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Abstract

Quantum computing and material discovery show great potential for advances in science and
technology. However, progress in these domains is often hindered by the high computational
cost and complexity of required methods. This thesis demonstrates that leveraging domain-
aware classical and quantum machine learning (QML) can reduce resource requirements and
accelerate discovery.

In the context of improving quantum algorithm implementation, we address the challenge
of high error rates in quantum circuits. We explore quantum circuit synthesis, demonstrating
that generative graph-based models can produce functionally equivalent circuits with reduced
gate counts and depth, enhancing efficiency and reliability. To overcome the limitations of
human-designed quantum circuits, we propose the first graph diffusion model for quantum
circuit generation. This novel approach enables the design of new, functional quantum circuits,
representing a significant step toward the development of automated quantum architecture.

In search of practical applications of quantum algorithms, we explore the field of molecular
design. Previous efforts in molecular property prediction, a critical step in molecular synthe-
sis, have focused on scaling model size and complexity to achieve performance gains. This
approach has led to marginal improvements in accuracy, accompanied by a near-exponential
growth in parameter counts. This thesis examines how innovations in classical and hybrid
quantum-classical natural language processing (NLP) and model architecture can achieve state-
of-the-art performance with significantly fewer trainable parameters. We begin by exploring
hybrid QML models. A comparative analysis between classical Long Short-Term Memory
(LSTM) networks and hybrid quantum-classical LSTMs (QLSTMs) reveals that, while current
noisy intermediate-scale quantum (NISQ) devices underperform on standard classical bench-
marks, they show promise in identifying molecular substructures with higher fidelity than their
classical counterparts. Additionally, we analyze and compare the performance of large language
models (LLMs), graph neural networks (GNNs), and recurrent neural networks (RNNs). Our
findings suggest that smaller models can outperform more resource-intensive counterparts
with task-specific model design, informed architecture selection, and problem-aware data
curation. Furthermore, we evaluate advanced linguistic techniques and data augmentation on
the performance of classical and hybrid QML. Augmentation enables significant improvements,
showing the importance of data pre-processing in molecular property prediction.

This thesis establishes a practical framework for quantum circuit optimization/design and
advancing molecular property prediction.
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We live in an impatient age. We demand results. We find a long and laborious process very
irksome, and are constantly seeking for a short cut. But there is no easy method of securing

discipline. It is axiomatic that there is no royal road to learning. The effort for discipline must
be intensive, and to a considerable degree it must be lifelong.

— Calvin Coolidge 1924.
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Chapter 1 |
Introduction

1.1 Overview of Quantum Computing

1.1.1 Qubits

Qubits are the fundamental units in a quantum computer. In contrast to classical bits, which
can exist only in two discrete states, 0 or 1, a qubit can be in a superposition of both states.
This uniquely quantum property arises from the principles of quantum mechanics and enables
qubits to encode a probabilistic spectrum of information, unlike their classical counterparts. As
a result, qubits lie at the heart of the parallelism that gives quantum computation its theoretical
power.

Mathematically, the state of a single qubit is described by a complex combination of two
basis states, denoted by |0⟩ and |1⟩. A state of a qubit can be expressed as

|ψ⟩=

[
α

β

]
, where α,β ∈ C, and |α|2 + |β |2 = 1.

The squared magnitudes |α|2 and |β |2 represent the probabilities of measuring the qubit in the
states |0⟩ and |1⟩, respectively, assuming measurement in the computational basis. The basis
states themselves correspond to the classical binary values, represented as

|0⟩=

[
1
0

]
and |1⟩=

[
0
1

]

Bloch spheres are used for geometric intuition, a unit sphere in three-dimensional space on
which each point on the surface represents a unique state of a qubit. Any qubit state can be
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written in spherical coordinates as

|ψ⟩= cos
(

θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ ,

Where the parameters define a point on the surface of the Bloch sphere, this representation
provides a visualization tool for understanding single qubit operations as rotations about the
axes of the sphere. It also offers insight into the role of quantum coherence and relative phase
in quantum algorithms and interference effects.

The implementation of qubits varies based on platform-specific goals. Examples include
the discrete energy levels of superconducting circuits, the spin states of trapped ions, the
polarization modes of single photons, or localized electron spin states in diamond nitrogen-
vacancy (NV) centers. Each architecture presents a unique set of trade-offs regarding coherence
times, gate fidelities, scalability, and operational temperature requirements. Engineering reliable
qubits that balance these factors remains one of the central challenges in building scalable
quantum computers.

1.1.2 Quantum Gates

All quantum gates act on Hilbert spaces of dimension 2n ×2n, where n is the number of qubits
in the system, to manipulate the qubits within a quantum circuit. These quantum gates are
analogous to classical logic gates. However, unlike classical gates, which operate on binary
values, quantum gates manipulate the probability amplitudes of quantum states. Quantum gates
are represented by unitary matrices, U , which satisfy the condition U†U = I, where U† denotes
the conjugate transpose of U , and I is the identity matrix. This unitary condition ensures that
the total probability is preserved.

Each gate implements a unitary transformation acting on the state of one or more qubits.
These operations must respect the linearity of quantum mechanics and are typically realized
through controlled interactions with external fields. The physical implementation of quantum
gates varies depending on the underlying hardware. For instance, microwave pulses induce
rotations in superconducting qubits, while lasers are employed in trapped ions and semiconduc-
tor quantum dots. In photonic qubits, beam splitters and phase shifters enact gate operations,
whereas radio-frequency pulses control spin states in Nuclear Magnetic Resonance (NMR) sys-
tems. Gate operation times vary across technologies, from sub-nanosecond scales in photonic
and superconducting systems to milliseconds or longer in NMR and ion-trap implementations.
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1.1.2.1 Single Qubit Gates

Single-qubit gates operate on individual qubits and can be visualized as rotations on the
Bloch sphere. These gates form the foundation of universal quantum computation. The most
fundamental is the Hadamard gate:

H =
1√
2

[
1 1
1 −1

]
The Hadamard gate creates equal superpositions from basis states and maps between the

computational and diagonal bases. It is key in algorithms like the Quantum Fourier Transform
and Grover’s search. General single-qubit gates are described as rotation around the Bloch
sphere axes:

RX(θ) =

[
cos

(
θ

2

)
−isin

(
θ

2

)
−isin

(
θ

2

)
cos

(
θ

2

) ]
, RY (θ) =

[
cos

(
θ

2

)
−sin

(
θ

2

)
sin

(
θ

2

)
cos

(
θ

2

) ]
,

RZ(θ) =

[
e−iθ/2 0

0 eiθ/2

]
Where a unitary operation can be expressed as:

U(θ ,φ ,λ ) =

[
cos

(
θ

2

)
−eiλ sin

(
θ

2

)
eiφ sin

(
θ

2

)
ei(φ+λ ) cos

(
θ

2

)] .
1.1.2.2 Multi-Qubit Gates

To achieve universal quantum computation, single qubit gates must be combined with multi-
qubit gates, which enable entanglement and conditional control between qubits. The most basic
of these is the Controlled-NOT (CNOT) gate:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


At the three-qubit level, the Toffoli gate (or CCNOT) performs a NOT on the target qubit
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only when both control qubits are in the |1⟩ state. Its matrix is given by:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

1.1.2.3 Universality and Circuit Construction

Together, single-qubit rotations and a suitable two-qubit gate (such as CNOT) form a universal
gate set capable of approximating any unitary operation on an arbitrary number of qubits
to arbitrary precision. This foundational result underlies the design of quantum circuits and
quantum programming languages. Quantum circuits composed of these gates can simulate
the dynamics of any quantum system within the confines of the no-cloning theorem and
decoherence limits.

1.1.3 Quantum Circuits

A quantum circuit is a model for quantum computation. It represents the sequential application
of quantum gates to a set of qubits to manipulate their quantum states and implement algorithms.
The structure of a quantum circuit can be broadly decomposed into three distinct stages: state
initialization, unitary evolution, and measurement.

A quantum system is usually initialized in the basis state |0⟩ for all individual qubits. The
subsequent transformation involves the application of quantum gates represented by a unitary
matrix. These gates may act on individual qubits or multiple qubits, enabling phenomena such
as superposition and entanglement, which are central to quantum computational advantage.
The overall transformation enacted by a circuit is described by the composition of these gates,
which corresponds to matrix multiplication in linear algebra. Finally, the quantum state is
projected onto the computational basis in the measurement phase. This projection collapses
the quantum state, yielding classical outcomes with probabilities determined by the squared
magnitudes of the state’s complex amplitudes following the Born rule.

To illustrate, consider a single-qubit quantum circuit where a Hadamard gate H is applied
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to an initial state |0⟩. The Hadamard gate and the basis state are given by:

H =
1√
2

[
1 1
1 −1

]
, and |0⟩=

[
1
0

]
.

Applying H to |0⟩ yields the state:

|ψ⟩= H |0⟩= 1√
2

[
1 1
1 −1

][
1
0

]
=

1√
2

[
1
1

]
=

|0⟩+ |1⟩√
2

.

This resulting state is a balanced superposition of the |0⟩ and |1⟩ states. On the Bloch
sphere, this transformation rotates the state vector from the north pole (corresponding to |0⟩) to
a point on the equator along the X-axis. The representation in Fig. 1.1 visually emphasizes
how quantum gates perform rotations in Hilbert space.

H|𝟎⟩ |𝟎⟩ + |1⟩
√2

Figure 1.1: Hadamard gate applied to |0⟩ making the qubit a superposition state (|0⟩+ |1⟩)/
√

2.
The action is visualized as a π/2 rotation about the Y+Z axis on the Bloch sphere.

Although quantum circuits are often described using high-level abstractions, executing
them on real quantum hardware necessitates translating these circuits into a form compatible
with the hardware’s native gate set. For instance, multi-qubit gates such as the Toffoli (CCNOT)
must be decomposed into gates like the CNOT, Hadamard, and phase gates, depending on
the device architecture. This transformation process, known as transpilation, involves gate
decomposition and device-specific mapping to account for qubit connectivity and gate fidelity.
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1.1.4 Full Stack of Quantum Computing on Superconducting Qubits

Logical quantum circuits represent the idealized form of quantum algorithms, abstracted from
any specific hardware constraints. However, to execute these circuits on real quantum hardware,
they must be transformed to align with the physical and architectural limitations of the target
platform. This conversion process is illustrated in Figure 1.2, using superconducting qubits,
the most widely adopted quantum hardware platform at the time of writing, as a representative
example. Full-Stack of Superconducting QC

6
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1. Slides adapted from Mahabubal Alam Figure 1.2: The general process of superconducting hardware for conversion between a logical
circuit and a physical circuit.

The compilation pipeline begins with a hardware-agnostic quantum program, often written
in an intermediate representation such as OpenQASM. This program is passed to a transpiler,
which also takes as input a description of the target hardware, including the native gate set and
qubit connectivity (coupling map). The transpiler first performs gate synthesis, converting any
unsupported logical operations into sequences of hardware-native gates. Following this, the
circuit undergoes optimization, where redundant or canceling operations are eliminated, and
adjacent rotations are merged to reduce circuit depth and error accumulation.

The next phase, known as qubit mapping, assigns the logical qubits from the circuit to
a subset of the physical qubits available on the device. Due to variations in qubit fidelity
and connectivity, this mapping is a critical optimization step; choosing an optimal layout
can significantly increase the likelihood of successful execution. However, due to hardware
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connectivity constraints, some two-qubit gates may not be directly executable after mapping.
To resolve this, SWAP gates are inserted into the circuit, allowing logical qubit states to be
exchanged between physically connected qubits. These SWAP operations are themselves
decomposed into native gates and may undergo further optimization.

Once the circuit conforms entirely to the hardware’s native gate set and connectivity
constraints, it is translated into microwave pulse sequences. These physical control signals
drive quantum gate operations on superconducting qubits. These pulses are orchestrated by a
control system that schedules and delivers the correct signals to each qubit at precise times, as
specified by the transpilation output.

Despite these elaborate transformations, all quantum hardware remains subject to noise and
imperfections. Both qubit coherence and gate fidelity impose practical limitations, meaning
that even fully transpiled and optimized circuits are still susceptible to errors during execution.

1.1.5 Errors in Quantum Computing

Quantum information processing is sensitive to errors due to the nature of quantum states
and their susceptibility to disturbances from the surrounding environment. Unlike classical
bits, which are robust to minor fluctuations, qubits can suffer significant degradation from
even minimal noise. These disturbances, from control imperfections, thermal fluctuations,
electromagnetic interference, or couplings to uncontrolled degrees of freedom, are collectively
called quantum noise. The resulting errors can distort the stored quantum information.

At the most fundamental level, quantum errors can be categorized into three archetypal
types: bit-flip errors, phase-flip errors, and their combination, the bit-phase-flip error. These
can be represented using the Pauli operators X , Z, and Y = iXZ, respectively. Bit-flip errors,
induced by the X operator, change |0⟩ ↔ |1⟩, analogous to classical bit errors. Phase-flip
errors, induced by Z, leave the basis states unchanged but reverse the relative phase of a
superposition: Z(α |0⟩+β |1⟩) = α |0⟩−β |1⟩. In realistic quantum systems, these errors may
occur in combination and at varying rates, depending on the physical implementation and
environmental interactions.

1.1.5.1 Gate Error

Gate errors occur when quantum gates are implemented imperfectly. Theoretically, a gate
corresponds to a unitary operation U , applied with perfect precision. However, the implemented
gate may deviate from the ideal due to imperfections in control electronics, signal distortions,
or calibration errors, resulting in a perturbed operation Ũ . As a result, the state transformation
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becomes |ψ⟩ 7→ Ũ |ψ⟩, which may deviate from the desired outcome.

1.1.5.2 Decoherence Error

Figure 1.3: Relaxation (left) and dephasing (right) errors illustrated on the Bloch sphere;
solid arrows represent the original pure states, and dashed arrows indicate their trajectory &
transformation under noise. The combined effect of these processes leads to depolarizing
errors.

Decoherence refers to the process by which qubits lose their quantum nature and transition
into classical. It is driven by interactions/entanglement with the system and its surrounding
environment, erasing its quantum information. Decoherence is typically modeled using two
principal mechanisms:

Relaxation: the spontaneous decay of the excited state |1⟩ to the ground state |0⟩, often due
to energy dissipation into the environment.

Dephasing: the randomization of the relative phase between |0⟩ and |1⟩, without energy
exchange.

Together, these processes cause the qubit to contract toward the sphere’s center, representing
the transition from a pure quantum state to a maximally mixed state. A visualization of this
is in Fig. 1.3. This evolution can often be approximated by a depolarizing channel, which
captures the uniform loss of quantum information.

1.1.5.3 Crosstalk Error

Crosstalk refers to unintended interactions between qubits; these parasitic effects can manifest
when a control signal targeted at one qubit inadvertently alters the state of a neighboring qubit.
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This can occur through residual electromagnetic coupling, shared control lines, or physical
proximity.

Crosstalk is typically modeled by a weak, unwanted Hamiltonian interaction such as:

Hcrosstalk = ε XiX j,

where ε quantifies the interaction strength between qubits i and j, which are not intended to be
coupled. The effect may induce spurious entanglement, phase errors, or unwanted rotations,
and it becomes particularly problematic in densely connected qubit arrays.

1.1.5.4 Measurement Error

Measurement errors occur when the classical result obtained from a quantum measurement
does not reflect the system’s true quantum state. These errors can be introduced by detector
inefficiencies, thermal noise during readout, timing errors, or miscalibrated signal thresholds
during analog-to-digital conversion.

A confusion matrix can model measurement outcomes, which captures the conditional
probabilities of reporting one classical outcome when the system is in a different state. For a
single-qubit measurement, this can be written as:

M =

[
1− p q

p 1−q

]
.

where p is the probability of misidentifying |0⟩ as |1⟩, and q is the reverse.

1.1.5.5 Impact of Errors on Quantum Computation

Quantum error manifestations are hardware-dependent and context-sensitive. This is particu-
larly evident in resource-intensive algorithms, such as quantum Hamiltonian simulation, where
long circuit depths are needed to approximate the evolution operator U(t) = e−iĤt . Over time,
accumulated errors from gate imperfections, decoherence, crosstalk, and measurement reduce
fidelity and may render results indistinguishable from statistical noise.

Thus, practical quantum computation demands robust theoretical design and tight integra-
tion with hardware-aware compilation and error mitigation. Strategies such as noise-aware
transpilation, pulse-level control, and variational error suppression are critical to pushing
beyond the current limitations of noisy intermediate-scale quantum (NISQ) devices. Ulti-
mately, the development of scalable, fault-tolerant quantum computing depends on our ability
to mitigate and correct quantum errors at every layer of the quantum stack.
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1.1.6 Hybrid Quantum-Classical Neural Networks

In the NISQ era, quantum devices are constrained by limited qubit counts and high error
rates, which currently preclude the implementation of fully fault-tolerant quantum algorithms.
Nevertheless, hybrid quantum-classical algorithms have emerged as a promising approach to
extracting computational advantage from these imperfect devices. These algorithms iteratively
optimize an objective function by distributing the computational workload between a quantum
processor and a classical optimizer. In particular, hybrid algorithms form the foundation of
many quantum machine learning (QML) models, where quantum circuits encode and process
data. At the same time, classical routines guide the optimization of circuit parameters based on
measured outputs.

A typical hybrid QML model involves a parameterized quantum circuit (PQC), called
a variational quantum circuit (VQC), composed of tunable quantum gates. These gates are
configured according to a set of parameters that define the circuit’s behavior for a given input.
After executing the quantum circuit, measurements are performed to estimate expectation
values or probabilistic outcomes related to the problem. The classical computer then evaluates a
cost or loss function based on the difference between predicted and target values. It employs an
optimization algorithm (e.g., gradient descent or one of its quantum-aware variants) to update
the circuit parameters. This feedback loop continues until convergence or a stopping criterion
is met. A visualization of this is in Fig. 1.4

Classical computer

Quantum 
circuit output

Calculate 
loss

Measure

Updated 
parameters 
(𝜃𝜃 = [𝜃𝜃1,𝜃𝜃2 …𝜃𝜃𝐿𝐿])

Calculate 
gradient 

Execute

⋮ U(𝜽𝜽𝑳𝑳)U(𝜽𝜽𝟏𝟏)
…Parametric 

Quantum 
Circuit ⋮

Figure 1.4: The standard model for hybrid-quantum classical machine learning. The parameter
θ executes the quantum algorithm; a classical machine then calculates the loss/gradient and
updates θ accordingly.

Hybrid quantum-classical approaches are especially valuable in the NISQ regime because
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they reduce the quantum resource requirements by offloading a significant portion of the
computational burden to classical hardware. Prominent examples of such algorithms include
the Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm
(QAOA), and quantum neural networks (QNNs), which are being explored for applications in
chemistry, optimization, and machine learning. Despite their potential, these models remain
sensitive to noise and hardware limitations, and ongoing research is focused on improving their
robustness, scalability, and training efficiency.

1.2 Overview of Machine Learning

1.2.1 Neural Networks (NN)

Neural networks (NNs) are a class of machine learning models inspired by the structure and
function of the human brain. They consist of individual computational units called neurons or
perceptrons, which are organized into layers, typically including an input layer, one or more
hidden layers, and an output layer. Each neuron is connected to neurons in the subsequent layer
through weighted connections, where each weight is a learnable parameter that determines the
strength and direction of the signal passed between neurons. A simple neural network example
is in Fig. 1.5.

