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Abstract: The entire classical cosmological history between two extreme de Sitter vacuum solutions
is discussed based on Einstein’s equations and non-equilibrium thermodynamics. The initial non-
singular de Sitter state is characterised by a very high energy scale, which is equal or smaller than
the reduced Planck mass. It is structurally unstable, and all of the continuous created matter, energy,
and entropy of the material component comes from the irreversible flow powered by the primeval
vacuum energy density. The analytical expression describing the running vacuum is obtained from
the thermal approach. It opens a new perspective to solve the old puzzles and current observational
challenges plaguing the cosmic concordance model driven by a rigid vacuum. Such a scenario
is also modelled through a non-canonical scalar field. It is demonstrated that the resulting scalar
field model is shown to be a step-by-step a faithful analytical representation of the thermal running
vacuum cosmology.

Keywords: running vacuum,; scalar field; cosmological dark sector

PACS: 98.80.-k; 95.36.+x

1. Introduction

Since long ago, investigations on de Sitter and quasi-de Sitter cosmic solutions have
attracted much attention along different research lines. Such studies were somewhat
inspired by the possible avoidance of the primeval singular state ordinarily predicted
by “big-bang” models, and the decaying vacuum emerging from a plethora of inflationary
models driven by scalar fields including or excluding quadratic corrections to Einstein
gravity [1-7]. A different approach analysed the possible creation of the universe from
“nothing” (in the sense of Vilenkin [8]), with the classical universe emerging as a de Sit-
ter solution from an expected, but still observationally unavailable, quantum gravity
regime. This primeval state without ordinary matter may be characterised by a physical
energy scale, H; < Mp, or equivalently, by a vacuum energy density, p; = 3M3H?, where
Mp = (8mG) /2 ~ 24 x 10'® GeV is the reduced Planck mass (in our units,
h=kp=c=1).

It is also widely known that a non-singular de Sitter spacetime is structurally unstable
both from quantum and classical viewpoints, at least due to three different effects: quan-
tum corrections on the geometric sector of general relativity [4], the existence of thermal
fluctuations [9], and the process of gravitational particle creation in the expanding uni-
verse [7,10-14], Henceforth, due to its simplicity and interesting physical consequences
for the evolution of the emergent classical initial vacuum state, the presence of thermal
instabilities conjoined with an irreversible flow of energy, matter, and entropy forming the
thermal bath will be taken for granted. Additional reasons will be outlined ahead.

Universe 2024, 10, 362. https://doi.org/10.3390/universe10090362

https:/ /www.mdpi.com/journal/universe


https://doi.org/10.3390/universe10090362
https://doi.org/10.3390/universe10090362
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0009-0007-8341-4530
https://doi.org/10.3390/universe10090362
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10090362?type=check_update&version=1

Universe 2024, 10, 362

20f19

More recently, independent astronomical observations have shown that the cosmic
concordance model (ACDM + Inflation) provides a quite reasonable and predictive de-
scription of the current universe driven by a rigid vacuum energy density, o, = M%Ao.
However, the incredible discrepancy with what is expected from quantum field theory
(QFT) as compared to current astronomical observations, pa,/pa; ~ 107122, gave rise
to the cosmological constant problem (CCP) [15]. Furthermore, according to the cosmic
concordance model, the dominance of rigid vacuum (o, >~ ppm, where py is the matter
density) took place at a redshift z ~ 0.55 (see, e.g., [16]) thereby leading to the so-called
coincidence problem (CP). Another well-known consequence of the rigid vacuum ACDM
cosmology is the inexorable evolution of the current universe to a final de Sitter spacetime.
Here, it is characterised by an extremely low vacuum energy density, say, pa, = 3M3HZ,
where the Hubble parameter Hr provides the final de Sitter constant energy scale, which
will be attained only for py; = 0.

Currently, the standard rigid vacuum cosmology is also being observationally chal-
lenged by the Hy and Sg tensions. In the case of Hp, local determinations of the Hubble
constant (Hp) using Cepheid-calibrated supernovae of the SHOES collaboration [17], mea-
surements at intermediate redshifts from a combination of tests [18,19] and strong lensing
time-delays [20], which, in comparison with the independent prediction of Planck collabo-
ration plus ACDM, shows a clear-cut tension around 5¢ [21]. In addition, estimates based
on cosmic shear evaluations from weak lensing are favouring values of the parameter
Sg = 0g+/Qp1/0.3, where 0g measures the current mass fluctuation in 8 h’lMpc, which are
lower than the ones provided by early time probes [22-24].

In this context, it seems natural to advocate that the whole classical evolution of the
universe would be analytically described between two de Sitter stages defined by a pair of
extreme and constant energy scales, H; and Hf. In this case, for all theoretical purposes,
we may also consider that the second de Sitter vacuum state of very low energy density
is the true vacuum state. In certain sense, the structural instability of the primeval de
Sitter (Hj) is somewhat driving the evolution of the observed universe to its ‘ground state’,
corresponding to the final de Sitter vacuum, Hr < Hy, where the sub-index 0 refers to
present day quantities. Thus, it is not surprising that a lot of attention has been paid to
running vacuum cosmologies in the last decade by several reasons, among them: (i) a
simple solution to the singularity problem, as well as the old CCP and CP puzzles; (ii) a
complete cosmology (from de Sitter to de Sitter) with two accelerating stages driven by the
same actor, described by the running vacuum energy density, px (Hy, Hr, H), departing
slightly at all phases from the rigid vacuum model plus slow-roll inflation; and (iii) a
possible solution to the current Hy and Sg observational tensions plaguing the current
standard cosmology provided by the ACDM model, which at late times model is driven by
a rigid vacuum [25-32].

