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In this thesis we use effective field theories of the strong interactions to improve

our understanding of several quantities in the Standard Model of particle physics (SM).

We also examine constraints on an extension of the SM scalar sector and study the

implications for the Higgs mass.

We first examine an approach to extracting the Cabibbo-Kobayashi-Maskawa matrix

element |Vub| via the relationship between the B meson decays B → Xu`νl and B → Xsγ,

where Xi is any final state hadron containing a quark of flavour i. Model dependence

is reduced in this approach since the non-perturbative shape function at leading order

is universal and drops out; however the perturbative expansion at next-to-leading order

is found to be poorly behaved. We carry out a renormalon analysis of the relationship

between these spectra to examine higher order perturbative corrections and compare the

fixed-order and log expansions. Our analysis can be used to estimate the perturbative

uncertainty in the extraction of |Vub|, which we show to be relatively small.

Next we take a step towards the broader goal of summing large phase space loga-

rithms from a variety of jet algorithms using Soft Collinear Effective Theory (SCET).

We develop a consistent approach to implementing arbitrary phase space constraints in

SCET and demonstrate the connection between cutoffs in SCET and phase space limits.

By considering several jet algorithms at next-to-leading order, we gain some insight into

factorization of final state jets. In particular, we point out the connection between the
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ultraviolet regulator and factorization.

Finally we consider a scalar sector that contains a colour-octet electroweak-doublet

scalar, in addition to the SM Higgs. This extension contains the only scalar represen-

tations that Yukawa-couple to quarks and are consistent with minimal flavour violation.

We examine constraints from electroweak precision data, direct production from LEPII

and the Tevatron, and from flavour physics. We find both the Higgs and new scalars can

be simultaneously light, with masses of O(100 GeV). The data also allows all the scalars

to be heavy, with masses of O(1 TeV). The presence of the additional scalars removes the

preference for a light Higgs, which normally emerges from fits to electroweak precision

data.
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Chapter 1

Introduction

In the last twenty years the Standard Model of particle physics (SM) has withstood

rigourous precision tests, from measurements at LEP of the properties of W and Z

gauge bosons to the exploration of the flavour sector at B factories and the Tevatron.

However the mechanism for electroweak symmetry breaking remains to be established

and many open questions remain, ranging from understanding neutrino mass generation

to explaining the observed asymmetry between baryons and anti-baryons in the universe.

As a result the search for new physics beyond the SM actively continues with, broadly

speaking, two complementary approaches. There are direct production searches, for ex-

ample at the new energy frontier at the Large Hadron Collider (LHC), and indirect ones,

where deviations from SM predictions are sought in lower energy precision measurements.

Both approaches demand reliable theoretical predictions with quantifiable error estimates

and in both a central challenge is controlling quantum chromodynamics (QCD) effects.

QCD has the property of asymptotic freedom, whereby the coupling of quarks and

gluons, which varies as a function of energy, becomes large at low energies or long dis-

tances. In this regime quantitative predictions based on a perturbative expansion break

down and strongly interacting particles bind together to form hadrons. High energy

processes involving coloured particles, such as the energetic underlying collisions at col-

1



Chapter 1. Introduction 2

liders, can be well described by perturbation theory. However, even in such processes

low energy QCD effects can spoil theoretical predictions since the final states that are

observed experimentally are hadrons and not free quarks and gluons, therefore the details

of hadronization can creep into the calculation of a given observable.

In order to restore predictive power, it is important to separate perturbative affects

from non-perturbative ones. Consider the example of the total cross-section for hadron

production in e+e− annihilation, to which the leading contribution in the strong coupling

constant is given by e+e− annihilating to a quark anti-quark pair. For large centre of

mass energy, Q, the quark anti-quark pair are created and move apart at a time scale

of O(1/Q). The details of the much longer time scale low-energy or soft dynamics,

which we do not know how to calculate, do not effect the qq̄ production probability.

Furthermore we know that the probability for the quark and anti-quark to hadronize is

unity, therefore to leading order σ(e+e− → hadrons) = σ(e+e− → qq̄), given sufficient

smearing over resonances. Here we have separated the non-perturbative part from the

perturbative underlying cross-section. The non-perturbative contribution is unity with

corrections in powers of 1/Q, where the complicated details of hadronization enter. There

are also perturbative corrections to this relation such as e+e− → qq̄g. This illustrates

the idea of factorization, which is the separation of a measured quantity into well-defined

components that each depend on physics at a single scale to all orders in the strong

coupling constant and is at the heart of calculating reliably in QCD.

For observables with more complicated constraints such as σ(e+e− → n−jets) defined

by some jet algorithm, or observables with hadrons in the initial state, such as in proton

collisions, the form of the factorization theorem and the hadronic contribution can be-

come much more complicated than the unity at leading order in the above example. In

proton collisions to some final state Y , where the underlying hard process is qq̄ → Y the
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factorized cross-section take the form

σ (pp→ Y + anything) =

∫ 1

0

dx1

∫ 1

0

dx2

∑
i

fi(x1)fi(x2) · σ (qi(x1P )q̄i(x2P )→ Y ) .(1.1)

This is a convolution over the fraction, x1, x2, of total momentum P, carried by the

proton, with a sum over quark flavours i. The long distance non-perturbative physics of

the proton is given by the parton distribution functions, fi(x). Quantitative predictions

can still be made because the parton distribution function is a property of the proton

and not the hard scattering process of interest. This non-perturbative contribution can

therefore be measured in other processes.

The proof of factorization theorems is clearly important to making reliable quanti-

tative predictions for processes involving the strong interactions. Effective field theories

(EFTs) of QCD are useful because they make the separation of scales manifest at the

level of the effective Lagrangian. As a result the proof of factorization theorems are much

more tractable using EFTs than with traditional diagrammatic techniques; furthermore

the EFT approach is systematically improvable.

In this thesis we use EFT techniques to systematically deal with QCD effects and im-

prove our understanding of a variety of SM quantities. In particular, we first consider the

Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vub|, which is relevant to indirect

precision constraints on new physics. We analyse the behaviour of the perturbative piece

of factorized B meson decay rates and use this to estimate the perturbative uncertainty

in a particular approach to extracting |Vub|. Next we take a step towards understanding

the form of the factorized expression for final state jet production for a given jet algo-

rithm, an important process in the LHC environment. Finally we consider an extension

of the SM scalar sector motivated by the flavour structure of the SM and use electroweak

precision measurements as well as current direct production data to constrain the model.
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1.1 Flavour Sector of the Standard Model

The flavour structure of the Standard Model arises from the Higgs Yukawa interaction,

which generates quark masses when the Higgs gets a vacuum expectation value

LYukawa = gijU ū
i
RH

T εQj
L − g

ij
Dd̄

i
RH

†Qj
L + h.c. (1.2)

where gU,D are the Yukawa matrices, i j are flavour indices and

ε =

 0 1

−1 0

 . (1.3)

Since the mass and weak eigenstates are not diagonal in the same basis, the weak inter-

action allows for the flavour changing charged current transition between left handed up

and down type quarks of the following form

Lint = − g2√
2
ūjL γµ V

j k
CKM dkLW

µ + h.c. (1.4)

where VCKM is the CKM matrix, a 3× 3 unitary matrix, j labels the generation and g2 is

the SU(2) gauge coupling. There are, however, no flavour changing neutral currents at

tree-level in the SM. With three generations, the CKM matrix can be expressed in terms

of three angles and one complex phase, which gives rise to charge-parity (CP) violation.

These are free parameters of the SM and it is therefore of interest to determine them

accurately. Furthermore, it is experimentally very well established that a hierarchy exists

in the entries of VCKM. This non-trivial flavour structure provides important constraints

on physics beyond the SM.

The flavour structure in the CKM matrix is made clear by the Wolfenstein parame-

terization [1], which expresses the matrix as an expansion in λ, the charged weak current

coupling of the up to the strange type quark. To O(λ4) it is given by

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (1.5)
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where λ = 0.2257+0.0009
−0.0010 [2]. The unitarity of the CKM matrix gives rise to six vanishing

constraints, each of which can be represented by a triangle in the complex plane. A

convenient representation is obtained from

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.6)

illustrated in Fig. 1.1. To test the consistency of this picture it is important to overcon-

strain the unitarity triangle with independent measurements. The angle sin 2β has been

well measured, with sin 2β = 0.681 ± 0.025 [2]. It is therefore of particular interest to

accurately determine the side opposite the angle β which depends on both Vcb and Vub.

The consistency of the independent determinations of the angle β and the side opposite

would provide an important check of the CKM picture and would serve to constrain new

physics.

Figure 1.1: Representation of the unitarity triangle. The apex is (ρ̄, η̄) = (ρ, η)(1 −

λ2/2) +O(λ4) [2].

B mesons provide an excellent testing ground of the flavour structure of the SM, be-

cause the separation of scales mb � ΛQCD allows short distance physics to be consistently

separated from the details of hadronization using heavy quark effective theory (HQET)

and the operator product expansion (OPE), discussed in Chapter 2. With these tech-

niques, |Vcb| has been determined with a 2% uncertainty from inclusive decays B → Xc`ν`,

where Xc denotes any state originating from the decay to a charm quark [3]. The ex-

traction of |Vub| from inclusive decays B → Xu`ν` is more theoretically involved [4, 5]
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and has a larger uncertainty, of order 10% [2]. The situation is even worse for exclusive

decays such as B̄ → π`ν̄`, due to theoretical uncertainties in determining form factors.

The difficulty for |Vub| arises because B mesons decay predominantly via the b → c

quark level transition, making it challenging to measure the fully inclusive B → Xu`ν`

decay rate. Eliminating charm background severely restricts the phase space in which

B → Xu`ν` can be measured and increases the sensitivity of the rate to non-perturbative

effects. As will be described in Chapter 2.2, the techniques used so effectively for |Vcb|

are no longer valid and instead a non-perturbative distribution function, called the shape

function, arises at leading order. The shape function [6] is universal in B decays and it

can either be modelled or eliminated by relating B → Xu`ν` to another inclusive rare B

decay, B → Xsγ. In Chapter 3 we focus on the latter approach since it minimizes model

dependence.

1.2 Final State Jet Production

The hadron collider environment requires an understanding of QCD over a wide range

of scales, from partonic hard scattering to the description of initial state protons and

the evolution of final state jets. Factorization is critical to this understanding because it

allows us to separate measured quantities that depend on physics at different scales into

components that each depend on a single scale. As a result a controlled perturbative

expansion is obtained and non-perturbative effects can be isolated.

While calculating QCD effects at colliders is a long-standing and challenging program

with many developments from traditional QCD techniques (see for example [7, 8, 9]),

there has been recent demonstrated potential for soft-collinear effective theory (SCET) to

extend previous results, from event shape variables to event generators [10, 11, 12]. SCET

is an effective theory of the strong interactions, which provides a model independent,

systematically improvable framework to describe the interactions of energetic jets and
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soft quarks and gluons [6, 13, 14, 15, 16]. The effective theory naturally separates physics

at hard, collinear and soft scales, and consequently is useful in proving factorization,

resumming large logarithms and parameterizing non-perturbative corrections.

A necessary ingredient in controlling QCD effects at colliders is proving factorization

for final state jet production defined by a jet algorithm. A jet algorithm is a prescription

by which final state particles in an event are grouped together. At each order in per-

turbation theory this corresponds to a division of phase space into different numbers of

jets. Observables that integrate over the phase space given by a jet definition typically

give rise to logarithms of the ratio of scales associated with the jet algorithm, of the form

αns lnm, m ≤ 2n. These phase space logarithms can be large, for example when the jets

are constrained to be in narrow cones, and can spoil the perturbative expansion. We

would therefore like to be able to resum them.

It is difficult to extend traditional QCD techniques to resum large logarithms to

arbitrary order in the log expansion. Furthermore there are a class of observables, called

non-global observables [17], in which cuts are placed on restricted angular regions of phase

space, for which it is not known how to analytically resum logarithms beyond leading

order with perturbative QCD. The two-jet rate defined with the Sterman-Weinberg cone

algorithm [18] is one such example. We would therefore like to be able to address these

questions using EFT techniques. In particular we would like to be able to factorize

the n-jet cross section and resum the large logarithms of phase space cuts for a given

jet algorithm using SCET. In Chapter 4 we take a step towards this broader goal by

developing a consistent approach to implementing jet algorithm phase space constraints

in the effective theory.
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1.3 Flavour Constraints and the Scalar Sector

The quadratic dependence of the Higgs mass on the scale of new physics, Λ, leads, from

considerations of naturalness, to the perspective that Λ ∼ O(TeV) and that the SM is a

low energy effective theory [19]

Leff(E < Λ) = LSM +
∑
i,p

ci
Λp

O
(4+p)
i . (1.7)

However the excellent agreement between the SM and data, particularly in the flavour

sector, restricts the scale of new physics for generic operators to be parametrically larger

than the electroweak scale. This leads to the expectation that new physics will have

a non-trivial structure and will respect the approximate symmetries that we observe

experimentally, such as custodial SU(2). However flavour SU(3)UR ×SU(3)DR ×SU(3)QL

is not a symmetry of the SM. It is broken by the Yukawa couplings of the quarks and

the Higgs field, Eq. (1.2). Instead we assume that the underlying theory has this flavour

symmetry and that it is broken to generate the Yukawa matrices. This is implemented by

the Minimal Flavour Violation (MFV) criteria [20, 21, 22, 23, 24, 25]. It requires that by

promoting the Yukawa matrices to spurions which transform as gU ∼ (3U, 3̄Q) and gD ∼

(3D, 3̄Q), all new physics terms must be invariant under the flavour group. Satisfying

MFV leads to the fact that all new physics Yukawa couplings must be proportional to

the SM Yukawas, which are proportional to the quark mass matrices. It follows that all

Yukawa matrices will be diagonal in the same basis as the quark mass matrices. This

naturally suppresses tree-level flavour changing neutral currents and generates structure

in the effective theory for new physics without requiring parameters in the theory to be

small. Such an approach can be viewed as an extension of the work of Glashow and

Weinberg [26].

It has been shown [27] that there is only one other scalar representation, in addition

to the SM Higgs, that can Yukawa couple to quarks and is consistent with MFV. It is

(8,2)1/2 under the SM gauge group SU(3) × SU(2) × U(1). In Chapter 5 we consider
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an extension of the SM proposed by Manohar and Wise [27], which contains one such

colour octet electroweak doublet scalar. By examining electroweak precision data, flavour

measurements and direct production bounds, we ask whether such a theory consistent

with MFV satisfies current data constraints and what the implications are for the Higgs

mass.

1.4 Organization of this thesis

We begin in Chapter 2 by reviewing HQET, as well as the tools used to calculate inclusive

B meson decays. We continue our review by discussing the other effective theory of the

strong interactions used in this thesis, SCET. In Chapter 3 we study an approach to ex-

tracting the CKM matrix element |Vub| by examining higher order peturbative corrections

using a renormalon analysis. This material originally appeared in “Higher order petur-

bative corrections to the determination of |Vub| from the P+ spectrum in B → Xu`ν`”

[28]. In Chapter 4 we move on to study jet algorithms in SCET, where we use the

explicit calculation of several next-to-leading order two-jet cross sections to gain some

useful insights into the factorization of final state jets. The contents of this chapter were

published in “Phase Space and Jet definitions in SCET” [29].

We then shift from work aimed at improving our understanding of SM quantities

to studying constraints on an extended scalar sector model, motivated by the flavour

structure of the SM, in Chapter 5. In particular, we examine constraints on the model

and the implications for the Higgs from electroweak precision data, flavour and direct

production bounds. Chapter 5 was published in “Light Octet Scalars, a Heavy Higgs and

Minimal Flavour Violation” [30]. Finally in Chapter 6 we conclude.



Chapter 2

Effective Theories of the Strong

Interactions

QCD is asymptotically free and at long distances perturbation theory breaks down and

strongly interacting particles bind together to form hadrons. The factorization of physics

at different scales into separate well-defined components is therefore critical to making

reliable predictions for processes involving hadrons. Factorization enables us to param-

eterize our ignorance by separating short distance perturbatively calculable effects from

long distance non-perturbative ones and prevents the perturbative expansion from being

spoiled by the presence of large logarithms of the ratio of scales in the problem.

The EFT approach to the strong interactions is useful because it provides a system-

atically improvable framework with which to factorize physics at different scales. It is

formulated by utilizing the separation of scales in a physical process to construct a small

parameter in which to expand the full theory, QCD. This leads to a simplification of the

theory at leading order in the expansion.

In this chapter we will discuss the two EFTs of QCD that we make use of in this

thesis, HQET and SCET. We also discuss the techniques used to calculate inclusive B

meson decays, which rely on the use of HQET and the OPE, which we will exploit in

10
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Chapter 3 when we consider a method to extract |Vub|.

2.1 Heavy Quark Effective Theory

HQET describes the interaction of a single heavy quark, bottom or charm, that interacts

with light quarks and gluons. It has been extensively and successfully applied to the

study of B meson decays [31]. The typical momentum of the light degrees of freedom

is ΛQCD ∼ 300 MeV, which is much smaller than the mass of the heavy quark, mQ.

Therefore in the limit the Compton wavelength of the heavy quark, 1/mQ, goes to zero

the low energy degrees of freedom cannot resolve the structure of the heavy quark; it

appears simply as a static colour source. The heavy quark has spin 1/2 and therefore

a chromomagnetic moment of µQ = g/(2mQ). In the mQ → ∞ limit, µQ → 0 and

therefore the interaction between the spin of the heavy quark and light degrees of freedom

is suppressed. This leads to heavy quark spin-flavour symmetry, which we expect will be

broken at O(1/mQ). As we shall see, the effective theory makes this explicit.

