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Abstract
The fermionic von Neumann entropy, the fermionic entanglement entropy and the
fermionic relative entropy are defined for causal fermion systems.Our definitionmakes
use of entropy formulas for quasi-free fermionic states in terms of the reduced one-
particle density operator. Our definitions are illustrated in various examples for Dirac
spinors in two- and four-dimensional Minkowski space, in the Schwarzschild black
hole geometry and for fermionic lattices.We review area laws for the two-dimensional
diamond and a three-dimensional spatial region in Minkowski space. The connection
is made to the computation of the relative entropy using modular theory.

Keywords Fermionic entropy · von Neumann entropy · Entanglement entropy ·
modular theory · Causal fermion system · Reduced one-particle density operator

1 Introduction

The purpose of this article is to study notions of fermionic entropy from the perspective
of causal fermion systems. As we shall see, the notions of fermionic von Neumann
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entropy, entanglement entropy and relative entropy can be formulated naturally in this
general setting. Moreover, as we shall explain in various examples, these notions of
entropy reproduce the standard notions in various common settings. This shows that
causal fermion systems provide a general framework for studying fermionic entropies,
independent of the specific physical model in mind. The main goal of this expository
article is to explain how the common, well-known approaches to fermionic entangle-
ment entropies can be formulated in and are related to the setting of causal fermion
systems.

Entropy is a measure for the disorder of a physical system. There are various
notions of entropy, like the entropy in classical statistical mechanics as introduced
by Boltzmann and Gibbs, the Shannon and Rényi entropies in information theory
or the von Neumann entropy for quantum systems. In the past decade, there has been
increasing interest in the entanglement entropy, which tells about quantum correlations
between subsystems of a composite quantum system [3, 45]. In the relativistic setting,
the connection between modular theory and the relative entropy has gained much
attention (see for example [39, 44, 54]).

The theory of causal fermion systems is a recent approach to fundamental physics
(see the basics in Sect. 2, the reviews [19, 23, 30], the textbooks [18, 29] or the website
[1]). In this approach, spacetime and all objects therein are described by a measure ρ

on a set F of linear operators on a Hilbert space (H, 〈.|.〉H). The physical equations
are formulated by means of the so-called causal action principle. This is a nonlinear
variational principle where an actionS is minimized under variations of themeasure ρ.
In different limiting cases, causal fermion systems give rise to the standard model of
particle physics and gravity on the level of classical field theory [18] and to quantum
field theory [16, 25, 27]. Moreover, a general notion of quantum entropy was intro-
duced for causal fermion systems in [20]. In the present paper we focus on fermionic
entropies. Here we make use of the specific feature of causal fermion systems that,
even in the fully interacting situation, the physical system can be described by a family
of fermionic one-particle wave functions. This makes it possible to adapt notions for
quasi-free fermionic states to causal fermion systems.

In order to explain this connection in more detail, we begin in the common descrip-
tion of a quantum state by a density operator W on a fermionic Fock space F (the
density operator is often referred to as the statistical operator; here we do not use
the standard notation ρ in order to avoid confusion with the measure of the causal
fermion system). A quasi-free and particle number preserving fermionic state is fully
characterized by its two-point distribution

ω2(ψ, φ) := trF
(
�†(φ)�(ψ) W

)

(where ψ , φ are one-particle wave functions and � and �† are the fermionic creation
and annihilation operators; for more details see the preliminaries in Sect. 2.1). Rep-
resenting the two-point distribution relative to the scalar product on the one-particle
Hilbert space (H, 〈.|.〉) gives the reduced one-particle density operator D, character-
ized by the relation

ω2(ψ, φ) = 〈ψ |Dφ〉 .
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In this setting, the fermionic von Neumann entropy can be expressed in terms of the
reduced one-particle density operator by

S := − trF
(
W log W

)
(1.1)

= − trH
(
D log D + (1 − D) log(1 − D)

)
. (1.2)

Aswe shall see, the last equation can be adapted to the general setting of causal fermion
system to serve as the definition of the fermionic von Neumann entropy. Before going
on, we point out that this method applies even in situations when the causal fermion
system describes a fully interacting physical systemwhich, in the language of quantum
field theory, does not correspond to a quasi-free fermionic state (more specifically, the
quantum state as constructed in [25, 27] will in general not and does not need to be
quasi-free). The basic reason for this remarkable fact is that, in the setting of causal
fermion systems, spacetime and all structures therein are encoded in the one-particle
wave functions of the system. Moreover, the above scalar product has a counterpart in
the so-called commutator inner product, making it possible to introduce a one-particle
density operator (for details see the preliminaries in Sect. 2.2 and Sect. 3). This means
that, even in fully interacting situations or in physical systems in quantum spacetimes,
the objects in (1.2) are well-defined, making it possible to use this identity as the
definition of the fermionic von Neumann entropy.

The method just described for the fermionic von Neumann entropy works similarly
for the fermionic entanglement entropy (Sect. 4) and the fermionic relative entropy
(Sect. 9). This makes it possible to analyze various examples in detail, ranging from
systems in two- and four-dimensionalMinkowski space (Sects. 5, 6 aswell as Sects. 9.1
and 9.2), the event horizon of a Schwarzschild black hole (Sect. 7) to fermionic lattice
systems (Sect. 8). The unifying theme is that all these examples can be formulated in
terms of causal fermion systems. This shows that causal fermion systems provide a
universal setting for the formulation of fermionic entropies.

The paper is organized as follows. After providing the necessary preliminaries on
the fermionic entropies, causal fermion systems and briefly explaining the connec-
tion to modular theory (Sect. 2), the fermionic von Neumann entropy (Sect. 3) and
the corresponding fermionic entanglement entropy (Sect. 4) are introduced for causal
fermion systems. These notions of entropy and entanglement entropy are worked out
and explained in various examples: two-dimensional Minkowski space and a causal
diamond therein (Sect. 5), four-dimensional Minkowski space and a bounded spatial
subset of a Cauchy surface therein (Sect. 6), the event horizon of the Schwarzschild
black hole (Sect. 7) and fermionic lattice systems (Sect. 8), making a connection to
condensed matter physics. We proceed by introducing a corresponding notion of rela-
tive entropy (Sect. 9), which we illustrate again in two-dimensional Minkowski space
(Sect. 9.1) and a causal diamond therein (Sect. 9.2). The appendices provide the more
technical background material. Appendix A is devoted to detailed proofs of how
fermionic entropies can be expressed in terms of the reduced one-particle density
operator.
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2 Preliminaries

This section provides the necessary background on the entanglement entropy and on
causal fermion systems. Moreover, we explain the connection to modular theory.

2.1 The Entanglement Entropy of a Quasi-free Fermionic State

Given a Hilbert space (H, 〈.|.〉) (the “one-particle Hilbert space”), we let (F, 〈.|.〉F)

be the corresponding fermionic Fock space, i.e.,

F =
N⊕

k=0

H ∧ · · · ∧ H︸ ︷︷ ︸
k factors

(where∧ denotes the totally anti-symmetrized tensor product). We define the creation
operator �† by

�† : H → L(F) , �†(ψ)
(
ψ1 ∧ · · · ∧ ψp

) := ψ ∧ ψ1 ∧ · · · ∧ ψp

(where L(F) denotes the bounded linear operators on F). The adjoint of �†(ψ) is
the annihilation operator denoted by �(ψ) := (�†(ψ))∗. These operators satisfy the
canonical anti-commutation relations

{
�(ψ),�†(φ)

} = 〈ψ |φ〉 and
{
�(ψ),�(φ)

} = 0 = {
�†(ψ),�†(φ)

}
.

Next, we let W be a density operator (or statistical operator) on F, i.e., a positive
semi-definite linear operator of trace one,

W : F → F , W ≥ 0 and trF(W ) = 1 .

Given an observable A (i.e., a symmetric operator on F), the expectation value of the
measurement is given by

〈A〉 := trF
(

AW ) .

In the algebraic formulation, the corresponding quantum state ω is defined as the linear
functional which to every observable associates its expectation value, i.e.,

ω : A �→ trF
(

AW ) .

In this paper, we restrict our attention to the subclass of so-called quasi-free states,
also referred to as Gaussian states, which are fully determined by their two-point dis-
tributions. More precisely, for a quasi-free state all odd n-point distributions vanish,
whereas all even n-point distributions can be computed using Wick’s theorem. More-
over, we restrict attention to the state is particle-number preserving, meaning that all
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two-point expectations involving two creation or two annihilation operators vanish,

ω
(
�†(φ)�†(ψ)

) = 0 = ω
(
�(φ)�(ψ)

)
.

In the literature, this property is sometimes referred to as a gauge-invariant state (see
[17, Proposition 17.32]). A quasi-free and particle-number preserving state is fully
determined by its two-point distributions

ω2(ψ, φ) := ω
(
�†(φ)�(ψ)

)
. (2.1)

Definition 2.1 The reduced one-particle density operator D is the positive semi-
definite linear operator on the Hilbert space (H, 〈.|.〉) defined by

ω2(ψ, φ) = 〈ψ |Dφ〉 for all ψ, φ ∈ H . (2.2)

The von Neumann entropy S of the quasi-free and particle number preserving
fermionic stateω can be expressed in terms of the reduced one-particle density operator
by

S(ω) = tr η(D) , (2.3)

where η is the von Neumann entropy function defined by

η(x) :=
{

−x log x − (1 − x) log(1 − x) if x ∈ (0, 1)

0 otherwise .
(2.4)

This formula appears commonly in the literature (see for example [52, Equation 6.3],
[11, 47, 51] and [41, eq. (34)]). A detailed derivation is given in Appendix A (see
Theorem A.1).

For the entanglement entropy we need to consider a subsystem of our quantum
system. For our purpose, it is sufficient to consider systems formed of wave functions
in space N (which could be one-dimensional space R, three-dimensional space R

3,
a three-dimensional manifold or a lattice). Given a spatial subregion � ⊂ N , we
consider the entropic difference

S�(D) := tr
(
η
(
χ� D χ�

) − χ� η(D) χ�

)
, (2.5)

where χ� is the operator of multiplication by the characteristic function. Also this
formula appears commonly in the literature. A detailed derivation is given inAppendix
A (seeTheoremA.5). Following the conventions in themathematical physics literature,
in what follows we refer to S� as the fermionic entanglement entropy. More details
can be found in [49, Sect. 3].

2.2 Causal Fermion Systems and the Causal Action Principle

We now recall a few basics on causal fermion systems, restricting attention to the
structures needed in the sequel.
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2.2.1 Basic Definitions

We begin with the general definitions.