As we shall see, a suitable A(H)-term uniting both de Sitter phases can be deduced
using non-equilibrium thermodynamics and the Einstein field equations (EFE). The classical
evolution of the universe can also be analytically described, and some of the questions
outlined above are answered. Perhaps more interestingly, we demonstrate that a minimally
coupled ordinary scalar field cannot describe the irreversible two-fluid approach of the
running vacuum scenario. However, the whole evolution can perfectly be mimicked by
a single minimally coupled non-canonical field when interpreted as a mixture of two
minimally coupled interacting perfect fluids [33-42].

The paper is organised as follows. In Section 2, we set up the Einstein equations
for an interacting mixture of running vacuum medium plus a perfect fluid. In Section 3,
the irreversible thermodynamic approach for such a mixture is discussed in detail. In par-
ticular, by taking into account only the thermal effects of the interacting mixture, a viable
expression for A(H) is phenomenological deduced based on Einstein’s equations and non-
equilibrium thermodynamics. The equation governing the entire classical evolution of
the universe from H; to Hr is also determined. Section 4 is dedicated to the basic results
of the cosmic eras, and the solutions to some cosmological problems are also discussed.
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In Section 5, a representation of the whole process in terms of a non-canonical scalar field
and the associated dynamics is investigated. The article is closed in Section 6 with the final
comments and conclusions. In Appendix C, the two basic parameters of the non-canonical
scalar field potential are calculated in terms of Hj, Hr, Mp, and the mass scale (M) of the
scalar field.

2. Basic Equations

In what follows we consider a class of Friedmann-Lemaitre-Roberson—-Walker (FLRW)
cosmologies described by a flat geometry:

ds® = dt* — a*(t) (dx2 +dy* + dzz), 1)

where a(t) is the scale factor. In such a background, the EFE for a perfect fluid plus a
running vacuum can be written as

p+ MpA(H) = 3M;H?, )
p—MRA(H) = —M2[2H +3H?], 3)

where p and p are the energy density and pressure of the ordinary fluid component, while
a dot means a comoving time derivative. Now, by adopting the “w-law” equation of
state (EoS),

p=wp, 0<w<I, 4)

it is readily seen that Equations (2)—-(4) imply that the cosmic dynamics is driven by the
“H-equation of motion”

H+MH2[1—QA(H)] =0, ®)
where Qp (H) = A(H)/3H? is the vacuum density parameter.

In principle, for (25 = 1, it is possible to have two extreme de Sitter solutions (H=0)
describing the initial and final vacuum states (say, H = H; and H = Hf) and, as such,
two accelerating cosmic states (early and late time inflation) may result from the same
actor [26,27,32]. The initial de Sitter spacetime (Hj) works like a “repeller” (unstable
solution) at early times. However, due to the cosmic evolution, energy, particles and
entropy are continuously being transferred to the fluid component, thereby giving rise to
an attractor de Sitter spacetime in the distant future, characterised by a very low energy
scale (Hr). Accordingly, Q)4 = 1 implies that the fluid energy densities for both extreme
scales are nullified, i.e., p(Hy) = p(Hf) = 0.

Of course, the complete evolution driven by Equation (5), linked to the subsequent
radiation-vacuum and matter-vacuum dominated phases, only comes out if the expression
for A(H) is known. Next, it will be derived by combining the EFE, non-equilibrium
thermodynamics, and the limiting ‘boundary’ constraints provided by the extreme de
Sitter solutions.

3. Running Vacuum: A Thermal Approach

Let us now consider the energy flow from the decaying vacuum creating particles
and entropy to the fluid component. Following standard lines, the thermodynamic states
for the interacting mixture is defined by the energy conservation law (1, T" = 0) and the
balance equations for the number of particles and entropy fluxes, N¥ = nu# and S# = sut:

Ty = 0 < p+3H(1+w)p=—M3pA, (6)
Nj, = nl < #n+3nH=nI, 7)
Sy = sI' < $+3sH=sT, (8)
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where 1 and s are the particle concentration and entropy density, and I is the particle
creation rate, being the same for particle number and entropy. Thus, the entropy of the
fluid is also a pure consequence of the decaying vacuum and, as such, the bulk viscosity
process and gravitational matter creation have been neglected [43]. In principle, one may
argue that the second law of thermodynamics should be applied for both components.
However, the vacuum fluid behaves like a condensate carrying no entropy, as happens in
the two-fluid description ordinarily employed in superfluid dynamics [44]. The vacuum
state is assumed to have energy, but no entropy and real particles.

In the course of the decaying vacuum process, one may see from (7) and (8) that the
specific entropy, c = s/n = S/N, remains constant (¢ = 0). Such an interesting result
becomes more clear when rewritten as (see Appendix A):

S N
SN r>o. )

This inequality implies that the decaying vacuum (due to its own energy density) can
only produce matter in the space-time (N > 0), while the reverse process is thermodynami-
cally forbidden.

