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Abstract: We generalize Koopman-von Neumann classical mechanics to poly symplectic fields and
recover De Donder—Weyl’s theory. Compared with Dirac’s Hamiltonian density, it inspires a new
Hamiltonian formulation with a canonical momentum field that is Lorentz-covariant with symplectic
geometry. We provide commutation relations for the classical and quantum fields that generalize the
Koopman—-von Neumann and Heisenberg algebras. The classical algebra requires four fields that
generalize spacetime, energy—-momentum, frequency-wavenumber, and the Fourier conjugate of
energy-momentum. We clarify how first and second quantization can be found by simply mapping
between operators in classical and quantum commutator algebras.

Keywords: field theory; quantization; Koopman-von Neumann mechanics; De Donder—Weyl theory

1. Introduction

Koopman—-von Neumann (KvN) mechanics formulates classical mechanics (CM) with
a complex wavefunction in a Hilbert space [1-7]. This formulation helps clarify the simi-
larities and differences between CM and quantum mechanics (QM). Bondar et al. studied
an algebra for KvN mechanics that can be quantized by mapping to the Heisenberg al-
gebra [3]. The Koopman-von Neumann algebra contains the position operator £/, its
Fourier-conjugate wavenumber l%]-, the momentum operator i, and its Fourier conjugate
4. By recognizing that this KvN algebra has Fourier conjugate variables over phase space,
quantization can be found by setting p; = fik;. Our primary goal is to generalize this KvN
quantization to relativistic field theories.

De Donder—Weyl (DDW) theory contains a covariant Hamiltonian density for rela-
tivistic field theories with DDW Equations [8-11]. DDW theory contains poly symplectic
geometry, which introduces a conjugate poly momentum field of a higher tensor rank than
the field. The prefix “poly” refers to the higher rank momentum not found in symplectic ge-
ometry. In classical mechanics, the Euler-Lagrange equations account for a time derivative
of the momentum. In relativistic field theory, the analogous conjugate momentum is the
poly momentum defined with a partial derivative, as found in DDW theory. DDW theory
can be contrasted with Dirac’s canonical Hamiltonian density [12], which uses a partial
time derivative dy for the canonical momentum despite the Euler-Lagrange equations
containing all partial derivatives in d,.

Our initial goal was to recover the KvN quantization of DDW theory by generalizing
KvN mechanics to poly symplectic fields. We find that the DDW equations can be found
from a poly Liouville operator, which is related to previously studied poly symplectic
Poisson brackets [13], but this obscures Dirac’s canonical quantization. However, new poly
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KvN commutator algebras allow for straightforward quantization by mapping commuta-
tors of classical operators to quantum operators. While this provides a new path towards
DDW quantization, Kanatchikov has extensively discussed precanonical quantization as
the (geometric) quantization of DDW theory by considering Gerstenhaber brackets as
generalized Poisson brackets [13-27].

The main result of this work is to find the KvN quantization of a new Hamiltonian
density that is canonical, covariant, and symplectic. Canonical quantization is typically
used with Dirac’s canonical Hamiltonian density, which is symplectic but not covariant [12].
Precanonical quantization can be applied to the DDW theory [19,20], whose Hamiltonian
density is covariant but not symplectic, but rather poly symplectic. All known canonical
formulations have some type of symplectic or poly syomplectic geometry. Symplectic
geometry requires position and momentum to be of the same tensor rank, while poly
symplectic geometry allows for the momentum to be of a higher rank. Comparing the Dirac
and DDW Hamiltonian formulations inspires a new covariant, canonical, and symplectic
Hamiltonian density, as shown in Figure 1. We introduce a generalized KvN algebra for
these fields, whose second quantization leads to canonical commutation relations in terms
of a covariant phase space of fields with symplectic geometry. Technically, for second
quantization, the fields should be updated to operators.

While Witten and Crnkovic proved that covariant and symplectic structures for fields
exist, this focused on identifying a symplectic charge that integrates over a hypersurface
with time-like boundary [28-32], rather than considering a new type of Hamiltonian density
found from the canonical structure of the fields. Covariant formulations of Hamiltonian
dynamics have been previously discussed, but often do not present a Hamiltonian for-
mulation, despite referring to the Hamiltonian dynamics [33,34]. In hindsight, Iyer and
Wald’s formulation is close to ours, as a time-like vector t? was introduced in a similar
manner to our T+ to find their Hamiltonian Hy to study energy; however, no Hamiltonian
density was found directly from the Lagrangian density in this formulation for gravitational
fields [35-37]. Ashtekar found a symplectic Hamiltonian density that used a hypersurface
based on null infinity, but this was restricted to the study of general relativity [38]. Co-
variant phase space methods have been recently explored in a wide class of gravitational
theories [39-42]. However, a comprehensive formulation of arbitrary field theory with a
covariant, symplectic, and canonical Hamiltonian density still appears to be lacking to the
best of our knowldge.

To the best of our knowledge, this work includes the following results for the first time
(or at least provides additional context and clarity):

*  Construction of proper relativistic KvN mechanics and relativistic KvN algebra.

*  Generalization of KvN mechanics to poly KvN fields as DDW theory with a new poly
KvN algebra.

*  Anew covariant and symplectic Hamiltonian density formulation for relativistic fields.

*  Second quantization via deformation of commutator algebras over fields.

This manuscript is organized as follows. Section 2 introduces the new Hamiltonian
density, the analogous set of Hamilton’s equations, the generalized KvN algebra in terms
of a Fourier-phase space of fields, and its KvN quantization. Appendix A focuses on a
relativistic formulation of KvIN mechanics and its quantization to give the relativistic gener-
alization of the Heisenberg algebra. Appendix B introduces DDW theory, demonstrates
that the poly symplectic generalization of KvN mechanics is equivalent to DDW theory,
and presents the KvN quantization of DDW theory. Readers unfamiliar with KvN or DDW
theory may prefer to start with the appropriate appendices, while experts may proceed
directly to Section 2. While the appendices may contain some new results, they often
contain rederivations of older results.
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Figure 1. A comparison of the Dirac Hp, De Donder-Weyl #, and the new covariant H e, Hamilto-
nian densities, focusing on whether these formulations are covariant or symplectic. All Hamiltonian
formulations contain a canonical momentum, but not all are covariant or symplectic. These three
Hamiltonian formulations arise from the same Lagrangian density L.

2. Quantization of a New Hamiltonian Density

In this section, we introduce a new Hamiltonian density inspired by Dirac’s canonical
Hamiltonian density and the De Donder—-Weyl Hamiltonian density. Our strategy is to
develop a new Hamiltonian formulation by taking the local time-like component of a frame
field and combining it with the DDW canonical momentum to obtain something more simi-
lar to the Dirac canonical momentum. By contracting a time-like unit vector #, (x) = ¢!, (x)
with the poly momentum field to give 7(x) = %, 7" (x), the new Hamiltonian density
limits to Dirac’s Hamiltonian density when the unit vector is t#(x) = (1,0,0,0). In this
manner, we can locally refer to different spacetime foliations with applications for dy-
namical foliation schemes. The new canonical momentum field is found to be covariant
with respect to the global manifold, yet is symplectic with respect to the (position) field
¢(x). This new approach is well suited for canonical quantum relativistic evolution with
manifestly covariant and symplectic fields.

A key result is the canonical and covariant commutation relations of a scalar field ¢
with its conjugate field for classical, first, and second quantized fields. For classical fields
¢(x, px) over phase space (inspired by KvN mechanics), a Fourier-conjugate wavenumber
field «(y, py) is found, which can be first quantized to give ¢(x) and x(y) as classical fields
over spacetime instead of phase space. Table 1 summarizes the different possible phase
space configurations of classical and quantum fields. Note that ¢(x) is typically referred to
as a classical field, but in our context, the first quantization of KvIN mechanics over fields
implies that classical fields such as ¢(x) are actually first quantized, which is expanded
upon in Appendix B.2.3. Quantum fields are depicted by capital letters, which lead to ®(x)
and the conjugate momentum I1(y) as second quantized fields,

Zeroth quantized (classical):  [¢(x, px), k(y, py)] = i6® (x — y)6® (py — Py),
First quantized: [p(x),x(y)] = i6® (x —y), (1)
Second quantized: [@(x),T1(y)] = ihc|t|6@ (x —y),
which includes a time-like vector T* with dimensions of time to refer to the time-like

displacement between spacetime foliations. An important insight was to realize that "
also corresponds to the time-like component of a frame field. The simplest quantization
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procedure that we found is by setting ®(x) = ¢(x) and II(x) = hc|t|x(x), where the
extra factor of length c|t| in comparison to j = 1k is included to account for our use of
four-dimensional delta functions, while canonical quantization typically leads to three-
dimensional delta functions.

Table 1. The field content for classical, first quantized, and second quantized scalar fields for the
new covariant and symplectic approach are shown above. A field A(a) with a noncommutative
conjugate B(b) satisfies [A(a), B(b)] = ié(a — b). While KvN mechanics provides a wavefunction
P(x, p), the study of classical fields over phase space (zeroth quantized) such as ¢(x, p) has been
relatively unexplored. Classical fields such as ¢(x) found in the Klein-Gordon equation are referred
to as first quantized fields, since they are taken as a function of spacetime and have classical equations
of motion with /1. Second quantized quantum fields such as ®(x) are found as deformations of the
first quantized fields.