Definition 2.2 (causal fermion systems) Given a separable complex Hilbert spaceH
with scalar product 〈.|.〉H and a parameter n ∈ N (the spin dimension), we let F ⊂
L(H) be the set of all symmetric operators on H of finite rank, which (counting
multiplicities) have at most n positive and at most n negative eigenvalues. On F we
are given a positive measure ρ (defined on a σ -algebra of subsets of F). We refer
to (H,F, ρ) as a causal fermion system.

A causal fermion system describes a spacetime together with all structures and objects
therein. The physical equations are formulated for a causal fermion systemby demand-
ing that the measure ρ should be a minimizer of the causal action principle, which we
now introduce. For brevity of the presentation, we only consider the reduced causal
action principle where the so-called boundedness constraint has been incorporated
by a Lagrange multiplier term. This simplification is no loss of generality, because
the resulting EL equations are the same as for the non-reduced action principle as
introduced for example [18, Section §1.1.1].

For any x, y ∈ F, the product xy is an operator of rank at most 2n. However,
in general it is no longer a symmetric operator because (xy)∗ = yx , and this is
different from xy unless x and y commute. As a consequence, the eigenvalues of the
operator xy are in general complex. We denote the rank of xy by k ≤ 2n. Counting
algebraic multiplicities, we choose λ

xy
1 , . . . , λ

xy
k ∈ C as all the non-zero eigenvalues

and set λ
xy
k+1, . . . , λ

xy
2n = 0. Given a parameter κ > 0 (which will be kept fixed

throughout this paper), we introduce the κ-Lagrangian and the causal action by

κ − Lagrangian : L(x, y) = 1

4n

2n∑

i, j=1

(∣∣λxy
i

∣∣ − ∣∣λxy
j

∣∣
)2 + κ

( 2n∑

j=1

∣∣λxy
j

∣∣
)2

(2.6)

causalaction : S(ρ) =
∫∫

F×F
L(x, y) dρ(x) dρ(y) . (2.7)

The reduced causal action principle is to minimize S by varying the measure ρ

under the following constraints,

volume constraint : ρ(F) = 1 (2.8)

trace constraint :
∫

F
tr(x) dρ(x) = 1 . (2.9)

This variational principle is mathematically well-posed ifH is finite-dimensional. For
a review of the existence theory and the analysis of general properties of minimizing
measures we refer to [29, Chapter 12].
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A minimizer of the causal action principle satisfies the following Euler–Lagrange
(EL) equations. For a suitable value of the parameter s > 0, the function 
 : F → R

+
0

defined by


(x) :=
∫

M
L(x, y) dρ(y) − s (2.10)

is minimal and vanishes on the support of ρ,


|supp ρ ≡ inf
F


 = 0 .

Likewise, the parameter s ≥ 0 in (2.10) is the Lagrange parameter corresponding to
the volume constraint. For the derivation and further details we refer to [32, Sect. 2]
or [29, Chapter 7].

2.2.2 Spacetime and Causal Structure

Let ρ be a minimizing measure. Spacetime is defined as the support of this measure,

M := supp ρ ⊂ F , (2.11)

where on M we consider the topology induced by F (generated by the operator norm
on L(H)). Thus the spacetime points are symmetric linear operators onH. The restric-
tion of the measure ρ|M gives a volume measure on spacetime.

The operators in M contain a lot of informationwhich, if interpreted correctly, gives
rise to spacetime structures like causal and metric structures, spinors and interacting
fields (for details see [18, Chapter 1]). All the resulting objects are inherent in the
sense that we only use information already encoded in the causal fermion system.
Here we restrict attention to those structures needed in what follows. We begin with
the following notion of causality:

Definition 2.3 (causal structure) For any x, y ∈ F, we again denote the non-
trivial eigenvalues of the operator product xy (again counting algebraic multiplicities)
by λ

xy
1 , . . . , λ

xy
2n . The points x and y are called spacelike separated if all the λ

xy
j have

the same absolute value. They are said to be timelike separated if the λ
xy
j are all real

and do not all have the same absolute value. In all other cases (i.e., if the λ
xy
j are not

all real and do not all have the same absolute value), the points x and y are said to be
lightlike separated.

Restricting the causal structure of F to M , we get causal relations in spacetime.
The Lagrangian (2.6) is compatible with the above notion of causality in the

following sense. Suppose that two points x, y ∈ M are spacelike separated. Then
the eigenvalues λ

xy
i all have the same absolute value. As a consequence, the

Lagrangian (2.6) vanishes. Thus pairs of points with spacelike separation do not enter
the action. This can be seen in analogy to the usual notion of causality where points
with spacelike separation cannot influence each other. This is the reason for the notion
“causal” in causal fermion system and causal action principle.
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2.2.3 Spinors and Physical Wave Functions

A causal fermion system also gives rise to spinorial wave functions in spacetime, as
we now explain. For every x ∈ F we define the spin space Sx by Sx = x(H); it is
a subspace of H of dimension at most 2n. It is endowed with the spin inner product
≺ .|. �x defined by

≺ u|v �x= −〈u|xv〉H (for all u, v ∈ Sx ) .

It is an important observation that every vector u ∈ H of the Hilbert space gives rise
to a unique wave function denoted by ψu , which to every x ∈ M associates a vector
of the corresponding spin space ψu(x) ∈ Sx . It is obtained by orthogonal projection
to the spin space,

ψu : M → H with ψu(x) := πx u ∈ Sx M for all x ∈ M .

We refer to ψu as the physical wave function of the vector u ∈ H. Varying the
vector u ∈ H, we obtain a whole family of physical wave functions. This family
is described most conveniently by the wave evaluation operator � defined at every
spacetime point x ∈ M by

�(x) : H → Sx , u �→ ψu(x) .

It is a simple but important observation that every spacetime point operator can be
recovered from its wave evaluation operator by (for the proof see for example [18,
Lemma 1.1.3]).

x = −�(x)∗�(x) .

Having constructed the spacetimepoint operators,we also recover all the other inherent
structures of a causal fermion system. Proceeding in this way, all spacetime structures
can be regarded as being induced by the physical wave functions.Moreover, restricting
attention to variations of �, one can understand the causal action principle as a vari-
ational principle for the family of physical wave functions. Finally, one can construct
concrete examples of causal fermion systems by choosing the physical wave functions
more specifically as the quantum mechanical wave functions in a classical Lorentzian
spacetime. In the next section we explain this construction in more detail.

2.2.4 Surface Layer Integrals and the Commutator Inner Product

In the setting of causal fermion systems, integrals over hypersurfaces are replaced by
so-called surface layer integrals, which are double integrals of the general form

∫

�

(∫

M\�
(· · · ) L(x, y) dρ(y)

)
dρ(x) , (2.12)
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where (· · · ) stands for suitable variational derivatives of the Lagrangian, and � is
a Borel subset of M . The connection can be understood most easily in the case
when L(x, y) vanishes unless x and y are close together. In this case, we only get
a contribution to (2.12) if both x and y are close to the boundary of�. A more detailed
explanation of the idea of a surface layer integrals is given in [31, Section 2.3].

Surface layer integrals were first introduced in [31] in order to make a connection
between symmetries and conservation laws for surface layer integrals. Here we will
make essential use of the conservation law corresponding to the symmetry under
unitary transformations on the Hilbert spaceH. For a minimizing measure ρ, it gives
rise to a conservation law for a sesquilinear form on the physical wave functions of
the form

〈u|v〉t
ρ = −2i

(∫

�t
dρ(x)

∫

M\�t
dρ(y) −

∫

M\�t
dρ(x)

∫

�t
dρ(y)

)

× ≺ ψu(x) | Q(x, y) ψv(y) �x ,

(2.13)

where �t can be thought of as the past of a Cauchy surface. Here “conservation law”
means that this inner product is independent of t . The sesquilinear form (2.13) is
referred to as the commutator inner product (the name comes from the fact that the
unitary invariance can be expressed in terms of commutators; see [26, Sect. 3] for
details). The kernel Q(x, y) appearing in this formula is the first variational derivative
of the Lagrangian (see [26] for details).

In [31, Sect. 5] it was shown that, taking the continuum limit of the vacuum in
Minkowski space, this sesquilinear form coincides, up to a constant, with the scalar
product 〈u|v〉H. We now give this property a useful name. We only assume that this
property holds for all vectors in a finite-dimensional subspace Hf ⊂ H (for details
see [22, Appendix A]). The vectors in Hf can be regarded of as the low-frequency
wave functions, i.e. those wave functions whose energy and momentum is very small
on the Planck scale. Alternatively, one can think of Hf as being composed all wave
functions which are accessible to experiments.

Definition 2.4 Given a critical measure ρ and a past set �t ⊂ M , the commutator
inner product is said to represent the scalar product on the finite-dimensional sub-
space Hf ⊂ H if

〈u|v〉t
ρ = c 〈u|v〉H for all u, v ∈ Hf (2.14)

with a suitable positive constant c.

2.3 Connection to Modular Theory

The fermionic entanglement entropy as studied in the present paper is closely related
to the modular theory. We now explain this connection, beginning with a short concise
introduction to the basics of modular theory (for more details [8, 40, 54]). Let H be
a Hilbert space and M be a von Neumann algebra acting on this space. We denote
by M′ the commutant of M. Furthermore, we call a vector � cyclic and separating
ifM′� are dense inH. If these conditions are fulfilled, then there exists two anti-linear
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operators (called the Tomita operators) S : H ⊇ dom(S) → H and its adjoint S∗ :
H ⊇ dom(S∗) → H that have the property

S A � = A∗� ∀A ∈ M
S∗ B � = B∗� ∀B ∈ M′

Since S2 = 1 the operator is invertible and thus has a unique polar decomposition

S = J�
1
2 ,

where � : H ⊇ dom(�) → H is denoted as the modular operator and the partial
isometry J : H → H is called the modular conjugation associated to the pair (M,�).
The modular conjugation maps the von Neumann algebra to its commutant, i.e.

JMJ = M′ ,

and the modular operator (also called the modular Hamiltonian) is selfadjoint, positive
and invertible and defines a group of automorphisms of the von Neumann algebraM
and the commutant thereof,

�i tM(′)�−i t = M(′) ,

for all t ∈ R. This group is used to formulate the KMS-condition and is used to
define the Araki-Uhlmann relative entropy. For the case where the state (or vector
representative) � and � are unitarily related, let us say by the operator U (where the

domain of �
1
2 is stable under the application of the unitary operator, Udom(�

1
2 ) ⊂

�
1
2 ) the Araki-Uhlmann relative entropy takes the form

S(�,�) = −〈�, log(�)�〉 .