The condition ¢ = 0 has another remarkable consequence. Actually, by combining Gibbs’
law, nTdo = dp — (p + p)dn/n, with (4) and (5), we find a key result in this framework:

p=(p+p) =0 & MpA=—(p+p)l. (10)

The second equality above is a typical first-order thermodynamic relation uniting
the stress A (“flux”) to its thermodynamic force T'(H). The above coefficient of T is the
fluid enthalpy density which, due to the weak energy condition, satisfies the inequality
h=p+p=(1+w)p>0.

Notice that by adding EFE (2) and (3), we find p +p = —ZM%H, which means that
H < 0. Thus, since T > 0 from Equation (9), it follows that the constraint A < 0 mustbe
obeyed. In this thermal approach, a decaying vacuum from the primeval de Sitter state is
also required by the second law of thermodynamics.

Now, by inserting h into Equation (10), a new and interesting result is derived:

A(H) =2 / T(H)dH + B, (11)

where B is a constant to be fixed by the de Sitter ‘boundary conditions’. To the best of our
knowledge, the above integral expression defining A(H) in terms of the creation rate I'(H)
has not been found before. Thus, in order to obtain a complete description (from Hj to Hp),
an expression for I'(H) needs to be specified.

At this point, it should be remarked that, until now, only classical macroscopic tools
were explored, namely EFE and non-equilibrium thermodynamics. It is also well known
that particle creation from a perturbed vacuum state is essentially a microscopic phe-
nomenon. Hence, from a more rigorous viewpoint, an expression for I'(H) in this context
cannot be macroscopically deduced. Nevertheless, under the proviso that the dimension of
[['] = [H], a simple possibility would be I'(H) = 3vH, where the factor 3 is introduced for
mathematical convenience, and v is a dimensionless positive free parameter, in principle,
restricted on the interval 0 < v < 1.

Furthermore, such a linear expression generates a term A(H) « H2. However, it is
not enough for describing the unified cosmic history from de Sitter to de Sitter, since it
generates a singular initial state [38]. At late times, due to the very low expansion rate, v is
taken as a constant parameter. However, it may be a function of H at early times, thereby
implying a more intense transference of energy, particles, and entropy to the material
component. This is needed for the formation of the primeval thermal bath, both in the
macroscopic approach [26] and for a possible scalar field description [45].
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In this connection, a renormalized vacuum energy density proportional to H* has
been derived long ago [7]. This is also the next term obtained by Shapiro and Sola based
on the covariance of the renormalized action [46]. From Equation (11), we also see that a
term proportional to H* can also be generated by a creation rate T (H) « H®. Therefore,
inspired by such studies, and also some ad hoc treatments for A(H) [25,26,32], a quadratic
correction, namely 3y (H/ Hj)?, where the arbitrary v = (v), is added to the natural term,
based on dimensional grounds. In particular, for v = 2(1 — v) it follows that

I'(H) = 3vH +6(1 —v)H(H/Hj)?, (12)
whereas A(H), as given by Equation (11), reads:
H\2
A(H) —3(1—v)H%+3uH2+3(1—v)H2<H> . (13)
I

As a simple check of such expressions, one may compute directly I'(H) = dA(H)/2dH
(see Appendix B for a more detailed calculation, including both de Sitter boundary conditions).
Now, it is easy to see that the expressions for the density parameters take the form

2 2

Qa(H) = 1/+(11/)ZI§+(11/)<§II), (14)
2 2

O (H) = <1—v>[1—ﬁ§—(;)], (15

where () is the matter density parameter. Now, by inserting (25 or (2 into Equation (5),
it is readily seen that the classical evolution of the model between the two extreme de Sitter
phases is governed by

. 3(1+w)(1—v)H? H: H?
H 1-——Lt_-—|=o0 1
+ 5 B 0 (16)

The above equation depends on two pairs of positive parameters (w, v) and two energy
scales (Hj, Hr). Like in the rigid vacuum model, w is differently fixed by the description
of the cosmic eras w = 1/3 (radiation) and w = 0 (dust). So, it cannot rigorously be
considered a new free parameter. For the remaining three parameters, we remark that the
energy scale Hy has a natural upper bound given by the reduced Planck mass Mp (see
Section 1), while the final Hr scale can be determined in order to solve the CCP problem,
by assuming, for instance, that Hy = Mp. It can also be calculated by the model in terms
of Ho.

Figure 1 schematically displays the complete evolution of the whole classical scenario.
Observe that Equation (16) remains valid, even for v = 0, since this minimal model is also
defined by the same extreme constant physical scales (H;, Hr). The only difference is that
the late time evolution for H << Hj happens in such a way that CMB photons are not
produced any more. Moreover, it is easy to see that the scenario becomes the standard,
rigid ACDM cosmology, described here in terms of the constant final scale Hr. Thus, only
the early inflationary stage is modified, because it started from a pure de Sitter vacuum
solution. The details of each transition describing the evolution (from de Sitter to de Sitter)
through different cosmic eras will be discussed next.
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Quantum A, a=0 a==0 N A
1 1 | [ | 1
Y1 1 | 1 1
Gravity H, H. Decelerating Ze;~ 10*  Decelerating Z,~ 0.7 Accelerating Z£=0  H
(Rad-Vacuum) (Matter-Vacuum) (Vacuum-Matter)

Figure 1. From de Sitter to de Sitter (out of visible scale). Just after the unknown quantum gravity
regime, all the energy of the universe is concentrated on the emergent and unstable de Sitter spacetime
(A1 = 3H%, oA = 3M%H%, oy = 0). The classical evolution shown above is analytically described by
the decaying A(H) model, as given by Equation (13), which is the unique fuel of both inflationary
stages. Since A(H) is a continuous function, the equilibrium redshift z.; is determined in the usual
way (sudden transition), with a small contribution by the v parameter, as discussed in Equation (32).
For all allowed values of v, the ultimate destiny of the model is the pure de Sitter vacuum state fixed
by Ar = 3HI%. However, it is attained only in the distant future (2 — o), as shown in Equation (26).
For v = 0, the late time evolution after i(H,) = 0 is just the rigid vacuum ACDM model.