Quantization Level Field Noncommutative Conjugate
Classical phase space/zeroth quantized  ¢(x, p), (x, p) x(x,p), E(x,p)
Classical spacetime/first quantized ¢(x), m(x) x(x), &(x)
second quantized P(x) II(x)

2.1. A Covariant Hamiltonian Density Closer to Dirac’s

The Dirac canonical momentum of a field ¢(x) is given by tp(x) = %, while the
DDW canonical momentum is 77" (x) = %. One may also define v, = d,¢ as the
poly velocity field, while vp = dy¢ is the Dirac or canonical velocity field. The canonical
momentum has the advantage of intuitively being the same rank as the field itself with a
symplectic structure, similar to spacetime and energy—-momentum, while the DDW canoni-
cal momentum has the advantage of being Lorentz covariant. The canonical Hamiltonian
theory requires a spacetime foliation with timelike separated hypersurfaces, while the
DDW theory obscures the interpretation of time evolution for a more general notion of
spacetime evolution. As it turns out, two different paths of exploration led to this symplec-
tic Hamiltonian density by pushing the poly symplectic geometry of DDW closer to Dirac’s
Hamiltonian formulation.

First, Koopman-von Neumann dynamics demonstrates that Poisson brackets and com-
mutation relations provide different roles in classical theory, which becomes more apparent
when generalizing to poly symplectic fields. The Liouville operator in KvIN mechanics is
analogous with the Hamiltonian in quantum mechanics, but the poly Liouville operator £,
found in Appendix B.2.2 is now a covector, while the Hamiltonian is a scalar. This motivated
the search for an analogue of the poly Liouville operator as a type of energy—-momentum
density vector. The initial goal was to find a scheme in which Dirac’s Hamiltonian density
could be found in the time-like component when choosing " = (1,0,0,0).

Taking inspiration from Koopman-von Neumann mechanics in a De Donder-Weyl
formulation, we define a vectorial poly Hamiltonian density with the operator " which
reduces to Dirac’s Hamiltonian in the zeroth component when t# = (1,0,0,0) is chosen,

HY =ty — 2L 2)

The timelike component of this operator contains the canonical momentum 7°. If £
is a time-like constant; then, f d3xHO is identical to the canonical Hamiltonian found
within a particular inertial reference frame. One approach could be to multiply the DDW
Hamiltonian density by T+, but this would not lead to the Dirac Hamiltonian density in the
zeroth component in the same manner. However, the covector energy—-momentum density
functional above is no longer a Legendre transform of £. Nevertheless, a scalar energy
density functional can be defined by contracting Heww = T H".
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Second, consider a Legengre transformation with a velocity field v and a new conjugate
momentum field 7t giving Dirac’s canonical momentum when t4# = (1, 0,0, 0),

Y L

_an _an A
v="1Ho,p =1tHv T==— =Ty =—.
H(P L av Havu

3)

The trade-off for introducing a symplectic canonical momentum field 7r(x) is that
the Lagrangian density £ must be rewritten to isolate t+d, ¢, which will be explicitly
demonstrated later for the Klein-Gordon, Maxwell, and linearized gravity field theories.
By taking inspiration from the covariant DDW Hamiltonian and striving for the simplicity

of Dirac’s Hamiltonian with symplectic geometry, a new type of Hamiltonian density Hew
can be found that is covariant, symplectic, and canonical

Hypew =Vt — L = f’”vufvn” — L= ’fu%’l (4)

As mentioned, it turns out that H,ey = H"1,,. The Hamiltonian density above is a

Legendre transformation of the Lagrangian density since 7w = 357 = T

To obtain time evolution in a specific frame and to connect back to Dirac’s canonical
quantization, consider a time-slice vector t# = % thatis (1,0,0,0) in the rest frame. This
same concept of a time-like unit vector has been considered by Wald and Iyer as well as
Rovelli and Vidotto [35-37,43]. The poly Liouville operator contracted with T+ gives time

evolution for arbitrary inertial frames with coordinates x'* = (ct/, X’),

i%%q;(x) — it49,p(x) = T4, (x) = ithr,. 5)

While this equation in a sense relates time evolution to the conjugate poly momentum,
it does not dynamically evolve the scalar field with the Klein-Gordon field equations. This
relates to the fact that Schrodinger and KvN dynamics are first-order in time, while Klein—
Gordon is second-order and DDW contains two first-order equations. Before presenting the
full equations of motion, we will demonstrate that ¢ and 7t are a symplectic phase space
of fields.

The symplectic two-form is typically given by # = dx A dp, motivating a 2d-dimensional
phase space for d-dimensional spacetime. To demonstrate that this new Hamiltonian
formulation contains symplectic structure, recall how Poisson brackets for 2D phase
space can be described as a dyadic differential operator in terms of a symplectic metric

/0 1
=\ -1 0 )

am-a(E 5)( 50

Generalizing to fields, the partial derivatives with respect to ¢ and 7t lead to field-
theoretic Poisson brackets with symplectic structure,

o 0 1 92 dAJB 0AOB
— 9 9 % = o-o— — -,
{A, B}new A( 9 on ) < -1 0 > ( Tir )B op ot 7 84)' @)

¥ 6)

p)
s B_aAaB 0A 0B
dp

Mapping from the poly symplectic geometry of De Donder-Weyl theory to symplectic
structure is found by contracting " with { A, B},, shown in Equation (A87). Separate from
the commutation relations for the poly KvN algebra, the Poisson brackets describe how
these symplectic fields lead to canonical relations,

{(P/ n}new =1, {(P/ (P}new = {777/ n}new =0. (8)
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Upon completing this work, we realized that Witten, Zuckerman, and Crnkovic
have considered a symplectic current that is covariant [28-30]. Crnkovic clarified how a
symplectic current was the variation in the field times the poly momentum, except the
relationship to De Donder—-Weyl theory was not realized [31,32]. Their symplectic form w
includes an integral over a spacelike hypersurface, similar to Dirac’s canonical quantization,
but the Poincare invariance of w was expressed. In this manner, our formulation is quite
similar, as the choice of %, relates to a choice of spacelike hypersurfaces. Our formulation
seems to more easily provide a Hamiltonian density for general field theories.

The new set of Hamilton’s equations is found to be

aHnew

77’“%49 = {(P/Hnew}new: on ’ (9)
f”auﬂ’ = {N,Hnew}new—_a/};:;;w- (10)

Note how these forms of Hamilton’s equations apply to arbitrary fields and their
associated conjugate momentum fields, not just scalar fields. While these equations of
motion are in terms of a new kind of Poisson brackets, the fields ¢ and 7t can be found in a
commutator algebra that generalizes the KvIN algebra to fields.

Since the KvN algebra contains Fourier conjugate variables of phase space such as k
and 7 as shown in Equation (A11), there should also be generalized Fourier conjugate fields
k(x) and ¢(x) that are conjugate to ¢(x) and 7(x). Additionally, a field ¢(x) is in a sense
a generalization of a quantum wavefunction ¢ (x), while the classical KvN wavefunction
{(x, p) depends both on spacetime and energy-momentum. For this reason, generalizing
KvN mechanics to fields implies that the fully classical or zeroth quantized fields may be
a function over all of phase space. From this perspective, classical field theory typically
studies first quantized fields, which describes how the massive Klein-Gordon equation can
be studied as a classical field theory, yet still contain 7, as the coordinates are quantized,
but not the fields themselves.

The zeroth quantized KvN algebra associated with the fields ¢(x, p), 7(x, p), k(x, p),
and ¢(x, p) is given by the following commutation relations,

[(x, px)x(y,py)] = 6% (x —y)s® (pr — py), (11)
E(pa), m(y py)] = W (x =)™ (pr — py). (12)

The “position field basis” for zeroth quantized fields are

. 0
k(x,px) = —15(4)(x — y)5(4)(px _ py)m, (13)
. 0
Ex,pe) = i6W(x—y)oW (px — Py)m- (14)

The first quantized algebras associated with these fields ¢(x), 77(x), x(x), and (x) gives

[p(x),k(y)] = i6W(x—y), (15)
E(x), m(y)] = W (x—y). (16)

The “position field basis” for zeroth and first quantized fields are

() = i)z (17)
() = -5 18)
d

Alternatively, a “wavenumber field basis” could be chosen that finds ¢(x) = id (4) @)
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Next, we demonstrate that the interacting Klein-Gordon, Maxwell, and linearized
gravity equations of motion can all be derived from this new Hamiltonian density.

2.1.1. Covariant Hamiltonian Density for Klein-Gordon Scalars

To derive the new Hamiltonian density, it is convenient to introduce a frame field
et = (tH, ¥, 9", 2"). For non-gravitational theories, e} as a constant encodes global
Lorentz transformations between the global Minkowski manifold in some frame and local
coordinates that can be in a different frame, such that e‘fl is independent of x*. The local
and global frames are equivalent when ¢} is given by the identity matrix, which leads to
" =(1,0,0,0).

The Klein—Gordon action can be written as

S = / dtx Bfuaumav(p + %eyaucpe;avcp —V(p)|, (19)

where i = 1,2,3. The velocity field and conjugate momentum field are

v=1"3,, = % = £,0"¢. (20)

The new Hamiltonian density for an interacting Klein-Gordon field is

1 ,
Houew = 5 (7‘(2 — e;‘aucpe;avcp) + V(¢). (21)

Integrating by parts for the second term and dropping the boundary term allows for
an easier evaluation of Hamilton’s equations,

1 .
Huew = 5 (712 + qbe}lei,auavqb) + V(¢) + bdry. (22)
Applying the new set of Hamilton’s equations gives

fuapﬂ) = {4)/ Hnew}new =TI, (23)
oV
e

Plugging the first equation into the second leads to the Klein—-Gordon equation of
motion. In this manner, the Hamiltonian dynamics are identical to Dirac’s Hamiltonian,
except the frame fields are introduced to allow for arbitrary local frames. The new Hamilto-
nian density found is truly covariant. Understanding the role of ¢} as a frame field also
allows for a more dynamical realization of foliations. Despite T+ being the zeroth compo-
nent of e}, the local structure is independent of the global manifold. In this manner, Dirac’s
Hamiltonian is not covariant with respect to the global manifold since p = 0 is isolated.
The frame field allows for 2 = 0 to be chosen locally in a manner that the Hamiltonian
density is still Lorentz covariant with respect to the global manifold.

