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In this thesis we use effective field theories of the strong interactions to improve
our understanding of several quantities in the Standard Model of particle physics (SM).
We also examine constraints on an extension of the SM scalar sector and study the
implications for the Higgs mass.

We first examine an approach to extracting the Cabibbo-Kobayashi-Maskawa matrix
element |V,;| via the relationship between the B meson decays B — X, fv; and B — X7,
where X; is any final state hadron containing a quark of flavour ¢. Model dependence
is reduced in this approach since the non-perturbative shape function at leading order
is universal and drops out; however the perturbative expansion at next-to-leading order
is found to be poorly behaved. We carry out a renormalon analysis of the relationship
between these spectra to examine higher order perturbative corrections and compare the
fixed-order and log expansions. Our analysis can be used to estimate the perturbative
uncertainty in the extraction of |V,,|, which we show to be relatively small.

Next we take a step towards the broader goal of summing large phase space loga-
rithms from a variety of jet algorithms using Soft Collinear Effective Theory (SCET).
We develop a consistent approach to implementing arbitrary phase space constraints in
SCET and demonstrate the connection between cutoffs in SCET and phase space limits.
By considering several jet algorithms at next-to-leading order, we gain some insight into

factorization of final state jets. In particular, we point out the connection between the
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ultraviolet regulator and factorization.

Finally we consider a scalar sector that contains a colour-octet electroweak-doublet
scalar, in addition to the SM Higgs. This extension contains the only scalar represen-
tations that Yukawa-couple to quarks and are consistent with minimal flavour violation.
We examine constraints from electroweak precision data, direct production from LEPII
and the Tevatron, and from flavour physics. We find both the Higgs and new scalars can
be simultaneously light, with masses of O(100 GeV). The data also allows all the scalars
to be heavy, with masses of O(1 TeV). The presence of the additional scalars removes the
preference for a light Higgs, which normally emerges from fits to electroweak precision

data.
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Chapter 1

Introduction

In the last twenty years the Standard Model of particle physics (SM) has withstood
rigourous precision tests, from measurements at LEP of the properties of W and Z
gauge bosons to the exploration of the flavour sector at B factories and the Tevatron.
However the mechanism for electroweak symmetry breaking remains to be established
and many open questions remain, ranging from understanding neutrino mass generation
to explaining the observed asymmetry between baryons and anti-baryons in the universe.
As a result the search for new physics beyond the SM actively continues with, broadly
speaking, two complementary approaches. There are direct production searches, for ex-
ample at the new energy frontier at the Large Hadron Collider (LHC), and indirect ones,
where deviations from SM predictions are sought in lower energy precision measurements.
Both approaches demand reliable theoretical predictions with quantifiable error estimates

and in both a central challenge is controlling quantum chromodynamics (QCD) effects.

QCD has the property of asymptotic freedom, whereby the coupling of quarks and
gluons, which varies as a function of energy, becomes large at low energies or long dis-
tances. In this regime quantitative predictions based on a perturbative expansion break
down and strongly interacting particles bind together to form hadrons. High energy

processes involving coloured particles, such as the energetic underlying collisions at col-
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liders, can be well described by perturbation theory. However, even in such processes
low energy QCD effects can spoil theoretical predictions since the final states that are
observed experimentally are hadrons and not free quarks and gluons, therefore the details

of hadronization can creep into the calculation of a given observable.

In order to restore predictive power, it is important to separate perturbative affects
from non-perturbative ones. Consider the example of the total cross-section for hadron
production in ete™ annihilation, to which the leading contribution in the strong coupling
constant is given by ete™ annihilating to a quark anti-quark pair. For large centre of
mass energy, (), the quark anti-quark pair are created and move apart at a time scale
of O(1/Q). The details of the much longer time scale low-energy or soft dynamics,
which we do not know how to calculate, do not effect the gq production probability.
Furthermore we know that the probability for the quark and anti-quark to hadronize is
unity, therefore to leading order o(ete™ — hadrons) = o(eTe™ — ¢q), given sufficient
smearing over resonances. Here we have separated the non-perturbative part from the
perturbative underlying cross-section. The non-perturbative contribution is unity with
corrections in powers of 1/@Q), where the complicated details of hadronization enter. There
are also perturbative corrections to this relation such as ete™ — ¢gg. This illustrates
the idea of factorization, which is the separation of a measured quantity into well-defined
components that each depend on physics at a single scale to all orders in the strong

coupling constant and is at the heart of calculating reliably in QCD.

For observables with more complicated constraints such as o(e*e™ — n—jets) defined
by some jet algorithm, or observables with hadrons in the initial state, such as in proton
collisions, the form of the factorization theorem and the hadronic contribution can be-
come much more complicated than the unity at leading order in the above example. In

proton collisions to some final state Y, where the underlying hard process is qg — Y the
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factorized cross-section take the form

o (pp = Y + anything) = /0 diUl/O dzs Zfi(%)fi(%) -0 (qi(x1P)gi(v2P) — Y) (1.1)

This is a convolution over the fraction, i, xs, of total momentum P, carried by the
proton, with a sum over quark flavours 7. The long distance non-perturbative physics of
the proton is given by the parton distribution functions, f;(z). Quantitative predictions
can still be made because the parton distribution function is a property of the proton
and not the hard scattering process of interest. This non-perturbative contribution can

therefore be measured in other processes.

The proof of factorization theorems is clearly important to making reliable quanti-
tative predictions for processes involving the strong interactions. Effective field theories
(EFTs) of QCD are useful because they make the separation of scales manifest at the
level of the effective Lagrangian. As a result the proof of factorization theorems are much
more tractable using EFTs than with traditional diagrammatic techniques; furthermore

the EFT approach is systematically improvable.

In this thesis we use EFT techniques to systematically deal with QCD effects and im-
prove our understanding of a variety of SM quantities. In particular, we first consider the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V,;|, which is relevant to indirect
precision constraints on new physics. We analyse the behaviour of the perturbative piece
of factorized B meson decay rates and use this to estimate the perturbative uncertainty
in a particular approach to extracting |V,;|. Next we take a step towards understanding
the form of the factorized expression for final state jet production for a given jet algo-
rithm, an important process in the LHC environment. Finally we consider an extension
of the SM scalar sector motivated by the flavour structure of the SM and use electroweak

precision measurements as well as current direct production data to constrain the model.
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1.1 Flavour Sector of the Standard Model

The flavour structure of the Standard Model arises from the Higgs Yukawa interaction,

which generates quark masses when the Higgs gets a vacuum expectation value
Lyvukawa = ggﬂEHTE QJL — ggc&HTQ% + h.c. (1.2)

where gy p are the Yukawa matrices, 7 j are flavour indices and
€= . (1.3)

Since the mass and weak eigenstates are not diagonal in the same basis, the weak inter-
action allows for the flavour changing charged current transition between left handed up

and down type quarks of the following form
Liny = _9_22 ) Y Vg 45 W + hec. (1.4)

where Veoku is the CKM matrix, a 3 x 3 unitary matrix, j labels the generation and g, is
the SU(2) gauge coupling. There are, however, no flavour changing neutral currents at
tree-level in the SM. With three generations, the CKM matrix can be expressed in terms
of three angles and one complex phase, which gives rise to charge-parity (CP) violation.
These are free parameters of the SM and it is therefore of interest to determine them
accurately. Furthermore, it is experimentally very well established that a hierarchy exists
in the entries of Vky. This non-trivial flavour structure provides important constraints
on physics beyond the SM.

The flavour structure in the CKM matrix is made clear by the Wolfenstein parame-
terization [1], which expresses the matrix as an expansion in A, the charged weak current

coupling of the up to the strange type quark. To O(A\?) it is given by
Voxu = | Vg Ve Vo | = - - AX (1.5)
‘/td %5 ‘/;gb A )\3<1 —pP— Z?]) —A)\2 1
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where A = 0.225770000 [2]. The unitarity of the CKM matrix gives rise to six vanishing
constraints, each of which can be represented by a triangle in the complex plane. A

convenient representation is obtained from
VaaVap + VeaVa, + ViaVip = 0, (1.6)

illustrated in Fig. 1.1. To test the consistency of this picture it is important to overcon-
strain the unitarity triangle with independent measurements. The angle sin 25 has been
well measured, with sin25 = 0.681 4 0.025 [2]. It is therefore of particular interest to
accurately determine the side opposite the angle $ which depends on both V., and V.
The consistency of the independent determinations of the angle 5 and the side opposite
would provide an important check of the CKM picture and would serve to constrain new

physics.

(0,0) (1,0)

Figure 1.1: Representation of the unitarity triangle. The apex is (p,7) = (p,n)(1 —
A2/2) + O(A1) [2].

B mesons provide an excellent testing ground of the flavour structure of the SM, be-
cause the separation of scales m, > Aqgcp allows short distance physics to be consistently
separated from the details of hadronization using heavy quark effective theory (HQET)
and the operator product expansion (OPE), discussed in Chapter 2. With these tech-
niques, |V has been determined with a 2% uncertainty from inclusive decays B — X vy,
where X, denotes any state originating from the decay to a charm quark [3]. The ex-

traction of |V,,| from inclusive decays B — X, {1, is more theoretically involved [4, 5]
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and has a larger uncertainty, of order 10% [2]. The situation is even worse for exclusive
decays such as B — 7l due to theoretical uncertainties in determining form factors.
The difficulty for |V,;| arises because B mesons decay predominantly via the b — ¢
quark level transition, making it challenging to measure the fully inclusive B — X, v,
decay rate. Eliminating charm background severely restricts the phase space in which
B — X, (v, can be measured and increases the sensitivity of the rate to non-perturbative
effects. As will be described in Chapter 2.2, the techniques used so effectively for |V|
are no longer valid and instead a non-perturbative distribution function, called the shape
function, arises at leading order. The shape function [6] is universal in B decays and it
can either be modelled or eliminated by relating B — X, /v, to another inclusive rare B
decay, B — X,v. In Chapter 3 we focus on the latter approach since it minimizes model

dependence.

1.2 Final State Jet Production

The hadron collider environment requires an understanding of QCD over a wide range
of scales, from partonic hard scattering to the description of initial state protons and
the evolution of final state jets. Factorization is critical to this understanding because it
allows us to separate measured quantities that depend on physics at different scales into
components that each depend on a single scale. As a result a controlled perturbative
expansion is obtained and non-perturbative effects can be isolated.

While calculating QCD effects at colliders is a long-standing and challenging program
with many developments from traditional QCD techniques (see for example [7, 8, 9]),
there has been recent demonstrated potential for soft-collinear effective theory (SCET) to
extend previous results, from event shape variables to event generators [10, 11, 12]. SCET
is an effective theory of the strong interactions, which provides a model independent,

systematically improvable framework to describe the interactions of energetic jets and
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soft quarks and gluons [6, 13, 14, 15, 16]. The effective theory naturally separates physics
at hard, collinear and soft scales, and consequently is useful in proving factorization,

resumming large logarithms and parameterizing non-perturbative corrections.

A necessary ingredient in controlling QCD effects at colliders is proving factorization
for final state jet production defined by a jet algorithm. A jet algorithm is a prescription
by which final state particles in an event are grouped together. At each order in per-
turbation theory this corresponds to a division of phase space into different numbers of
jets. Observables that integrate over the phase space given by a jet definition typically
give rise to logarithms of the ratio of scales associated with the jet algorithm, of the form
aIn™, m < 2n. These phase space logarithms can be large, for example when the jets
are constrained to be in narrow cones, and can spoil the perturbative expansion. We

would therefore like to be able to resum them.

It is difficult to extend traditional QCD techniques to resum large logarithms to
arbitrary order in the log expansion. Furthermore there are a class of observables, called
non-global observables [17], in which cuts are placed on restricted angular regions of phase
space, for which it is not known how to analytically resum logarithms beyond leading
order with perturbative QCD. The two-jet rate defined with the Sterman-Weinberg cone
algorithm [18] is one such example. We would therefore like to be able to address these
questions using EFT techniques. In particular we would like to be able to factorize
the n-jet cross section and resum the large logarithms of phase space cuts for a given
jet algorithm using SCET. In Chapter 4 we take a step towards this broader goal by
developing a consistent approach to implementing jet algorithm phase space constraints

in the effective theory.
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1.3 Flavour Constraints and the Scalar Sector

The quadratic dependence of the Higgs mass on the scale of new physics, A, leads, from
considerations of naturalness, to the perspective that A ~ O(TeV) and that the SM is a

low energy effective theory [19]
La(BE<A)=Lo+ Y % o), (1.7)
P

However the excellent agreement between the SM and data, particularly in the flavour
sector, restricts the scale of new physics for generic operators to be parametrically larger
than the electroweak scale. This leads to the expectation that new physics will have
a non-trivial structure and will respect the approximate symmetries that we observe
experimentally, such as custodial SU(2). However flavour SU(3)y,, x SU(3)p, x SU(3)q,
is not a symmetry of the SM. It is broken by the Yukawa couplings of the quarks and
the Higgs field, Eq. (1.2). Instead we assume that the underlying theory has this flavour
symmetry and that it is broken to generate the Yukawa matrices. This is implemented by
the Minimal Flavour Violation (MFV) criteria [20, 21, 22, 23, 24, 25]. It requires that by
promoting the Yukawa matrices to spurions which transform as g ~ (3u, 3q) and gp ~
(3p,3q), all new physics terms must be invariant under the flavour group. Satisfying
MFV leads to the fact that all new physics Yukawa couplings must be proportional to
the SM Yukawas, which are proportional to the quark mass matrices. It follows that all
Yukawa matrices will be diagonal in the same basis as the quark mass matrices. This
naturally suppresses tree-level flavour changing neutral currents and generates structure
in the effective theory for new physics without requiring parameters in the theory to be
small. Such an approach can be viewed as an extension of the work of Glashow and
Weinberg [26].

It has been shown [27] that there is only one other scalar representation, in addition
to the SM Higgs, that can Yukawa couple to quarks and is consistent with MFV. It is
(8,2)1/2 under the SM gauge group SU(3) x SU(2) x U(1). In Chapter 5 we consider
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an extension of the SM proposed by Manohar and Wise [27], which contains one such
colour octet electroweak doublet scalar. By examining electroweak precision data, flavour
measurements and direct production bounds, we ask whether such a theory consistent
with MFV satisfies current data constraints and what the implications are for the Higgs

mass.

1.4 Organization of this thesis

We begin in Chapter 2 by reviewing HQET, as well as the tools used to calculate inclusive
B meson decays. We continue our review by discussing the other effective theory of the
strong interactions used in this thesis, SCET. In Chapter 3 we study an approach to ex-
tracting the CKM matrix element |V,,;| by examining higher order peturbative corrections
using a renormalon analysis. This material originally appeared in “Higher order petur-
bative corrections to the determination of |V,,| from the P, spectrum in B — X, (v,”
[28]. In Chapter 4 we move on to study jet algorithms in SCET, where we use the
explicit calculation of several next-to-leading order two-jet cross sections to gain some
useful insights into the factorization of final state jets. The contents of this chapter were
published in “Phase Space and Jet definitions in SCET” [29].

We then shift from work aimed at improving our understanding of SM quantities
to studying constraints on an extended scalar sector model, motivated by the flavour
structure of the SM, in Chapter 5. In particular, we examine constraints on the model
and the implications for the Higgs from electroweak precision data, flavour and direct
production bounds. Chapter 5 was published in “Light Octet Scalars, a Heavy Higgs and

Minimal Flavour Violation” [30]. Finally in Chapter 6 we conclude.



Chapter 2

Effective Theories of the Strong

Interactions

QCD is asymptotically free and at long distances perturbation theory breaks down and
strongly interacting particles bind together to form hadrons. The factorization of physics
at different scales into separate well-defined components is therefore critical to making
reliable predictions for processes involving hadrons. Factorization enables us to param-
eterize our ignorance by separating short distance perturbatively calculable effects from
long distance non-perturbative ones and prevents the perturbative expansion from being

spoiled by the presence of large logarithms of the ratio of scales in the problem.

The EFT approach to the strong interactions is useful because it provides a system-
atically improvable framework with which to factorize physics at different scales. It is
formulated by utilizing the separation of scales in a physical process to construct a small
parameter in which to expand the full theory, QCD. This leads to a simplification of the

theory at leading order in the expansion.

In this chapter we will discuss the two EFTs of QCD that we make use of in this
thesis, HQET and SCET. We also discuss the techniques used to calculate inclusive B

meson decays, which rely on the use of HQET and the OPE, which we will exploit in

10



CHAPTER 2. EFFECTIVE THEORIES OF THE STRONG INTERACTIONS 11

Chapter 3 when we consider a method to extract |V,|.

2.1 Heavy Quark Effective Theory

HQET describes the interaction of a single heavy quark, bottom or charm, that interacts
with light quarks and gluons. It has been extensively and successfully applied to the
study of B meson decays [31]. The typical momentum of the light degrees of freedom
is Aqcp ~ 300MeV, which is much smaller than the mass of the heavy quark, mg.
Therefore in the limit the Compton wavelength of the heavy quark, 1/mg, goes to zero
the low energy degrees of freedom cannot resolve the structure of the heavy quark; it
appears simply as a static colour source. The heavy quark has spin 1/2 and therefore
a chromomagnetic moment of ug = ¢/(2mg). In the mg — oo limit, g — 0 and
therefore the interaction between the spin of the heavy quark and light degrees of freedom
is suppressed. This leads to heavy quark spin-flavour symmetry, which we expect will be
broken at O(1/mg). As we shall see, the effective theory makes this explicit.

Since interactions with light degrees of freedom have momentum transfers of O(Aqcp),
it is useful to decompose the momentum of the heavy quark in to a small piece, the

residual momentum k ~ Aqcp, and a large piece which is unchanged by the interactions
P = mqut + k. (2.1)

In the heavy quark limit v* is conserved and acts like a label, while £ is dynamical. We
therefore redefine the QCD heavy quark field to remove the large momentum component

Q(z) = Y e ™M rQ,(z) =Y e M (PLQy(z) + P_Qu(x))

v v

= Y emae(h,(x) + H,(x)) (2.2)

where we have defined the projection operators P,y = (1 £¢)/2, which project out the

upper (lower) two components of the spinor. The quark part of the QCD Lagrangian
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becomes

Locp = Q) (i —mq) Qx) = Qu(@) (P + mep — mq) Qu(w)

= hy(x)iv - Dhy(z) — H,(x) (iv - D 4+ 2mg) H,(z)

+H,(2)iDyhy () + hy(2)i D) Hy(x) (2.3)

where we have used Pyy*Py = £v* and Piy* Py = +//. The kinetic term of the H, field
is suppressed by Aqcep/mg relative to the leading quadratic piece and so is not dynamical

in the effective theory and can be removed using its equation of motion

1

= hy(z)iv - Dh ho(2)il)) —————
L = hy(x)iv o(x) + hv(:r;)le)Lw D+ 2mg

i) hy(x). (2.4)
The heavy quark field of the effective theory, h,, annihilates heavy quarks with velocity
v, but does not create antiquarks. We can now expand the quark part of the QCD

Lagrangian in powers of 1/mg to obtain the HQET Lagrangian to order O(1/mg,)

_ 1 - _
Luoer = ho(z)iv - Dhy(x) + ——h,(2)(iD1)?h,(z) — th(x)aaﬂGo‘ﬁhv(x) (2.5)
QmQ 4mQ
where 0% = i[y*,7”] /2 and igG*® = [D*, D”]. We can see from Eq. (2.5) that the leading
term in the HQET Lagrangian has an additional spin-flavour symmetry as expected, with

O(1/mg) kinetic and spin corrections.

The key point is that the formulation of the effective theory as an expansion in small
parameter Aqcp/mp makes this approximate symmetry manifest and allows corrections
to this limit to be calculated systematically. The enhanced symmetry is a vaulable tool,
and in the next section we will describe how HQET is used along with the OPE to
calculate inclusive B meson decays. We will use the results outlined below in Chapter 3

when we consider a method to extract |V,
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2.2 Inclusive B Decays and the Operator Product
Expansion

In order to calculate B meson decays the effective weak Hamiltonian is used, in which

the W propagator as been expanded in powers of 1/My,. For b — u transitions it is

4G —
Hy = 7§Vub ﬂL’}/MbLfL’)/MI/L (26)

and for b — s processes it is given by [32]

AGp i
Her = —=VaVis D Cii)Oi(n)
\/§ =1

(2.7)

where

O1 = (¢LgV"bra)(SLayucrp) Oy = (CLaV"bra)(5L8VucLB)

Os = 3 (50a7"brs)(Grsvuqrs) Os =Y (50a7"brs)(qLsVudLa)
q q

Os =Y (50a7"b1a)(@rsVuars) Os = > (5LaY*b1s) (AR VudRa)
q q

g9
1672

O, = To2MbSLa0" "bRra Og = mbELaJ“”Tc‘jﬁbrﬁGzy

The dominant contribution to B — X7 is given by O, which is the only operator that
contributes at tree-level, however under renormalization it mixes with all seven other
operators.

Decays with photons and leptons in the final state are useful to consider since the final
state particles do not interact strongly so the matrix element of H.g may be factorized
into a hadronic matrix element and a perturbatively calculable leptonic piece, Las. For
example, for B — X, (v,

dl ~ > (Bl JfS X)X, Ty, |B) Las (2.8)

Xu

The hadronic matrix element can be related to the imaginary part of the forward scat-

tering amplitude of the time ordered product of currents, 7%, by the optical theorem,
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where

70 =i [ a1 (BIT{ ). IL0)|B) 2.9

The forward scattering matrix element develops an imaginary piece along a branch cut
when real intermediate states go on-shell. The locations of the branch cuts are determined
by kinematics. Let px be the momentum of the hadronic products and g the momentum
of the leptons. The rest frame of the B meson can be used to define a four velocity
such that its momentum is p; = mpv#. The forward scattering amplitude 7" is then a
function of both ¢ and v - ¢. Its analytic structure is shown in Fig. 2.1. The branch cut
on the left corresponds to the decay of interest B — X, fv, and the other involves the

scattering process Bly, — Xp.

|v.q

C2

Cl

Figure 2.1: The analytic structure of the forward scattering matrix element for fixed ¢?

in the complex v - ¢ plane. The branch cut on the left corresponds to the decay process

2 .,2 2
Mp+4"—MXmin

of interest which arises for v - ¢ < 5
mp

The integral over phase space for the decay rate is given by an integral over interme-
diate physical bound states, contour C, where T is non-local and perturbation theory
breaks down. The contour C; can however be deformed to contour Cy, a large distance
away from the cuts, where the large scale is set by m;, > Aqcp. Along this contour the
intermediate states are constrained to be far off-shell and these virtual, O(my), degrees

of freedom can be integrated out. The time ordered product of currents is replaced by
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an OPE in powers of 1/m;, [33]

. 1 1 1
b

Since all hadronic momentum transfers are now below m;,, HQET may be used in the
OPE and the coefficients of these operators are calculated perturbatively using matching
calculations.