• Neural networks consist of nodes known as neurons/perceptrons
• Edges between nodes are parameterized (known as weights)
• Training steps: feed forward, loss calculation, backpropagation 

7

Machine Learning (ML)/Neural Networks (NN)

Figure 1.5: A simple neural network consisting of an input layer, hidden layer, and output layer

During the feedforward phase, input data is passed through the network layer by layer, with
each neuron applying a nonlinear activation function to the weighted sum of its inputs. The
output produced by the network is then compared to the expected result, and the discrepancy is
quantified using a loss function. Common loss functions include mean squared error (MSE) for
regression tasks and cross-entropy for classification tasks.
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The network undergoes a process called backpropagation to minimize this loss and improve
prediction accuracy. This involves computing the gradient of the loss function with respect
to each weight in the network using the chain rule of calculus. The weights are then updated,
typically using an optimization algorithm such as stochastic gradient descent (SGD) or one of its
variants (e.g., Adam or RMSprop), to reduce the error in future predictions. Through iterative
training on large datasets, neural networks can learn complex patterns and representations
in data, making them highly effective for tasks such as image recognition, natural language
processing, and time-series forecasting.

1.2.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are a class of NN architectures designed explicitly for
modeling sequential data. They build upon the foundational principles of NNs but introduce a
critical enhancement: the ability to maintain and utilize temporal dependencies through internal
memory. Unlike feedforward models, where inputs and outputs are treated as independent,
RNNs incorporate feedback loops that allow information from previous time steps to influence
the current output. This is achieved by passing the hidden state of a neuron from one time step
to the next, effectively enabling the network to "remember" prior inputs. This is visualized
in Fig. 1.6, where Ht−1 contains the prior historical information and Ht contains the current
historical information.

8
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Figure 1.6: A vanilla recurrent neural network. Xt is the current input, Ht−1 is the previous
historical state. These are combined and passed through the activation function, σ , which
creates the output, Ot , and a new hidden state, Ht .

This temporal dependency makes RNNs particularly well-suited for tasks in which the
meaning or prediction of the current input is influenced by its context within a sequence.
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Applications include time-series forecasting (e.g., stock market trends or weather prediction),
physical system modeling, and various domains of natural language processing, such as machine
translation, speech recognition, and sentiment analysis.

RNNs naturally support variable-length input sequences, making them flexible for real-
world data where input sizes may not be fixed. They can be implemented as unidirectional
models, which process sequences in a forward direction, or as bidirectional models, which
process input in both forward and backward directions, allowing the network to consider both
past and future context simultaneously.

Several variants of RNNs have been developed to address challenges such as vanishing and
exploding gradients during training. The most widely used among these are the Elman Network
(a basic RNN architecture), the Long Short-Term Memory (LSTM) network, and the Gated
Recurrent Unit (GRU). Both LSTM and GRU architectures introduce gating mechanisms that
regulate the flow of information through the network, enabling them to capture long-range
dependencies and control how much past information is retained or forgotten at each time step,
enhancing the model’s ability to learn from sequences with complex temporal dependencies.

1.2.3 Graph Neural Networks

Graph Neural Networks (GNNs) are a powerful class of neural networks designed to operate on
data naturally represented as a graph. Graphs are flexible data structures consisting of nodes (or
vertices) and edges that encode pairwise relationships. They are well-suited to various domains,
including electronic circuits, neural architectures, molecular structures, transportation systems,
and social networks. Unlike traditional neural networks, which assume fixed-size input and
Euclidean structure (e.g., grids in images), GNNs can directly leverage the non-Euclidean
topology of graph-structured data.

The core computational mechanism behind most GNNs is message passing, a process
through which nodes iteratively exchange information with their neighbors to update their
internal representations (embeddings). In each message-passing step, a node aggregates
information from its adjacent nodes and combines it with its current state, enabling it to build a
richer, context-aware representation of its local neighborhood.

One of the most common implementations of this concept is found in Graph Convolutional
Networks (GCNs), which perform simultaneous message passing across all nodes in the graph.
During a single 1-hop message passing step, each node updates its representation based on
the features of its immediate neighbors. An example of this process is in Fig. 1.7. This
process can be extended to multiple hops—for example, 2-hop message passing allows a
node to incorporate information from its neighbors’ neighbors, thereby capturing a broader
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structural context. Repeating this process over several layers enables the model to learn from
increasingly distant parts of the graph. However, doing so must be balanced carefully to avoid
over-smoothing, where node representations become indistinguishable.
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Figure 1.7: A simultaneous message passing scheme. The left side shows the initial state,
where each node has its unique representation. After 1-hop message passing occurs, each node
state is updated to account for the directly connected nodes.

GNNs typically comprise a stack of message-passing layers, often followed by pooling and
readout operations to generate graph-level representations. These models are trained end-to-end
using task-specific loss functions, allowing them to learn effective representations for various
tasks such as node classification, link prediction, and graph classification.

1.3 Motivation

The core challenge in quantum computing lies in the efficient design and optimization of
quantum circuits. Traditional circuit optimization methods are conservative and reliant on
expert knowledge, employing local, greedy techniques that reduce gate counts only when
exact functional equivalence can be guaranteed. While effective, this approach limits the
potential for discovering more efficient circuit configurations that may initially appear non-
equivalent but ultimately preserve functionality. In contrast, generative models provide a
more exploratory framework for circuit transformation, enabling the identification of novel,
functionally equivalent circuits with reduced gate counts and depths, as well as key metrics for
the feasibility and performance of quantum computations on noisy intermediate-scale quantum
(NISQ) devices.

Recent progress in graph-based generative models, particularly those using Variational Au-
toencoders (VAEs) trained on directed acyclic graph (DAG) representations, has demonstrated
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significant advantages over non-graph-based counterparts, especially in domains such as neural
architecture search. These models can capture the structural intricacies of the data more effec-
tively and produce output architectures that closely align with the design principles of the input
space. Compared to reinforcement learning (RL) techniques, VAEs also exhibit a higher degree
of exploratory capability, enabling the generation of a broader range of potential solutions. Mo-
tivated by these advancements, we adopt a similar approach to the generation and optimization
of quantum circuits, aiming to automate the discovery of low-depth, low-gate-count designs
with equivalent functionality.

Manual quantum circuit construction remains a significant bottleneck, particularly for
applications such as QML, where designing appropriate ansatz (heuristic quantum circuits)
is crucial to performance. Given the fragile nature of NISQ hardware and the high barrier
to entry for quantum algorithm design, automation becomes essential for advancing QML.
Current approaches for quantum circuit generation include RL, large language models (LLMs),
and VAEs. While RL methods often struggle with exploratory diversity and LLMs, despite
their generative prowess, lack an inherent understanding of circuit structure, VAEs can capture
circuit details through graph representations. More recently, diffusion models have emerged as
a promising alternative, combining the structural advantages of graph-based representations
with improved training stability and output quality. These models offer a powerful new avenue
for generating novel and efficient quantum circuits.

Despite the limitations in the NISQ era, characterized by limited qubit counts, high noise
levels, and limited quantum circuits, hybrid quantum-classical approaches such as QML offer
a promising path toward quantum supremacy. Classical machine learning has demonstrated
capabilities that surpass those of humans in various domains, such as image recognition.
Domains like these are likely to see no improvement when attempting to leverage QML because
QML suffers from something known as barren plateaus. When a problem is too simple for a
QNN, it cannot perform proper parameter tuning due to the curse of dimensionality. However,
there are many complex domains where significant improvement is still possible. One of which
is the field of material discovery. In particular, the processes of retrosynthesis and molecular
property identification. Where textual inputs such as SMILES and SELFIES encodings provide
structured representations of chemical compounds. While convolutional networks and linear
layers can process text-based inputs, it is usually better to use an RNN-based design or a
transformer. Models such as the Quantum Long Short-Term Memory (QLSTM), Quantum
Kernel-based LSTM (QK-LSTM), and Quantum Transformers have demonstrated potential in
handling sequential textual data. However, the runtime cost of running a quantum transformer
is almost three orders of magnitude higher for even just a 4-qubit simulation.
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The rapid acceleration of molecular discovery, especially in materials science, has created a
pressing need for more efficient and accurate computational models to aid in the design and
validation of new compounds. Among the most critical challenges is the early identification
of side effects and undesirable properties, a costly and risk-laden process in the traditional
pipeline. Although classical machine learning models have made progress in this area, they
often require large-scale computational resources and are susceptible to overfitting or poor
generalization across diverse chemical spaces. These limitations constrain their utility and
accessibility, particularly for exploratory research.

In light of these challenges and opportunities, this dissertation explores the intersection
of quantum circuit optimization and quantum machine learning to address key limitations in
current methodologies. By leveraging advanced generative models, particularly graph-based
VAEs and emerging diffusion models, this work aims to automate and enhance quantum circuit
design, improving efficiency and scalability for near-term quantum devices. Simultaneously,
it investigates the application of quantum learning architectures to complex, high-impact
domains such as materials discovery, where classical approaches struggle to generalize or scale
effectively. The overarching goal is to contribute foundational methods that reduce the barriers
to practical quantum algorithm design and accelerate scientific discovery in chemistry and
beyond.

1.4 Thesis Contribution

This thesis contributes to the growing fields of drug discovery and quantum computing by
exploring and developing hybrid quantum-classical algorithms to address key challenges in
molecular property prediction and quantum circuit design. The contributions of this thesis span
theoretical development, algorithmic innovation, and empirical validation and are summarized
as follows:

1. AltGraph: Generative Graph Models for Quantum Circuit Optimization: A generative
modeling framework that optimizes quantum circuits for NISQ hardware constraints.
Utilizing DAG-based Variational Autoencoders (D-VAE) and the DeepGMG framework,
AltGraph generates functionally equivalent circuits with significant reductions in gate
count (37.55%) and depth (37.75%), while maintaining functional fidelity (MSE of
0.0074). This surpasses prior rule-based, and RL approaches in circuit transformation.

2. Diffusion-Based Quantum Architecture Search for Automatic Circuit Design: A novel
diffusion-based algorithm for Quantum Architecture Search (QAS) within the LayerDAG
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framework, enabling the automated synthesis of valid quantum circuits. Unlike existing
RL- or LLM-based models, the proposed method consistently generates 100% syntac-
tically valid circuits, significantly reducing the time and expertise needed for quantum
algorithm design.

3. Application of Quantum Recurrent Neural Networks to Chemical Retrosynthesis: This
chapter presents the first application of Quantum Long Short-Term Memory (QLSTM)
networks for the problem of chemical retrosynthesis, a fundamental task in material
discovery. Unlike classical LSTMs, the QLSTM model demonstrated superior gener-
alization capabilities in substructure identification, achieving higher testing accuracy
(80%) despite lower training accuracy. This indicates that QLSTM networks are more
robust in avoiding overfitting and better suited for real-world generalization in chemical
sub-structure prediction.

4. Lightweight GRU-Based Model for Molecular Side Effect Prediction: A novel, heuristic-
based method was developed to identify molecular properties, particularly adverse side
effects, using a parameter-efficient GRU architecture. This approach reduces model
complexity by over 98% relative to large-scale language models while maintaining
competitive performance. This contribution makes side effect prediction more accessible
for research environments with limited computational resources, democratizing early-
stage drug safety screening.

5. Hybrid Quantum-Classical Models for Molecular Property Prediction: The Quantum
Kernel-based LSTM (QK-LSTM) is introduced to blend the representational power of
quantum kernel methods with classical sequence modeling. This hybrid model shows
promise for molecular property prediction tasks by offering compression benefits without
compromising performance. This is the first study to explore augmented SMILES
and SELFIES representations in both classical and hybrid quantum-classical settings,
with SELFIES augmentation leading to statistically significant improvements (5.97% in
classical, 5.91% in hybrid models).

Collectively, these contributions push the boundaries of what is currently achievable with
molecular property prediction and quantum computers, with a strong focus on real-world
impact in computational chemistry and quantum algorithms. This thesis lays foundational
steps toward more generalizable, and scalable QML systems and opens new avenues for future
research in quantum-enhanced scientific discovery.
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1.5 Thesis Organization

We organize the rest of the dissertation as follows. Chapter 2 evaluates the potential for using
generative graph models to perform quantum circuit transformation, specifically targeting
optimized quantum circuits. It compares the results to common approaches and discusses
future research, potential directions, and limitations with the approach. In Chapter 3, the thesis
examines the role of graph diffusion in designing new quantum circuits, detailing the methodol-
ogy, design choices, datasets, and future limitations. Chapter 4 offers a detailed comparison
between classical Long Short-Term Memory (LSTM) models and hybrid quantum-classical
LSTM (QLSTM) models. It highlights the potential of quantum models and how they may be
able to replace classical ones in the near future. Chapter 5 presents a comprehensive analysis of
the advantages of using task-aware design techniques, specifically targeting molecular property
identification. It also discusses constraints, ethical concerns, and clinical insights that can be
gained. The study of Quantum-kernel LSTM (QK-LSTM) for molecular property prediction
and the first-ever evaluation of augmented SELFIES is explored in Chapter 6. Finally, the
Concluding Remarks in Chapter 7 summarize the key findings of the thesis, highlight its
contributions to the field, and outline potential directions for future research.
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Chapter 2 |
AltGraph: Redesigning Quantum
Circuits Using Generative Graph
Models for Efficient Optimization

Quantum circuit transformation aims to optimize circuits for depth, gate count, and compati-
bility with Noisy Intermediate Scale Quantum (NISQ) devices that suffer from various error
sources. Prior methods use combinations of expert-defined rules and Reinforcement Learning
(RL). We introduce AltGraph, a novel approach employing generative graph models to generate
functionally equivalent quantum circuits using—specifically, Direct Acyclic Graph (DAG)
Variational Autoencoder (D-VAE) variants (GRU and GCN) and Deep Generative Model for
Graphs (DeepGMG). AltGraph perturbs the latent space to generate quantum circuits optimized
for hardware coupling maps, reducing gate count by 37.55% and circuit depth by 37.75%
post-transpiling, with 0.0074 Mean Squared Error (MSE) in the density matrix—outperforming
state-of-the-art methods by 2.56%.

2.1 Introduction

Quantum circuits are the fundamental component of modern-day quantum computing. They
are analogous to classical electronic circuits, where various classical (quantum) gate operations
are performed on bits (qubits) to obtain the desired output. Typically, each quantum circuit has
a set of quantum gate operations followed by a measurement operation on desired qubits at the
end. Special quantum circuits, such as Parametric Quantum Circuits (PQC), also have a state
preparation component at the start to prepare the initial state of qubits. Each quantum gate is
a unitary operation that can be represented as unitary matrix U (for conjugate transpose U∗,
UU∗ =UU−1 = I) and works on either a single qubit or multiple qubits. A few well-known
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single qubit gates are Hadamard (H), Pauli X/Y/Z gates, rotation gates like RX/RY/RZ and U,
and multi-qubit gates are CNOT, Toffoli, controlled Pauli and controlled rotation gates.

Ideal quantum circuits with no noise produce correct output with 100% fidelity. Unfortu-
nately, NISQ computers have gate errors, readout errors, decoherence errors, crosstalk errors,
and other noise sources that degrade the overall fidelity and correctness of computation. In such
noisy environments, gate count and circuit depth are salient when crafting a circuit. Typically,
circuits with low depths and gate counts are ideal for maximum fidelity. Therefore, generating
equivalent quantum circuits to obtain lower-gate functionally equivalent quantum circuits is a
fundamental research problem in the NISQ era.

There are two methods of performing quantum circuit transformation (referred to as circuit

transformation for brevity) [7] namely, rule-based and search-based. The former uses gate-
cancellation rules to optimize quantum circuits [8], while the latter uses machine learning
techniques to find functionally equivalent quantum circuits from the search space of quantum
circuits [7, 9–12]. These techniques primarily use Reinforcement Learning (RL) methods
e.g., [13] uses an RL agent to determine the correct set of gate cancellations to reach optimal
depth on ICM+H circuits. Since ICM+H circuits contain only CNOT and Hadamard gates
which are easy to optimize, this technique may not necessarily work on quantum circuits
involving other gates. [10] overcomes this issue by using parametric quantum circuits but
require circuits to be hardware compliant prior to performing optimization. [11] uses generative
methods by generating circuits as Quantum Assembly Language (QASM) instructions, however
the search space of the generation algorithm is limited and also does not sample new circuit
representations that may fundamentally address the issues like hardware constraint. We address
these shortcomings by proposing AltGraph: usage of generative graph models that produce an
equivalent Directed Acyclic Graph (DAG) of the original quantum circuit DAG from which we
reconstruct the corresponding quantum circuit. We perturb the latent space of the models to
generate equivalent quantum circuits some of which may be more compatible with the hardware
coupling map and/or enable better optimization leading to compact circuits. We use multiple
graph generation models, specifically DAG Variational Autoencoder (D-VAE) Gated Recurrent
Unit (GRU), D-VAE Graph Convolutional Network (GCN) and Deep Generative Model for
Graphs (DeepGMG) and perform comparative analysis.

Novelty: The D-VAE and DeepGMG models were able to process DAGs and generate
stylistically similar graphs as the original DAGs. However, there was no way to guarantee
a reconstructed DAG could be interpreted as a valid quantum circuit. We extend D-VAE
and DeepGMG’s graph reconstruction capabilities to generate always valid quantum circuits.
Furthermore, we enable the capability to generate novel quantum circuits equivalent to the
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original quantum circuit by sampling from the latent space of the generative models. Finally,
we perform detailed comparative analysis of the effectiveness of the generative models in
producing compact representation of the original circuits.To the best of our knowledge, this

is the first attempt to use generative graph model-based circuit transformation to produce

optimized quantum circuits.

The rest of the chapter’s organization is as follows: Section 2.2 illustrates the background
information required to understand the chapter and related work. Section 2.3 presents the
approach to convert the models to valid quantum circuit graph generators. Section 2.4 contains
visualizations of each model’s abilities to process quantum circuits. Section 2.5 analyzes the
results, and Section 2.6 summarizes the work.

2.2 Background and Related Works

2.2.1 Fundamentals of Quantum Computing

Please refer to Section 1.1.1 for a description of qubits, Section 1.1.2 for an introduction to
quantum gates, and Section 1.1.3 for a description of quantum circuits.

2.2.1.1 Transpilation

Before running a quantum circuit, more complex gates, like Tofolli, multi-controlled NOT gate,
etc. are broken into sets of gates that the quantum device natively understands. Converting gates
to hardware native gates is known as decomposition. NISQ devices have restricted connectivity
i.e. not every qubit is connected to every other qubit. Physical qubit connections are represented
in a graph called a coupling map. Because not all qubits are connected, compilation requires
mapping logical qubits to physical qubits, termed as qubit mapping. Decomposition combined
with qubit mapping is formally known as transpilation. If a gate operation is required between
qubits that are not connected, swap operations will be required to bring them to physically
connected qubits. Each swap operation introduces 3 CNOT gates which increases the circuit
depth and gate count.

2.2.2 Quantum Circuit Transformation

There are two types of circuit transformation: rule-based approach and search-based approach.
A rule-based approach involves utilizing gate-cancellation rules on particular subcircuits to
reduce them into smaller amounts of gates with lower depths. For example, two back-to-
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Figure 2.1: (a) Sample 4 qubit 16 gate quantum circuit with (b) the DAG rendering of the
circuit.

back Pauli X gates computationally equate to identity operation (I) as
[

0 1
1 0

][
0 1
1 0

]
=

[
1 0
0 1

]
.

Similar behavior exists for other single-qubit gates and multi-qubit gates. This kind of circuit
transformation is typically incorporated in quantum compilers like Qiskit [8]. Search-based
approaches offer flexibility in terms of optimization. Rather than relying on gate-cancellation
rules, this approach searches for a functionally equivalent circuit. Typically, Machine Learning
(ML) techniques such as Reinforcement Learning (RL), generative models, or other methods
aid the approach. In RL-based search, the current quantum circuit is the state, and the original
version of the circuit is the environment. The circuit transformation performed in each step
is the action, and based on some input, the agent performs the most rewarding action. Some
RL-based works include 1⃝ [13], that uses D-VAE to encode a quantum circuit DAG and
send that encoding to an RL agent which then decides what action to perform among the
possible set of updates, 2⃝ [7], that uses Hierarchical Advantage Learning (HAL) combined
with Proximal Policy Optimization (PPO) [9] to perform reinforcement learning, and 3⃝ [10]
that also uses PPO along with Advantage Actor Critique (AAC) scheme-based agent. In
contrast, generative approaches such as [11] generate quantum circuits as a Quantum Assembly
Language (QASM) sequence of instructions. Other methods include 1⃝ [12] uses Monte Carlo
tree search framework to generate hardware compliant quantum circuits, and 2⃝ [14] performs
ZX-calculus on graphs to perform circuit transformation.
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2.2.3 Message Passing

Generative graph models and graph neural networks, in general, require nodes to share infor-
mation to build either a global or a local understanding of themselves and the nodes around
them in hopes of generating a (semi-)unique representation. While there are multiple tech-
niques, only two approaches exist in D-VAE and DeepGMG: simultaneous message passing
and asynchronous message passing.