Since interactions with light degrees of freedom have momentum transfers ofO(ΛQCD),

it is useful to decompose the momentum of the heavy quark in to a small piece, the

residual momentum k ∼ ΛQCD, and a large piece which is unchanged by the interactions

pµQ = mQv
µ + kµ. (2.1)

In the heavy quark limit vµ is conserved and acts like a label, while kµ is dynamical. We

therefore redefine the QCD heavy quark field to remove the large momentum component

Q(x) =
∑
v

e−imQv·xQv(x) =
∑
v

e−imQv·x(P+Qv(x) + P−Qv(x))

=
∑
v

e−imQv·x(hv(x) +Hv(x)) (2.2)

where we have defined the projection operators P+(−) = (1± v/)/2, which project out the

upper (lower) two components of the spinor. The quark part of the QCD Lagrangian
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becomes

LQCD = Q̄(x) (iD/−mQ)Q(x) = Q̄v(x) (iD/+mQv/−mQ)Qv(x)

= h̄v(x)iv ·Dhv(x)− H̄v(x) (iv ·D + 2mQ)Hv(x)

+H̄v(x)iD/⊥hv(x) + h̄v(x)iD/⊥Hv(x) (2.3)

where we have used P±γ
µP± = ± vµ and P±γ

µP∓ = γµ⊥. The kinetic term of the Hv field

is suppressed by ΛQCD/mQ relative to the leading quadratic piece and so is not dynamical

in the effective theory and can be removed using its equation of motion

L = h̄v(x)iv ·Dhv(x) + h̄v(x)iD/⊥
1

iv ·D + 2mQ

iD/⊥hv(x). (2.4)

The heavy quark field of the effective theory, hv, annihilates heavy quarks with velocity

v, but does not create antiquarks. We can now expand the quark part of the QCD

Lagrangian in powers of 1/mQ to obtain the HQET Lagrangian to order O(1/m2
Q)

LHQET = h̄v(x)iv ·Dhv(x) +
1

2mQ

h̄v(x)(iD⊥)2hv(x)− g

4mQ

h̄v(x)σαβG
αβhv(x) (2.5)

where σαβ = i[γα, γβ]/2 and igGαβ = [Dα, Dβ]. We can see from Eq. (2.5) that the leading

term in the HQET Lagrangian has an additional spin-flavour symmetry as expected, with

O(1/mQ) kinetic and spin corrections.

The key point is that the formulation of the effective theory as an expansion in small

parameter ΛQCD/mb makes this approximate symmetry manifest and allows corrections

to this limit to be calculated systematically. The enhanced symmetry is a vaulable tool,

and in the next section we will describe how HQET is used along with the OPE to

calculate inclusive B meson decays. We will use the results outlined below in Chapter 3

when we consider a method to extract |Vub|.
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2.2 Inclusive B Decays and the Operator Product

Expansion

In order to calculate B meson decays the effective weak Hamiltonian is used, in which

the W propagator as been expanded in powers of 1/MW . For b→ u transitions it is

Heff =
4GF√

2
Vub ūLγ

µbL ¯̀
LγµνL (2.6)

and for b→ s processes it is given by [32]

Heff =
4GF√

2
VtbV

∗
ts

8∑
i=1

Ci(µ)Oi(µ)

(2.7)

where

O1 = (c̄Lβγ
µbLα)(s̄LαγµcLβ) O2 = (c̄Lαγ

µbLα)(s̄LβγµcLβ)

O3 =
∑
q

(s̄Lαγ
µbLβ)(q̄LβγµqLβ) O4 =

∑
q

(s̄Lαγ
µbLβ)(q̄LβγµqLα)

O5 =
∑
q

(s̄Lαγ
µbLα)(q̄RβγµqRβ) O6 =

∑
q

(s̄Lαγ
µbLβ)(q̄RβγµqRα)

O7 = e
16π2mbs̄Lασ

µ νbRαFµν O8 = g
16π2mbs̄Lασ

µ νT aαβbrβG
a
µν

The dominant contribution to B → Xsγ is given by O7, which is the only operator that

contributes at tree-level, however under renormalization it mixes with all seven other

operators.

Decays with photons and leptons in the final state are useful to consider since the final

state particles do not interact strongly so the matrix element of Heff may be factorized

into a hadronic matrix element and a perturbatively calculable leptonic piece, Lαβ . For

example, for B → Xu`ν`

dΓ ∼
∑
Xu

〈B|J†αbu |Xu〉〈Xu|Jβbu|B〉Lαβ . (2.8)

The hadronic matrix element can be related to the imaginary part of the forward scat-

tering amplitude of the time ordered product of currents, Tαβ, by the optical theorem,
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where

Tαβ = −i
∫
d4xe−iq.x〈B|T{J†αbu (x), Jβbu(0)}|B〉. (2.9)

The forward scattering matrix element develops an imaginary piece along a branch cut

when real intermediate states go on-shell. The locations of the branch cuts are determined

by kinematics. Let pX be the momentum of the hadronic products and q the momentum

of the leptons. The rest frame of the B meson can be used to define a four velocity

such that its momentum is pµB = mBv
µ. The forward scattering amplitude T µν is then a

function of both q2 and v · q. Its analytic structure is shown in Fig. 2.1. The branch cut

on the left corresponds to the decay of interest B → Xu`ν` and the other involves the

scattering process B`ν` → Xbb.

Figure 2.1: The analytic structure of the forward scattering matrix element for fixed q2

in the complex v · q plane. The branch cut on the left corresponds to the decay process

of interest which arises for v · q < m2
B+q2−m2

Xmin

2mB
.

The integral over phase space for the decay rate is given by an integral over interme-

diate physical bound states, contour C1, where T µν is non-local and perturbation theory

breaks down. The contour C1 can however be deformed to contour C2, a large distance

away from the cuts, where the large scale is set by mb � ΛQCD. Along this contour the

intermediate states are constrained to be far off-shell and these virtual, O(mb), degrees

of freedom can be integrated out. The time ordered product of currents is replaced by
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an OPE in powers of 1/mb [33]

−i
∫

d4xe−iq·xT{J†αbu (x), Jβbu(0)} ∼ 1

mb

(
O0 +

1

2mb

O1 +
1

4m2
b

O2 + · · ·
)
. (2.10)

Since all hadronic momentum transfers are now below mb, HQET may be used in the

OPE and the coefficients of these operators are calculated perturbatively using matching

calculations.

The validity of the OPE relies on being able to deform the contour away from the

physical cut. This clearly fails in the region where contours C1 and C2 meet, however it

is expected that the smearing effect of integrating over a large enough region of phase

space will yield reliable results. The contour can also not be sufficiently deformed when

the endpoints of the two branch cuts in Fig. 2.1 approach each other, which is the case

when q2 → m2
B.

As discussed in Chapter 1.1, rare decays require cuts on the overwhelming background

from b → c transitions, restricting for example B → Xu`ν` to be measured in regions

with small MXu which are less populated by the heavier charm states. The impact on

the OPE of the restriction on phase space depends on the observable. In Chapter 3 we

consider the partial rate with a cut on P+ [34]

P+ = EX − |~PX | = (mBv − q) · n, P− = EX + |~PX | = (mBv − q) · n̄ (2.11)

where q is the lepton neutrino four momentum, n and n̄ are light-like four vectors in

the ±~q direction and v is the four velocity of the B meson. The P+ spectra has been

measured by BaBar and Belle [35]. The cut used in these measurements, and the one

we consider in Chapter 3, removes final states with M2
X = P+P− < M2

D, in particular

P+ < M2
D/M

2
B ∼ 0.66GeV. This corresponds to a region of large P− ∼ O(mB) and small

P+ ∼ O(ΛQCD)

The convergence of the OPE for this spectra can be illustrated by considering the

expansion of the tree-level forward scattering matrix element in the effective theory, see
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b b

p
b
=mbv+k

p=mbv-q+k

q

µ ν

Figure 2.2: The tree level diagram for the forward scattering matrix element.

Fig. 2.2. The hadronic variables P± can be easily related to the following partonic ones

p+ = (mbv − q) · n, p− = (mbv − q) · n̄ (2.12)

by P± = p±+ Λ, where Λ = mB −mb. In terms of these variables the forward scattering

matrix becomes

b̄vγ
µPL(mb/v − /q + /kγνPLbv
(mbv − q + k)2 + iε

=
b̄vγ

µPL(p−/n/2 + p+ /̄n/2 + /k)γνPLbv
p+ p− + k · n̄ p+ + k · n p− + k2 + iε

. (2.13)

Expanding in ΛQCD/mb with p− of order mb and p+ and the residual momenta, k, of

order ΛQCD gives

b̄vγ
µPL

p− /n/2

p+ p− + k · n p− + iε
γνPLbv +O

(
ΛQCD

mb

)
. (2.14)

The imaginary piece is given by

Im
1

p+ + k · n+ iε
= −π δ(p+ + k · n). (2.15)

The leading order operator in the OPE that gives this contribution is clearly not a local

operator. It is instead given by the shape function [6]

f(w) ≡ 〈B|b̄v δ(p+ + in ·D) bv|B〉 (2.16)

in which the b quarks are separated along a light-cone. This is seen more clearly in

position space where we obtain a Wilson line

f̃(s) ≡ 〈B|b̄v(0)P exp

(∫ s

0

ds n · A(s n)

)
bv(s)|B〉. (2.17)
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In this region, which corresponds to M2
X ∼ mb ΛQCD, the differential decay rate is given

by a nonlocal OPE of the form

dΓ ∼
∫ ∞
−∞

dwC(w)f(w) +O
(

ΛQCD

mb

)
. (2.18)

The leading order shape function describes the non-perturbative distribution of the light-

cone component of the residual momentum inside the B meson. It is universal, unlike

the subleading operators that arise, and can either be modelled using constraints from

processes such as B → Xsγ or it can be removed by directly relating B → Xu`ν` to

B → Xsγ [36, 37, 38]. We consider the latter approach in Chapter 3. Notice that if

M2
X ∼ O(Λ2

QCD), which means both P+ and P− are of order ΛQCD, there would be no

expansion of the terms in Eq. (2.13) and the OPE would break down as expected, since

the decay would be dominated by a small number or resonances.

2.3 Soft Collinear Effective Theory

SCET is an effective theory of QCD that describes states with large energy, Q, and small

invariant mass [6, 13, 14, 15, 16]. To construct the theory it is useful to first define null

vectors nµ and n̄µ, such that n2 = 0, n̄2 = 0 and n · n̄ = 2. Any vector can be decomposed

as

pµ = p+ n̄
µ

2
+ p−

nµ

2
+ pµ⊥ (2.19)

where p+ ≡ n · p, p− ≡ n̄ · p and for short-hand we write p = (p+, p−, p⊥). Since energetic

particles with small mass travel close to the light-cone there is a large separation between

the light-cone components, we therefore construct the small parameter λ ∼ p⊥/p
− in

which to expand the full theory. It follows that a particle collinear to the n-direction has

p− ∼ Q and p⊥ ∼ λQ and for fluctuations near the mass shell p+ ∼ p2
⊥/p

− ∼ λ2Q2. The

collinear scaling in SCET is therefore pc = Q(λ2, 1, λ). In order to correctly reproduce

the infrared physics of QCD, the effective theory also requires soft particles with scaling
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ps = Q(λ2, λ2, λ2) [6]. The effective theory containing these soft and collinear modes is

referred to as SCETI and is the theory we shall focus on here and utilize in Chapter 4.

In order to obtain the SCET Lagrangian, we begin as in HQET by decomposing the

quark momentum collinear in the n-direction into a large label piece, denoted by a tilde,

and residual soft component

pµ = p̃µ + kµ (2.20)

where k ∼ λ2Q and the label piece p̃ contains both p̃− ∼ Q and p̃⊥ ∼ λQ. The QCD

field is re-defined to explicitly separate label and residual momenta

Q(x) =
∑
p̃

e−ip̃·xQn,p(x) (2.21)

where the field subscript p refers to the label momenta and derivatives acting on Qn,p(x)

give terms of order λ2Q. Projection operators, Pn = n/n̄//4 and Pn̄ = n̄/n//4, are used to

separate the large (n) and small (n̄) components of the re-defined QCD field

Qn,p(x) = PnQn,p(x) + Pn̄Qn,p(x) = ξn,p(x) + ξn̄,p(x) (2.22)

such that n/ ξn,p = 0 and n̄/ ξn̄,p = 0. With this re-definition the quark part of the QCD

Lagrangian can then be written as

LQCD = Q̄(x)iD/Q(x)

=
∑
p̃,p̃′

e−i(p̃−p̃
′)·x (ξ̄n,p′(x) + ξ̄n̄,p′(x)

)
(p̃/+ iD/) (ξn,p(x) + ξn,p(x))

=
∑
p̃,p̃′

e−i(p̃−p̃
′)·x
[
ξ̄n,p′(x)

n̄/

2
(in ·D) ξn,p + ξ̄n̄,p′(x)

n/

2

(
p̃− + in̄ ·D

)
ξn̄,p(x)

+ξ̄n,p′ (p̃/⊥ + iD/⊥) ξn̄,p + +ξ̄n̄,p′ (p̃/⊥ + iD/⊥) ξn,p
]
. (2.23)

The kinetic term of the ξn̄,p field is suppressed by λ2 relative to the leading quadratic

piece and therefore we can remove it from the Lagrangian using the equations of motion

ξn̄,p(x) =
1

p̃− + in̄ ·D
(p̃⊥ + iD/⊥)

n̄/

2
ξn,p(x), (2.24)
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and the quark Lagrangian then becomes

L =
∑
p̃,p̃′

e−i(p̃−p̃
′)·xξ̄n,p′(x)

[
(in ·D) + (p̃/⊥ + iD/⊥)

1

p̃− + in̄ ·D
(p̃/⊥ + iD/⊥)

]
n̄/

2
ξn,p. (2.25)

The n-collinear quark interacts with gluons with soft scaling, As ∼ Q(λ2, λ2, λ2), and

collinear scaling, Ac ∼ Q(λ2, 1, λ). Both of these gluon fields are present in the covariant

derivatives in Eq. (2.25) and in order to obtain a Lagrangian with a consistent expansion

in λ, we must expand these terms.

As with the collinear quark field, the effective theory collinear gluon field is defined

by removing the large momentum component

Ac =
∑
q̃

e−iq̃·xAcn,q(x). (2.26)

In order to be able to pull out the sum over label momenta of the collinear gluons in

Eq. (2.25), it is useful to introduce a label operator [14], Pµ = P̄ nµ/2 + Pµ⊥, which acts

on fields with labels to give factors of large label momenta

Pµ(φ†n,q1 φ
†
n,q2 . . . φn,p1 φn,p2 . . . )

= (p̃µ1 + p̃µ2 · · · − q̃
µ
1 − q̃

µ
2 )(φ†n,q1 φ

†
n,q2 . . . φn,p1 φn,p2 . . . ). (2.27)

The derivative can then be written as

i∂µ
∑
p̃

e−ip̃·xφn,p(x) =
∑
p̃

e−ip̃·x(Pµ + i∂µ)φn,p(x)

=
∑
p̃

e−ix·P(Pµ + i∂µ)φn,p(x) (2.28)

where the ordinary derivative on the left-hand side in Eq. (2.28) gives only residual

momenta, O(λ2Q).

We can now express the covariant derivatives in Eq. (2.25) as

in̄ ·Dc = P̄ + g n̄ · An,q

iDc
⊥ = P⊥ + g n̄ · A⊥n,q

in ·D = in · ∂ + g n · An,q + g n · As (2.29)
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where the superscript c denotes that we have dropped subleading terms in λ. This gives

us the leading order SCET quark Lagrangian

LSCET =
∑
p̃i

e−ix·P ξ̄n,p′(x)

[
(in ·D) + iD/c⊥

1

in̄ ·Dc
iD/c⊥

]
n̄/

2
ξn,p(x). (2.30)

There are several interesting features of this Lagrangian. Unlike in HQET where the

label v is conserved in interactions with gluons, in SCET the interaction of a collinear

quark with a collinear gluon changes its label momenta. The large overall phase and

sum over labels in Eq. (2.30) enforces label momentum conservation. Soft gluons appear

only in the n ·D term and it is only this component of the residual momentum that is

conserved at vertices.

The non-local 1/n̄ ·D term in the Lagrangian is O(Q) and gives rise to the coupling

of n-collinear quarks to the n̄ · An component of arbitrary numbers of collinear gluons,

which are not suppressed in the effective theory. These interactions can be expressed in

terms of a collinear Wilson line

W =
∞∑
m=0

∑
perms

(−g)m

m!

n̄ · Aa1
n,q1
· · · n̄ · Aamn,qm

n̄ · q1 n̄ · (q1 + q2) · · · n̄ · (
∑m

i=1 qi)
T am · · ·T a1

=

[ ∑
perms

exp

(
−g 1

P̄
n̄ · An,q

)]
, (2.31)

which in position space is

Wn(x) = P exp

[
i g

∫ x

−∞
ds n̄ · An(sn̄)

]
(2.32)

where P denotes path ordering. The Wilson line arises from integrating out the off-shell

propagators in the interaction of n-collinear gluons with n̄-collinear quark fields, see Fig.

2.3. In fact collinear gauge invariance can be used to show, for a function, f ,

f (in̄ ·D) = f
(
P̄ + g n̄ · An,q

)
= Wnf(P̄)W †

n (2.33)

and so all gauge invariant combinations of n̄ · A appear only in n-collinear Wilson lines

[13]. The SCET quark Lagrangian, Eq. (2.30), then becomes

LSCET =
∑
p̃i

e−ix·P ξ̄n,p′(x)

[
(in ·D) + iD/c⊥Wn

1

P̄
W †
niD/

c
⊥

]
n̄/

2
ξn,p(x). (2.34)
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Figure 2.3: Integrating out the off-shell propagators from the interaction of n-collinear

gluons with n̄-collinear quark fields gives rise to a collinear wilson line.

A similar approach can be followed to obtain the leading O(λ0) collinear gluon La-

grangian. Interactions coupling collinear modes and soft quarks are power suppressed

and occur in the O(λ) correction to the Lagrangian [39].

The simplifications of working in the SCET framework are made manifest by the field

re-definition [15]

ξn,p = Ynξ
0
n,p , An,p = YnA

0
n,pY

†
n

where Yn = P exp

[
i g

∫ x

−∞
ds n · As(sn)

]
(2.35)

which removes the n·As term in Eq. (2.34) and completely decouples the soft and collinear

sectors at leading order in the Lagrangian. Instead, the soft gluon interactions appear

as Wilson lines in the external currents, where simplifications due to the unitarity of Yn

are made clear.

There is a subtlety in the formulation of SCET outlined above which naively leads to

a double counting of the contribution between soft and collinear modes. When the label

momentum, p̃, of n-collinear quark or gluon fields is zero it has the same scaling as the

soft and therefore there is an overlap between these modes. The sum over label momenta

for collinear fields should in fact be restricted to be non-zero. For example Eq. (2.26)
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should be

Ac =
∑
q̃ 6=0

e−iq̃·xAcn,q(x). (2.36)

Calculating loop graphs using the effective theory Lagrangian involves summing over

label momenta and integrating over residual momenta, see Fig. 2.4. This is equivalent to

integrating over all momentum space up to the restriction p̃ 6= 0. Zero-bin subtraction

Figure 2.4: Momentum space is dived in to label momenta denoted by p, which specify

a box and small residual momenta k which defines a point within the box [40].

[40] removes the p̃ = 0 contribution in the following way

∑
p̃ 6=0

∫
d4k In(p̃, k) =

∫
d4p

(
In(p)− lim

p̃→0
In(p)

)
(2.37)

where In is the integrand of a SCET Feynman diagram.