This quantity was calculated in various instances in quantum field theory [9, 14, 15,
37–39, 42, 43, 48, 50, 51] and connected to the Bekenstein bound [10].

The connection to the fermionic entanglement entropy is obtained by the fundamen-
tal relation between the modular operator � and the one-particle density operator D
as introduced in Definition 2.1 given by

D = (1 + �)−1 , (2.15)

where � = exp(−H), with H being the modular Hamiltonian, c.f. [4], [51, Section
3.3] and [12] (in [51], the operator D is referred to as the covariance operatorC). In the
example of the Rindler wedge, the modular Hamiltonian is given by 2π K , where K
is the generator of Lorentz boosts. This result is known as the Bisognano-Wichmann
theorem [6, 7].

The simple formula (2.15) makes it possible to relate all our results on the
one-particle density operator D to corresponding results for the modular operator.
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Moreover, our methods and results for fermionic entropies complement the techniques
frommodular theory. We hope that exploring these connections further will be fruitful
for the future development of the theories.

3 The Fermionic Von Neumann Entropy of a Causal Fermion System

In what follows, we shall not assume that the commutator inner product represents the
scalar product (see Definition 2.4). Instead, we merely assume that this sesquilinear
form is positive semi-definite and bounded with respect to the scalar product, i.e.,

0 ≤ 〈u|u〉t
ρ ≤ c ‖u‖2H for all u ∈ Hf

with c as in (2.14). Here, as explained before Definition 2.4, the subspaceHf ⊂ H is
formed of all low-frequency wave functions. Using the Fréchet-Riesz theorem, there
is a unique operator σ ∈ L(Hf) such that

〈u|v〉t
ρ = 〈u|σv〉H for all u, v ∈ Hf . (3.1)

Clearly, the operator σ is positive semi-definite and bounded. By a scaling of the
Hilbert scalar product 〈.|.〉H, we can arrange that its norm is at most one, i.e.,

0 ≤ σ ≤ 1 . (3.2)

In many situations it seems a good idea to arrange by scaling that its norm is even
equal to one, but this will not needed for the subsequent constructions. Now we can
take the identity (2.7) as the definition of the fermionic entropy.

Definition 3.1 We define the fermionic von Neumann entropy S of the causal
fermion system (H,F, ρ) by

S = trHf
(
η(σ )

)
,

where η is again the von Neumann entropy function (2.4).

If the commutator inner product represents the scalar product, then σ = 1, and the
fermionic entropy vanishes. As shown in [31, Sect. 5], this is the case in theMinkowski
vacuum.

4 The Fermionic Entanglement Entropy of a Subsystem

We now choose an open subset V ⊂ M and “localize” in V ∩ Nt by setting (see Fig. 1)

〈ψ |φ〉t
V ,ρ := −2i

(∫

�t ∩V
dρ(x)

∫

M\�t
dρ(y) −

∫

�t
dρ(x)

∫

V \�t
dρ(y)

)
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Fig. 1 Spatial localization of the
scalar product

× ≺ ψ(x) | Q(x, y) φ(y) �x , (4.1)

where Nt = ∂�t can be thought of as the Cauchy surface. Next, we represent this
localized scalar product similar to (3.1) in terms of the Hilbert space scalar product,

〈u|v〉t
V ,ρ = 〈u|σV v〉H for all u, v ∈ Hf . (4.2)

We assume thatσV is again positive and bounded byσ . Then, in combinationwith (3.2)
we have

0 ≤ σV ≤ σ ≤ 1 . (4.3)

In the case σ = 1 that the total system is described by a pure fermionic state, the
entanglement entropy of the subsystem is defined as its von Neumann entropy, i.e.
SV = trHf

(
η(σV )). In the more general case that the total system is in a mixed

fermionic state, similar to (2.5) one needs to subtract a corresponding volume con-
tribution. However, in the context of causal fermion systems, we cannot define the
entanglement entropy using the formula (2.5) by S�(σ), because multiplying by the
characteristic function does in general not map back to the Hilbert space H. In order
to circumvent this problem, one introduces the operator χV by

χV := (
σ− 1

2 σV σ− 1
2
) 1
2 , (4.4)

making it possible to define the entanglement entropy as S�(σ).
The formula (4.4) can bemotivated and understood as follows. First of all, the oper-

ator on the right is obviously symmetric, and its norm is bounded by one. Moreover,
by a direct computation starting from (4.4) one sees that the operator σV satisfies the
relation

σV = σ
1
2 χ2

V σ
1
2 .

Using that the spectrumof an operator product is invariant under cyclic commutation of
the factors, one sees that the operator σV is isospectral to the operator product χV σχV ,

σV � χV σ χV .

Therefore, at least formally, trHf
(
η(σV )) = trHf

(
η(χV σ χV )), giving us the first

term of the entropic difference (2.5). This explains why our choice of χV makes sense
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and also motivates how to choose the counter term. This leads us to the following
definition.

Definition 4.1 We introduce the fermionic entanglement entropy by

SV = trHf
(
η(σV ) − χV η(σ ) χV

)
, (4.5)

where χV is defined by (4.4), and η is again the von Neumann entropy function (2.4).

5 Example: Two-Dimensional Minkowski Space

In this section we consider the example of a causal fermion system describing the
Minkowski vacuum in two spacetime dimensions.

We recall a few basics, using the notation in [36]. Let (M, g) be two-dimensional
Minkowski space, i.e. M = R

1,1 with the line element

ds2 = gi j dxi dx j = dt2 − dx2 .

Moreover, we let SM = M × C
2 be the trivial spinor bundle, endowed with the spin

inner product defined by

≺ ψ |φ �= 〈ψ,

(
0 1
1 0

)
φ〉

C
2 (5.1)

(where 〈., .〉
C
2 is the canonical scalar product on C

2). We work in the so-called chiral
representation of the Dirac matrices

γ 0 =
(
0 1
1 0

)
, γ 1 =

(
0 1

−1 0

)
.

The Dirac matrices are symmetric with respect to the spin inner product (5.1). The
spin scalar product is an indefinite inner product of signature (1, 1). Introducing the
Dirac operator

D := iγ j∂ j , (5.2)

the massive Dirac equation reads

(D − m)ψ = 0 , (5.3)

where m > 0 is the rest mass (we always work in natural units � = c = 1). Taking
smooth and compactly supported initial data on a Cauchy surface N and solving the
Cauchy problem, one obtains a Dirac solution in the class C∞

sc (M, SM) of smooth
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wave functions with spatially compact support. On solutions ψ, φ in this class, one
defines the (positive definite) scalar product

(ψ |φ)m :=
∫

N
≺ ψ |/νφ � |q dμN(q) ,

where /ν = γ jν j denotes Clifford multiplication by the future-directed unit normal ν,
and dμN is the volume measure of the induced Riemannian metric on N (thus for
the above ray N = {(αx, x) with x > 0}, the measure dμN = √

1 − α2 dx is a
multiple of the Lebesgue measure). Due to current conservation, this scalar product
is independent of the choice of N . Forming the completion, we obtain the Hilbert
space (Hm, (.|.)m), referred to as the solution space of the Dirac equation. For conve-
nience, we always choose N as the Cauchy surface {t = 0}, so that

(ψ |φ)m =
∫ ∞

−∞
≺ ψ |γ 0φ � |(0,x) dx . (5.4)

5.1 Construction of the Causal Fermion System

For the construction of the causal fermion system, we must choose a closed sub-
space H ⊂ Hm , having the interpretation as the occupied one-particle states of the
system. In order to describe the fermionic vacuum, one choosesH as the subspace of
all negative-frequency solutions of the Dirac equation. One way of introducing this
subspace is to write the negative-frequency solutions as Fourier integrals,

ψ(t, x) =
∫

R
2

d2k

(2π)2
(k jγ

j + m) δ
(
k2 + m2) �(−k0) ψ̂

(
k1
)

eikx (5.5)

with ψ̂ ∈ C∞
0 (R, C

2) (note that theHeaviside function�(−k0) has the effect that only
negative frequencies are considered). Taking the closure of all these wave functions
gives the subspaceH ⊂ Hm . For clarity, we denote the scalar product on this subspace
by 〈.|.〉H := (.|.)m |H×H.

We point out that the functions in H are in general not continuous. Therefore, we
cannot evaluate the wave functions pointwise at a spacetime point x ∈ M. However,
for the following constructions it is crucial to do so. The way out is to introduce
so-called regularization operators (Rε)ε with 0 < ε < εmax which map H to the
continuous wave functions,

Rε : H → C0(M, SM) . (5.6)

In the limit ε ↘ 0, these operators should go over to the identity (in a suitable
sense which we do not need to specify here). The physical picture is that on a small
length scale, which can be thought of as the Planck length scale ε ≈ 10−35 meters,
the structure of spacetime must be modified. The regularization operators specify this
microscopic structure of spacetime.Many different choices of regularization operators
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are possible. In order to keep the presentation as simple as possible, we here restrict
attention to the so-called iε-regularization, where we insert an exponentially decaying
factor eεk0 into the Fourier integral (5.5), i.e.

(Rεψ)(t, �x) :=
∫

R
2

d2k

(2π)2
(k jγ

j + m) δ
(
k2 + m2) �(−k0) ψ̂

(
k1
)

eεk0 eikx (5.7)

(for more details on this regularization method and the general context see [18, §2.4.1]
and [18, Section 1.2]).Next, for any x ∈ Mwedefine the local correlation operator Fε

by the relations

〈u | Fε(x) v〉H = −(Rε u)(x)(Rε v)(x) for all u, v ∈ H . (5.8)

It is a bounded symmetric linear operator on H. Taking into account that the inner
product on the Dirac spinors at x has signature (2, 2), the local correlation opera-
tor Fε(x) has rank at most four, and (counting multiplicities) has at most two positive
and at most two negative eigenvalues.

Varying the spacetime point x ∈ M, we obtain the so-called local correlation map

Fε : M → F , (5.9)

where F ⊂ L(H) denotes the set of all symmetric operators on H of finite rank
which (counting multiplicities) have at most one positive and at most one negative
eigenvalue. The last step is to drop all other structures (like the metric and causal
structure of Minkowski space, the spinorial structures, etc.). Our concept is to work
exclusively with the local correlation operators corresponding to the physical wave
functions. Thus the basic concept is that all spacetime structures (particles, fields,
causal structure, geometry, …) are encoded in the local correlation operators. At this
point it is obvious that this concept is sensible.But, aswe shall see in the later sections in
this book, it is possible to reconstruct all spacetime structures from the local correlation
operators. In order to drop all the additional structures and to focus on the information
contained in the local correlation operators, we introduce the measure ρε on F as the
push-forward of the volume measure onM

ρε := Fε∗ μ (5.10)

(defined by ρε(�) := μ((Fε)−1(�)), where dμ = dt dx is the two-dimensional
volumemeasure onM).We thus obtain a causal fermion systemof spin dimension n =
1 (see Definition 2.2).