2.2.3.1 Simultaneous

The more common approach in graph neural networks, specifically Graph Convolution Net-
works (GCN), is simultaneous message passing. In D-VAE, simultaneous message passing
starts by taking the initial type of each node and sharing it with all its immediate neighbors
(downstream neighbors if uni-directional). These messages are then combined to create a new
localized representation of each node based on its type and its neighbors. The localization
extends to additional neighbors by iteratively repeating this process.

2.2.3.2 D-VAE Asynchronous

D-VAE proposes an “asynchronous" message-passing scheme. This name may seem misleading
since D-VAE does require some synchronization. Analysis of the first few gates of Fig. 2.1b is
done for clarity. At the top is the initial or the “start" node. Once the representation of this node
is created the children begin to process, however not all three children can process immediately.
D-VAE requires processing all predecessor nodes before updating a node’s state. So, only the
“csdg" and the “y" gate may asynchronously process. The “csx" will not be active until the
completion of the “cy" node following “csdg". While the synchronization is time-consuming,
it allows each node a “complete" understanding of all predecessor nodes.
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2.2.4 Generative Graph Models

Generative graph models create new equivalent models based on input graphs and various
constraints. D-VAE encodes a DAG to the latent space, then the encoding is used to obtain
reconstructed DAGs. For detailed analysis, different variations of the D-VAE generative graph
model [15] are used. Namely, D-VAE GRU, D-VAE GCN, and D-VAE DeepGMG [16]. All
three versions use topological ordering to create their DAGs, differing mainly in the encoding
method.

2.2.4.1 D-VAE GRU

The standard D-VAE approach uses the Gated Recurrent Unit (GRU), which encodes the
current node’s state using the node’s predecessors’ states and the current node type. D-VAE
uses asynchronous message passing [17] and topological sorting to ensure all information is
available to the node before encoding. D-VAE defaults to bi-directional encoding, where upon
completion of forward encoding D-VAE reverses the graph and the node states are updated by
repeating the same process.

2.2.4.2 D-VAE GCN

The second D-VAE approach uses GCN. D-VAE allows the designer to decide how many
rounds of simultaneous message passing [18] they desire to create the encodings of the nodes.
To initialize the encoding D-VAE uses the neighbor (or predecessors if uni-directional) node
types to initialize each node’s state. In additional rounds of encoding neighbor (or predecessor)
node states are used to update the state. Standard GCN models are primarily for encoding, so
D-VAE applies the GRU method for GCN decoding.

2.2.4.3 D-VAE DeepGMG

The third D-VAE approach uses DeepGMG [16]. The original DeepGMG work focuses on
undirected graph generation. It also does not use topological ordering and uses a random order
instead. To make a more valid comparison, D-VAE updates the design of DeepGMG to use
topological ordering, allowing for multiple iterations of message passing and the processing of
directed graphs. DeepGMG relies on a similar simultaneous message-passing scheme as GCN
with an important update. DeepGMG, instead of only relying on surrounding node information,
also accounts for an edge feature vector to better understand node connections.
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2.3 AltGraph: Proposed Approach

2.3.1 Approach

To leverage the generative abilities of D-VAE for the quantum domain, we propose AltGraph, a
robust approach to generate valid equivalent quantum circuits. In quantum graph representation,
nodes represent quantum gates in a system, and edges represent the connection between the
gates. We discuss the changes required in original D-VAE to realize AltGraph in the following
paragraphs.

The overall process of generating quantum circuits using AltGraph is shown in Fig. 2.2.
First, the original quantum circuits (step 1⃝) are converted into DAGs (step 2⃝). These DAGs
are sent to the generative graph model (step 3⃝) for reconstructing new DAGs (step 4⃝),
from which the new quantum circuit is reconstructed (step 5⃝). For training, we use MSE
Loss between the density matrices of original and new quantum circuits to ensure similar
functionality. Finally, to obtain the best quantum circuit, we perturb the latent representation of
the circuit with some noise (step 6⃝) and obtain multiple candidate circuits. From these, one
can select the circuit with matching density matrix and least depth and gate count.

2.3.2 Loss

D-VAE used teacher forcing to get faster convergence of models. For loss evaluation, D-VAE
used encoder KLD and the model’s ability to predict the correct node. D-VAE also evaluated
the loss based on the model’s ability to predict edges using the “true" node. While these
features are viable when dealing with graphs and ensuring similarly designed graphs, the goal
is to generate equivalent quantum circuits. Structurally similar graphs are not a guarantee of
equivalent quantum circuits. It is necessary to compare density matrices to evaluate quantum
circuit equivalence. The loss process is updated to generate the nodes and edges rather than
forcing edge predictions based on the “true" node. This forces complete graph reconstruction
for each input, allowing density matrix comparison. The density matrices are taken from the
target hardware post-transpilation using Qiskit’s default optimization level 1. This ensures the
circuits are compared based on their real values rather than the ideal state. AltGraph’s loss
calculation uses the KLD of the encoder, the mean squared error (MSE) of the original circuit’s
density matrix, and the reconstructed circuit’s density matrix.
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2.3.3 Graph Generation

D-VAE requires that each graph has a single input node and a single output node. In cases with
multiple input/output nodes, D-VAE requires a virtual node to represent the final input/out-
put. To match D-VAE requirements, input qubit wires map to the start node, and all qubit
measurements map to the end node. An example mapping is in Fig. 2.1.

Quantum circuits have numerous requirements to ensure validity. Ideally, a neural network
could learn the basic requirements of quantum circuit structures. However, the loss calculations
use the difference between the density matrices of the original and reconstructed circuit, so
even the initial circuits need to be valid constructed designs.

2.3.3.1 Number of Qubits

The first requirement for density matrix comparison is that both density matrices are the
same size. Density matrices are size 2N ∗ 2N where N is the number of qubits. To ensure
reconstructed circuit size equivalence, the reconstructed DAG start node out-degree must match
the out-degree of the original DAG’s start node. The reconstructed DAG end node must have
the same in-degree as the original DAG’s end node.

2.3.3.2 Gates & Gate Connections

D-VAE uses a topological ordering for both encoding and reconstruction. During reconstruction,
it allows for the selection of edges between the current node and any previous node. D-VAE
also allows the model to learn the appropriate amount of in and out edges. However, quantum
gates have a specified in and out edge limitation. To ensure the use of all out-edges, the model
maintains a queue of available nodes for the current node to connect. The node is removed
from the queue when the out-edges are complete. When the model predicts the “end" node it
connects all remaining nodes in the queue. The model predicts the most likely connection from
the available list of previous nodes for the in edge. If it is a multiple-wire gate, the prediction
process repeats until all in-degrees are filled.

2.3.3.3 Circuit Types

To reduce the search space complexity of quantum circuits training/testing uses graphs made of
non-parametric circuits that consist of one and two-qubit gates. Specifically, the single qubit
gates x, y, z, h, s, t, id, sxdg, sdg, sx, tdg and cx, cy, cz, swap, dcx, iswap, csdg, ecr, ch, cs,
csx two-qubit gates are used.
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Table 2.1: Average gate reduction (%) and loss per model per gate count.

2 Qubit 4 Qubit 6 Qubit

Model Type #Gate Loss Reduction Loss Reduction Loss Reduction
GRU 16 0.09 19.59% 0.01 24.63% 0.01 30.18%
GRU 24 0.09 33.94% 0.01 43.86% 0.01 43.96%
GRU 32 0.10 36.27% 0.01 51.37% 0.01 54.16%
GCN 16 0.22 19.83% 0.12 26.17% 0.11 32.29%
GCN 24 0.31 33.02% 0.22 41.09% 0.19 41.99%
GCN 32 0.54 35.34% 0.44 51.74% 0.43 53.1%

DeepGMG 16 0.14 19.57% 0.03 23.67% 0.06 30.34%
DeepGMG 24 0.18 31.99% 0.10 31.71% 0.08 42.6%
DeepGMG 32 0.28 40.77% 0.11 40.44% 0.12 51.50%

2.4 AltGraph Results

2.4.1 Setup and Evaluation Framework

In generating equivalent quantum circuits, the maximum gate predictions are capped at the
original circuit gate count. This can yield higher loss values but penalizes models for larger
circuits, aligning with the aim of more hardware-friendly circuits. AltGraph’s performance is
assessed with qubit counts of 2, 4, and 6 and gate counts of 16, 24, and 32 per qubit. A total
of 300 random circuits for each size are produced using gates from Section 2.3.3.3. The data
follows a 90-10 training/testing split. The same 300 samples are used for all models, ensuring
consistency. Each model is trained thrice per circuit size, and reported values represent the
average outcomes.

2.4.2 Results and Analysis

Table 2.1 presents the mean training loss and gate reduction percentages for three models:
AltGraph GRU, AltGraph GCN, and AltGraph DeepGMG across various circuit sizes. These
percentage reductions are derived from comparing the number of gates between the transpiled
original and the transpiled reconstructed circuits.

The GRU model’s loss tends towards zero faster than both the GCN and DeepGMG models,
irrespective of the qubit and gate counts. Moreover, DeepGMG’s loss approaches zero faster
than GCN. Interestingly, despite GCN’s generally higher loss, it surpasses both GRU and
DeepGMG when circuits have 16 gates, irrespective of the qubit count. Conversely, for circuits
with 24 gates, GRU is superior, irrespective of qubit count. For 32-gate circuits, performance
varies by qubit count: DeepGMG excels for 2-qubit circuits, GCN for 4-qubit circuits, and
GRU for 6-qubit circuits.

Delving deeper into each model’s capability to yield a circuit with fewer gates post-
transpilation provides further insights into their efficiencies. This analysis involves three
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a b c

Figure 2.3: Averaged gate reduction per circuit size for (a) AltGraph GRU, (b) AltGraph
GCN,(c) AltGraph DeepGMG.

a b c

Figure 2.4: Averaged depth reduction per circuit size for (a) AltGraph GRU, (b) AltGraph
GCN, (c) AltGraph DeepGMG.

different encodings for each testing gate and three decodings for each encoding sample, resulting
in nine reconstructions per circuit. Upon generating these samples, both the reconstructed and
original circuits are transpiled using Qiskit’s FakeWashingtonV2 to emulate performance on
cutting-edge hardware. Fig. 2.3a showcases the mean gate reduction for the AltGraph GRU
model per transpiled circuit size.

2.4.2.1 Gate Reduction Trends Across Models

From Fig. 2.3a, a consistent positive gate reduction is observed across different qubits and
gate configurations. Median gate reductions range from 24% (2 qubits, 16 gates) to 53% (6
qubits, 32 gates). As the gate count increases within each qubit category, there is a proportional
increase in gate reduction percentages. Specifically, for 6 qubit circuits with 16, 24, and 32
gates, the median reductions stand at 33.6%, 42.4%, and 52.9%, respectively. Comparable
patterns are seen for 2 and 4-qubit circuits. There are few reconstructions that result in an
increased gate count, like a 4 qubit, 16 gate circuit showing a surge of 73%. However, such
cases are exceptions, as Fig. 2.3a indicates that most alternative configurations yield a reduction
in gate count.

Trends seen in GCN and DeepGMG match those of GRU, as demonstrated in Figs. 2.3b
and 2.3c. GCN’s median gate reduction spans from 25% (2 qubits, 16 gates) to 54% (4 qubits,
32 gates), and DeepGMG’s range is from 27% (2 qubits, 16 gates) to 52.4% (6 qubits, 32 gates).
For both models, as the number of gates grows, gate reduction percentages correspondingly
increase. Comparatively: 1⃝ For 2-qubit circuits, DeepGMG achieves the peak in median
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Table 2.2: Average gate reduction (%) per model per gate count

Model 16 Gate 24 Gate 32 Gate
AltGraph GRU 24.80% 40.59% 47.27%
AltGraph GCN 26.10% 38.70% 46.73%

AltGraph DeepGMG 24.53% 35.44% 44.24%

gate reduction, followed by GRU and then GCN, 2⃝ in 4-qubit circuits, GCN leads in median
gate reduction, with GRU second and DeepGMG last, and 3⃝ for 6-qubit circuits, all models
display similar median reductions, though DeepGMG has an advantage.

2.4.2.2 Depth Reduction Trends Across Models

From Fig. 2.4a, there is a clear and consistent depth reduction across different configurations of
qubits and gates. The median depth reduction spans from 24% for circuits with 2 qubits and 16
gates to 56% for those with 4 qubits and 32 gates. Intriguingly, circuits with an identical qubit
count display an enhanced depth percentage reduction with the addition of more gates. For
6-qubit circuits, the median depth reductions are 39.6% for 16 gates, 49.9% for 24 gates, and
53.9% for 32 gates. This pattern is consistent for 2 and 4-qubit circuits as well. While there
are rare quantum circuits that show an increased depth post-reconstruction, such as a 4-qubit,
16-gate circuit with a 100% depth increase, these cases are rare, predominantly outliers. As
illustrated in Fig. 2.4a, the dominant trend is a depth reduction in the alternative representations.

GCN and DeepGMG trends reflect those of GRU, as observed in Figs. 2.4b and 2.4c.
GCN’s median depth reduction ranges from 26% (2 qubits, 16 gates) to 55% (4 qubits, 32
gates), while for DeepGMG, it is between 24% (2 qubits, 16 gates) and 58% (6 qubits, 32
gates). As gate counts rise for every qubit configuration, depth reduction percentages also climb
for both GCN and DeepGMG. Comparative analysis of the models reveals: 1⃝ For 2-qubit
circuits, GRU tops in median depth reduction, succeeded by DeepGMG and then GCN. 2⃝
With 4-qubit circuits, GRU retains the lead in median depth reduction, followed by GCN and
subsequently DeepGMG. 3⃝ In 6-qubit circuits, DeepGMG stands out with the highest median
depth reduction, with GCN in the second spot and GRU trailing.

2.4.2.3 Comparative Analysis of Model Performances

1⃝ From Table 2.2, AltGraph GRU stands out in its gate count reduction capabilities when
compared to both GCN and DeepGMG for circuits with 24 and 32 gates. However, for 16-
gate circuits, the GCN model surpasses, showing a 5.11% performance difference over the
GRU model. The cumulative gate reduction performance of each model is detailed in Table
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Table 2.3: Average gate reduction per model
Model Average Gates Reduced Average Reduction%

AltGraph GRU 35.67 37.55
AltGraph GCN 33.78 37.17

AltGraph DeepGMG 32.87 34.73
Qiskit 26.15 18.65
t|ket⟩ 73.68 33.5

Quartz [11] – 30.1
Quarl [7] – 36.6

Monte Carlo Tree [12] – 30.0

Table 2.4: Average depth reduction and test circuit MSE per model
Model Average Depth Reduction% Average MSE

AltGraph GRU 37.75 .0074
AltGraph GCN 35.54 .27

AltGraph DeepGMG 40.08 .13

2.3. 2⃝ Upon inspecting Table 2.3, it is evident that the AltGraph GRU, on average, trims
more gates than either the GCN or DeepGMG models. Yet, GCN remains a strong contender,
lagging behind GRU by a mere 1.02%. To understand how AltGraph performs compared to
state-of-the-art systems we include the results from optimizing the same circuits using two
rules based methods, t|ket⟩ and Qiskit. We also include the reported average improvements of
3 state-of-the-art systems ran on IBM Qiskit non-parametric circuits. [9, 11, 12].

The collective depth reduction performance for each model is compiled in Table 2.4. 3⃝ A
closer look at Table 2.4 reveals that the AltGraph DeepGMG consistently outperforms in depth
reduction when set against the GCN and GRU models. Nevertheless, the GRU model is not far
behind, showing only a slight 5.98% performance gap to the DeepGMG. For a comprehensive
view of the average MSE for test circuits, refer to the last column of Table 2.4. 4⃝ Finally,
analyzing Table 2.4, it becomes clear that AltGraph GRU excels in achieving a smaller density
matrix difference than both the GCN and DeepGMG models.

2.5 Discussion

2.5.1 Mixed Optimization Techniques

Drawing from Table 2.2, it is evident that graph generative models present a promising avenue
for gate reductions across different circuit dimensions. However, there is scope for refining the
models further. The circuits used are randomly generated and did not undergo optimization
using conventional rule-based methodologies. If models were trained on optimized circuits,
it is plausible that there would be a more significant overall reduction between original and
reconstructed circuits, as the model would target only substitutions not already addressed.
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Implementing rule-based optimization post-circuit reconstruction could yield added reductions.

2.5.2 MSE Constraints

Despite the models exhibiting robust learning capabilities, using MSELoss as an evaluative
metric has its drawbacks. While MSELoss serves well in gauging matrix similarity, there
are pitfalls in its application. Being a regressive optimizer, MSELoss does not always ensure
the discovery of the best solution. In the quantum realm, this can translate to functional
discrepancies. For instance, if a model, during training, predicts a Pauli-X gate (

[
0 1
1 0

]
) for an

original Pauli-Z gate (
[

1 0
0 −1

]
) , a high loss results. But if the model later predicts an S gate

(
[

1 0
0 i

]
) , the resulting lower loss might misleadingly suggest an “optimized” circuit, which is

not functionally accurate. A deeper probe into the relationship between a low MSELoss and a
model’s functional accuracy is warranted.

2.5.3 Density Matrix Constraints

Another challenge with MSELoss arises with sparse density matrices. In cases with notably
high qubit counts and minimal gate counts, MSELoss might fall short. For illustration, consider
a 16 qubit circuit with (216 ∗216 = 4,294,967,296) values that possess only a single qubit gate.
The MSELoss for a circuit with any such gate would be nearly zero. Yet, this limitation can
be overlooked as the primary objective is to optimize large, intricate circuits, rendering sparse
configurations, like the one mentioned, irrelevant to the study’s context. Scalability to larger
qubit counts initially seems problematic, as density matrices suffer from Nth power scaling.
However, scaling can be addressed by performing block replacements of sub-circuits. For
example, if there is a 100-qubit quantum circuit, the density matrix will have 2100 elements,
which will be too large to process. However, one can break it down into blocks of five qubit
sub-circuits and generate alternate representations for each sub-circuit one by one.

2.6 Conclusions

In our study, generative graph models have proven to be a promising method for gate reduction
in quantum circuits. The AltGraph GRU model showcased an average gate count reduction
of 37.55% which is a 2.56% improvement over the reported state of the art. This is coupled
with a depth reduction of 37.75%, and achieved an impressively low average MSE of 0.0074.
The AltGraph GCN model delivered a comparable gate count reduction of 37.17%, a depth
reduction of 35.54%, but with a slightly higher average MSE of 0.27. Finally, the AltGraph

31



DeepGMG model, while averaging a gate reduction of 34.73% and achieving the highest depth
reduction of 40.08%, reported an average MSE of 0.13. These findings underscore the potential
and versatility of generative graph models in the realm of quantum circuit optimization.
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Chapter 3 |
Q-Fusion: Diffusing Quantum
Circuits

Quantum computing holds great potential for solving socially relevant and computationally
complex problems. Furthermore, quantum machine learning (QML) promises to rapidly
improve our current machine learning capabilities. However, current noisy intermediate-scale
quantum (NISQ) devices are constrained by limitations in the number of qubits and gate counts,
which hinder their full capabilities. Furthermore, the design of quantum algorithms remains
a laborious task, requiring significant domain expertise and time. Quantum Architecture
Search (QAS) aims to streamline this process by automatically generating novel quantum
circuits, reducing the need for manual intervention. In this chapter, we propose a diffusion-
based algorithm leveraging the LayerDAG framework [19] to generate new quantum circuits.
This method contrasts with other approaches that utilize large language models (LLMs),
reinforcement learning (RL), variational autoencoders (VAE), and similar techniques. Our
results demonstrate that the proposed model consistently generates 100% valid quantum circuit
outputs.