Virtual graphs in SCET are scaleless and vanish in dimensional regularization. There-

fore it had not been noticed, until the work of Manohar and Stewart [40], that in order for

the effective theory to be consistent and to properly reproduce the infrared of QCD, zero-

bin subtraction is necessary. Manohar and Stewart examined virtual diagrams in SCET

with different regulators to show that this was the case. They also applied the zero-bin

approach to phase space integrals, but as we shall see in Chapter 4, their procedure is

not consistent with cutoffs in the effective theory.

In Chapter 4 we develop an approach to to deal with phase space constraints in the

effective theory which consistently applies zero-bin subtraction when integrating over
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restricted regions of phase space. This provides amongst the first non-trivial examples of

zero-bin subtraction and confirms the critical role the zero-bin plays in reproducing the

infrared of the full theory correctly.



Chapter 3

High order perturbative corrections

to the determination of |Vub|

The contents of this chapter were published originally in “Higher order peturbative cor-

rections to the determination of |Vub| from the P+ spectrum in B → Xu`ν`”, [28].

3.1 Introduction

The total rate for the decay B → Xu`ν̄ provides a theoretically clean determination of the

magnitude of the CKM matrix element |Vub| as a double expansion in powers of αs(mb)

and ΛQCD/mb [41]. However, to eliminate the background from B → Xc decays, strong

cuts on the final state phase space are required, which can complicate the theoretical

analysis. The kinematic regions in which cuts on the charged lepton energy E`, hadronic

invariant mass mX [42] and hadronic light-cone momentum P+ = EX − |~PX | (where EX

and ~PX are the energy and three-momentum of the final state hadrons) [34] are strong

enough to eliminate the charm background all correspond to the so-called shape function

regime, in which the local OPE for the partial rate breaks down [43, 36]. However, in

this region an expansion of the partial rate in powers of ΛQCD/mb in terms of non-local

operators is still possible, and the matrix element of the leading nonlocal operator can

24
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be measured in B → Xsγ decay. At leading order in ΛQCD/mb, we can write

dΓi =

∫
Ci(ω)f(ω) +O

(
ΛQCD

mb

)
(3.1)

where i labels the decay, Ci(ω) is perturbatively calculable, and the shape function f(ω)

is nonperturbative, but universal in inclusive B decays.1 It is convenient to eliminate the

shape function altogether, and express integrated rates directly in terms of one another

[36, 37, 38]. For example, we can write∫ ∆

0

dP+
dΓu
dP+

∝
∫ ∆

0

dPγW (∆, Pγ)
dΓs
dPγ

+O

(
ΛQCD

mb

)
(3.2)

where Pγ ≡ mB − 2Eγ, Eγ is the photon energy and ∆ ∼ O(ΛQCD). This defines

the weight function W (∆, Pγ), which can be calculated in perturbation theory. The

O(ΛQCD/mb) power corrections have been extensively discussed in the literature [44,

45, 46, 47, 48, 49], and have typically been estimated to be below the 10% level for

|Vub| [46, 47, 48], although it has been argued that subleading four-quark operators may

introduce significant uncertainties [47].

The weight function W (∆, Pγ) has been calculated in fixed-order perturbation theory

to O(α2
sβ0) [38]. It is also known to next-to-leading-log order, O(αns logn−1mb/µi), where

µi ∼
√

ΛQCDmb is the typical invariant mass of the final state [46], generalized in [50].

It was shown in [38] that the O(α2
sβ0) corrections to W (∆, Pγ) are substantial, and the

same order as the O(αs) corrections. Given the size of these corrections, it is important

to study the convergence of the perturbative expansion.

In this chapter we examine the behaviour of W (∆, Pγ) at higher fixed orders in

perturbation theory. We work in the framework of the “large-β0” expansion, in which

we calculate all terms of order αnsβ
n−1
0 [51, 52]. While there is no limit of QCD in which

these terms formally dominate, this class of terms allows us to examine the asymptotic

nature of perturbation theory, as well as giving an estimate for the size of perturbative

1C(ω) can be further factorized into “hard” and “jet” functions; however, for our purposes we will
not make this decomposition.
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corrections. We discuss the significance of these terms for the extraction of |Vub|.

3.2 Borel Transformed Spectra and the Weight Func-

tion

Since QCD has an asymptotic perturbative expansion, it is convenient to study the Borel

transformed series B[R̃](u) of a quantity R̃, where

R̃ = R−Rtree =
∞∑
n=0

rnα
n+1
s (3.3)

and

B[R̃](u) =
∞∑
n=0

rn
n!
un. (3.4)

The expansion for B[R̃](u) has better convergence properties than the original expansion.

B[R̃](u) can in turn be used as a generating function for the coefficients rn

rn =
dn

dun
B[R̃](u)|u=0 (3.5)

while the original expression R can be recovered from the Borel transform B[R̃](u) by

the inverse Borel transform

R = Rtree +

∫ ∞
0

du e−u/αs B[R̃](u). (3.6)

Singularities in B[R̃](u) along the positive real u axis make the inverse Borel transform

ill-defined. These are referred to as infrared renormalons [53], factorially growing contri-

butions to the coefficients of the perturbative series, which lead to ambiguities of order

(ΛQCD/mb)
n. In physical quantities these ambiguities are compensated by correspond-

ing ambiguities in the definition of higher-dimensional nonperturbative matrix elements

in the operator product expansion of order Λn
QCD, which render the physical quantity

unambigious.2

2Although the renormalon cancellation has only been explicitly shown in some cases in the large-β0
limit, it is assumed to hold away from this limit.
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The Borel transform Eq. (3.4), in the large-β0 limit, may be determined from the

order αs term, r0, with finite gluon mass following [52]:

B[R̃](u) = −sin πu

πu
e5u/3

∫ ∞
0

(
λ2

m2
b

)−u(
dr0

dλ2
− r∞
λ2

Θ(λ2 −m2
be

5u/3)

)
dλ2

+
1

u

(
Ĝ0(u)− sin πu

πu
r∞

)
. (3.7)

Here λ is the gluon mass and r∞ is a constant. We have used the MS scheme with the

renormalization scale µ set to the pole mass, mb. The terms Ĝ0(u)/u and r∞ arise from

the renormalization of the graphs involved.

The weight function W (∆, Pγ) is defined through the relation between the integrated

B → Xsγ photon energy spectrum and B → Xu`ν̄ charged lepton spectrum,

Γu(∆) ≡
∫ ∆

0

dP+
dΓu
dP+

=
|Vub|2

|VtbV ∗ts|2
π

6αemCeff
7 (mb)2

m2
B

mb(mb)2

∫ ∆

0

dPγW (∆, Pγ)
dΓ77

dPγ

+O

(
ΛQCD

mb

)
(3.8)

where ∆ ∼ ΛQCD in the shape function region, and the normalization is the same as that

used in [38]. Other definitions of W are possible, such as that used in [46]. As in [38],

we concentrate on the contribution to the B → Xsγ spectrum arising from the operator

O7 = (e/16π2)mbs̄Lσ
µνFµνbR. While other operators also contribute to the spectrum, for

the purposes of studying the convergence of the series and estimating the uncertainties

from higher order terms in perturbation theory we will neglect their contribution and the

mixing of these with O7. The factor of m2
B/m̄

2
b pulled out of the relation arises naturally,

and improves the behaviour of perturbation theory for W (∆, Pγ)[38].

Defining the partonic partial rates

1

Γγ

dΓ77

dx̄
= δ(x̄) + g(x̄)

1

Γu

dΓu
dp̂+

= δ(p̂+) + h(p̂+) (3.9)

where Γγ = G2
F |VtbV ∗ts|2αemm3

b [mb(mb)C
eff
7 (mb)]

2/(32π4) and Γu = G2
F |Vub|2m5

b/(192π3)
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are the leading order widths. The partonic variables

x̄ ≡ 1− 2Eγ/mb, p̂+ ≡ (v − q/mb) · n (3.10)

are related to the hadronic variables by

Pγ ≡ mB − 2Eγ = mbx̄+ Λ, P+ ≡ EX − |~PX | = mbp̂+ + Λ (3.11)

where Λ ≡ mB − mb, q is the momentum of the lepton-neutrino pair, n is a light-like

four vector in the −~q direction and v is the four-velocity of the B meson. Convoluting

the partonic rate with the shape function to obtain the hadronic rates, we find

W (∆, Pγ) = 1 +

∫ ∆−Pγ

0

(h(p)− g(p)) dp−
∫ ∆−Pγ

0

g(p) [W (∆, p+ Pγ)− 1] dp (3.12)

where the partonic spectra are expanded to leading order in x̄ and p̂+ respectively since

in the shape function region they are of O(ΛQCD/mb).

Since g(p) and h(p) are O(αs), Eq. (3.12) may be solved iteratively for W (∆, Pγ). For

the purposes of this chapter, we are only interested in terms of O(αnsβ
n−1
0 ), for which the

last term in Eq. (3.12) does not contribute; therefore, we can write

W (∆, Pγ) = Γ̂pu(∆− Pγ)− Γ̂p77(∆− Pγ) +O(αnsβ
n−2
0 ) (3.13)

where we have defined the integrated partonic rates calculated in perturbation theory,

Γ̂p77(∆) =
1

Γγ

∫ ∆

0

dΓ77

dx̄
dx̄ (3.14)

and

Γ̂pu(∆) =
1

Γu

∫ ∆

0

dΓu
dp̂+

dp̂+. (3.15)

The corresponding quantities W̃ , Γ̃p77 and Γ̃pu are defined by subtracting the tree level

contribution.

Calculating the parton level photon spectrum with a massive gluon is straightforward,

and was done in [38]. Integrating the rate with a massive gluon over the endpoint region
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and performing the integral Eq. (3.7), we find the Borel transform of the integrated

partonic rate:

B[Γ̃p77(∆)](u) = e5u/3

(
2(u− 1)

u2

(
∆

mb

)−2u

−
(

2

u− 1
− 3

u
− 4

u2
+

1

u− 2

)
sin πu

πu

(
∆

mb

)−u
+

2 sinπu

πu2
+

(1 + u) (3u2 − 2u− 2) Γ(u)2

(u− 2)(u− 1)uΓ(2u) cosπu

)
+

1

u

(
Ĝ0(u)− 2e5u/3 sin πu

πu

)
. (3.16)

Since the operator O7 requires renormalization, the last line arises from the MS coun-

terterm. Ĝ0(u) is given by

Ĝ0(u) =
∞∑
n=0

gn
n!
un (3.17)

and gn are the coefficients of the expansion of G0(u) [52]

G0(u) =
∞∑
m=0

gmu
m =

2(2u+ 1)Γ(4 + 2u)

3(u+ 2)(u+ 1)Γ(2 + u)2

sin πu

πu
. (3.18)

The Borel transform of the differential photon spectrum away from the x̄ = 0 endpoint

was calculated in [54]. Integrating this result from x̄ = 0 to x̄ = ∆ reproduces the ∆

dependent terms of our result, Eq. (3.16). (The ∆-independent terms depend on the

virtual contribution and cannot be directly compared against [54]).

The calculation of the Borel transform of the semileptonic partial rate Γ̂pu(∆) is sig-

nificantly more involved than for B → Xsγ. The Borel transform of the triple-differential

B → Xu`ν̄ spectrum was calculated in [55]. Rather than integrate this result over the

appropriate phase space, we instead calculated the integrated rate Γu(∆) for a massive

gluon, and then performed the integral (3.7). The result has the comparatively simple



Chapter 3. High order perturbative corrections to the determination of |Vub| 30

form

B[Γ̃pu(∆)](u) = e5u/3

(
2(u− 1)

u2

(
∆

mb

)−2u

+

(
5

3(u− 3)
− 2

u− 2
− 5

3(u− 1)
+

7

3u
+

2

u2
− 1

3(u− 4)

)
2 sinπu

πu

(
∆

mb

)−u
+

Γ(u)2

(u− 4)(u− 2)(u− 1)uΓ(2u) cosπu

(
1

3
(9u4 − 103u3 − 62u2 + 38u+ 24)

−16u(1 + u)(2u− 1)
( π

sin 2πu
+ ψ(u)− ψ(2u)

)))
(3.19)

where ψ(u) = Γ′(u)/Γ(u) is the digamma function.

The Borel transformed weight function is given by the difference between Eq. (3.19)

and Eq. (3.16). Note that the terms proportional to (∆/mb)
−2u/u2 and (∆/mb)

−u sin πu/u3,

which generate the αns lnn+1(∆/mb) logs, cancel in the difference. This reflects the uni-

versality of the leading Sudakov logs. We can resum this contribution by evaluating the

inverse Borel transform, Eq. (3.6). However the result does not exponentiate because

higher powers of logs, up to αns ln2n double logs, are not included since they are sup-

pressed in β0. The resummed αns lnn+1(∆/mb) logs from Eq. (3.32) and Eq. (3.33) are

given by

CF
β0

∫ ∞
0

du e
− 4πu
αsβ0

2

u2

(
−
(

∆

mb

)−2u

+ 2

(
∆

mb

)−u
− 1

)

=
CF
β0

(
4 ln

∆

mb

ln
1 + a

1 + 2a
+

8π

αsβ0

ln
(1 + a)2

1 + 2a

)
(3.20)

where a ≡ αs(mb)β0

4π
ln ∆

mb
.

The final result for the Borel transformed weight function is

B[W̃ (∆, Pγ)](u) = e5u/3

(
2 sinπu

πu2

(
(u− 5)(3u− 4)

(u− 4)(u− 3)(u− 2)(u− 1)

(
∆− Pγ
mb

)−u
− 1

)

− Γ(u)2

Γ(2u)(u− 4)(u− 2)(u− 1) cosπu

(
16(u+ 1)(2u− 1)

( π

sin 2πu
+ ψ(u)− ψ(2u)

)
+

2

3
(5u+ 2)(7u+ 1)

))
− 1

u

(
Ĝ0(u)− 2e5u/3 sin πu

πu

)
(3.21)
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where Ĝ0(u) is obtained from Eq. (3.17) and Eq. (3.18).Eq. (3.21) is the main result of

this chapter.

The Borel transforms can be used to generate the O(αnsβ
n−1
0 ) terms in the perturbative

expansion via the relation Eq. (3.5). Writing

Γ̂p77(∆) = 1 +
∞∑
i=1

Cs
n(∆)

αs(mb)
nβn−1

0 CF
(4π)n

Γ̂pu(∆) = 1 +
∞∑
i=1

Cu
n(∆)

αs(mb)
nβn−1

0 CF
(4π)n

W (∆, Pγ) = 1 +
∞∑
i=1

Wn(∆, Pγ)
αs(mb)

nβn−1
0 CF

(4π)n
(3.22)

we can easily find the coefficients Cs
n(∆), Cu

n(∆) and Wn(∆, Pγ) to any order. The

coefficients are given up to n = 5 in Appendix 4.A.

The leading log (LL) and next-to-leading log (NLL) terms in Eq. (3.34) are contained

within the renormalization group resummed NLL result in soft-collinear effective theory

(SCET), W (∆, Pγ)
NLL
SCET, obtained from [34, 56, 57, 46]. The SCET result sums logs of

µ2
i /m

2
b , where µ2

i ∼ O(ΛQCDmb). In the Appendix 3.B we verify that the leading β0

terms agree with Eq. (3.36) by expanding in αs(mb) and then expanding logs of µ2
i /m

2
b

and µ2
i /(mb(∆− Pγ)). Our results also agree with those in [38, 58, 59].

3.3 Results and Discussion

3.3.1 Renormalons and Borel Resummation

The leading renormalon ambiguity in both the photon and semileptonic spectra isO(ΛQCD/mb)

due to the pole at u = 1/2 in B[Γ̃pu(∆)](u) and B[Γ̃p77(∆)](u). The divergence does not

cancel between the spectra and gives rise to a pole at u = 1/2 in the Borel transformed

weight function. This is consistent with the presence of nonperturbative corrections to

W (∆, Pγ) at O(ΛQCD/mb) due to subleading shape functions [44].
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The Borel transform of the weight function can be written in terms of ∆− Pγ inde-

pendent and dependent pieces, B[W̃0](u) and B[W̃1](u) respectively,

B[W̃0](u) = e5u/3

(
2 sinπu

πu2

(
(u− 5)(3u− 4)

(u− 4)(u− 3)(u− 2)(u− 1)
− 1

)
− Γ(u)2

Γ(2u)(u− 4)(u− 2)(u− 1) cosπu

(
16(u+ 1)(2u− 1)

( π

sin 2πu
+ ψ(u)− ψ(2u)

)
+

2

3
(5u+ 2)(7u+ 1)

))
− 1

u

(
Ĝ0(u)− 2e5u/3 sinπu

πu

)
(3.23)

B[W̃1(∆, Pγ)](u) =
2 sinπu

πu2

e5u/3(u− 5)(3u− 4)

(u− 4)(u− 3)(u− 2)(u− 1)

((
∆− Pγ
mb

)−u
− 1

)
(3.24)

where we have defined B[W̃0](u) and B[W̃1](u) such that they are finite as u→ 0. Note

that B[W̃1](u) has no singularities for positive u. Therefore the inverse Borel transform

of Eq. (3.24), W̃1, is well defined and unambiguously resums logarithms of (∆−Pγ)/mb.

This tells us that the poor behavior in the perturbative expansion of the weight function

is entirely due to the constant terms, W̃0, which are generated by B[W̃0](u).

The relevant quantity in determining |Vub| is the weight function convolved with the

B → Xsγ photon spectrum, as in Eq. (3.8). It is interesting to note that the integrated

quantity can have a renormalon ambiguity that is not present in the weight function. In

order to illustrate this we calculate the Borel transform of W̃1, which is renormalon free,

convolved with a simple model of the normalized B → Xsγ spectrum,

1

Γγ

dΓs
dPγ

=
bb

Γ(b)Λb
P b−1
γ e−

bPγ
Λ (3.25)

where b = 2.5 and Λ = 0.77 GeV [46]. This is straightforward to obtain from Eq. (3.24):

B

[∫ ∆

0

dPγW̃1
1

Γγ

dΓs
dPγ

]
(u) = e5u/3 2 sinπu

πu2

(u− 5)(3u− 4)

(u− 4)(u− 3)(u− 2)(u− 1)

(
Γ
(
b, b∆

Λ

)
Γ(b)

+

(
−1 +

(
b∆

Λ

)b(
∆

mb

)−u
Γ(1− u)

Γ(1− u+ b)
1F1

[
b; 1− u+ b;

−b∆
Λ

]))
(3.26)

where Γ(a, z) =
∫∞
z
ta−1e−tdt is the incomplete Gamma function. The Γ(1− u) term in

Eq. (3.26) gives rise to a pole at u = 1, which corresponds to an order O((ΛQCD/mb)
2)
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ambiguity in the integrated quantity. This arises because higher order terms in the

perturbative expansion of W̃1 have more powers of ln(∆−Pγ)/mb and therefore are more

singular near the end point. However since the renormalon in B[W̃0](u) is at u = 1/2,

the factorial growth in the integrated quantity is dominated by the constant terms in the

weight function rather than the logarithms.