%“aun = {Tf/ Hnew}new = _ereiauav(l) - (24)

2.1.2. Covariant Hamiltonian Density for Maxwell Theory

The Maxwell action is
5= /d4x£ - /d”‘x(—iFWFW - A”Iu>. (25)
The velocity field of interest is

vy = Y9, Ay (26)
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The following relation allows for the Lagrangian to be expressed in terms of the
velocity field, '
oy = elfe] = 1, +el'e),. (27)

The Lagrangian density can be expanded to give

1 o o o
L = —iFWFW(T“T"TPT‘T—Q—T”e}-”cpe”]—i—efr”epl”c”—ke;le}’ep’e”]) (28)

1 . . A 1 - 1 o
= —Ee}’v”e‘”vg + e‘”vme"e]VT“E)VALL - Ee}”r”E)UAHe‘”’cPE)UAPl - EFWFP”el”e}’e;, -

The conjugate momentum field is found to be

oL , -
7 = 3 = —e}’e”](vu —tHo,Ay) = —e}’e‘”f”FW. (29)
g

Another way to express the conjugate momentum field is given by
P = (25 + el ) Fu " = 5t Fpy + 7 = Wy, (30)

where the antisymmetry of F,, led to the vanishing of the first term above. A background-
independent derivation using differential forms would automatically impose this antisym-
metry. Both forms of the conjugate momentum allow for the Lagrangian density to be
rewritten as 1 1

L=—gmim ~ EPWFWe{Le]Ve;e{, — AM],. (31)

The covariant Hamiltonian density is found as

1 1 P
Hpew = vHmy — L =1y <—27TPL + ﬁ,a“AV> + ZFWFP‘Te;Le}’e’pe{, + AMJ,. (32)

Covariant Hamilton’s equations (after integrating by parts) lead to

0

oA, = ?7:5’” = —m, + M9, Ay, (33)
9 L

tHIL Ty — ;{ij = oMty + B“Fpae’ue{,efe;’ — . (34)

Plugging the first equation into the second leads to
J» = —tYoum, +oMmut, + B“Fpgeite{,efe?

= et 1P For + 11,0 Fyyp + 0" Fpoeleele]

— A APLL LT | ATA O i 0,0
= MFy (Turpevei + 7 tej el + ey eve; e]«)
= MF.. (35)

where using Equation (27) and 717 Fp; = 0 were used to simplify the result above.

2.1.3. Covariant Hamiltonian Density for Linearized Gravity

Since general relativity would require a dynamical frame field eL (x) that is position
dependent, it is worthwhile to first establish the new Hamiltonian density for linearized
gravity. The linearized gravity action with matter is

5= / d%(éapfzwapw . iaﬁa%) (36)
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Treating /1., as the dynamical field leads to the velocity field 7,

Ty = P9l (37)

The Lagrangian can be rewritten as

L- ;(ﬁwvw S0+ el (aprzwagﬁw - ;aﬂﬁa(,fz)) - SZITGKTWIZW, (38)
where 7 = 7,,#*". The conjugate momentum field is found to be
_ oL 1 . .
M = " =M — 577””1/ =M = £,0°hM, (39)

where a reciprocal relationship is found such that v, = 7., etc.
The covariant Hamiltonian density in terms of the gravitational field /,,, and conjugate
momentum field 7" is

871G

! 77— Sehel (apzwa(,flw - ;apﬁa(,ﬁ) + C T, o)

_ v
Huew = Enpvnu -

The covariant Hamilton’s equations give

a0n T oH _ 1
0phw = af;f;" = Tl = 51w = T, (41)
A0 oH - - 1 2\ 81G -
0, Ty - a}_l':fvw = — (e;}efapag <huv - 217Wh> t KT””>. (42)
Plugging the first equation in the trace reversal of the second equation and rearranging
leads to S
(527 + €he? ) 9 du s = Dphp = —Z[TKT“V. (43)

This reproduces the known equations of motion for linearized gravity.

2.2. Quantization of the New Hamiltonian Theory

Using the covariant and canonical Hamiltonian density H ¢, four sets of classical fields
¢(x), x(x), 7(x), and &(x) can be used to construct two quantum fields ®(x) and I1(x),

P(x) = agp(x)+bi(x), (44)
II(x) = cm(x)+dr(x). (45)

The commutation relations of the second quantized fields are therefore
[@(x),T1(y)] = (ad + be)is™ (x —y). (46)

Setting a = 1,d = he|t| and b = ¢ = 0 is the simplest quantization procedure,
although other possibilities exist, as mentioned in Equation (A34).

The following commutation relations are found with IT(x) = T#I1,,(x) as the sym-
plectic, covariant, and canonical momentum,

[@(x), T1(y)] ine|t|6® (x —y),
[@(x), ()] = [(x),II(y)] = 0. (47)

Similar to how p,, = fik,, it is anticipated that IT(x) = fic|7|x(x).

If one were to model the universe as a quantum computer simulation, then this
quantum computer must simulate the universe at a fast enough rate such that all possible
observables lead to self-consistent results. Since the Planck time is thought to be the
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smallest possible duration of time that could be measured, it is sensible to assume that such
a quantum computer simulation would use spacelike foliations separated by times no larger
than the Planck time. Thiemann states that spin quantum numbers in LQG are created
and destroyed in a Planck moment and Zizzi has discussed Planck-time foliations [44,45].

For our construction, this implies that |7| = tp = \/h;? . With this assumption, the new
canonical, covariant, and symplectic commutation relations for fields in natural units with
c=h=G=1,

[@(x), TI(y)] = 6™ (x — y). (48)

This canonical commutation relation for second quantized fields appears to be the
simplest possible that is manifestly covariant and symplectic. Building off of earlier
work [46-48], Equation (48) was recently presented in Ref. [49] as a result of
different motivations.

Four-dimensional delta functions are less common for commutation relations with quan-
tum fields. However, the standard commutation relations for Dirac’s canonical momentum
can be recovered. By taking " = (1,0,0,0), the new canonical momentum I1(x) becomes
cIlp, where I'lp is Dirac’s canonical momentum. By continuing from Equation (47),

[@(x),T1(y)] = [@(x), cTIp(y)] = incs® (x = y)o((tx — ty) /| ])- (49)

By integrating over t,, one finds that t;, = t. Therefore, when Equation (47) is evaluated
with ®(%, t) and I1(¥, t) at the same time and t* = (1,0,0,0), the standard commutation
relations with Dirac’s canonical momenta are found.

3. Conclusions

In this work, we have demonstrated that a Hamiltonian density for relativistic field
theory can be found that is canonical, covariant, and symplectic. This was found by taking
the De Donder-Weyl poly momentum field and contracting with the time-like component
of a frame field to obtain a symplectic momentum field. This momentum field can locally
interpolate between different ADM foliations of spacetime, which makes it closer to Dirac’s
canonical momentum. The generalized Hamilton’s equations for this new Hamiltonian
density were found and demonstrated to give the correct equations of motion for Klein—
Gordon, Maxwell, and linearized gravity theories. We also generalized the phase space
of fields to a Fourier-phase space of fields as a generalization of Koopman—von Neumann
mechanics, giving a classical commutator algebra of fields. KvN quantization of these new
fields was provided, which bypasses the use of Poisson brackets to map from classical
commutators to quantum commutators.

In Appendix A, a relativistic formulation of Koopman—von Neumann classical mechan-
ics was constructed, which found a problem of time for the proper Liouville operator for
the point particle action. The poly symplectic geometry of De Donder-Weyl theory was in-
troduced in Appendix B to study the generalization of relativistic Koopman—von Neumann
mechanics to field theory, which allows for the classical equations of motion to be derived
quickly from the De Donder-Weyl Hamiltonian density. To our knowledge, classical, first,
and second quantized poly Koopman-von Neumann algebras for fields were presented for
the first time, which was shown to be compatible with De Donder-Weyl dynamics.

In future work, it would be worthwhile to derive the general Yang-Mills field equations
and Einstein’s field equations from their respective covariant, canonical, and symplectic
Hamiltonian densities. The introduction of the frame field for specifying local frames
requires additional care in general relativity. Since the frame field is the gauge field of the
translations, formulations of gauge gravity such as subsectors of metric-affine gauge gravity
should be explored. Another avenue of exploration could use the relativistic Koopman-von
Neumann algebra introduced here to extend the prequantum operator algebra defined
in [7] and its possible category-theoretic realizations using pregeometric constructions
discussed in [50,51].
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Additionally, it would be worthwhile to explore singular Lagrangian densities, such
as spinor fields. Other work has attempted to use a quadratic action with a constraint to
describe spinors [52]. Revisiting the Dirac-Bergmann algorithm for singular Lagrangians
would also be appropriate [53]. Also, Kanatchikov has introduced a generalization of the
Dirac bracket formula to DDW theory for degenerate Lagrangian densities, such as the
Dirac Lagrangian density discussed above [22]. Finally, our work may be inspirational for
a covariant and canonical formulation of loop quantum gravity.
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Appendix A. Koopman-von Neumann Mechanics

Rather than reviewing KvIN mechanics, we introduce a relativistic KvN framework
using £%, py, IAcp, and 47, leading to an appropriate Liouville operator that determines the
proper time evolution. We find that the problem of time occurs in this Koopman-von
Neumann classical mechanics for the relativistic point particle action. This suggests that
the problem of time is not a problem with quantum mechanics, but rather stems from the
choice of the appropriate Hamiltonian formulation. Nevertheless, the KvN quantization of
special relativity can also be found by imposing f,, = fk,,, which is not generally true in
classical mechanics.