3.1 Introduction

Quantum computing is an emerging field with the potential to significantly advance com-
putational capabilities. At the heart of quantum computing lies quantum circuits, which are
analogous to their classical counterparts but operate on qubits to perform complex computations.
Quantum gates are the fundamental building blocks of these circuits, with common single-qubit
gates including Hadamard (H), Pauli X/Y/Z gates, and rotation gates such as RX, RY, RZ, and
U. Multi-qubit gates, including CNOT, Toffoli, controlled Pauli, and controlled rotation gates,
enable more intricate operations. Each gate is unitary, which means that it can be represented
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by a unitary matrix U (where U∗, UU∗ = UU−1 = I), acting on one or more qubits. These
operations are crucial for the development of quantum algorithms and the realization of the
potential of quantum computing.

Quantum circuits typically consist of a sequence of gate operations applied to various qubits,
followed by a measurement of the relevant qubits at the conclusion of the computation. In
addition to these functional gate operations, some quantum circuits include a state preparation
step prior to the main operations, where the initial state of the qubits is instantiated. This state
preparation is crucial for setting up the qubits in the desired configuration before the circuit
performs the intended computation.

In the current era of noisy intermediate-scale quantum (NISQ) [20] devices, quantum
computers face several constraints that affect the fidelity and accuracy of quantum circuit
executions. These challenges include qubit crosstalk, limited gate types, gate errors, short
decoherence times, and restricted qubit connectivity. In these noisy environments, factors
such as gate count and circuit depth become critical limitations when designing and evaluating
quantum circuits, hindering researchers’ ability to develop practical and scalable quantum
algorithms. These constraints present a significant barrier to fully realizing the potential of
quantum computing.

Even if noise issues were negligible, the high cost of entry and the steep learning curve
associated with quantum computing still limit the number of algorithms researchers can develop
to harness its unique properties [21, 22]. Quantum architecture search (QAS) solutions aim to
address these challenges by reducing the reliance on human expertise in quantum algorithm
development [23]. These approaches employ a variety of techniques, including reinforcement
learning (RL) [24, 25], large language models (LLMs) [26, 27], variational autoencoders
(VAEs) [28], and evolutionary algorithms [21, 29]. They can be applied to generate both
parametric [30,31] and non-parametric [32,33] quantum circuits. Parametric Quantum Circuits
(PQC), which use quantum gates requiring parametric input, are particularly prominent in
Variational Quantum Algorithms (VQAs). VQAs enable the implementation of quantum
machine learning models, potentially overcoming the limitations of classical machine learning
approaches. In this work, we leverage a diffusion model to generate quantum circuits, aiming
to further expand the possibilities of AI designed quantum algorithms for quantum computing.

The structure of the chapter is as follows: Section 3.2 provides the background and related
work. Section 3.3 outlines the approach for converting the models into valid quantum circuit
graph generators. Section 3.4 presents visualizations showcasing each model’s ability to
process quantum circuits. Section 3.5 and 3.6.1 offers an analysis of the results, and Section
3.7 concludes the chapter.
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Figure 3.1: Sample of the diffusion process. The top shows how an image structure is destroyed
via noise over several steps. The bottom shows how structure is recreated using a model.

3.2 Background and Related Work

3.2.1 Fundamentals of Quantum

For a summary of qubits refer to Section 1.1.1 and for a summary of quantum gates refer to
Section 1.1.2.

3.2.2 Diffusion Neural Networks

Diffusion models are widely used in image generation to create or recover data samples
that align with the distribution of source data [34]. The diffusion process consists of two
phases: a forward diffusion phase and a reverse diffusion phase. In the forward phase, noise is
incrementally added over several time steps, progressively obscuring the underlying structure of
the data. Once the data is sufficiently corrupted by noise, it is passed through a model during the
reverse diffusion phase. Here, the model is trained to learn the noise patterns so it can reverse
the process, gradually denoising the data to reveal the original structure. Diffusion models
have gained significant popularity in recent years, surpassing Generative Adversarial Networks
(GANs) in certain applications. They have also been successfully integrated with multi-modal
models to generate images based on textual descriptions [35–37] (Fig. 3.1). Diffusion models
offer an advantage over other models such as GANs and reinforcement learning due to their
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stability and avoidance of mode collapse during training, which is important when considering
the complexity of the quantum domain.

3.2.3 Quantum Architecture Search

Current quantum architecture search (QAS) solutions face several challenges. Large language
model (LLM)-based approaches, which leverage vast datasets and are central to neural network
research, such as the Qiskit code assistant, have the potential to enable researchers to design
quantum circuits more efficiently [27]. However, LLMs lack the ability to fully exploit
the physical structures defined by graph-based approaches, which can lead to inaccurate or
suboptimal results due to the absence of physical understanding [26]. Reinforcement learning
(RL)-based solutions allow for a more thorough exploration of the quantum search space
using various techniques [24, 38, 39], but they typically rely on expert-defined sub-circuit
replacement rules, making them time-consuming to train and run. Variational autoencoder
(VAE)-based solutions, while able to leverage the graph structure of quantum circuits and
avoiding the training/runtime inefficiencies of RL, still face scalability issues and struggles with
qubit size [28]. Moreover, VAEs are prone to problems such as mode collapse and unstable
training. To overcome these limitations, we propose a diffusion model based on the LayerDAG
framework [19] as a novel approach for quantum circuit generation.

3.3 Q-Fusion: Approach

3.3.1 Approach

To harness the generative potential of diffusion models in the quantum domain, we introduce
Q-Fusion, an innovative approach to generate quantum circuits. Our method builds upon
quantum circuits’ natural representation using graph notation and draws inspiration from recent
graph-based diffusion frameworks, such as LayerDAG [19]. In this graph representation, nodes
correspond to quantum gates, whereas edges represent the connections (wires) between qubits.
In this section, we detail the functionality of LayerDAG and the necessary modifications to
adapt it for the effective creation of Q-Fusion, enabling the generation of valid and efficient
quantum circuits.

The process of generating quantum circuits using Q-Fusion is illustrated in Fig. 3.2. Initially,
the original quantum circuits (step 1⃝) are transformed into directed acyclic graphs (DAGs),
with noise added to "dirty" the graph (step 2⃝). These "dirty" DAGs are then input into the
graph diffusion model (step 3⃝), which reconstructs "clean" DAGs (step 4⃝). The noise from
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Figure 3.2: Overview of Q-Fusion process for generating quantum circuits. The top image
represents the training process of the diffusion model. The bottom image displays the sampling
method used to create new circuits from the trained diffusion model.

this process is used to update the model. During training, we employ Cross-Entropy (CE) Loss
to compare the real noise applied with the predicted noise, ensuring that the model learns to
preserve the desired functionality. In the sampling phase, empty DAGs are generated (step 1⃝)
and fed into the diffusion model (step 2⃝). The model then samples to produce new, completed
graphs (step 3⃝). Finally, the generated graph is converted into a quantum circuit (step 4⃝),
which is validated for correctness as a quantum circuit (step 5⃝).

3.3.2 Training

LayerDAG employs a three-pronged layering approach, visualized in Fig. 3.3, with each layer
trained using independent parameters. The first layer predicts the node count, the second layer
predicts the nodes themselves, and the third layer predicts the edges between the nodes. Each
layer utilizes a variation of teacher forcing, where the expected label is fed into the graph
encoding portion of the model during training. In the context of quantum computing, several
labeling strategies are possible. After experimenting with various options, we chose to use the
summation of the density matrix as the label. This choice stems from the sparse nature of most
density matrices, where we sacrifice some expressivity to achieve a significant reduction in
memory usage (from O(2n ∗2n) to 0(1)).

For each of the three layers, the directed acyclic graph (DAG) is processed sequentially. A

37



Wire Info

Gate Type Info

Gate Count Information

Wire Prediction

Gate Type 
Prediction

Gate Count 
Prediction

Figure 3.3: Underlying structure of 3 layered diffusion model.

noisy partial DAG is fed into the model, which then predicts the information for the next layer
(i.e., the node count, the nodes themselves, and the edges for that layer). The parameters of
each model layer are updated using Cross-Entropy (CE) Loss, comparing the predicted noise
with the actual noise applied to the model, as is common in modern diffusion models [40]. This
approach ensures that each layer progressively refines the structure of the DAG toward a valid
quantum circuit.

3.3.3 Sampling

Once the model, with all its separate layers, has been trained, it is sampled for performance
evaluation. During the sampling process, empty graphs with noise are fed into the model,
which predicts the features of the next layer—specifically, the number of nodes, node types,
and edges. The predictions from each layer are then used to update the graph, and this process
is iterated until the model predicts no new nodes. Upon completion, we attempt to convert the
resulting DAGs into quantum circuits. The model’s performance is then evaluated based on its
ability to generate graphs that align with valid quantum circuits, ensuring that the generated
structures are both functional and meaningful in the context of quantum computation.

3.3.4 Model Updates

3.3.4.1 Graph Generation

LayerDAG is designed to process graphs without requiring a standardized structure, which
is advantageous in its ability to handle generic directed acyclic graphs (DAGs). However,
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quantum circuits have a highly structured flow of information, governed by strict layering
and connection rules. For example, altering the order of gate execution or removing a gate
can drastically change the functionality of a circuit. Similarly, if a graph were to bifurcate,
the circuit could fail, the qubit count might be reduced, or the execution order could become
unpredictable. Dropping a qubit from the structure could render the circuit non-functional or
fail to preserve its original design. To address these challenges, we introduce virtual start and
end nodes at the beginning and end of the training graphs. These nodes help guide the diffusion
model by emphasizing the importance of maintaining the strict structure and order of execution
inherent in quantum circuits. This approach aims to ensure that the generated circuits remain
consistent with the intended functionality and quantum operations.

Ideally the quantum circuits used would come from a large, well maintained dataset where
the circuits are labeled for their functionality. Unfortunately, in the NISQ era, this is not
available to the public. So to build a data set, random quantum circuits are generated, and then
converted to graphs to train the diffusion model.

3.3.4.2 Wire Information

While LayerDAG is capable of processing generic DAGs, it may overlook critical structural
details. In the case of quantum circuits, for instance, there is no inherent way to represent which
wires are associated with the edges, making it difficult to determine how the circuit functions
when multiple qubits are involved. As the number of qubits increases, the number of potential
circuit configurations grows factorially, further complicating the task. The absence of wire
information also removes key structural elements that help define the quantum search space.
To address this, we introduce wire information into each of the three layers of the model. This
is accomplished by adding additional parameters that build a hidden representation of the wire
connections, similar to the way node types are represented. These wire parameters are then
concatenated with the overall hidden representation of the graph before being processed to make
predictions. This addition ensures that the model can better capture the intricate connectivity
and structure of quantum circuits, leading to more accurate and functional predictions.

3.3.5 Model Information

3.3.5.1 Gates & Gate Connections

The model employs topological ordering for both graph encoding and reconstruction. During
the reconstruction phase, it allows for the selection of edges between the current nodes and
any previously created nodes. The model is also trained to learn the appropriate number of
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incoming and outgoing edges based on the types of gates involved. While quantum gates
have fixed input and output edge constraints, we designed the model to explore this space and
autonomously learn the structural limitations. This approach enables the model to discover
the optimal configurations for gate connections. When the model predicts that no new nodes
remain for a given layer, it halts the graph processing, signifying the completion of the quantum
circuit structure.

3.3.5.2 Circuit Types

As a proof of concept to evaluate Q-Fusion’s ability to produce quantum circuits a large set
of non-parametric gates using the X ,Y,Z,H,S,T, ID,SXDG,SDG,SX , and T DG single qubit
gates and the CX , CY , CZ, SWAP, DCX , ISWAP, CSDG, ECR, CH, CS, and CSX were used
to generate 6k samples of 2 qubit 8 gate circuits.

To reduce the complexity of the quantum search space and better emulate the constraints
of NISQ machines, the gates used in the design of training and testing graphs are drawn
from non-parametric circuits consisting of one- and two-qubit gates from the IBM Heron
gate set. Specifically, we utilize single-qubit gates such as X , SX , ID, and the two-qubit gate
CZ. Additionally, we evaluate the performance of parametric circuits by incorporating the
parametric gate RZ, which allows for more flexible gate operations. This combination of
non-parametric and parametric gates facilitates a more controlled exploration of the quantum
circuit design space, reflecting the practical limitations of current quantum hardware.

3.4 Results

3.4.1 Setup

The Q-Fusion model has been enhanced over LayerDAG [19] with additional structures,
including the ability to predict the qubit wires assigned to gates and the connection constraints
between gates, to address the specific requirements of quantum circuits. For an initial evaluation,
Q-Fusion is tested using a 2-qubit, 8-gate circuit, with 6,000 samples used for model training.
The circuit generation utilized the custom non-parametric gate set described in Section 3.3.5.2.
During evaluation, the model’s wire predictions are excluded, and the virtual start and end
nodes are used to guide the graph generation. Wire ordering is randomly assigned at the
initial connection from the virtual start node and maintained throughout the graph-to-circuit
translation process.
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Table 3.1: Non-Parametric Circuits Produced (%) From Sampling Trained Diffusion Model

Statistic % Valid % Unique
2-qubit Circuits, Custom 100% 40.21%

2-qubit Circuits, Custom w/ Meaningful Functionality 99.9% 40.21%
2-qubit Circuits, Heron 100% 37.25%

2-qubit Circuits, Heron w/ Meaningful Functionality 48.92% 76.51%
5-qubit Circuits, Heron 100% 9.77%

5-qubit Circuits, Heron w/ Meaningful Functionality 21.89% 32.71%

3.4.2 Generation of Non-Parametric Circuits

An example of a generated 2-qubit quantum circuit is shown in Fig. 3.4. This demonstrates that
the diffusion model is capable of effectively navigating the quantum search space, accurately
selecting the correct number of wires per gate and distributing gates across multiple wires to
construct a functional and unique circuit.

q10 : X •
Ecr

T†

q11 : T† H S† •

Figure 3.4: Example Quantum Circuit produced by Q-Fusion for the 2 qubit 8 gate trained
model

The Q-Fusion model’s ability to predict the wire assignment for each gate was reintroduced
and evaluated using two smaller circuit sizes: 2 qubits and 5 qubits, each consisting of 32
non-parametric gates. This reduced circuit architecture facilitates the verification of circuit
designs without requiring extensive computational resources or runtime for evaluating the
density matrices. To train the model, 6,000 random sample circuits were generated for each
separate circuit set. The 32-gate circuits were constructed using IBM Heron’s non-parametric
gate set.

After successfully training Q-Fusion, the model is sampled to generate 4,320 random
circuits in order to assess the ability of the diffusion model to reproduce quantum circuits.
The results are presented in Table 3.1. The model demonstrated the ability to generate a
circuit successfully each time it is sampled. To evaluate the model’s effectiveness in producing
"meaningful" circuits (i.e., circuits that are not empty), we analyzed the density matrices of
each generated circuit. These density matrices vary in size, with 4x4 matrices containing 16
values and 25x25 matrices containing 625 values. A circuit is considered "meaningful" if 10 or
more of these values were non-zero, indicating that the circuit exhibited functional quantum
behavior.
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Table 3.2: PQCs Produced (%) From Sampling Trained Diffusion Model

Statistic % Expressibility % Unique
Valid PQCs Produced From Sample Space 100% .953 16.94%

PQCs w/ Meaningful Functionality 32.45% .880 59.12%

3.4.3 Generation of Parametric Circuits

After demonstrating that Q-Fusion can effectively work with quantum circuits, we next evalu-
ated its ability to generate parametric quantum circuits (PQCs) that are fundamental to quantum
neural networks (QNNs), the results of which are in Table 3.2. PQCs enable the training and
tuning of quantum circuits for machine learning applications. For this evaluation, we generated
6,000 random sample circuits, each using between 1 and 5 qubits and comprising 32 gates. The
parametric gates were assigned random values between 0 and 2π . The specific values used for
the parameters are not critical, as their precise selection holds limited value without knowledge
of the downstream task. These parameters are fine-tuned during the neural network training
process, which is where their true utility is realized.

3.5 Discussion

3.5.1 Non-Parametric Circuit Design

When evaluating the diffusion model’s ability to generate quantum circuits, we observe promis-
ing results. However, a closer examination of Table 3.1 reveals a concerning trend: a decrease
in "meaningful" circuits. This decline can be attributed to several factors, with the most sig-
nificant being the limited gate count and gate types. The circuit is constrained to producing
only 32 gates per instance using IBM Heron. As discussed in Section 3.3.5.2, the inclusion of
the ID gate, which functions as a null operation, exacerbates this issue. Moreover, with such a
restricted gate set, there is a high likelihood of repeating gate operations on the same wire in
rapid succession. This is problematic, particularly for gates like the X gate, where consecutive
applications result in cancellation, effectively behaving like a null operation.

Another contributing factor is the diffusion model’s lack of inherent quantum knowledge.
While the model understands how to construct a valid layout, select appropriate wiring, and so
on, it lacks the built-in understanding of optimization principles like gate cancellation. This
absence of quantum awareness further explains the reduction in "meaningful" functionality
observed in the results. Addressing this gap in quantum knowledge presents an intriguing
avenue for future research, with the potential to improve the model’s performance in generating
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functional quantum circuits.
Additionally, we evaluate the model’s ability to produce unique circuits. For the case of the

non-meaningful circuits, the 2-qubit custom gate set achieves the highest percent uniqueness.
The 2-qubit Heron set obtains the highest value in terms of achieving meaningful functionality.
This is due to the fact that the model has a much larger set of gates available to the system
allowing for better performance in the case of the 2-qubit custom gate set. However, when
we account for the meaningful nature behind the circuits the 2-qubit Heron set performs the
best, this is because the smaller gate set and circuit size allows for the model to build a stronger
understanding of the nature of quantum circuit design.

3.5.2 Parametric Circuit Design

Table 3.2 tabulates an additional statistic, expressibility [41], which defines how well a PQC
is able to explore the quantum Hilbert space. Values close to 0 are preferred, with no upper
limitation on the value observed. The diffusion model is able to produce near 0 values, and
we note that the expressibility improves with more meaningful circuits. The performance of
LayerDAG is promising, especially considering the expressibility is not considered at training
time. Further improvements would be expected if this is taken into account.

Comparing the uniqueness performance between Table 3.1 to Table 3.2, we note that the
PQC model’s performance sits right between the 2-qubit and 5-qubit non-parametric model.
This is expected as the gate set is only increased by a single gate, while consisting of circuits
using 1 to 5 qubits.

Continuing to examine Table 3.2, we observe a continued loss in "meaningful" functionality.
While the issues identified earlier persist, two additional concerns arise. The first relates to
the behavior of the parameters. Since parameter values are randomly generated, they may
either cancel out the functionality on the wire or leave the wire with no functionality at all. If
the RZ gate is assigned a value that results in the inverse of the wire’s intended functionality,
the operation effectively becomes a null operation. Given that the only current methods for
evaluating a PQC rely on training and assessing its performance on a machine learning task (IE
tuning the parameter), this loss of "meaningful" functionality should be regarded as a limitation
of quick evaluation techniques. Future work should focus on improving methods for evaluating
the functionality of PQCs more reliably.

The second issue contributing to the performance drop stems from the use of a functionally
smaller dataset. This choice was deliberate, aiming to better simulate the constraints of quantum
systems in the current NISQ era. While previous experiments utilized 6k samples for a single
circuit size, in this study, the circuit range was expanded to include 1, 2, 3, 4, and 5 qubit
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circuits, along with an additional complex parametric gate, all while maintaining the same
dataset size. The challenge is that there are not 6k well-understood circuits available, even for
these small circuit sizes. Nonetheless, it is important to highlight that meaningful machine
learning progress can still be made within this limited data regime, showcasing the potential
for developing effective quantum models despite these constraints.