The validity of the OPE relies on being able to deform the contour away from the
physical cut. This clearly fails in the region where contours C; and C5 meet, however it
is expected that the smearing effect of integrating over a large enough region of phase
space will yield reliable results. The contour can also not be sufficiently deformed when
the endpoints of the two branch cuts in Fig. 2.1 approach each other, which is the case
when ¢? — m?%,.

As discussed in Chapter 1.1, rare decays require cuts on the overwhelming background
from b — c¢ transitions, restricting for example B — X, /v, to be measured in regions
with small My, which are less populated by the heavier charm states. The impact on
the OPE of the restriction on phase space depends on the observable. In Chapter 3 we

consider the partial rate with a cut on P, [34]
P, = Ex — |Px| = (mpv —q) - n, P.=Ex +|Px|=(mpv—¢q)-n (2.11)

where q is the lepton neutrino four momentum, n and n are light-like four vectors in
the £¢ direction and v is the four velocity of the B meson. The P, spectra has been
measured by BaBar and Belle [35]. The cut used in these measurements, and the one
we consider in Chapter 3, removes final states with M% = P, P_ < M3, in particular
P, < M} /M3 ~ 0.66GeV. This corresponds to a region of large P_ ~ O(mp) and small
Py ~ O(Aqep)

The convergence of the OPE for this spectra can be illustrated by considering the

expansion of the tree-level forward scattering matrix element in the effective theory, see
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p=myv-q+k

p, =m,v+k

Figure 2.2: The tree level diagram for the forward scattering matrix element.

Fig. 2.2. The hadronic variables P, can be easily related to the following partonic ones
pr = (mpv —q) - n, p— = (myw —q)-n (2.12)

by Py = p+ + A, where A = mp —my. In terms of these variables the forward scattering

matrix becomes

by Pr(muyf — ¢ + ¥7"Prby _ b,y Pr(p—it/2 + p4i/2 + §)7" Prb,
(myv — q + k)% + e pyip_ +k-npy+k-np_ +k%+ie

(2.13)

Expanding in Aqep/mp with p_ of order m;, and p; and the residual momenta, k, of

order Aqcp gives

_ p_1h/2 (AQCD)
b,y" P, —v'Prb, + O | —— ). 2.14
7 Lp+yL—l—k«np,—l—ze’y L my ( )
The imaginary piece is given by
1
I =—md(py +k-n). (2.15)

m -
pr+k-n+e
The leading order operator in the OPE that gives this contribution is clearly not a local

operator. It is instead given by the shape function [6]
F(w) = (BlF, 6(ps +in - D)b,|B) (2.16)

in which the b quarks are separated along a light-cone. This is seen more clearly in

position space where we obtain a Wilson line

F(s) = (Bb,(0) Pexp (/ dsn - A(s n)) bu(s)| B). (2.17)

0
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In this region, which corresponds to M% ~ my, Aqep, the differential decay rate is given

by a nonlocal OPE of the form

Al ~ /OO dw C(w) f(w) + O (AQCD) . (2.18)

o0 my
The leading order shape function describes the non-perturbative distribution of the light-
cone component of the residual momentum inside the B meson. It is universal, unlike
the subleading operators that arise, and can either be modelled using constraints from
processes such as B — X v or it can be removed by directly relating B — X, lv, to
B — Xyv [36, 37, 38]. We consider the latter approach in Chapter 3. Notice that if
M3 ~ O(Acp), which means both Py and P_ are of order Aqcp, there would be no
expansion of the terms in Eq. (2.13) and the OPE would break down as expected, since

the decay would be dominated by a small number or resonances.

2.3 Soft Collinear Effective Theory

SCET is an effective theory of QCD that describes states with large energy, (), and small
invariant mass [6, 13, 14, 15, 16]. To construct the theory it is useful to first define null

vectors n* and 7#, such that n? = 0,72 = 0 and n-7 = 2. Any vector can be decomposed

as
nt nt

Pr=pt s+ 5+ (2.19)
2 2

where p™ = n-p, p~ = - p and for short-hand we write p = (p*,p~, p1). Since energetic

particles with small mass travel close to the light-cone there is a large separation between
the light-cone components, we therefore construct the small parameter A ~ p, /p~ in
which to expand the full theory. It follows that a particle collinear to the n-direction has
p~ ~ Q@ and p; ~ AQ and for fluctuations near the mass shell p™ ~ p% /p~ ~ A2 Q2. The
collinear scaling in SCET is therefore p. = Q(A\?,1,\). In order to correctly reproduce

the infrared physics of QCD, the effective theory also requires soft particles with scaling
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ps = Q(A\%, A%, )\?) [6]. The effective theory containing these soft and collinear modes is

referred to as SCET] and is the theory we shall focus on here and utilize in Chapter 4.
In order to obtain the SCET Lagrangian, we begin as in HQET by decomposing the

quark momentum collinear in the n-direction into a large label piece, denoted by a tilde,

and residual soft component
pt = pt + k¥ (2.20)

where k ~ A2 and the label piece p contains both p~ ~ @Q and p;, ~ AQ. The QCD

field is re-defined to explicitly separate label and residual momenta
> e Qu (@) (2:21)
D

where the field subscript p refers to the label momenta and derivatives acting on @, ,(z)
give terms of order A\* Q. Projection operators, P, = /4 and P, = /4, are used to

separate the large (n) and small (n) components of the re-defined QCD field

Qnp(®) = PQnp(x) + PrQnp(r) = & p(x) + &ap(2) (2.22)

such that p&,, = 0 and &, , = 0. With this re-definition the quark part of the QCD

Lagrangian can then be written as

Locp = Qz)iPQ(x)
= Ze_”’ P (G (@) + & () (B + 11D) (bnp() + ()

- e [gnp @)L n- D)6y + @) (57 + i~ D) &1,(2)
+§n,p’ (ﬁl + MDL) gﬁ,p + +§_ﬁ,p’ (ﬁL + ZlDL) gn,’p} : (2'23)

The kinetic term of the &, field is suppressed by A? relative to the leading quadratic

piece and therefore we can remove it from the Lagrangian using the equations of motion

1

Ga(0) = —— = (52 + 1) Sl (2.24)
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and the quark Lagrangian then becomes
L=) e g, (z) |(in- D)+ (B, + i) —_(, +iD) ﬁin - (2.25)
— D 1 ]5_ + Zﬁ/ k D 1 2 Y

The n-collinear quark interacts with gluons with soft scaling, A% ~ Q(A?, A2, \?), and
collinear scaling, A¢ ~ Q(A?,1,\). Both of these gluon fields are present in the covariant
derivatives in Eq. (2.25) and in order to obtain a Lagrangian with a consistent expansion
in A\, we must expand these terms.
As with the collinear quark field, the effective theory collinear gluon field is defined
by removing the large momentum component
AC=) e A (). (2.26)
q
In order to be able to pull out the sum over label momenta of the collinear gluons in
Eq. (2.25), it is useful to introduce a label operator [14], P#* = P n#/2 + P/, which acts

on fields with labels to give factors of large label momenta

PH(B 1 Do+ Drpt G- - )

=B+ =@ =)D g O o Dt gz ). (227)

The derivative can then be written as

10" 3 e T Gnpla) = TP 4 i0")ny(x)
ﬁ ~

p

_ Z e =P (PH 40" p(T) (2.28)

where the ordinary derivative on the left-hand side in Eq. (2.28) gives only residual
momenta, O(A\?Q).

We can now express the covariant derivatives in Eq. (2.25) as
in-D° = P+gn-An,
iD] = PL+gn-A,,

in-D = in-0+gn-A,,+gn- A (2.29)
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where the superscript ¢ denotes that we have dropped subleading terms in A. This gives

us the leading order SCET quark Lagrangian

1 o
m-Dczﬁﬁ

LSCET = Z eiixlpgn’p«I) {(m . D) + ’Llpj_ §n7p(a:). (230)

There are several interesting features of this Lagrangian. Unlike in HQET where the
label v is conserved in interactions with gluons, in SCET the interaction of a collinear
quark with a collinear gluon changes its label momenta. The large overall phase and
sum over labels in Eq. (2.30) enforces label momentum conservation. Soft gluons appear
only in the n - D term and it is only this component of the residual momentum that is
conserved at vertices.

The non-local 1/n - D term in the Lagrangian is O(Q) and gives rise to the coupling
of m-collinear quarks to the n - A,, component of arbitrary numbers of collinear gluons,
which are not suppressed in the effective theory. These interactions can be expressed in
terms of a collinear Wilson line

R

m=0 perms

n- A% ...n. A9
n An:QI n Any%n Tam"'Tal

(g +q) om0 @)

i An,q)} : (2.31)

Rl ]

e

peérms

which in position space is

xT

W (z) = Pexp [zg/

—0o0

dsn - An(sﬁ)} (2.32)

where P denotes path ordering. The Wilson line arises from integrating out the off-shell
propagators in the interaction of n-collinear gluons with n-collinear quark fields, see Fig.

2.3. In fact collinear gauge invariance can be used to show, for a function, f,
fin-D)=f(P+gn-An,) =W,f(P)W,] (2.33)

and so all gauge invariant combinations of n - A appear only in n-collinear Wilson lines
[13]. The SCET quark Lagrangian, Eq. (2.30), then becomes

1
B

£SCET = Z eiixlpgn’p«z't) {(Zn . D) + Zle_Wn W):Z;Dj_ gfmp(l’) (234)
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X)
- + perms >

Figure 2.3: Integrating out the off-shell propagators from the interaction of n-collinear

gluons with n-collinear quark fields gives rise to a collinear wilson line.

A similar approach can be followed to obtain the leading O(A\°) collinear gluon La-
grangian. Interactions coupling collinear modes and soft quarks are power suppressed
and occur in the O(\) correction to the Lagrangian [39].

The simplifications of working in the SCET framework are made manifest by the field

re-definition [15]

gn,p = Yngo An,p = YnA%pYJ

n7p ’

where Y, = Pexp {z g /

—00

xT

dsn - As(sn)] (2.35)

which removes the n- A term in Eq. (2.34) and completely decouples the soft and collinear
sectors at leading order in the Lagrangian. Instead, the soft gluon interactions appear
as Wilson lines in the external currents, where simplifications due to the unitarity of Y,
are made clear.

There is a subtlety in the formulation of SCET outlined above which naively leads to
a double counting of the contribution between soft and collinear modes. When the label
momentum, p, of n-collinear quark or gluon fields is zero it has the same scaling as the
soft and therefore there is an overlap between these modes. The sum over label momenta

for collinear fields should in fact be restricted to be non-zero. For example Eq. (2.26)
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should be
= A, (2.36)
G#0
Calculating loop graphs using the effective theory Lagrangian involves summing over
label momenta and integrating over residual momenta, see Fig. 2.4. This is equivalent to

integrating over all momentum space up to the restriction p # 0. Zero-bin subtraction

Figure 2.4: Momentum space is dived in to label momenta denoted by p, which specify

a box and small residual momenta k& which defines a point within the box [40].

[40] removes the p = 0 contribution in the following way

> [atknin = [t (1) - o) (237
p7#0

where I, is the integrand of a SCET Feynman diagram.

Virtual graphs in SCET are scaleless and vanish in dimensional regularization. There-
fore it had not been noticed, until the work of Manohar and Stewart [40], that in order for
the effective theory to be consistent and to properly reproduce the infrared of QCD, zero-
bin subtraction is necessary. Manohar and Stewart examined virtual diagrams in SCET
with different regulators to show that this was the case. They also applied the zero-bin
approach to phase space integrals, but as we shall see in Chapter 4, their procedure is
not consistent with cutoffs in the effective theory.

In Chapter 4 we develop an approach to to deal with phase space constraints in the

effective theory which consistently applies zero-bin subtraction when integrating over
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restricted regions of phase space. This provides amongst the first non-trivial examples of
zero-bin subtraction and confirms the critical role the zero-bin plays in reproducing the

infrared of the full theory correctly.



Chapter 3

High order perturbative corrections

to the determination of |V

The contents of this chapter were published originally in “Higher order peturbative cor-

rections to the determination of |V,| from the P, spectrum in B — X, (v,”, [28].

3.1 Introduction

The total rate for the decay B — X, £ provides a theoretically clean determination of the
magnitude of the CKM matrix element |V,,;| as a double expansion in powers of o (my)
and Aqcp/my [41]. However, to eliminate the background from B — X, decays, strong
cuts on the final state phase space are required, which can complicate the theoretical
analysis. The kinematic regions in which cuts on the charged lepton energy E,, hadronic
invariant mass myx [42] and hadronic light-cone momentum P, = Ey — |Py| (where Ey
and Py are the energy and three-momentum of the final state hadrons) [34] are strong
enough to eliminate the charm background all correspond to the so-called shape function
regime, in which the local OPE for the partial rate breaks down [43, 36]. However, in
this region an expansion of the partial rate in powers of Agep/my in terms of non-local

operators is still possible, and the matrix element of the leading nonlocal operator can

24
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be measured in B — X,y decay. At leading order in Aqcp/msp, we can write

dr; — / Ci(w) f(w) + O <AQCD) (3.1)

my
where 7 labels the decay, C;(w) is perturbatively calculable, and the shape function f(w)
is nonperturbative, but universal in inclusive B decays.! It is convenient to eliminate the
shape function altogether, and express integrated rates directly in terms of one another

[36, 37, 38]. For example, we can write

A A
dFu dFs AQCD
dP dP.W(A. P)Y—= + O 3.2
/o +dPﬁ"/o WA B TR T (m) (3:2)

where P, = mp — 2E,, E, is the photon energy and A ~ O(Aqcp). This defines
the weight function W(A, P,), which can be calculated in perturbation theory. The
O(Aqep/my) power corrections have been extensively discussed in the literature [44,
45, 46, 47, 48, 49|, and have typically been estimated to be below the 10% level for
|Viw| [46, 47, 48], although it has been argued that subleading four-quark operators may
introduce significant uncertainties [47].

The weight function W (A, P,) has been calculated in fixed-order perturbation theory
to O(a?fy) [38]. It is also known to next-to-leading-log order, O(a” log™ " my/u;), where
pi ~ /Aqcpmy is the typical invariant mass of the final state [46], generalized in [50].
It was shown in [38] that the O(a23,) corrections to W (A, P,) are substantial, and the
same order as the O(«qy) corrections. Given the size of these corrections, it is important
to study the convergence of the perturbative expansion.

In this chapter we examine the behaviour of W(A, P,) at higher fixed orders in
perturbation theory. We work in the framework of the “large-3,” expansion, in which
we calculate all terms of order a3y~ " [51, 52]. While there is no limit of QCD in which
these terms formally dominate, this class of terms allows us to examine the asymptotic

nature of perturbation theory, as well as giving an estimate for the size of perturbative

LC(w) can be further factorized into “hard” and “jet” functions; however, for our purposes we will
not make this decomposition.
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corrections. We discuss the significance of these terms for the extraction of |V,

3.2 Borel Transformed Spectra and the Weight Func-
tion

Since QCD has an asymptotic perturbative expansion, it is convenient to study the Borel

transformed series B[R](u) of a quantity R, where

R=R— Riree = Z rpal T (3.3)
n=0
and
~ > Tn n
MMMZE:EU. (3.4)
n=0

The expansion for B[R](u) has better convergence properties than the original expansion.

B[R](u) can in turn be used as a generating function for the coefficients 7,

& BB () ey (3.5)

n = du™

while the original expression R can be recovered from the Borel transform B[R|(u) by

the inverse Borel transform

R—&m+/ du e~ B[R](u). (3.6)
0

Singularities in B[R](u) along the positive real u axis make the inverse Borel transform
ill-defined. These are referred to as infrared renormalons [53], factorially growing contri-
butions to the coefficients of the perturbative series, which lead to ambiguities of order
(Aqep/myp)™. In physical quantities these ambiguities are compensated by correspond-
ing ambiguities in the definition of higher-dimensional nonperturbative matrix elements
in the operator product expansion of order Afp, which render the physical quantity

unambigious.?

2 Although the renormalon cancellation has only been explicitly shown in some cases in the large-f
limit, it is assumed to hold away from this limit.
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The Borel transform Eq. (3.4), in the large-5y limit, may be determined from the

order ay term, 7o, with finite gluon mass following [52]:

~ sin Tu o /)2 dr T
B R _ 5“‘/3/ _ _O _ ;‘O@ )\ 2 5u/3 d)\2
[ ](u> U € 0 mg d)\2 A2 ( mye )
1/~ sin
47;(Gdu)— T rm). (3.7

Here \ is the gluon mass and 74 is a constant. We have used the MS scheme with the
renormalization scale i set to the pole mass, my. The terms CAJO(U) Ju and ro, arise from
the renormalization of the graphs involved.

The weight function W (A, P,) is defined through the relation between the integrated

B — X v photon energy spectrum and B — X, /v charged lepton spectrum,

A 2 2 A
dr, ' T my / dl77
r,(A) = dP = dP,W (A, P.
(&) /0 APy Vi ViE]? 60em CET (my)2 5 (ms)? o (&P GE dp,

+0<A“”) (3.8)

my

where A ~ Agep in the shape function region, and the normalization is the same as that
used in [38]. Other definitions of W are possible, such as that used in [46]. As in [38],
we concentrate on the contribution to the B — X,y spectrum arising from the operator
Or7 = (e/167*)my$,0*" F,,br. While other operators also contribute to the spectrum, for
the purposes of studying the convergence of the series and estimating the uncertainties
from higher order terms in perturbation theory we will neglect their contribution and the
mixing of these with O7. The factor of m%/m? pulled out of the relation arises naturally,
and improves the behaviour of perturbation theory for W (A, P,)[38].

Defining the partonic partial rates

S0 = )+l
1 dr’, . .

where I, = GE|Vip Vi [Paemmi [y (my) CSE (my)]?/(327%) and Ty, = G| Vi|*mj/(19273)
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are the leading order widths. The partonic variables
T=1-2E,/my, pr=(—q/my)-n (3.10)
are related to the hadronic variables by
Py=mp—2E, =myz+A, Py = Ex—|Px|=myps+A (3.11)

where A = mp — my, ¢ is the momentum of the lepton-neutrino pair, n is a light-like
four vector in the —¢ direction and v is the four-velocity of the B meson. Convoluting

the partonic rate with the shape function to obtain the hadronic rates, we find

A-P, A—P,
WA P) =1+ / (h(p) — 9(p)) dp — / o) W(Ap+ P)—1dp  (3.12)

where the partonic spectra are expanded to leading order in & and p, respectively since
in the shape function region they are of O(Agep/my).

Since g(p) and h(p) are O(c), Eq. (3.12) may be solved iteratively for W (A, P,). For
the purposes of this chapter, we are only interested in terms of O(a?33~!), for which the

last term in Eq. (3.12) does not contribute; therefore, we can write
W(A P) = TiA = ) = Th(A = P) + 0577 (3.13)

where we have defined the integrated partonic rates calculated in perturbation theory,

~ 1 [2dls,
(A= — | Z“Taz 3.14
L) =g [ (314)
and
~ 1 [2dl
I2(A :—/ —dp, . 3.15
(A) T, ) ap. P (3.15)

The corresponding quantities W, fé} and fﬁ are defined by subtracting the tree level
contribution.
Calculating the parton level photon spectrum with a massive gluon is straightforward,

and was done in [38]. Integrating the rate with a massive gluon over the endpoint region
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and performing the integral Eq. (3.7), we find the Borel transform of the integrated

partonic rate:

~ Au—1) [ A\ 2 3 4 1\ sinmu (AN
D 5u/3 | “\* ) [ = _ _ -
B[l (A)](u) € ( 02 (mb) (u— 1 u w2 + u—Q) TU (mb)

N 2sintu (14 u) (3u? — 2u — 2) F(u)Q)

Tu? (u—2)(u— Dul'(2u) cos u
1 R 2 5u/3
+2 (Gufw - 20T, (3.16)
u U

Since the operator O; requires renormalization, the last line arises from the MS coun-

terterm. Go(u) is given by

Golu) = %u" (3.17)
n=0

and g, are the coefficients of the expansion of Go(u) [52]

& 2Qu4 )T+ 2u)  sinmu

(3.18)

The Borel transform of the differential photon spectrum away from the £ = 0 endpoint
was calculated in [54]. Integrating this result from z = 0 to £ = A reproduces the A
dependent terms of our result, Eq. (3.16). (The A-independent terms depend on the

virtual contribution and cannot be directly compared against [54]).

The calculation of the Borel transform of the semileptonic partial rate fﬁ(A) is sig-
nificantly more involved than for B — Xv. The Borel transform of the triple-differential
B — X, v spectrum was calculated in [55]. Rather than integrate this result over the
appropriate phase space, we instead calculated the integrated rate I',(A) for a massive

gluon, and then performed the integral (3.7). The result has the comparatively simple
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form
BI(A)(w) = ™ (—Q(UUZ 2 (%)
5 2 5 7 2 1 2sintu A\ "
+(3(u—3)_u—2_3(u—1)+3_u+ﬁ_3(u—4)) v (E)
T'(u)? Lo a 3 2
—i—(u (0 = 2)(u — 1)ul' (2u) cos mu (§(9u — 103u” — 62u” + 38u + 24)
“16u(l + u)(2u — 1) (Sin;m +op(u) — ¢(2u)>)) (3.19)

where ¥ (u) = I"(u)/T'(u) is the digamma function.