5.2 The Fermionic Von Neumann Entropy

Having constructed the causal fermion system, corresponding fermionic entropies can
be introduced as explained in Sects. 3. We now explain how and why these notions
give us back the fermionic entanglement entropy in Minkowski space as analyzed in
[35].
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The spacetime M of the causal fermion system is defined as the support of the
measure ρ (see (2.11)). It turns out that this support coincides with the image of the
local correlation map (5.9) (the reason is that the mapping Fε is closed; for details see
[53]). Moreover, using that the local correlation map is injective (for details see again
[53]), we may

identifyx ∈ Mwith Fε(x) ∈ M , (5.11)

giving an identification of M withMinkowski space. In thisway, the spacetime pictures
as shown in Fig. 1 can be translated to pictures in Minkowski space. In particular, the
set Nt ∩ V can be associated to a spatial region in Minkowski space.

Next, we need to associate the commutator inner product (2.13) to the scalar product
in Minkowski space (6.1). To this end, we use the result from [31, Section 5.2] that
for Dirac wave functions which are macroscopic is much smaller than 1/ε, these inner
products coincide, i.e.,

〈ψ |φ〉t
ρ = c 〈ψ |φ〉m (5.12)

With this in mind, we choose the subspaceHf ⊂ H (introduce before Definition 2.4)
as the span of all these macroscopic wave functions. Then, since the scalar product on
the right side of (3.1) coincides by construction with the restriction of (6.1) to H, it
follows that the operator σ is the identity,

σ = 1 . (5.13)

As a consequence, the fermionic von Neumann entropy vanishes,

S = 0 .

This is physically sensible, because the vacuum state is pure.

5.3 The Fermionic Entanglement Entropy of a Causal Diamond

As an example for a causal fermion system with non-vanishing fermionic von Neu-
mann entropy, we now consider a flat causal diamond in two spacetime dimensions.
Given a closed interval � := (0, λ) with λ > 0, the corresponding spacetime (D, g)

is isometric to the subset of two-dimensional Minkowski space

D = {
(t, x) ∈ M with x ∈ � and |t | < min(x, λ − x)

} ; (5.14)

see Fig. 2. (see Fig. 2).
Then the inclusions

D ⊂ M and SD = D × C
2 ⊂ M × C

2 = SM

are clearly isometries. The Dirac operator and the Dirac equation are given again
by (5.2) and (5.3). On the level of the causal fermion system, the causal diamond is
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Fig. 2 A causal diamond

described in analogy to (5.10) by the measure

ρε
D := Fε∗ μD with μD = χD μ . (5.15)

Using again the identification (5.11), the diamond is described equivalently by the
subset

D ⊂ M ⊂ F and ρε
D = χD ρε .

Thenext step is to compute the localized surface layer integral (4.1) and the localized
one-particle density operator σV in (4.2). Here one must keep in mind that localizing
the surface layer integral is not the same as multiplying the wave functions by the
characteristic function χV . Indeed, the localization in (4.1) involves characteristic
functions either for ψ or for φ, but not for both wave functions. Due to the nonlocality
of the surface layer integral, it makes a difference where the characteristic function is
inserted. For what follows, it suffices to note that the nonlocality of the surface layer
integral is on the Compton scale m−1. Therefore, this nonlocality is negligible if the
size of the region λ is much larger than m−1. Under the assumption m� � 1, instead
of localizing the surface layer integral (2.13), we may insert the localization directly
into the spatial scalar product (5.4). This leads us to introducing the inner product

〈ψ |φ〉D :=
∫ λ

0
≺ ψ |γ 0φ � |(0,x) dx (5.16)

(note that, in contrast to (5.4), we now integrate only over the interval (0, λ)). In this
way, the localization to the spatial region V introduced in (4.1) reduces to multiplica-
tion by a characteristic function, i.e. in analogy to (4.2)

〈ψ |φ〉D = 〈u|σDv〉H for all u, v ∈ Hf

with
σD = χ�σχ� . (5.17)

Therefore, the fermionic entanglement entropy becomes

Sε
D = trH

(
η(σD) − χ� η(σ) χ�

)
. (5.18)
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5.4 An Area Law for the Entanglement Entropy of a Causal Diamond

The entanglement entropy of D ⊂ M quantifies the entanglement between the space-
time region D with its causal complement. In our description of the quantum state
by the reduced one-particle operator, only those wave functions contribute which are
non-zero both inD and in its complement. This is obvious in (5.17) and (5.18) because
the operator η(σD)−χ� η(σ) χ� vanishes on every vector which is a joint eigenstate
of σ and χV , i.e. if

σψ ∼ ψ and χV ψ = ψ or 0 .

In other words, the entanglement entropy is determined by those wave functions which
are localized near the boundary of the spatial region �. This suggests that the entan-
glement entropy should scale with the area of the boundary of �. Such area laws
have indeed been proven in various situation with different techniques. Clearly, for
the two-dimensional diamond this boundary consists of the two points (0, 0) and (0, λ)

(see Fig. 2). Therefore, in this case the area law simply states that the entanglement
entropy is non-zero and independent of the size λ of the diamond.

Another point of interest is the dependence of the entanglement entropy on the
ultraviolet regularization. For technical simplicity, we here consider the iε-regulari-
zation (5.7). Then the dependence on the regularization is specified by the scaling
behavior of the entanglement entropy in ε for small ε > 0. For dimensional reasons,
the entanglement entropy should scale like ε−d+1, where d is the spatial dimension.
Moreover, an additional logarithmic singularity can arise, in which case we speak
of an enhanced area law. Typically, an enhanced area law is a result of long-range
correlations, which are typical for massless systems. In the present situation of one
spatial dimension, we obtain an enhanced area law even in the massive case. Here is
our main result.

Theorem 5.1 (Area law for the entanglement entropy of a causal diamond) The
entanglement entropy of the causal diamond (5.18) obeys the enhanced area law

lim
ε↘0

1

log(1/ε)
Sε
D = 1

6
.

The proof of this theorem is given in [34]. We point out that this mathematical result
holds both in the massive and massless case. However, in the massless case the con-
nection to causal fermion systems is debatable, because it is no longer clear whether
the localized surface layer integral can again be approximated by (5.16).

6 Example: Four-Dimensional Minkowski Space

In this section we consider the example of a causal fermion system describing the
Minkowski vacuum. As we shall explain, this example gives the correspondence to
the entanglement entropy and the corresponding area law in [35]. More precisely, we
shall proceed in the following two steps:
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� Starting from the usual structures of relativistic quantummechanics in Minkowski
space, we construct a causal fermion system describing the vacuum (Sect. 6.1).

� Weexplainwhy and how specializing the notions of fermionic entropies introduced
in Sects. 3 and 4 to this causal fermion system gives back the usual notions of
fermionic entropies as studied in [35] (Sect. 6.2).

The purpose of these constructions is to give the fermionic entropies of a causal fermion
system a physical meaning by showing that they extend the well-established physical
notions in Minkowski space to a more general setting.

6.1 Construction of the Causal Fermion System

Proceeding similar as in Sect. 5.1, we now construct the causal fermion systemdescrib-
ing four-dimensional Minkowski space (more details can be found in [18, Section 1.2]
or [29, Chapter 5]). We let (M, 〈., .〉) beMinkowski space (with the signature conven-
tion (+ − −−)) and dμ the standard volume measure (thus dμ = d4x in a reference
frame x = (x0, . . . , x3)). We consider the vacuum Dirac equation

(iγ j∂ j − m)ψ = 0 ,

where γ j are the usual Dirac matrices in the Dirac representation, and m is the rest
mass (for simplicity of the presentation, we only consider one type of particles of
mass m; the extension to several generations or systems involving leptons and quarks
can be found in [18]). Here the wave functionψ has four complex components, which
describe the spinor components. The spinors are endowed at each spacetime point with
an inner product of signature (2, 2), which as in physics textbooks we denote by ψφ

(whereψ := ψ†γ 0 is the usual adjoint spinor). For a solutionψ of the Dirac equation,
the function (ψγ 0ψ)(t, �x) has the interpretation as the probability density of the Dirac
particle at time t to be at the position �x . The spatial integral of this probability density
is time independent as a consequence of the Dirac equation (conservation of the Dirac
current). Considering the bilinear form corresponding to this probability integral gives
the scalar product

〈ψ |φ〉m :=
∫

R
3
(ψγ 0φ)(t, �x) d3x . (6.1)

We denote the Hilbert space corresponding to this scalar product by Hm =
L2(R3, C

4); it consists of all square-integrable wave function on R
3. The Cauchy

problem for the Dirac equation is well-posed, meaning that for every square-integrable
wave function at time t there is a corresponding global solution to the Dirac equation.
We usually identify the Cauchy data at time t with the corresponding solution. In
this way, the Hilbert spaceHm becomes the solution space of the Dirac equation. On
this solution space, the scalar product (6.1) is independent of time and also does not
depend on the choice of the reference frame.

Similar as explained in (5.5) in two spacetime dimensions, we choose H as the
subspace of negative-frequency solutions. Moreover, choosing a regularization oper-
ator (5.6), we form the local correlation operators Fε(x) by (5.8). In view of the
signature of the spin inner product, these operators now have at most two positive
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and at most two negative eigenvalues. Taking the push-forward of the resulting local
correlation map (see (5.9) and (5.10), we obtain a causal fermion system (H,F, ρε)

of spin dimension two.

6.2 An Area Law for the Entanglement Entropy of a Spatial Subregion

We now explain how the area law for the causal diamond in two spacetime dimensions
derived in Sect. 5.3 can be extended to four spacetime dimensions. Exactly as explained
in two spacetime dimensions in Sect. 5.3, instead of the commutator inner product we
consider the scalar product on a Cauchy surface (6.1) ofMinkowski space.We let�R

3

be a bounded spatial subset, i.e. a subset of this Cauchy surface,

� ⊂ {t} × R
3 ⊂ M .