3.6 Limitations

3.6.1 Evaluation

Diffusion models have demonstrated strong performance with large and complex images,
offering promising prospects for scaling quantum circuits to incorporate more gates and qubits.
However, these models are not free of limitations, and standard challenges associated with
diffusion models and graph representations must be considered. A unique constraint in the
context of quantum computing is the difficulty in calculating the density matrix associated
with the circuit. Density matrices, which represent the functionality of quantum circuits, scale
exponentially as 2n × 2n, where n is the number of qubits. As circuit sizes increase, this
exponential growth quickly outpaces the computational power of classical machines, making
it infeasible to represent and evaluate large quantum circuits. For Q-Fusion, this means that,
beyond a certain scale, it will no longer be possible to evaluate the circuit design using classical
methods. One potential solution is to map the circuit to a physical quantum device, though this
would limit our ability to assess its "meaningful" functionality using the current definition. As
discussed in Section 3.5.2, evaluating PQCs in this manner may be unreliable. Nevertheless, if
preserving the evaluation of meaningful functionality is critical for the task at hand, a feasible
approach could involve decomposing larger circuits into smaller sub-circuits and evaluating
them individually.

3.6.2 Labeling

One limitation of the current approach arises from the use of the label system discussed in
Section 3.3.2). If this label were to be replaced with a density matrix representation, the
model would struggle to process large circuit designs. Even with the existing label system, the
model becomes unfeasible when the computer can no longer process the entire density matrix.
This limitation stems from the fact that the label relies on a summation of the density matrix.
However, the ultimate goal of the label is to provide a unique representation for functionally
distinct circuits. To overcome this constraint and preserve similar functionality, an alternative
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approach could involve running the circuit on real hardware and using the resulting output
vector to represent the circuit.

3.7 Conclusion

Based on the results from both non-parametric and parametric quantum circuit generation
as benchmarks, we believe that diffusion models hold significant potential to enhance QAS
solutions. In the future, the proposed approach may facilitate the accelerated exploitation of
quantum properties, offering promising advancements for complex problems such as quantum
machine learning.
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Chapter 4 |
Quantum Machine Learning for
Material Synthesis

Using quantum computing, this chapter addresses a scientifically-pressing and day to day-
relevant problem, namely, chemical retrosynthesis which is an important step in drug/material
discovery. We show that Quantum Long Short-Term Memory (QLSTM) is a viable tool for
retrosynthesis. We achieve 65% training accuracy with QLSTM whereas classical LSTM can
achieve 100%. However, in testing we achieve 80% accuracy with the QLSTM while classical
LSTM peaks at only 70% accuracy!

4.1 Introduction to Chemical Retrosynthesis

Chemical retrosynthesis attempts to provide reactants that can be combined, using a chemical
reaction, to synthesize a desired molecule. This process defines fields such as agriculture,
medical treatment, material discovery, and countless others. Fig. 4.1a exemplifies the retrosyn-
thesis process, where the chemical on the left can be formed by the chemical on the right in
combination of a chemical reaction. Performing retrosynthesis in the lab using trial-and-error
takes years, and possibly cost billions of dollars, to resolve just for a single chemical. This leads
to an immense amount of interest in machine learning (ML)-based solutions. Previous work
have been able to generate promising results, but suffer from limitations. For example, expert
defined rules for retrosynthesis [42] relies on human’s incomplete knowledge of retrosynthesis
and doesn’t scale well as more rules are being defined. To overcome limitations of domain
knowledge, models have been created that do not require prior knowledge [43, 44]. These
solutions ignore the certainty of domain knowledge, require excessive training time, and still
poses scalability issues, making it hard to solve retrosynthesis of large molecules [45]. Another
common issue is a dependence on a predefined library of solutions rather than coming up with
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unique chemical results [46]. The efforts to resolve these issues run into the difficulty of finding
chemically viable solutions, long training times, etc. [47, 48]. Chemical retrosynthesis could
benefit from more capability than what modern machines offer, prompting us to search for
solutions in new hardware domains.

The promise of exponential growth in computational space has led to the idea of Quantum
Neural Networks (QNN) [49] and more recently the Quantum Long Short-Term Memory
(QLSTM) [50]. Unfortunately, Quantum Machine Learning (QML) efforts have fallen short of
their desired exponential gain in speed [51]. However, they still offer the ability to represent an
exponentially growing amount of information with only a linear growth in hardware size.

We evaluate the performance of QLSTM (a quantum-classical hybrid approach) and com-
pare it to the performance of LSTM in its ability to make retrosynthetic predictions using the
USPTO-50k dataset [52]. We also introduce two unique approaches to simplify the retrosynthe-
sis process by identifying a specific substring within the reactants that are used to produce the
given reaction.

The rest of the chapter is structured as follows: we cover basics on quantum computing,
QLSTM, QNN etc. in Section 4.2, discuss the methodology used for chemical synthesis in
Section 4.3, present the results of the problem in Section 4.4, and end with closing remarks in
Section 4.5.

4.2 Laying the Groundwork: Material Discovery, Ma-

chine Learning and Quantum

4.2.1 Material Discovery

Material discovery extensively employs USPTO-50K dataset [52] which consists of 40,000
training, 5,000 validation, and 5,000 testing SMILES formatted chemical examples. SMILES
is originally created as a way to use characters to represent chemical chains [53]. The letters
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Figure 4.1: (a) Retrosynthesis example. Starting with a final molecule, the goal is the identify
its starting molecule; (b) chemical retrosynthesis architecture used for training; embedding step
turns information into the proper dimension for the QLSTM; the QLSTM learns and processes
the data; the prediction step performs a softmax to convert the dimensional data to a singular
value.
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represent various elements within the chain where the first letter of an element can be uppercase,
denoting that the element is non-aromatic, or lowercase, denoting that the element is aromatic.
If an element requires a second letter it will be lowercase, regardless of the casing of the first
letter. Numbers are used within the chain to represent the opening and closing of a ring. Finally,
parenthesis are used to denote branches from a chain, whereas periods are used to denote the
start of a new chemical.

<RX_1> c 1 c c c (C n 2 c c c 3 c c c c c 3 2 ) c c 1 (4.1)

The input from USPTO-50K consists of two parts, the first part is the reaction type that
causes the reaction whereas the second part of the string is the reaction. The reaction type
consists of 10 different possible values, ranging from 1-10. The output consists of possible
input reactants that can be used in combination with the reaction type to create the final reaction.
Exemplifying the SMILES format in Eq. 4.1, the initial six characters, (<RX_1>), represent
the reaction type that causes the target molecule given certain reactant(s). Following the
reaction type, we have the chemical c1ccc(Cn2ccc3ccccc32)cc1, which breaks down into three
unique pieces. c1ccc makes the initial chain, while (Cn2ccc3ccccc32) forms a separate chain,
which is denoted by the parentheses. Finally, we end with a third smaller chain, cc1. Next is the
use of C and c, in the uppercase we note there is only a single non-aromatic carbon used, while
the rest of the carbon in the chain is aromatic. Finally, we consider the use of numbers. Within
the separate chain marked by the parentheses, we note the smallest ring formed, 3ccccc3, this
is the third ring in the set, which is why it is marked by two different 3s. Since the creation of
the USPTO-50K, it has frequently been used as an experimental testing ground for chemical
retrosynthesis [44, 45, 54]. We note that due to the nature of this difficult problem and unlike
familiar benchmarks in other domains, the accuracy of much of this work rarely reaches higher
than 50% while predicting the proper reactant for a given input. Although 50% is typically
associated with random guessing, in this domain the accuracy relies on the exact match of
reactant(s) to the given reaction. Given each reaction can have one or two reactants, and the
majority of these reactants are unique to their reaction, it is easy to see 50% accuracy is far
higher than random guess. We summarize the results from previous work in Table 4.1.

4.2.2 LSTM

LSTM is an adaptation of the original Recurrent Neural Network (RNN) structure which is
designed to keep temporal storage of information. This allows the neural network to maintain
previous states of information. However, there is no guarantee as to what information is held
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Table 4.1: Small summary of SOTA chemical retrosynthesis results.

Model Type Resulting Top 1 Accuracy
G2Gs [54] 48.9%
GLN [45] 52.5%

RetroPrime [44] 51.4%
Augmented Transformer [55] 53.5%
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Figure 4.2: QLSTM architecture used for training; (Ct−1,Ct) represent the cell state, (Xt)
represents the input, (ht−1,ht) represent the output state. The V QC1 wire represents the forget
gate, deciding if the input should be added to memory. The (V QC2,V QC3) wires represent the
update gate, updating the cell memory if there is need. The V QC4 wire represents the output
gate, outputting the result of the QLSTM to the rest of the model.

and for how long it will remain, causing saturation issues. To get around these issues the LSTM
allows for the neural network to decide when to add/remove pieces of information, helping
mitigate context saturation issues.

4.2.3 Quantum Information

As a refresher on quantum, please refer to Section 1.1.1 for a description of qubits and
Section 1.1.2 for a description of quantum gates.

4.2.4 QNN

QNN is a promising QML model that has received a lot of attention in recent years. A
traditional QNN is made up of a data encoding circuit, a Parametric Quantum Circuit (PQC),
and measurement operations. The data encoder transforms classical data into a quantum state.
The PQC transforms the quantum state using a chosen ansatz. Measurements determine the
output state. The PQC parameters are tuned during the training phase to produce the desired
measurement results. We can train QNN models to perform traditional ML tasks such as
classification, regression, distribution generation, etc. by selecting appropriate cost functions.

49



10

RX(𝜃ଶ)

RZ(𝑓ଵ)H

RZ(𝑓ଶ)H

|0⟩

|0⟩

RZ(𝜃ହ)

(a)

RX(𝜃ଵ) RZ(𝜃ଷ)

RZ(𝜃ସ)

M1

M2

(b) (c)

Figure 4.3: QNN architecture used for training; (a) angle encoding to convert classical feature
( f1, f2) to their corresponding quantum state; (b) parametric quantum circuit used to perform
desired transformations; and (c) measurement operation which collapses the qubit state to 0 or
1.

Fig. 4.3 shows the architecture of the 2-qubit QNN we used for training. It consists of the
(a) Encoding, (b) PQC and (c) Measurement blocks. Several encoding techniques have been
explored, e.g., amplitude encoding, basis encoding, NEQR [56]. We employ angle encoding
where we pass classical features ( f1, f2) as angles of quantum rotations gates (RZ) to transform
them to quantum state. Similar to angle encoding, there are a number of PQC ansatz [41] to
choose from but almost all of the PQCs consists of two main gate types: single qubit gates
which are used to perform design space exploration, and two qubit gates which are used to
entangle the qubits. The latter forms a correlation between the qubits based on the input feature
values.

In the QNN, we use the 2-qubit Controlled-RZ (CRZ) gate to entangle the qubits and
rotation gates along X and Z axes (RX ,RZ) for transformation/exploration. The PQC/QNN
is analogous to a classical neural network where we adjust the weights (wi) to reduce the
loss value while we adjust the tunable parameters (θi) to generate the desired output in QNN.
Finally, to measure the qubit state the most widely used measurement technique is Pauli’s
measurement along any of the X, Y, or Z axes. In our QNN model we used Pauli-Z measurement

(σz =

[
1 0
0 −1

]
). A measurement in the Pauli Z basis means projecting the state onto one of

the states |0⟩ or |1⟩ (the eigenstates of Pauli Z matrix).

4.2.5 QLSTM

There have been many attempts in the quantum computing domain to create trainable networks
[49, 57] to solve classification problems. However, selective memory has not been available.
QLSTM addresses this challenge and offers the same advantage as classical LSTMs, i.e., the
ability to intentionally form a contextual understanding of previous input. This approach is near
identical to the classical LSTM. The divergence of the two occurs when the network, instead of
taking the information directly from the hidden layer and the input, takes the information and
pass it to a Variational Quantum Circuit (VQC) where we can perform a data entanglement
of the values. We then perform a measurement on the entangled information and proceed
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to process it in the same prediction structure as the classical LSTM. Fig. 4.1b displays the
basic overall architecture of the network: embedding, QLSTM and prediction. Embedding is
preferred to a bag of words model as it reduces potentially large sparse vectors to smaller dense
vectors that require less memory. Fig. 4.2 shows the structure of the QLSTM.

Starting with our representation choices, we use the round edge boxes to represent the
external values fed into the QLSTM, each varying in size. For Xt the size is dependent on the
embedding layer whereas for ht and Ct the size is defined by the hidden dimension size. We
use the sharp-cornered boxes to represent layers of a network, and circles to represent point
wise functions. For the wires, as displayed in the key, we use the wire merging to represent
concatenation and wire splitting to represent a copy of the wire. We also use σ to represent
the sigmoid activation function, defined by Eq. 4.2, and tanh is the arctan activation function,
defined by Eq. 4.3.

σ(x) =
1

1+ e−x (4.2)

tanh(x) =
2

1+ e−2x −1 (4.3)

Working through the QLSTM starting with the bottom left, we have Xt which represents
the input to the QLSTM structure. The input is concatenated with the previous hidden layer
information, which is represented as ht−1. This combination is fed into four different VQCs;
each of them are defined by a modified version of the basic entangler circuit from Fig. 4.4.

The modified basic entangler includes a trainable fully connected layer that squeezes the
dimensional space of the information down to the circuit size of the VQC. After each VQC a
quantum measurement of the expectation for each wire is fed to the trainable fully connected
bloating layer. The bloating layer, increases the size from the quantum circuit back to the
required dimensional space of the classical network. This is then processed using classical
LSTM approaches. Hence, this is a quantum-classical hybrid approach. The first sigmoid
activation is known as the forget gate which is used to decide whether to update the context
Ct to include the new input. After the sigmoid, the result is multiplied onto Ct−1. The second
sigmoid, and the tanh activations are known as the input gate which is used to write the new
input into the context. The result of the sigmoid and tanh activations are multiplied to either be
added to Ct−1, or to ensure the input is not added to Ct−1. The last sigmoid activation is known
as the output gate where the actual prediction is performed. This output is also used to update
the hidden layer ht .
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Figure 4.4: Modified basic entangler circuit; fully connected (FC) squeeze layer reduces
the input size to be of the same qubit count. (a) Angle encoding converts classical features
( f1, f4, f3, f4) to quantum states, (b) parametric quantum circuit entangles quantum states, (c)
qubits measured, and bloated to original higher-dimension space. [6].

4.3 Fundamentals of Chemical Retrosynthesis

Previous works on retrosynthesis have addressed the problem from many different ways such
as, using graph, transformer or some other approach. Prior to transformers, LSTMs were
the preferred approach to neural networks that required a memory [58]. However, LSTMs
don’t work as well as transformers. Therefore, we propose two unique approaches to simplify
the problem of retrosynthesis namely, (a) we restrict the reactions by selecting just a single
reaction type, <RX_1>, in an attempt to simplify the retrosynthesis process. This subset is
reduced from 12,000 to just 9 samples to reduce training time, and emulate the proof of concept
proposed by Di Sipio [59](b) We revert back to including all reaction types and change our
output from a prediction of the reactants to a prediction of a chemical chain within the reactant.
For this we select acetic acid and acetone as the common chemical chains and reduce the input
reactions to only options that produce the selected chemical chains. This subset is reduced
from 2,100 samples down to 200, which is then split 90:10 between training-validation set so
there are 180 training samples and 20 validation samples. We then introduce these approaches
to the QLSTM to show the potential of quantum computing in chemical retrosynthesis. In order
to implement the encoding and the required layers for both LSTM and QLSTM, as well as the
sigmoid activation and arctan activation function for the QLSTM, we use Pytorch [60]. The
quantum circuits are trained using pennylane [6].

4.4 Practicality of QML

4.4.1 Experimental Setups

Since we adopt unique approaches to perform chemical retrosynthesis our results cannot be
directly compared to other state-of-the-art work. For a fair comparison we create a classical
LSTM in the same form as the QLSTM. The QLSTM depends on a 4 qubit VQC structure,
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Figure 4.5: Results of chemical retrosynthesis using a quantum and classical LSTM model; (a)
training of 9 chemical sample limited data set of a single reaction type (reaction type 1) where
quantum is able to reach reasonable accuracy. (b) training of 180 chemical sample limited data
set of two common sub-string chemicals (acetic acid, acetone) where quantum nearly matches
classical for the first 35 epochs.

while relatively small, the 4 qubit structure allows for a more manageable run time. Both
the QLSTM and the LSTM use a small embedding dimension size of 8, and a small hidden
dimension size of 6. The small embedding dimension is used for two reasons: first, it allows
for enough memory for the second approach where we are predicting a reactant sub-string,
and still uses a smaller vector than a bag of words would use for the proof of concept. The
second reason is that when the concatenation of Xt and ht occurs, it doesn’t require a large fully
connected layer squeeze/bloat to match the size of the VQC structure. The hidden dimension
size is heuristically selected, using values less than the embedding dimension, in expectation to
keep the fully connected layer size requirement low. For the concatenation it is performed such
that Xt appends to ht . Table 4.2 contains a summation of parameters. All performance results
are reported from execution on an Intel Xeon W-2125 CPU running at 4 GHz, with 16 GB of
RAM.

Table 4.2: Chemical retrosynthesis prediction defined parameters for both QLSTM and LSTM
models

Parameter Xt ht Ct VQC size
Value 8x1 dim 6x1 dim 6x1 dim 4 qubits
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4.4.2 Single Reaction Type Retrosynthesis

Before beginning the single reaction type retrosynthesis some preprocessing of the original
data is required. For clarity, an example string is provided for each step. To begin we take the
initial input strings, as seen below.

<RX_1>F c 1 c c 2 c ( N C 3 C C C C C C 3 ) n c n c 2 c n 1

We note here that the use of multiple lines are meaningless, they are just inserted for
readability purposes. For simplicity and legibility, we use superscript numbers to represent a
repeating series of a character. This format will be followed for the continuation of the work:

<RX_1>F c 1 c2 2 c ( N C 3 C 6 3 ) n c n c 2 c n 1

As part of our method, we then compress by removing all of the individual spacing, as this
space does not carry any special meaning in the context of SMILES format:

<RX_1> F c 1 c2 2 c ( N C 3 C6 3 ) n c n c 2 c n 1

We then ensure the reaction type is the first reaction type, matching the <RX_1>. After
this we strip off the reaction type as it is no longer helpful:

F c 1 c2 2 c ( N C 3 C6 3 ) n c n c 2 c n 1

After finishing the input string, we take the output string for processing. Here we match the
input string to the output string to find the corresponding output:

F c 1 c2 2 c (C l ) n c n c 2 c n 1 . N C 1 C6 1

After we find the matching output string, we simply compress the string by removing the
spaces:

F c 1 c2 2 c (C l ) n c n c 2 c n 1 . N C 1 C6 1

Once the trimming of the input and output is done, we perform a word encoding for both the
input and the output to have a numerical representation of the SMILES strings for use in LSTM.
The word encoding requires two unique lists, one for reactions and another for reactants. Each

54



list consists of unique chemicals, where each chemical is assigned it’s numerical value based on
it’s index within the list it belongs to. After completing the preprocessing we train the LSTM
and QLSTM models. The promising results in Fig. 4.5a show that the quantum approach,
while unable to match the results of classical approach, is able converge to an accuracy of 65%
and a loss of 0.1.

4.4.3 Chemical Chain Prediction

We perform similar preprocessing of the original data as explained with an example string
below. We take the initial output strings from the input file:

C2 ( C ) ( C ) O C ( = O ) N C2 ( = O ) C3 ( = O ) O C4 ( = O ) O C c 1 c5 1

We then remove all of the individual spacing:

C2 ( C ) ( C ) O C ( = O ) N C2 ( = O ) C3 ( = O ) O C4 ( = O ) O C c 1 c5 1

We then ensure the reaction contains the acetic acid chain, CC(=O)O or acetone CC(=O)C.
After this we dispose of the reactant and simply use the label of the chain the string contains,
for example: acetic.