The Borel transformed weight function is given by the difference between Eq. (3.19)
and Eq. (3.16). Note that the terms proportional to (A /mg) 2% /u? and (A/my) ™% sin Tu/u?,
which generate the a” In"*'(A/my) logs, cancel in the difference. This reflects the uni-
versality of the leading Sudakov logs. We can resum this contribution by evaluating the
inverse Borel transform, Eq. (3.6). However the result does not exponentiate because
higher powers of logs, up to a”In** double logs, are not included since they are sup-

pressed in fBy. The resummed o In"t*(A/my) logs from Eq. (3.32) and Eq. (3.33) are

given by
© a2 AN AN
%/ due;s/%—2 —<—) +2(—> —1
Bo Jo u mp my
Cr A 1+4a st . (1+4a)
=—|4ln—1 1 3.20
50< M M1 20 T gy 1+ 2a (3.20)
where a = Mln A
T mp

The final result for the Borel transformed weight function is

W W) = oo [ 2sinmu (1 —5)(3u— 4) A-PNT L
B[W (A, P,))(u) ( . ((u_4)(u—3)(u—2)(u—1)( my, > 1)

I'(w)”

T owe B — 2 T oo e (16(u +1)(2u —1) ( + 1 (u) — ¢(2u)>

+§(5u +2)(Tu+ 1))) 1 (éo(u) - Wﬂ) (3.21)

u U

sin 27w
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where éo(u) is obtained from Eq. (3.17) and Eq. (3.18).Eq. (3.21) is the main result of
this chapter.
The Borel transforms can be used to generate the O(a? 33~ ") terms in the perturbative

expansion via the relation Eq. (3.5). Writing

I2.(A) = 1+ZOS if)ﬂ
= u( )"y C
T?(A) = 1+Zc mb4ﬂ)° r
W(A,P) = 1+ZWH(A,P,Y)%(WEE;5)0:_ICF (3.22)

i=1
we can easily find the coefficients C3(A), C¥(A) and W,,(A, P,) to any order. The
coefficients are given up to n = 5 in Appendix 4.A.

The leading log (LL) and next-to-leading log (NLL) terms in Eq. (3.34) are contained
within the renormalization group resummed NLL result in soft-collinear effective theory
(SCET), W (A, P,)85Er, obtained from [34, 56, 57, 46]. The SCET result sums logs of
p?/m?, where p? ~ O(Agepmy). In the Appendix 3.B we verify that the leading Sy
terms agree with Eq. (3.36) by expanding in a,(m;) and then expanding logs of u2/mj
and p2/(my(A — P,)). Our results also agree with those in [38, 58, 59].

3.3 Results and Discussion

3.3.1 Renormalons and Borel Resummation

The leading renormalon ambiguity in both the photon and semileptonic spectra is O(Agep/my)
due to the pole at u = 1/2 in B[I2(A)](u) and B[I2.(A)](u). The divergence does not
cancel between the spectra and gives rise to a pole at u = 1/2 in the Borel transformed
weight function. This is consistent with the presence of nonperturbative corrections to

W(A, P,) at O(Agep/my) due to subleading shape functions [44].
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The Borel transform of the weight function can be written in terms of A — P, inde-

pendent and dependent pieces, B[Wy)(u) and B[W:](u) respectively,

BWol(u) = ™/ (2Sinm ((u—4(u_ 5>(3U_4)U— 1) 1)

o )(u = 3)(u = 2)(
I'(u)” -
CT(2u)(u — 4)(u— 2)(u — 1) cos Tu <16(u +1)(2u—1) <sin o (u) — WQU))
= %3 sin 7y
) - (- 22

B[Wl(A, P)l(u) = QS:;;TU (u _6;21(11;)?5?’_“2;(?_ 1) <(AH_%P7> - 1) (3.24)
where we have defined B[WO] (u) and B [WI](u) such that they are finite as u — 0. Note
that B[Wl](u) has no singularities for positive u. Therefore the inverse Borel transform
of Eq. (3.24), Wl, is well defined and unambiguously resums logarithms of (A — P,)/my.
This tells us that the poor behavior in the perturbative expansion of the weight function
is entirely due to the constant terms, /WO, which are generated by B[WO] (u).

The relevant quantity in determining |V,;| is the weight function convolved with the
B — X, photon spectrum, as in Eq. (3.8). It is interesting to note that the integrated
quantity can have a renormalon ambiguity that is not present in the weight function. In
order to illustrate this we calculate the Borel transform of Wl, which is renormalon free,

convolved with a simple model of the normalized B — X v spectrum,

1 dI’ bb bPy
—— = prle~ 2
r,dp, T " ¢ " (3.25)

where b = 2.5 and A = 0.77 GeV [46]. This is straightforward to obtain from Eq. (3.24):

& = 1l ) s 2SinT (u—5)(3u — 4) T (b,22)
BUO dP”ervdPJ( )= Tu? (u—4)(u—3)(u—2)(u—1)( T (b)

(e (BR) (3) s e 2])) o

where I'(a, z) = [7°t*"'e~dt is the incomplete Gamma function. The I'(1 — u) term in

Eq. (3.26) gives rise to a pole at u = 1, which corresponds to an order O((Agcep/myp)?)
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ambiguity in the integrated quantity. This arises because higher order terms in the
perturbative expansion of Wi have more powers of In(A — P,)/my, and therefore are more
singular near the end point. However since the renormalon in B[W|(u) is at u = 1/2,
the factorial growth in the integrated quantity is dominated by the constant terms in the
weight function rather than the logarithms.

It is amusing to notice that if the o In(A/m;)" ! Sudakov logs did not cancel be-
tween ff‘u’(A) and fé}(A) these would give rise to a ((A — P,)/m)”>* term in the Borel
transform of the weight function. When integrated over P, with Eq. (3.25) this would
lead to a pole at u = 1/2, the same order as the renormalon in B[Wq](u).

Since B [VIA/Z](U) has no poles in wu, the inverse Borel transform of Eq. (3.24) is well-
defined. We may therefore use Eq. (3.24) to sum all terms containing powers of In((A —
P.,)/my) (terms of order a”g; 'log" ™ (A — P,)/my, for n = 1 to infinity and m = 0
to n — 1). While we were unable to obtain a closed-form result for this quantity, by
expanding Eq. (3.24) in powers of u it is straightforward to sum all terms of order
a3y og" ™ (A — P,)/my, for n = m + 1 to infinity and for fixed m > 0, by evaluating

the inverse Borel transform

E )
. CFCm—l Oésﬁo mn Oésﬁo A — P -m
- o F(m)( i ) ((1+ = v) _ 1)

where C,,_; is the coefficient of the u™1 (AT;_?)_ term in Eq. (3.24), and the second

W<A7 P’Y)resummed = CF / du e ‘iﬁo C’mflum_l (( PY) - 1) (327)
0

line follows for m > 0. The constant non-logarithmic terms in the weight function are not
included in Eq. (3.27), as they arise from WO, but may be obtained from the expansion
Eq. (3.34) to give the full resummed logarithmic result. At leading-log (LL), m = 0, we
find

WA, P)EE = 1— 30 (g 828 4y 1) (3.28)
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We explicitly show the NLL, the next-to-next-to-leading logarithmic (NNLL) o 35! In"2

and next-to-next-to-next-to-leading logarithmic (NNNLL) 35" In"* terms below:

v - S (1) (-5

47 3 \1+b 36 3
wvon  Qs(my)?BoCr [ (1559 B 5_772 1

3857 1672
(- - 12e)]

wvven  os(my)?BiCr [ (65545 14w? 1
WA B = (e ) (oY)

(47)3 3888 9 n
00043 1372 16  166¢(3

_Br 16w 166633 | (3.29)
864 108 15 3

where b = aS(T;)B % In Aﬂ;bp”. These results provide a useful check of our calculation, as

they may be compared with the corresponding resummed expressions in SCET, obtained
from [34, 56, 57, 46]. Setting p; = \/my(A — P,), we verify that the resummed LL and
NLL contributions in the large fy limit, Eq. (3.28) and Eq. (3.29), are contained within

the RG resummed NLL SCET result.

Finally, the renormalon in the weight function suggests that the dominant contribu-
tion to its perturbative expansion is from non-logarithmic terms. We can investigate this
numerically by considering the leading logarithmic expansion away from the P, — A
end point. Following [38], we combine all known terms from Eq. (3.34) and Eq. (3.36),
and take the ratio of the various logarithmic terms. While this misses the contributions
of terms beyond NLL and subleading in 3y, we can hope that the values below are still
indicative of the relative contributions of the various terms. Taking m, = 4.8 GeV,

as(mp) = 0.22 and p3 /mj ~ (A — P,)/my, =1/9 as in [38] we find the following ratios of
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the logarithmic terms at each order in as:

al O(log®) : O(log?) : O(log") : O(log”) =1:2.1:1.8: —6.0

alt: O(log") : O(log®) : O(log?) : O(log") : O(log”) =1:3.5:2.9:0.4 : —26

ad O(log”) : O(log*) : O(log®) : O(log?) : O(log") : O(log") =
1:49:42:1.0: 2.3 —119. (3.30)

From these results, we can make two observations. First, the renormalon ambiguity in
the weight function is reflected in the rapid growth of the non-logarithmic terms, which
dominate the perturbative expansion. However, this bad behaviour of perturbation the-
ory is unphysical: in a consistent approach to O(1/my), the renormalon in the weight
function will cancel with a corresponding ambiguity in the definitions of the subleading
shape functions. This cancellation would be manifest if the subleading shape functions
were consistently extracted from physical observables, but since they are currently mod-
elled, no such cancellation is manifest. We will see in the next section that the estimated
uncertainty in |V,;| from the factorially growing terms is small compared to other sources
of error, so we will not attempt in this chapter to absorb the renormalon ambiguity into
subleading shape functions. These results do, however, underscore the fact that sepa-
rating the bad behaviour of perturbation theory from the O(1/m;) corrections is not a
well-defined procedure.

Second, assuming the pattern in Eq. (3.30) continued to hold beyond the large-/3, and
NLL terms included here, it indicates that terms which are enhanced by more powers
of log pu?/mi ~ log(1/9) ~ —2 do not dominate over terms with fewer powers of log-
arithms. Since the logarithmic terms do not suffer from renormalon ambiguities, and,
therefore, no cancellation against the subleading operators is expected for these terms,
this pattern should not change once subleading operators are consistently included. Thus,
these results support the conclusion of [38] that fixed-order perturbation theory is more

appropriate than a leading-log resummation for the extraction of |V,;| (see also [60, 61]).
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3.3.2 Determination of |V,

From a phenomenological perspective, our results are most useful as an estimate of the
size of higher-order perturbative corrections to the extraction of |V,;| via Eq. (3.8). The
perturbative results in Eq. (3.34) for W(A, P,) are plotted in Fig. 3.1 at different orders
in the a?3)~! expansion. Throughout this section, we will use the values m; = 4.8
GeV and a,(mp) = 0.22 for numerical evaluations, and take A = m?%/mp = 0.66 GeV,
corresponding to the kinematic cut which removes the B — X, background. At tree
level, the weight function is 1 (the dotted line in Fig. 3.1 and Fig. 3.2). Curve (a) in Fig.

3.1 shows the weight function up to O(a?fy), calculated previously in [38], while curves

(b), (c) and (d) show the results to O(a282), O(alB3) and O(alfy).

130
125"
120
115"

110"

W (A, P,)

105

100 . ]

0_95:—F’\_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\—:
0.0 0.1 0.2 03 04 0.5 0.6

P, (GeV)

Figure 3.1: W(A, P,) from Eq. (3.34) is shown including terms up to the following order:
(a) O(a2Bo), (b) O(alf), (c) O(af7) and (d) O(egf).

It is clear from the plots that the perturbative series for W (A, P,) is not converging
well, as was discussed in the previous section, due largely to the factorial growth of the
constant terms in W(A, P,). As we will discuss shortly, the results suggest that the
optimal perturbative estimate is obtained by truncating the series at O(a?), and using

the O(a?) result as an estimate of the corresponding perturbative uncertainty. In Fig.
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3.2 we therefore compare the fixed-order o233 result to other perturbative estimates of
the weight function. Curve (a) shows all known terms up to O(a?): the complete NLL
terms from Eq. (3.36), combined with the additional large 5y terms in Eq. (3.34) that
are higher order in the leading log expansion. The gray band around the curve gives the
perturbative error estimate given by the O(a?33) term. The result is very close to the
large-f3, calculation up to O(a?/3?), shown in Curve (b). Curve (c) shows the complete

NLL resummed result.

130FT T T
125F

120

Al 1.15F

d 110

105 ¢

1.00 - ]

C 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 |
0.0 0.1 0.2 0.3 0.4 05 0.6
P, (GeV)

Figure 3.2: (a) W(A, P,) with all terms to O(a?) from Eq. (3.34) and Eq. (3.36). The
grey region is the error estimate obtained from the o33 term. (b) W(A,P,) up to
O(a3B?) from Eq. (3.34). (c¢) The resummed NLL SCET result, W (A, P,) k.

Tree

O(a) | 0(a2m) | 0138 | 0(a5) | O(a3at) | 0tassR) | Oa7a8)
1 1.08 1.15 1.17 1.16 1.12 1.04 0.88

Table 3.1: fu(A) for different orders in the “large-5,” expansion of W (A, P,), Eq. (3.34).

As discussed in the previous section, the integral in Eq. (3.8) has a worse perturbative
expansion than the weight function itself, since at higher orders in perturbation theory

W (A, P,) is more singular at the endpoint of integration. Hence, to determine the
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SCET LL | SCET NLL | All known terms to O(a?)

Tree

1 1.10 1.18 1.17

Table 3.2: fu(A) for the resummed LL and NLL weight function in SCET, and all terms
up to O(a?) from Eq. (3.34) and Eq. (3.36).

effects of perturbative corrections on the determination of |V,;|, we must look at the
perturbative expansion of Eq. (3.8) rather than that of W (A, P,). For the purposes of
estimating the size of higher order terms, we adopt the simple model of the normalized
B — X vy spectrum, Eq. (3.25). We obtain fu(A), the integrated B — X, /v, decay rate

normalized to the tree level value,

. 1 (& _dr
I'(A)=— dP = 3.31
@)= [ an (331)

shown in Table 5.3.1. We include several more terms than are explicitly shown in
Eq. (3.34) to demonstrate that the series appears to converge up to O(a?33) and then
begins to diverge. This suggests that the optimal perturbative result is given by includ-
ing all terms up to O(a?) and using the O(a?) contribution to estimate the perturbative
uncertainty. At this stage, our best estimate of this result is obtained by including all
known terms up to O(a?) from Eq. (3.34) and Eq. (3.36), and estimating the uncertainty
from the O(a?B3) term. Table 3.2 gives T'.(A) obtained from the renormalization group
resummed LL and NLL weight function in SCET, as well as all terms up to O(a?) from
Eq. (3.34) and Eq. (3.36). We see that the NLL result is in agreement with the optimal
perturbative value, within the error. The perturbative uncertainty in |V,,|, estimated
from the O(a4f33) terms is approximately 0.5%, which is far smaller than the order 5%
theoretical uncertainty in |V,,;| from subleading shape functions, error in the b quark mass

and other sources [46].
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3.4 Conclusions

We have calculated the Borel transform of the B — Xy, P, spectrum and B — X,y P,
spectrum to leading order in Agep/my, from which we determine the Borel transform of
the weight function. The leading renormalon in W (A, P,) is confirmed to be at u = 1/2,
corresponding to nonperturbative corrections at O(Agep/my). The o33! terms are
easily obtained from the Borel transform of the weight function and are given analytically
to n = 5. We are able to resum logarithms of (A — P,)/m, in the large S limit of the
weight function since the relevant terms in B[W (A, P,)](u) are renormalon free. However
we show that integrating these terms over P, introduces a renormalon. Comparing all
known terms in the perturbative expansion of the weight function, we find no numerical
enhancement of leading logarithms, suggesting that fixed-order perturbation theory is

more appropriate than a leading-log resummation.

From our results we estimate the size of higher-order perturbative corrections on the
extraction of |V,;| using a model for the B — X,y photon spectrum. We have shown
that T',(A) begins to diverge beyond O(a33) in the 3, expansion of the weight function.
This suggests that the best perturbative estimate is given by including terms up to O(a?)
with the theoretical uncertainty given by the a3 term. We show that this result is in

good agreement with the resummed NLL SCET result.
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3.A Expanding out the functions

A 4
C3(A) = 2= 7l — -

my my 3

A 13, A 85 2m2\ A 9172 631
c5(A) = 2 =4+ P =4 (— 4 S ) In— —4C(3) — -

5(A) nmb+ nmb+< 6+3>nmb ¢(3) 18 36
T 40N 1 4 A (275 2 A1 A
C5(A) =— —In* =4I —+ (22— m?— 4+ — (-581 ) In —
5(A) gl nmb+(18 3>nmb+18(58 +587T)nmb
1
e (—12727 — 63667 — 1087" — 13824((3))

A 35, A 35 22 A (6029 2972 A
ci(A) = 3" ———In' —+ (- +" |0 —+ | — — In* —
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CHAPTER 3. HIGH ORDER PERTURBATIVE CORRECTIONS TO THE DETERMINATION OF |V,;| 41

Cr(A)
C3(A)

C3(A)

Ci(A)

C3(A)

A 26 A 1
—2ln2———61n——2ﬂ2——3
mp mp 36
A A 113 272 A 4172?1333
2In®* — +3In* — + [ ——= + = ) In — — 16¢(3) — —
ot nmb+( 6+3)nmb B =5 1
T LA 2 4 A 359 272\ . , A 5045 34n? A
——In"— — -In" — — — — |In*— 4 -+ n—
3 my 9 my 18 3 my 108 9 my
168313 213572 7xt
- — — —98(¢(3
2592 108 5 ¢3)
A 5, A 1 A 16735 1772 A
3In° — — Sln* — 4+ = (=133 4+ 47 In® — 4+ | —— — In®> —
w Tt g (P AT ) It S - et
180229 31972 7%\ A 1807 1312972
— — — ) In— —432¢(5) — [ —— +407% ) ¢(3) —
( 1206 18 5>nmb <) (6 * ”)CU 432

797t 11428313

6 31104
62 s A 94 A (479 27r2> A (_2215 687r2)1n3é

e 2 s 2 (2 AT e 2 2200
5 T T\ T3 ), 8 9 -

21581 31972 274\ , A 668117 135352  34md) A
- m> 2y _ In= — 492
( 72 5 75 ) 8 +< 1296 162 15 ) 8 920¢(5)

mp my
<29741 B 140872 N 823172  2774x%  16497* 64526377
54 3

48 315 30 N 31104

.(3.33)

_ 672<<3>) ()



CHAPTER 3. HIGH ORDER PERTURBATIVE CORRECTIONS TO THE DETERMINATION OF |V, 42
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3.B The Weight Function to NLL Order

The renormalization group resummed NLL weight function has been calculated in SCET,
34, 56, 57, 46]. By expanding W (A, P,)§&5r in as(my) and re-expanding the logarithms
of p?/mi and p?/(my(A — P,)) we find

as(my)"Cr
W(A, Py)sdgr = 1+ ZW (A, P)sbgr——5—

> any (3.35)
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and the first coefficients are given by:

5. A—P, 22 167
n _ —

Wi(A, Py)SdEr = _51 - 3 + 36
Ws(A, P))sir = (—553 — 935‘) —~ 1264136) In® A;pr” + (1435 0 (—%C(iﬁ) - 627;2
WA, P)scer = (51623 N 25831B by 80881ﬁ0 i 227158874 ) In’ % * (_%ﬁg * (%g(?,)
178517r2 - 12221) 2 < % {3+ 51;24 N 32224037r2 - 244389691) b
+@C (5) + %C (3) + 202448;4 * 5625168077r - 212?2?56> : A;prw
WA PN, — <_%§ - 2380153 - 282248363 - 55211688760 - 41692608830> 15 A;pr7
_11;237# . 549874259> 2 <_ % (5 - % (3 - 10;4117#
_35%37# . 36;2894) - 13;2;20 (5 — 831222 (3 - 261251;04;6
- 1818049136;4 - 12132227& ) 1321900239480) - An—lev‘ (3.36)

We verify that the leading 3y terms agree with Eq. (3.34).



Chapter 4

Phase Space and Jet Definitions in

SCET

The material in this chapter appeared originally in the publication, “Phase Space and

Jet definitions in SCET”, [29].

4.1 Introduction

The study of jets provides an important tool to investigate strong interactions and tests
QCD over a wide range of scales, from partonic hard scattering to the evolution of
hadronic final states that make up the jets. Hadronic jets also play an integral role in
searches for physics beyond the Standard Model. Soft-collinear effective theory (SCET)
6, 13, 14, 15, 16] provides a useful framework to study jets, reproducing results from
QCD obtained from traditional factorization techniques (see, for example, [7, 8]) while
systematically including power corrections and organizing perturbative resummation.
The effective theory separates the scales of the underlying hard interaction from the
scales associated with the collinear particles in the jets and the long-distance soft physics.

Unlike QCD, particles in SCET whose momenta have parametrically different scaling are

44
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described by separate fields - in this case, either (ultra-)soft or collinear®. Their light-cone

components, p = (n-p,n-p,p1) = (p*,p~, pt) scale as :

Ds ~ Q()‘za )‘27 )‘2)7 De ~ Q(lv /\27 >‘) (41)

where n and 7 are light-cone vectors in the +7 direction and A\ is a small dimensionless
parameter which is determined by the dynamics. At leading order in A\ the soft and
collinear modes decouple in the SCET Lagrangian. These properties of the effective
theory have been utilized to prove factorization, resum large logarithms and parameterize
nonperturbative corrections for event shapes in the two jet limit [62, 63, 64, 11] and for
massive top quark jets [65], for example. The factorization of generic fully differential
jet cross sections has also been shown independent of jet observables for eTe™ and pp
collisions [66]. For an m-jet cross section with a given jet definition to fully factorize,
however, the phase space constraints should also factorize appropriately in the effective
field theory (EFT). Such factorization of phase space constraints has not yet been shown
in any scheme other than the hemisphere scheme [66] (in which all events are dijet).

In this chapter we study the two-jet cross section for et e~ collisions in SCET, using
three jet algorithms: a cone algorithm, Sterman-Weinberg (SW) [18], which defines a jet
based on an angularity cut and was considered in the context of SCET in [62, 63, 67|, as
well as two clustering algorithms, JADE [68] and &, [9], which iteratively combine partons
into jets based on kinematic conditions. This is a first step towards the broader goal
of determining the appropriate factorization theorem and resumming logarithms using
SCET. While we do not consider here the more general problem of factorization theorems
for jets, we point out some implications of our results for factorization theorems, in
particular showing that the form of the factorization in SCET depends on the ultraviolet
regulator. The main point of this chapter is instead to demonstrate the relationship

between the cutoffs in the effective field theory and phase space limits, and to consider

'In situations with multiple collinear directions, there are collinear modes for each direction.
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their implications for dijet rates in SCET. Since SCET has no hard cutoff separating
soft from collinear regions of phase space, some care is required to perform phase space
integrals consistently. The NLO dijet rate in SCET also demonstrates the interplay of
divergences between the soft and collinear sectors, and provides nontrivial examples of

the zero-bin subtraction [40].