Moreover, for simplicitywe choose the iε-regularization, i.e. similar to (5.7)we choose
the regularization operator (5.6) such that

(Rεψ)(t, �x) :=
∫

R
4

d4k

(2π)4
(k jγ

j + m) δ
(
k2 + m2) �(−k0) ψ̂

(
k1
)

eεk0 eikx

(in [35] more general regularizations with cutoff functions in momentum space are
considered). It is shown in [35, Theorem 1.1] that the entanglement entropy of the
region � obeys the area law

lim
ε↘0

ε2 Sε
� = M vol2(∂�) ,

whereM > 0 is a numerical constant. We point out that this area law is not enhanced.
We remark that in [35] this result was proven for more general regularizations by
cutoff functions. Moreover, the situation is considered that the region � is scaled by
a parameter L . For simplicity, we here restrict attention to the special case of interest
here. In addition, corresponding area laws were proven for the Rényi entropy.

We finally remark that this result for the fermionic entanglement entropy can be
used to define a notion of two-dimensional area A for causal fermion systems, i.e.,

A := c SV

(with a constant c depending on the regularization length). An alternative, simpler
method for defining the two-dimensional area A is given by

A :=
∫

∂�t ∩V
dρ(x)

∫

M\(�t ∪V )

dρ(y) L(x, y) .

(a similar definition was first given in [13]). Comparing these notions and deriving
relations between them seems an interesting project for the future.
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7 Example: The Event Horizon of a Schwarzschild Black Hole

We now explain how to get a connection to the fermionic entanglement entropy of a
Schwarzschild black hole as studied in [33]. The construction of the causal fermion
system in Minkowski space as outlined in Sect. 6 extends in a straightforward way to
curved spacetime (for details see [19, Sect. 1] or [21, Section 3.1]).More precisely, in a
globally hyperbolic spacetime, the solutions of the Dirac equation again form aHilbert
space, where the scalar product is obtained similar to (6.1) by integrating the wave
functions over a Cauchy surface. After introducing regularization operators (5.6), one
can again introduce the local correlation operators by (5.8) (where the product ψφ is
now the inner product of signature (2, 2) on the spinor space at x). Taking the push-
forward of the volumemeasureμ = √| det g| d4x with respect to the local correlation
map again (5.10) gives the causal fermion system.

In the Schwarzschild black hole geometry, this construction can be carried out more
explicitly using the integral representation for the Dirac propagator as derived in [28],
aswe nowoutline. In Schwarzschild coordinates, the line element of the Schwarzschild
geometry takes the form

ds2=g jk dx j dxk =
(
1− 2M

r

)
dt2−

(
1− 2M

r

)−1
dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2 ,

where M > 0 is the mass of the black hole. We here restrict attention to the exterior
region outside the event horizon. Thus the coordinates (t, r , ϑ, ϕ) are in the range

−∞ < t < ∞, 2M < r < ∞, 0 < ϑ < π, 0 < ϕ < 2π

(here r = 2M corresponds to the event horizon). The exterior region is globally
hyperbolic. The surfaces of constant coordinate time t form a foliation by Cauchy
surfaces. Similar to the Fourier representation in Minkowski space (5.5), a general
solution of the Dirac equation can be written as

ψ(t, r , ϑ, ϕ) =
∑

k,n

∫ ∞

−∞
dω e−iωt

2∑

a=1

ψ̂kn
a (ω) �kωn

m,a (r , ϑ, ϕ) ,

where k ∈ Z+1/2 and n ∈ N label the angular momentummodes, and�kωn
m,a (r , ϑ, ϕ)

are formed of fundamental solutions of the separatedODEs.Noting that the integration
variable ω is the frequency of the solution, we can choose the subspaceH of negative-
frequency solutions simply as in (5.5) by restricting the integration range to ω ∈
(−∞, 0]. Moreover, the regularization can be incorporated by inserting as in (5.7) an
exponentially decaying factor eεω, i.e.,

(Rεψ)(t, r , ϑ, ϕ) :=
∑

k,n

∫ 0

−∞
dω eεω e−iωt

2∑

a=1

ψ̂kn
a (ω) �kωn

m,a (r , ϑ, ϕ) .
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Forming the local correlation operators and taking the push-forward of the volume
measure with respect to the local correlation map gives a causal fermion system
describing the exterior Schwarzschild geometry.

Working in Gaussian coordinates, one sees that the computations in Minkowski
space in [31, Sect. 5] also apply in curved spacetime. Therefore, similar to (5.12) the
commutator inner product again coincides up to a prefactor with the scalar product.
Moreover, localizing the scalar product as in Fig. 1 again reduces to multiplying by a
characteristic function (5.17). In this way, exactly as explained for Minkowski space
in Sect. 6, the notions of fermionic entropies of the causal fermion system reduce to
the corresponding notions in quantum field theory. In other words, the results in [33]
extend to causal fermion systems, giving a concise definition of the entanglement
entropy of the event horizon. Moreover, this entanglement entropy can be computed
by counting the number of occupied angular momentum modes. More precisely, the
entanglement entropy can be written as the sum over the angular momentum modes

Sε =
∑

k,n

Sε
k,n ,

and each mode satisfies an enhanced area law, i.e. similar to Theorem 5.1,

lim
ε↘0

Sε
k,n = 1

6
.

For the detailed definition of Sε
k,n and the proof we refer to [33].

8 Example: Fermionic Lattices

In this section we illustrate how the causal fermion system constructions above are
related to the usual treatment of entanglement and entropies in fermionic lattices in
quantum many body physics and the Kähler structure formalism for quasi-free states
(or synonymously Gaussian states). In particular, we use this example to review the
role of particle-number preserving states inside the larger class of quasi-free states.

It is natural to discuss this relation in the context of fermionic lattices, because it
is typical for quantum many body models to have energy eigenstates which are not
particle-number preserving, i.e., they are not of the type of quasi-free states we focus
on here. A prototypical example is the Kitaev chain model [2, 46]

H = −μ

N∑

i=1

�
†
i �i − t

N∑

i=1

(
�

†
i+1�i + �

†
i �i+1

)
+ �

N∑

i=1

(
�

†
i �

†
i+1 + �i+1�i

)
.

(8.1)
If � �= 0 such that the so called pairing terms or squeezing terms do not vanish, the
ground state and other eigenstates of H , all of which are quasi-free states, have in
general non-vanishing expectation values 〈�i� j 〉 �= 0.

The following subsection briefly reviews how to treat such general quasi-free states
and how to calculate their entropies, also using the Kähler structure formalism (closely
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following [5]). We then discuss the particle-preserving quasi-free states with respect
to a given total particle number operator, and finally give a causal fermion construction
for particle-preserving quasi-free lattice states.

8.1 Review of Quasi-free Fermionic States, Entropy and Kähler Structure

Consider a lattice of N fermionic sites, such as the example of the one-dimensional
Kitaev chain in (8.1). Every site i = 1, . . . , N hosts one fermionic mode which has
a creation operator �

†
i and an annihilation operator �i satisfying the canonical anti-

commutation relations. We may organize the latter into one 2N × 2N -matrix,

G =
⎛

⎜
⎝

{�i , � j } {�i , �
†
j }

{�†
i , � j } {�†

i , �
†
j }

⎞

⎟
⎠ =

(
0 1

1 0

)
. (8.2)

The creation and annihilation operators act on the 2N -dimensional quantum mechani-
cal Hilbert space of fermionic states denoted by F which can be obtained by the usual
Fock space construction: Starting from the joint vacuum state of all modes, character-
ized by �i |0〉 = 0 for all i , the Fock states are obtained by acting on the vacuum with
all possible combinations of creation operators.

A thermal state of theHamiltonian H has the statistical operator (or densitymatrix)

Wβ := 1

Z
exp

( − βH
)
,

where β = 1/(kT ) is the inverse temperature and Z := trF exp (−βH) is the partition
function (in the physics literature, this statistical operator is commonly denoted by σβ

or ρβ ; we here use Wβ in order to avoid confusion with the operators σ and σV

in (3.1) and (4.2), or the universal measure). If the Hamiltonian H is quadratic (as
in (8.1)), then the thermal state is quasi-free. In particular, in the limit of infinite inverse
temperature β → ∞ we obtain the ground state of the Hamiltonian Wβ → W∞ =
|g〉〈g|. Whereas the ground state is a pure state, the thermal states at finite β are mixed,
i.e., W 2

β �= Wβ .
In fact, all quasi-free states can be obtained in this way: For every mixed quasi-free

state there exists a quadratic operator Q such that

Wβ = 1

Z
exp(−Q) with Z = trF exp (−Q) (8.3)

is its statistical operator. And if W = |u〉〈u| is a pure Gaussian state, then there exists a
quadratic parentHamiltonianwhose ground state is |u〉. (Formore details, for example,
see [5].)

Quasi-free states obey a Wick’s theorem, meaning that higher order correlations
can be calculated from the two-point correlation functions only. Hence, the density
operator Wβ acting on the fermionic Fock space F (of 2N complex dimensions) is
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already fully characterized by the covariance matrix

� = (−i)

⎛

⎜
⎝

tr Wβ(�i� j − � j�i ) tr Wβ(�i�
†
j − �

†
j �i )

tr Wβ(�
†
i � j − � j�

†
i ) tr Wβ(�

†
i �

†
j − �

†
j �

†
i )

⎞

⎟
⎠ . (8.4)

The characterization of the state can be further compressed from this 2N × 2N -
matrix down to the N real numbers given by the occupation of the state’s normal
modes: To this end, we diagonalize the generator Q of a given Gaussian state by a
Bogoliubov transformation of the general form

� ′
i =

n∑

j=1

ui j� j + vi j�
†
j . (8.5)

In order to preserve the canonical anti-commutation relations, the coefficient matri-
ces ui j and vi j must satisfy the relations

N∑

k=1

uik u∗
jk + vik v∗

jk = δi j and
N∑

k=1

uikv jk + viku jk = 0 . (8.6)

By a suitable choice of these coefficient matrices, one can arrange that the site opera-
tors �i are mapped the normal modes � ′

i of Q, i.e.