After we finish the output string, we take the input string and match it to the output string
to find the corresponding input:

<RX_6>C2 ( C ) ( C ) O C ( = O ) N C2 ( = O ) C3 ( = O ) O C4 ( = O ) O
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Figure 4.6: Results of 20 chemical sample limited data set testing of two common sub-string
chemicals (acetic acid, acetone) where quantum outperforms classical.
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After we find the matching input string, we remove the spaces, and the reaction type:

C2 (C ) (C ) O C ( = O ) N C2 ( = O )C3 ( = O ) O C4 ( = O ) O

Once the trimming of the input and output is done, we perform our encoding and we train
the LSTM and QLSTM models. The results in Fig. 4.5b show that the classical loss never
reaches a point of convergence, where the quantum loss also doesn’t reach convergence nor
does it reach the same level as the classical. These results hold true for accuracy, where the
classical domain reaches 65% and the quantum domain reaches 55%. While there is a small
gap in performance, we see that given the task of identifying a common substring within the
predicted reactants, quantum is able to nearly match classical performance during training.
Validation is ran once every 5 epochs during training and here, there is a flip of performance.
The results in Fig. 4.6 show that the classical loss starts to increase after just 25 training
epochs, whereas the quantum loss is steadily decreasing for the entirety of the training. As for
the accuracy, the classical accuracy reaches a high of 70% and steadily decreases to 40%. For
the quantum domain the accuracy starts at 50%, while steadily increasing all the way to 80%,
outperforming the classical model by 40% at the end of the model training.

4.5 Conclusion

We have shown that QLSTM is a viable solution to solve chemical retrosynthesis problem,
even with just 4 qubits. While QLSTM didn’t train as well as its classical counterpart, it is able
to reach a reasonable accuracy and loss metrics for the proof of concept. For example, quantum
achieves 65% accuracy and classical achieves 100%. It again is able to reach a reasonable
accuracy e.g., 55% for quantum and 65% for classical while attempting to predict substrings.
However these gaps are misleading since quantum is able to reach an accuracy or 80% whereas
classical peaks at an accuracy of 70% during testing of the substring prediction!
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Chapter 5 |
Predicting Side Effect of Drug
Molecules Using Recurrent Neu-
ral Networks

Identification of molecular properties, like side effects, is one of the most important and time-
consuming steps in the process of molecule synthesis. Failure to identify side effects before
submission to regulatory groups can cost millions of dollars and months of additional research
to the companies. Failure to identify side effects during the regulatory review can also cost lives.
The complexity and expense of this task have made it a candidate for a machine learning-based
solution. Prior approaches rely on complex model designs and excessive parameter counts
for side effect predictions. Reliance on complex models only shifts the difficulty away from
chemists rather than alleviating the issue. Implementing large models is also expensive without
prior access to high-performance computers. We propose a heuristic approach that allows for
the utilization of simple neural networks, specifically the GRU recurrent neural network, with a
98+% reduction of required parameters compared to available large language models while
obtaining near identical results as top-performing models.

5.1 Introduction

Molecular property prediction is one of the most fundamental tasks within the field of drug
discovery [61, 62]. Applying in silico methods to molecular property prediction offers the
potential of releasing safer drugs to the market while reducing test time and cost. Detecting
molecular properties before development enables researchers to develop more effective new
materials faster and with higher certainty. Detecting known causes of side effects in drugs
before release can prevent unnecessary injury and save thousands of lives. Historically, these in
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silico approaches relied on complex feature engineering methods to generate their molecule rep-
resentations for processing [63, 64]. The bias of the descriptors limits these approaches, which
means the generated features may not be reusable for different tasks as some valuable identifiers
may not be present. The feature vectors also depend on current molecular comprehension;
upon discovery, the feature vectors could become redundant. Graph Neural Networks (GNN)
remove the dependence on complex and temporal descriptors. GNNs became favorable due to
the common practice of drawing molecules using graph representations, which offer a generic
form for the input. The generic input format allows machine learning models to build their
interpretation of information rather than rely on human capabilities. Through these advances
GNNs perform well on multiple cheminformatic tasks, especially molecular property predic-
tion [65, 66]. Despite these improvements GNNs still have limitations. Specifically, GNNs
have difficulty understanding shared dependence and have scalability issues. The size of the
graphical input increases exponentially with each additional molecule that is represented. With
this growth, the cost of communication between graphical nodes also exponentially increases.
Compared to other neural network types, GNNs can perform worse at molecular property
prediction, despite their built-in generic representation [67]. With the recent success of large
language models, newer attempts aim to build transformer-based approaches with promising
signs of success [68]. While new large language models offer comparable performance to
GNNs, they require up to 120 billion parameters.

Due to the rapid explosion of parameters caused by GNNs, feed-forward neural networks,
and transformers, we propose a heuristic approach using a recurrent neural network, specifically
the gated recurrent unit (GRU). Our approach can obtain close to state-of-the-art results with
99+% fewer parameters than large graph-based models or large language-based models, such
as Galactica [68]. In the following sections, we review the MoleculeNet benchmark [69]
and compare the SMILES and SELFIES formats and the basic concepts of a recurrent neural
network, and also discuss a few of the related works that are evaluated using the MoleculeNet
benchmark (Section 5.2). We then discuss the data pre-processing and model implementation
details (Section 5.3), followed by model performances and a comparison to other state-of-
the-art options (Section 5.4). Finally, we conclude the chapter by giving a summary (Section
5.5).
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5.2 Overview of Molecular Property Prediction and Neu-

ral Networks

5.2.1 MoleculeNet Benchmark

MoleculeNet is a benchmark set used to evaluate machine learning techniques [69]. It curates
quantum mechanics, physical chemistry, biophysics, and physiology datasets. For each dataset,
it establishes the preferred metric for evaluation to enable consistent comparison across models.
We describe each dataset selected to evaluate our model.

5.2.1.1 Side Effect Resource (SIDER)

The principal molecular property of human consumption is the side effects associated with
the molecule. The Side Effect Resource (SIDER) dataset attempts to create a single source of
combined public records for known side effects [70]. The dataset consists of 28 columns; the
first column is the SMILES representation of a given molecule, and the 27 subsequent columns
are affected system organ classes where side effects are classified by MedDRA 1. The side
effects of each molecule are marked with a one if it is known to have a side effect or a zero
otherwise.

5.2.1.2 BACE

BACE is a collection of experimentally reported values from various journals for the binding
results for inhibitors of human β -secretase 1 [71].

5.2.1.3 Blood-brain barrier penetration (BBBP)

Here molecules are classified by their ability to permeate through the blood-brain barrier. A
drug’s ability to permeate through the blood barrier is an important feature for drugs specifically
targeting the central nervous system [72].

5.2.1.4 ClinTox

MoleculeNet introduces ClinTox to evaluate drugs previously approved by the FDA and drugs
that have failed clinical trials due to toxicity. [69]

1https://www.meddra.org/
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5.2.1.5 HIV

The HIV dataset is originally from the Drug Therapeutics Program (DTP) 2 consisting of
molecules tested to inhibit HIV replication. There are roughly 40k samples within the dataset,
where MoleculeNet uses two labels, confirmed inactive and confirmed active.

5.2.1.6 MUV

The Maximum Unbiased Validation (MUV) dataset contains 17 labeling tasks and 90k molecules.
The dataset originates from PubChem [73].

5.2.2 ROC-AUC

The receiver operating characteristic curve (ROC curve) measures the true positive rate against
the false positive rate at multiple threshold settings for a binary classifier. This measures
the ability of a model to distinguish correctly between two classes. ROC-AUC is commonly
preferred when evaluating models trained on imbalanced datasets, making it an ideal statistic to
evaluate the MoleculeNet datasets.

5.2.3 Simplified Molecular-Input Line Entry System (SMILES)

Simplified molecular-input line-entry system (SMILES) uses characters to build a molecular
representation [53]. Letters represent various elements within a molecule, where the first
letter of an element can be uppercase, denoting that the element is non-aromatic, or lowercase,
denoting that the element is aromatic. Assuming an element requires a second letter, it will be
lowercase. Another possible representation of aromaticity is the colon, which is the aromatic
bond symbol. Other potential bond symbols are a period (.), a hyphen (-), a forward slash (/),
a backslash (\), an equal sign (=), an octothorpe (#), and a dollar sign ($). Periods represent
a no bond, hyphens represent a single bond, and the forward slash and backslash represent
single bonds adjacent to a double bond. However, the forward slash and backslash are only
necessary when rendering stereochemical molecules. The equal sign represents a double
bond, the octothorpe represents the triple bond, and the dollar sign represents a quadruple
bond. In cases where stereochemical molecules are used, the asperand (@) can be used in a
double instance to represent clockwise or in a single occurrence to represent counterclockwise.
Numbers are used within a molecule to characterize the opening and closing of a ring structure,
or if an element is within brackets, the number can represent the number of atoms associated

2https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
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with an element. Numbers appearing within brackets before an element represent an isotope. A
parenthesis (()) denotes branches from the base chain.

5.2.4 Self-Referencing Embedded Strings (SELFIES)

Self-referencing embedded Strings (SELFIES) improve the initial idea of SMILES for usage in
machine learning processes by creating a robust molecular string representation [74]. SMILES
offered a simple and interpretable characterization of molecules that was able to encode the
elements of molecules and their spatial features. The spatial features rely on an overly complex
grammar where rings and branches are not locally represented features. This complexity causes
issues, especially in generative models, where machines frequently produce syntactically invalid
or physically invalid strings. To remove this non-locality, SELFIES uses a single ring or branch
symbol, and the length of this spatial feature is directly supplied; ensuring that any SELFIES
string has a valid physical representation.

5.2.5 Recurrent Neural Networks (RNN)

Elman networks, more commonly known as vanilla recurrent neural networks (RNN), attempt
to introduce the concept of a time-dependent dynamic memory [75]. The idea is to make
predictions about inputs based on contextual information. Context-based predictions can be
done for four input-output schemes: one-to-one, one-to-many, many-to-one, and many-to-many.
One-to-one models are a variation of a classic neural network, one-to-many models are best for
image caption generation, many-to-one models are best for sentiment analysis, and many-to-
many models are best for translation or video frame captioning. Fig. 5.1 is an example of the
basic structure of a vanilla RNN.

In Fig. 5.1, the Xt represents some input, Ht−1,Ht represents some hidden state (which
is representative of memory), Ot represents some output, and σ represents some activation
function. The current input information combines with the previous hidden state, and the
resulting combined state is then fed to an activation function to insert some non-linearity. This
non-linearity produces the next hidden state, which can be manipulated to create a desired
output. The fundamental element is the hidden state. The hidden state theoretically allows for
consideration of any historical input and its effects on the current input. For a mathematical
description of an RNN, we refer to Equation 5.1 and Equation 5.2.

Ht = σ(WHHHt−1 +WXHXt) (5.1)
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Figure 5.1: Vanilla RNN architecture used for training; (Ht−1,Ht) represent the hidden state,
(Ot) represents the output state, and (Xt) represents the input information. The σ represents the
activation function that operates on the combined input and hidden state.

Ot =WHOHt (5.2)

Unfortunately, Vanilla RNNs suffer from memory saturation issues, so they are not always
reliable. There have been many methods proposed to overcome this issue, but one of the most
popular is the Gated Recurrent Unit (GRU) [76]. The basic structure of a GRU is in Fig. 5.2.
We can mathematically describe each of the components using Equation 5.3, Equation 5.4,
Equation 5.5, and Equation 5.6. Equation 5.5 represents the candidate hidden state function,
representing the potential updated state. Equation 5.6 performs the actual update to the hidden
state based on the previous hidden state and the candidate hidden state. Both Equation 5.3
and Equation 5.4 allow the network to tune the importance of the contribution of the previous
hidden state to the new hidden state. Because of the rt and zt parameters, the GRU can better
control its memory state offering a practical improved performance over RNNs.

zt = σ(Wz · [ht−1,xt ]) (5.3)

rt = σ(Wr · [ht−1,xt ]) (5.4)

h̃t = tanh(W · [rt ∗ht−1,xt ]) (5.5)

ht = (1− zt)∗ht−1 + zt ∗ h̃t (5.6)
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Figure 5.2: GRU architecture used for training; (ht−1,ht) represent the hidden state, (h̃t)
represents the candidate hidden state state, and (rt) and (Zt) represents the parameters to tune
the importance of the previous hidden state versus the updated information. The σ represents
the activation function that operates on the combined input and hidden state.

5.2.6 Related Works

5.2.6.1 GROVER

The graph representation from the self-supervised message passing transformer (GROVER)
model takes two forms, GROVERbase and GROVERlarge [77]. We only consider GROVERlarge

as it achieves the highest performance of the two. GROVER bases its design on popular large
language models such as, BERT and GPT, where a large corpus of information pre-trains a
model and fine-tuning is applied for the completion of downstream tasks [78,79]. However, they
stray from prior works that attempt training using the SMILES string format [80] and instead
use graphs, which they state are more expressive. Previous graph pre-training approaches use
the available supervised labels to train their model [65], but GROVER prefers a self-supervised
approach to achieve higher performance, so they suggest using contextual property prediction
and graph-level motif prediction. Contextual property prediction takes a given element (node)
within a molecular graph and predicts the connected elements and the type of bond used for
the connection. Graph-level motif prediction takes a given molecule and attempts to predict
the recurrent sub-graphs, known as motifs, that may appear within the molecule. To build
the model, they designed a new architecture known as the GTransformer, which creates an
attention-based understanding of molecular graphs. The pre-training process uses 10 million
unlabeled molecules for training and 1 million molecules for validation. The molecules are
taken from ZINC15 [81] and Chembl [82]. GROVER is fine-tuned on 11 benchmark datasets
from MoleculeNet [69] for final evaluation. While this new architecture and self-supervised
training approach offer appealing results the model uses 100M parameters, uses 250 Nvidia
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V100 GPUs, and takes four days for pre-training.

5.2.6.2 ChemRL-GEM

Geometry Enhanced Molecular representation learning method (GEM) for Chemical Represen-
tation Learning (ChemRL) (ChemRL-GEM) draws inspiration from previous works using a
graph-based approach, especially GROVER [65, 77]. ChemRL-GEM uses a large corpus of
information to pre-train a model and, like GROVER, finds the ambiguity of SMILES and lack
of structural information hard to build a successful model using a string-based approach [83].
ChemRL-GEM blames the low performance of prior graph approaches on neglecting the avail-
able molecular 3D information and improper pre-training tasks. ChemRL-GEM pre-training
splits tasks into geometry-level and graph-level tasks. The geometry level tasks are again
split into two types where bond length prediction, and bond angle prediction are local spatial
structure predictions, and atomic distance matrices prediction is a global spatial prediction.
The graph-level predictions are the Molecular ACCess System (MACCS) key prediction and
the extended-connectivity fingerprint (ECFP) prediction. To build the model they designed an
architecture called GeoGNN which trains on the atom-bond graph and the bond-angle graph of
molecules to build a 3D structure-based understanding of the molecular graphs. ChemRL-GEM
achieves SOTA performance and is an early attempt at a large 3D graph model pre-trained
network. The pre-training approach uses 18 million training samples from ZINC15 and 2
million for evaluation [81]. They state that pre-training a small subset of the data would take
several hours using 1 Nvidia V100 GPU, and fine-tuning would require 1-2 days on the same
GPU. As a rough estimate of the actual training process there was a follow-up work called
LiteGEM which removed the 3D input of the model but still uses 74 million parameters and
takes roughly ten days of training using 1 Nvidia V100 GPU [84].

5.2.6.3 Galactica

Galactica is inspired directly by previous large language models and their utilization of large
datasets to pre-train models for downstream tasks [78, 79]. Differentiating from BERT, they
use a decoder-only setup from Vaswani et al. [58]. Unlike GROVER or ChemRL, Galactica
focuses on general scientific knowledge and wishes to apply it to the entirety of the scientific
domain [68]. The Galactica model takes several forms, but the 120 billion parameter model
offers the best performance. Galactica trains over 60 million individual scientific documents
and 2 million SMILES strings. Galactica is trained with samples from MoleculeNet, where
the molecular properties are converted to text prompts and responses. Galactica acknowledges
using SMILES they receive reduced performance gains as their model size increases, but they
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state this could be overcome with more samples. Galactica offers a competitive performance
to graph-based approaches while offering a simplified architecture design. Unfortunately, the
model requires 120 billion parameters and trains using 128 Nvidia A100 80GB nodes. Despite
the massive model size, it is not SOTA for a single SMILES metric. Galactica states they need
additional samples/fine-tuning to obtain SOTA results.

5.3 Examining Methodology

5.3.1 Data Pre-processing

The available MoleculeNet benchmark [69] uses SMILES for its molecular representation.
After reviewing some of the molecule strings, not all are canonical. Including non-canonical
SMILES is problematic as SMILES grammar is already complex; the molecules are converted
to RDKit’s canonical form to reduce complexity. The next issue is caused by RNNs, one
of the many advantages of RNN is the allowance of variable length inputs to account for a
variable length of history. This is only true theoretically; in practice, RNN memory has limits,
which is the focus of many newer works [85]. Despite this limitation, it has been recently
shown that RNNs can handle input lengths of around 45-50 before the performance begins
to degrade [86, 87]. Using this knowledge, we set a maximum SMILES length of 46 for the
molecules. The limitation keeps a minor majority of the molecules while allowing us to ensure
the RNN is performing well. After limiting the SMILES molecular length, the SMILES are
converted to SELFIES. The intention of converting SMILES to SELFIES is to reduce the
grammar complexity and simplify the learning process of the RNN. SELFIES converts each
element and structural component, such as rings or branches, into their label. These labels are
then encoded into a numerical value based on their dictionary index.

5.3.2 RNN Implementation

Fig. 5.3 offers a visualization of the methodology used to train the RNN. The molecules are
first loaded in from a dataset from the MoleculeNet benchmark [69] and converted to SELFIES
representation using the method described in Section 5.3.1. The converted SELFIES are
then processed through an embedding layer with a dimensional space matching the size of
the label dictionary. The dictionary consists of all the unique SELFIES components within
the dataset and the embedding dimension equals the dictionary size to maintain as much
information as possible. The input, hidden, and output dimensions of the RNN are also equal
to the size of the dictionary. Maintaining the dimensional space and not reducing it before
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Figure 5.3: Overview of the RNN process.

output generation gives the RNN a chance of learning the molecular context. Fig. 5.1 and
Fig. 5.2 are visualizations of the RNN architectures used to process the SELFIES. RNNs
historically use the Tanh activation function, but we use the LeakyReLU as it reduces saturation
possibilities and typically results in higher performance [88, 89]. In addition to this, we also
include a dropout layer on the output of the RNN which helps prevent overfitting and reduce
the error rate of RNNs [90]. After processing the SELFIES through the RNN, the final state
should have all important prior information encoded into it. This vector then passes through an
additional LeakyReLU and dropout layer before being fed to a fully connected layer. The fully
connected layer reduces the vector from the dictionary-sized dimension down to the number of
classes present in the molecular property. Subsequently, a soft-max operation finds the most
likely class.

