π

∂2C

∂∆∂π

)
, (D.4c)

Evaluating each term in the ∂cηab bracket of (5.13),

∂C

∂qcd,a

∂2C

∂π∂pcd
=
∂C

∂R

{
Xa ∂

2C

∂π∂p
+
(
3Za − 2W a − 4pabT Yb + 2pabT ∂b

) ∂2C

∂π∂P

}
+
∂C

∂∆

{
1

2
∂aψ

∂2C

∂π∂p
− 2pabT ∂bψ

∂2C

∂π∂P

}
,

(D.5a)

∂C

∂qcd,ab
∂b

(
∂2C

∂π∂pcd

)
=
∂C

∂R

{
(Y a −Xa − 2∂a)

∂2C

∂π∂p

+2
(
∂bp

ab
T +W a − Za + pabT Yb + pabT ∂b

) ∂2C

∂π∂P

}
,

(D.5b)
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∂C

∂pcd
∂2C

∂qcd,a∂π
=
∂C

∂p

{
Xa ∂

2C

∂R∂π
+

1

2
∂aψ

∂2C

∂∆∂π

}
+
∂C

∂P

{(
3Za − 2W a − 4pabT Yb + 2pabT Xb

) ∂2C

∂R∂π
− 2pabT ∂bψ

∂2C

∂∆∂π

}
,

(D.5c)

∂C

∂pcd
∂b

(
∂2C

∂qcd,ab∂π

)
=

{
∂C

∂p
(Xa + Y a − 2∂a)

+2
∂C

∂P

(
Za −W a − pabT Yb + pabT ∂b

)} ∂2C

∂R∂π
,

(D.5d)

∂C

∂ψ,a

∂2C

∂π2
+
∂C

∂π

∂2C
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