4.2 Phase Space in QCD and SCET

At each order in perturbation theory, a jet algorithm corresponds to a scheme to partition
the available phase space into regions with different numbers of jets. At O(«y), the phase
space for e"e”™ — hadrons or hadronic Z decay was discussed in SCET in [40] using the

variables x; = 2’; 24 where ¢ = p; + pz + p3 is the total momentum of the process and

p1,2,3 are the momenta of the quark, antiquark and gluon, respectively. In our discussion
we will find it more convenient to choose the independent variables to be the light-cone
components of the gluon momentum, p; = n-ps and p; = 7 - p3, and fix the coordinates
by choosing the antiquark to be moving purely in the 7 direction (i.e. p, = py = 0).
The resulting phase space is illustrated schematically in Fig. 4.1. Note that because our
choice of coordinates is not symmetric in the n and 7 directions, the phase space is not
symmetric under exchange of the p5 and p; axes. (For example, in the upper left the
antiquark is constrained to be soft, while in the lower right the quark and antiquark
recoil against the gluon, and so either the quark or the antiquark may be soft, or both
may be n-collinear.)

In the shaded regions, two of the partons recoil approximately back-to-back and the
third is either soft or recoils roughly parallel with one of the other two, while in the central
unshaded region all three partons recoil in different directions. Thus, the shaded region
roughly corresponds to two-jet events, while the central region corresponds to three-jet

events. The precise details of this correspondence are determined by the particular jet
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Figure 4.1: Three-body phase space in p;, p; variables. The shaded area indicates
regions which may be described with two collinear directions in SCET; the white region

in the centre requires three directions.

algorithm being used.

Within the effective field theory there are natural degrees of freedom associated with
each region of the two jet phase space, as indicated in Fig. 4.1. The complete dijet rate,
however, requires integrating over all these regions, and since SCET has no hard cutoft
separating soft and collinear degrees of freedom, it would seem that each mode should be
integrated over the full QCD phase space (this is the approach followed in [40]). However,
this is inconsistent with the effective theory, since, for example, integrating a soft gluon
in the collinear region would require it to have momentum well above the cutoff for soft
modes in SCET.

Instead, a phase space integral which extends above the cutoff for the relevant mode
should be replaced by an ultraviolet divergence, which would then be regulated and
renormalized in the usual way. This occurs naturally in SCET because of the multipole
expansion for momenta at the vertices. The kinematics for soft and collinear gluon
emission is shown in Fig. 4.2, where p* scale as @, p* scale as AQ and the k’s scale

as \2Q). Because of the multipole expansion, a given component of momentum is not
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conserved at vertices involving particles whose typical momenta scale differently with
A. As a consequence, the phase space for each mode in SCET differs from that in full
QCD, and it is misleading to use the kinematics in Fig. 4.1 in the effective theory. For
example, in the soft emission graph in Fig. 4.2, conservation of momentum requires
p; = Q, py = Q, while the k’s are unconstrained. It is integrals over these unconstrained
momenta which will give rise to ultraviolet divergent phase space integrals in the EFT.
This is the approach followed in [11], where ultraviolet divergent phase space integrals
are obtained for the soft and jet functions at NLO for angularity distributions in SCET.
This is also what happens in SCET in loop graphs, where both soft and collinear degrees
of freedom propagate, integrated over the appropriate kinematic variables. Since phase
space integrals are just loop graphs with internal propagators placed on shell, the same

rules apply.

(0!

(i p1sp1)

(p3.p35.0%) a

(p3 .13 p3)

(k3. p5 .03

(p3 ks . p3)

(ko1 01) (k5,07 01)

(03 ks p3) 4

(03 k3 p3) (p3 k3 \p3)

Figure 4.2: Kinematics in SCET. In the first SCET diagram the gluon is n-collinear, in
the second it is n-collinear, and in the third it is soft. Additional diagrams with soft

quarks arise at higher order in .

It is straightforward to illustrate this for various jet definitions. In the SW definition,
a two-jet event is defined as one in which all but a fraction g of the total energy of the

event is deposited in two back-to-back cones with half angle § [18]. The JADE algorithm
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Figure 4.3: Three-body phase space for different jet definitions in QCD. The shaded
region corresponds to the two jet region; the unshaded region in the centre is the three-

jet region.

requires that the invariant mass M3 of every pair of final-state partons i and k be
calculated. If any are less than a fraction, j, of the total center of mass energy squared,
(Q)?, then the momenta of the pair with the smallest invariant mass are combined into
a single jet according to a recombination scheme which is part of the jet definition, the
details of which are not relevant at O(cay). This process is repeated until no pair has
an invariant mass less than jQ?. The &k, algorithm is a modified version of the JADE
algorithm which clusters partons based on their relative transverse momentum rather

than their invariant mass. The corresponding kinematic variable is
2 . 2 12
Yij = @(1 — cos 6;;) min (EZ , Ej) ) (4.2)

For massless particles this is equal to

M2 E, E,
_ 2] : : J
Yij = Q2 min (EJ, E) . (43)

The final states with the smallest y;;, given that it is less than a resolution parameter

Y, are combined according to a combination prescription. This process is repeated until
all pairs have y;; > y.. In Fig. 4.3 we illustrate the two-jet regions in QCD as defined

by the JADE, SW and k, algorithms. The SCET regime for the two-jet cross section
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corresponds to choosing the parameters §, 8, j or y. to be much less than one in the
respective jet definition.

For the two jet JADE cross section, for example, integrating k3 in the soft sector
all the way up to @, as in Fig. 4.3(a), corresponds to integrating the gluon momentum
far above the cutoff. In the EFT, the upper limit of integration should therefore be
replaced by an ultraviolet cutoff. Indeed, while the regions of integration for the various
jet definitions are quite complicated, as far as the soft gluon is concerned they should have
no structure above the soft scale. A similar situation holds for collinear gluons, where
the effective cutoffs in the perpendicular and anti-collinear directions are parametrically
smaller than Q.

At O(ay), the JADE algorithm corresponds to a cut on the invariant masses M;; of
each pair of partons: if ij < j@Q?, the partons are considered to lie in the same jet, and

the event is a two-jet event. The constraints in full QCD shown in Fig. 4.3(a) are

Mg b3 < My _ps _ pips <jM‘12‘7:Q_p5_p;<j. (4.4)
Q@ Q-p; 7 Q@ Q QQ-py) T Q
Expanding these constraints in the n-collinear sector, we find
M? ki M2 : M2 Q—p;
WS, BBt X (4.5)
Q> Q-ps Q@  Q Q? Q
while in the soft sector we obtain
Mng = g ' Mgg = k—3_ <7J (4.6)

e @
(while the constraint Mqu < jQ? is never satisfied). Finally, in order to avoid double-
counting of the soft sector, the zero-bin of the collinear region must be subtracted [40].
Taking the soft limit of the n-collinear region in Eq. (4.5) gives the same region as the
soft sector, Eq. (4.6). The corresponding regions of phase-space are shown in Fig. 4.4(a,
b).
We note that, as required, the phase space contains no explicit reference to any scales

above the cutoff of the theory and has no structure above this scale.
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Figure 4.4: Phase space corresponding to two-jet events using the JADE algorithm in
(a) the n-collinear gluon sector, and (b) the soft gluon and zero-bin sectors. The thick

arrows indicate integrations to infinity.
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Figure 4.5: Phase space corresponding to two-jet events using the SW algorithm in (a)
the n-collinear gluon sector, (b) the soft gluon sector, and (c) the zero-bin sector. As

before, the thick arrows indicate integrations to infinity.
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Figure 4.6: As Fig. 4.5, but using the k, algorithm.
Jet Definition n-collinear regions soft regions zero-bin regions
JADE k< (Q - py) k< jQ k< jQ
ps <J@ ky <j@Q ky <jQ
ps > Q1)
SW k< py Gl b < 52 ki < 0%p3
p3 k‘++k7 3 p3
_ ky _
ps < 28Q o <0 ps < 28Q
ps > (1-28)Q ki + ks < 28Q
+ —
ki mm(k (53;73) > <ye (k3 +k3)ki <yQ? kips < y.Q?
(p5)? < 4@ (k3 + k) by <uQ> (p5)° <@

(Q —p3)* <y.Q?

Table 4.1: T'wo-jet regions of three-body phase space for JADE, Sterman-Weinberg (SW)

and k; jet algorithms.
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Similar constraints in the soft, collinear and zero-bin sectors are easily obtained for
the SW and k| definitions, and are summarized in Table 4.1. Note that in both SW and
k., the zero-bin region is not the same as the soft region, since taking the soft limit of
the n-collinear phase space is not the same as taking the soft limit of the full QCD phase
space. The corresponding regions are illustrated in Figs. 4.5 and 4.6.

Note that we have not had to specify the SCET expansion parameter A in order to
expand the phase space in the soft and collinear sectors; we have only assumed that
A < 1 so that the multipole expansion is valid. Similarly, we have not assumed any

relative scaling between 8 and 9 in the SW jet definition.

4.3 Dijet Rates to O(«y)

In this section we calculate the NLO dijet rate (denoted f;) in the JADE, SW and &k
schemes in SCET, which is straightforward to do given the phase space regions of the
previous section. We show that in each case SCET reproduces full QCD, as it must, up
to power corrections. We examine the scales that appear in the soft and collinear cross
sections, where the power counting parameter A is determined by the dynamics in each
algorithm. It is instructive to note the cancellation of ultraviolet divergences between
the soft and collinear real emission contributions. We also consider the infrared safety of
the soft and collinear rates separately.

At O(a) the only contribution to the dijet rate comes from the two-jet SCET operator
Oy = E,W,,v*Wi&,. The matching calculation from the full QCD current ¢y#1) onto O,

has been performed many times in the literature [69, 67, 12], with the Wilson coefficient

asCp (1. 5 w? 3. u? 2
—1 om? % 44 4.
=1+ < 2 T2 2t Tr tTTno (4.7)

and the MS counterterm

a,Cr (1 3 1 %
Zy =1 —+—+-In— 4.
2 + (62+26+€ n_Q2) (4.8)
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where we are working in d = 4 — 2¢ dimensions. The SCET differential cross section for

soft gluon emission is given by

1 asCr p*e® o 20(kfky)
—do® = L ——dk$dk 23 4,
707 = om0 =9 Gy ) )
while for n-collinear gluon emission it is
1 a,Cr p*err (p3ki)™c (s Q —p3
—do" = = ———dkidp; 22— [ (1 —€) + 2 3 4.10
o 7 or I'(1—¢) ° Ps Qky Q( )+ D3 (4.10)

where 0p = (471a®/Q?) 3, €} is the leading order Born cross section with a sum over
the (anti-)quark charges ey. The dependence on /% and P has been eliminated via the
gluon on-shell condition, and the integral over the 2 — 2¢ perpendicular components of
the gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin region, do™, is obtained by taking

the soft limit of Eq. (4.10), which is the same as the soft rate,
do™ = do®. (4.11)

(There are also zero-bin regions corresponding to the quark and antiquarks becoming
soft, but they are higher order in A and we will not consider them here.) For the n-
collinear region there are two zero-bins: p; — 0 and p; — 0, but the contribution to
the cross section from the latter is of higher order in A and so we will not consider them

here.

4.3.1 JADE

Integrating the soft rate over the soft dijet region (4.6) in the JADE definition gives

iO'S = —QSCF —z — 2ln MQ — 1112 IU2 + 7r_2
oo JAPE 2 e e J2Q? j2Q% 6

where we have taken j < 1 and kept only the leading terms in j. Integrating the

n-collinear rate over the region (4.5), we find

1. aCp (3 2. . 3. u? u? o P R
— 0 ADpE = —+ -1 —In— +2n-—=Inj—-3In"j — — + = 4.12
UOUJADE 2T <26+ € nj+2 an2 + DQ2 1 R +2 ( )
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where the tilde denotes that the zero-bin has not been subtracted. The rate in the zero-
bin region is identical to that in the soft region, and so the zero-bin subtracted result for

the emission of an n-collinear gluon is

n 1 ~n n0 1 ~n S
O__OUJADE = U_O(UJADE - UJADE) = O__O(OJADE - UJADE)

C 2 3 2 2 2

- F —+—+—1n_u—+§n.ﬂ—

2r \ € 2 € JQ* 2 j@Q?

2 2
I s 7

n?2t— — — ). 4.13
+1In FraEh + 2) ( )

The emission of a collinear gluon in the n direction, i.e. from the anti-quark, can be
calculated in a similar way, and it gives the same contribution.

In pure dimensional regularization, all the virtual vertex corrections and the wave-
function renormalizations involve scaleless integrals and thus vanish. Hence we only need

to add up the real emission contributions:

1 5 - _
U_OUL?ADE = - ((U?ADE — 07apE) + (67apE — 07ADE) + UjADE)

1 _
~n ~n S
= U_O(UJADE + G¥ADE — OJADE)

sC 2 3 2 2
=2 F(—+—+—1nﬂ——21n2j+ln2u—
€

2\ €2 e Q? Q?
2 2
W o

Note that the soft contribution enters into the final expression with a minus sign. This is
a consequence of zero-bin subtraction and the fact that zero-bins are identical to the soft
contribution. Similar observations have been pointed out in [70, 71, 72]. The divergent
terms in Eq. (4.14) are cancelled by the counter term |Z;]?, and including the Wilson

coefficient, |Cy|?, gives the two-jet fraction

‘CQ|2 1 n n 3
JADE  _ VAL 1+ o (0YapE + 0FaDE + JaDE)

sC 2
— 1+ 8 om?j 3+ = 1),
2 3

This result agrees with the full QCD calculation given in [73, 74].
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It is instructive to comment on a few details of the SCET result. First of all, since
dimensional regularization regulates both the infrared and ultraviolet divergences, the
cancellation of ultraviolet divergences between the soft and collinear emissions is not
explicit. To show how this works, we can repeat the calculation with the quark and
anti-quark offshell, p? p3 ~ A\? # 0, so that all 1/e divergences in the calculation are
ultraviolet. The calculation is given in Appendix 4.A. The resulting rate for soft gluon

emission over the JADE phase space is
1 oCr ( 2(, P} NN AN
UOUJADE o ( c ( ]Q2 +in Qz + Qz + n Q2

2
—2(11132 +In gé)ln%> +

where the ellipses denote finite constant terms which are not relevant for the discussion.

The unsubtracted n-collinear cross section is

1 sC 2 2 2 2
—O0japE = > F(——+E<ln DLy, L )

0 2m €? JQ2 J2Q?
12
2 p1 3.
—In Q2+21 Q2ln@+— @)—i- (4.15)
while the zero-bin region gives
1 0 _aCr 2 2 w2
Thus, the zero-bin subtracted n-collinear cross section is
1 n asCF 2 2 3 pl

The result for n-collinear gluon emission will be the same as that for n-collinear gluon
emission with the replacement p? — p3. Note that the 1/¢* divergence from collinear
emission is removed by the zero-bin. Combining the real emission contributions to the
JADE cross section, Eq. (4.17), we see that while the phase-space integrals for soft and
collinear gluon emission are individually ultraviolet divergent, with mixed ultraviolet

infrared divergent terms, the ultraviolet divergences cancel in the sum:

1 p  aCF pt.ops 3. P 3. P
O_—OUJADE—? (21 QQI Q2 —1 Q2 —1 Q2 4+ ... .
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This is the same cancellation which occurs at the one-loop level in SCET [6], in which
separately ultraviolet and infrared divergent terms cancel in the sum of the soft and
collinear graphs.

The soft and collinear sectors are also individually infrared finite for the JADE algo-
rithm. The soft virtual vertex correction is given by [12], and contributes equally to the

two-jet rate in all definitions

1 . C 2 2 22 22
Ly =2 F<_3__m<_%%>-4ﬁ<—%%>)+”.. (4.17)
09 2m € € SV pip3

The soft wavefunction renormalization graphs are zero and so the cross section in the

soft sector is given by

. N I SR D 4.18
o (03apE + 0V/) o ( n ) + (4.18)

The result is purely ultraviolet divergent and agrees with the pure dimensional regular-
ization calculation in Eq. (4.12). The collinear contribution is similarly free of infrared
divergences.

Second, we note that the scale at which the logarithms in the NLO n-collinear rate are
minimized, p = 1/7Q, determines the collinear or jet scale in SCET, AQ, and that without
the zero-bin subtraction there is no value of p at which the logarithms in Eq. (4.12) are
minimized. The logarithms in the soft rate (4.12) are minimized at u = j@, the expected
soft scale in SCET, A\2Q). From Fig. 4.4 we see that jQ is the relevant soft scale that
emerges from the multipole expansion of the JADE phase space constraints. However,
as we shall see from the SW two-jet soft rate, this is not universally the case. The
true soft scale depends on the details of the soft theory, which is not addressed here.
Furthermore the calculation of the leading logarithmic contribution in full QCD [75, 74]
shows that the resummed result is not simply given by the exponentiation of the NLO
term. It has been demonstrated that the emission of two soft gluons with large angular
separation can be combined to constitute a third jet in the JADE clustering algorithm.

These types of configurations change the leading-logarithmic two jet fraction and spoil
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naive exponentiation, as the emission of subsequent soft gluons qualitatively changes the
phase space constraints. These configurations also involve the parametrically lower scale
72Q [75], which complicates the summing of logarithms of j. However, this effect does
not arise until O(a?), which is beyond the order to which we are working.

Finally, it is instructive to look more closely at the zero-bin subtractions in different
regions of phase space. In particular, while the n-collinear region of integration naturally
describes the region where the n-collinear quark and gluon form a jet (see Fig. 4.4(a)),
it also includes regions where the antiquark and the gluon, as well as the quark and
the antiquark, form jets. In order for an n-collinear gluon to form a jet with an n-
collinear antiquark, the gluon must be soft, and as a result one would expect the entire
contribution from this region of phase space to be cancelled by the zero-bin subtraction.
Similarly, the region where the n-collinear quark and n-collinear antiquark form a jet
should be cancelled by the corresponding quark and antiquark zero-bins; however, these
are subleading in j. We show below that this is indeed the case at O(a).?

The region where the n-collinear gluon and n-collinear quark form a jet in the JADE

algorithm is defined by the region
(Q—p3)

ey > 0<n <jQ (4.19)
and integrating the differential rate (4.10) over this region gives
s 1 2 2
aCr (1 208 T g2t (4.20)
2 e e JjQ 12 J@Q

where, as usual, we have dropped terms subleading in j. The zero-bin constraints for the
same jet are

ki > kg, 0<k; <3jQ (4.21)
and integrating the differential rate (4.11) over this region and expanding in j gives the
same result as (4.20). Hence this region is entirely zero-bin and is absent from the n-

collinear rate, thereby reducing the combinations of partons that need to be considered.

2We thank S. Freedman for this observation.
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Similarly, the region where the quark and antiquark form a jet is

2
> B qu-p<m<a (4.22)

and integrating Eq. (4.11) over this region gives a result of order j, and so the rate
vanishes to the order we are working. We expect that such cancellations will continue

beyond leading order, simplifying the combinatorics of clustering multi-gluon states.

4.3.2 Sterman-Weinberg and k£, Jet Definitions

It is straightforward to repeat the calculations of the previous section for the SW and
k. jet definitions. However, each of these algorithms introduces additional features not
present in the JADE calculation: the relevant scales are different and in both cases
the zero-bin contribution is distinct from the soft contribution. Furthermore, in the k|
definition the soft and collinear rates are not individually infrared safe using dimensional
regularization to regulate the ultraviolet, indicating that the rate does not factorize into

well-defined soft and collinear contributions in this scheme in SCET.

SW

Jets in the SW definition were studied in SCET in [62, 63, 67]. In these papers it was
argued that because the kinematic cuts on the soft phase space were much larger than
the typical soft scale, the soft phase space integral should be unrestricted. In [62, 63] this
is because the scaling 3 ~ ¢ is chosen, while in [67] 3 is taken to be of order %, but the
soft scale is taken to be Aqcp. Our results differ, as we have not assumed any relative
scaling between 3@, Q) and Agcp, and we argue that SCET power counting uniquely
requires the restricted soft phase space in Fig. 4.5(b). (We expect, however, that if 5 ~ ¢,
SCET should be matched at a lower scale onto a new effective theory with unrestricted
soft phase space.)

Integrating the differential cross section in Eq. (4.9) over the phase space generated
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by the corresponding constraints, we find

1 a,Cr 2
—Ogw = 1 41 Inoln — — — |.
UOUSW - <€ no— n(5+8n(5n2ﬁQ 3>

By introducing quark and anti-quark off-shellnesses as we did for the JADE algorithm, it
can be shown that the total soft contribution, (0 + 07) /00, is infrared finite, and the
1/€ terms are ultraviolet divergences. The logarithms in Eq. (4.23) cannot be minimized
for any choice of p since there is a large In § in the 1/e term. (See, however, [76] in which
factorization and resummation in the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (4.10) over the phase space given by the collinear SW constraints, we

find the naive n-collinear contribution to be

1. asCrp (1 (3 u? 13 272
—0Ogw = - z+2In2 In — +2In2p51 ——— .
OSw (€<2+ nﬁ)+3n5Q+ nﬁn2652Q2+2 5

Note that there is no reasonable scale p at which all the logarithms are minimized. We

now need to subtract the p; — 0 zero-bin of the SW n-collinear contribution. Integrating

over the relevant phase space gives us

I o  aCr 1 2 . 9 M 2
P (_62_61 "oms0 M a0 T12) (423)

The zero-bin gives a nontrivial contribution that is not equal to the soft contribution,

because the region of integration generated by taking the collinear and then soft limit is
not the same as taking the soft limit of the QCD SW phase space. It is interesting to
note that the scale in the n-collinear zero-bin, 56@), corresponds to the p, of a parton
at the edge of the cone with the maximum energy allowed outside the cone, SQ). This
corresponds to the intersection point of Fig. 4.5(c), generated by a consistent expansion
of phase space constraints in the effective theory.

The zero-bin subtracted result for the n-collinear sector is

1. o a,Cp (1 3 9 3r? 13
— (04 sw) = — |5+ = —1 — +3n—+2In" —= - — + —
O_O(USW oSw) o <62+ + 5Q+3n Q+ Q 1 + 2)

where the logarithms are now minimized at p = 0Q), unlike in Eq. (4.23). The collinear

scale, 6(), corresponds to the p, of a parton at the edge of the cone with typical collinear
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energy O(Q). The emission of a collinear gluon in the n direction, i.e. from the anti-
quark, gives the same result.