4. Cosmic Eras
4.1. From Initial Pure de Sitter Vacuum to Radiation-Vacuum Phase

In the primeval universe, the EoS parameter is w = 1/3, and the Hubble scale is
restricted on the interval Hy > H >> Hr. In this limit, Equation (16) reduces to

. ) H?
H+2(1-v)H 1‘?; =0, (17)

whose solution in terms of the scale factor reads

Hj
[1 4 Ca4(1—v)]1/2’

H(a) = (18)

where C = g, 1), (1 —2v) is an integration constant.
In the same limits for H given above, we see that the vacuum energy density reduces to

2
pa(H) = 3vM3H? +3(1 — v) M3 H? <1§II> , (19)

and by inserting solution Equation (18) for H(a) into the above expression, we obtain

1+ vCat(l=v)
2/

B ——T 20
"1+ Cat-v)] 20

pala) =p

where p; = 3M3H? = pa(H = Hj).

The radiation energy density can be obtained by using use the value of (), or even
the Friedmann Equation EFE (2), and combining the result with the above H(a) solution. It
follows that

2
or(H) = 3(1—v)MH? ll—(}fl) ] @1)

(1—v)Ca*1-v)
= R 22
PR(”) Oor1 [1 a4(171/)]2 ( )

Note that all of the above equations are in agreement with the physical limits. In par-
ticular, for H = Hy, pr(Hj) = 0), as expected for a pure de Sitter vacuum state. In this
scenario, the classical instability of the initial de Sitter state, which is analytically described
by Equation (18), is the unique source of the primeval thermal bath.
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Let us now examine, in more detail, when this running A(H) model performed its
transition from the very early inflation dominated by the vacuum state to the radiation-
vacuum phase. In principle, since w = 1/3, this must happen for a value of H, (see also
Figure 1), which is determined by the equality of the energy density of both components,
i.e., pa(He) = pr(He). From Equations (19) and (21), one finds

1—2v

He=yaa—y

Hj. (23)

The meaning of the H, result can also be understood by taking the deceleration
parameter into account. By definition,

H H?
Q(H)__gz__1_1712__“2(1_”)[1_1{%1‘ (24)

where, in the last equality, we have used the “H-equation of motion’. For ending inflation
(@ =0)at H = H,, the above equation yields H, = [(1 —2v)/2(1 — v)]"/2H], which is
exactly the same value determined by the densities equality condition. Therefore, different
from many adiabatic scalar field models, the value of H. provides both the end of inflation
and the beginning of the radiation dominated phase.!

It should also be remarked that some observations constrain the values of v to be
much smaller than unity [47]. This is an advantage of such models, since the evolution after
entering the radiation-vacuum phase is not too drastically different from ACDM. The same
occurs at low redshifts when i(z;) = 0. In this connection, recent studies have also pointed
out that a possible explanation to the current Hy and o3 tensions require mildly deviations
of ACDM both at early and late times [23,24,30].

4.2. From Radiation-Vacuum to Matter-Vacuum Dominated Phase

In this limit, we assume w = 0 and Hr < H < Hj, so that Equation (16) now boils
down to

. 3(1—v)H? HZ|
Ht T |1 5 | =0, (25)
whose solution is given by
H(a) = Hp[1 + Da3(=V2 = Hp[1 4 D(1 +2)30-1)]1/2, (26)

where the integration constant D is readily obtained computing the current value of
Equation (26). For the sake of simplicity, we fix ap = 1, and defining H(ag) = Hy, it follows
that D = (Hy/HF)? — 1. The above expression also shows that the ultimate value of the
Hubble parameter (Hf) is attained only in the distant future, 2 — oo, or equivalently,
z— —1

Note also that in the same limit, from Equation (13) and the first EFE, the vacuum and
matter (dust) energy densities are easily obtained:

poa(H) = 3(1—v)M3H?2 +3vM3H?, 27)
He\?
11— — . 28
(%) ] 28)
Now, let us determine the transition redshift, which generalises the time of radiation-
matter equivalence of the rigid vacuum model. Here, we take it to be t = t,, which is akin

to z(teq) = zeq. We will derive this result from the evolution of the temperature law in the
presence of a decaying A(H) which, for H << Hjand T’ = 3vH, is given by [41]

oum(H) = 3(1-v)M}H?

T="Ty(1+z)"". (29)
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At this time, the initial vacuum (Hj) is almost completely depleted, since the transition
radiation-matter should occur at the end of the radiation phase. In addition, since ¢ = 0 for
an ‘adiabatic’ decaying vacuum, the equilibrium relations of the CMB are preserved, i.e.,
pr &« T* and ng o T3. This means that the radiation energy density and temperature are
related by

T\* ~
PR = PRO (To> = pro(1 +2)*1=) (30)

where ppy is the present day radiation energy density and in the second equality was used
the temperature law Equation (29). In addition, by taking the equality between radiation
and matter density, we obtain the transition redshift z,,,

Ppr0(1+ 2eg) ) = prio (1 + 2¢9) >0 7Y, (31)
= Zog = | =—— , 32
i <QR0 (32)

where, in the approximation, we have used that z,; >> 1. For v = 0, and inserting the
observational values, Qp;p ~ 0.3 and Qgo ~ 107>, we obtain z,; ~ 3 X 104, which is
the same result obtained in the case of the rigid vacuum, ACDM model. Hence, there
is a small correction for v # 0 whose value may be determined by constraining v from
current observations.