Q =
N∑

i=1

βi

(
�

′†
i � ′

i − � ′
i�

′†
i

)
=

N∑

i=1

2βi ni −
N∑

i=1

βi , (8.7)

where the ni are the number operators ni := �
′†
i � ′

i .With respect to the normal modes,
the state’s density matrix is proportional to Wβ ∝ exp(−∑

i 2βi ni ), which means that
it is given by a simple product state between the normal modes. More precisely, the
partial state of each normal mode is given by

Wi := 1

2 cosh βi

(
e−βi 0
0 eβi

)
,

and the normal modes are entirely uncorrelated from each other. This means that
the total von Neumann entropy is the sum of the entropies of all normal modes,
S = ∑N

i=1 Si . The only non-zero entries of the state’s covariance matrix are

〈
� ′

i�
′†
i − � ′†

i �
′
i

〉
= tanh βi ,

which is often written as tanh βi = cos 2ri , with −βi = log tan ri , to yield (see [5])

〈
� ′†

i �
′
i

〉
= 1

2
(1 − cos 2ri ) = sin2 ri .
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Using this formula, one obtains the von Neumann entropy for each normal mode as

Si =− tr Wi log Wi =−
(〈

� ′†
i �

′
i

〉
log

〈
� ′†

i �
′
i

〉
+
(
1 −

〈
� ′†

i �
′
i

〉)
log

(
1−

〈
� ′†

i �
′
i

〉))
,

in agreement with (2.3) and (2.4).
Abovewe annotated the anti-commutation relations and the covariancematrix of the

state as matrices in order to highlight the connection to the Kähler structure formalism
for Gaussian states. A strength of this formalism is that, in addition to illuminating
the geometry of Gaussian states and phase space, it also allows us to treat fermionic
and bosonic Gaussian states largely in parallel. Following the comprehensive review
[5], we here briefly introduce the basic notions of the approach.

ThematricesG and� represent bilinear two-forms on the dual of the system’s phase
space. They can be contracted to yield a linear map on the system’s phase space:

J = �G−1 = (−i)

⎛

⎜
⎝

tr Wβ(�i�
†
j − �

†
j �i ) tr Wβ(�i� j − � j�i )

tr Wβ(�
†
i �

†
j − �

†
j �

†
i ) tr Wβ(�

†
i � j − � j�

†
i )

⎞

⎟
⎠ . (8.8)

If the Gaussian state is pure, then J 2 = −id defines a linear complex structure on
phase space, and (G,�, J ) define a Kähler structure on phase space. If the state is not
pure, then

−1 < J 2 ≤ 0,

and the eigenvalues of J are ±i cos 2ri (in the notation above). The von Neumann
entropy of a quasi-free state can then be expressed directly in terms of J as

S =
∣∣∣∣tr

(
id + iJ

2
log

∣∣∣∣
id + iJ

2

∣∣∣∣

)∣∣∣∣ .

(Note that this formula holds for both fermionic and bosonic Gaussian states [5].)
To close the subsection we discuss how to treat general subsystems. In phase space,

subsystems can be characterized by projection operators: If P is a projection operator
acting on phase space, i.e. P = P2, which has even-dimensional rank and which is
orthogonalwith respect toG, i.e. PG = G PT , then the imageof P , as a subspace of the
total phase space, yields the phase space of a subsystem. The state of the subsystem is
then characterized by the restricted linear complex structure J|P = P J P . A common
and simple example of such a subsystem is, of course, a subset of v lattice sites.
Here the restricted linear structure is the 2v × 2v-matrix obtained by selecting the
corresponding lines and columns of J in (8.8).

8.2 Particle-Number Preserving States

Whereas the previous subsection reviewed how to treat quasi-free states and their
entropy in general, for the scope of this paper we restrict attention to particle-number
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preserving quasi-free states. As specified in Sec. 2.1, in these states all squeezing
terms

〈
�i� j

〉 = 0 vanish. Hence the covariance matrix � and the complex linear
structure J both simplify. The latter, for example, is now given by

J = (−i)

(−2D + idN 0
0 2D − idN

)
, (8.9)

where (D)i j =
〈
�

†
i � j

〉
is the state’s reduced one-particle density operator.

Since D forms aHermitianmatrix, there exists a unitary Bogoliubov transformation
from the lattice site modes �i to a set of normal modes � ′

i which diagonalizes D.
This Bogoliubov transformation has the form

� ′
i =

∑

j

ui j� j , (8.10)

which does not mix creation and annihilation operators. Since all vi j = 0 vanish, it
follows from (8.6) that the coefficients U = (ui j ) form a unitary N × N -matrix. For
these modes we have 〈

� ′†
i �

′
j

〉
= δi jλi (8.11)

and the reduced one-particle density operator reads

D = U T diag(λ1, . . . , λN )U∗, since
〈
�

†
i � j

〉
=
∑

k,l

uki u
∗
l j

〈
� ′†

k�
′
l

〉
=
∑

k

uki u
∗
k jλk .

(8.12)
Note that here 0 ≤ λi ≤ 1, whereas the normal modes used in the previous subsection
have 0 ≤ λi ≤ 1

2 . (The latter condition could be achieved by following up the unitary

Bogoliubov transformation with simple transformations of the type ci �→ c†i .)
Since the Bogoliubov transformation between the lattice site modes �i and the

normal modes � ′
i is unitary, the total number operator defined with respect to both

sets of modes is identical,

n̂ =
∑

i

n′
i =

∑

i

� ′†� ′ =
∑

i, j,k

u∗
i j uik�

†
j �k =

∑

i

�
†
i �i =

∑

i

ni , (8.13)

which motivates the name particle-number preserving state, together with the fact that
the state’s statistical density operator W commutes with n̂.

From this emerges a particularly clear interpretation of pure particle-number pre-
serving quasi-free states: Every such state is given by a simple product state of its
normal modes in which a certain number of modes 0 ≤ p ≤ N is occupied. For
occupied modes we have λi = 1 whereas the not occupied modes have λi = 0. In
particular, every pure particle-number preserving quasi-free state is an eigenstate of
the total number operator with

〈
n̂
〉 = p.
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8.3 Description in the Setting of Causal Fermion System

In this subsection we construct a causal fermion system for a particle-number pre-
serving quasi-free state on a fermionic lattices and its subsystems, as discussed in the
previous sections.

We begin with the case of a pure state and use the notation from the previous
subsection. Assume that we are given a particle-number preserving quasi-free state of
particle number p. Without loss of generality, we assume that the state is simply ψ ′

1 ∧
· · · ∧ ψ ′

p, i.e., the state where the first p normal modes are occupied. Intuitively
speaking, the Hilbert space H of a causal fermion system can be thought of as the
space spanned by all occupied fermionic states of the system. Hence, we useH = C

p

for the Hilbert space and denote its standard basis by |1〉, . . . , |p〉. On this Hilbert
space each lattice site, labelled by k = 1, . . . , N , is represented by a so-called local
correlation operator Fk defined by

Fk = −
p∑

i, j=1

u∗
iku jk |i〉〈 j | = |xk〉〈xk |, with |xk〉 =

p∑

i=1

u∗
ik |i〉. (8.14)

Clearly, Fk has rank (at most) one, and −〈xk |xk〉 is its only non-zero eigenvalue.
The sumof all local correlationoperators represents the reducedone-particle density

operator. In fact, all operators have the property to sum up to the identity

N∑

k=1

Fk =
p∑

i, j=1

N∑

k=1

u∗
iku jk |i〉〈 j | =

p∑

i, j=1

δi j |i〉〈 j | = idH. (8.15)

Hence, this sum actually yields a representation of D, if we viewH = C
p ⊂ C

N as a
subset of the one-particle Hilbert space of the system, on which D acts as a projector
onto the state’s occupied modes.

More generally, in the case of a mixed particle-number preserving quasi-free state,
p is given by the rank of D, i.e., the number of λi > 0 which are positive. Then,
withH = C

p, we define the local correlation operators by

Fk = −
p∑

i, j=1

u∗
iku jk

√
λiλ j |i〉〈 j | = −|xk〉〈xk | with |xk〉 =

p∑

i=1

u∗
ik

√
λi |i〉. (8.16)

This operator is semi-negative definite and has rank at most one. We denote the col-
lection of these local correlation operators by

M := {
F1, . . . , FN } ⊂ F ,

where F denotes the set of all negative semi-definite operators on H of rank at most
one. Finally, on M we introduce the counting measure ρ, i.e.,

ρ(V ) := #(V ∩ M) .
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The resulting structure is very similar to that of a causal fermion system (see Defi-
nition 2.2). The only difference is that F is now formed of all symmetric operators
which have zero positive and at most one negative eigenvalues. Using a notion first
introduced in [24, Definition 2.5], the triple (H,F, ρ) is a Riemannian fermion system
of spin dimension one. Riemannian fermion systems can be understood as a Euclidean
variant of a causal fermion system.

Also in the mixed state construction, the sum of all local correlation operators
yields a representation of the reduced one-particle density operator. In terms of the
measure ρ, we can define the operator

σ =
∫

M
dρ =

N∑

k=1

Fk =
p∑

i=1

λi |i〉〈i |. (8.17)

This operator is isospectral to D, apart from zero eigenvalues which do not contribute
to entropies. (Again as above, we may also view H ⊂ C

N as a subspace of the
one-particle space such that σ is basically equal to D.)

In order to capture a subsystem given by a subset of lattice sites V ⊂ M we simply
restrict the integration in (8.17) to V and define the operator

σV =
∫

V
dρ =

∑

k∈V

Fk . (8.18)

If for simplicity and without loss of generality, we assume that V = {1, . . . , v}, then

σV =
v∑

k=1

p∑

i, j=1

u∗
iku jk

√
λiλ j |i〉〈 j | =

∑

k∈V

|xk〉〈xk |. (8.19)

This operator is, apart from zero eigenvalues, isospectral to the reduced one-particle
density operator DV of the subsystem V . To see this, first note that DV corresponds
to first v × v-diagonal block of the N × N -matrix D in (8.12). Hence, if we take UV

to be the N × v matrix consisting of the first n columns of U , then

DV = (UV )T diag(λ1, . . . , λN )U∗
V . (8.20)

This matrix is isospectral, apart from zero eigenvalues, to the N × N -matrix

diag(
√

λ1, . . . ,
√

λN )U∗
V (UV )T diag(

√
λ1, . . . ,

√
λN ). (8.21)

However, all matrix entries of this matrix outside of its first p × p-diagonal block van-
ish, sinceλp+1 = · · · = λN = 0. This block in turn is exactly thematrix representation
of σV , as seen from (8.19).

The above shows that the system’s state, and the marginal states of subsystems are
captured respectively captured by σ and σV equivalently to the reduced one-particle
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density operators. In particular, we obtain the vonNeumann entropy of the total system
as S = trH(η(σ )) and of a subsystem as

SV = trH(η(σV )). (8.22)

We highlight that the subsystems obtained by restricting the measure ρ to a subset
of M do not exhaust all possible subsystemswhich can be defined in terms of projection
operators on phase space as discussed above. The presented construction only captures
subsystemswhose corresponding projection operator is diagonal with respect to lattice
site modes. In particular, it does not apply to potentially more abstract subsystems
where the diagonalization of the projection operator requires a general Bogoliubov
transformation that mixes annihilation and creation operators.