Appendix A.1. Classical Relativistic Koopman—von Neumann Mechanics

We start by introducing classical special relativity within Koopman—von Neumann
(KvN) mechanics. For an introduction to KvIN mechanics, see Ref. [6]. The two-state-vector
formalism interpretation of quantum mechanics has been related to the entangled histories
interpretation [54-61]. Entangled histories allows for a Hilbert space for time, which has
also been discussed elsewhere [46-48,62-65]. To the best of our knowledge, a Hilbert space
for time has never been discussed within KvN mechanics, which helps provide a relativistic
formulation of Koopman-von Neumann mechanics.

The standard Dirac bracket notation can be used for classical mechanics by admitting
a wavefunction ¢(A) = (Aly), and p*(A) = (Pp|A). A basis for phase space in classical
mechanics is provided with |A) = |x,p) = |x) ® |p), since position and momentum
are independent. Unlike QM, the spacetime position operator £* commutes with the
energy-momentum operator p, when acting on ¢ (x, p),

(2%, pulp(x, p) = 0. (A1)

while classical non-relativistic phase space allows for (X, 7,t) as seven dimensions,
the relativistic generalization initially motivates nine dimensions (eight independent) via

Yt pu, 7).
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To provide proper time evolution of a Hilbert space in a classical setting, a proper
Hamiltonian H is introduced from a proper Lagrangian L, such that a canonical and
covariant action is

S = /dTL = /clr(v”mL —H), (A2)

where " = aa"—: is the relativistic four-velocity and p, = a% is the canonical energy—

momentum. Proper Hamilton’s equations are found by varying about the classical path, giving

oxt*  oH

oT - ap = {xll, H}PB/ (A3)
i
d oH
7;;[ = om = {pw, H}ps (A4)

where the relativistic Poisson brackets are given by

J0A JB 0A 0B
{A,B}pp = aTuﬁ - aaxj (A5)

The proper Hamiltonian H allows for a proper relativistic Liouville equation in terms
of the probability density p(x, p, T),

do _ 9p  ox*dp  Odpudp _dp OH dp OH dp

dt 9t dT oxM 9T dpy OT Op.oxH  JxM dpy
_ 9 _ % A
P A (0

where £ is the proper Liouville operator, which is Hermitian in a manner similar to the
Hamiltonian operator H in quantum mechanics. The proper Liouville operator is found
from the proper Liouville equation after applying Hamilton’s equations. The proper
Liouville operator can be expressed with relativistic Poisson brackets, giving

0A 0H 0A JH

(A7)

The proper Liouville operator acting on x* and p,. gives proper Hamilton’s equations
while acting on p gives the proper Liouville equation.

The Koopman-von Neumann formulation of classical mechanics expresses probability
densities p(x, p) = ¥*(x, p)ip(x, p) in terms of the Koopman-von Neumann wavefunc-
tion ¥(x, p). While relativistic field theory typically defines a probability density of a
quantum field by taking a time derivative after generalizing the current to a four-current
one, the Klein—-Gordon field equation has one additional time derivative not found in the
Schrodinger equation. To obtain a relativistic analogue of the KvN equations, we assume
p(x,p,7) = ¢*(x,p,T)P(x,p,T) = |(x,p | ¥(7))|?. The proper Liouville operator is used
to lead to the proper Koopman-von Neumann equation,

0P .
—= = £ A
i =2y (A8)

This equation is a classical analogue of the Schrodinger equation (generalized to a
relativistic setting with proper time evolution).

In summary, classical KvIN mechanics has four axioms

1. The state of the system is represented by |¢) in a complex Hilbert space.
An observable is a Hermitian operator A for an eigenvalue A with eigenstate |A)
satisfying A|yp) = A|p).

3. The probability of A is given by P(A) = [(A | (t))|?* as the Born rule, which leads to
the instantaneous collapse of the wavefunction.
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4. The tensor product of subsystems leads to a description of the composite system.

The third axiom should be questioned for a relativistic formulation of classical mechan-
ics, as retarded functions for information transfer of measurements should be incorporated.
For now, our interpretation is that the wavefunction for observers infinitesimally close to
the measurement should observe the collapse of the wavefunction within an infinitesimal
amount of time.

The Poisson brackets of x* and p,, describe the symplectic structure of phase space, since

{xu/ pV}PB = 5#/ (Ag)
{x*,x"}pp = {pwpv}re =0. (A10)

Groenewold showed that mapping classical Poisson brackets to quantum commutators
as suggested by Dirac is not general [66]. The quantization procedure we pursue throughout
relates more to p,, = fik,,, which can be understood more clearly from the Koopman-von
Neumann algebra. The KvN algebra is given by

[ae“, icy} — ik, (A11)
[, pv] = idl, (A12)
(&%, p)] = [£%4"] = {ﬁv/]%v} = [,?H,f{v} =0, (A13)
(2%, 2] = [pup] = {fcu,fcy] =[4",4"] =0 (A14)

The KvN algebra is a commutative tensor product of two Heisenberg algebras (without
any notion of #1). The KvN algebra establishes that we have both A, B and [A, B] in the
classical setting. Rather than applying A,B — +[A, B], rigorous quantization can be
found by deforming the KvN algebra [3,7]. We updated the notation to reflect that k,, is a
frequency-wavenumber operator conjugate to £, wihle §* is a frequency—wavenumber
operator conjugate to energy-momentum p,,. As such, the KvNN algebra relates deeply to
the structure of Fourier-phase space.

Natural representations for the wavenumber operators k, and 4" in the phase space
basis |A) = |x, p) are

]

ky = 7181/ = 7lﬁl

GH =it =i—. (A15)
The operators £* and p, lead to the following eigenvalues when acting on a phase
space eigenstate, A .
x,p) = x"lxp), pulx,p) = pulxp). (Al6)
In the classical Koopman-von Neumann formulation, there is also a Fourier space
basis |A) = |k,q). On this basis, the operators can be represented with a bar, yet they
must satisfy the same Koopman-von Neumann algebra in Equation (8). The position and
momentum operators become differential operators in the Fourier conjugate basis,

= 0 R = a9
Mo M — b, = —i0, = —j——0
=it = laku' Pu= —id, = laqu' (A17)

=

The wavenumber operators of phase space act on wavenumber eigenstates to return
wavenumber eigenvalues,

kulk,q) = kulk,q), §*lk,q) = q*|k,q). (A18)

While this formulation leads to a manifestly relativistic KvN equation in terms of
proper time, it leads to a problem of time for the Lagrangian density of a free point particle,



Symmetry 2024, 16, 316

14 of 31

as the proper Liouville operator leads to zero. Consider the action for a point particle in
curved spacetime given by the proper length,

/ dx¥ dxv
S = *ﬂ”lC/dT *guyﬁﬁ. (A19)

The proper Lagrangian L is given by S = [ dtL, which leads to a proper covariant

momentum,
oL Y 1
Pu = 87“ = MCEu ¥V —F———= = MUy, (AZO)
v \/ —8apv*oP
where vH = ‘i;—: and vMv, = —c? was used to find the result above. This allows for the
solution of the proper Hamiltonian H to be found,
H=o"p, — L =moto, + mey/—guoto’ = —mc* +mc* = 0. (A21)

In the quantum theory, the proper Hamiltonian density operator would also be zero.

A similar problem occurs with the Wheeler-DeWitt equation, except the zero Hamil-
tonian is interpreted as a constraint [67,68]. With relativistic Koopman-von Neumann
mechanics, the proper Hamiltonian would be zero, which leads to a zero Liouville op-
erator for the time evolution of phase space. This suggests that the problem of time is
independent of quantum theory, but rather is a problem with some Hamiltonian systems
for relativistic theories. To avoid this problem and keep the manifest Lorentz invariance,
the De Donder-Weyl theory is pursued next, rather than a proper Hamiltonian formulation.

Appendix A.2. Quantization of Relativistic Koopman—von Neumann Mechanics

While classical theory treats p,, and k, as independent, quantum mechanics treats
the operators as linearly dependent via P, = #K, and Q" = hX". This relates to the
Heisenberg uncertainty relations of spacetime and energy-momentum in the relativistic
setting. From the operator algebra perspective, quantization of classical theory can be seen
in a straightforward manner with Koopman—von Neumann mechanics, as both utilize a
Hilbert space. A quantum deformation of classical phase space can be implemented as a
change of variables from £* — X" and p, — P,

(2%, po] =0 = [X", )] = iné}. (A22)

The 16 independent variables of classical Fourier-phase space x*, py, k,, and g7 can
be replaced by the 8 independent variables of quantum Fourier space (or quantum phase
space) X" and P,. This results in the the Heisenberg algebra with [X*, XV] = [P, P,] = 0.