At this point, it is interesting to know when the beginning of the second accelerating
stage of the universe in the dust-vacuum phase happens, i.e., when i; = 0 (see Figure 1).
The deceleration parameter now reads

aii 3(1—v H2
so that g(H) = 0leads to

Note also that the scale Hr can be obtained in terms of Hp from the expression of )y,
as given by Equation (15). For H << Hj, we find

QAO -V

Hf = Hy
where the value of Hr in Equation (35) has been used. For small values of v, it follows that
the final de Sitter is nearly characterised by Hr ~ |/Qx Ho ~ 0.83Hj.

In the matter-vacuum dominated era, it is also convenient to rewrite the expression of
the Hubble parameter Equation (26) in terms of the current observable quantities. One finds

1/2

9 ~ Q
H(Qumo,z) = Ho 1?3(1+z)3<l R 1??/

(36)

Note that, in the limit z — —1, the same value of Equation (35) obtained by a different
way is recovered. The above equation resembles the expression for the Hubble parameter
in the rigid AgCDM model, becoming exactly the same for v = 0. In addition, by defining
Qj\% = Opo/ (1 —v), the above equation becomes

1/2
H(Qwo,2) = Ho | Q51 +2)07) +1-afff] . (37)
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4.3. Solving Some Cosmological Problems

Historically, the ‘Big-Bang’ singularity predicted by classical general relativity has
been considered one of the most challenging cosmological problems. Since long ago, some
authors suggested that a natural classical solution in the general relativistic domain comes
out whether the universe starts like a de Sitter spacetime, and evolves to a radiation domi-
nated phase (see also, e.g., [3]), similarly to what is proposed here. However, differently
from several inflationary solutions, the present scenario does not need a super-cooling
process followed by an extreme reheating mechanism in order to solve the horizon and
flatness (entropy) problems. In particular, the so-called ‘graceful exit’ problem is absent (in
this connection, see also [45]).

The cosmic evolution in the long run (H; to Hr) also suggests an interesting perspective
to the some cosmological constant problem. Particularly, the ratio between the extreme
vacuum energy densities reads

R:pﬁzﬁzi% (38)
par - A H?

Hence, the A problem is now reduced to the ratio between two constant scales.
From the above calculated result for Hr, and assuming two different values for the initial
scale (say Hy ~ Mp and Hj ~ 1016 Gev, associated with the Grand Unified Theory (GUT)
scale), the values of the above ratio are R(;) = 107122 and R = 10719, respectively.
Such results are in agreement with naive expectations from quantum field theory. How-
ever, as remarked before, the correct value of the inflationary scale still needs an accurate
observational determination from the B-mode power spectrum of CMB [48].

One may also advocate that the coincidence problem is also naturally solved in our
scenario. Its naturalness arises because p, >~ p for two different phases. Actually, at the end
of the first inflationary phase when H = H, it is easily checked that pp = pr. Moreover,
deep in the matter dominated phase, the second accelerating stage vacuum started when
i = 0 with pp = 2pp. Hence, such ‘coincidences’ can also be seen as a kind of necessity,
i.e., a natural consequence of an evolution between two extreme de Sitter solutions (i.e.,
the same actor) constrained by two definite scales.

It is also interesting to investigate whether this classical non-singular cosmology (from
de Sitter to Sitter), driven by a running vacuum component, can also be described in terms
of a scalar field. This point will be investigated in detail next section.

5. Running Vacuum Cosmology: A Non-Canonical Scalar Field Description

Let us now consider a pure scalar field ¢ minimally coupled with gravity. In the
framework of general relativity, the total action for a non-canonical field can be written as

M2

S=S5;+45p = /d4x\/—7g[—2pR+£(X,¢) , (39)

where £(X, ¢) is a functional of the standard kinetic term X = 18"4%)“47 = ¢?/2.

In what follows, it will be assumed that the dominant energy contribution in the
primeval universe comes from the non-canonical scalar field, which is described by the
Lagrangian [49]

p-1
L =x(qa)  ~vie) (40)
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where the scale M has dimension of mass, V(¢) is the potential, and B a real positive
number. The energy-momentum tensor (EMT), T) = (%)awavcp — 8} L, is diagonal,
with components

p—1
P V) = @p-1X () + V() )

P

X \F!
Py pi—V(p) = X<M4> —V(¢), (42)
where py is a non-canonical kinetic term, and a dot means a time derivative. It is also easy
to show that the following equation of motion drives the evolution of the non-canonical

scalar field:
. 3H¢ 4 oM\
“213—1*(/5(2/%—1))(&) -0 *

which can also be obtained from the total energy conservation law (uFT;’fjv =0).

Let us now prove that a canonical scalar field cannot describe both the smooth dynamic
and thermodynamics of a running A(H)-term (from de Sitter to de Sitter), as discussed in
the previous sections.