Instead the construction is apt for scenarios in which the reference basis modes,
here the lattice site modes, and the state’s eigenmodes agree on the notion of particle
numbers. As a consequence for pure particle-number preserving quasi-free states non-
trivial entanglement entropy of subsystems only arise if the state is neither the vacuum
state of no particles or the fully occupied state. In these two cases, because all |xk〉
have either unit norm or vanish, for all subsets V ⊂ M the only eigenvalues of σV are
either zero or one, such that S(σV ) = 0. (In the standard formalism this corresponds
to D = 0 or D = id such that also the restrictions to orthogonal subspaces either
vanish or are equal to the identity.)

9 The Fermionic Relative Entropy

We now consider two causal fermion systems (H,F, ρ) (describing the vacuum)
and (H̃, F̃, ρ̃) (describing the interacting system). In order to relate the two systems
to each other, we assume that both Hilbert spaces come with isometric embeddings
into a “larger” Hilbert space Htot, i.e.,

ιH : H ↪→ Htot , ιH̃ : H̃ ↪→ Htot .

This also gives a corresponding embedding of F into Ftot,

ιF : F ↪→ Ftot , x �→ ιH ◦ x ◦ πι(H)

(where πι(H) : Htot → ι(H) ⊂ Htot is the orthogonal projection). Indeed, given
an operator x ∈ F, the operator ιFx ∈ L(Htot) has again at most n positive and
at most n negative eigenvalues and is therefore in Ftot. Similarly, we introduce the
embedding ιF̃ : F̃ ↪→ Ftot. Finally, we introduce the measures ι∗ρ and ι̃∗ρ̃ on Ftot

by taking the push-forward. In this way, both spacetimes are described on the same
Hilbert space Htot. For notational convenience, we usually omit the embeddings.

Choosing past sets�t ⊂ M and �̃t ⊂ M̃ , the relation (3.1) defines two operators σ

and σ̃ onHtot.
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Definition 9.1 The relative entropy of σ̃ with respect to σ is defined by

Srel(σ̃ , σ ) = − trHtot

(
σ̃
(
log σ̃ −log σ

)+(1−σ̃ )
(
log(1−σ̃ )−log(1−σ)

))
, (9.1)

where η is again the von Neumann entropy function (2.4).

This formula is derived in Theorem A.7 in Appendix A.
The relative entropy can be applied in various ways. One situation is that one

causal fermion system is a subsystem of the other. To this end, given a causal fermion
system (H,F, ρ), we choose a closed subset of subset M̃ ⊂ M and introduce the
measure

ρ̃ = χM̃ρ .

Then (H,F, ρ̃) defines a causal fermion system describing the subregion M̃ .
As another application, one can consider two causal fermion systems in the same

classical spacetime. To this end, given a globally hyperbolic spacetime (M, g), we
choose a Cauchy surface N and the Hilbert space Htot = L2(N, SM) with scalar
product

〈ψ |φ〉Htot :=
∫

N
≺ ψ |/ν φ � (x) dμN(x)

(where /ν denotes Clifford multiplication by the future-directed normal ν, and μN is
the volume measure on N of the induced Riemannian metric). Solving the Cauchy
problem, thisHilbert space can be identifiedwith a space ofweak solutions of theDirac
equation. We chooseH, H̃ ⊂ Htot as subspaces of this solution space. Moreover, we
choose M̃ as M or a globally hyperbolic subset of M. Finally, we construct ρ and ρ̃

as the push-forward of the local correlation map (for details see [19]).
We now illustrate the last construction in two simple examples which tie in to the

examples in two-dimensional spacetimes considered in Sect. 5.

9.1 Example: Finite Particle Systems in Two-Dimensional Minkowski Space

We again consider the Dirac equation in two-dimensional Minkowski space. We
denote the Hilbert space of all Dirac solutions with the scalar product (5.4) again
by (Hm, (.|.)m). Slightly generalizing the construction in Sect. 5.1, we now introduce
the regularization operators (Rε)ε on all of Hm , i.e. in modification of (5.6)

Rε : Hm → C0(M, SM) .

As a concrete example one can consider the mollification by convolution with with a
test function, i.e.

(Rε ψε)(t, x) := 1

ε

∫ ∞

∞
η
( x − y

ε

)
ψ(t, y) dy
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with η ∈ C∞
0 (R, R). The precise choice of the regularization operators is irrelevant

because, as we shall see below, the relative entropy will be well-defined even in the
limit ε ↘ 0 when the regularization is removed.

We chooseH ⊂ Hm exactly as in Sect. 5.1 as the subspace of all negative-frequency
solutions of the Dirac equation. Forming the local correlation map (5.9) and taking the
push-forward of the volumemeasure (5.10) gives the causal fermion system (H,F, ρε)

describing the vacuum. Next we let H̃ ⊂ Hm be another subspace with the property
that it differs from H only on a finite-dimensional subspace, i.e.

H⊥ ∩ H̃ and H̃⊥ ∩ H are finite-dimensional subspaces of Hm . (9.2)

Forming the corresponding local correlation map F̃ε and taking its push-forward of
the volume measure gives the causal fermion system (H̃, F̃, ρ̃ε).

We now explain how to compute the relative entropy (9.1). As explained in Sect. 5.2,
we choose the subspaces Hf ⊂ H and H̃f ⊂ H̃ as all the negative energy solutions
which are macroscopic in the sense that their energy is much smaller than 1/ε. Then,
similar to (5.13), the operators σ and σ̃ are the identity on their respective Hilbert
spaces. Considering them as operators on the whole solution spaceHtot := Hm , they
are projection operators to the subspaces Hf and H̃f , respectively, i.e.

σ = πHf , σ̃ = πH̃f : Htot → Htot .

Using these formulas in (9.1), the operators log σ̃ − log σ and log(1− σ̃ ) − log(1−
σ) have rank bounded by the dimensions of the finite-dimensional subspaces (9.2).
Therefore, the trace is well-defined (it may be infinite in case that the operators σ

or1−σ have a non-trivial kernel on the subspaces H̃f respectively (H̃f)⊥). Moreover,
one sees that the relative entropy remainswell-defined in the limitwhenHf exhaustsH
and H̃ f exhausts H̃ .Moreover, taking the limit ε ↘ 0 does not give rise to divergences.
In this way, the relative entropy is well-defined even without ultraviolet cutoff.

9.2 Example: Finite Particle Systems in a Causal Diamond

As a modification of the previous example, we now restrict the systems in Minkowski
space to the causal diamond. Thus, following the procedure in Sect. 5.3, we denote the
volume measure in the diamond D (5.14) by μD and similar to (5.15) and introduce
the measures

ρε
D := Fε∗ μD and ρ̃ε

D := F̃ε∗ μD .

In thisway,weobtain twocausal fermion systems (H,F, ρε
D) and (H̃, F̃, ρ̃ε

D)describe
the causal diamond in the vacuum and containing a finite number of particles and
anti-particles. Similar to (5.17), the corresponding one-particle density operators are
obtained from those in Minkowski space by multiplying with characteristic functions,
i.e.

σD = χ�σχ� and σ̃D = χ�σ̃χ� .
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Now we can compute the relative entropy by (9.1) (adding a subscript D to all opera-
tors σ and σ̃ ). This entropy can be understood as the relative fermionic entanglement
entropy of the diamond.

Appendix A: Expressing Fermionic Entropies in Terms of the Reduced
One-Particle Density Operator

In this appendix, we explain how the von Neumann entropy of a quasi-free Fermi gas
can be expressed in terms of the reduced one-particle density operator. We assume
throughout that the state preserves the particle number. The formula derived in Theo-
rem A.1 appears commonly in the literature (see for example [52, Equation 6.3], [11,
47, 51] and [41, eq. (34)]). For completeness, in this appendix we give detailed proofs,
which might be of independent interest. The method of proof is by direct computation.
However, the computation is not quite straightforward. We are grateful to Wolfgang
Spitzer for explaining us the basic steps of the computation.

For technical simplicity, we restrict attention to the finite-dimensional setting. The
resulting formula can be extended in a straightforward way to infinite dimensions by
choosing an exhaustion and taking the limit, provided that all appearing operators
are trace-class. Thus we let (H, 〈.|.〉H) be the one-particle Hilbert space, which we
assume to be finite-dimensional,

Theorem A.1 The von Neumann entropy S of the quasi-free state ω (as defined by (1.1))
can be expressed in terms of the reduced one-particle density operator D (as defined
in (2.2) and (2.1)) by (1.2).

Moreover, given a parameter κ ∈ R
+ \ {1}, the Rényi entropy defined by

Sκ(W ) := 1

1 − κ
log trF

(
W κ

)
(A.1)

can be written as

Sκ = − trH ηκ(D) ,

with

ηκ(t) := 1

1 − κ
log

(
tκ + (1 − t)κ

)
.

We now enter the proof of this theorem, which will be completed after the proof of
Lemma A.3. We first explain how the statistical operator W can be constructed from
a given reduced one-particle density operator. Thus let D be a symmetric operator
with 0 ≤ D ≤ 1. We choose an orthonormal eigenvector basis e1, . . . , eN of D, i.e.

Den = dn en with 0 ≤ dn ≤ 1 .

In preparation of the general construction of W , we begin with the case N = 1 of
a one-dimensional Hilbert space. In this case, the Fock space F is two-dimensional,
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spanned by the vacuum |0〉 and the Fock vector �†|0〉 where the one-particle state e1
is occupied, i.e.

F = span
(|0〉, �†|0〉) .

Using a matrix notation, the state ω is represented by an operator W on F having the
matrix representation

W =
(
1 − d 0
0 d

)
, (A.2)

where we set d = d1. This is a statistical operator, where the one-particle state e1
is occupied with probability d. Decomposing it into a convex combination of pure
states,

W = (
1 − d) |0〉〈0| + d |�†|0〉〈0|�| ,

each summand is obviously a quasi-free, and so is W . For what follows, it is preferable
to rewrite W as

W = (
1 − d

) |0〉〈0| + d �†� = (
1 − d

) (|0〉〈0| + d

1 − d
�†�

)

= (
1 − d

) (|0〉〈0| + e−s �†�
)

with s := log
(1 − d

d

)
. (A.3)

This operator can be rewritten as

W = (
1 − d

)
e−s�†� ,

as is immediately verified by writing out the matrix representation (A.2).
In the case N > 1 of general dimension, the Fock state has a similar structure, as

is made precise in the next lemma. We denote the creation and annihilation operator
corresponding to the basis en by �

†
n and �n , respectively.