5.4 Analyzing and Comparing Model Performances

5.4.1 Results

Before training on the selected MoleculeNet datasets referenced in Section 5.2.1, we perform
an additional reduction to the dataset by setting the lower bound of 31 molecules to the SMILES
string allowing for the search space to remain sufficiently complex while reducing the overall
run time. The lower bound reduces the datasets before stratified splitting the data using 80%
for training and 20% for testing [91]. The stratified splitting intends to maintain the known
sample rate of a given side effect to model real-world testing. However, during training, we
want to remove the sampling bias to ensure our model accurately learns the causes of a side
effect. The minority samples within the training set are duplicated to have an even sample
count between the side effect present and the side effect not present to reduce the sampling bias.
After replicating training samples, the SMILES conversion to SELFIES occurs. Typical natural
language processing (NLP) methods use a word, sub-word, or character tokenization to convert
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strings into numerical values, but we opt for a slightly different method, which we explain
by referring to equation 5.7. It shows the SELFIES representation of benzene where each
molecule and structural element are between brackets. Using this representation, we decide
to tokenize based on each set of brackets that exist within the SELFIES converted dataset.
This results in a total of 47 unique values. After tokenizing the SELFIES, the embedding
dimension, input dimension of the RNN, and the hidden dimension of the RNN are set to a
size of 47 to match the dimensional space of the tokens. To give the RNN model the best
opportunity to make accurate classifications, we use a single model to perform a single side
effect classification prediction. For SIDER, instead of predicting all 27 potential side effect
classifications, we opt to predict 20 side effect classifications due to extreme imbalances present
in the side effect data. The vanilla RNN architecture results in a model with 11.5K parameters
and the GRU architecture results in a model with 18.8k parameters. Both train in under 2
minutes on an Nvidia GeForce RTX 3090. To compare our performance with other works that
use MoleculeNet we evaluate using the suggested metric, the receiver operating characteristic
curve (ROC) [61, 92].

While ROC is helpful for comparison, it is commonly misunderstood [93,94] so we include
a small sample of 2 training/testing accuracy and loss curves in Fig. 5.4 as a simple spot check
of model performance. Examining Fig. 5.4, we note that training and testing loss is decreasing
across all three side effect properties. There are spikes within each of the loss curves, but this is
known to have occurred since the inception of RNNs [75]. The training loss for all three side
effects saturate faster than the testing. There can be some gap in performance in loss based on
the difficulty of new samples, but the gap here is likely accentuated as an unfortunate side effect
of the minority sample duplication process. The duplicate samples within the training set help
the model learn what molecular components help detect a side effect, but during training, the
repeated samples become easier to predict for the model. In the case of accuracy, both training
and testing show an upward trending curve where improvement starts to attenuate between the
20th-40th epoch. This attenuation roughly matches the attenuation that occurs with the loss
curves. Comparing training and testing accuracy there appears to be a roughly 20+% gap in
performance at nearly every epoch, which we again attribute to the duplicate samples within
the training set.

[C][=C][C][=C][C][=C][Ring1][= Branch1] (5.7)
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Figure 5.4: Results of three tasks: (a) loss curves, (b) training accuracy, (c) testing accuracy for
neoplasms benign, malignant and unspecified (incl cysts and polyps) disorders, (d), (e), (f) for
blood and lymphatic system disorders.

5.4.2 Comparisons

To understand the performance of the proposed approach, we compare it across multiple
datasets to two top-performing GNN models, ChemRL-GEM [83] and GROVERlarge [77],
and a top-performing NLP model, Galactica [68]. In addition to the top-performing large
models, we include the random forest and GCN model from MoleculeNet [69], the DMPNN
model [61], and the pre-trained GIN model [65]. For each heuristic model we evaluate we
train using 20 different random seeds and evaluate the model by taking the top 3 performing
ROC scores per metric. We include standard deviation as a way to account for uncertainty in
model performance. Overall results are shown in Table 5.1. Beginning with the SIDER test,
the results in Table 5.1 show our approach using the GRU achieves SOTA performance with
a 17.8% higher performance over the best model not using the proposed method (RF [69]).
While there are no direct statistics available for ChemRL-GEM, we use roughly 99.7% fewer
parameters than its follow-up work, LiteGEM [83, 84]. It is worth noting that applying our
proposed approach to a CNN network offers a 17.3% higher performance over RF [69]. For the
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Table 5.1: Table of ROC performance per molecular property prediction across datasets.
Model RNN bi-RNN GRU CNN MLP ChemRL-GEM [83] GROVERlarge [77] Galactica [68] RF [69] GCN [69] DMPNN [61] Pre-trained GIN [65]
SIDER .557 ± .05 .56 ± .071 .818 ± .084 .814 ± .059 .731 ± .063 .672 ± .004 .658 ± .023 .632 .684 ± .009 .638 ± .012 .676 ± .014 .627 ± .08
BBBP .643 ± .133 .5 ± 0 .937 ± .025 .923 ± .068 .681 ± .039 .724 ± .004 .940 ± .019 .661 .714 ± .000 .690 ± .009 .737 ± .001 .687 ± .013
Clintox .637 ± .101 .6 ± .17 .98 ± .012 .976 ± .021 .860 ± .029 .901 ± .013 .944 ± .021 .826 .713 ± .056 .807 ± .047 .864 ± .017 .726 ± .015
BACE .623 ± .015 .733 ± .196 .94 ± .006 .923 ± .006 .943 ± .017 .856 ± .011 .894 ± .028 .617 .867 ± .008 .783 ± .014 .852 ± .053 .845 ± .007
HIV .583 ± .032 .61 ± .095 .653 ± .031 .713 ± .081 .683 ± .041 - - .632 - .763 ± .016 .776 ± .007 .799 ± .007

MUV .621 ± .089 .627 ± .107 .923 ± .034 .931 ± .037 .867 ± .058 - - - - .046 ± .031 .041 ± .007 .813 ± .021
Pre-train data - - - - - 18M Mols 10M Mols 60M Docs - - - 2.4M Mols

Rep/Est Train Time ∼ 2m ∼ 2m ∼ 2m ∼ 2m ∼ 2m ∼ 10D 4D 30D - - - -
GPU Req. RTX3090 RTX3090 RTX3090 RTX3090 RTX3090 ∼ 1 V100 250 V100 512 A100 - - - -

BBBP test, the GRU outperforms ChemRL-GEM and Galactica but performs 0.32% worse
than GROVERlarge. While it may be possible that GROVER achieves better performance due
to their usage of graph representation, it more likely stems from having 100M parameters, over
5,000x more parameters than our model [77]. For the Clintox test, our performance was again
the best of all the models. This test is one of Galactica’s best performances, yet we can achieve
a 17.05% higher performance with 6Mx less parameters [68]. Comparing the GRU approach to
the best performing approach for Clintox and BACE, GROVERlarge [77], it achieves a 3.74%
better performance for Clintox and a 5.01% better performance for BACE.

Further comparing the models we include the pre-train data requirement, the train time
of the model and the GPU requirement to achieve the listed runtime in Table 5.1. Additional
evaluations of the accuracy, precision, recall, and Wilcoxon statistics can be found in Appendix 1
and Appendix 2.

5.5 Conclusion

While large data models may offer coverage of larger molecular lengths, we have shown that
small models (specifically GRUs) are still viable candidates for molecular property prediction.
Smaller models are cheaper, more practical, and more accessible solutions as they don’t require
multiple GPUs and several days of training prior to obtaining a result. There are limitations with
RNN based models, but when these limitations are carefully considered and more descriptive
languages, such as SELFIES [74], are used RNNs offer SOTA/near SOTA results.

5.5.1 Clinical Insights

Property prediction models allow chemists to perform molecular evaluations prior to physical
experimentation. Effective property evaluation can prevent months of wet lab research being
spent on molecules that will not be feasible. Reducing failures realized during synthesis has the
potential to greatly reduce the drug to market run time, enabling clinical researchers to rapidly
treat patients for their medical conditions.
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5.5.2 Constraints

Despite the RNN’s learning capabilities and ability to process variable length input with no
additional parameters required, using such an architecture does have drawbacks. RNN models
can scale when dealing with large datasets via batching or even model parallelization, but they
do not scale well when considering larger input sequences. Theoretically, RNN models can
process large sequences of information with no problem, but in practice, RNNs can suffer from
vanishing or exploding gradients causing them to "forget" important information. Even if we
could implement the perfect memory model, the RNN still suffers from long run times where
each addition to the sequence increases the run time due to the sequential nature of recurrence.
One possible method to mitigate the long run time would be chunking, where the sequences
are partitioned into smaller processable pieces. Unfortunately, this is unreliable, as sometimes
vital state information may be separated from chunks causing inaccurate results.

5.5.3 Ethical Statement

While machine learning models can help identify potential molecular properties, they are not
without flaws. Even if machine learning models can accurately identify all molecular properties
of the datasets, they are trained with are fully dependent on previous human discoveries. The
datasets are subject to flawed understandings of chemistry and even political choices. For
example, the NIH only classifies drugs as toxic to the liver after successfully ruling out other
potential causes 3. Therefore, machine learning models should only be used for preliminary
evaluation of molecules and not as the only form of molecular evaluation.

3https://www.ncbi.nlm.nih.gov/books/NBK548049/
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Chapter 6 |
Evaluating Effects of Augmented
SELFIES for Molecular Understand-
ing Using QK-LSTM

Identifying molecular properties, including side effects, is a critical yet time-consuming step
in drug development. Failing to detect these side effects before regulatory submission can
result in significant financial losses and production delays, and overlooking them during the
regulatory review can lead to catastrophic consequences. This challenge presents an opportunity
for innovative machine learning approaches, particularly hybrid quantum-classical models
like the Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) network. The QK-
LSTM integrates quantum kernel functions into the classical LSTM framework, enabling the
capture of complex, non-linear patterns in sequential data. By mapping input data into a
high-dimensional quantum feature space, the QK-LSTM model reduces the need for large
parameter sets, allowing for model compression without sacrificing accuracy in sequence-
based tasks. Recent advancements have been made in the classical domain using augmented
variations of the Simplified Molecular Line-Entry System (SMILES). However, to the best of
our knowledge, no research has explored the impact of augmented SMILES in the quantum
domain, nor the role of augmented Self-Referencing Embedded Strings (SELFIES) in either
classical or hybrid quantum-classical settings. This study presents the first analysis of these
approaches, providing novel insights into their potential for enhancing molecular property
prediction and side effect identification. Results reveal that augmenting SELFIES yields in
statistically significant improvements from SMILES by a 5.97% improvement for the classical
domain and a 5.91% improvement for the hybrid quantum-classical domain.
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6.1 Introduction

Molecular property prediction is a cornerstone of drug discovery [61, 62]. In silico methods
for predicting molecular properties hold the potential to accelerate the development of safer
drugs by reducing testing time and costs. By identifying molecular properties early in the
development process, researchers can efficiently create novel materials with greater confidence.
Moreover, detecting side effects before drug release can prevent unnecessary harm, ultimately
saving lives.

Traditionally, in silico approaches relied on complex feature engineering techniques to
generate molecular representations for processing [63, 64]. However, the limitations of these
descriptor-based methods often hinder their effectiveness. The generated features are highly
task-dependent, meaning they may not be transferable across different problems. Additionally,
as molecular understanding evolves, previously used feature vectors may become obsolete,
reducing utility.

Graph Neural Networks (GNNs) have emerged as a promising alternative, overcoming
many of the limitations of traditional feature engineering. GNNs are particularly well-suited for
molecular property prediction due to their ability to model molecules as graphs, a representation
that naturally captures the structure of molecules. This graph-based approach removes the
reliance on predefined descriptors, allowing the model to learn representations directly from
the data. As a result, GNNs have shown strong performance across a range of cheminformatics
tasks [65, 66]. Despite advances, GNNs face challenges, including difficulties capturing shared
dependencies and scalability issues. As the size of the molecular graph increases, so does the
computational complexity, with the communication cost between nodes growing exponentially.
Consequently, GNNs can sometimes perform worse than other neural network architectures
despite their versatile input representation [67].

Building on the success of large language models in other fields, recent research has explored
language-based approaches for molecular property prediction with promising results [68, 95].
Although which model architecture is best suited for chemoinformatics [96] remains an open
question, language models offer several advantages that make them attractive for researchers.
Notable advancements include the use of large pre-trained datasets [80, 97], multi-modal
techniques [98], data augmentation strategies [99, 100], hybrid quantum-classical machine
learning [1], and combinations of these approaches [96, 101].

As the focus on language models continues to grow, understanding how to optimize these
models is crucial. While prior studies have explored the impact of augmenting SMILES for
classical networks, no research has examined the effects of augmenting SELFIES [102], a
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language specifically designed to enhance machine understanding of chemical structures to the
best of our knowledge. Moreover, no studies have investigated the potential impact of such
augmentations in hybrid quantum-classical models. This study presents the first analysis of

augmented SELFIES in classical and hybrid quantum-classical domains to address these gaps.
In the following sections, we review the necessary background on MoleculeNet benchmark

[69], SMILES and SELFIES formats, Long Short-Term Memory, and few of the related
quantum networks (Section 6.2). We then discuss the methods used to train the models and
their results (Section 6.3), followed by a review of related works (Section 6.4). Finally, we
provide concluding remarks (Section 6.5).

6.2 Preliminaries on Molecular Information and Quan-

tum Models

6.2.1 MoleculeNet Benchmark

MoleculeNet is a comprehensive benchmark for evaluating machine learning models in chemin-
formatics [69]. It curates datasets spanning quantum mechanics, physical chemistry, biophysics,
and physiology. MoleculeNet establishes a preferred evaluation metric for each dataset, ensur-
ing consistent and fair comparisons across different models. In this chapter, we describe the
datasets chosen to assess the performance of our model.

6.2.2 Side Effect Resource (SIDER)

A critical molecular property of drugs intended for human consumption is their associated side
effects, which can significantly impact safety and efficacy. The Side Effect Resource (SIDER)
dataset comprehensively collects publicly available data on known drug side effects [70]. This
dataset compiles side effect information from various sources, offering a unified resource for
understanding the adverse effects of drugs.

The SIDER dataset consists of 28 columns. The first column contains the SMILES repre-
sentation of each drug molecule, providing a standardized chemical structure notation. The
remaining 27 columns represent different organ classes affected by side effects, with side
effects classified according to the Medical Dictionary for Regulatory Activities (MedDRA)
1. Each side effect is encoded with a binary value: "1" indicates that the drug is known to
cause a side effect in the corresponding organ class, while "0" indicates the absence of that side

1https://www.meddra.org/
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effect. This structure enables systematic analysis and model training for predicting adverse
drug reactions based on molecular properties.

6.2.3 ROC-AUC

The Receiver Operating Characteristic (ROC) curve is used to evaluate the performance of
a binary classifier by calculating the true positive rate (TPR) against the false positive rate
(FPR) across various threshold settings. The true positive rate measures the proportion of actual
positives correctly identified by the model. In contrast, the false positive rate represents the
proportion of negative instances incorrectly classified as positive. The ROC curve provides a
comprehensive view of a model’s ability to discriminate between the two classes, with the area
under the curve (AUC) serving as a summary statistic that quantifies overall performance. The
ROC-AUC score, which represents the area under the ROC curve, is particularly valuable when
evaluating models trained on imbalanced datasets, as it accounts for the classifier’s ability to
identify positive instances and avoid misclassifying negative instances correctly. This makes
ROC-AUC an ideal metric for assessing models on datasets like those found in MoleculeNet,
where the class imbalance is often present [103].

6.2.4 Simplified Molecular-Input Line Entry System (SMILES)

SMILES is a notation used to represent molecular structures using a compact string of characters
[53]. In SMILES, atoms are represented by letters, where the first letter of an element is
uppercase to indicate it is non-aromatic and lowercase to signify it is aromatic. When an element
has two letters, the second letter is always lowercase, regardless of aromaticity. Aromaticity
can also be denoted by a colon (:) symbol, representing aromatic bonds.

Bond types in SMILES are depicted using specific symbols. The period (.) represents
a bond with no connection (isolated atoms), the hyphen (-) indicates a single bond, and the
forward-slash (/) and backslash (\) are used to represent single bonds adjacent to a double
bond, primarily in stereochemical molecules. The equal sign (=) signifies a double bond, the
octothorpe (#) represents a triple bond, and the dollar sign ($) is used for quadruple bonds.

In stereochemical representations, the "@" symbol is used to denote chirality: a single "@"
indicates counterclockwise configuration, while a double "@" denotes clockwise configuration.
Additionally, numbers in SMILES denote ring structures by marking the positions where the
ring starts and closes. When elements are enclosed in brackets, the number inside indicates the
number of atoms involved in the substitution or structure. Isotopes of atoms can be specified by
placing a number before the element in square brackets.
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Molecule: Benzene
SMILES: c1ccccc1

SELFIES: [C][=C][C][=C][C][=C][Ring1][Branch1\_2]

Figure 6.1: Sample benzene molecule that relates to both the SMILES and SELFIES samples
supplied

Parentheses (()) indicate branches from the main chain, allowing for more complex molecu-
lar structures to be represented. The SMILES notation enables efficient and compact molecular
representation, facilitating computational processing and analysis in cheminformatics. An
example SMILES representation of benzene, shown in Fig. 6.1.

6.2.5 Self-Referencing Embedded Strings (SELFIES)

SELFIES provide a more robust molecular representation for machine learning applications,
building on the foundations of SMILES [74]. While SMILES offers a simple and interpretable
way to encode molecular structures, it has limitations, particularly regarding spatial features.
SMILES can represent atoms and bonds but rely on a complex grammar to describe features
such as rings and branches, which are not locally represented. This complexity can lead
to issues, especially in generative models, where machines often produce syntactically or
physically invalid strings.

SELFIES addresses these shortcomings by simplifying the representation of spatial features.
Instead of relying on complex grammar to handle rings and branches, SELFIES uses a single
symbol to represent these structural elements. The length of the feature, such as the size of
a ring or the extent of a branch, is explicitly encoded, ensuring that each SELFIES string is
guaranteed to correspond to a valid molecular structure. This approach eliminates the risk of
generating invalid or impossible molecules, making SELFIES a powerful tool for generative
tasks and other machine-learning applications in cheminformatics. An example SELFIES
representation of benzene, shown in Fig. 6.1.
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6.2.6 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks [85] is a specialized type of Recurrent Neural
Network (RNN) [75] designed to address the limitations of standard RNNs, particularly in
handling long-term dependencies in sequential data. Unlike traditional RNNs, which struggle to
maintain information over long sequences due to issues such as vanishing or exploding gradients,
LSTMs have memory cells that can retain information over extended periods, enabling LSTMs
to capture and store temporal information across time steps.

RNNs have an inherent ability to maintain state information, but there is no mechanism in
basic RNNs to selectively decide which pieces of information are kept and for how long. This
can lead to context saturation, where irrelevant information accumulates, making it difficult
for the network to focus on more pertinent data. LSTMs address this problem by introducing
specialized gating mechanisms, namely, the input, forget, and output gates, which allow the
network to control the flow of information. These gates enable the LSTM to decide when
to add new information, remove outdated data, and update its internal state, thus mitigating
the saturation issues seen in traditional RNNs and improving performance on tasks requiring
long-range dependencies.

6.2.7 Quantum Neural Networks (QNN)

QNNs comprises of three core components: a data encoding circuit, a Variational Quantum
Circuit (VQC), and measurement operations. Classical data is first transformed into a quantum
state using amplitude, basis, or angle encoding schemes. The VQC, defined by a parameterized
ansatz, manipulates this quantum state using single- and two-qubit gates, with entanglement
enabling the capture of complex feature correlations [41]. Finally, measurement operations
extract information via quantum observables. During training, VQC parameters are optimized
to minimize a task-specific loss function, enabling QNNs to perform machine learning tasks.
Integrating quantum circuits with ML frameworks offers promising capabilities for handling
high-dimensional and complex data.

6.2.8 Quantum Long Short-Term Memory (QLSTM)

Despite their promise, prior quantum models such as QNNs struggle to incorporate selective
memory mechanisms, key elements of classical machine learning models like LSTM networks.
The QLSTM model is proposed to address this, extending the classical LSTM’s ability to
selectively store and recall contextual information from previous inputs to the quantum realm.
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Figure 6.2: QK-LSTM architecture used for training; (Ct−1,Ct) represent the cell state, (Xt)
represents the input, (ht−1,ht) represent the output state. The V QC1 wire represents the forget
gate, deciding if the input should be added to memory. The (V QC2,V QC3) wires represent the
update gate, updating the cell memory if needed. The V QC4 wire represents the output gate,
outputting the result of the QK-LSTM to the rest of the model.