5.1. The Failure of the Canonical Case

The generic non-canonical Lagrangian Equation (40) can also be seen as non-linear
extension of the ordinary scalar field Lagrangian, which is readily recovered by taking
B = 1in Equation (40). One finds

1.

L(X,¢) =X =V(p) = 5¢* —V(9). (44)

As should be expected, the energy density (41) and pressure (42) of the field now reduces to
2

pp = Pt V() =5 +V(9) (45)
2

o= p-vie) =2 Vi), (46)

where py and py are, respectively, the kinetic energy density and pressure of the ordinary
canonical scalar field.

On the other hand, it is also widely known that such a scalar field can be interpreted as
a mixture of fwo interacting perfect fluids with different equations of state, namely a material
Zeldovich’s stiff fluid [50], where (ox = px = $?/2), plus a pure vacuum (A-term) obeying
an EoS p, = V(¢) = —po (see, e.g., ref. [51] for a more detailed discussion with examples).
Therefore, as happens in the running vacuum model, by assuming that both components are
gravitationally coupled, in principle, there will be no local energy—-momentum conservation
for each perfect fluid component separately. Only the total energy—-momentum tensor of
the system as a whole is conserved.

Nevertheless, under such an interpretation, whether the potential of the unstable
vacuum dominates (maximum scale H;) and decays spontaneously through a non-adiabatic
decaying process conserving the specific entropy (as discussed in Section 3), the energy
stored in the field will be transferred to a stiff component. In this way, the standard thermal
bath formed by ultra-relativistic particles (py = px/3) is not generated. An inevitable
consequence is that a new phase transition needs to be hypothesised (perhaps through a
new coupling term), thereby forcing the formation of a thermal bath, with the universe
finally entering in the standard radiation phase. Naturally, in this case, the two-fluid
description without additional assumption is unable to faithfully describe the complete
scenario driven by the running vacuum cosmology.
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Such a scenario will happen naturally when the coherent field oscillation phase is
absent, with the vacuum field (A term) continuously approaching its final, very low (but
finite!) value, which is defined by the scale Hr. As we shall see next, such a picture allow us
to represent an evolution driven by the same scalar field (from de Sitter to de Sitter) based
on a non-canonical scalar field, and mimicking the running vacuum term, as discussed in
previous sections.

5.2. The Non-Canonical Case

Let us now consider the generic non-standard case. To begin with, we remark from
Equations (41) and (42) that the general EoS parameter for the kinetic term (the material
fluid) can be defined as

_ Px 1
w= o BT (47)

Therefore, based on the two-fluid interpretation, the kinetic term for p = 2 exactly
obeys the radiation EoS.” Thus, by assuming, as before, that the classical universe emerged
from the quantum gravity regime as a de Sitter-like solution with scale Hj (see Figure 1),
this means that o (Hj) = px(H;) = 0, and the unstable potential V' (¢) must decay directly
in ultra-relativistic particles. Interestingly, the inflationary process is not adiabatic, since the
primeval thermal bath is a consequence of the energy transfer from the potential V(¢(H))
or, equivalently, the A(H)-term to the radiation-created component (see Section 3). In a
certain sense, this inflationary scenario resembles some variants of the warm inflationary
process, because the primeval accelerating expansion is not adiabatic. However, it is
somewhat different, because the whole thermal bath here is a consequence of the running
vacuum process (de Sitter instability), and not related to an initial singular state, as assumed
in some warm inflationary scenarios [54-57].

Now;, let us demonstrate that the general equation of motion for the running A(H)
cosmology Equation (16) is reproduced by the non-canonical scalar field based on the two-
fluid interpretation, as proposed above. In this case, the EFE Equations (2) and (3) now take
the form

or +V(p) = 3M3H?, (48)
p-V(p) = —Mp[2H +3H], (49)

where p; and py are the kinetic energy density and pressure of the fluid satisfying the
EoS (47), while V(¢) must be determined in such a way that A(H(¢)) = M*V(¢). Inter-
estingly, the above equations imply that the cosmic dynamics is also driven by

H+§Q;EE#U—QMHHZO, (50)
where the equation of state p = wp (w > 0) was used, and Q (H) = V(H(¢))/3M3H? is the
vacuum density parameter. The above equation should be compared with (5) in Section 2.
Once the two-fluid interpretation is assumed, the “H-equation of motion’ is indepen-
dent of the particular expression of the potential. Nevertheless, an expression for V(¢)
needs to be given, and the scalar field solution properly derived.
Inspired by the derived expression (13) for A(H), let us discuss the potential contribu-

tions emulating the different cosmic phases, starting from the primeval de Sitter state.

5.3. From de Sitter to the Radiation-Vacuum Dominated Era

To begin with, let us consider B = 2. The energy density and pressure of the non-
canonical scalar field becomes
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_ 3¢
_ 1 ¢*

with the kinetic component emulating the radiation EoS. Now, in order to describe the
initial de Sitter configuration and its transition to a radiation dominated phase, let us also
assume the following scalar field potential:

_ o, 1t v(ag)

“ e 1= >

V(¢)

where V; = V(¢ = 0) = 3M%H? and the constant a is a dimensional parameter, [a] = [¢] .