It is amusing to notice that if the αns ln(∆/mb)
n+1 Sudakov logs did not cancel be-

tween Γ̂pu(∆) and Γ̂p77(∆) these would give rise to a ((∆− Pγ)/mb)
−2u term in the Borel

transform of the weight function. When integrated over Pγ with Eq. (3.25) this would

lead to a pole at u = 1/2, the same order as the renormalon in B[W̃0](u).

Since B[W̃1](u) has no poles in u, the inverse Borel transform of Eq. (3.24) is well-

defined. We may therefore use Eq. (3.24) to sum all terms containing powers of ln((∆−

Pγ)/mb) (terms of order αnsβ
n−1
0 logn−m(∆ − Pγ)/mb, for n = 1 to infinity and m = 0

to n − 1). While we were unable to obtain a closed-form result for this quantity, by

expanding Eq. (3.24) in powers of u it is straightforward to sum all terms of order

αnsβ
n−1
0 logn−m(∆−Pγ)/mb, for n = m+ 1 to infinity and for fixed m ≥ 0, by evaluating

the inverse Borel transform

W (∆, Pγ)resummed =
CF
β0

∫ ∞
0

du e
− 4πu
αsβ0Cm−1u

m−1

((
∆− Pγ
mb

)−u
− 1

)
(3.27)

=
CFCm−1

β0

Γ(m)

(
αsβ0

4π

)m((
1 +

αsβ0

4π
ln

∆− Pγ
mb

)−m
− 1

)

where Cm−1 is the coefficient of the um−1
(

∆−Pγ
mb

)−u
term in Eq. (3.24), and the second

line follows for m > 0. The constant non-logarithmic terms in the weight function are not

included in Eq. (3.27), as they arise from W̃0, but may be obtained from the expansion

Eq. (3.34) to give the full resummed logarithmic result. At leading-log (LL), m = 0, we

find

W (∆, Pγ)
LL
β0

= 1− 5CF
3β0

ln
(
αs(mb)β0

4π
ln ∆−Pγ

mb
+ 1
)
. (3.28)
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We explicitly show the NLL, the next-to-next-to-leading logarithmic (NNLL) αnsβ
n−1
0 lnn−2

and next-to-next-to-next-to-leading logarithmic (NNNLL) αnsβ
n−1
0 lnn−3 terms below:

W (∆, Pγ)
NLL
β0

=
αs(mb)CF

4π

[
14

3

(
1

1 + b
− 1

)
+

(
167

36
− 2π2

3

)]
W (∆, Pγ)

NNLL
β0

=
αs(mb)

2β0CF
(4π)2

[(
1559

216
− 5π2

18

)(
1

(1 + b)2 − 1

)
+

(
3857

144
− 16π2

9
− 12ζ(3)

)]
W (∆, Pγ)

NNNLL
β0

=
αs(mb)

3β2
0CF

(4π)3

[(
65545

3888
− 14π2

9

)(
1

(1 + b)3
− 1

)
+

(
90043

864
− 13π2

108
− 16π4

15
− 166ζ(3)

3

)]
. (3.29)

where b ≡ αs(mb)β0

4π
ln ∆−Pγ

mb
. These results provide a useful check of our calculation, as

they may be compared with the corresponding resummed expressions in SCET, obtained

from [34, 56, 57, 46]. Setting µi =
√
mb(∆− Pγ), we verify that the resummed LL and

NLL contributions in the large β0 limit, Eq. (3.28) and Eq. (3.29), are contained within

the RG resummed NLL SCET result.

Finally, the renormalon in the weight function suggests that the dominant contribu-

tion to its perturbative expansion is from non-logarithmic terms. We can investigate this

numerically by considering the leading logarithmic expansion away from the Pγ → ∆

end point. Following [38], we combine all known terms from Eq. (3.34) and Eq. (3.36),

and take the ratio of the various logarithmic terms. While this misses the contributions

of terms beyond NLL and subleading in β0, we can hope that the values below are still

indicative of the relative contributions of the various terms. Taking mb = 4.8 GeV,

αs(mb) = 0.22 and µ2
i /m

2
b ∼ (∆−Pγ)/mb = 1/9 as in [38] we find the following ratios of
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the logarithmic terms at each order in αs:

α3
s : O(log3) : O(log2) : O(log1) : O(log0) = 1 : 2.1 : 1.8 : −6.0

α4
s : O(log4) : O(log3) : O(log2) : O(log1) : O(log0) = 1 : 3.5 : 2.9 : 0.4 : −26

α5
s : O(log5) : O(log4) : O(log3) : O(log2) : O(log1) : O(log0) =

1 : 4.9 : 4.2 : 1.0 : −2.3 : −119. (3.30)

From these results, we can make two observations. First, the renormalon ambiguity in

the weight function is reflected in the rapid growth of the non-logarithmic terms, which

dominate the perturbative expansion. However, this bad behaviour of perturbation the-

ory is unphysical: in a consistent approach to O(1/mb), the renormalon in the weight

function will cancel with a corresponding ambiguity in the definitions of the subleading

shape functions. This cancellation would be manifest if the subleading shape functions

were consistently extracted from physical observables, but since they are currently mod-

elled, no such cancellation is manifest. We will see in the next section that the estimated

uncertainty in |Vub| from the factorially growing terms is small compared to other sources

of error, so we will not attempt in this chapter to absorb the renormalon ambiguity into

subleading shape functions. These results do, however, underscore the fact that sepa-

rating the bad behaviour of perturbation theory from the O(1/mb) corrections is not a

well-defined procedure.

Second, assuming the pattern in Eq. (3.30) continued to hold beyond the large-β0 and

NLL terms included here, it indicates that terms which are enhanced by more powers

of log µ2
i /m

2
b ∼ log(1/9) ∼ −2 do not dominate over terms with fewer powers of log-

arithms. Since the logarithmic terms do not suffer from renormalon ambiguities, and,

therefore, no cancellation against the subleading operators is expected for these terms,

this pattern should not change once subleading operators are consistently included. Thus,

these results support the conclusion of [38] that fixed-order perturbation theory is more

appropriate than a leading-log resummation for the extraction of |Vub| (see also [60, 61]).
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3.3.2 Determination of |Vub|

From a phenomenological perspective, our results are most useful as an estimate of the

size of higher-order perturbative corrections to the extraction of |Vub| via Eq. (3.8). The

perturbative results in Eq. (3.34) for W (∆, Pγ) are plotted in Fig. 3.1 at different orders

in the αnsβ
n−1
0 expansion. Throughout this section, we will use the values mb = 4.8

GeV and αs(mb) = 0.22 for numerical evaluations, and take ∆ = m2
D/mB = 0.66 GeV,

corresponding to the kinematic cut which removes the B → Xc background. At tree

level, the weight function is 1 (the dotted line in Fig. 3.1 and Fig. 3.2). Curve (a) in Fig.

3.1 shows the weight function up to O(α2
sβ0), calculated previously in [38], while curves

(b), (c) and (d) show the results to O(α3
sβ

2
0), O(α4

sβ
3
0) and O(α5

sβ
4
0).
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Figure 3.1: W (∆, Pγ) from Eq. (3.34) is shown including terms up to the following order:

(a) O(α2
sβ0), (b) O(α3

sβ
2
0), (c) O(α4

sβ
3
0) and (d) O(α5

sβ
4
0).

It is clear from the plots that the perturbative series for W (∆, Pγ) is not converging

well, as was discussed in the previous section, due largely to the factorial growth of the

constant terms in W (∆, Pγ). As we will discuss shortly, the results suggest that the

optimal perturbative estimate is obtained by truncating the series at O(α3
s), and using

the O(α4
s) result as an estimate of the corresponding perturbative uncertainty. In Fig.
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3.2 we therefore compare the fixed-order α3
sβ

2
0 result to other perturbative estimates of

the weight function. Curve (a) shows all known terms up to O(α3
s): the complete NLL

terms from Eq. (3.36), combined with the additional large β0 terms in Eq. (3.34) that

are higher order in the leading log expansion. The gray band around the curve gives the

perturbative error estimate given by the O(α4
sβ

3
0) term. The result is very close to the

large-β0 calculation up to O(α3
sβ

2
0), shown in Curve (b). Curve (c) shows the complete

NLL resummed result.
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Figure 3.2: (a) W (∆, Pγ) with all terms to O(α3
s) from Eq. (3.34) and Eq. (3.36). The

grey region is the error estimate obtained from the α4
sβ

3
0 term. (b) W (∆, Pγ) up to

O(α3
sβ

2
0) from Eq. (3.34). (c) The resummed NLL SCET result, W (∆, Pγ)

NLL
SCET.

Tree O(αs) O(α2
sβ0) O(α3

sβ
2
0) O(α4

sβ
3
0) O(α5

sβ
4
0) O(α6

sβ
5
0) O(α7

sβ
6
0)

1 1.08 1.15 1.17 1.16 1.12 1.04 0.88

Table 3.1: Γ̂u(∆) for different orders in the “large-β0” expansion of W (∆, Pγ), Eq. (3.34).

As discussed in the previous section, the integral in Eq. (3.8) has a worse perturbative

expansion than the weight function itself, since at higher orders in perturbation theory

W (∆, Pγ) is more singular at the endpoint of integration. Hence, to determine the
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Tree SCET LL SCET NLL All known terms to O(α3
s)

1 1.10 1.18 1.17

Table 3.2: Γ̂u(∆) for the resummed LL and NLL weight function in SCET, and all terms

up to O(α3
s) from Eq. (3.34) and Eq. (3.36).

effects of perturbative corrections on the determination of |Vub|, we must look at the

perturbative expansion of Eq. (3.8) rather than that of W (∆, Pγ). For the purposes of

estimating the size of higher order terms, we adopt the simple model of the normalized

B → Xsγ spectrum, Eq. (3.25). We obtain Γ̂u(∆), the integrated B → Xu`ν̄l decay rate

normalized to the tree level value,

Γ̂u(∆) =
1

Γu

∫ ∆

0

dP+
dΓu
dP+

(3.31)

shown in Table 5.3.1. We include several more terms than are explicitly shown in

Eq. (3.34) to demonstrate that the series appears to converge up to O(α4
sβ

3
0) and then

begins to diverge. This suggests that the optimal perturbative result is given by includ-

ing all terms up to O(α3
s) and using the O(α4

s) contribution to estimate the perturbative

uncertainty. At this stage, our best estimate of this result is obtained by including all

known terms up to O(α3
s) from Eq. (3.34) and Eq. (3.36), and estimating the uncertainty

from the O(α4
sβ

3
0) term. Table 3.2 gives Γ̂u(∆) obtained from the renormalization group

resummed LL and NLL weight function in SCET, as well as all terms up to O(α3
s) from

Eq. (3.34) and Eq. (3.36). We see that the NLL result is in agreement with the optimal

perturbative value, within the error. The perturbative uncertainty in |Vub|, estimated

from the O(α4
sβ

3
0) terms is approximately 0.5%, which is far smaller than the order 5%

theoretical uncertainty in |Vub| from subleading shape functions, error in the b quark mass

and other sources [46].
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3.4 Conclusions

We have calculated the Borel transform of the B → Xu`ν̄` P+ spectrum and B → Xsγ Pγ

spectrum to leading order in ΛQCD/mb, from which we determine the Borel transform of

the weight function. The leading renormalon in W (∆, Pγ) is confirmed to be at u = 1/2,

corresponding to nonperturbative corrections at O(ΛQCD/mb). The αnsβ
n−1
0 terms are

easily obtained from the Borel transform of the weight function and are given analytically

to n = 5. We are able to resum logarithms of (∆ − Pγ)/mb in the large β0 limit of the

weight function since the relevant terms in B[W (∆, Pγ)](u) are renormalon free. However

we show that integrating these terms over Pγ introduces a renormalon. Comparing all

known terms in the perturbative expansion of the weight function, we find no numerical

enhancement of leading logarithms, suggesting that fixed-order perturbation theory is

more appropriate than a leading-log resummation.

From our results we estimate the size of higher-order perturbative corrections on the

extraction of |Vub| using a model for the B → Xsγ photon spectrum. We have shown

that Γ̂u(∆) begins to diverge beyond O(α4
sβ

3
0) in the β0 expansion of the weight function.

This suggests that the best perturbative estimate is given by including terms up to O(α3
s)

with the theoretical uncertainty given by the α4
sβ

3
0 term. We show that this result is in

good agreement with the resummed NLL SCET result.
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3.A Expanding out the functions
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3.B The Weight Function to NLL Order

The renormalization group resummed NLL weight function has been calculated in SCET,

[34, 56, 57, 46]. By expanding W (∆, Pγ)
NLL
SCET in αs(mb) and re-expanding the logarithms

of µ2
i /m

2
b and µ2

i /(mb(∆− Pγ)) we find

W (∆, Pγ)
NLL
SCET = 1 +

∞∑
i=1

Wn(∆, Pγ)
NLL
SCET

αs(mb)
nCF

(4π)n
(3.35)
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and the first coefficients are given by:
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We verify that the leading β0 terms agree with Eq. (3.34).



Chapter 4

Phase Space and Jet Definitions in

SCET

The material in this chapter appeared originally in the publication, “Phase Space and

Jet definitions in SCET”, [29].

4.1 Introduction

The study of jets provides an important tool to investigate strong interactions and tests

QCD over a wide range of scales, from partonic hard scattering to the evolution of

hadronic final states that make up the jets. Hadronic jets also play an integral role in

searches for physics beyond the Standard Model. Soft-collinear effective theory (SCET)

[6, 13, 14, 15, 16] provides a useful framework to study jets, reproducing results from

QCD obtained from traditional factorization techniques (see, for example, [7, 8]) while

systematically including power corrections and organizing perturbative resummation.

The effective theory separates the scales of the underlying hard interaction from the

scales associated with the collinear particles in the jets and the long-distance soft physics.

Unlike QCD, particles in SCET whose momenta have parametrically different scaling are

44
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described by separate fields - in this case, either (ultra-)soft or collinear1. Their light-cone

components, p = (n · p, n̄ · p, p⊥) = (p+, p−, p⊥) scale as :

ps ∼ Q(λ2, λ2, λ2), pc ∼ Q(1, λ2, λ) (4.1)

where n and n̄ are light-cone vectors in the ±~n direction and λ is a small dimensionless

parameter which is determined by the dynamics. At leading order in λ the soft and

collinear modes decouple in the SCET Lagrangian. These properties of the effective

theory have been utilized to prove factorization, resum large logarithms and parameterize

nonperturbative corrections for event shapes in the two jet limit [62, 63, 64, 11] and for

massive top quark jets [65], for example. The factorization of generic fully differential

jet cross sections has also been shown independent of jet observables for e+e− and pp

collisions [66]. For an n-jet cross section with a given jet definition to fully factorize,

however, the phase space constraints should also factorize appropriately in the effective

field theory (EFT). Such factorization of phase space constraints has not yet been shown

in any scheme other than the hemisphere scheme [66] (in which all events are dijet).

In this chapter we study the two-jet cross section for e+e− collisions in SCET, using

three jet algorithms: a cone algorithm, Sterman-Weinberg (SW) [18], which defines a jet

based on an angularity cut and was considered in the context of SCET in [62, 63, 67], as

well as two clustering algorithms, JADE [68] and k⊥ [9], which iteratively combine partons

into jets based on kinematic conditions. This is a first step towards the broader goal

of determining the appropriate factorization theorem and resumming logarithms using

SCET. While we do not consider here the more general problem of factorization theorems

for jets, we point out some implications of our results for factorization theorems, in

particular showing that the form of the factorization in SCET depends on the ultraviolet

regulator. The main point of this chapter is instead to demonstrate the relationship

between the cutoffs in the effective field theory and phase space limits, and to consider

1In situations with multiple collinear directions, there are collinear modes for each direction.
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their implications for dijet rates in SCET. Since SCET has no hard cutoff separating

soft from collinear regions of phase space, some care is required to perform phase space

integrals consistently. The NLO dijet rate in SCET also demonstrates the interplay of

divergences between the soft and collinear sectors, and provides nontrivial examples of

the zero-bin subtraction [40].

4.2 Phase Space in QCD and SCET

At each order in perturbation theory, a jet algorithm corresponds to a scheme to partition

the available phase space into regions with different numbers of jets. At O(αs), the phase

space for e+e− → hadrons or hadronic Z decay was discussed in SCET in [40] using the

variables xi = 2pi·q
q2 , where q = p1 + p2 + p3 is the total momentum of the process and

p1,2,3 are the momenta of the quark, antiquark and gluon, respectively. In our discussion

we will find it more convenient to choose the independent variables to be the light-cone

components of the gluon momentum, p+
3 ≡ n · p3 and p−3 ≡ n̄ · p3, and fix the coordinates

by choosing the antiquark to be moving purely in the n̄ direction (i.e. p−2 = p⊥2 = 0).

The resulting phase space is illustrated schematically in Fig. 4.1. Note that because our

choice of coordinates is not symmetric in the n and n̄ directions, the phase space is not

symmetric under exchange of the p+
3 and p−3 axes. (For example, in the upper left the

antiquark is constrained to be soft, while in the lower right the quark and antiquark

recoil against the gluon, and so either the quark or the antiquark may be soft, or both

may be n̄-collinear.)

In the shaded regions, two of the partons recoil approximately back-to-back and the

third is either soft or recoils roughly parallel with one of the other two, while in the central

unshaded region all three partons recoil in different directions. Thus, the shaded region

roughly corresponds to two-jet events, while the central region corresponds to three-jet

events. The precise details of this correspondence are determined by the particular jet
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Figure 4.1: Three-body phase space in p+
3 , p−3 variables. The shaded area indicates

regions which may be described with two collinear directions in SCET; the white region

in the centre requires three directions.

algorithm being used.

Within the effective field theory there are natural degrees of freedom associated with

each region of the two jet phase space, as indicated in Fig. 4.1. The complete dijet rate,

however, requires integrating over all these regions, and since SCET has no hard cutoff

separating soft and collinear degrees of freedom, it would seem that each mode should be

integrated over the full QCD phase space (this is the approach followed in [40]). However,

this is inconsistent with the effective theory, since, for example, integrating a soft gluon

in the collinear region would require it to have momentum well above the cutoff for soft

modes in SCET.

Instead, a phase space integral which extends above the cutoff for the relevant mode

should be replaced by an ultraviolet divergence, which would then be regulated and

renormalized in the usual way. This occurs naturally in SCET because of the multipole

expansion for momenta at the vertices. The kinematics for soft and collinear gluon

emission is shown in Fig. 4.2, where p± scale as Q, p⊥ scale as λQ and the k’s scale

as λ2Q. Because of the multipole expansion, a given component of momentum is not
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conserved at vertices involving particles whose typical momenta scale differently with

λ. As a consequence, the phase space for each mode in SCET differs from that in full

QCD, and it is misleading to use the kinematics in Fig. 4.1 in the effective theory. For

example, in the soft emission graph in Fig. 4.2, conservation of momentum requires

p−1 = Q, p+
2 = Q, while the k’s are unconstrained. It is integrals over these unconstrained

momenta which will give rise to ultraviolet divergent phase space integrals in the EFT.