The Heisenberg algebra can be found from the Koopman-von Neumann algebra by
shifting coordinates [3]. However, the relationship between wavenumber and the variable
conjugate to position was not mentioned, which overlooked the notion of P, = %K,,.
An important property of quantum mechanics is that the eigenvalues of X* should lead to
coordinates of £, assuming the quantum eigenvalues relate to a notion of classical reality.
To understand what shifts in coordinates can be made, consider

X* = agh +bhg", (A23)
151/ - Cﬁy + dhl’%y, (A24)

where 4, b, ¢, and d are constants to be determined partially by the following constraint,

[X%,0,] = [a2",cp,] + [af”, dhicv} + [bha*, cpy] + [bhq“, dhfcv}
= ih(ad+bc) — ad+bc=1. (A25)
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The quantum theory should have operators K, and Q7 which satisfy the following
relations,

B, =K, X" =nQ", (A26)
which results in
. A c.
Ky = dko+ 2y, (A27)
O = b+ %;e". (A28)

In order to have a quantum theory whose operators X+, P, Kp, and Q" lead to the
same eigenvalues as found in classical theory with £+, p,, IAcp, and 47, the following operator
relations are found when &% = " and p, = hik,,

Xt = (a+b)* — a+b=1, (A29)
P, (c+d)p, — c+d=1, (A30)
R, = (b+a)k, — a+b=1, (A31)
Q" = (d+0)§° — c+d=1 (A32)

when the following relations are satisfied, the quantum theory satisfies P, =hk, = Py = nik,,
etc. This assures that the quantum and classical Fourier phase space operators all agree
such that the quantum eigenvalues correspond to classical variables as introduced in the
Copenhagen interpretation. The solutions are not fully constrained, which allows for b, c,
and d to be found in terms of 4,

a—1 a

b=1-a c=5— d=5, =7

(A33)

Note that Ref. [3] chose a = 1,b = 1/2,¢c = 1, and d = 1/2 (since their }\p is our
—4). What this suggests is that the quantum theory in its formalism leads to quantum
position eigenvalues that do not correspond to the position eigenvalues in the classical
theory. For instance, if their p, = hlAcq and p = ik, then pq = 3p. This was not considered
problematic, as taking « (or 7) to zero leads to p; = p. However, quantum theory leads to
measurements of classical observables with real eigenvalues, so it seems to be an improve-
ment to select only the classical formulations that admit a correspondence between the
operators. While classical mechanics does not satisfy p = ik, our assertion is that quantum
theory must use operators P = /K that contain eigenvalues that match P = p and K = k in
some classical framework, which implies that p = ik within the quantum theory.

A few simple solutions for the coefficients include

Solution1l:a =1, b=0, c=0, d=1,
Solution 2: a = 2, b= -1, c=1, d=2, Ans
Solution3:a:%, b=-1 c=1 d=>2 (A34)

2/ 4 4
1

; P —1_ 1 — _ 1 — 1
Solut10n4.a—ﬁ, b=1 7 C= d_1+ﬁ'

where all of these satisfy ad +bc = 1,a+b = 1, and ¢ +d = 1. The solutions for 4, b, c,
and d are shown in Figure A1l. The first solution above is clearly the simplest, as it leads to

Xt = g, (A35)
b, = hk, (A36)
R, = ky, (A37)
Q7 = Lo (A38)
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This change of variables from Koopman-von Neumann classical mechanics to quan-
tum mechanics is the simplest and most unambiguous, as it clearly states that the quantum
momentum is equal to 7 times the classical wavenumber. For this solution, the classical
momentum p, and its conjugate momentum-wavenumber 47 are not expressed in the
quantum theory.

-4 -2 N\ / 2 4

s

6|

Figure A1. The solution for coefficients a,b, ¢, and d are shown as a function of a such that both the
classical and quantum phase space coordinates equal to Planck’s constant times their correspond-
ing wavenumbers.

Appendix B. Poly Koopman-von Neumann Mechanics as De Donder-Weyl Theory

Our next goal is to generalize KvN mechanics to relativistic field theory, which can be
carried out in multiple ways, as there are multiple relativistic formulations of Hamiltonian
dynamics for fields. While the Dirac or canonical Hamiltonian density is most popular,
the De Donder-Weyl Hamiltonian density naturally contains the poly momentum as found
in the Euler-Lagrange equations for relativistic field theory, as shown in Table A1. While
both formulations have a momentum field, the Dirac momentum is typically called the
canonical momentum, while the DDW momentum is covariant.

Reconciling canonical and covariant formulations of quantum gravity is perceived
as a challenge to this day [69]. While formulations have been proposed by both string
theorists and loop quantum gravity researchers, relatively little attention has been given
to KvN [1-7] and DDW theory [8-11]. While Witten et al. have found canonical and co-
variant formulations with symplectic structure, no Hamiltonian density was found [28-32].
Researchers have recently explored Witten’s use of covariant, canonical, and symplectic
structures in a wide range of gravitational theories, often referred to as covariant phase
space methods [39—42]. DDW theory contains poly symplectic/multisymplectic geometry,
which contains a Hamiltonian density and a conjugate poly momentum field. The covari-
ant phase space methods refer to the conjugate poly momentum, but the connection to
DDW theory has been largely overlooked. Thiemann acknowledges that quantization of
DDW theory is challenging and relatively unexplored [44], in reference to progress from
Kantachikov on DDW quantization [13-27].

A common approach to quantization is canonical quantization, which uses Dirac’s ifz
prescription by converting classical Poisson brackets into quantum commutation relations.
Groenewold’s theorem demonstrates that such a quantization map does not formally exist
in general, while deformation quantization considers a Moyal bracket as the appropriate
quantum deformation of Poisson brackets. Geometric quantization includes prequanti-
zation, which introduces a prequantum Hilbert space with a mapping between classical
Poisson brackets to quantum commutators. Kanatchikov’s precanonical quantization is
a type of geometric quantization from a DDW Hamiltonian, which studies Gerstenhaber
brackets as a generalization of Poisson brackets [20].
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Kanatchikov has extensively explored DDW theory with a poly symplectic form ) [13-27].
His precanonical quantization extends the DDW Hamiltonian operator to act on a Clifford
algebra-valued wavefunction with Dirac’s gamma matrices giving iixy*0, ¥ = HY as
a generalized Schrodinger equation for ¥ in a Clifford algebra [14]. While DDW theory
directly applies to classical fields, Kanatchikov’s exploration of precanonical quantization
is largely based on Clifford-valued wavefunction, similar to how the Wheeler-DeWitt
equation has a wavefunction. While authors have explored DDW theory [70-77], most
do not discuss quantization outside of Kanatchikov’s work. Kanatchikov’s generalized
Schrodinger equation may also be significant for Clifford relativity and applications to
membranes [78-84].

Below, we use poly Poisson brackets previously explored by Kanatchikov [13] to
obtain the equations of motion, which makes Dirac’s quantization not possible and leads
Kanatchikov to consider the Gerstenhaber brackets. However, by introducing new poly
KvN algebras in addition to the poly Poisson brackets, a transparent quantization of DDW
theory is found by mapping commutators of classical operators to commutators of quantum
operators. Both geometric quantization and KvN quantization have a notion of polarization,
which relates to the mapping of 2d dimensions of phase space to d dimensions of space
or spacetime. The KvN quantization introduced by Bondar et al. [3] is therefore similar
to geometric quantization; however, the quantization map most straightforwardly maps
operators in a complex Hilbert space from a classical commutator algebra to a quantum
commutator algebra. The nonrelativistic KvN algebra contains operators £/, p;, k;, and 4.
We clarify how quantization of KvN mechanics relates to setting p; = fik; as operators. This
quantization procedure is, in this sense, straightforward and intuitive.

Appendix B.1. Classical Field Theory with De Donder—Weyl Theory

Classical non-relativistic Lagrangian formulations lead to Euler-Lagrange equations
involving a time derivative %. This naturally leads to a covariant momentum in terms
of a velocity that takes a time derivative, giving a Hamiltonian. Relativistic field theory
generalizes the Euler-Lagrange equations to include a partial derivative d,,. However,
the so-called canonical Hamiltonian formulation from Dirac does not consider a poly
momentum from 9, and instead resorts to the time derivative within some frame of
reference, which breaks manifest Lorentz symmetry and is not covariant [12]. As we saw
for the relativistic point particle, using the proper time with % instead of % also leads to a
vanishing proper Hamiltonian. A natural framework for obtaining a manifestly covariant
and canonical Hamiltonian density that generalizes the notion of the relativistic Euler—
Lagrange equations is to introduce a poly momentum that uses d,, instead of % [6-10].
Relativistic field theories motivate poly symplectic geometry, since the Lagrangian density
integrates over spacetime, not time. To summarize, consider the Euler-Lagrange equations
in classical mechanics vs. classical field theory with a Klein-Gordon scalar, which lead to
the corresponding Hamiltonian formulations as shown in Table A1.

Table Al. A comparison of the Euler-Lagrange equations with the Hamiltonian (density) for Newto-
nian mechanics and relativistic field theory are shown above. Since the Euler-Lagrange equations
contain a partial derivative with respect to the poly velocity v, = 9,¢*, the De Donder-Weyl
(DDW) Hamiltonian density # with poly momentum 77*4 conjugate to any field ¢4 is natural for a
manifestly covariant and canonical Hamiltonian formulation.