Its value is calculated in Appendix C

[a-2v)a-v?]Y* [ H
N = i M (54)

In order to obtain the expression for the radiation energy density, let us assume the
ansatz px = (1 —v)(ap)*V(¢)/[1 + v(ap)*]. Inserting this into Equation (51), we obtain

_ o 1=v)(ap)*
and L é o
_ ¢ _ I
A= T = e g7 °
Now, by inserting the expression for H(¢) above into Equations (53) and (55), one can
show that
H\2
V(H(¢)) = 3vM32H?+3(1—v)M3H? (H) , (57)
I
H\2
m::3u—WM%ﬂP—<>], (58)
Hy

thereby recovering the expressions (19) and (21) shown in Section 4. Hence, the proposed
potential Equation (53) emulates completely the cosmological dynamics of the vacuum-
radiation dominated era Equation (17). In particular, we see that there is no a thermal bath
for H = Hj since, in this case, px(Hj) = 0.

In Figure 2, we display the evolution of the basic dimensionless quantities, namely
the potential scalar field and the kinetic term (p;). The latter one describes the created
component forming the thermal bath of effectively massless particles (w = 1/3). As one
may check, the transition from vacuum to the radiation-vacuum phase is also determined
by the condition py = V(¢) [see discussion below Equation (24)].
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Figure 2. Dimensionless potential and kinetic energy (radiation) density. The solid lines describe the
evolution of the potential with respect to a¢ and some selected values of the parameter v, depicted in
the inner rectangle. The dashed lines display the same behaviour for the radiation energy density.
In the beginning of the classical evolution, we have only an emergent de Sitter universe for all values
of v (V =V}, pr = 0). Notice that all of the created particles are the leftover of the primeval de Sitter
vacuum state (V = V;) for H = Hyand ¢ = 0. For ¢ = o~ !, pg = V(a¢), H = H,, and inflation ends
[see also Equation (23) and Figure 1].

5.4. From Matter-Vacuum to the Final de Sitter Era

In this case, w = 0, which means that § >> 1 in Equation (47). Now, based on
the expression (13) for A(H), we propose the following potential V(¢(H)) to the matter
dominated era:

V() = Ve[1+v(e9) %], (59)

where V(¢) = 3Mp?H?, and ¢ is also a dimensional parameter as before, [0] = [¢]~!. Asa
function of the scales Hr and M, and the parameter v, it is given by (see Appendix C)

Hp

o= (l—v)m.

(60)

In order to obtain the expression for the matter energy density, we will again consider
a similar ansatz of the transition from de Sitter (H;) to the radiation-vacuum dominated
phase, namely px = (1 —v)(c¢) 3V (¢)/[1 + v(c¢p)3]. Now, keeping this in mind, it is
easy to show that

pe(@) = (1= v)Vr(09)~>, (61)
and L6 2
_ ¢ _ -3
H) = gy = B[ @07 (©2)
By substituting the expression for H(¢) above in both Equations (59) and (61), one can
show that

V(p(H)) = 3(1—-v)M3H?+3vM3H?, (63)
Hr\?

1—- | — 4

(%) ] , 69

recovering the expressions (27) and (28) shown in Section 4. As it happens for the early

universe, the potential (59) recovers the cosmological dynamics of the matter-vacuum

era (25). Figure 3 shows the time behaviour of the basic dimensionless quantities as defined
in Figure 2.

pe = 3(1—v)MpH?
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Figure 3. Dimensionless potential and matter energy density. As in Figure 2, different solid lines
describe the evolution of the potential with respect to c¢ for some selected values of the parameter v,
depicted in the inner rectangle. The dashed lines display the same behaviour for the dimensionless
matter energy density. Notice that, for all allowed values of v, the model evolves in the long run to a
de Sitter spacetime, described by the scale Hf [see also Equation (59) and Figure 1].

6. Final Remarks and Conclusions

Entropy is the quantity which allows us to describe the progress of non-equilibrium
dissipative processes. A special ingredient of our scenario discussed here is that it takes
into account the second law of thermodynamics from the very beginning. For instance,
the non-equilibrium thermodynamics was explicitly used to establish an integral relation
uniting A(H) and the particle creation rate I'(H). The running vacuum emerges from an
unknown quantum gravity regime as a primeval de Sitter vacuum. Due to a structural
thermal instability, it transfers irreversibly energy, particles, and entropy to the spacetime,
forming the primeval thermal bath at the expenses of its own energy density at scale, which
is initially defined by Hj, which is smaller than the reduced Planck mass. In this connection,
see also [45], where the dynamic evolution of this phase forming the thermal bath was
investigated for v = 0.

Subsequently, the evolution departs slightly from the standard radiation- and matter-
dominated phases sustained by a softer generation of entropy. Since the scale Hr is
incredibly low, for all practical purposes, the final vacuum state will be eternal.

There are also two interesting aspects of the scenario proposed here. Firstly, the irre-
versible evolution of the running vacuum generating a complete cosmology can also be
described by a single minimally coupled non-canonical scalar field when it is interpreted as
a mixture of two interacting perfect fluids, as suggested long ago (see Section 5). Secondly,
all of the energy scales appearing in the potential, and also in the non-canonical kinetic
term, are sub-Planckian with no fine-tuning.