This is the approach followed in [11], where ultraviolet divergent phase space integrals

are obtained for the soft and jet functions at NLO for angularity distributions in SCET.

This is also what happens in SCET in loop graphs, where both soft and collinear degrees

of freedom propagate, integrated over the appropriate kinematic variables. Since phase

space integrals are just loop graphs with internal propagators placed on shell, the same

rules apply.

+ +

Figure 4.2: Kinematics in SCET. In the first SCET diagram the gluon is n-collinear, in

the second it is n̄-collinear, and in the third it is soft. Additional diagrams with soft

quarks arise at higher order in λ.

It is straightforward to illustrate this for various jet definitions. In the SW definition,

a two-jet event is defined as one in which all but a fraction β of the total energy of the

event is deposited in two back-to-back cones with half angle δ [18]. The JADE algorithm
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)c()b()a(

Figure 4.3: Three-body phase space for different jet definitions in QCD. The shaded

region corresponds to the two jet region; the unshaded region in the centre is the three-

jet region.

requires that the invariant mass M2
ik of every pair of final-state partons i and k be

calculated. If any are less than a fraction, j, of the total center of mass energy squared,

Q2, then the momenta of the pair with the smallest invariant mass are combined into

a single jet according to a recombination scheme which is part of the jet definition, the

details of which are not relevant at O(αs). This process is repeated until no pair has

an invariant mass less than jQ2. The k⊥ algorithm is a modified version of the JADE

algorithm which clusters partons based on their relative transverse momentum rather

than their invariant mass. The corresponding kinematic variable is

yij =
2

Q2
(1− cos θij) min

(
E2
i , E

2
j

)
. (4.2)

For massless particles this is equal to

yij =
M2

ij

Q2
min

(
Ei
Ej
,
Ej
Ei

)
. (4.3)

The final states with the smallest yij, given that it is less than a resolution parameter

yc, are combined according to a combination prescription. This process is repeated until

all pairs have yij > yc. In Fig. 4.3 we illustrate the two-jet regions in QCD as defined

by the JADE, SW and k⊥ algorithms. The SCET regime for the two-jet cross section
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corresponds to choosing the parameters δ, β, j or yc to be much less than one in the

respective jet definition.

For the two jet JADE cross section, for example, integrating k+
3 in the soft sector

all the way up to Q, as in Fig. 4.3(a), corresponds to integrating the gluon momentum

far above the cutoff. In the EFT, the upper limit of integration should therefore be

replaced by an ultraviolet cutoff. Indeed, while the regions of integration for the various

jet definitions are quite complicated, as far as the soft gluon is concerned they should have

no structure above the soft scale. A similar situation holds for collinear gluons, where

the effective cutoffs in the perpendicular and anti-collinear directions are parametrically

smaller than Q.

At O(αs), the JADE algorithm corresponds to a cut on the invariant masses Mij of

each pair of partons: if M2
ij < jQ2, the partons are considered to lie in the same jet, and

the event is a two-jet event. The constraints in full QCD shown in Fig. 4.3(a) are

M2
qg

Q2
=

p+
3

Q− p−3
< j,

M2
q̄g

Q2
=
p−3
Q
− p+

3 p
−
3

Q(Q− p−3 )
< j,

M2
qq̄

Q2
=
Q− p−3 − p+

3

Q
< j. (4.4)

Expanding these constraints in the n-collinear sector, we find

M2
qg

Q2
=

k+
3

Q− p−3
< j,

M2
q̄g

Q2
=
p−3
Q

< j,
M2

qq̄

Q2
=
Q− p−3
Q

< j (4.5)

while in the soft sector we obtain

M2
qg

Q2
=
k+

3

Q
< j,

M2
q̄g

Q2
=
k−3
Q

< j (4.6)

(while the constraint M2
qq̄ < jQ2 is never satisfied). Finally, in order to avoid double-

counting of the soft sector, the zero-bin of the collinear region must be subtracted [40].

Taking the soft limit of the n-collinear region in Eq. (4.5) gives the same region as the

soft sector, Eq. (4.6). The corresponding regions of phase-space are shown in Fig. 4.4(a,

b).

We note that, as required, the phase space contains no explicit reference to any scales

above the cutoff of the theory and has no structure above this scale.
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(a) (b)

Figure 4.4: Phase space corresponding to two-jet events using the JADE algorithm in

(a) the n-collinear gluon sector, and (b) the soft gluon and zero-bin sectors. The thick

arrows indicate integrations to infinity.

(a) (b) (c)

Figure 4.5: Phase space corresponding to two-jet events using the SW algorithm in (a)

the n-collinear gluon sector, (b) the soft gluon sector, and (c) the zero-bin sector. As

before, the thick arrows indicate integrations to infinity.
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(a) (b) (c)

Figure 4.6: As Fig. 4.5, but using the k⊥ algorithm.

Jet Definition n-collinear regions soft regions zero-bin regions

JADE k+
3 < j(Q− p−3 ) k+

3 < jQ k+
3 < jQ

p−3 < jQ k−3 < jQ k−3 < jQ

p−3 > Q(1− j)

SW k+
3 < p−3

(Q−p−3 )2

Q2 δ2 k+
3

k+
3 +k−3

< δ2 k+
3 < δ2p−3

p−3 < 2βQ
k−3

k+
3 +k−3

< δ2 p−3 < 2βQ

p−3 > (1− 2β)Q k+
3 + k−3 < 2βQ

k⊥ min
(
k+

3

p−3
,

k+
3 p
−
3

(Q−p−3 )2

)
< yc

(
k+

3 + k−3
)
k+

3 < ycQ
2 k+

3 p
−
3 < ycQ

2

(p−3 )2 < ycQ
2

(
k+

3 + k−3
)
k−3 < ycQ

2 (p−3 )2 < ycQ
2

(Q− p−3 )2 < ycQ
2

Table 4.1: Two-jet regions of three-body phase space for JADE, Sterman-Weinberg (SW)

and k⊥ jet algorithms.
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Similar constraints in the soft, collinear and zero-bin sectors are easily obtained for

the SW and k⊥ definitions, and are summarized in Table 4.1. Note that in both SW and

k⊥, the zero-bin region is not the same as the soft region, since taking the soft limit of

the n-collinear phase space is not the same as taking the soft limit of the full QCD phase

space. The corresponding regions are illustrated in Figs. 4.5 and 4.6.

Note that we have not had to specify the SCET expansion parameter λ in order to

expand the phase space in the soft and collinear sectors; we have only assumed that

λ � 1 so that the multipole expansion is valid. Similarly, we have not assumed any

relative scaling between β and δ in the SW jet definition.

4.3 Dijet Rates to O(αs)

In this section we calculate the NLO dijet rate (denoted f2) in the JADE, SW and k⊥

schemes in SCET, which is straightforward to do given the phase space regions of the

previous section. We show that in each case SCET reproduces full QCD, as it must, up

to power corrections. We examine the scales that appear in the soft and collinear cross

sections, where the power counting parameter λ is determined by the dynamics in each

algorithm. It is instructive to note the cancellation of ultraviolet divergences between

the soft and collinear real emission contributions. We also consider the infrared safety of

the soft and collinear rates separately.

At O(αs) the only contribution to the dijet rate comes from the two-jet SCET operator

O2 = ξ̄nWnγ
µW †

n̄ξn̄. The matching calculation from the full QCD current ψ̄γµψ onto O2

has been performed many times in the literature [69, 67, 12], with the Wilson coefficient

C2 = 1 +
αsCF

2π

(
−1

2
ln2 µ2

−Q2
− 3

2
ln

µ2

−Q2
− 4 +

π2

12

)
(4.7)

and the MS counterterm

Z2 = 1 +
αsCF

2π

(
1

ε2
+

3

2ε
+

1

ε
ln

µ2

−Q2

)
(4.8)
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where we are working in d = 4− 2ε dimensions. The SCET differential cross section for

soft gluon emission is given by

1

σ0

dσs =
αsCF

2π

µ2εeεγE

Γ(1− ε)
dk+

3 dk
−
3

2 θ(k+
3 k
−
3 )

(k+
3 )1+ε(k−3 )1+ε

(4.9)

while for n-collinear gluon emission it is

1

σ0

dσn =
αsCF

2π

µ2εeεγE

Γ(1− ε)
dk+

3 dp
−
3

(p−3 k
+
3 )−ε

Qk+
3

(
p−3
Q

(1− ε) + 2
Q− p−3
p−3

)
(4.10)

where σ0 = (4πα2/Q2)
∑

f e
2
f is the leading order Born cross section with a sum over

the (anti-)quark charges ef . The dependence on ~k⊥3 and ~p⊥3 has been eliminated via the

gluon on-shell condition, and the integral over the 2 − 2ε perpendicular components of

the gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin region, dσn0, is obtained by taking

the soft limit of Eq. (4.10), which is the same as the soft rate,

dσn0 = dσs. (4.11)

(There are also zero-bin regions corresponding to the quark and antiquarks becoming

soft, but they are higher order in λ and we will not consider them here.) For the n-

collinear region there are two zero-bins: p−3 → 0 and p−1 → 0, but the contribution to

the cross section from the latter is of higher order in λ and so we will not consider them

here.

4.3.1 JADE

Integrating the soft rate over the soft dijet region (4.6) in the JADE definition gives

1

σ0

σsJADE =
αsCF

2π

(
− 2

ε2
− 2

ε
ln

µ2

j2Q2
− ln2 µ2

j2Q2
+
π2

6

)
where we have taken j � 1 and kept only the leading terms in j. Integrating the

n-collinear rate over the region (4.5), we find

1

σ0

σ̃nJADE =
αsCF

2π

(
3

2ε
+

2

ε
ln j +

3

2
ln

µ2

jQ2
+ 2 ln

µ2

Q2
ln j − 3 ln2 j − π2

3
+

7

2

)
(4.12)
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where the tilde denotes that the zero-bin has not been subtracted. The rate in the zero-

bin region is identical to that in the soft region, and so the zero-bin subtracted result for

the emission of an n-collinear gluon is

1

σ0

σnJADE =
1

σ0

(σ̃nJADE − σn0
JADE) =

1

σ0

(σ̃nJADE − σsJADE)

=
αsCF

2π

(
2

ε2
+

3

2ε
+

2

ε
ln

µ2

jQ2
+

3

2
ln

µ2

jQ2

+ ln2 µ2

jQ2
− π2

2
+

7

2

)
. (4.13)

The emission of a collinear gluon in the n̄ direction, i.e. from the anti-quark, can be

calculated in a similar way, and it gives the same contribution.

In pure dimensional regularization, all the virtual vertex corrections and the wave-

function renormalizations involve scaleless integrals and thus vanish. Hence we only need

to add up the real emission contributions:

1

σ0

σRJADE =
1

σ0

(
(σ̃nJADE − σn0

JADE) + (σ̃n̄JADE − σn̄0
JADE) + σsJADE

)
=

1

σ0

(σ̃nJADE + σ̃n̄JADE − σsJADE)

=
αsCF

2π

(
2

ε2
+

3

ε
+

2

ε
ln
µ2

Q2
− 2 ln2 j + ln2 µ

2

Q2

+3 ln
µ2

jQ2
− 5π2

6
+ 7

)
. (4.14)

Note that the soft contribution enters into the final expression with a minus sign. This is

a consequence of zero-bin subtraction and the fact that zero-bins are identical to the soft

contribution. Similar observations have been pointed out in [70, 71, 72]. The divergent

terms in Eq. (4.14) are cancelled by the counter term |Z2|2, and including the Wilson

coefficient, |C2|2, gives the two-jet fraction

fJADE
2 =

|C2|2

|Z2|2

(
1 +

1

σ0

(σnJADE + σn̄JADE + σsJADE)

)
= 1 +

αsCF
2π

(
−2 ln2 j − 3 ln j +

π2

3
− 1

)
.

This result agrees with the full QCD calculation given in [73, 74].
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It is instructive to comment on a few details of the SCET result. First of all, since

dimensional regularization regulates both the infrared and ultraviolet divergences, the

cancellation of ultraviolet divergences between the soft and collinear emissions is not

explicit. To show how this works, we can repeat the calculation with the quark and

anti-quark offshell, p2
1, p

2
2 ∼ λ2 6= 0, so that all 1/ε divergences in the calculation are

ultraviolet. The calculation is given in Appendix 4.A. The resulting rate for soft gluon

emission over the JADE phase space is

1

σ0

σsJADE =
αsCF

2π

(
−2

ε

(
ln

p2
1

jQ2
+ ln

p2
2

jQ2

)
+

(
ln
p2

1

Q2
+ ln

p2
2

Q2

)2

− 2

(
ln
p2

1

Q2
+ ln

p2
2

Q2

)
ln
µ2

Q2

)
+ · · ·

where the ellipses denote finite constant terms which are not relevant for the discussion.

The unsubtracted n-collinear cross section is

1

σ0

σ̃nJADE =
αsCF

2π

(
− 2

ε2
+

2

ε

(
ln

p2
1

jQ2
− ln

µ2

j2Q2

)
− ln2 p

2
1

Q2
+ 2 ln

µ2

Q2
ln
p2

1

Q2
+

3

2
ln
p2

1

Q2

)
+ . . . (4.15)

while the zero-bin region gives

1

σ0

σn0
JADE =

αsCF
2π

(
− 2

ε2
− 2

ε
ln

µ2

j2Q2

)
+ . . . . (4.16)

Thus, the zero-bin subtracted n-collinear cross section is

1

σ0

σnJADE =
αsCF

2π

(
2

ε
ln

p2
1

jQ2
− ln2 p

2
1

Q2
+ 2 ln

µ2

Q2
ln
p2

1

Q2
+

3

2
ln
p2

1

Q2

)
+ . . . .

The result for n̄-collinear gluon emission will be the same as that for n-collinear gluon

emission with the replacement p2
1 → p2

2. Note that the 1/ε2 divergence from collinear

emission is removed by the zero-bin. Combining the real emission contributions to the

JADE cross section, Eq. (4.17), we see that while the phase-space integrals for soft and

collinear gluon emission are individually ultraviolet divergent, with mixed ultraviolet

infrared divergent terms, the ultraviolet divergences cancel in the sum:

1

σ0

σRJADE =
αsCF

2π

(
2 ln

p2
1

Q2
ln
p2

2

Q2
+

3

2
ln
p2

1

Q2
+

3

2
ln
p2

2

Q2

)
+ . . . .
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This is the same cancellation which occurs at the one-loop level in SCET [6], in which

separately ultraviolet and infrared divergent terms cancel in the sum of the soft and

collinear graphs.

The soft and collinear sectors are also individually infrared finite for the JADE algo-

rithm. The soft virtual vertex correction is given by [12], and contributes equally to the

two-jet rate in all definitions

1

σ0

σsV =
αsCF

2π

(
− 2

ε2
− 2

ε
ln

(
−µ

2Q2

p2
1p

2
2

)
− ln2

(
−µ

2Q2

p2
1p

2
2

))
+ . . . . (4.17)

The soft wavefunction renormalization graphs are zero and so the cross section in the

soft sector is given by

1

σ0

(σsJADE + σsV ) =
αsCF

2π

(
− 2

ε2
− 4

ε
ln

µ

jQ

)
+ . . . . (4.18)

The result is purely ultraviolet divergent and agrees with the pure dimensional regular-

ization calculation in Eq. (4.12). The collinear contribution is similarly free of infrared

divergences.

Second, we note that the scale at which the logarithms in the NLO n-collinear rate are

minimized, µ =
√
jQ, determines the collinear or jet scale in SCET, λQ, and that without

the zero-bin subtraction there is no value of µ at which the logarithms in Eq. (4.12) are

minimized. The logarithms in the soft rate (4.12) are minimized at µ = jQ, the expected

soft scale in SCET, λ2Q. From Fig. 4.4 we see that jQ is the relevant soft scale that

emerges from the multipole expansion of the JADE phase space constraints. However,

as we shall see from the SW two-jet soft rate, this is not universally the case. The

true soft scale depends on the details of the soft theory, which is not addressed here.

Furthermore the calculation of the leading logarithmic contribution in full QCD [75, 74]

shows that the resummed result is not simply given by the exponentiation of the NLO

term. It has been demonstrated that the emission of two soft gluons with large angular

separation can be combined to constitute a third jet in the JADE clustering algorithm.

These types of configurations change the leading-logarithmic two jet fraction and spoil
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naive exponentiation, as the emission of subsequent soft gluons qualitatively changes the

phase space constraints. These configurations also involve the parametrically lower scale

j2Q [75], which complicates the summing of logarithms of j. However, this effect does

not arise until O(α2
s), which is beyond the order to which we are working.

Finally, it is instructive to look more closely at the zero-bin subtractions in different

regions of phase space. In particular, while the n-collinear region of integration naturally

describes the region where the n-collinear quark and gluon form a jet (see Fig. 4.4(a)),

it also includes regions where the antiquark and the gluon, as well as the quark and

the antiquark, form jets. In order for an n-collinear gluon to form a jet with an n̄-

collinear antiquark, the gluon must be soft, and as a result one would expect the entire

contribution from this region of phase space to be cancelled by the zero-bin subtraction.

Similarly, the region where the n-collinear quark and n̄-collinear antiquark form a jet

should be cancelled by the corresponding quark and antiquark zero-bins; however, these

are subleading in j. We show below that this is indeed the case at O(αs).
2

The region where the n-collinear gluon and n̄-collinear quark form a jet in the JADE

algorithm is defined by the region

k+
3 > p−3

(Q− p−3 )

Q
, 0 < p−3 < jQ (4.19)

and integrating the differential rate (4.10) over this region gives

αsCF
2π

(
− 1

ε2
− 2

ε
ln

µ

jQ
+
π2

12
− 2 ln2 µ

jQ

)
(4.20)

where, as usual, we have dropped terms subleading in j. The zero-bin constraints for the

same jet are

k+
3 > k−3 , 0 < k−3 < jQ (4.21)

and integrating the differential rate (4.11) over this region and expanding in j gives the

same result as (4.20). Hence this region is entirely zero-bin and is absent from the n-

collinear rate, thereby reducing the combinations of partons that need to be considered.

2We thank S. Freedman for this observation.
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Similarly, the region where the quark and antiquark form a jet is

k+
3 >

(Q− p−3 )2

Q
, Q(1− j) < p−3 < Q (4.22)

and integrating Eq. (4.11) over this region gives a result of order j, and so the rate

vanishes to the order we are working. We expect that such cancellations will continue

beyond leading order, simplifying the combinatorics of clustering multi-gluon states.