The n-collinear rate is independent of the jet parameter 3, because the phase space
region in Fig. 4.5(b) with a collinear gluon outside the cone with energy less than SQ,
where § < 1, corresponds to the zero-bin. This contribution is entirely removed by
the zero-bin subtraction and Eq. (4.24) is given only by the region where the n-collinear
quark and gluon lie in the cone. This underscores the consistency of the phase space
expansion in Section 4.2 and the zero-bin prescription. The soft sector resolves the cone
in addition to the scale Q) and gives rise to the double logarithm cross term in the SW
result below.

Combining these results gives

SWo_ |C2|2(
? | Zs|?

1
1+ (68w — o4%) + —0o
00( Sw — osw) 7 SW)

2
_ g %G (—4111231115—31115— T +§)
s 3 2

in agreement with the full QCD calculation [18].

ki

The k, two-jet rate in SCET reveals a more subtle cancellation of divergences than the
previous two algorithms and highlights again the importance of zero-bin subtractions.
Integrating the differential cross section for the emission of a soft gluon over the soft
phase space in Fig. 4.6(b), we find that o, is not regulated in dimensional regularization.
Performing the k3 integral first over the g jet region of phase space, we obtain a term
proportional to

T (4.24)

where the ellipses denote terms which are finite in d = 4 — 2¢ dimensions. This term
causes the k; integration to diverge at zero. A similar problem arises when integrating

over the soft region generated by the ¢g jet constraint. Despite this divergence, the total
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two-jet cross section is finite in QCD and so must be finite in SCET. The region that
gives rise to this divergence is also integrated over in the zero-bin calculations and since
the soft and zero-bin integrands are the same the divergence cancels in the difference.
Integrating the soft differential rate over the combined soft and zero-bin regions gives a

finite result in d dimensions:

1,0 w0 o asCr (2 2 2,
oo Tk k) = Gt m T e T

where we see the soft scale ,/y.QQ appear as in Fig. 4.6. We combine this with the rate

to produce an n-collinear gluon,

1. asCr (1 (3 u? (3 w2 7
— 5 = (24 my. ) +1 % iy )-3m2-Z + L) (425
ook T Ton <e(2+ny)+nyccg2 g 7Y nZ-pty) ()

to obtain the total two-jet rate for emission of a real gluon

1 _ _
~n ~7 s n0 n0
U—O(or,CL +op, +op, —op — a,ﬁ)

aCp (2 1 s o 11 s 2 2
= (;—I—E( ln@+3>+ln @+31n@—ln Ye—3Iny, —6In2 — 774+ 7

where again n and n collinear gluon emission give the same contribution and the virtual

piece vanishes. Including the counter-term Z5 and the Wilson coefficient C5, we reproduce

the known NLO £k, result [74]

O‘sCF

2
2’”:1+ (—ln2y0—3lnyc—6ln2+%—1).

This calculation re-emphasizes the importance of zero-bin subtraction: without it, the
evaluation of a finite f5* would not be possible. Since the soft and collinear cross sections
are not regulated in dimensional regularization, it is useful to regulate the infrared and
ultraviolet divergences separately by taking the outgoing quark and antiquark off-shell.

The resulting rate for soft gluon emission then becomes

1 aC 2p2
ol = F 2 PP

R 4.26
2] 2 Q4 Ye * ( )
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Note that unlike the previous algorithms, the soft real emission result is not ultraviolet
divergent. Combining this with the contribution from the soft virtual vertex correction

(4.17) gives

1 asCr [ 2 112Q? pipy
(55 5\ — ————1 21In In 4.27
oo (O'“ + UV) 27 ( €2 e pipd + Q4 Y. Q? + ( )

This shows explicitly that the rate in the soft sector is not infrared safe.

The rate for n-collinear gluon emission and the zero-bin are, respectively,

1 s 2 2 2 2
6&:0sz (————1 a —ln2”—+§1 L>+m

oo 2m e € phJye P2 Q%
1 o asCr 2 2 p? p ,u2
0o ™ € € Piv/ yc ch pl

and their difference gives us the zero-bin subtracted result

1 a,Cr » P 3. pi
Son = BEE ° o
Tk < Y@ 2 ne) "

(4.29)

As with the soft sector, the phase-space integration for the n-collinear real emission is
ultraviolet finite but infrared divergent. Combining the real emission contributions to

the k, two-jet cross section, we find

1 n n s
a_ogli = U_O(Ukl+0kl+0m)
a,Cp P2 2 P
= In In 21n 1 R 4.30
o ( < Q2+ Q2>+ QQDQP i (4:30)

The infrared divergences in Eq. (4.30) are completely cancelled by the total virtual con-
tribution oy given in Eq. (4.40). As expected, the virtual graphs convert the infrared
divergences in the real emission diagrams into ultraviolet ones. While SCET reproduces
the known NLO £k, result, the soft and collinear rates are not independently infrared
safe, indicating for the k£, phase space the soft and collinear modes do not factorize in

SCET using dimensional regularization to regulate the ultraviolet.
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4.4 Factorization and Scheme-Dependence

It is useful to examine the failure of SCET to factorize the k£, rate into separately infrared
safe soft and collinear pieces, particularly given the fact that the regions of integration for
the soft gluons are quite similar in the infrared between £, and JADE. Instead, the bad
behaviour in Eq. (4.24) comes from the region of large k™ and small £k~ and vice-versa -
a region which is infrared divergent, but sensitive to the ultraviolet regulator. Since, as
we have shown, the ultraviolet divergences in the phase space integrals cancel between
the soft and collinear degrees of freedom, this is an unphysical region, and so cancels
from the total rate. The same cancellation occurs at the one-loop level, in which terms of
order 1/eyy Inp? cancel between soft and collinear graphs [6]. However, this unphysical
region can also be eliminated by defining the soft function with a cutoff A;. In particular,
we show in this section that while the k, algorithm in dimensional regularization does
not factorize in SCET into separate infrared safe contributions, regulating the ultraviolet

with a cutoff on the light-cone components of the gluon momentum,
KT < Ap, || < Ay (4.31)

results in an infrared safe soft function.
Integrating the soft rate over the relevant region for &, including the cutoff (4.31),
and continuing to work in d dimensions to regulate the infrared, we find for real soft

gluon emission

1 aCrp (2 2. u? 5 YeQ? o u2
—o; = —+-In— —1 In* — — —
Joak’l 27 <e2 + € HA? t Afc i Afc 3

Similarly, the same regulator for soft real gluon emission in the JADE algorithm gives

s OéSCF 2 2 1 /1/2 1 1 2 j2Q2 1 2 :u2 7T2
—0 = — +-In n
og JAPE 2 \e2 € A2

Note that with a cutoff, the 1/e? and Sudakov double logs In® j and In” y, are entirely

contained within the soft function, as opposed to pure dimensional regularization, in
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which the collinear graphs also contain double logs. This is in agreement with [75, 74],

where the Sudakov logs are calculated entirely from the soft graphs.

The soft virtual vertex correction with a cutoff of Ay in |k*| and |k~| gives a modified

vertex correction

as;Cp 2 2 P YT o
o= ———-In"—5—-In" "5+ — 4.32
ov 2 ( 2 el Afc t A? * 6 (4.32)
giving the finite results
1 s s OKSC(F 2 yCQ2 71'2
s s &SCF j2Q2

Note that the infrared divergences cancel between the real and virtual graphs, and

that there are no large logs in the soft function for Ay of order the relevant soft scale, j@Q

or \/yeQ.

These results demonstrate the fact that factorization of rates in SCET into soft and
collinear components is scheme-dependent. Such dependence on infrared regulators was
also noted in a different context in [11] and [77]. Using the method introduced in [11]
to test infrared safety at one loop, one would conclude that the soft contribution to the
k. rate is infrared divergent. This differs from our results, because, as we have shown,
the infrared safety of the soft function is ultraviolet regulator dependent. Introducing a
cutoff removes the unphysical region of k* — 0 and k™ — oo and results in an infrared
safe soft contribution to the two-jet k, rate.®> The bad behaviour of k, in dimensional
regularization in SCET is therefore a feature of dimensional regularization, not of SCET.
The factorization for jet rates depends on the ultraviolet regulator of the theory as well

as the infrared.

3Similarly, the NLO soft function for angularities, 7,, for 1 < a < 2 integrated over 7, between 0 and
1 can be shown to be infrared finite if defined with an ultraviolet cutoff.
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4.5 Conclusion

We have presented a consistent treatment of phase-space integrals over soft and collinear
degrees of freedom in SCET, illustrating this with the explicit example of the NLO dijet
rate for three different jet algorithms. In this approach the phase space for different modes
in the effective theory are insensitive to details above their cutoff, giving real emission
contributions with ultraviolet divergences which cancel between the collinear and soft
sectors. Although the leading order SCET Lagrangian separates soft and collinear modes
and the differential cross section has been shown to factorize, we demonstrated that using
dimensional regularization the k£, algorithm does not factorize into infrared safe soft and
collinear rates. We showed that this is related to a divergence in an unphysical region
which cancels between the soft and collinear sectors, and is sensitive to the ultraviolet
regulator.

Zero-bin subtraction is necessary to consistently integrate over the phase space con-
figurations that need to be considered in a given jet algorithm. The zero-bin subtraction
was shown to entirely remove regions of the naive collinear rate where n and n collinear
degrees of freedom form a jet at NLO in the JADE algorithm and for collinear par-
tons outside the cone in SW. The k; and SW dijet rates provide nontrivial examples of
zero-bin subtraction, which are different from the soft contribution.

We have not attempted to sum logarithms of the small jet parameters at this stage.
While the running of C; makes summing some of the logarithms straightforward, the soft
physics in these theories is more complicated. For example, the JADE algorithm is known
not to exponentiate: there are three-jet configurations which contribute at O(a?In? 5) in
which two gluons, which would naively be unresolved from the quarks, are combined to
form a third jet [75]. Such configurations have no simple relation to the one-gluon phase
space and are not obtained by exponentiating the one-loop result. From an effective field
theory viewpoint, these configurations also involve the scale j2Q, which is parametrically

smaller than the soft scale j@). The soft function for the SW algorithm, in contrast,
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naively has an anomalous dimension of order In ¢, and so large logarithms of § cannot be

resummed in this formulation of the low-energy theory.

4.A Offshell calculations

The SCET differential cross section for soft gluon emission and offshell quarks, p?, p3 # 0,

18

1 2¢ VB 202 (kTkr) ¢
_M%JM%ii—M@@M@%g +Q$JQ 5o (4.34)
00 2 I'(1—¢) (Qk3 + p1)(Qks + p3)
where p? = Qk;", p3 = Qk, and p2 = 0. The JADE two-jet constraints become
M2 k‘+ 2 M2 k= 2 M2
and integrating over the soft phase space gives
1 s « OF 2 2 2 2
U_OUJADE = (e (4111]—21nQ2 21n Q2> <1 Q2+1 Q2
2
Vi b H
—2(1 Q2+l Q2)ln@)+~~ (4.36)

where the ellipses denote finite constant terms.
Similarly, the SCET differential cross section for n-collinear gluon emission with off-

shellness is

1 a,Cp p*ers
Zdom = rer
(o] 2T F(l — )

(1—6)p5k§+ 2(Q — p3) )

dktd ki (
ps (p3 k3 )~ (P + ka;)2 p3 (P + ij>

and the corresponding JADE two-jet constraints are

My Qkg +p? oy M3; _ Qps + 1) ey

Q? QR—-ps) ~ @ Q? ’

Mz Q@ —ps) +pi+p3

Qlj = 3@? 2 < (4.37)

Note that the off-shellnesses in M2, and M3, are suppressed with respect to the label

momenta and thus can be dropped. Integrating Eq. (4.37) over the phase space given by
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these constraints, we find

1 OzSCF 2 1 2 2
o' = —— 21 21 —2In
oo PP T Tor ( e ( 2 gy~
2 2
2 p1 3
—In Q2+21 Q2 I +3 1Q2)+....

The p; — 0 zero-bin for the n-collinear differential cross section is obtained from
Eq. (4.37) by taking the soft limit:

1 asCp p*ere
o™ = SEERC ki (py k)
o0 g ot F(l ) p3 (p3 )

2@
ps (P} + Qk3)’

The JADE constraints for this zero-bin are the same as the soft ones in Eq. (4.35).

(4.38)

Performing the phase space integration gives

I 0 ozSC'F 2 2 2
L — = —Zln—1— ce 4.
O_OO-JADE 27T ( €2 P anQQ + ( 39)

The zero-bin subtracted result, which is the difference betweem Eq. (4.38) and Eq. (4.39),
is not particularly illuminating. It should be noted, however, that this zero-bin subtrac-
tion gets rid of the 1/€* term, which is also absent in the contribution from soft gluon
emission in Eq. (4.36). Thus the total contribution from real gluon emission is free of such
terms. The result for n-collinear gluon emission will be the same as that for n-collinear
gluon emission with p? — p3. Combining the real emission contributions to the JADE

cross section gives

1 1
_UOU?ADE = —00
asCF pl 2 3 2 3 p2
= 21n In In —l AU

2m ( Q? Q2 T3 Q2 * Q? *

Notice that this result is free of ultraviolet divergences, and off-shellness is regulating all

((@?ADE — o7apE) + (67apE — 0TADE) + U:;ADE)

of its infrared divergences. The collinear and the soft sectors are individually ultraviolet
divergent, but these ultraviolet divergences arising from the phase space cancel completely
with one another in the sum.

With off-shellness, the virtual diagrams are no longer zero, and they have been pre-

viously calculated with off-shellness, for example in [69] for deep inelastic scattering and
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in [12] for ete” annihilation. The zero-bin subtractions of the collinear virtual graphs
also vanish with this regulator [40, 72]. At the amplitude level, we sum up all the virtual
vertex corrections and subtract half the wavefunction renormalization for each external
(anti-)quark:

2

aCr (2 3 2. —Q? p? . p

Iy = — 4+ —-—-1 —2In —=In =

v 4 (62+€ e 12 nQ2 nQ2
3. p 3. p

The virtual graphs’ contribution to the two-jet rate is oy = 2Re(I/). We can then see
that the IR divergences from real gluon emission in Eq. (4.40) will be completely cancelled
by the virtual contributions, and the UV divergent terms in oy will be cancelled by the
counter term |Zy|?.

We can also focus on the soft sector to investigate its IR safety. The soft virtual

vertex correction is given by [12]:

SC 2 2 22 2,2
I = & .__._..m,-_“;% — In? —“;% o (4.41)
47 e ¢ Dip3 D1P3

The soft wavefunction renormalisation graphs are zero, so in the soft sector, the soft

virtual vertex correction and the soft gluon bremstrahhlung are the only two diagrams

we need to add:

1 s aCr 2 4.

This agrees with our pure dimensional regularization calculation in Eq. (4.12). This also
shows that the rate in the soft sector is infrared finite. The collinear contribution is also
IR safe because the sum of all sectors is free of infrared divergences.

k1 : The k, phase space regions shown in Table 4.1 are not affected by the introduction

of the off-shellnesses, with the only exception that the constraint

(ks kips )
min (| —, ————— | < ¥, 4.43
(ps (Q— Ps )? ( )
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is slightly modified to

_(Q—p5s p3 >Q2k3++p5p?
mm( ps Q—p3) Q*Q—p3)

The calculation is otherwise straightforward.

< Ye-

70

(4.44)



Chapter 5

Light Octet Scalars, a Heavy Higgs

and Minimal Flavour Violation

This chapter was originally published in “Light Octet Scalars, a Heavy Higgs and Minimal

Flavour Violation”, [30].

5.1 Introduction

Most physicists believe that new physics beyond the Standard Model (SM) awaits dis-
covery at the LHC, and experiments at the Large Hadron Collider (LHC) will soon probe
the weak scale and (hopefully) reveal the nature of whatever new physics lies beyond the
Standard Model. Since the Higgs sector is among the least understood in the SM, new
scalar physics could well be what is found.

However, to be found at the Tevatron or the LHC, any such new scalar physics should
be associated with a comparatively low scale, A ~ TeV. And because the scale is low,
it must be checked that the new physics cannot contribute to processes that are well-
measured and agree well with the SM, such as electroweak precision data (EWPD) and
flavour-changing neutral currents (FCNCs). This suggests taking most seriously those

kinds of new physics that suppress such contributions in a natural way. This can be

71
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elegantly accomplished if the effective field theory (EFT) appropriate to low energies
obeys approximate symmetries, such as a custodial symmetry SU(2)s [78, 79, 80] for
EWPD and the principle of minimal flavor violation (MFV) [20, 21, 22, 23, 24, 25],

which suppresses FCNCs when formulated appropriately [81, 82, 83].

Recently, it was discovered [27] that there are comparatively few kinds of exotic
scalars that are flavour singlets and can have Yukawa couplings with SM fermions in a
way that is consistent with MFV. The only two possible scalar representations allowed
are those of the SM Higgs or octet scalars, respectively transforming under the gauge

group SU(3) x SU(2) x U(1) as (1,2)1/2 or (8,2)12.

In this chapter we examine what constraints EWPD!, flavour physics, and direct
production constraints place on the general scalar sector consistent with MFV. To this
end we consider the Manohar-Wise model, for which only one (1,2);/2 scalar and one

(8,2)1/2 scalar are present.

Since it is the quality of SM fits to electroweak precision data that at present provide
our only direct evidence for the existence of the SM Higgs, it is perhaps not surprising
that the existence of a scalar octet can alter the Higgs properties to which such fits point.
In particular, the best-fit value of the Higgs mass obtained from SM fits to EWPD is
now 96157 GeV [84]. We find that for the Manohar-Wise model, EWPD fits both change
the implications for the Higgs mass, and limit the allowed mass range of the extended

scalar sector.

We find that when the masses of the Higgs and octet scalars are approximately de-
generate, the electroweak fits allow both the Higgs and the octet to be light, with masses
~ 100 GeV (or even lighter for some components). Alternatively, agreement with EWPD
also allows the octet and the Higgs doublets to be both heavy, with masses ~ 1TeV.

The Higgs doublet can be heavy and remain consistent with precision fits because its

'We thank J. Erler for private communication on the recent update to the EWPD fit results related
to [84].
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contribution to the relevant observables is partially cancelled by the contribution of the
octet doublet. Having such a heavy Higgs without ruining electroweak fits is attractive,
as a resolution of the so-called ‘LEP Paradox’ [19]. We find that the precision electroweak
fits generically prefer to limit the splittings among some of the octet components, but
by an amount that does not require fine tuning of parameters in the potential. (The
overall masses of the two multiplets are subject to the usual issues associated with the

electroweak hierarchy.)

The plan of this chapter is as follows, in Section 5.2 we review the Manohar-Wise
model, and describe its motivation as a general scalar sector that can both allow an
approximate custodial symmetry and satisfy MFV. In Section 5.3 we present our results
for the phenomenology of the model. In particular, we describe its implications for an
EWPD fit, and explore the parameter space that allows both doublets to be either light or
heavy. Since the fits prefer a scalar spectrum that is approximately custodially symmetric,
we also study loop-induced SU(2)¢ breaking, and demonstrate that the allowed parameter
space is not fine tuned. This section also describes direct-production constraints on the
Higgs and octet scalar, coming from both LEP2 and the Tevatron, and reexamines how
previously studied flavour constraints change if the new octets are comparatively light.
We find that the octets can pass all these tests, for parameters with scalars that are

either light or heavy. Some conclusions are briefly summarized in Section 5.4.

5.2 Theory

In this section we recap the main features of the the model, obtained by supplementing
the SM with an colour-octet, SU,(2)-doublet scalar. Particular attention is spent on its
approximate symmetries, since these underly the motivation to naturally satisfy FCNC

and EWPD constraints.



CHAPTER 5. LIGHT OCTET SCALARS, A HEAVY HIGGS AND MINIMAL FLAVOUR VIOLATIONT4

Motivation for (8,2),/, scalars.

Minimal Flavour Violation (MFV) is a framework for having flavour-dependent masses
without introducing unwanted flavour changing neutral currents (FCNCs). It assumes
all breaking of the underlying approximate SU(3)y x SU(3)p x SU(3)¢ flavour symmetry
of the SM is proportional to the up- or down-quark Yukawa matrices. The fact that
only scalars transforming as (8,2);/2, or as the SM Higgs [27], can Yukawa couple to
SM fermions consistent with MFV is the motivation of the phenomenological study we
present here.

However, we also note that octet scalars appear in many specific new-physics scenar-
i0s, including various SUSY constructions [85, 86], topcolour models [87], and models with
extra dimensions [88, 89]. Various approaches to grand unification also have light colour
octet scalars, including Pati-Salam unification [90] and SU(5) unification [91, 92, 93].
Colour octet doublets have also recently been used to study new mechanisms for neutrino
mass generation [94]. Octet scalar doublets appear naturally in models of the Chiral-
Colour [95, 96] type where QCD originates in the chiral colour group SUL(3) x SUR(3),
since in this case octet doublets are expected in addition to the Higgs as 3®3 = 8 1. As
discussed in [97] one can also consider the class of models where the SM is extended with
SU(N) x SU(3)c x SU(2), x U(1)y and imagine model-building composite Higgs models
with a (8,2);/2 scalar in the low energy spectrum. We emphasize that although many

BSM scenarios contain (8,2);/, scalars our motivation is essentially phenomenological.