Finally, we stress that the mild deviation from the rigid (i.e., non-dynamical) vacuum
model (ACDM) may also provide an explanation to the current Hy and ¢y tensions, perhaps
simpler than other phenomenological dark energy interacting models. Studies along these
lines are in progress and, naturally, still deserves a closer scrutiny.
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Appendix A. “Adiabatic” Creation (¢ = 0) and Some Consequences

In this appendix, we demonstrate that the specific entropy (per particle) in our ap-
proach remains constant (¢ = 0), and also the validity of Equation (9).
The specific entropy is defined by

:>(T:(7(s‘—ﬁ). (A1)

From Equations (7) and (8), one may check that

SN

- Z —T - 3H, (A2)

and, therefore, ¢ = 0.
Finally, by defining the expressions for the comoving number of particles, N = na>,
and entropy of the fluid, S = sa?, it is straightforward to compute the time derivatives:

N 1dna®)  n B

N @ at ~ atH=ELD (A3)
S 1 d(sa®) $

ST ar s TH=D (B4

where the last equality in both equations comes from (A2). Both results were summarised
in Equation (9). Note that, although depending on the symmetries of the FLRW geometry,
Equation (9) is independent of Einstein’s field equations.

Appendix B. Determination of 4 Parameter and the Constant B

Let us now consider a quadratic correction in the creation rate I'(H) = 3vH (see
Section 3):

T(H) = 3vH 1+ %(H/Hﬂ, (A5)

where the numerical factors are for mathematical convenience. In this case, a simple
integration of (11) provides an expression for A(H) in terms of the constant B, and also the
set of free parameters (Hj, v) appearing above. We find

2 2
A(H) = B+31/H2+M<H) . (A6)
2 \H;

At low redshifts (H << Hy), the last term on the r.h.s. is negligible, and by using the
late time boundary condition A(Hf) = 3H%, a value B = 3(1 — v)H? is obtained. In the
opposite extreme, H >> HF, the constant B is negligible, and using de Sitter condition at
early times, A(H;) = 3H?, it follows that v = 2(1 — v). Finally, by inserting such values,
the result (13) is recovered.

Appendix C. Determination of « and o Parameters

In this appendix, we determine the values of « and ¢ parameters appearing in the
expressions of the scalar field potential to the vacuum-radiation and matter-vacuum phases.
To begin with, we first consider the part of the derivation that is common for both quantities.
From Einstein field Equations (48) and (49), the kinetic term of the non-canonical scalar
field energy density can be written as

2M3H
(1+w)’

Pk = — (A7)
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where the equality is also a consequence of the kinetic equation of state (47). Let us now
consider each case separately.

(i) « parameter. By taking w = 1/3, and using the definition of o from (51), the above
equation implies that ¢ can be written as

¢* = —2M*M3H, (A8)

and replacing H from the cosmological ‘H-equation of motion’ (50), we obtain
) 1/4
; 1/241/2 H
¢ = vV2(1 —v)*MML2HY? |1 - = (A9)

where we have discarded ¢ < 0. Actually, ¢ > 0 and its value is always increasing. Now,
remembering that H = ¢/[(1 — v)¢] (56), the above equation can be rewritten as

1/4
MM} 2
VMM, [ H ] (A10)

(1 _.)N\3/4g1/2 | g2
(1—v)PAH7Z | 1

Hence, recalling that ¢, = a~!, and that at the end of inflation the Hubble parameter
is H(¢e) = Hj\/1—2v/2(1 — v), the above equation at ¢ = ¢, becomes

1/4
e = ,Xflz\[—P 1_i (A11)
(1 _ 1/)3/4Hel/2 H%
1 1/4 Mp
= 2|l — My —. Al12
f[(l—v)%l—zw] Hy (A12)

so that the expression for « is given by

o« = %{(1—1/)3(1—21/)}1/4,/%. (A13)

Note that beyond the reduced Planck mass, « depends on the relevant free scales of
the two vacuum-radiation phase (Hj, M). This means that a large class of sub-Planckian
values are accessible, even assuming H; = M.

(ii) o parameter: In this case,  >> 1 and w = 0 while the expression of V(¢) in the
matter phase is given by (59). Now, following the same procedure of the previous case, we
see from (A7) that

20+A) M- MZH

— M2 28 _
pr = —2M2H = ¢ T (A14)
Let us rewrite ¢ using the fact that 28 — 1 = 1/w (47):
¢ = w2 MR MACE) (A15)

Substituting the cosmological ‘H-equation of motion’ for the matter dominated phase (25)
in the expression above, one can write

1+w

2
¢ =3w(1 —v)2'% MEMHE) H? ll - <I§> 1 (A16)
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In the same way we performed for the determination of «, we now utilise the relation
between H and ¢, and evaluate the resulting expression at ¢ = ¢~

ltw l1-w
w 3 2 2w M2 M4( 2w ) w—1 2
1+ _ w P 1— (HP> . (A17)

HT
(1—v)w 7 H,

From Equation (62) one can see that H(¢ = ¢~1) = H, = v/2HF. Thus, the expression
for o is given by

1
1 1—v Trw
_ _ A18
(BwM3)T5w [Mzﬂw)H?’l ] (A19
In the limit w — 0, we obtain
H
o= (1- v)ﬁg, (A19)

which, differently from «, does not depend on the initial de Sitter scale Hj.

Notes

1 Such a result is not surprising because, from EFE, one finds ii = — (6M%,)*1 [(143w)p —2ppla. Thus, for w = 1/3, i = 0 implies

p = pr = pa While for w = 0, one finds p = pp1 = 2pA.
2 This kind of single-fluid EoS can also be obtained from a k-essence field with Lagrangian L(g(¢), X) = g(¢)F(X) [52]. However,
as remarked in [53], a two-fluid description with dissipation is possible only if another interacting k-essence is considered.
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