Euler-Lagrange Hamiltonian
Newtonian particles LAl _ 4L — H=0p ~L
oL oL A K

Relativistic fields B”W —agx =0 H=vinh - L
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{A/B}u =

A manifest covariant and canonical formulation motivates the De Donder-Weyl Hamil-
tonian density H that is different than the canonical Hamiltonian density Hp. The poly
velocity and poly momentum densities of any field ¢ are given by

Vu = O (A39)
0
™ = 9L (A40)
99,4
Since dg = C at, the standard canonical momentum density 7 = % 77'50 Consider

a different type of Poisson bracket that contains a covector index to express the poly
symplectic geometry,

(A41)

dp(x) omrH(x) an“

9A 9B ] 9A 9B 9A OB
= [ st [a¢<>an»<> 3 (y) 3p(x) )

The poly symplectic structure of phase space over fields is characterized by this poly
Poisson bracket, since

{op(x), m*(x)}y = &, (A42)
{p(x), ¢(x)}n = {7m"(x), " (x)}p = 0. (A43)

Kanatchikov had previously discussed the same type of brackets in the language of
differential forms [13], which is similar to other authors use of poly symplectic Poisson
brackets [72,85-90]. Other Poisson brackets over fields lead to Dirac delta functions over
space [69]. Our conventions for the poly Poisson brackets allow for an easy identification
of the De Donder-Weyl equations in a manner that mimics classical mechanics. Note that
Dirac’s ifi prescription no longer holds, since the poly symplectic geometry has a conjugate
poly momentum of a different rank than the original field. This does not obscure second
quantization, especially once the generalization of the Koopman-von Neumann algebra
is articulated.

The De Donder-Weyl Hamiltonian density is

H=n"v, — L. (A44)
The De Donder-Weyl Hamiltonian is different than the canonical Hamiltonian intro-

duced by Dirac, as it contains additional Legendre transformations for spatial components
of the poly momentum and poly velocity. The canonical form of the action is therefore

S= /dA‘x(vun’l —H). (A45)

The variation in the action with respect to a classical orbit ¢ = ¢ + ¢ and
i = | 4 o7+ leads to

6S

(A46)

/ dx [&/unu—i-v@n“ M s H},

£ 59— anH
= /d4x[<vu — ;ﬁ)(sﬂ“ - (apn“ + E;Z)w + au(n”&p)].

Assuming that boundary terms vanish, the De Donder-Weyl equations are found
to give
oH
dup(x) = m ={¢(x), H}w (A47)
oH 1

durt™(x) = —ng{ﬂu(x)f

Hiw (A48)
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where 9% = 6!' and o} = d for d-dimensional spacetime.

The canonical Hamiltonian density allows for the derivation of field equations. Before
discussing quantization, we demonstrate how derivations of classical equations of motion
are simpler with the De Donder—-Weyl Hamiltonian density in comparison to the canonical
Hamiltonian density. The Hamilton—Jacobi theory for De Donder—Weyl theory for Klein—
Gordon, Dirac, and gauge fields has been previously discussed [11]. Kanatchikov has
discussed a wide variety of field theories with De Donder-Weyl theory, including p-form
electrodynamics, Yang-Mills theory, and general relativity to name a few [14-21,23-27]. The
DDW Hamiltonian density of a quadratic theory of gravity was also discussed recently [91].
Next, we provide simple and straightforward derivations of the Klein-Gordon, Yang-Mills,
and linearized gravity fields using standard notation familiar to quantum field theorists.
Later, we show that KvN quantization can be applied to DDW theory after generalizing the
KvN algebra to poly symplectic fields.

Appendix B.1.1. Klein-Gordon Scalar Field

The action of a real and massive Klein-Gordon scalar field ¢(x) with an arbitrary
potential V(¢) is

mzc

2
Sk = /d4x(;8u¢8”q>— o ¢ — V(<P)), (A49)

where the mostly minus metric 7, is used. Throughout, i = ¢ = 1. The Klein—-Gordon
poly velocity and poly momentum are

Vp = au(Pl ™ = Eii = aH(P (ASO)

The De Donder-Weyl Hamiltonian density for the Klein—-Gordon theory is

2
H=o,a"—L= %n“np + %4)2 +V(¢) (A51)

The De Donder-Weyl equations give

oH
WP = 5= (A52)
oH 1%

Plugging the first equation into the second equation gives the Klein-Gordon equation,

(90" +m?)p = —g‘;. (A54)

Since this Hamiltonian formulation is manifestly relativistic, it is more straightforward

than the canonical Hamiltonian approach. The trade-off was to introduce a poly momentum

vector field that is conjugate to the scalar field, but the poly velocity is already in the
standard Euler-Lagrange equations for fields.

Since it will be instructive for a later demonstration, we also consider a complex
Klein—Gordon field with the following action,

s = [ dtx(0,90"p" — m?(gl — V(,9"))- (A55)
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Since ¢ = ¢; + i, the poly Poisson brackets must sum over both ¢ and ¢*. The fol-
lowing poly velocities and poly momenta are found,

oL

Vp = 9ug, = E oM,
vy, = 0ud”, Tt = av, =d"¢, (A56)
where v}, is defined as the poly velocity of ¢*, not immediately as the complex conjugate of

Vy. The poly Poisson bracket must consider both ¢ and ¢*,

JdA 0B 0A 0B 0A OB JdA 0B

(B = 50 50~ amiag T agramrn o ag (A57)
For later convenience, the De Donder-Weyl Hamiltonian density is given by
H o= v + Vi — L= + mEp]F + Vg, ¢7). (A58)

Appendix B.1.2. Yang-Mills Spin-1 Field

Next, the DDW Hamiltonian for Yang-Mills theory is derived. The spin-1 Yang-Mills
field has the following action,

S— /d‘*x(—iFf}VPwA _ ]“AAﬁ), (A59)

where the Yang-Mills field strength Ffv is found in terms of the gauge potential A%,
Fl, =0, A7 — 9, Al — gfABC AL A (A60)
The Yang-Mills poly velocity and poly momentum are
v =0, Af, A = —prd, (A61)

The De Donder-Weyl Hamiltonian density for Yang—-Mills theory is

1
H= =gl mrA 4 S A fABC AR AG 4 et A, (A62)

The De Donder-Weyl equations give the equations of motion for Yang-Mills theory
when asserting that 744 is antisymmetric,

%(auA;“ —9,4%) a:fv = —%HWA + 8 fARC AR AG (A63)
duvA = _% _ _%nqufBACAE _ %nuvchBAAﬁ A

= gfABCABqmC _ A (A64)

The first equation leads to "4 = —FH*¥4, which when plugging this into the second

equation gives the Yang-Mills equations of motion,
aHPuvA _ ]VA +ngBCA]ELFqu —_ ]~1/A’ (A65)

where j*4 is the gauge-dependent current. The equations of motion are also expressed
as D F*4 = JV4, where D,, is the covariant derivative. Choosing the Abelian gauge
group U(1) would lead to Maxwell’s electrodynamics. This completes the derivation
of the equations of motion for all of the field content in the standard model within De
Donder-Weyl theory.
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Since the gauge-dependent Yang—-Mills current will be inspirational for generalizing
the Liouville equation in the relativistic setting, consider how charge conservation can be
stated with the covariant or partial derivative,

Dyt =0y = gfPPCARMC =0, 9, =0, (A66)

where JH4 is the gauge-covariant current, while j*4 is the conserved Noether current.
Later, the poly Liouville equation for probability four-current conservation of relativistic
fields will be derived in analogy with D, J*4 = 0.

Appendix B.1.3. Linearized Gravity with Spin-2 Field

In linearized gravity, the spacetime metric g,,, is perturbed with respect to a back-
ground Minkowski metric 1.y,

Sw = N +Khy, (A67)
gt = M =+ O, (A68)
where I, (x) is the linearized gravitational field and x = 32C—7§G The linearized gravity

action is
5= / dx Gaphwaphw — DMV Iy + Oy @' H — iauhauh>, (A69)

where i = hy,n". The trace-reversed metric i,y = iy — S77uuh is the field mapped from
the Yang-Mills gauge field with respect to the radiative double copy [92]. This allows for a
simplification in the action and the field equations as well, since

5= / d4x<;8pf1“’/apfzw _ 18J18“fz>. (A70)
Plugging /., in terms of h,, of the action above leads to
a (1 0 J 1V 1 p

5= /d x( 33 Bhy — 49hMh). (A71)

Consider the poly velocity and poly momentum of the trace-reversed metric,

APHY £_9£ — oPRHY — 1 HV9Ph = oP MY, (A73)
Mppy 2"

where the poly momentum of the trace-reversed metric is the partial derivative of the
metric. The De Donder-Weyl Hamiltonian density for linearized gravity is

1_,., . _ o _ _ 1 _ _
= Enpwnpw - nu”pnl’vp + ﬂuuvﬁaﬁﬂleﬁ - En“ﬁnpanu,xﬁn%m (A74)
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where the massless linearized graviton’s De Donder—-Weyl Hamiltonian density is the same
as the Lagrangian density, which is encouraging, as there is only gravitational kinetic
energy present. The De Donder—Weyl equations give

dufag = aiitlwﬁ (A75)
= Tuap — 27uayg + Myatl™ Tpgpor + T oullap — Napl® Tupes
Quahh = — aaﬁH =0. (A76)
ap

The equation of motion can be found by solving the first equation for 77*# and
plugging into the second equation.