4.3.2 Sterman-Weinberg and k⊥ Jet Definitions

It is straightforward to repeat the calculations of the previous section for the SW and

k⊥ jet definitions. However, each of these algorithms introduces additional features not

present in the JADE calculation: the relevant scales are different and in both cases

the zero-bin contribution is distinct from the soft contribution. Furthermore, in the k⊥

definition the soft and collinear rates are not individually infrared safe using dimensional

regularization to regulate the ultraviolet, indicating that the rate does not factorize into

well-defined soft and collinear contributions in this scheme in SCET.

SW

Jets in the SW definition were studied in SCET in [62, 63, 67]. In these papers it was

argued that because the kinematic cuts on the soft phase space were much larger than

the typical soft scale, the soft phase space integral should be unrestricted. In [62, 63] this

is because the scaling β ∼ δ is chosen, while in [67] β is taken to be of order δ2, but the

soft scale is taken to be ΛQCD. Our results differ, as we have not assumed any relative

scaling between βQ, δQ and ΛQCD, and we argue that SCET power counting uniquely

requires the restricted soft phase space in Fig. 4.5(b). (We expect, however, that if β ∼ δ,

SCET should be matched at a lower scale onto a new effective theory with unrestricted

soft phase space.)

Integrating the differential cross section in Eq. (4.9) over the phase space generated
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by the corresponding constraints, we find

1

σ0

σsSW =
αsCF

2π

(
4

ε
ln δ − 4 ln2 δ + 8 ln δ ln

µ

2βQ
− π2

3

)
.

By introducing quark and anti-quark off-shellnesses as we did for the JADE algorithm, it

can be shown that the total soft contribution, (σsSW + σsV ) /σ0, is infrared finite, and the

1/ε terms are ultraviolet divergences. The logarithms in Eq. (4.23) cannot be minimized

for any choice of µ since there is a large ln δ in the 1/ε term. (See, however, [76] in which

factorization and resummation in the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (4.10) over the phase space given by the collinear SW constraints, we

find the näıve n-collinear contribution to be

1

σ0

σ̃nSW =
αsCF

2π

(
1

ε

(
3

2
+ 2 ln 2β

)
+ 3 ln

µ

δQ
+ 2 ln 2β ln

µ2

2βδ2Q2
+

13

2
− 2π2

3

)
.

Note that there is no reasonable scale µ at which all the logarithms are minimized. We

now need to subtract the p−3 → 0 zero-bin of the SW n-collinear contribution. Integrating

over the relevant phase space gives us

1

σ0

σn0
SW =

αsCF
2π

(
− 1

ε2
− 2

ε
ln

µ

2βδQ
− 2 ln2 µ

2βδQ
+
π2

12

)
. (4.23)

The zero-bin gives a nontrivial contribution that is not equal to the soft contribution,

because the region of integration generated by taking the collinear and then soft limit is

not the same as taking the soft limit of the QCD SW phase space. It is interesting to

note that the scale in the n-collinear zero-bin, βδQ, corresponds to the p⊥ of a parton

at the edge of the cone with the maximum energy allowed outside the cone, βQ. This

corresponds to the intersection point of Fig. 4.5(c), generated by a consistent expansion

of phase space constraints in the effective theory.

The zero-bin subtracted result for the n-collinear sector is

1

σ0

(σ̃nSW − σn0
SW) =

αsCF
2π

(
1

ε2
+

3

2ε
+

2

ε
ln

µ

δQ
+ 3 ln

µ

δQ
+ 2 ln2 µ

δQ
− 3π2

4
+

13

2

)
where the logarithms are now minimized at µ = δQ, unlike in Eq. (4.23). The collinear

scale, δQ, corresponds to the p⊥ of a parton at the edge of the cone with typical collinear
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energy O(Q). The emission of a collinear gluon in the n̄ direction, i.e. from the anti-

quark, gives the same result.

The n-collinear rate is independent of the jet parameter β, because the phase space

region in Fig. 4.5(b) with a collinear gluon outside the cone with energy less than βQ,

where β � 1, corresponds to the zero-bin. This contribution is entirely removed by

the zero-bin subtraction and Eq. (4.24) is given only by the region where the n-collinear

quark and gluon lie in the cone. This underscores the consistency of the phase space

expansion in Section 4.2 and the zero-bin prescription. The soft sector resolves the cone

in addition to the scale βQ and gives rise to the double logarithm cross term in the SW

result below.

Combining these results gives

fSW
2 =

|C2|2

|Z2|2

(
1 +

2

σ0

(σ̃nSW − σn0
SW) +

1

σ0

σsSW

)
= 1 +

αsCF
π

(
−4 ln 2β ln δ − 3 ln δ − π2

3
+

5

2

)
in agreement with the full QCD calculation [18].

k⊥

The k⊥ two-jet rate in SCET reveals a more subtle cancellation of divergences than the

previous two algorithms and highlights again the importance of zero-bin subtractions.

Integrating the differential cross section for the emission of a soft gluon over the soft

phase space in Fig. 4.6(b), we find that σsk⊥ is not regulated in dimensional regularization.

Performing the k+
3 integral first over the q̄g jet region of phase space, we obtain a term

proportional to
dσsk⊥
dk−3

∝
(
Q2yc − (k−3 )2

)−ε
ε k−3

+ · · · , (4.24)

where the ellipses denote terms which are finite in d = 4 − 2ε dimensions. This term

causes the k−3 integration to diverge at zero. A similar problem arises when integrating

over the soft region generated by the qg jet constraint. Despite this divergence, the total
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two-jet cross section is finite in QCD and so must be finite in SCET. The region that

gives rise to this divergence is also integrated over in the zero-bin calculations and since

the soft and zero-bin integrands are the same the divergence cancels in the difference.

Integrating the soft differential rate over the combined soft and zero-bin regions gives a

finite result in d dimensions:

1

σ0

(σsk⊥ − σ
n0
k⊥
− σn̄0

k⊥
) =

αsCF
2π

(
2

ε2
+

2

ε
ln

µ2

ycQ2
+ ln2 µ2

ycQ2
− π2

3

)
where we see the soft scale

√
ycQ appear as in Fig. 4.6. We combine this with the rate

to produce an n-collinear gluon,

1

σ0

σ̃nk⊥ =
αsCF

2π

(
1

ε

(
3

2
+ ln yc

)
+ ln

µ2

ycQ2

(
3

2
+ ln yc

)
− 3 ln 2− π2

3
+

7

2

)
(4.25)

to obtain the total two-jet rate for emission of a real gluon

1

σ0

(σ̃nk⊥ + σ̃n̄k⊥ + σsk⊥ − σ
n0
k⊥
− σn̄0

k⊥
)

=
αsCF

2π

(
2

ε2
+

1

ε

(
2 ln

µ2

Q2
+ 3

)
+ ln2 µ

2

Q2
+ 3 ln

µ2

Q2
− ln2 yc − 3 ln yc − 6 ln 2− π2 + 7

)
where again n and n̄ collinear gluon emission give the same contribution and the virtual

piece vanishes. Including the counter-term Z2 and the Wilson coefficient C2, we reproduce

the known NLO k⊥ result [74]

fk⊥2 = 1 +
αsCF

2π

(
− ln2 yc − 3 ln yc − 6 ln 2 +

π2

6
− 1

)
.

This calculation re-emphasizes the importance of zero-bin subtraction: without it, the

evaluation of a finite fk⊥2 would not be possible. Since the soft and collinear cross sections

are not regulated in dimensional regularization, it is useful to regulate the infrared and

ultraviolet divergences separately by taking the outgoing quark and antiquark off-shell.

The resulting rate for soft gluon emission then becomes

1

σ0

σsk⊥ =
αsCF

2π
ln2 p2

1p
2
2

Q4 yc
+ . . . . (4.26)
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Note that unlike the previous algorithms, the soft real emission result is not ultraviolet

divergent. Combining this with the contribution from the soft virtual vertex correction

(4.17) gives

1

σ0

(
σsk⊥ + σsV

)
=
αsCF

2π

(
− 2

ε2
− 2

ε
ln
µ2Q2

p2
1p

2
2

+ 2 ln
p2

1p
2
2

Q4
ln

µ2

ycQ2

)
+ . . . . (4.27)

This shows explicitly that the rate in the soft sector is not infrared safe.

The rate for n-collinear gluon emission and the zero-bin are, respectively,

1

σ0

σ̃nk⊥ =
αsCF

2π

(
− 2

ε2
− 2

ε
ln

µ2

p2
1

√
yc
− ln2 µ

2

p2
1

+
3

2
ln

p2
1

Q2yc

)
+ . . .

1

σ0

σn0
k⊥

=
αsCF

2π

(
− 2

ε2
− 2

ε
ln

µ2

p2
1

√
yc

+ ln2 p2
1

ycQ2
− ln2 µ

2

p2
1

)
+ . . . . (4.28)

and their difference gives us the zero-bin subtracted result

1

σ0

σnk⊥ =
αsCF

2π

(
− ln2 p2

1

ycQ2
+

3

2
ln

p2
1

ycQ2

)
+ . . . .

(4.29)

As with the soft sector, the phase-space integration for the n-collinear real emission is

ultraviolet finite but infrared divergent. Combining the real emission contributions to

the k⊥ two-jet cross section, we find

1

σ0

σRk⊥ =
1

σ0

(σnk⊥ + σn̄k⊥ + σsk⊥)

=
αsCF

2π

(
3

2

(
ln
p2

1

Q2
+ ln

p2
2

Q2

)
+ 2 ln

p2
1

Q2
ln
p2

2

Q2

)
+ . . . . (4.30)

The infrared divergences in Eq. (4.30) are completely cancelled by the total virtual con-

tribution σV given in Eq. (4.40). As expected, the virtual graphs convert the infrared

divergences in the real emission diagrams into ultraviolet ones. While SCET reproduces

the known NLO k⊥ result, the soft and collinear rates are not independently infrared

safe, indicating for the k⊥ phase space the soft and collinear modes do not factorize in

SCET using dimensional regularization to regulate the ultraviolet.
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4.4 Factorization and Scheme-Dependence

It is useful to examine the failure of SCET to factorize the k⊥ rate into separately infrared

safe soft and collinear pieces, particularly given the fact that the regions of integration for

the soft gluons are quite similar in the infrared between k⊥ and JADE. Instead, the bad

behaviour in Eq. (4.24) comes from the region of large k+ and small k− and vice-versa -

a region which is infrared divergent, but sensitive to the ultraviolet regulator. Since, as

we have shown, the ultraviolet divergences in the phase space integrals cancel between

the soft and collinear degrees of freedom, this is an unphysical region, and so cancels

from the total rate. The same cancellation occurs at the one-loop level, in which terms of

order 1/εUV ln p2
i cancel between soft and collinear graphs [6]. However, this unphysical

region can also be eliminated by defining the soft function with a cutoff Λf . In particular,

we show in this section that while the k⊥ algorithm in dimensional regularization does

not factorize in SCET into separate infrared safe contributions, regulating the ultraviolet

with a cutoff on the light-cone components of the gluon momentum,

|k+| < Λf , |k−| < Λf (4.31)

results in an infrared safe soft function.

Integrating the soft rate over the relevant region for k⊥, including the cutoff (4.31),

and continuing to work in d dimensions to regulate the infrared, we find for real soft

gluon emission

1

σ0

σsk⊥ =
αsCF

2π

(
2

ε2
+

2

ε
ln
µ2

Λ2
f

− ln2 ycQ
2

Λ2
f

+ ln2 µ
2

Λ2
f

− π2

3

)

Similarly, the same regulator for soft real gluon emission in the JADE algorithm gives

1

σ0

σsJADE =
αsCF

2π

(
2

ε2
+

2

ε
ln
µ2

Λ2
f

− 1

2
ln2 j

2Q2

Λ2
f

+ ln2 µ
2

Λ2
f

− π2

6

)

Note that with a cutoff, the 1/ε2 and Sudakov double logs ln2 j and ln2 yc are entirely

contained within the soft function, as opposed to pure dimensional regularization, in
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which the collinear graphs also contain double logs. This is in agreement with [75, 74],

where the Sudakov logs are calculated entirely from the soft graphs.

The soft virtual vertex correction with a cutoff of Λf in |k+| and |k−| gives a modified

vertex correction

σsV =
αsCF

2π

(
− 2

ε2
− 2

ε
ln
µ2

Λ2
f

− ln2 µ
2

Λ2
f

+
π2

6

)
(4.32)

giving the finite results

1

σ0

(
σsk⊥ + σsV

)
= −αsCF

2π

(
ln2 ycQ

2

Λ2
f

+
π2

6

)
.

1

σ0

(σsJADE + σsV ) = −αsCF
4π

ln2 j
2Q2

Λ2
f

. (4.33)

Note that the infrared divergences cancel between the real and virtual graphs, and

that there are no large logs in the soft function for Λf of order the relevant soft scale, jQ

or
√
ycQ.

These results demonstrate the fact that factorization of rates in SCET into soft and

collinear components is scheme-dependent. Such dependence on infrared regulators was

also noted in a different context in [11] and [77]. Using the method introduced in [11]

to test infrared safety at one loop, one would conclude that the soft contribution to the

k⊥ rate is infrared divergent. This differs from our results, because, as we have shown,

the infrared safety of the soft function is ultraviolet regulator dependent. Introducing a

cutoff removes the unphysical region of k± → 0 and k∓ → ∞ and results in an infrared

safe soft contribution to the two-jet k⊥ rate.3 The bad behaviour of k⊥ in dimensional

regularization in SCET is therefore a feature of dimensional regularization, not of SCET.

The factorization for jet rates depends on the ultraviolet regulator of the theory as well

as the infrared.

3Similarly, the NLO soft function for angularities, τa, for 1 < a < 2 integrated over τa between 0 and
1 can be shown to be infrared finite if defined with an ultraviolet cutoff.
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4.5 Conclusion

We have presented a consistent treatment of phase-space integrals over soft and collinear

degrees of freedom in SCET, illustrating this with the explicit example of the NLO dijet

rate for three different jet algorithms. In this approach the phase space for different modes

in the effective theory are insensitive to details above their cutoff, giving real emission

contributions with ultraviolet divergences which cancel between the collinear and soft

sectors. Although the leading order SCET Lagrangian separates soft and collinear modes

and the differential cross section has been shown to factorize, we demonstrated that using

dimensional regularization the k⊥ algorithm does not factorize into infrared safe soft and

collinear rates. We showed that this is related to a divergence in an unphysical region

which cancels between the soft and collinear sectors, and is sensitive to the ultraviolet

regulator.

Zero-bin subtraction is necessary to consistently integrate over the phase space con-

figurations that need to be considered in a given jet algorithm. The zero-bin subtraction

was shown to entirely remove regions of the näıve collinear rate where n and n̄ collinear

degrees of freedom form a jet at NLO in the JADE algorithm and for collinear par-

tons outside the cone in SW. The k⊥ and SW dijet rates provide nontrivial examples of

zero-bin subtraction, which are different from the soft contribution.

We have not attempted to sum logarithms of the small jet parameters at this stage.

While the running of C2 makes summing some of the logarithms straightforward, the soft

physics in these theories is more complicated. For example, the JADE algorithm is known

not to exponentiate: there are three-jet configurations which contribute at O(α2
s ln4 j) in

which two gluons, which would naıv̈ely be unresolved from the quarks, are combined to

form a third jet [75]. Such configurations have no simple relation to the one-gluon phase

space and are not obtained by exponentiating the one-loop result. From an effective field

theory viewpoint, these configurations also involve the scale j2Q, which is parametrically

smaller than the soft scale jQ. The soft function for the SW algorithm, in contrast,
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näıvely has an anomalous dimension of order ln δ, and so large logarithms of δ cannot be

resummed in this formulation of the low-energy theory.

4.A Offshell calculations

The SCET differential cross section for soft gluon emission and offshell quarks, p2
1, p

2
2 6= 0,

is

1

σ0

dσs =
αsCF

2π

µ2εeεγE

Γ(1− ε)
θ(k+

3 k
−
3 ) dk+

3 dk
−
3

2Q2 (k+
3 k
−
3 )−ε

(Qk+
3 + p2

1)(Qk−3 + p2
2)
, (4.34)

where p2
1 = Qk+

1 , p2
2 = Qk−2 and p2

3 = 0. The JADE two-jet constraints become

M2
13

Q2
=
Qk+

3 + p2
1

Q2
< j,

M2
23

Q2
=
Qk−3 + p2

2

Q2
< j,

M2
12

Q2
= 1 (4.35)

and integrating over the soft phase space gives

1

σ0

σsJADE =
αsCF

2π

(
1

ε

(
4 ln j − 2 ln

p2
1

Q2
− 2 ln

p2
2

Q2

)
+

(
ln
p2

1

Q2
+ ln

p2
2

Q2

)2

− 2

(
ln
p2

1

Q2
+ ln

p2
2

Q2

)
ln
µ2

Q2

)
+ · · · (4.36)

where the ellipses denote finite constant terms.

Similarly, the SCET differential cross section for n-collinear gluon emission with off-

shellness is

1

σ0

dσn =
αsCF

2π

µ2εeεγE

Γ(1− ε)
dk+

3 dp
−
3 (p−3 k

+
3 )−ε

(
(1− ε) p−3 k+

3

(p2
1 +Qk+

3 )2
+

2(Q− p−3 )

p−3 (p2
1 +Qk+

3 )

)
and the corresponding JADE two-jet constraints are

M2
13

Q2
=

Qk+
3 + p2

1

Q(Q− p−3 )
< j,

M2
23

Q2
=
Qp−3 + p2

2

Q2
< j,

M2
12

Q2
=

Q(Q− p−3 ) + p2
1 + p2

2

Q2
< j. (4.37)

Note that the off-shellnesses in M2
23 and M2

12 are suppressed with respect to the label

momenta and thus can be dropped. Integrating Eq. (4.37) over the phase space given by
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these constraints, we find

1

σ0

σ̃nJADE =
αsCF

2π

(
− 2

ε2
+

1

ε

(
2 ln j + 2 ln

p2
1

Q2
− 2 ln

µ2

Q2

)
− ln2 p

2
1

Q2
+ 2 ln

µ2

Q2
ln
p2

1

Q2
+

3

2
ln
p2

1

Q2

)
+ . . . .

The p−3 → 0 zero-bin for the n-collinear differential cross section is obtained from

Eq. (4.37) by taking the soft limit:

1

σ0

dσn0 =
αsCF

2π

µ2εeεγE

Γ(1− ε)
dk+

3 dp
−
3 (p−3 k

+
3 )−ε

2Q

p−3 (p2
1 +Qk+

3 )
. (4.38)

The JADE constraints for this zero-bin are the same as the soft ones in Eq. (4.35).