5.2.1 The Manohar-Wise model

In the Manohar Wise model [27], the scalar sector of the SM is supplemented with the

(8,2)1/2 scalar denoted

SA4 = (5.1)
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where A is the colour index.
The Yukawa couplings of the (8,2);/2 scalar to quarks is determined up to overall
complex constants, ny and np, to be
L=ny gg QETA(SA)T € Qi —Np gﬁ JﬁqTA(SA)T Q’L + h.c, (5.2)
where gV and ¢” are the standard model Yukawa matrices, 7, j are flavor indices and

0 1

€= . (5.3)
-1 0
The most general renormalizable potential [27] is
A . 2\? . . A 4 .
Vo= 7 (H“Hi — %) +2mg Tr (S7'S;) + M HV'H; Tr (S1/S;) + A H"H; Tr (ST75;)

+ [NHTHYTr (S;8;) + MH Tr (S175;8;) + A\sH' Tr (S175,5;) + h.c.]
+ )\GTI‘ (STiSiSTij) +)\7T1“ (STiSjSTjSi) +/\8T1" (STZSz) Tr (STij)
+ )\gTI' (STZS]) Tr (SJ”SZ) +)\10T1“ (SZSJ) Tr (STZST]) +)\11TI' (SZS] ST]STZ) s (54)

where i and j are SU(2) indices and S = S4T4. Since a field redefinition can be used
to make A3 real, this represents 14 real parameters in the potential beyond those of the
SM, which reduce to 9 in the custodial SU(2) symmetric case — see egs. (5.9) through
(5.12), below. No new parameters enter in the couplings of the (8,2)q/2 scalar to the
electroweak gauge bosons since it has the same electroweak quantum numbers as the
Higgs. We use this fact to bound the masses of the octets in Section 5.3.1. The ;23
terms in Eq.(5.4) lift the mass degeneracy of the octet states when the Higgs acquires a

vacuum expectation value. Expanding the neutral scalar octet as

S’ +iS7°

540 5.5
7 (5.5)
the tree level masses become [27]
2
M2 = M:+ M
2
2 2 v
My = MS+<)‘1+)‘2+2>‘3)Z
2
M? = M2+ (M + A —2)3) UZ' (5.6)
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Custodial symmetry

We find below that EWPD fits prefer the masses of some of the scalars in these models
to be approximately degenerate in mass. In particular, fits prefer a mass pattern that
can be naturally understood as being due to an approximate custodial SU(2)¢ symmetry,
under which the SM vector bosons transform as a triplet and the Higgs transforms as
a singlet and a triplet. This symmetry is broken in the SM both by hypercharge gauge
interactions, and by the mass splittings within fermion electroweak doublets.

For these reasons we next explore the implications of the custodial-invariant limit,
for which SU(2)¢ is an exact symmetry of the underlying new physics beyond the SM.
In this scenario, it is interesting to examine the case that SU(2)¢ is preserved in the
Manohar-Wise model potential at a high scale ~ 1TeV, up to the breaking that must
be induced by the SM. Imposing exact SU(2)¢ on the octet Higgs potential we find that

the potential can be rewritten in terms of bi-doublets
©=(e¢"0),  Sa= (54 54), (5.7)

where € is given in Eqn. (5.3) and the most general gauge- and custodial-invariant po-

tential becomes
V= 1% [Tr (@1 @) — 0] + ng Tr (SaTS4) + %Tr (@ ) Tr (SaT84),
oy Tr (ST0) Tr (87®) + (by T[T TP T Tr (97848, S0 ) + hec.)
o T T TR T (S Se) T (Sh@),
“dy Te[TA T8 TC TP Ty (SL SB) Tr (sg SD) ,
ey Te[TA TB] Te[TC TP Ty (SL SB> Tr (S}, SD) ,
+ f, Te[T T8 Te[TC TP T (31, sc) Tr (5; SD> . (5.8)
where Ty is used as a basis in colour space with 9 independent terms when the potential

is SU(2)¢ invariant.? Expanding out the potential and comparing to the general result

2An alternative way to obtain this count is to regard SU(2);,xSU(2)¢ as SO(4), with both H and
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of eq. (5.4), we confirm the result of [27] that SU(2)¢ implies

203 = Ay, (5.9)
2)\6 - 2)\7:>\11, (510)
No = Ao, (5.11)

but we also find the additional constraint®

A= AL (5.12)

Note that this constraint can effect the production mechanism of the octets at Tevatron
and LHC. We see in particular that because SU(2)¢ symmetry implies Ay = 23, in this

limit My and M; become degenerate.

5.2.2 Naturalness issues

In general, even if the scalar potential is required to be custodial invariant at a particular
scale, it does not remain so under renormalization due to the presence of custodial-
breaking interactions within the SM itself. In this section we compute these one-loop
symmetry breaking effects, allowing us to quantify the extent to which the custodial-
invariant potential is fine-tuned. To do so we calculate in Feynman gauge and note that
ghost fields do not couple to the components of the S doublet. We also neglect goldstone
boson contributions to the mass splitting as they come from the SU(2)¢ symmetric
potential and so therefore cancel out in the mass splittings; not leading to mixing between

the Sp and Sy states.

S transforming as real fields in the 4-dimensional representation. In this case the invariants of the

potential can be written m%(S* - S54), dapc(H -S*)(S®-S°), fapc(H; - SASP -SP) ekl (H-H)(S*-S%),

(H-S54)(H - S§*), (§4-54)?2 and the two independent ways of colour-contracting (54 - $%)(5¢ - §7).
3We thank A Manohar for communication on this point clearing up a subtlety.
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Figure 5.1: SU(2) violating contributions to S?, S* masses from the yukawa sector of the

theory.
SU(2)c breaking due to Yukawa corrections

The breaking of SU(2)¢ due to Yukawa couplings is straightforward, the requisite dia-
grams are given by Fig 5.1.

The correction to the mass S~ ST two point function comes from diagram (a) and is

given by
2 2 An(m2) 4+ Aa(m2) — p2Ba(p2. m2. m2
S(T{ST S Vy = —bu (mj Inpl* + mi Inu]*) o(ﬂzzé)t 20(”%) p”Bo(p®, miy, m7)] (5.13)
w20
S (mg |77D|2 + my |77U|2 +m; mt(|7]D|2 + |77U|2 —2npnu — 2npH 771*1)) Bo(an mg,mf))
“ 16 w202

where we express our results in terms of Passarino-Veltman (PV) functions whose defi-
nitions are given in [111], and we set |V3| =~ 1.

The contributions to the S? operator comes from the diagrams (b) and (c) and is

given by
2 2 2 2,02 2 2 2 2 2
I QI _ mi (2Ao0(m;) Inu|® + Bo(p?, mi, mi) (4 mi Im[ny]* — p* [nu]®))
NT{S" S}y = —bw 16 7207 ,
m; (240(m3) [np]* + Bo(p?, mi, mi) (4 mj Im[np]* — p* [np|*))
_ 5ab {5.14)
16 w202

We are interested in the mass splitting of M? and M2, however to the accuracy we
work one can also easily calculate the shifts to §(T{S% S%})y and §(T{S%S'})y due
to the mixing induced between the real and imaginary components of S4°. With these

results we can then obtain the contributions to the diagonalized Mj. The correction
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to §(T{S® S%})y is given by the same diagrams as §(T{S? S’})y with the appropriate
replacements, giving

m; (240(m7) |nu|” + Bo(p?*, mi, m7)(4mi Re[ny]® — p* Inu|?))

§(T{SESE = —4
< {S S }>Y ab ].671'2’02 )
_s mi (2Ao(m3) Inpl* 4+ Bo(p®, my, mj)(4mi Re[np]® — p* |npl*))
ab 16 w292 '

(5.15)

The mixing of the Sg, Sy fields at one loop §(T{S¥ S'})y is given by diagrams (d,e)
and is given by

(mj Re[np] Im[np] Bo(p?, mi, mi) — mi Re[n.] Im[ny] Bo(p?, m7, m7))
472 92

ST{SESY)y = —bu

which is only nonzero when at least one of the MF'V proportionality constants np, ny are
imaginary as expected. We define the mixing angle and renormalize the theory in the

Appendix.

Gauge sector SU(2)¢ violating corrections

Calculating the required four diagrams represented by diagrams (g,i) in Fig 5.2 one finds

2 dAME]  dA[MZ] 1 |
5 T 1< — 91 5AB 0 w 0 Zl iy ) 2 M2 M2 . I 2 M2 M2
< {S S }>G 1672 2 + 4012/1/ 9 3[]3 » W :I:] 4612/V 3[]9 » L7 R]

where ¢y = cos[fy] and the integral is given in terms of PV functions as follows
I3[p27 Mf? MbQ] = (2p2 + 2Ml)2 - ME)BOLP27 va Mb2] + QAO[Mf] - AO[MZ?] (516)

The result for §(T{S% S%})s is identical up to the replacement Mp — M;. One can
similarly calculate the other six diagrams corresponding to (f,h) that give the following
contribution for §(T{STS~})g in terms of PV functions?

A (MG d(1 — 255 P A
2 4c,
(1 —2s%,)?

2
deyy,

1
- 113[7927 Mt%V’ M]%]

2
- 9
(TS5 e = 105 5AB<

1
_Zl[?)[pz;MI%VvMIQ] - [3[])2,M%,Mi] - 82]3[])2,0,Mi]>

(5.17)

“Note that diagram (f) with a photon loop is scaleless and vanishes in dim reg.



CHAPTER 5. LIGHT OCTET SCALARS, A HEAVY H1GGS AND MINIMAL FLAVOUR VIOLATIONS(

Vg WZA VL, Wz
S A S Z
i '| A - o A ]
LA, 5 ; VAYAN <
5+ N 8
f) gl
- W.ZA wz
™, S LA LAY S
r I L i -}
;a - 1—\: Ll-/-.
L - -
5+ S- S'l SJ
h) i

Figure 5.2: SU(2) violating contributions from the gauge sector of the theory.

Mixing between the states ST, S® is forbidden in the gauge sector as the couplings are
real.

Given these loop-generated effects, we wish to estimate how large the custodial-
symmetry-breaking interactions are once we run down to observable energies from the
scale of new physics. The answer depends on how far we must run, however due to the
hierarchy problem of the Higgs mass (which is only accentuated when more light scalars
are added to the spectrum), it is likely that new physics must intervene at a relatively low
scale for new physics of ~ TeV. Such a low scale for a UV completion implies that the
symmetry structure of the UV theory is consistent with EWPD and flavour constraints.

The splitting induced by SM interactions is given by the difference between the renor-
malized mass at A and the low scale, where we ignore the running for simplicity in this

estimate

|G on = M2 (25000 = 3) = Zi e = ). (5.18)

where Z§;; is the leading perturbative correction of the mass counterterms, whose values
are given explicitly in the appendix using a zero-momentum subtraction scheme.

As is shown in detail in the next section, the largest My, M. SU(2)¢ violating mass-
splitting that is allowed by our EWPD fit is approximately ~ 40(55) GeV for the entire

68%(95%) confidence regions (see Figure 5.6). We now examine how natural such a small
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splitting is assuming a typical low mass of 150 GeV.

In determining the splitting, the values of n; employed are critical. For the lower bound
on the 7; we take the one approximate loop radiatively induced value n; ~ 0.35%/(16 72).
Note that we use the result of [109] that determined an upper bound on || from the
effect of the octet on R, = (Z — bb)/(Z — Hadrons). For charged scalar masses of

(75,100, 200) GeV the one sigma allowed upper value for |ny| is (0.27,0.28,0.33).

For My = 150GeV, we choose the couplings to give the largest induced splitting
consistent with other experimental constraints (ny = 0.3, 7p = 0.45), M; = 150 GeV (its
value before the perturbative correction in the high scale SU(2)¢ preserving scenario)
and Mp = (190,230) GeV which are the maximum values consistent with EWPD for the
(68%,95%) regions. We find that the EWPD regions begin to have tuning for a high
scale degenerate mass spectrum at (90 TeV, 8000 TeV). Conversely choosing the unknown
nu,np ~ 0.352/(16 72) one finds that the (68%, 95%) regions begin to have some degree
of tuning for scales of (170 TeV, 19000 TeV). For a UV completion that approximately
preserves ME'V and SU(2)¢, considering a SM and octet low energy scalar mass spectrum

allowed by EWPD is not a fine tuned scenario.

5.3 Phenomenology

We next turn to the various observational constraints. As we shall see, the most robust
constraints are those coming from the absence of direct pair-production at LEP, which

require

My 2100 GeV and Mg + M; 2 200 GeV . (5.19)

Since the octet scalar couples to both photons and gluons, these constraints are essentially

kinematic up to the highest energies probed by LEP (more about which below).
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Figure 5.3: Self energies calculated for the EWPD constraints on the octets, where
(a,b) = (WTW~,ZZ,~vv,Zv). The self energies needed to determine STUVWX are

given in the Appendix.

5.3.1 Fits to Electroweak Precision Data

A strong restriction on the properties of exotic scalars comes from precision electroweak
measurements, whose implications we now explore in some detail. The dominant way that
such scalars influence the electroweak observables is through their contributions to the
gauge boson vacuum polarizations; the so-called ‘oblique’ corrections [100, 101, 102]. The
calculation of the oblique corrections proceeds as usual with the vacuum polarizations

being determined directly by evaluating the diagrams given in Figure 5.3.

When evaluating these it is important to keep in mind that the direct production
constraints, eq. (5.19), can allow one of Mg or M; to be significantly lower than 100
GeV. This is important because it precludes our using the most commonly-used three-
parameter (S, T and U) parametrization of the oblique corrections [100, 101, 102], since
these are based on expanding the gauge boson vacuum energies out to quadratic order:
ap(q?) == Ay + Bapg?, where a and b denote one of Z, W or . Since the electroweak pre-
cision measurements take place at ¢*> ~ 0 or ¢> ~ M2, using the quadratic approximation
for T1,,(¢*) amounts to neglecting contributions that are of relative order M%/M?, where
M 1is the scale associated with the new physics of interest (in our case the new-scalar
masses). This approximation becomes inadequate for M below 100 GeV, and so we must
instead use the full 6-parameter description (STUVWX), such as in the formalism of ref.
98, 99]. In general, the STUVWX formalism reduces to the three-parameter STU case

when all new particles become very heavy.
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For ease of comparison with past results we start by quoting the results we obtain
for the fit to the six parameters of the STUVWX oblique formalism, regardless of how
they depend on the parameters of the Manohar-Wise model. The results are given in
Table 1, which compares the results obtained by fitting 34 observables (listed in an
appendix) to (¢) all six parameters (STUVWX); (i7) only three parameters (STU); or
just two parameters (ST). The number of degrees of freedom in these fits to (6,3,2)
parameters is v = (28,31,32), respectively. The x?/v for the three fits is within one
standard deviation \/2/_21 = (0.27,0.25,0.25) of the mean of 1, indicating a good quality
of fit. The experimental values and theoretical predictions used are given in Table 2 in

the Appendix.

Oblique || STUVWX Fit (x?/v = 0.91) | STU Fit (x*/v = 0.99) | ST Fit (x?/v = 0.98)
S 0.07+0.41 —0.02 4+ 0.08 —9.9 x 1072 £ 0.08
T —0.40 £0.28 —0.02 £0.08 1.1 x 1072 £ 0.07
U 0.65 +0.33 0.06 +0.10 -
\Y% 0.43 £0.29 - -
W 3.0£25 - -
X —0.17 £0.15 - -

Table 5.1: EWPD Fit Results in various schemes for the 34 observables listed in the
Appendix. The STU and ST fits fix the other oblique corrections to zero as a prior
input. The error listed is the square root of the diagonal element of the determined
covariance matrix. The central values of the fitted oblique corrections decrease as more
parameters are turned off. All three fits are consistent with past results and the PDG

quoted fit results.
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The correlation coefficient matrix for the three fit results are as follows,

1 0.60 0.38 —0.57 0 —0.86
0.60 1 —0.49 —-0.95 0 —0.13
0.38 —0.49 1 0.46 —0.01 —-0.76
Msruvwx = : (5.20)
—0.57 —0.95 0.46 1 0 0.13
0 0 —0.01 0 1 0
—0.86 —0.13 —-0.76 0.13 0 1
1 0.84 —-0.20
1 0.87
Mgry=| 08 1 —049 |, Msr= (5.21)
0.87 1
—0.20 —-0.49 1

We use the results of this fit to constrain the masses allowed in the Manohar-Wise
model by computing the vacuum polarizations as functions of the masses of the octet
and Higgs scalars. We obtain allowed mass ranges for the scalars by demanding that the
contribution of the new physics (and the difference between the floating Higgs mass and

its fiducial value, which we take from the SM best fits to be 96 GeV), A x? which satisfies

(C™1);(A0;) (AB;) < 7.0385 (12.592) (5.22)

for the 68% (95%) confidence regions defined by the cumulative distribution function for
the six parameter fit. Here C is the covariance matrix constructed from the correlation

coefficient matrix given in eq. (5.20) or (5.21)
_ 1 0% x*(0)
Cii=5 57724
200,004
and Af;, = A; — Azf " is the difference in 4; = S,T,U,V,W, X as a function of octet

0,6, (5.23)

masses and the best fit value, given in Table 1.

An example of the best-fit regions for the allowed octet masses is given in Figure
5.4, which compares the quality of the constraints that are obtained using the full six-
parameter (STUVWX) parametrization, as opposed to the three-parameter (STU) ex-

pression. The three panels plot the masses of the components of the octet that lie within
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Figure 5.4: Comparison of the three and six parameter fits for low masses. (The upper
two panels are not symmetric about M; = Mg and Mg = M, because we scan only
through positive values for the couplings, A;.) The three parameter fit is red (grey) and
the six parameter fit is blue (black). Contrary to naive expectations the six parameter fit
is more constraining on the model despite the extra parameters; the correlations between
the extra parameters (S, X and U,X and T,V) increases the constraints on the model.
The masses are in GeV. EWPD constrains the mass spectrum to be approximately

SU(2)c symmetric in either case where My ~ Mj.
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AX once marginalized over Y

Figure 5.5: A cartoon of the best-fit confidence interval for a strongly correlated pair of
variables, indicating how the best constraints can be missed once one of the variables is

marginalized.

the 68% confidence ellipsoid of the best-fit value as the various scalar couplings, \;, are
varied. The two panels of this plot show how these masses are correlated by the condition
that the predictions agree with the precision electroweak measurements, and the points
in the upper two panels all satisfy M; < Mg and M, < Mpg because we choose to scan
only through positive values of the couplings \;.

The strongest correlation is between M; and M, , for which agreement with EWPD
demands these two masses cannot be split by more than about 50 GeV. This is as might be
expected given that this difference must vanish in the limit that the potential is custodial
invariant. The breaking of SU(2)¢ generically leads to bad fits because custodial-breaking
quantities like the parameter p—1 = /T are measured to be very small: p = 1.000475005
[108].

The comparison in Figure 5.4 also shows that the six-parameter STUVWX fit agrees
with the three-parameter STU fit when all scalars are heavy, as might be expected. It

also shows that the six-parameter fit is the more constraining one when the octet masses
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are light. We understand that this happens because of the strong correlations amongst
the oblique parameters, which implies that the best-constrained parameter direction is
not aligned along any of the STUVWX axes, as shown in Figure 5.5. As a result the
constraint obtained by restricting to the axes V =W = X = 0 can be weaker than the
full result, significantly affecting the determined 68% confidence regions. For this reason

our remaining results quote only the results of the full six-parameter fit.

Constraints on Octet scalars

Figure 5.6 displays the 68% and 95% confidence regions of the model for couplings that
range through the values 0 < \; < 1, while Figure 5.7 does the same for couplings that run
through the larger range 0 < \; < 10, where ¢ = 1,2, 3. As noted above, agreement with
the EWPD selects an approximately SU(2)¢ symmetric mass spectrum, where Ay /& 23
and |My — M| < 50GeV, but this is easily understood. Consider the case where the
octets are heavy, v? /M2 < 1, which was examined in [27]. In this mass regime it is the
model that constrains the mass spectrum to be degenerate, My ~ Mg ~ M, since the
mass splittings scale as v?/Mg from Eq. (5.6). The contribution of the octets to the S

and T parameters,” is then [27]
A T vt
6T MZ 96 w2 M32s?, M2,

(A2 = (25)%), (5.24)

where sy = sin(fy). Large corrections to S and 7' are avoided if \; decreases and
preserves approximate SU(2)¢ as Mg decreases, therefore allowing smaller octet masses.

How natural are the small intra-octet splittings favoured by EWPD? If the mass
splitting is induced by the potential, while v >> M, for the octet masses to be allowed by
EWPD that selects for a mass degeneracy A M = M; — My, one would have to require

that the couplings the the octet-Higgs potential satisfy the scaling rule

AM
Ao = 22 <4 == /AL (5.25)

>We have checked that our results in the STUVWX formalism reduce to these results when v?/M2 <
1.
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Figure 5.6: Comparison of the 68% red (grey) and 95% blue (black) confidence regions
when 0 < \; < 1. The masses are in GeV, and M;, M, < Mg because we scan only
through positive values of the couplings ;. For low masses the 95% confidence region is
significantly expanded compared to the 68% region, this is due to the spread of available
masses being larger for low masses, as the mass splitting between the states scales as
~ v?/m,. We examine the naturalness of this mass spectrum in Section 2.2 and find that

it is not simply a fine tuned solution for an underlying new physics sector.
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Figure 5.7: Comparison of the 68% red (grey) and 95% blue (black) confidence regions
when \; < 10. Notice that the region selected for by EWPD for M; ~ M, that is

approximately SU(2)c symmetric is not enlarged.
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As EWPD requires A M ~ 50 GeV for the 95 % confidence region this is a mild hierarchy
of couplings given by Ay —2A3 < 0.8 /1. Conversely for the case mg > v, one requires
that the couplings the the octet-Higgs potential satisfy the scaling rule

(AM)mS

Ao — 2y < 8-
(%

, (5.26)

which is easily satisfied for small \; (which we see below are favoured by Landau pole
constraints).

The calculations presented in previous sections for the running of custodial-breaking
couplings can be used to frame a criteria as to whether the above coupling pattern is
natural. The scale dependence of the masses is used to estimate what the SU(2)¢ splitting
of the masses should be in the theory below the UV scale, A, without tuning. One
determines how high the scale A can be before the EWPD mass regions are excluded.
This quantifies the degree of fine tuning of the masses for this scenario.® Since the
electroweak hierarchy problem argues that the scale of new physics is likely not too
much larger than the TeV regime, we find that the favoured mass splittings are natural,
provided that the underlying theory approximately preserves MFV and SU(2)¢.

The above ranges of allowed splittings amongst scalar masses directly constrain the
three couplings Aj23 to be small. But small \;, for ¢ 2 4, are also favoured due to
considerations of the effect of these \; on the running of the Higgs self coupling [97].
The mild assumption that one not encounter a Landau pole while running the Higgs

self coupling up to 10 TeV, when one assumes A\ >, = 0 and m;, = 120 GeV, gives the

constraints [97]

A <13, A2+ A2 <22 (5.27)

6To determine the mass splitting, we technically need to diagonalize the S; field which mixes at
one loop with S®. As the non diagonal terms in the mass matrix are one loop, the effects of this
diagonalization on the mass eigenstate S} shifts the mass at two loop order. See the Appendix for a
determination of the mixing angle. Thus to one loop order one can just take the one loop corrections
to M and M4 of the last two sections, properly renormalized, to determine the mass splitting through
the counterterms.
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However, generically /\Z.z 4 7 0 and if the octets and the Higgs were part of a new
sector then the cut-off scale could be lower that 10TeV. For these reasons we only
take these constraints to inspire the \; < 1 limit for the parameter space searches in
Figure 5.6, but also examine parameter space where we relax this bound to \; < 10 in
Figure 5.7. We emphasize that direct production bounds on the octets that rely on their
fermionic decays essentially constrain the MF'V proportionality factors 7;, while EWPD is
complementary in that it constrains the parameters in the potential, \;, by constraining

the mass spectrum.