The QLSTM architecture closely mirrors the classical LSTM but rather than directly processing
information through traditionally hidden layers, QLSTM passes input data through a VQC.
This enables quantum entanglement of the values, which is then measured and processed in
the same manner as the classical LSTM’s prediction structure [50]. This modification allows
QLSTM to exploit quantum phenomena, such as entanglement and superposition, to potentially
enhance the model’s ability to capture temporal dependencies in sequential data.

6.2.9 Quantum Kernel-Based LSTM (QK-LSTM)

The QK-LSTM [104] enhances the QLSTM framework by integrating quantum kernels, which
map data into higher-dimensional feature spaces [105], enabling more expressive representa-
tions with fewer trainable quantum parameters. This hybrid approach combines quantum data
transformations with classical LSTM mechanisms, improving performance in tasks such as
time-series prediction and NLP.

As shown in Fig.6.2, inputs like Xt , ht , and Ct are processed through a sequence of quantum
kernels based on entangler circuits (Fig.6.3). These kernels enrich the input by leveraging
quantum feature maps, followed by a fully connected layer that reduces dimensionality for
classical processing. The enhanced data is passed through standard LSTM components: a forget
gate (sigmoid) determines whether to retain the previous context, an input gate (sigmoid and
tanh) decides what new information to store, and an output gate (sigmoid) generates predictions
and updates the hidden state. This quantum-classical architecture enables QK-LSTM to
effectively model complex temporal dependencies while leveraging quantum-enhanced feature
extraction for improved sequence learning performance.
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Figure 6.3: QK-LSTM basic entangler circuit; (a) angle encoding converts classical features
( f1, f4, f3, f4) to quantum states, (b) parametric quantum circuit entangles quantum states, (c)
qubits measured, and bloated to original higher-dimension space. [6].

6.3 QKLSTM: Methods & Results

6.3.1 Data Pre-processing

The MoleculeNet benchmark dataset [69] represents molecules using the SMILES notation.
Upon inspection, we observed that not all SMILES strings in the dataset are canonical. Non-
canonical SMILES introduce additional complexity due to the inherent syntactic variability of
SMILES representations. To mitigate this, all molecular strings are converted to their canonical
forms using RDKit, thereby reducing redundancy and improving consistency in downstream
learning.

6.3.1.1 Augmentation

Following canonicalization, SMILES augmentation is optionally applied using augmentation
techniques proposed by Bjerrum [100]. This technique generates alternative SMILES strings for
the same molecule by rearranging the atom and bond sequences while preserving chemical va-
lidity. Augmentation increases the diversity of the training data, aiding in model generalization
without altering the underlying molecular structure.

6.3.1.2 SELFIES Conversion

To further alleviate SMILES’s syntactic complexity and facilitate more robust sequence learn-
ing, the canonical and optionally augmented SMILES strings are converted into SELFIES
representations [74]. SELFIES provide a semantically constrained encoding that ensures the
generation of valid molecules. Each SELFIES token, representing atoms or structural motifs
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Figure 6.4: Overview of the LSTM process.

such as branches and rings, is mapped to a numerical index based on a predefined vocabulary.
This sequence of indices serves as the input to the LSTM-based model.

6.3.2 LSTM Implementation

The pre-processed molecular representations train a recurrent neural network based on the
LSTM architecture. Each molecule, represented as a SMILES or SELFIES sequence, is first
mapped through an embedding layer, where each token is embedded into a continuous vector
space. The embedding dimension corresponds to the size of the molecular vocabulary.

The embedded sequence is then passed into an LSTM network. The LSTM’s input and
output dimensions match the embedding size, while the hidden state dimensionality is selected
empirically to explore different model capacities. The LSTM processes the molecular sequence
step-by-step, encoding structural dependencies into its hidden state. The final hidden state is
expected to capture the relevant molecular features.

This final representation is fed into a fully connected layer that projects the hidden state
to a lower-dimensional space corresponding to the number of output classes—typically, the
molecular property to be predicted. This setup lets the model learn end-to-end mappings from
molecular structures to target properties. An overview of this process is in Fig. 6.4.

6.3.3 Results

Ideally, we would analyze the performance of QK-LSTM across all four variations: SMILES
augmented SMILES, SELFIES, and augmented SELFIES. However, the computational cost
of running these variations is prohibitive. Therefore, we focus on the two extreme variations,
namely SMILES and augmented SELFIES, while comprehensively analyzing the classical
model to allow for meaningful abstraction of the results. To evaluate QK-LSTM performance
effectively, we employed Optuna [106] for hyperparameter optimization, randomly selecting
four different LSTM and QK-LSTM configurations for training. Each configuration’s top three
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performing models were selected, and the ROC-AUC scores were averaged to derive the final
performance metric.

For data augmentation, we followed the recommendation of Bjerrum et al. [107], generating
five augmented samples per original data point, where possible. While increasing the number
of augmentations could improve the ROC-AUC, it would significantly increase training time.
In practice, we generated 20 augmentation samples and selected the five shortest to minimize
training time cost.

Following data augmentation, the conversion from SMILES to SELFIES is performed.
SMILES are tokenized at the character level, while SELFIES are tokenized at the bracket
level, transforming the strings into numerical representations that are subsequently fed into an
embedding layer.

The data split is performed randomly following the methodology suggested by MoleculeNet
[69], with 80% of the data allocated for training, 10% for validation, and 10% for testing.

Each model is limited to a maximum of 30 epochs to mitigate the impact of excessive
training time. Early stopping is applied if the validation ROC-AUC did not improve over
10 consecutive epochs. We employed a learning rate reduction after five epochs of non-
improvement in ROC-AUC to further optimize performance.

Optuna explored the hidden dimension space for the LSTM and QK-LSTM models for
hyperparameter optimization. The LSTM’s hidden dimension is allowed to range from 32 to
128, with a step size of 16, while the QK-LSTM’s hidden dimension varied from 8 to 32, with
a step size of 4, resulting in qubit sizes between 3 and 5. The smaller qubit count is chosen
to balance reasonable runtime with a realistic comparison of quantum computers’ current
capabilities against classical implementations. We used a single model for each side effect
classification task to ensure accuracy. The models are trained on an Nvidia GeForce RTX
4090 with an Intel i9-13900K. The final results are averaged across all runs and summarized in
Table 6.1.

6.3.4 Comparisons

To understand the performance changes from augmentation, we compare the SMILES to
augmented SMILES and SELFIES to augmented SELFIES. From Table 6.1, we note a 0.04
increase in the ROC-AUC score (which is outside the standard deviation) when switching
between SMILES to augmented SMILES. We get a 0.049 increase in the ROC-AUC score
(which is outside the standard deviation as well) for switching between SELFIES and augmented
SELFIES. The performance gain for SMILES and SELFIES shows the benefit of increasing the
number of available samples to train with, even if they are just variations of the same molecule,
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Table 6.1: ROC-AUC Test Score From LSTMs

Setup ROC-AUC
LSTM SMILES 0.525 ± 0.023

LSTM Augmented SMILES 0.562 ± 0.004
LSTM SELFIES 0.507 ± 0.026

LSTM Augmented SELFIES 0.556 ± 0.013
QK-LSTM SMILES 0.524 ± 0.022

QK-LSTM Augmented SELFIES 0.555 ± 0.009

as this allows the model to build a more robust understanding of the molecular plane.
To quantify the performance changes from using SELFIES, we compare the SMILES to

SELFIES for the standard dataset and the augmented data set. From Table 6.1, we note a 0.022
worse performance (that is within the standard deviation) when switching between SMILES to
SELFIES. As for switching between augmented SMILES and augmented SELFIES, we get a
0.006 worse performance change (again within the standard deviation). This shows that we
continue to see a non-statistically significant performance change as we increase the size of our
dataset. This is problematic for the future usage of SELFIES in molecular property prediction
as we continue to build larger and more robust molecular datasets.

We compare SMILES and augmented SELFIES for the LSTM and QK-LSTM to quantify
the effect of switching between the classical and quantum domains. Analyzing Table 6.1,
we note a 0.001 performance loss (that is within the standard deviation) due to switching to
the quantum domain for SMILES. As for switching to quantum for augmented SELFIES, we
get a 0.001 performance loss (that is within the standard deviation). While quantum cannot
outperform the classical domain, we do see the model achieving similar performance gains
between SMILES and augmented SELFIES. This is promising for the future of quantum as we
continue to advance quantum machine capabilities.

6.4 QKLSTM: Related Works

6.4.1 Language Models for Cheminformatics

6.4.1.1 Classical Models

Prior to Liu et al. [43], most works required a structured rules-based approach to predict
properties associated with molecules; Liu et al. removed this requirement and achieved similar
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performance by using LSTMs to make predictions. Unfortunately, it did not result in any
significant improvement in state-of-the-art results.

With the advent of the transformer [58], Liu et al.’s proof of concept and the availability
of more standardized datasets, such as MoleculeNet [69], many works attempt to leverage
the abilities of deep neural networks to attempt to achieve state-of-the-art performance in
cheminformatics [68, 77, 80, 83, 84, 96, 97, 108, 109]. While deep learning networks generally
show improvement, they come with the cost of exponentially larger datasets and parameter
counts.

6.4.1.2 Quantum Models

To overcome the exponential increase of classical parameters, some works have explored the
application of quantum machine learning models. Works like Wang et al. [110] attempt to
use a QLSTM to identify potential adverse drug reactions. However, the model relies only
on Twitter data, ignoring potentially helpful information from chemistry datasets. Works like
Beaudoin et al. [1] implement hybrid quantum-classical machine learning models using real
cheminformatic datasets to show the potential for hybrid quantum models to perform molecular
property prediction, which has recently been confirmed by Zhang et al. [111]. Unfortunately,
none of these works explore how these models can be further improved.

6.4.2 Representing Molecules

Representing molecular structures is pivotal in machine learning-driven drug discovery and
cheminformatics. SMILES has become popular among various representations due to its
compatibility with text-based deep learning models. However, SMILES is highly complex and
limits neural networks’ understanding of the input.

Researchers have explored data SMILES enumeration to overcome this limitation, which
generates multiple valid SMILES strings for the same molecule by varying the atom order and
traversal path. This approach significantly enhances model robustness and generalization.
Bjerrum demonstrated that augmenting datasets with randomized SMILES improves the
performance of neural networks on molecular property prediction tasks, reducing the risk
of overfitting and improving accuracy on unseen molecules [100, 112]. However, to our
knowledge, no works explore how augmentation can improve SELFIES.
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6.5 Discussion & Conclusion

While classical models may offer non-statistically significant better performance over near-term
hybrid quantum-classical models, we have shown that quantum models are viable candidates
for molecular property prediction. Additionally, we have shown that we can leverage classical
techniques, such as augmentation, to improve hybrid quantum-classical models further. This
will be increasingly important as we continue to scale up our data sizes, as reflected by the
results shown by the LSTM.

Interestingly, we see no statistically significant performance gains by converting from
SMILES to SELFIES. While SELFIES does guarantee that molecules produced are always real,
it does not simplify the learning process for molecules. Guo et al. found that using SELFIES
may even result in lower performance for LLMs [113], but we did not find this to be the case.
However, further evaluation using additional datasets may be warranted for confirmation. The
promising news is that the augmentation of SELFIES offers similar performance gains to that
of SMILES.

6.5.1 Clinical Insights

Property prediction models allow chemists to perform molecular evaluations prior to physical
experimentation. Practical property evaluation can prevent months of wet lab research from
being spent on molecules that will not be viable, or may be harmful. Reducing failures realized
during synthesis has the potential to significantly reduce the drug-to-market run time, enabling
clinical researchers to treat patients for their medical conditions rapidly.

6.5.2 Constraints

Despite LSTM’s capabilities and ability to process variable length input with no additional
parameters required, such an architecture has drawbacks. LSTM models can scale when dealing
with large datasets via batching or even model parallelization, but they do not scale well when
considering larger input sequences. Theoretically, LSTM models can process large sequences
of information with no problem, but in practice, LSTMs can suffer from vanishing or exploding
gradients just like classic RNNs, causing them to "forget" important information. Even if we
could implement the perfect memory model, the LSTM would still suffers from long run times
where each addition to the sequence increases the run time due to the sequential nature of
recurrence. One possible method to mitigate the long run time would be chunking, where the
sequences are partitioned into smaller processable pieces. Unfortunately, this is unreliable, as
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sometimes vital state information may be separated from chunks, causing inaccurate results.

6.5.3 Ethical Statement

While machine learning models can help identify potential molecular properties, they have
flaws. Even if machine learning models can accurately identify all molecular properties of
the datasets they are trained with, they depend entirely on previous human discoveries. The
properties associated with molecules are subject to our current understanding of them. For
neuvo molecular designs we simply do not have enough understanding of chemistry to be
certain of our predictions. The datasets used for property identification are subject to flawed
understandings of chemistry and even political choices. For example, the NIH only classifies
drugs as toxic to the liver after successfully ruling out other potential causes 2. Therefore,
machine learning models should only be used for the preliminary evaluation of molecules and
not as the only form of molecular evaluation.

2https://www.ncbi.nlm.nih.gov/books/NBK548049/
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Chapter 7 |
Concluding Remarks

This thesis presents a unified framework for advancing quantum computing and material
discovery through efficient, domain-aware classical and hybrid quantum-classical machine
learning models. We demonstrate that meaningful progress in quantum circuit optimization
and molecular discovery can be achieved without resorting to increasingly large and resource-
intensive models. Instead, we advocate for smarter model design, informed architecture
selection, and data-centric approaches as viable and often superior alternatives.

This thesis advanced quantum algorithm synthesis by introducing generative, graph-based
models for quantum circuit optimization. These models significantly reduced gate counts and
circuit depth, outperforming current state-of-the-art methods and highlighting the potential of
generative approaches in circuit design.

We also introduced the first graph-based diffusion model for generating novel quantum
circuits, an important step toward automating quantum circuit design and development.

In molecular synthesis, we introduced and evaluated hybrid QLSTM models for retrosyn-
thesis. Despite the limitations of noisy intermediate-scale quantum (NISQ) hardware, our
results show that QLSTMs can identify molecular substructures with competitive accuracy.
While classical models outperform quantum models in absolute metrics, QLSTMs surpass clas-
sical models in specific prediction tasks, indicating that quantum circuits can offer non-trivial
representational benefits even with minimal qubit resources.

We further explored the role of small, well-designed recurrent neural networks (RNNs) in
molecular property prediction, challenging the prevailing trend of scaling up model size for
marginal accuracy gains. Our findings suggest that small models, particularly GRUs when
paired with expressive molecular representations like SELFIES and enhanced with strategic data
augmentation, can achieve near state-of-the-art performance at a fraction of the computational
cost.

The thesis establishes that QK-LSTMs, enhanced through classical techniques like data
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augmentation, are credible alternatives for chemical property prediction. Though performance
differences compared to classical baselines are often not statistically significant, the hybrid
approach offers a flexible and scalable path forward, especially as larger datasets and quantum
hardware become more accessible.

A critical insight from our comparative studies is that model performance is less dependent
on raw size and more on context-aware design. While large language models (LLMs) offer
broad generalization, smaller, task-specific architectures can be more effective when paired
with problem-relevant datasets and optimization techniques.

This thesis presents scalable, efficient machine-learning strategies for scientific discovery.
Leveraging domain knowledge demonstrates how both classical and quantum models can
deliver high performance with minimal overhead. As quantum hardware and datasets grow,
the approaches developed here provide a strong foundation for addressing key computational
challenges in chemistry and quantum computing.
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Appendix |

1 Accuracy, Precision and Recall Statistics

Data MLP CNN GRU RNN BiRNN
SIDER .453 ± .052 .555 ± .039 .598 ± .049 .314 ± .126 .353 ± .156
BBBP .346 ± .019 .587 ± .026 .641 ± .008 .129 ± .004 .331 ± .274

ClinTox .546 ± .031 .797 ± .022 .824 ± .008 .102 ± .033 .241 ± .250
BACE .695 ± .033 .657 ± .057 .808 ± .029 .404 ± .174 .174 ± .024
HIV .525 ± .011 .529 ± .013 .513 ± .022 .476 ± .036 .486 ± .014

MUV .581 ± .110 .683 ± .083 .478 ± .067 .304 ± .191 .311 ± .21

Model accuracy results using proposed method

Data MLP CNN GRU RNN BiRNN
SIDER .734 ± .317 .773 ± .272 .799 ± .214 .526 ± .399 .488 ± .413
BBBP .845 ± .007 1 ± 0 1 ± 0 .0 ± 0 .6 ± .432

ClinTox .295 ± .082 .639 ± .104 .667 ± .236 .174 ± .029 .083 ± .029
BACE .444 ± .079 .528 ± .171 .704 ± .127 .248 ± .12 .207 ± .139
HIV .536 ± .081 .677 ± .087 .806 ± .056 .739 ± .055 .604 ± .152

MUV 1 ± 0 .495 ± .209 .391 ± .093 .203 ± .140 .229 ± .186

Model precision results using proposed method
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Data MLP CNN GRU RNN BiRNN
SIDER .676 ± .240 .757 ± .189 .739 ± .173 .438 ± .404 .478 ± .444
BBBP .845 ± .007 .75 ± .029 .724 ± .007 0 ± 0 .364 ± .452

ClinTox 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
BACE 1 ± 0 1 ± 0 1 ± 0 .833 ± .236 1 ± 0
HIV .736 ± .086 .852 ± .139 .606 ± .048 .516 ± .152 .616 ± .118

MUV .362 ± .079 1 ± 0 1 ± 0 .899 ± .199 .892 ± .215

Model recall results using proposed method

2 Wilcoxon Statistics

To understand the statistical difference between each of the models running with the proposed
approach a Wilcoxon Signed-Rank test was performed for each model against the absolute best
performance per dataset between the 3 SOTA models (Galactica [68], ChemRL-GEM [83],and
GROVERlarge [77]).

For the GRU the Wilcoxon Signed-Rank test indicated that there is a non-significant large
difference between GRU (Mdn = 0.9 ,n = 5) and Top SOTA Results (Mdn = 0.9 ,n = 5), W+ =
1, p = .125, r = -0.7.

For the CNN the Wilcoxon Signed-Rank test indicated that there is a non-significant large
difference between CNN (Mdn = 0.9 ,n = 5) and Top SOTA Results (Mdn = 0.9 ,n = 5), W+ =
1, p = .125, r = -0.7.

For the MLP the Wilcoxon Signed-Rank test indicated that there is a non-significant small
difference between MLP (Mdn = 0.7 ,n = 5) and Top SOTA Results (Mdn = 0.9 ,n = 5), W+ =
9, p = .813, r = 0.1

For the RNN the Wilcoxon Signed-Rank test indicated that there is a non-significant large
difference between RNN (Mdn = 0.6 ,n = 5) and Top SOTA Results (Mdn = 0.9 ,n = 5), W+ =
15, p = .063, r = 0.8.

For the bidirectional RNN the Wilcoxon Signed-Rank test indicated that there is a non-
significant large difference between Bidirectional RNN (Mdn = 0.6 ,n = 5) and Top SOTA
Results (Mdn = 0.9 ,n = 5), W+ = 15, p = .063, r = 0.8.

In addition to the 3 SOTA models we also performed a Wilcoxon Signed-Rank test compar-
ing the GRU vs MLP and the GRU vs CNN.

Comparing the GRU vs MLP the Wilcoxon Signed-Rank test indicated that there is a
non-significant large difference between GRU (Mdn = 0.9 ,n = 6) and MLP (Mdn = 0.8 ,n = 6),
W+ = 3, p = .156, r = -0.6.
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Comparing the GRU vs CNN the Wilcoxon Signed-Rank test indicated that there is a
non-significant very small difference between GRU (Mdn = 0.9 ,n = 6) and CNN (Mdn = 0.9 ,n
= 6), Z = -0.2, p = .833, r = -0.09.
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