The first equation of motion differs from the assignment of the poly momentum
specifically unless the De Donder gauge condition is taken,

I = 0. (A77)

This “gauge condition” is sometimes called the harmonic, Hilbert, Lorenz, Lorentz,
or Fock gauge. Specifically, when this gauge is taken, the definition of the poly momentum
found from the Lagrangian density can be found, which leads to the following vacuum
equations of motion,

oM hP = . (A78)

Since the stress-energy—-momentum tensor TV is given by

TH = — \/Z;gava;gﬁM = —ZCSgﬁj\f +cLgh, (A79)
pv 0

It is understood that «h,,, will couple to TH" at lowest order. This implies that the
matter Lagrangian is

Sm= 5 [ dxy/ 8T (A80)

To derive the De Donder-Weyl Hamiltonian for linearized gravity in another manner,
consider the solution for 8J1a,3 in terms of 7,,,5 from Equation (A76),

- 1
17““}9 = auh“ﬁ = ﬁuaﬁ — Eﬂaﬁﬁu = nuaﬁ, (A81)

A reciprocal relationship is found between the trace-reversed poly velocity 7,,,5 with
the trace reverse of the trace-reversed poly momentum 7t,,5. This allows for the De
Donder—Weyl Hamiltonian density to be written as

1 1 8nG 1 1 81G .-
H = g T — 2, 4 kT Ry = = 7t g A — S M 4 kT, (A82)
2 4 c 2 4 c
where 7,, = —7, = d,,h = —d h. For this Hamiltonian density, the De Donder gauge was

not explicitly solved for, but the reciprocal relationship of the poly momenta and the poly
velocities implies the De Donder gauge, as the De Donder-Weyl-Hamilton equations from
the Hamiltonian density above lead to

- oH _ 1
OWhop = 5oap = Muap ~ s = Mgy (A82)
gt = oM \BnCry (A84)

_m - ct
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The trace-reversal of the second equation above after plugging in the first equation leads
to the equations of motion for linearized gravity sourced by matter in the De Donder gauge,

8m1Gxk
P

QTP =9, oMh P = — TP, (A85)

The De Donder gauge is therefore a type of Hamiltonian constraint. Just as Dirac’s
canonical Hamiltonian formulation of general relativity reduces the metricial degrees of
freedom from 10 to 6, so does imposing the De Donder gauge condition [93]. For general
relativity, /1, would be generalized to \/—gg.v, which has been discussed previously [94,95].

Appendix B.2. Poly Koopman—von Neumann Mechanics as De Donder—Weyl Theory

Next, we generalize relativistic Koopman-von Neumann mechanics to classical field
theory with poly symplectic fields and recover De Donder-Weyl theory. First, Koopman-—
von Neumann mechanics must be generalized to work on Fock spaces to describe classical
fields. Second, a poly Liouville operator £,, is constructed, which leads to a poly Liou-
ville equation for probability four-current conservation. The classical analogue of a poly
Schrodinger equation with 9, instead of % is also found, which corresponds to the first
De Donder—Weyl equation, while the second De Donder-Weyl equation of motion is in-
terpreted as a poly Schrodinger equation for the conjugate poly momentum. Finally, we
formulate two types of poly Koopman-von Neumann algebras with covariant and canoni-
cal commutation relations over a Fourier-phase space for classical and first quantized fields
with poly symplectic geometry.

Appendix B.2.1. Sketch of Assumptions for Axiomatic Interacting Field Theories

A Fock space is a Hilbert space defined as a direct sum over the tensor product of
N-particle Hilbert spaces. In quantum field theory, a non-interacting bare vacuum |0) is
typically presumed to be embedded in Minkowski space with the Wightman or Haag-
Kastler axioms [96,97]. Hall and Wightman concluded from Haag’s theorem that there
is not a single Hilbert space representation for the free and interacting fields [98]. We
embrace this notion by considering a dynamical discrete spectrum of the renormalized
(physical) vacuum state |Q2) that is uniquely determined by the phase space geometry,
which is not found in |0). The renormalized vacuum |()) need not have the same spectrum
as |0), since the setting of the energy scale relates to the types of measurements that can
be performed. We suppose that algebraic quantum field theory can be constructed via
operator algebras that need not be related to Minkowski space in the interacting field theory.
From a philosophical perspective, QFTs should include gravity, since all fields carry energy
and momentum as a source of gravitation.

While quantum mechanics contains a measurement problem, quantum field theory
does not in the same sense, as the renormalized measurement apparatus (Q| contains
additional information not found in the non-interacting bare template of abstract measure-
ments (0|. The true state of measurement is defined by a destruction operator acting on a
renormalized vacuum (x| = (|4, which denotes a notion of measurement via absorption
of quantum information. Besides the quantum harmonic oscillator, such a destruction
operator is not found in quantum mechanics.

QFT generalizes operators acting on a wavefunction in QM to a field of operators
acting on a vacuum state. If a quantum field ¢ has a* and a as creation and annihilation
operators that act on a renormalized vacuum state |Q2), then projection operators are
replaced via [s')(s| — al,a;. Without rigorously developing axiomatic interacting QFT,
the progression from wavefunctions 1 (x) to (classical or quantum) fields ¢(x) is aided by
the Dirac bracket notation,

Oy(x) = (x|Oly) — Op(x)(x|Oa*|2) = (x/09), (AS6)
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where a single-particle state |¢) = at|Q)) was constructed above. Without loss of generality,
|¢) can contain an arbitrary number of creation operators acting on |(}). In this manner,
the classical Koopman-von Neumann wavefunction can be appropriately generalized to
classical Koopman-von Neumann fields, including the relativistic Klein-Gordon field.

Appendix B.2.2. Poly Koopman—-von Neumann mechanics

Manifestly covariant and canonical evolution can be found from the De Donder—Weyl
equations, which motivates the introduction of a covector poly Liouville operator in poly
Koopman—-von Neumann mechanics. The poly Liouville operator is introduced as

i€ A={AH}=)

(67—[6 87—[6)
¢

I ag 3¢ ot (A87)

If a wavefunction was evolved, then the classical poly Koopman-von Neumann
equation would be id, = £,,¢ for a wavefunction ¢. However, we desire fields, not
wavefunctions. As mentioned, since Fock spaces are constructed from Hilbert spaces, it is
anticipated that a similar equation should hold for classical fields over Fock space. As such,
the poly Koopman-von Neumann equation should be generalized to apply the Liouville
operator to the poly symplectic fields, rather than a single wavefunction, which leads to
two DDW equations instead of one.

Consider the poly Liouville operator acting on the poly symplectic fields ¢ and 7t*.
The poly Koopman-von Neumann equations for fields are defined as the poly Liouville
operator acting on classical fields of poly symplectic phase space, which are found by
applying the De Donder—Weyl equations,

A oH
g = {¢pH}.= Py oug, (A88)

1%
I _ s g et (A89)

Tt = AT R = =5 T g0

These poly Koopman-von Neumann equations replace the classical wavefunction
¥(x, p) with the classical fields ¢ and 7t*. The poly Liouville operator £,, acting on 7"
does not simply take the partial derivative id,,, which is different than how the Liouville
operator gives time evolution of the Koopman-von Neumann wavefunction similar to
the Hamiltonian operator for the quantum wavefunction. Nevertheless, id,, t* gives De
Donder-Weyl equations,

. 5 . L O0H
Zau(P = _EH(P = l{¢'H}H = 187'[7u’ (A90)
. 1, i OH
lauﬂ.—u - _E,Suﬂ.—u = a{ﬂ.’“,?‘l}u = _l%. (Agl)
This demonstrates for the first time that the De Donder-Weyl equations can be rewrit-
ten with a poly Liouville operator, since {7t*, H}, = —if, .

To clarify, Kanatchikov extends the Wheeler-De Witt equation to arbitrary DDW
field theories, which is one type of generalized Schrodinger equation [19,20], while here,
we simply point out that the first De Donder-Weyl equation is a generalization of the
Scrodinger equation in another sense, as a relativistic field can be seen as a generalization
of a wavefunction. In this sense, Kanatchikov’s contributions to DDW theory are much
deeper and significant than our somewhat trivial recovery of the DDW equations from
poly KvN mechanics.

The relationship of the Liouville equation and Hamilton’s equations motivates a
poly Liouville equation from De Donder-Weyl equations, which replaces the partial time
derivative with the partial derivative of spacetime d,,. This implies that the poly Liouville
equation should involve a probability four-current J*(¢(x), 7t(x)), rather than the probabil-
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ity density p. The probability three-current of a wavefunction generalized to a four-current
leads to the following probability density for ¢ in quantum field theory,

ih
Jer = 5, (9799 — (24¢")9). (A92)

Classical theory does not have fi. Also, massless Klein—-Gordon fields can be studied.
Taking inspiration from above, consider the following canonical classical Klein-Gordon
probability current for a complex scalar field,

P(9(), w(x)) = 5 (97 °H — ) (A%)

While the Liouville equation typically implements time evolution of global phase space
with Poisson brackets of a Hamiltonian, the poly Liouville equation implements local
spacetime evolution with a Hamiltonian density. This analogy implies the existence of a
total spacetime derivative d%w which contains the partial spacetime derivative plus partial
derivatives with respect to the fields and their conjugate poly momenta. It turns out to be
trivial for real Klein-Gordon fields ¢, as d,J** = 0 and the Liouville operator on J* would
vanish. For complex Klein—-Gordon fields, the poly Liouville equation can be derived by
considering the following,

duJ* = %(au(l’*”*u +¢T ot — ot — o) (A94)

= %(¢*8Hn*“ —outHe), (A95)

J% OH M OM 9t OH  oJ* IH

AT H g 9% 9 9% Y9 9t
Lul U =35 9mn “amiagp Tagromn amnag A%

= Digrapmt — o). (A97)

Putting these two terms together, the poly Liouville equation for arbitrary field theories
is found to be

Arm- [ A 1
da]TL = aH]M—isu]M:au]u_’{]u/H}u
s
= " — dza”(l)lafp dy l—a =0, (A98)

where the complex Klein-Gordon scalar field theory has ¢; = (¢, ¢*). The poly symplectic
geometry leads to a contraction between d, 77" in the last term above. Curiously, if d,, = dx%
is thought of as a covariant derivative, the poly Liouville operator £,, is like a gauge field.