Implications for the inferred Higgs mass

Adding the new octet scalar to the SM also affects the best-fit value of the Higgs mass
that emerges from fits to EWPD. In particular, we now show that the presence of the
octet can remove the preference of the data for a light Higgs, even if the new octet scalar
is also heavy.

To determine this effect we calculate the one-loop Higgs contribution to the six oblique
parameters and jointly constrain the Higgs mass and the octet masses in the fit. For

example, S in this case becomes
S = Soct<MR, M[, Mi) + SHiggs(Mh) — SHiggs<Mh =96 GGV) (528)

where Soei(iggs) 1S the one-loop octet (Higgs) contribution to the S parameter. We neglect
the two-loop dependence on the Higgs mass in the fit and this leads to an underestimate
of the allowed parameter space, as we find the 68% (95%) confidence level values of fitting
the Higgs mass alone are given by 112 (160)GeV. This gives a conservative range when
comparing to the various allowed values that are strongly dependent on the priors used
in the PDG .

The effect of the octets changes the preferred Higgs mass significantly, and two mech-

anisms are at work depending on the size of the octet mass. If the octet mass M is
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Figure 5.8: The effect of octets on the fitted value of the Higgs mass.The plots of M),
versus the other octet states are substantially the same. The green line is the 68%
confidence bound where the Higgs alone is varied at one loop. The yellow line is the 95%
confidence bound where the Higgs alone is varied at one loop, and the black line is the
direct production bound on the Higgs mass at 95% confidence. The red (grey) region is
the 68% confidence region, while the blue (black) region is the (95%) confidence region
for a joint fit to the octets and the Higgs. Notice the increase in vertical scale for the
diagrams as the upper limit of the \; is increased through 1 (upper left), 3 (upper right),
6 (lower left) and 10 (lower right). The mechanism that is allowing the Higgs mass to
increase and still be in agreement with EWPD is the postitive AT contribution from the

octets that is discussed in Section 3.1.2.
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small, it can allow the Higgs mass to increase by effectively replacing it in the oblique
loops, thereby giving agreement with EWPD. This is illustrated in the upper-left plot of
Figure 5.8, which shows how a large Higgs mass correlates with small M.

The other panels of Figure 5.8 reveal another mechanism at work, however 7. In these
one sees that as the upper limit on \; is increased, the upper limit on the Higgs mass
confidence regions becomes significantly relaxed. This is due to a cancellation between
the effects of the heavy octet and the Higgs in their contributions to oblique parameters,
that is made possible by a positive AT contribution that the octets give to 2. For the

three-parameter fit, the x? test is of the form
(C1).5(A0) (AG;) = 596 (AS)? — 1159 (AS) (AT) + 751 (AT)? (5.29)

where we neglect contributions that are not logarithmically sensitive to the Higgs mass
at one loop, since this is all that is relevant to the argument. For the three-parameter fit,
the 68% confidence region is defined by (C™1); ;(Af;) (Af;) < 3.536 and is easily satisfied
for light Higgs masses. As the Higgs mass grows, its contribution to (AS) and (AT)

becomes dominated by the logarithmic dependence

a M? 3 M?
AS) ~ —1 el d (AT)~—-——1 il .

where My is the reference value of the Higgs mass, which for our fit is 96 GeV. The
crucial point is that (AT) is negative for My > My and for the SM this quickly excludes
large Higgs masses because of the sign flip in the (AS) (AT) term in 2.

Including the contribution of the octets in the large mass regime (v?/M2 < 1) modifies

these expressions to

a M2 )\2?]2
(AS) ~ —log H 4 ’
127 M?, 6w M2
Ja M? v
AT >~ __1 AH 2 2 2 31
(81) 167 % (Mlg]> +967T2M§S%VM3V(>\2 (223)%), (5.31)

"Note that we expect a careful study of the non oblique Higgs and octet mass dependence of Ry, will
further constrain this parameter space with all scalars heavy but not remove it.
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where the factor A2 — (2 A\3)? comes from a factor of (M3 — M2)(M? — M?2) in the octet
contribution, and is a measure of the total mass splitting in the doublet. For A\; > 0,
we know M2 > M2 and so the octets give a positive contribution to (AT) so long as
M? > M?2. The octets (or any other doublet with gauge couplings and small mass
splittings) then allow (AT) in Eqn. 5.31 to be positive, and so allow a large degree of
cancellation between the (AS)?, (AT)? and (AS)(AT) terms in Eqn. 5.29. The size of the
positive (AT') contribution scales with the upper limit on \;, explaining the significant
relaxation of the Higgs mass bound in Figure 5.8. We find that the Higgs and the octet
scalars could both have masses ~ 1 TeV and still lie within the 95% contour mass region
allowed by EWPD. We also note that we restrict our searches to positive \; (which must
be so for at least some of the couplings to ensure the absence of runaway directions in
the potential), however clearly negative Ay could also act to relax the EWPD bound on

the Higgs mass by giving a negative contribution to (AS).

We emphasize the generic nature of the mechanism, wherein the contributions of TeV
scale new physics can mask the contributions of a heavy Higgs to electroweak precision
observables. It applies in particular when EW symmetry breaking leads to a mass split-
ting of an extra SU(2) doublet, since the extra doublet can give a positive contribution
to (AT) proportional to the mass splittings of the doublet components. This has been
recognized as a simple way to raise the EWPD bound on the Higgs mass by satisfying
the positive (AT') criteria of [104]. Expressed as an effect on the p parameter, it also
has a long history going back to observations by Veltman [103], being rediscovered for
two-Higgs-doublet models in [105], and used for the construction of the Inert Two Higgs
doublet (IDM) model [106].® In this latter model, the Higgs mass is raised, addressing the
"LEP paradox”, and the naturalness of the SM Higgs sector is also improved by raising
the cutoff scale of the modified SM. In the IDM model a parity symmetry is imposed to
avoid FCNC'’s.

8For a similar construction see [107]
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We note that the example of the general scalar sector consistent with flavour con-
straints, the Manohar-Wise model examined in this chapter, naturally has a number of
the benefits of models like the IDM while avoiding the imposition of a parity symmetry.
Allowing the second doublet to couple to quarks improves its potential for detection,
without introducing large FCNCs due to MFV. It is interesting that the effect of raising
the Higgs mass has emerged naturally from the most general MFV scalar sector and was
not a model building motivation of the MW model. Variants of the MW model, can ad-
dress the naturalness of the scalar sector through raising the cut off scale and further the
colour charge of the octet provided some rational for the second doublet not obtaining
a vev, through the avoidance of the spontaneous breaking of colour. Also, for the entire
parameter range, octets skew the distribution of the allowed Higgs masses so that the
direct production bound on the Higgs mass and the EWPD fit of the Higgs mass can be

in better agreement.

Implications for the tension between leptonic and hadronic asymmetries

Although the SM produces a good quality global fit to EWPD, there exists a mild tension
in the data between the leptonic and hadronic asymmetries. In particular A%, deviates
from the SM predicition by 2.5¢ and favours a heavy Higgs ~ 400GeV, while A, differs
from the SM by ~ 20 and favours a Higgs mass far below the direct production bound.
Here we address the question of whether the oblique contributions of octet scalars can
change this tension.

To this end we calculate x? for the hadronic asymmetries A%, AS5, 4, A., and for
the leptonic asymmetries using A, and the A, values given in Table 5.A. The results
are shown in Figure 5.9, where the solid curves plot x? with the SM Higgs alone and the
dashed curves include the octets for a particular mass spectrum allowed by EWPD. The
two panels compare results for relatively light and relatively heavy octet scalars.

The figure shows that the preferred value of the Higgs mass is strongly dependent
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Figure 5.9: The x? of the leptonic asymmetries (red) and hadronic asymmetries (blue)
as a function of Higgs mass in GeV. The solid curves show the contribution of the
Higgs alone and the dashed curves are for the Higgs and the octets. The figure on

the left is for octet masses (M, Mg, M;) = (300,400,330)GeV and on the right is for
(M, Mg, My) = (900, 1000, 940)GeV.

on the mass splitting of the octets. As discussed in Section 5.3.1, the octets, unlike the
Higgs, give a positive contribution to AT, which depends on the mass splitting in the
doublet. This increases the allowed value of the Higgs mass. The octets can change the
pull of A, for example, to favour large Higgs masses, however they also do the same to
Ab.5. As can be seen from Figure 5.9, although the leptonic and hadronic asymmetries
can now both prefer a Higgs masses above the direct production bound of 114.4 GeV,

they are not brought in to closer agreement in their predictions for the value of M.

We see from this that the octet oblique contributions do not in themselves remove the
tension between the leptonic and hadronic asymmetries. However, because the octets are
coloured it is possible that their non-oblique corrections to A%, might be able to bring
together the leptonic and hadonic observables. We leave this observation to a more

complete calculation, which lies beyond the scope of this chapter.
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Figure 5.10: The tree level production mechanism for ST+ S~ and S% + S? at LEPII.

5.3.2 Direct-production constraints from LEP

The octets would have been directly produced at LEP2 if they were light enough through
the processes in Figure 5.10.

The production cross sections are given by

Osrs- = %‘ (47;2‘2) A3/ (1, MT‘QF MTi) (5.32)
X {1 + 2v, v.Re < — %% + iMZFZ)_l —Hﬁ(vﬁ +a?)|1 — M—% + Mzl _2} ’
5 s 5 s
g5 = %‘ (47;?2) A3/2 (1, MT% Mé) R +ad?)[1 — Mz iMjFZ _2, (5.33)
where we have defined d4 = 8, a. = —(4dswew) ™
Mzy,z) = 22+ 9> + 2% — 22y — 202 — 2y2, (5.34)
vy = H, vy = 28;0W7 Ve = H (5.35)

The highest COM energy at which LEP2 operated was /s = 209 GeV, where approxi-
mately / Ldt ~ 0.1 fb~! of integrated luminosity was collected. We give a rough estimate
of the sensitivity of LEP2 to light octets by requiring less than 10 total events for a given
set of masses, o X / Ldt < 10. Note that these limits are essentially kinematic limits for
production, and more accurate exclusions in the mass parameter space are possible, but
these will be dependent on the detailed decays of the octets and SM backgrounds and be

weaker constraints. The LEP2 production bounds are shown in Figure 5.11.
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Figure 5.11: Comparison of the 68% (red or light) and 95% (blue or dark) confidence

regions when )\; < 1. The LEP2 production bound for ten events is the black line.
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5.3.3 Tevatron constraints
Dijet constraints on the production cross section.

Heavy octet production via gluon fusion has been examined in some detail in the literature
see [27, 109, 96]. We use the results of [27, 109, 96] to determine the production cross
sections for light octets and consider the relevant bounds on the model in this region from
the Tevatron. The single production cross section we use, [109], neglects for simplicity
the scalar mass splitting and assumes that n;, Ay and A5 are real. However, note that this
is partially justified for light masses as EWPD selects for an approximately degenerate
mass spectrum with an approximate SU(2)¢ symmetry in the underlying potential, giving
A1+ = A and one need only assume one of the couplings are real. ° For the sake of
simplicity we will also neglect the effects of mixing of the Sy, Sg states that can occur if
the effective yukawa couplings of the octet carries a phase as discussed in the Appendix.
The pair production cross section for the charged scalars is twice that for the real scalars
[27] and so is not shown.

The tree level pair production dominates the loop suppressed single production in the
low mass region for small Ay 5. However as A4 5 increase the single production contribution
takes over, which occurs at Ay 5 ~ 2 for the neutral scalar, Sg, with a mass of 200 GeV.

A direct search strategy to find octets is to look for narrow resonance structures above
the QCD background for states that decay into dijets. CDF has recently performed such
a search [114] with 1.13 fb~! of data that could discover octet bound states [110] or
single S; that decay to dijets above the QCD background. The cross sections for the
production of these states at the Tevatron, leading to dijet resonance structures, are
orders of magnitude below the QCD background in the regions of parameter space we
consider, this is shown in Fig. 5.12

The low mass region is not directly ruled out, although a dedicated study to refine the

9Note that setting A4 and M5 to real values removes the scalar loop contributions to the single
production of S7, which can become large as the values of A4 5 increases.
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Figure 5.12: Shown is the production cross section of 0(g g — Sg) red short dashed line,
o(gg — Si) blue long dashed line, and the o(g g — Sk Sr) given by the solid green line.
The results are for Tevatron with /s = 1.96 TeV, a4 (Mz) = 0.1217, m; = 173.1GeV,
My = 91.1876 GeV and the NLO CTEQb pdfs. The values of (A4, A5) chosen are (0,0)
upper left, (1,1) upper right and (10, 10) for the bottom graph. In all three graphs we
have set ny = 0.2. The dependence on 7y is weak and as ny decreases the production
cross sections decrease. Also shown is a 95% confidence limit band (the shaded region)
derived from [114] that places an upper bound on new physics that decays to dijets. The
region is defined by the upper limit on o(X)B(X — jj)* A(Jy| < 1) where the difference
between the W’ and RS graviton G* 95% confidence upper bounds are taken and the
acceptance fraction requires the leading jets to have rapidity magnitude |y| < 1. The
exclusion region depends weakly on the shape of the resonance, so a dedicated study is
required to exactly bound the octet decay to dijets, however, the octet signal is orders
of magnitude below the exclusion regions obtained from Tevatron before branching and
acceptance ratios further reduce the signal. A resummation of large threshold logarithms
for single S production was performed in [96]. The K factors for single S production was
found to be ~ 2 for 500 GeV a octet mass and this K factor falls as the mass decreases.

This indicates that threshold enhancements will not raise the cross section enough to



CHAPTER 5. LIGHT OCTET SCALARS, A HEAVY HiGGS AND MINIMAL FLAVOUR VIOLATION101

lower mass bound is warranted due to the shape dependence of the exclusion bound.!°

Gauge boson decays and Lepton Signatures

The decays of the octets involving gauge bosons

SRJ — WiSi SRJ—)ZS[’R

St = W*Sp;, ST—Z5* (5.36)

were studied in some detail in [27, 97]. These decays are of phenomenological interest
as the gauge bosons can be a source of leptons to trigger on at LHC and Tevatron. The
EWPD constraints |[My — M| < 50GeV and for most of the allowed parameter space
|M; — M;| < My, Mgz, as the mass splitting of the doublets scale as v?/M; for large
masses. This causes the decays to proceed through an offshell gauge boson for most
of the allowed parameter space. In this case an effective local operator can be used to
approximate the decays.

For example consider Sg — S~ ¢* v through an off shell W. The effective Lagrangian
at leading order is given by the product of scalar octet and left handed lepton currents

)
—107

Eeff = \/5—]\4%/ (SR 8MS+) (DL ’}/M EL) (537)

Exact formula for three body decays such as this exist in the literature [112]. For the
masses allowed by EWPD!! generally the energy release is A = Mp—M. < Mg, M_, Myy.
The resulting decay width at leading order in A/Mp is

a? A®°

Iy=
“T 60w sk, M

(5.38)

100ther possible indirect search strategies for the effects of octet scalars include determining the effect
of the octets on the A?b. In a similar manner to axigluons [116], these new exotic coloured states
could contribute to Ascb as they are coloured, couple strongly to tops, and are not a vectorlike state.
Interestingly, A%, has recently been measured [117, 118] to be A%y = 0.19 & 0.065(stat) £ 0.024(syst)
which is a deviation larger than 2 sigma from its SM value [116] of A% 5 = 0.05 + 0.015.

' This assumes that the initial state that is eventually triggered on is not highly boosted. This is
generally the case due to the kinematic reach of the Tevatron and LHC.
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When My > 2m; the decays to leptons through an offshell W, Z are suppressed decay
channels. The dominant decay widths are to tb, t unless ny < np. The ratio of I'; to

this decay, in the limit Mz > 2my, is given by

r . A\
¢ 0.005GeV ( > (5.30)

Fsg—nsf_ Mp |nu|* \ 50 GeV

for a = 1/128, sy = 0.48 and m; = 173 GeV.
When Mpg < 2m; the offshell W, Z will be dominant decay channels for light masses
for much of the parameter space. Taking m;, = 4.23 GeV, and the other factors as before,

the ratio of the offshell decay to the S% — bb decay is given by

I, N 4o/ ( A’ ? )
Tso s 15sylnpl> \myymp Mg )’
8 GeV AN
~ © : (5.40)
MR |77D’2 50 GeV

If the dominant fermionic decays are to charm quarks due to a mild hierarchy of

nu > (mp/me) Np, then taking m. = 1.3 GeV gives the branching ratio

T, 82Ge\/( A )5

~ 5.41
Lgo see  Mplnu? \50GeV (541)

Thus when quark decays are suppressed through Mz < 2m,; the dominant decay
mode will be through an offshell W, Z for much of the parameter space of 1y, np allowed
by other constraints, notably the constraints due to R,. This sets a lower bound on the
decay width of the heavier octet species given parametrically by Eqn. 5.38. This sets an
upper bound on the lifetime of these components of the octet doublet of 4.5/A% ps which
yields a upper bound on the decay length of the form 1073/A® m.'? Thus the heavier
octet species will decay promptly inside the detector and not leave a long lived charged

track signature.

12Here we have converted units assuming that A is given in GeV as a pure number, ie for A = 50 GeV
we have a upper bound on the lifetime of 1.2 x 1072 as.
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As dominant decay modes of the heavy components of the octet doublet (when
M; < 2m;) can be three body decays, the final state signature would be excess monojet
or dijet (depending on the boost of the final state octet) events in association with a
lepton and missing energy, or enhancements of dilepton signatures with a monojet or
dijet. Dedicated studies of these signatures are warranted. The lifetime of the lightest

component of the octet doublet is dictated by its decay to fermion pairs.

Constraints from ¢t decays.

For neutral octet masses above 2 my, decays into top quark pairs can be dominant. These
were previously considered in [109]. The observed limits on excess ox - B(X — tt) at
Tevatron with 0.9 fb~! of data [115] do not rule out octets in the intermediate mass region
350 —1000 GeV. The production cross section for single gg — Sk production can become
large enough for the bound on ¢ to be relevant, however this requires Ay ~ A5 ~ 75 which
is well into a nonperturbative region of the potential making any conclusion suspect. We

illustrate these limits in Fig. 5.13

Constraints from bbbb decays.

The dominant decays for light masses will be to quarks S, — tb, Sgr — bb below the tt
threshold for ny p ~ O(1). In this regime [97] places a lower bound on the scalar mass of
approximately 200 GeV from the CDF search for a scalar particle decaying dominantly
to bb when produced in association with b quarks [113] This bound is avoided for almost
all of the available parameter space for light octet masses. St r can decay preferentially

to charms, which corresponds to a mild hierarchy of couplings

2 2
1
’"DL Te v = (5.42)
nu| my 10

when neglecting O(mj ./Mg) terms. Neutral scalar masses below 200GeV are allowed

for np < 0.1, given an upper limit of ny ~ 0.3 from [109] for masses in this range. The
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Figure 5.13: Shown is the production cross section of (g g — Sg) red short dashed line,
o(gg — Si) blue long dashed line, and the o(g g — Sg Sg) given by the solid green line.
The results are for Tevatron with /s = 1.96 TeV, a,(Mz) = 0.1217, m; = 173.1 GeV,
Mz = 91.1876 GeV and the NLO CTEQ5H pdfs are used. The DO 95% confidence limit
on o(X)I'(X — tt) is the upper solid black line [115]. The values of (A4, A5) are (10, 10)
for the left hand figure and (75, 75) for the right hand figure. ny = 0.2 for both figures.
For perturbative \; < 10, current Tevatron production bounds on resonances in ¢t do

not rule out octets of mass 350 — 1000 GeV.
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three body decays discussed in Section 5.3.3 are actually dominant over quark decays for
much of the parameter space allowed by EWPD for light octet masses, invalidating the

assumptions of [97] for most of the remaining parameter space.

Constraints from +~y decays.

A promising signature for octets at hadron colliders is the annihilation of a pair of charged
octets to photons, gg — STS~ — v+. We can use the recent results of DO [120, 119]
that utilize 4.2 fb! of date to place 95% confidence upper limits on o(h) x BR(h — v7)
compared to the SM Higgs signal to directly constrain octet annihilation into v~. We
must consider annihilation decays of octet bound states, octetonia, studied in [110], as
the contribution from virtual octets will be a non-resonant signal and the Tevatron Higgs
search would not apply. Due to the fact that the results are reported only up to Higgs
masses of 150 GeV we are only able to exclude octets up to 75GeV, which is already
disfavoured by LEP2. If the experimental study of h — v+ is extended to higher Higgs
masses at the Tevatron or LHC, this signal is likely to be a significant constraint on the
model.

We utilize the fact that this signature has been studied for octetonia in [110] to
demonstrate the potential of this signal to raise the mass limit on octets. The ratio we
are interested in is that of the octetonia o(gg — OT) x BR(O™ — v+) to the SM rate
for (g9 — h) x BR(h — ). We take [110]

97 a?[y(0)]”

o(gg — O") x BR(O'T = vyv) ~ Mo &

5(1 —mp/3) (5.43)

where § is the partonic center of mass energy squared and |¢(0)| is the wavefunction at
the origin. We have used the approximation BR(O™ — v~) ~ a?/a?(2Mg). For the

Higgs, we take the approximation

Gp MjaZ (mf -3 2 /4
0(99 = h) Xx BR(h = vv) ~ — = —= ] 107°0(1 — Mj/3) (5.44)
V2 8mé \ M} "
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Neglecting order one factors the ratio of these two signals scales as

R%lOGa—zW(O)P( Mi ) (5.45)

5 4
a2 s Mgsmi Gp

This ratio must be less than ~ 35 [120, 119] for M;, = (100, 150) GeV or My = (50, 75) GeV.
Unless the wavefunction at the origin was much smaller than its approximate expected
value given by [110]

_ NZod(msv) Mg

2
4(0) TeU R,

(5.46)

this bound will likely be violated for this entire mass range. Extending this analysis
to higher Higgs masses is expected to raise the lower mass bound on octet states for
this reason. For a recent comprehensive study of octetonia signals in gamma gamma for

octets from ~ 200 — 500 GeV see [110].