Performing the phase space integration gives

1

σ0

σn0
JADE =

αsCF
2π

(
− 2

ε2
− 2

ε
ln

µ2

j2Q2

)
+ . . . . (4.39)

The zero-bin subtracted result, which is the difference betweem Eq. (4.38) and Eq. (4.39),

is not particularly illuminating. It should be noted, however, that this zero-bin subtrac-

tion gets rid of the 1/ε2 term, which is also absent in the contribution from soft gluon

emission in Eq. (4.36). Thus the total contribution from real gluon emission is free of such

terms. The result for n̄-collinear gluon emission will be the same as that for n-collinear

gluon emission with p2
1 → p2

2. Combining the real emission contributions to the JADE

cross section gives

1

σ0

σRJADE =
1

σ0

(
(σ̃nJADE − σn0

JADE) + (σ̃n̄JADE − σn̄0
JADE) + σsJADE

)
=

αsCF
2π

(
2 ln

p2
1

Q2
ln
p2

2

Q2
+

3

2
ln
p2

1

Q2
+

3

2
ln
p2

2

Q2

)
+ . . . .

Notice that this result is free of ultraviolet divergences, and off-shellness is regulating all

of its infrared divergences. The collinear and the soft sectors are individually ultraviolet

divergent, but these ultraviolet divergences arising from the phase space cancel completely

with one another in the sum.

With off-shellness, the virtual diagrams are no longer zero, and they have been pre-

viously calculated with off-shellness, for example in [69] for deep inelastic scattering and
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in [12] for e+e− annihilation. The zero-bin subtractions of the collinear virtual graphs

also vanish with this regulator [40, 72]. At the amplitude level, we sum up all the virtual

vertex corrections and subtract half the wavefunction renormalization for each external

(anti-)quark:

IV =
αsCF

4π

(
2

ε2
+

3

ε
− 2

ε
ln
−Q2

µ2
− 2 ln

p2
1

Q2
ln
p2

2

Q2

− 3

2
ln
p2

1

Q2
− 3

2
ln
p2

2

Q2

)
+ . . . . (4.40)

The virtual graphs’ contribution to the two-jet rate is σV = 2Re(IV ). We can then see

that the IR divergences from real gluon emission in Eq. (4.40) will be completely cancelled

by the virtual contributions, and the UV divergent terms in σV will be cancelled by the

counter term |Z2|2.

We can also focus on the soft sector to investigate its IR safety. The soft virtual

vertex correction is given by [12]:

IsV =
αsCF

4π

(
− 2

ε2
− 2

ε
ln

(
−µ

2Q2

p2
1p

2
2

)
− ln2

(
−µ

2Q2

p2
1p

2
2

))
+ . . . . (4.41)

The soft wavefunction renormalisation graphs are zero, so in the soft sector, the soft

virtual vertex correction and the soft gluon bremstrahhlung are the only two diagrams

we need to add:

1

σ0

(σsJADE + σsV ) =
αsCF

2π

(
− 2

ε2
− 4

ε
ln

µ

jQ

)
+ . . . . (4.42)

This agrees with our pure dimensional regularization calculation in Eq. (4.12). This also

shows that the rate in the soft sector is infrared finite. The collinear contribution is also

IR safe because the sum of all sectors is free of infrared divergences.

k⊥: The k⊥ phase space regions shown in Table 4.1 are not affected by the introduction

of the off-shellnesses, with the only exception that the constraint

min

(
k+

3

p−3
,

k+
3 p
−
3

(Q− p−3 )2

)
< yc (4.43)
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is slightly modified to

min

(
Q− p−3
p−3

,
p−3

Q− p−3

)
Q2k+

3 + p−3 p
2
1

Q2(Q− p−3 )
< yc. (4.44)

The calculation is otherwise straightforward.



Chapter 5

Light Octet Scalars, a Heavy Higgs

and Minimal Flavour Violation

This chapter was originally published in “Light Octet Scalars, a Heavy Higgs and Minimal

Flavour Violation”, [30].

5.1 Introduction

Most physicists believe that new physics beyond the Standard Model (SM) awaits dis-

covery at the LHC, and experiments at the Large Hadron Collider (LHC) will soon probe

the weak scale and (hopefully) reveal the nature of whatever new physics lies beyond the

Standard Model. Since the Higgs sector is among the least understood in the SM, new

scalar physics could well be what is found.

However, to be found at the Tevatron or the LHC, any such new scalar physics should

be associated with a comparatively low scale, Λ ∼ TeV. And because the scale is low,

it must be checked that the new physics cannot contribute to processes that are well-

measured and agree well with the SM, such as electroweak precision data (EWPD) and

flavour-changing neutral currents (FCNCs). This suggests taking most seriously those

kinds of new physics that suppress such contributions in a natural way. This can be

71
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elegantly accomplished if the effective field theory (EFT) appropriate to low energies

obeys approximate symmetries, such as a custodial symmetry SU(2)C [78, 79, 80] for

EWPD and the principle of minimal flavor violation (MFV) [20, 21, 22, 23, 24, 25],

which suppresses FCNCs when formulated appropriately [81, 82, 83].

Recently, it was discovered [27] that there are comparatively few kinds of exotic

scalars that are flavour singlets and can have Yukawa couplings with SM fermions in a

way that is consistent with MFV. The only two possible scalar representations allowed

are those of the SM Higgs or octet scalars, respectively transforming under the gauge

group SU(3)× SU(2)× U(1) as (1,2)1/2 or (8,2)1/2.

In this chapter we examine what constraints EWPD1, flavour physics, and direct

production constraints place on the general scalar sector consistent with MFV. To this

end we consider the Manohar-Wise model, for which only one (1,2)1/2 scalar and one

(8,2)1/2 scalar are present.

Since it is the quality of SM fits to electroweak precision data that at present provide

our only direct evidence for the existence of the SM Higgs, it is perhaps not surprising

that the existence of a scalar octet can alter the Higgs properties to which such fits point.

In particular, the best-fit value of the Higgs mass obtained from SM fits to EWPD is

now 96+29
−24 GeV [84]. We find that for the Manohar-Wise model, EWPD fits both change

the implications for the Higgs mass, and limit the allowed mass range of the extended

scalar sector.

We find that when the masses of the Higgs and octet scalars are approximately de-

generate, the electroweak fits allow both the Higgs and the octet to be light, with masses

∼ 100 GeV (or even lighter for some components). Alternatively, agreement with EWPD

also allows the octet and the Higgs doublets to be both heavy, with masses ∼ 1 TeV.

The Higgs doublet can be heavy and remain consistent with precision fits because its

1We thank J. Erler for private communication on the recent update to the EWPD fit results related
to [84].
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contribution to the relevant observables is partially cancelled by the contribution of the

octet doublet. Having such a heavy Higgs without ruining electroweak fits is attractive,

as a resolution of the so-called ‘LEP Paradox’ [19]. We find that the precision electroweak

fits generically prefer to limit the splittings among some of the octet components, but

by an amount that does not require fine tuning of parameters in the potential. (The

overall masses of the two multiplets are subject to the usual issues associated with the

electroweak hierarchy.)

The plan of this chapter is as follows, in Section 5.2 we review the Manohar-Wise

model, and describe its motivation as a general scalar sector that can both allow an

approximate custodial symmetry and satisfy MFV. In Section 5.3 we present our results

for the phenomenology of the model. In particular, we describe its implications for an

EWPD fit, and explore the parameter space that allows both doublets to be either light or

heavy. Since the fits prefer a scalar spectrum that is approximately custodially symmetric,

we also study loop-induced SU(2)C breaking, and demonstrate that the allowed parameter

space is not fine tuned. This section also describes direct-production constraints on the

Higgs and octet scalar, coming from both LEP2 and the Tevatron, and reexamines how

previously studied flavour constraints change if the new octets are comparatively light.

We find that the octets can pass all these tests, for parameters with scalars that are

either light or heavy. Some conclusions are briefly summarized in Section 5.4.

5.2 Theory

In this section we recap the main features of the the model, obtained by supplementing

the SM with an colour-octet, SUL(2)-doublet scalar. Particular attention is spent on its

approximate symmetries, since these underly the motivation to naturally satisfy FCNC

and EWPD constraints.
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Motivation for (8,2)1/2 scalars.

Minimal Flavour Violation (MFV) is a framework for having flavour-dependent masses

without introducing unwanted flavour changing neutral currents (FCNCs). It assumes

all breaking of the underlying approximate SU(3)U ×SU(3)D×SU(3)Q flavour symmetry

of the SM is proportional to the up- or down-quark Yukawa matrices. The fact that

only scalars transforming as (8,2)1/2, or as the SM Higgs [27], can Yukawa couple to

SM fermions consistent with MFV is the motivation of the phenomenological study we

present here.

However, we also note that octet scalars appear in many specific new-physics scenar-

ios, including various SUSY constructions [85, 86], topcolour models [87], and models with

extra dimensions [88, 89]. Various approaches to grand unification also have light colour

octet scalars, including Pati-Salam unification [90] and SU(5) unification [91, 92, 93].

Colour octet doublets have also recently been used to study new mechanisms for neutrino

mass generation [94]. Octet scalar doublets appear naturally in models of the Chiral-

Colour [95, 96] type where QCD originates in the chiral colour group SUL(3)× SUR(3),

since in this case octet doublets are expected in addition to the Higgs as 3⊗3̄ = 8⊕1. As

discussed in [97] one can also consider the class of models where the SM is extended with

SU(N)× SU(3)C× SU(2)L×U(1)Y and imagine model-building composite Higgs models

with a (8,2)1/2 scalar in the low energy spectrum. We emphasize that although many

BSM scenarios contain (8,2)1/2 scalars our motivation is essentially phenomenological.

5.2.1 The Manohar-Wise model

In the Manohar Wise model [27], the scalar sector of the SM is supplemented with the

(8,2)1/2 scalar denoted

SA =

 SA
+

SA
0

 (5.1)
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where A is the colour index.

The Yukawa couplings of the (8,2)1/2 scalar to quarks is determined up to overall

complex constants, ηU and ηD, to be

L = ηU g
U
ij ū

i
RT

A(SA)T εQj
L − ηD g

D
ij d̄

i
RT

A(SA)†Qj
L + h.c, (5.2)

where gU and gD are the standard model Yukawa matrices, i, j are flavor indices and

ε =

 0 1

−1 0

 . (5.3)

The most general renormalizable potential [27] is

V =
λ

4

(
H† iHi −

v2

2

)2

+ 2m2
S Tr

(
S† iSi

)
+ λ1H

† iHi Tr
(
S† jSj

)
+ λ2H

† iHj Tr
(
S† jSi

)
+

[
λ3H

† iH† j Tr (SiSj) + λ4H
† i Tr

(
S† jSjSi

)
+ λ5H

† i Tr
(
S† jSiSj

)
+ h.c.

]
+ λ6Tr

(
S† iSiS

† jSj
)

+ λ7Tr
(
S† iSjS

† jSi
)

+ λ8Tr
(
S† iSi

)
Tr
(
S† jSj

)
+ λ9Tr

(
S† iSj

)
Tr
(
S† jSi

)
+ λ10Tr (SiSj) Tr

(
S† iS† j

)
+ λ11Tr

(
SiSj S

† jS† i
)
, (5.4)

where i and j are SU(2) indices and S = SA TA. Since a field redefinition can be used

to make λ3 real, this represents 14 real parameters in the potential beyond those of the

SM, which reduce to 9 in the custodial SU(2) symmetric case — see eqs. (5.9) through

(5.12), below. No new parameters enter in the couplings of the (8,2)1/2 scalar to the

electroweak gauge bosons since it has the same electroweak quantum numbers as the

Higgs. We use this fact to bound the masses of the octets in Section 5.3.1. The λ1,2,3

terms in Eq.(5.4) lift the mass degeneracy of the octet states when the Higgs acquires a

vacuum expectation value. Expanding the neutral scalar octet as

SA 0 =
SA 0
R + iSA 0

I√
2

(5.5)

the tree level masses become [27]

M2
± = M2

S + λ1
v2

4

M2
R = M2

S + (λ1 + λ2 + 2λ3)
v2

4

M2
I = M2

S + (λ1 + λ2 − 2λ3)
v2

4
. (5.6)
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Custodial symmetry

We find below that EWPD fits prefer the masses of some of the scalars in these models

to be approximately degenerate in mass. In particular, fits prefer a mass pattern that

can be naturally understood as being due to an approximate custodial SU(2)C symmetry,

under which the SM vector bosons transform as a triplet and the Higgs transforms as

a singlet and a triplet. This symmetry is broken in the SM both by hypercharge gauge

interactions, and by the mass splittings within fermion electroweak doublets.

For these reasons we next explore the implications of the custodial-invariant limit,

for which SU(2)C is an exact symmetry of the underlying new physics beyond the SM.

In this scenario, it is interesting to examine the case that SU(2)C is preserved in the

Manohar-Wise model potential at a high scale ∼ 1 TeV, up to the breaking that must

be induced by the SM. Imposing exact SU(2)C on the octet Higgs potential we find that

the potential can be rewritten in terms of bi-doublets

Φ = (ε φ?, φ) , SA = (ε S?A, SA), (5.7)

where ε is given in Eqn. (5.3) and the most general gauge- and custodial-invariant po-

tential becomes

V =
λ

16

[
Tr
(
Φ†Φ

)
− v2

]2
+
m2
S

2
Tr
(
SA†SA

)
+
λ1

8
Tr
(
Φ†Φ

)
Tr
(
SA†SA

)
,

+a1 Tr
(
S†Φ

)
Tr
(
S†Φ

)
+
(
b1 Tr[TA TB TC]Tr

(
Φ† SA S†B SC

)
+ h.c.

)
+c1 Tr[TA TB TC]Tr

(
S†A SC

)
Tr
(
S†B Φ

)
,

+d1 Tr[TA TB TC TD]Tr
(
S†A SB

)
Tr
(
S†C SD

)
,

+e1 Tr[TA TB] Tr[TC TD]Tr
(
S†A SB

)
Tr
(
S†C SD

)
,

+f1 Tr[TA TB] Tr[TC TD]Tr
(
S†A SC

)
Tr
(
S†B SD

)
, (5.8)

where TA is used as a basis in colour space with 9 independent terms when the potential

is SU(2)C invariant.2 Expanding out the potential and comparing to the general result

2An alternative way to obtain this count is to regard SU(2)L×SU(2)C as SO(4), with both ~H and
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of eq. (5.4), we confirm the result of [27] that SU(2)C implies

2λ3 = λ2, (5.9)

2λ6 = 2λ7 = λ11, (5.10)

λ9 = λ10 , (5.11)

but we also find the additional constraint3

λ4 = λ?5. (5.12)

Note that this constraint can effect the production mechanism of the octets at Tevatron

and LHC. We see in particular that because SU(2)C symmetry implies λ2 = 2λ3, in this

limit M± and MI become degenerate.

5.2.2 Naturalness issues

In general, even if the scalar potential is required to be custodial invariant at a particular

scale, it does not remain so under renormalization due to the presence of custodial-

breaking interactions within the SM itself. In this section we compute these one-loop

symmetry breaking effects, allowing us to quantify the extent to which the custodial-

invariant potential is fine-tuned. To do so we calculate in Feynman gauge and note that

ghost fields do not couple to the components of the S doublet. We also neglect goldstone

boson contributions to the mass splitting as they come from the SU(2)C symmetric

potential and so therefore cancel out in the mass splittings; not leading to mixing between

the SR and SI states.

~SA transforming as real fields in the 4-dimensional representation. In this case the invariants of the
potential can be written m2

S(~SA · ~SA), dABC( ~H · ~SA)(~SB · ~SC), fABC( ~Hi · ~SA
j
~SB

k · ~SC

l ) εijkl, ( ~H · ~H)(~SA · ~SA),

( ~H · ~SA)( ~H · ~SA), (~SA · ~SA)2 and the two independent ways of colour-contracting (~SA · ~SB)(~SC · ~SD).
3We thank A Manohar for communication on this point clearing up a subtlety.
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Figure 5.1: SU(2) violating contributions to SI , S± masses from the yukawa sector of the

theory.

SU(2)C breaking due to Yukawa corrections

The breaking of SU(2)C due to Yukawa couplings is straightforward, the requisite dia-

grams are given by Fig 5.1.

The correction to the mass S− S+ two point function comes from diagram (a) and is

given by

δ〈T{S+ S−}〉Y = −δab
(m2

b |ηD|2 +m2
t |ηU |2)[A0(m2

b) + A0(m2
t )− p2B0(p2,m2

b ,m
2
t )]

16 π2v2
(5.13)

−δab
(m4

b |ηD|2 +m4
t |ηU |2 +m2

b m
2
t (|ηD|2 + |ηU |2 − 2 ηD ηU − 2 η?D η

?
U))B0(p2,m2

b ,m
2
t ))

16 π2v2

where we express our results in terms of Passarino-Veltman (PV) functions whose defi-

nitions are given in [111], and we set |Vtb| ' 1.

The contributions to the S2
I operator comes from the diagrams (b) and (c) and is

given by

δ〈T{SI SI}〉Y = −δab
m2
t (2A0(m2

t ) |ηU |2 +B0(p2,m2
t ,m

2
t )(4m

2
t Im[ηU ]2 − p2 |ηU |2))

16π2v2
,

− δab
m2
b(2A0(m2

b) |ηD|2 +B0(p2,m2
b ,m

2
b)(4m

2
b Im[ηD]2 − p2 |ηD|2))

16 π2v2
.(5.14)

We are interested in the mass splitting of M2
I and M2

±, however to the accuracy we

work one can also easily calculate the shifts to δ〈T{SR SR}〉Y and δ〈T{SR SI}〉Y due

to the mixing induced between the real and imaginary components of SA0. With these

results we can then obtain the contributions to the diagonalized M ′
I . The correction
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to δ〈T{SR SR}〉Y is given by the same diagrams as δ〈T{SI SI}〉Y with the appropriate

replacements, giving

δ〈T{SR SR}〉Y = −δab
m2
t (2A0(m2

t ) |ηU |2 +B0(p2,m2
t ,m

2
t )(4m

2
t Re[ηU ]2 − p2 |ηU |2))

16π2v2
,

−δab
m2
b(2A0(m2

b) |ηD|2 +B0(p2,m2
b ,m

2
b)(4m

2
b Re[ηD]2 − p2 |ηD|2))

16π2v2
.

(5.15)

The mixing of the SR, SI fields at one loop δ〈T{SR SI}〉Y is given by diagrams (d,e)

and is given by

δ〈T{SR SI}〉Y = −δab
(m4

b Re[ηD] Im[ηD]B0(p2,m2
b ,m

2
b)−m4

t Re[ηu] Im[ηU ]B0(p2,m2
t ,m

2
t ))

4π2 v2

which is only nonzero when at least one of the MFV proportionality constants ηD, ηU are

imaginary as expected. We define the mixing angle and renormalize the theory in the

Appendix.