The poly Liouville equation describes the conservation of a four-current density,
whose structure is more similar to the second De Donder—Weyl equation. In this sense,
the equations for the four-current and the conjugate poly momentum are similar, while the
non-relativistic Liouville equation is more similar to the first De Donder-Weyl equation.
The poly Liouville equation acting on classical fields cannot be found by applying the
chain rule due to the structure of poly symplectic geometry. While this equation gives
a partial derivative that includes a time derivative as used in time evolution, the poly
Liouville operator acting on ¢ gives rt* rather than the evolution of ¢, as the poly Liouville
operator acts on 7t* to give the equations of motion for ¢ after plugging in the first equation.
In summary, poly KvN mechanics is equivalent to DDW theory.
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Appendix B.2.3. Zeroth and First Quantized Poly Koopman—von Neumann Algebras

Finally, we consider poly Koopman—-von Neumann algebras that generalize the
Koopman—-von Neumann algebra. Since phase space coordinates are replaced with poly
symplectic fields, Fourier conjugate fields x and ¢* are introduced,

xH - ¢
ky = —ir% — k o« —id
Po — 7P
¢ = Qg o o« iz

while it is common to derive the classical equations of motion for the Klein—-Gordon
equation in terms of a scalar field ¢(x), the poly Koopman-von Neumann approach to
field theory leads to a different type of classical field, as it may depend both on position
and momentum. Since the poly symplectic fields are generalizations of the wavefunction,
the fully classical poly Koopman—von Neumann fields should depend on position and
momentum such as ¢(x, p) or ¢(k, q) as Fourier-phase-space conjugates. First quantization
is realized as quantizing phase space coordinates with p,, = fik,, without quantizing fields,
which leads to ¢(x) and ¢(p) as Fourier conjugates. The second quantization applies
quantization of the fields. As such, classical field theory admits zeroth quantized (classical)
and first quantized poly Koopman-von Neumann algebras.

It is also worth clarifying that the study of KvN fields introduces the concept of
first and second Fourier conjugation. At the classical phase space level, a field ¢(x, p)
admits a first Fourier transformation to give ¢(k, q). Half-Fourier transformations giving
¢(k, p) or ¢(x,q) can be found. In another sense, a functional such as H (¢, 77) may admit a
second Fourier transformation, leading to H(x, ). In general, x(k, q) is not the first Fourier
transform of ¢(x, p), but rather x(x, p) is the second Fourier conjugate field to ¢(x, p). This
matches how x* and p, denote coordinates for (first) phase space, while the covariant
phase space description refers to phase space over fields (second phase space). KvN fields
require the articulation of first and second Fourier-phase spaces over coordinates and fields
as shown in Equation (A99). Throughout, we refer to first quantization as the reduction
in the first Fourier-phase space, while second quantization is the reduction in the second
Fourier-phase space.

Overall, the discussion of generalizing Koopman—von Neumann mechanics has been
rather limited. Gozzi and Reuter had previously considered the notion of classical path
integrals as a counterpart to Koopman-von Neumann mechanics [99], which has been more
recently reviewed by Piasecki [6]. However, Gozzi and Reuter focused more on adding
BRST ghosts to classical fields, rather than the second Fourier conjugate fields such as
xand ¢.

While classical field theory is typically over spacetime, poly KvN mechanics motivates
classical fields over phase space. The zeroth quantized poly KvN algebra is therefore

[@(x, px) <y, py)] = 0 (x = y)6™ (px —py), (A100)
[Cu(x, px), T (y, y)] = i5ﬁ5(4)(x_y)5<4)(l7x—?7y)/ (A101)
[p(x, px), T (y, py)] = 0O, (A102)
[Cu(x, px), k(v py)] = 0, (A103)

where all other commutation relations vanish. This algebra contains fields that differ from
standard classical field theory, as the Klein-Gordon scalar field typically is ¢(x), not ¢(x, p).
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Assuming ¢(x) is a first quantized field, the introduction of fields x(x) and &y (x)

over spacetime implies that the following covariant and canonical commutation relations
should hold

P(x),x(y)] = is*(x—y), (A104)
Gu(x), " (y)] = idpst(x — ), (A105)
[p(x), T (y)] = 0, (A106)
[E(x), x(y)] 0. (A107)

The units of «(x, p) must differ from x(x) if we assume that the units of ¢(x) and
¢(x, p) are the same. To understand the second quantization of fields, the classical fields
satisfying the first quantized classical commutation relations are the most helpful.

The dimensional analysis of fields over phase space differs from fields over spacetime.
Consider a zeroth quantized Klein—-Gordon scalar field ¢(x, p). If such a theory is to exhibit
phase space symmetry with Born’s reciprocity, then the Klein-Gordon scalar would be
massless if we consider that Spin(4,4) or Spin(6,2) for relativistic phase space both contain
the conformal group Spin(4,2). The conformal group has been studied as a shadow of
phase space [100] and conformal theories are massless. This ensures that the action principle
can be considered without 7, since the kinetic term is void of /i, while the mass term is

—% (%)24)2. This gives ¢(x, p) the dimensions of \/? . The conjugate poly momentum

7t (x, p) has dimensions of %\/? . The dimensional analysis of zeroth and first quantized
fields are shown in Table A2.

Table A2. The dimensional analysis of zeroth and first quantized fields in KvNdDW mechanics are
depicted above.

Field First Quantized Dimensions Mass Dimensions
¢(x, p) False m 1
™ (x, p) False % \/? 2
9
1 2 _
k(x, p) False L) z 1
Su(x, p) False %(%)i )
P(x) True / m 1
H 1
T (x) True 1 \/@ 2
1/t
x(x) True * \/; 3
Gu(x) True 113 \/% 2

Assuming that the dimensions of ¢(x, p) and ¢(x) are the same, then the dimensions
of [d*px(x,p) are equal to x(x). The first quantization of fields over phase space may
involve integrating out energy-momentum, as

[ @ piloep) wly )] = io* = y) [ dpyd*(px—py) = P0xw)]. (A108)

In general, for the phase space field basis. The conjugate fields as operators for zeroth
quantized fields are given by

0

9Py, py)’
d

otk (y, py)’

(x,px) = —id®W(x—y)6® (px —py) (A109)

Eulxpx) = i6W(x—1)s® (px —py) (A110)
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while for first quantized fields,
. d
k(x) = —is®(x— y)rp(y)' (A111)
= i@ (x—
gu(x) i0 (x }/)anu(y) (A112)

Appendix B.3. KuN Quantization of De Donder—Weyl Theory

Next, quantum fields in the De Donder—Weyl formalism are discussed. Rather than
referring to a particle’s position and momentum, a quantum field ®(x) replaces position,
which admits a canonical poly momentum Hu(x). In principle, one may consider a mixture
of ¢ and ¢“ as well as " and «, but the mismatch in tensor rank implies the following
quantization schemes may be considered,

o) ap +b" ¢y, (A113)
m* = cr* +d*x. (A114)

The commutator of the second quantized fields ®(x) and IT*(y) for arbitrary coeffi-
cients is found from Equation (A107)

[®(x), TT*(y)] = (ad" + b*¢)is™ (x — y). (A115)

The simplest scheme isa = 1, d* « t#, b* = ¢ = 0. Next, we seek a solution for 4"
given a = 1. If the dimensions of first and second quantized fields ¢(x) and ®(x) are the
same, this is analogous to the dimensions of £* matching the dimensions of X*. However,
x(x) and IT*(x) do not differ by dimensions of 1. The dimensions of 4" must be the same as
fict. One cannot set ITH (x) = fix(x) due to dimensional analysis and the poly symplectic
geometry, but IT*(x) = hctHx(x) is possible.

The commutation relations of a field ® and its conjugate poly momentum ITH can be

found by recognizing that Ilp = ;T% = %HO is Dirac’s canonical momentum, where
ar
[©(x), I (y)] 0y = 120 (x —y). (A116)

while this reference to x* and y° implies a specific frame, the canonical commutation
relations in with the poly momentum can utilize t#, giving

[@(x), [T*(y)] = ihet*6®) (x — y) = ihc| |6 (x — y), (A117)

where [®(x), ®(y)] = [IT*(x),I1Y(y)] = 0. These commutation relations are manifestly
Lorentz invariant. Since T" is not meant to encode the time coordinate, but rather the
direction of a time-like curve in relation to another frame, |7| should never be zero. The mag-
nitude relates to differences in time between spacetime foliations, which may motivate
Planck’s time as the interval to be used in Feynman’s discrete path integral. The discrete
calculus of time evolution has been discussed previously by one of the authors [101,102].
The canonical commutation relations are recovered in the frame where t* = (1,0,0,0),

{@(x), 2110(;/)] = ihlt|e® (x —y) = in|7|6®) (x —y)d(tx — ty)  (A118)
= im6® (x —y)|7|0(c(tx — 1))

in6®) (x —y)o((tx — t,) /7). (A119)

Integrating over t, leads to t, = t; and recovers Equation (A116). In conclusion,

the second quantized De Donder-Weyl algebra leads to Dirac’s canonical quantization
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when the zeroth component of the poly momentum is considered and ®(x) and I1°(y) are
evaluated at the same time.
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