5.3.4 Flavour constraints reexamined for light scalars

Flavour constaints on (8,2);/, scalars were examined in some detail in linear MFV'?
in [27] when the masses of the octet scalars were considered to be ~ TeV. However,
although MF'V suppresses flavour changing effects and ensures the vanishing of tree level
flavour changing neutral currents in linear MFV, when one goes beyond leading order in
the Yukawa couplings problematic flavour changing neutral currents are possible [109].
The correct way to examine such flavour issues is to utilize a nonlinear representation of
MFV! such as formulated in [81, 82, 83] which is beyond the scope of this work.

We have reexamined the flavour constraints that were examined in [27] in linear
MFV for the light octet masses allowed by EWPD and not ruled out by direct pro-
duction bounds. Flavour constraints are largely irrelevant for |ny| once the far more
restrictive constraint from R, is known. To quantitatively demonstrate this consider

K — K° mixing for relatively light masses M, = 300 (400)GeV. We use the results

13Where one only utilizes a linear yukawa coupling for the scalars.
14\We thanks J. Zupan for discussions on this point.
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of [27] for the contribution of the octets to the wilson coefficient (Cs) of the operator
(Vi Vis)(dr~” sp)(dr v sp) and use the SM expression of [121] for the contribution of
this operator to K° — K9 mixing and hence |ex|. One finds that the contribution of the

octets to |ex| is given by
Alex| = |Ce B Im[Vig Vis] Re[Vi5 Vis] Cs| (5.47)
Using the measured values my = 497.6 MeV, fx = (156.1 = 0.8)MeV, (AMk)esp =

3.483 4 0.006) x 10~2MeV one obtains

G2 F2 myg M2
O, = ZETKIMK W _ 365 % 10%, (5.48)
6\/§7T2 AMK

Further, Lattice QCD [122] gives the input Bg(2GeV) = 0.54 £ 0.05, and using the
central values of fitted values for the CKM parameters A, 7, p, A from the PDG we find

that the shift in |ex| is given by
Aleg| = 1.5(1.6) x 10~2(|ny|* + 6 (3)|nu|*) (5.49)

for My = 300 (400)GeV. Considering |ex|erp = (2.229 + 0.010) x 1072 while the same
values employed above gives the central value |€f |iheory = 1.70 X 1072 one can set an
upper limit on |ny| from K° — K° mixing by conservatively assigning one tenth of the
discrepency between theory and experiment to the effect of octets. This gives an upper
bound on |ny| of 48 (56) for My = 300 (400)GeV. The weak mass dependence of the
bound allows one to neglect Kaon mixing constraints for low masses, compared to Ry
constraints on |ny|, for light masses My < 1TeV, in linear MFV.

The B — X~y decay rate constrains the combination |1y np|, in the limit ny is small,
and was calculated in [27] . Using their result and the upper bound on |ny| from R,, we
determine the strongest upper bound on |np| for light masses by requiring that the octet
contribution to B — X, 7y is less than the ~ 10% SM theoretical and experimental errors.

For My = (75,100,200) and the corresponding maximum |ny| = (0.26,0.27,0.33), one
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obtains an upper bound on |np| of (0.36,0.39,0.50). As |ny| decreases, the upper bound
on |npl is relaxed.
Finally, the electric dipole moment of the neutron constrains the imaginary part of

the 7; and using [27] we find for light masses that Im[n}; n},] < 1/10 for mg = 100 GeV.

5.4 Conclusions

We have considered the phenomenological constraints of the general scalar sector that
contains one (1, 2); /o Higgs doublet and a one (8, 2);/, colour octet scalar doublet. To this
end we have performed a modern fit in the STU and STUVWX approaches to EWPD and
used these results to determine the allowed masses for light octets. We have demonstrated
that, somewhat surprisingly, the six parameter fit formalism is more restrictive for light
states due to strong correlations amongst the fit observables. We find that the octet
doublet masses can be in the 100 GeV range. Such light octets can significantly effect
the discovery strategies for a light Higgs by modifying the Higgs production mechanism
through a one loop contribution to gg — h that is not well approximated by a local
operator. Octets will also induce a further effective coupling at one loop between h
and vy, ZZ and WTW~ and would significantly effect Higgs discovery at LHC [123].
Despite this, we have shown that current production bounds on light octets at LEP2 and
Tevatron do not rule out the low mass region and further studies for narrow resonances
in the dijet invariant mass distribution and A — 7 signal are required. Currently, octets
are another example of physics beyond the SM that can significantly effect the properties
of the Higgs and yet are otherwise relatively unconstrained experimentally.'® For light
octets, one possible alternate search strategy is to utilize the Higgs pr distribution [126]
to find indirect evidence for onshell octet scalars that have eluded direct detection.

We have also performed a joint fit for the Higgs and the octets by varying the Higgs

15For further studies of the modification of the properties of the Higgs through otherwise experimen-
tally elusive new physics see [124, 125].
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mass oblique corrections at one loop while allowing the masses of the octets to vary.
Doing so we have demonstrated a mechanism that is quite general in its effect of giving
a positive contribution to the 1" parameter when an extra doublet is present and fit to
in EWPD. This allows the Higgs and octet to be simultaneously heavy and the Higgs
can be as massive as its unitarity bound. For the parameter space where the Higgs mass
is raised, h decaying to pairs of octets is kinematically suppressed. The search strategy
for the heavy Higgs remains substantially the same with difficulties in constructing a
mass peak due to the width of the Higgs resonance and large irreducible backgrounds
to SM processes producing W+ W~ decays such as from ¢ ¢, and large W j backgrounds.
Likewise very heavy octets are also very broad resonances for large masses and are difficult
to discover at hadron colliders with decays to ¢t dominating, and large SM backgrounds.
Further dedicated studies of LHC phenomenology of this scenario are warranted, as are
further dedicated studies to attempt to raise the lower mass bounds on octet scalar

doublets.

5. A EWPD fit

The data and theory predictions used in constructing the fit are given in Table 2.

The numbers we use for the theory predictions are based on the 2008 PDG results of

a global fit to the EWPD. The input values used in the theory predictions are

My = 91.1876 4 0.0021GeV, My = 96729GeV,
m; = 173.1+ 1.4GeV, as(My) = 0.1217 £ 0.0017GeV,  (5.50)

a(Mz)™' = 127.909 «+ 0.0019, Ao ~0.02799 + 0.00014.
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Observable

Data Used

Theory Prediction

My [GeV]
'y [GeV]
Thaa [GeV]
T [MeV
Ty [MeV]
Ohaa [0D]

R,

r
Afp
b
AFB
c
AFB

57 (Afep)

Ay
Ac
91
9

ve

9v

ga
Qu(Cs)
Qu(Tl)

Ty [GeV]

80.428 £ 0.039
80.376 £ 0.033
91.1876 £ 0.0021
2.4952 £ 0.0023
1.7444 £ 0.0020
499.0 + 1.5
83.984 £ 0.086
41.541 £ 0.037
20.804 £ 0.050
20.785 £ 0.033
20.764 £+ 0.045
0.21629 £ 0.00066
0.1721 £ 0.0030
0.0145 £ 0.0025
0.0169 + 0.0013
0.0188 £ 0.0017
0.0992 + 0.0016
0.0707 £ 0.0035
0.2316 + 0.0018
0.15138 £ 0.00216
0.1544 £ 0.0060
0.1498 £ 0.0049
0.142 £ 0.015
0.136 & 0.015
0.1439 £ 0.0043
0.923 & 0.020
0.670 & 0.027
0.3010 =+ 0.0015
0.0308 + 0.0011
-0.040 £ 0.015
-0.507 £ 0.014
-73.16 £ 0.35
-116.4 £+ 3.6
2.141 £ 0.041

80.380 &+ 0.015
80.380 = 0.015
91.1874 £ 0.0021
2.4954 + 0.0009
1.7419 £ 0.0009
501.68 & 0.07
84.002 = 0.016
41.483 £ 0.008
20.736 £ 0.010
20.736 £ 0.010
20.736 £ 0.010
0.21578 £ 0.00005
0.17224 £ 0.00003
0.01627 £ 0.00023
0.01627 £ 0.00023
0.01627 £ 0.00023
0.1033 + 0.0007
0.0738 £ 0.0006
0.2315 4 0.0001
0.1473 £ 0.0010
0.1473 £ 0.0010
0.1473 £ 0.0010
0.1473 £ 0.0010
0.1473 £ 0.0010
0.1473 £ 0.0010
0.9347 + 0.0001
0.6679 £ 0.0004
0.3039 £ 0.0002
0.03000 = 0.00003
-0.0397 £ 0.0003
-0.5064 + 0.0001
-73.16 £ 0.03
-116.8 £ 0.04
2.0902 + 0.0009

Table 5.2: Observables used in fit to oblique parameters.
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The definitions of the oblique corrections we use are

asS 5H22(M%) — 5nzz(0) (CI2/V — 8%/[/) , ,
= —~ I — 811
452, ¢k, { M2 Sw Cw 0T, (0) = OTL, ,(0),
o — Oww(0)  Ollzz(0)
MW MZ
ﬂ _ [5HWW(M%/)—5HWW(O):|_CQ {5HZZ(M%)—5HZZ(O)}
Asiy M, v M3
— sy 01, (0) — 2 sy e 6117, (0), (5.51)
2\ _
av = am,y) - | T RO
Z
My (M2,) — 811
aW = My (M) — {5 ww ( v% 0 ww(O)]’
w
2
aX = —swew {mzj\}—%—5ﬂ%7(0)}
Z

The self energies to determine these results are given by the following in terms of PV

functions that match the definitions in [111] and are

d" q 1
2 4-n 2
167 p / T2n) Eomitic = Ag(m?) (5.52)

d"q 1
167-(—2 4—n/ — B 2’m2’m2
' 1@2m)n (¢ —mi tiel[(g—p)* —mi+ie] o(p”, ma, m2)

d" q q
].67T2 4—n/ ; - s . — B 2,m2,7’l’l2
g iCn) [ —mitidllq—p?-—mi+id " 1(p7, mi, m3)

_ d" q 0. q
16 2 4 n/ u v — VB 2’ 2’ 2 7
™ W 2(2 71')” [q2 — m% "‘7/6] [(q _p)Q _ m% + i E] pup 21(]3 my m2)

+gul/ 322<p2; m%? mg)

Our results are

2
g
5HWW(]92) = 2—7;2 [322(1?27 M127 Mi) + ng(p2, Mé, Mi)

1 1 1
— A0(M3) = JA(MR) = 7 Ao(M3)] (5.53)
2 1
oMzz(p°) = 5 9212 [(1—28%1/)2 (Bzz(Pz,Mi,Mi)——Ao(Mi))
T Cy 2
1 1
+ Buo(p®, M. M) — 1 Ao(MR) = A (M})| (5.54)
2 2¢? 2 g2 2 1 2
oML () = 5 | Bal®, M2, M2) = SA(MD)| (5.55)
egi(1 — 2s? 1
) = DU 2 2 a2 a2y agar2)] (5.50
w



CHAPTER 5. LIGHT OCTET SCALARS, A HEAVY H1GGS AND MINIMAL FLAVOUR VIOLATION112

For p? = 0 these expressions become

2 1 1
Sy (0) = % (5 F(M., Mp) + 5 f(M+,MI)) (5.57)
0T,4(0) = o1 Lt nag, ) (5.58)
VA - 877'2(3%/[/ 9 R, I .
where
2m?m? m?
f(ma,ma) = mi +m3 — m log m—é (5.59)

The derivatives of the vacuum polarizations are

2

(&

oIT, (0) = —@BO(O,Mi,Mz) (5.60)
egr(1 — 2s%,)

oIl ,(0) = —TCWWBo(O,Mi,Mi) (5.61)

5.B Renormalization

We use dim reg in d = 4 — 2 ¢ dimensions. We introduce wavefunction renormalization

and mass renormalization constants for the octet fields as usual

M; = ——. (5.62)

However, in choosing renormalization conditions, we note that to define the masses and
the mass splittings one cannot use MS, as in MS the mass is defined to have only the
divergence subtracted from the bare mass. The resulting renormalized mass in MS is
not shifted by the finite components of the loop corrections that we have determined.
The renormalization prescription we use is the zero-momentum subtraction scheme [127],
where we require that the self energy and its derivative with respect to external momen-
tum, p?, vanishes at p> — 0. Note that the second derivative term in the Taylor expansion
of the self energy does not contribute until two loop order and therefore can be neglected
here. The counter terms in the lagrangian are given by

Z [(Z; = 1)(8" S; 0,5:) — (Zi Zngy — 1)M} S?] . (5.63)

7
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With this prescription the wavefunction renormalization and the mass counterterm are

of the form

a dX;(p?)
Z; = P d—p2 |20
b
Zui = 1+ -+ 50" o +(1 = Z) (5.64)

where a, b are the coefficients of the p?, M? dependent one loop divergences respectively

and the ¥; are the finite terms of the one loop self energy.

Using this scheme and the divergence properties of the PV functions, the wavefunction

renormalization factors are determined to be

2 |2 m? 20 |2 m_ﬁ]
g o YelwlPryol g [ 1 yilnol log[“2] * ool log[lﬂ
L= 6472 ¢ 3272e 2¢c? + 3272
w
2 2 2 2 2 2 2
yi Im[nu]* + y; Im[np] g1 2 2 bo(0, M7, M)
bo(0, M, 2 TR
* 48 72 T gqz [P0 Mypyma) + =005
2,12 m? 2. |2 "ﬁ]
P 4 7 ek 4 )21 O S PR +yt|”U| log [ ] + i o 1og |
f 6472 € 3272 e 262, 3272
2 2 2 2 2 2 2
yi Relnu]® + y, Re[np]® | g1 2 g2y, bo(0, Mz, M7)
bo(0, M2, M2) 4 22210
* 48 2 T qgqz [P0 My Mo) + 22,
2 2 2 2 2 2 \2
Y Inul® + i o 91 (1—2siy) 2
Zy = 1- 14— 22W 49
* 6inZc @ 32nic 22, w

2 1 — 252,)2b,(0, M2, M?
b g 0.0 ) 4 (0. M )+ ROREEE) i (1o |
W

(ilnpl* + yilnul?)
- 2 39 ﬂ_gt bO(Oamg,mf)

2]

(5.65)
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Using these results the mass renormalization factors are determined to be

v? 4 2 2 1 my
Zur = (2= 20) = g5t [ (el + 31l (5~ 10w | ) (5.66)
1 mj v? (v Inul?* + vy o l?)
4 2 2 b i b
R 31 — —1 —
2 2 2

g1 2 2 (3 Mz — MR)

— | 3M: — M -

+647r2MI26 { W + 2¢?

2 2 2
g1 2 2 (M7 — 2 Mp) bo[0, Mz, Mp]

M2 M2 M2 M2
+M3(1—log|—| )+ Ma (1—21log |—2| |+ 2 (1—21log |—Z
p? 2 2y p?
M3 M3
o (1= 5]
26W 12

Zvur = Zur |M2—>M2 Zr—Zpr,Re<+Im
Zyus = (2—24)— % L + bo[0, my, my| — log {ZL—E} + 1]
% L + bo[0, my, my] — log [ZLZ} + 1]
—% {| npl? (% — log [7}2] + 1+ b0, mb,mt])

1 m? 1
+|nu|? (— — log L } + 14 bo[0, mb>mt]) — (mpnu + npng) (E +2b0[0>mb7mt]>}

G [6M - MEME (22 EM-MD)
3272e€

402 ic, M2 w

2
g
+647r21M3E [(Mz — 2 M7) bo[0, My, My] + (Mg, — 2 M) bo[0, My, Mp]

1-2 M2
+(M7 -2 Mi)(C—SW)bO[O My, M.] + M7 (1 —log {M—;}>
%

M2 M}
+M§<1—1og[ D+2MW (1—21og[—gVD
I I

M2 (1 — 252,)? M2 W —8st +1 M
I 7 ( _ Siy) <1_210g {_QZ}>_|_M§8SW ESW+ (1—log [—;})] (5.67)
p ¢ u

Cw w

The remaining renormalization is for the mixing operator Si.S; which is renormal-
ized as usual by introducing a further counter term to subtract the only divergences of

composite operators as in MS

VZi \/Z_; (v* S Sr) (5.68)
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where

Zrn—1 Zi—1_ y¢ Re[nu| Im[ny] — y; Re[np] Im[np)

Zr =1
Rt =14 2 3272 ¢

(5.69)

5.C Mixing of S and 5;

For completeness in examining one loop effects we determine the mixing between Si and

S7. The mass matrix is given by

M} +6(T{S"5"})e+ o(T{S" S'})y S(T{ST Sy
S(T{S" Sy M3 + 6(T{S"St}) e + 6(T{S" S"})y

Mg =
(5.70)

We diagonalize the mass matrix by introducing a mixing angle and rotating the Sg, St

fields to a diagonal mass basis S%, S} via

S cos(f) sin(0 S’
= ®) sinf) . (5.71)
Sk —sin(f) cos(0) Sk
The mixing angle is given by
sin(g) _ 1t B m)Re(on) o) — yi By, i mi)Re(op) ()|,
8 7T2 /\2
where Bj is the usual PV function with the divergence subtracted given by
« m? 1+8
Bi(p®,mi,m}) = =2+ log (7) — 3 log (m) (5.73)

where 8 = /1 — 4m?/p?, which would be the velocity of the scalar produced in the CM

2

frame which was subsequently to mix into another state with mass m;. We take p* = m?

as the mass splittings are a small perturbation in a radiatively induced mixing. If we
take p ~ 1TeV as the scale at which we impose exact SU(2¢) on our scalar potential,

this gives a mixing angle

[Re(nu)| [Tm(ny)|

sin(6) ~ 0.04 3 ;
2

(5.74)
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which depends weakly on the value of m, as the numerical coefficient changes by 25%
for ms varying between 0.01 — 300 GeV. This mixing angle, if non zero, will effect the
production cross section of the Sy, Sg states at LHC and Tevatron, and introduce mixing

between the octetonia states discussed in [110].



Chapter 6

Conclusion

We have addressed two classes of questions in this thesis. The first aimed at improving
our understanding of a variety of SM quantities, namely the CKM matrix element |V,;|
and the production of final state jets. The second line of investigation determines con-
straints on an extension of the SM scalar sector using a range of current data, including

electroweak precision measurements and flavour constraints.

It is important to over-constrain the SM unitarity triangle to test the consistency of
this picture. |V,,| is of particular interest since it is the side opposite the well measured
angle sin 2. It is theoretically challenging to obtain due to cuts on the large background
from b — c¢ processes, which give rise to a nonperturbative shape function at leading
order. The shape function is universal in B decays and can be eliminated by relating
different spectra. We consider the relation between the B — X, fv, P, spectrum and
the B — X, photon energy spectrum, given by a weight function, W (A, P,). We study
the perturbative behaviour of this relation using a renormalon analysis and calculate the
weight function to order a?3; . We confirm the leading renormalon is at u = 1/2,
corresponding to non-perturbative corrections at O(Agep/my), where we know there to
be subleading shape functions present. We use a model of the photon spectrum to assess

the importance of terms in the expansion of the weight function. Our results can be used
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to estimate the perturbative uncertainty in the extraction of |V,;|, which we find to be

at the percent level.

Jet production tests QCD over a wide range of scales and is also important as a
background to new physics searches. Factorization of perturbatively calculable hard
interactions and jet functions from nonperturbative low-energy effects is critical to gaining
control over such QCD processes. SCET is a useful tool with which to study jets since
it separates physics associated with the jet and soft scale at the level of the Lagrangian,
making the proof of all orders factorization much more tractable. In order to begin to
address this problem, we show how to properly implement jet algorithms in the effective
theory, clarifying the connection between cutoffs in SCET and phase space limits. By
considering several jet algorithms at next-to-leading order, we show the consistency of
this approach with a non-trivial zero-bin subtraction, which properly accounts for double
counting in SCET. By studying the £, algorithm, we show the dependence of factorization

on the ultraviolet cutoff.

If we view the SM as a low energy effective theory of an underlying theory that

has SU(3)y

R

x SU(3)p, x SU(3)q, flavour symmetry, which is broken to generate the
Yukawa matrices, we are led to the idea of MFV. Manohar and Wise showed that only one
type of exotic scalar can Yukawa couple to quarks consistently with MFV, a colour octet
electroweak doublet. We consider an extension of the SM with one additional octet scalar
and ask how light it can be, what the constraints on it are, and what the implications are
for the Higgs mass. We carry out an up-to-date fit to electroweak precision data with an
extended set of oblique parameters relevant for light states and find that the new scalars
can be light, O(100 GeV). We show that direct production bounds from LEPII and the
Tevatron do not rule out light octet scalars and find that a promising signal is the octet
decay to two photons. In order to investigate the impact of the new scalar on the Higgs
mass from electroweak precision data, we perform a joint fit. Mass splitting in the exotic

scalar doublet allows both the Higgs and octet scalar masses to be large and consistent
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with electroweak precision data.

6.1 Future Directions

Efforts to improve the determination of |V,,| continue, for example through the Analysis
of B-Meson Inclusive Spectra (SIMBA) project where a fit to charmless inclusive B
meson decay spectra is to be carried out using all available information. Our study of
the higher order perturbative corrections to the extraction of |V,;| based on relating the
semi-leptonic and radiative B meson decays can be used as inputs to such a fit and to
improve the accuracy of theoretical error estimates.

The work on final state jet production in SCET, in particular the consistent approach
developed to implement a given jet algorithm with arbitrary parameters in the effective
theory, has been used by other groups to study for example jet shape observables [128].
A future direction of this work is to apply the SCET approach to further study non-
global observables, beginning with ones with fewer scales such as the left hemisphere
mass distribution, which has been considered using perturbative QCD techniques [17].

Minimal flavour violation continues to be an interesting and actively explored idea
by which flavour changing neutral currents can be suppressed in extensions of the SM.
The phenomenology of coloured scalars at LHC also continue to be investigated. Our
work demonstrates that the colour-octet electroweak-doublet scalars can be light and
we strongly constrain their mass splitting using EWPD. This highlights possible phe-

nomenologically interesting search strategies.
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