Lemma A.2 The quasi-free state ω having the one-particle density D can be repre-
sented on the Fock space F by

ω(A) = trF
(
W A

)
, (A.4)

where

W := det(1 − D) exp

(
−

N∑

n=1

sn �†
n�n

)
(A.5)

and

sn := log
(1 − dn

dn

)
. (A.6)
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Proof Wefirst verify by direct computation that W is a density operator. It is obviously
positive. Therefore, it remains to show that it has trace one. The operator �

†
n�n has

the eigenvalues zero and one, depending on whether the state en is occupied or not.
Therefore, the operator

e−sn�
†
n �n has the eigenvalues 1and e−sn .

Similarly, the operator

exp

(
−

N∑

n=1

sn �†
n�n

)
has the eigenvalues

N∏

n=1

e−pnsn with pn ∈ {0, 1} .

(A.7)
Taking the trace gives

trF exp

(
−

N∑

n=1

sn �†
n�n

)
=

∑

p1,...,pN ∈{0,1}

N∏

n=1

e−pnsn

=
N∏

n=1

∑

pn∈{0,1}
e−pnsn =

N∏

n=1

(
1 + e−sn

)
(A.6)=

N∏

n=1

(
1 + dn

1 − dn

)
=

N∏

n=1

1

1 − dn
.

Therefore,

trF W = det(1 − D) trF exp

(
−

N∑

n=1

sn �†
n�n

)
=

N∏

m=1

(1 − dm)

N∏

n=1

1

1 − dn
= 1 ,

concluding the proof that W is a density operator.
Let us verify that the state defined by (A.4) is quasi-free. This can be seen in various

ways. One method is to write (A.6) similar to (A.3) as

W = det(1 − D)

N∏

n=1

(
1 + e−sn �†

n�n

)
.

Multiplying out, we get a sum of terms. Each summand describes a pure product state,
which clearly is quasi-free. Taking a convex combination, it follows that also W is
quasi-free.

We finally verify that reduced one-particle density of W coincides with D. The
two-point function is computed as follows.

trF
(
�

†
k �k W

) = det(1 − D) trF
{
�

†
k �k e−∑N

n=1 sn �
†
n �n

}
.
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Similar to (A.7), the operator inside the curly brackets has the eigenvalues

pk e−sk

N∏

n=1

e−pnsn .

Hence

trF
{
�

†
k �k e−∑N

n=1 sn�
†
n �n

}
= e−sk

∏

n �=k

(
1 + e−sn

)
= e−sk

∏

n �=k

1

1 − dn
, (A.8)

and thus

trF
(
�

†
k �k W

) = (1 − dk) e−sk (A.6)= (1 − dk)
dk

1 − dk
= dk .

This concludes the proof. #$
We next compute the von Neumann entropy of W .

Lemma A.3

S(W ) = − trH
(
D log D + (1 − D) log(1 − D)

)
.

Proof From (A.5) it follows that

W log W = W log det(1 − D) − W
N∑

n=1

sn �†
n�n .

Taking the trace and using that W has trace one, we obtain

S = − trF
(
W log W )

= − log det(1 − D) + det(1 − D)

N∑

k=1

sk trF
{
�

†
k �k e−∑N

n=1 sn�
†
n �n

}
.

Using (A.8), we get

trF
(
W log W ) = log det(1 − D) − det(1 − D)

N∑

k=1

sk e−sk
∏

n �=k

1

1 − dn

= log det(1 − D) −
N∑

k=1

(1 − dk) sk e−sk

= log det(1 − D) −
N∑

k=1

(1 − dk) log
(1 − dk

dk

) dk

1 − dk
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=
N∑

k=1

log
(
1 − dk

) −
N∑

k=1

dk log
(1 − dk

dk

)

=
N∑

k=1

log
(
1 − dk

) −
N∑

k=1

dk log
(
1 − dk

) +
N∑

k=1

dk log
(
dk
)

=
N∑

k=1

dk log dk +
N∑

k=1

(1 − dk) log
(
1 − dk

)

= trH
(
D log D + (1 − D) log(1 − D)

)
.

This gives the result. #$

Combining Lemmas A.2 and A.3, one obtains the statement of Theorem A.1 for
the von Neumann entropy. It remains to generalize this result to the Rényi entropy:

Lemma A.4 The Rényi entropy of W can be expressed by

Sκ(W ) = trH ηκ(D) .

Proof From (A.5) it follows that

W κ = detκ(1 − D) exp

(
− κ

N∑

n=1

sn �†
n�n

)

trF
(
W κ

) = detκ(1 − D) trF
{
exp

(
− κ

N∑

n=1

sn �†
n�n

)}

= detκ(1 − D) trF
{ N∏

n=1

exp

(
− κsn�

†
n�n

)}

=
N∏

n=1

(1 − dn)κ trFn

{
e−κsn�

†
n �n

}
,

where Fn is the two-dimensional Fock space generated from the vacuum by acting
with the operator �

†
n . Choosing a matrix representation similar to (A.2), we obtain

e−κ�
†
n �n =

(
1 0
0 e−κsn

)
.

Hence

trFn

{
e−κsn�

†
n �n

}
= 1 + e−κsn (A.6)= 1 +

( dn

1 − dn

)κ

.
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We conclude that

W κ =
N∏

n=1

((
1 − dn

)κ + dκ

n

)
.

Using this formula in (A.1) yields

Sκ(W ) = 1

1 − κ

N∑

n=1

log
((
1 − dn

)κ + dκ

n

)
= trH ηκ(D) ,

giving the result. #$
This completes the proof of Theorem A.1

We next prove a corresponding result for the entanglement entropy. To this end, we
begin with a subspaceHA ⊂ H of the one-particle Hilbert space. The fermionic Fock
space generated by HA is denoted by FA. It is clearly a subspace of F. Moreover,
choosing an orthogonal decomposition

H = HA ⊕ HB ,

we get a corresponding tensor product structure for the Fock spaces,

F = FA ⊗ FB .

Now letω be a quasi-free state described by the density operator W (as in LemmaA.2).
We introduce the density operator of the subsystem by

WA := trFB (W ) : FA → FA .

Theorem A.5 The von Neumann entropic difference

SA(W ) := − trF
(
WA log WA) − trF

(
W log W

)

can be expressed in terms of the reduced one-particle density operator D by

SA(W ) := tr
(
η
(
πHA D πHA

) − πHA η(D) πHA

)
,

where η is again the von Neumann entropy function (2.4), and πHA : H → HA is the
orthogonal projection operator.

This theorem follows immediately by combining Theorem A.1 with the following
lemma.

Lemma A.6 The state WA is again quasi-free. It is described by the one-particle density
operator

DA := πHA D πHA ∈ L(HA) ,
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Proof Let �1, . . . , �k be any field operator on FA. Then

ωA
(
�1 · · · �k

) = trFA

(
WA �1 · · ·�k

) = trF
(
W �̃1 · · · �̃k

)
,

where the tilde denotes the extension to the Fock space F by

�̃
(
ψA ⊗ ψB

) := (
� ψA

) ⊗ ψB .

This shows that the state ωA is again quasi-free. The reduced one-particle density can
be computed using (2.1) and (2.2) for any ψ, φ ∈ HA ⊂ H by

〈ψ | Dφ〉HA = ωA,2(ψ, φ) = ω2(ψ, φ) = 〈ψ | Dφ〉H = 〈ψ | πHA D πHAφ〉HA .

This concludes the proof. #$
We finally generalize the previous results to the von Neumann relative entropy.

For general quasi-free states formulas have been given in terms of the linear complex
structure [5]. Below, we prove derive in detail how to obtain the relative entropy of
particle-number preserving quasi-free states from the reduced one-particle density
operator.

Theorem A.7 Let W and W0 be the statistical operators of two quasi-free fermionic
states with corresponding reduced one-particle density operators D and D0, respec-
tively. Then the von Neumann relative entropy of W , in terms of D and D0, is given
by

Srel(W , W0) := − trF
(
W (log W − log W0)

)

= − trH
(

D
(
log D − log D0

) + (1 − D)
(
log(1 − D) − log(1 − D0)

))
.

Proof As shown in Theorem A.1,

trF
(
W log W ) = trH

(
D log D + (1 − D) log(1 − D)

)
.

Using again (A.4), we express W and W0 in terms of D and D0, respectively.
Clearly, since D and D0 in general do not commute, we can only diagonalize one of
these matrices, i.e.,

W = det(1 − D) exp

(
−

N∑

n=1

sn �†
n�n

)

W0 = det(1 − D0) exp

(
−

N∑

k,l=1

log
(
D−1
0 − 1

)k
l �

†
k �l

)
.

Thus

trF
(
W log W0) = log det(1 − D0)
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− det(1 − D) trF
(
exp

(
−

N∑

n=1

sn �†
n�n

) N∑

k,l=1

log
(
D−1
0 − 1

)k
l �

†
k �l

)
.

Computing the trace with help of the Wick rules, we get zero unless k = l. Thus

trF
(
W log W0) = log det(1 − D0)

− det(1 − D)

N∑

k=1

log
(
D−1
0 − 1

)k
k trF

{
�

†
k �k e−∑N

n=1 sn �
†
n �n

}
.

Computing the trace again with the help of the formula (A.8), we obtain

trF
(
W log W0)

= log det(1 − D0) − det(1 − D)

N∑

k=1

log
(
D−1
0 − 1

)k
k e−sk

∏

n �=k

1

1 − dn

= log det(1 − D0) −
N∑

k=1

log
(
D−1
0 − 1

)k
k (1 − dk) e−sk

= log det(1 − D0) −
N∑

k=1

log
(
D−1
0 − 1

)k
k dk

= trH
(
log(1 − D0) − D log

(
D−1
0 − 1

))

= trH
(
log(1 − D0) − D log

(
D−1
0

(
1 − D0

)))

= trH
(
log(1 − D0) − D log D−1

0 − D log
(
1 − D0

))

= trH
(
log(1 − D0) + D log D0 − D log

(
1 − D0

))

= trH
(

D log D0 + (1 − D) log
(
1 − D0

))
.

Here we used that for commuting matrices A and B,

log(AB) = log(A) + log(B) and log(A−1) = − log A .

Combining these formula gives the result. #$
Hence, we can write the von Neumann relative entropy of W as

Srel(W , W0) = trF
(
W (log W − log W0)) .

Since W and W0 are density operators and thus self-adjoint, they posses spectral
decompositions. Using Klein’s inequality, a direct calculation shows that this quantity
is non-negative and only zero if W = W0; see also [52].
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