Gauge sector SU(2)C violating corrections

Calculating the required four diagrams represented by diagrams (g,i) in Fig 5.2 one finds

δ〈T{SI SI}〉G =
g2

1

16π2
δAB

(
dA0[M2

W ]

2
+
dA0[M2

Z ]

4c2
W

− 1

2
I3[p2,M2

W ,M
2
±]− 1

4c2
W

I3[p2,M2
Z ,M

2
R]

)
where cW ≡ cos[θW ] and the integral is given in terms of PV functions as follows

I3[p2,M2
a ,M

2
b ] = (2 p2 + 2M2

b −M2
a )B0[p2,M2

a ,M
2
b ] + 2A0[M2

a ]− A0[M2
b ]. (5.16)

The result for δ〈T{SR SR}〉G is identical up to the replacement MR →MI . One can

similarly calculate the other six diagrams corresponding to (f,h) that give the following

contribution for δ〈T{S+ S−}〉G in terms of PV functions4

δ 〈T{S+ S−}〉G =
g2

1

16π2
δAB

(
dA0[M2

W ]

2
+
d(1− 2s2

W )2A0[M2
Z ]

4c2
W

− 1

4
I3[p2,M2

W ,M
2
R]

−1

4
I3[p2,M2

W ,M
2
I ]− (1− 2s2

W )2

4c2
W

I3[p2,M2
Z ,M

2
±]− s2I3[p2, 0,M2

±]

)
(5.17)

4Note that diagram (f) with a photon loop is scaleless and vanishes in dim reg.
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Figure 5.2: SU(2) violating contributions from the gauge sector of the theory.

Mixing between the states SI , SR is forbidden in the gauge sector as the couplings are

real.

Given these loop-generated effects, we wish to estimate how large the custodial-

symmetry-breaking interactions are once we run down to observable energies from the

scale of new physics. The answer depends on how far we must run, however due to the

hierarchy problem of the Higgs mass (which is only accentuated when more light scalars

are added to the spectrum), it is likely that new physics must intervene at a relatively low

scale for new physics of ∼ TeV. Such a low scale for a UV completion implies that the

symmetry structure of the UV theory is consistent with EWPD and flavour constraints.

The splitting induced by SM interactions is given by the difference between the renor-

malized mass at Λ and the low scale, where we ignore the running for simplicity in this

estimate ∫ m

Λ

(
∂ M2

i

∂ µ
) ∂µ = M2

i [Zα
Mi(µ = Λ)− Zα

Mi(µ = m)] , (5.18)

where Zα
Mi is the leading perturbative correction of the mass counterterms, whose values

are given explicitly in the appendix using a zero-momentum subtraction scheme.

As is shown in detail in the next section, the largest MI ,M± SU(2)C violating mass-

splitting that is allowed by our EWPD fit is approximately ∼ 40(55) GeV for the entire

68%(95%) confidence regions (see Figure 5.6). We now examine how natural such a small
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splitting is assuming a typical low mass of 150 GeV.

In determining the splitting, the values of ηi employed are critical. For the lower bound

on the ηi we take the one approximate loop radiatively induced value ηi ∼ 0.352/(16π2).

Note that we use the result of [109] that determined an upper bound on |ηU | from the

effect of the octet on Rb = (Z → b̄ b)/(Z → Hadrons). For charged scalar masses of

(75, 100, 200) GeV the one sigma allowed upper value for |ηU | is (0.27, 0.28, 0.33).

For M± = 150 GeV, we choose the couplings to give the largest induced splitting

consistent with other experimental constraints (ηU = 0.3, ηD = 0.45), MI = 150 GeV (its

value before the perturbative correction in the high scale SU(2)C preserving scenario)

and MR = (190, 230) GeV which are the maximum values consistent with EWPD for the

(68%, 95%) regions. We find that the EWPD regions begin to have tuning for a high

scale degenerate mass spectrum at (90 TeV, 8000 TeV). Conversely choosing the unknown

ηU , ηD ∼ 0.352/(16π2) one finds that the (68%, 95%) regions begin to have some degree

of tuning for scales of (170 TeV, 19000 TeV). For a UV completion that approximately

preserves MFV and SU(2)C, considering a SM and octet low energy scalar mass spectrum

allowed by EWPD is not a fine tuned scenario.

5.3 Phenomenology

We next turn to the various observational constraints. As we shall see, the most robust

constraints are those coming from the absence of direct pair-production at LEP, which

require

M± & 100 GeV and MR + MI & 200 GeV . (5.19)

Since the octet scalar couples to both photons and gluons, these constraints are essentially

kinematic up to the highest energies probed by LEP (more about which below).
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a b a b

Figure 5.3: Self energies calculated for the EWPD constraints on the octets, where

(a, b) = (W+W−, ZZ, γγ, Zγ). The self energies needed to determine STUVWX are

given in the Appendix.

5.3.1 Fits to Electroweak Precision Data

A strong restriction on the properties of exotic scalars comes from precision electroweak

measurements, whose implications we now explore in some detail. The dominant way that

such scalars influence the electroweak observables is through their contributions to the

gauge boson vacuum polarizations; the so-called ‘oblique’ corrections [100, 101, 102]. The

calculation of the oblique corrections proceeds as usual with the vacuum polarizations

being determined directly by evaluating the diagrams given in Figure 5.3.

When evaluating these it is important to keep in mind that the direct production

constraints, eq. (5.19), can allow one of MR or MI to be significantly lower than 100

GeV. This is important because it precludes our using the most commonly-used three-

parameter (S, T and U) parametrization of the oblique corrections [100, 101, 102], since

these are based on expanding the gauge boson vacuum energies out to quadratic order:

Πab(q
2) ' Aab+Babq

2, where a and b denote one of Z, W or γ. Since the electroweak pre-

cision measurements take place at q2 ' 0 or q2 'M2
Z , using the quadratic approximation

for Πab(q
2) amounts to neglecting contributions that are of relative order M2

Z/M
2, where

M is the scale associated with the new physics of interest (in our case the new-scalar

masses). This approximation becomes inadequate for M below 100 GeV, and so we must

instead use the full 6-parameter description (STUVWX), such as in the formalism of ref.

[98, 99]. In general, the STUVWX formalism reduces to the three-parameter STU case

when all new particles become very heavy.
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For ease of comparison with past results we start by quoting the results we obtain

for the fit to the six parameters of the STUVWX oblique formalism, regardless of how

they depend on the parameters of the Manohar-Wise model. The results are given in

Table 1, which compares the results obtained by fitting 34 observables (listed in an

appendix) to (i) all six parameters (STUVWX); (ii) only three parameters (STU); or

just two parameters (ST). The number of degrees of freedom in these fits to (6, 3, 2)

parameters is v = (28, 31, 32), respectively. The χ2/v for the three fits is within one

standard deviation
√

2/v = (0.27, 0.25, 0.25) of the mean of 1, indicating a good quality

of fit. The experimental values and theoretical predictions used are given in Table 2 in

the Appendix.

Oblique STUVWX Fit (χ2/v = 0.91) STU Fit (χ2/v = 0.99) ST Fit (χ2/v = 0.98)

S 0.07± 0.41 −0.02± 0.08 −9.9× 10−3 ± 0.08

T −0.40± 0.28 −0.02± 0.08 1.1× 10−2 ± 0.07

U 0.65± 0.33 0.06± 0.10 -

V 0.43± 0.29 - -

W 3.0± 2.5 - -

X −0.17 ± 0.15 - -

Table 5.1: EWPD Fit Results in various schemes for the 34 observables listed in the

Appendix. The STU and ST fits fix the other oblique corrections to zero as a prior

input. The error listed is the square root of the diagonal element of the determined

covariance matrix. The central values of the fitted oblique corrections decrease as more

parameters are turned off. All three fits are consistent with past results and the PDG

quoted fit results.
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The correlation coefficient matrix for the three fit results are as follows,

MSTUVWX =



1 0.60 0.38 −0.57 0 −0.86

0.60 1 −0.49 −0.95 0 −0.13

0.38 −0.49 1 0.46 −0.01 −0.76

−0.57 −0.95 0.46 1 0 0.13

0 0 −0.01 0 1 0

−0.86 −0.13 −0.76 0.13 0 1


, (5.20)

MSTU =


1 0.84 −0.20

0.84 1 −0.49

−0.20 −0.49 1

 , MST =

 1 0.87

0.87 1

 . (5.21)

We use the results of this fit to constrain the masses allowed in the Manohar-Wise

model by computing the vacuum polarizations as functions of the masses of the octet

and Higgs scalars. We obtain allowed mass ranges for the scalars by demanding that the

contribution of the new physics (and the difference between the floating Higgs mass and

its fiducial value, which we take from the SM best fits to be 96 GeV), ∆χ2 which satisfies

(C−1)i,j(∆θi) (∆θj) < 7.0385 (12.592) (5.22)

for the 68% (95%) confidence regions defined by the cumulative distribution function for

the six parameter fit. Here C is the covariance matrix constructed from the correlation

coefficient matrix given in eq. (5.20) or (5.21)

(C−1)i,j =
1

2

∂2 χ2(θ)

∂ θi ∂ θj
|θi=θ̂i (5.23)

and ∆ θi = Ai − Afiti is the difference in Ai = S, T, U, V,W,X as a function of octet

masses and the best fit value, given in Table 1.

An example of the best-fit regions for the allowed octet masses is given in Figure

5.4, which compares the quality of the constraints that are obtained using the full six-

parameter (STUVWX) parametrization, as opposed to the three-parameter (STU) ex-

pression. The three panels plot the masses of the components of the octet that lie within
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Figure 5.4: Comparison of the three and six parameter fits for low masses. (The upper

two panels are not symmetric about MI = MR and MR = M+ because we scan only

through positive values for the couplings, λi.) The three parameter fit is red (grey) and

the six parameter fit is blue (black). Contrary to naive expectations the six parameter fit

is more constraining on the model despite the extra parameters; the correlations between

the extra parameters (S,X and U,X and T,V) increases the constraints on the model.

The masses are in GeV. EWPD constrains the mass spectrum to be approximately

SU(2)C symmetric in either case where M± ≈MI .
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Figure 5.5: A cartoon of the best-fit confidence interval for a strongly correlated pair of

variables, indicating how the best constraints can be missed once one of the variables is

marginalized.

the 68% confidence ellipsoid of the best-fit value as the various scalar couplings, λi, are

varied. The two panels of this plot show how these masses are correlated by the condition

that the predictions agree with the precision electroweak measurements, and the points

in the upper two panels all satisfy MI ≤ MR and M+ ≤ MR because we choose to scan

only through positive values of the couplings λi.

The strongest correlation is between MI and M+, for which agreement with EWPD

demands these two masses cannot be split by more than about 50 GeV. This is as might be

expected given that this difference must vanish in the limit that the potential is custodial

invariant. The breaking of SU(2)C generically leads to bad fits because custodial-breaking

quantities like the parameter ρ−1 = αT are measured to be very small: ρ = 1.0004+0.0008
−0.0004

[108].

The comparison in Figure 5.4 also shows that the six-parameter STUVWX fit agrees

with the three-parameter STU fit when all scalars are heavy, as might be expected. It

also shows that the six-parameter fit is the more constraining one when the octet masses
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are light. We understand that this happens because of the strong correlations amongst

the oblique parameters, which implies that the best-constrained parameter direction is

not aligned along any of the STUVWX axes, as shown in Figure 5.5. As a result the

constraint obtained by restricting to the axes V = W = X = 0 can be weaker than the

full result, significantly affecting the determined 68% confidence regions. For this reason

our remaining results quote only the results of the full six-parameter fit.

Constraints on Octet scalars

Figure 5.6 displays the 68% and 95% confidence regions of the model for couplings that

range through the values 0 < λi < 1, while Figure 5.7 does the same for couplings that run

through the larger range 0 < λi < 10, where i = 1, 2, 3. As noted above, agreement with

the EWPD selects an approximately SU(2)C symmetric mass spectrum, where λ2 ≈ 2λ3

and |M± −MI | < 50 GeV, but this is easily understood. Consider the case where the

octets are heavy, v2/M2
S � 1, which was examined in [27]. In this mass regime it is the

model that constrains the mass spectrum to be degenerate, M± ≈ MR ≈ MI , since the

mass splittings scale as v2/MS from Eq. (5.6). The contribution of the octets to the S

and T parameters,5 is then [27]

S =
λ2 v

2

6 πM2
S

, T =
v4

96π2M2
Ss

2
WM

2
W

(λ2
2 − (2λ3)2), (5.24)

where sW ≡ sin(θW ). Large corrections to S and T are avoided if λi decreases and

preserves approximate SU(2)C as MS decreases, therefore allowing smaller octet masses.

How natural are the small intra-octet splittings favoured by EWPD? If the mass

splitting is induced by the potential, while v �Ms, for the octet masses to be allowed by

EWPD that selects for a mass degeneracy ∆M = MI −M±, one would have to require

that the couplings the the octet-Higgs potential satisfy the scaling rule

λ2 − 2λ3 � 4
∆M

v

√
λ1. (5.25)

5We have checked that our results in the STUVWX formalism reduce to these results when v2/M2
S �

1.
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Figure 5.6: Comparison of the 68% red (grey) and 95% blue (black) confidence regions

when 0 < λi < 1. The masses are in GeV, and MI ,M+ ≤ MR because we scan only

through positive values of the couplings λi. For low masses the 95% confidence region is

significantly expanded compared to the 68% region, this is due to the spread of available

masses being larger for low masses, as the mass splitting between the states scales as

∼ v2/ms. We examine the naturalness of this mass spectrum in Section 2.2 and find that

it is not simply a fine tuned solution for an underlying new physics sector.
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Figure 5.7: Comparison of the 68% red (grey) and 95% blue (black) confidence regions

when λi < 10. Notice that the region selected for by EWPD for MI ≈ M+ that is

approximately SU(2)C symmetric is not enlarged.
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As EWPD requires ∆M ∼ 50 GeV for the 95 % confidence region this is a mild hierarchy

of couplings given by λ2 − 2λ3 � 0.8
√
λ1. Conversely for the case mS � v, one requires

that the couplings the the octet-Higgs potential satisfy the scaling rule

λ2 − 2λ3 � 8
(∆M)mS

v2
, (5.26)

which is easily satisfied for small λi (which we see below are favoured by Landau pole

constraints).

The calculations presented in previous sections for the running of custodial-breaking

couplings can be used to frame a criteria as to whether the above coupling pattern is

natural. The scale dependence of the masses is used to estimate what the SU(2)C splitting

of the masses should be in the theory below the UV scale, Λ, without tuning. One

determines how high the scale Λ can be before the EWPD mass regions are excluded.

This quantifies the degree of fine tuning of the masses for this scenario.6 Since the

electroweak hierarchy problem argues that the scale of new physics is likely not too

much larger than the TeV regime, we find that the favoured mass splittings are natural,

provided that the underlying theory approximately preserves MFV and SU(2)C.

The above ranges of allowed splittings amongst scalar masses directly constrain the

three couplings λ1,2,3 to be small. But small λi, for i >∼ 4, are also favoured due to

considerations of the effect of these λi on the running of the Higgs self coupling [97].

The mild assumption that one not encounter a Landau pole while running the Higgs

self coupling up to 10 TeV, when one assumes λi>∼4 = 0 and mh = 120 GeV, gives the

constraints [97]

λ1 . 1.3,
√
λ2

1 + λ2
2 . 2.2. (5.27)

6To determine the mass splitting, we technically need to diagonalize the SI field which mixes at
one loop with SR. As the non diagonal terms in the mass matrix are one loop, the effects of this
diagonalization on the mass eigenstate S′I shifts the mass at two loop order. See the Appendix for a
determination of the mixing angle. Thus to one loop order one can just take the one loop corrections
to MI and M± of the last two sections, properly renormalized, to determine the mass splitting through
the counterterms.
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However, generically λi>∼4 6= 0 and if the octets and the Higgs were part of a new

sector then the cut-off scale could be lower that 10 TeV. For these reasons we only

take these constraints to inspire the λi < 1 limit for the parameter space searches in

Figure 5.6, but also examine parameter space where we relax this bound to λi < 10 in

Figure 5.7. We emphasize that direct production bounds on the octets that rely on their

fermionic decays essentially constrain the MFV proportionality factors ηi, while EWPD is

complementary in that it constrains the parameters in the potential, λi, by constraining

the mass spectrum.

Implications for the inferred Higgs mass

Adding the new octet scalar to the SM also affects the best-fit value of the Higgs mass

that emerges from fits to EWPD. In particular, we now show that the presence of the

octet can remove the preference of the data for a light Higgs, even if the new octet scalar

is also heavy.

To determine this effect we calculate the one-loop Higgs contribution to the six oblique

parameters and jointly constrain the Higgs mass and the octet masses in the fit. For

example, S in this case becomes

S = Soct(MR,MI ,M±) + SHiggs(Mh)− SHiggs(Mh = 96 GeV) (5.28)

where Soct(Higgs) is the one-loop octet (Higgs) contribution to the S parameter. We neglect

the two-loop dependence on the Higgs mass in the fit and this leads to an underestimate

of the allowed parameter space, as we find the 68% (95%) confidence level values of fitting

the Higgs mass alone are given by 112 (160)GeV. This gives a conservative range when

comparing to the various allowed values that are strongly dependent on the priors used

in the PDG .

The effect of the octets changes the preferred Higgs mass significantly, and two mech-

anisms are at work depending on the size of the octet mass. If the octet mass MI is
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Figure 5.8: The effect of octets on the fitted value of the Higgs mass.The plots of Mh

versus the other octet states are substantially the same. The green line is the 68%

confidence bound where the Higgs alone is varied at one loop. The yellow line is the 95%

confidence bound where the Higgs alone is varied at one loop, and the black line is the

direct production bound on the Higgs mass at 95% confidence. The red (grey) region is

the 68% confidence region, while the blue (black) region is the (95%) confidence region

for a joint fit to the octets and the Higgs. Notice the increase in vertical scale for the

diagrams as the upper limit of the λi is increased through 1 (upper left), 3 (upper right),

6 (lower left) and 10 (lower right). The mechanism that is allowing the Higgs mass to

increase and still be in agreement with EWPD is the postitive ∆T contribution from the

octets that is discussed in Section 3.1.2.
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small, it can allow the Higgs mass to increase by effectively replacing it in the oblique

loops, thereby giving agreement with EWPD. This is illustrated in the upper-left plot of

Figure 5.8, which shows how a large Higgs mass correlates with small MI .

The other panels of Figure 5.8 reveal another mechanism at work, however 7. In these

one sees that as the upper limit on λi is increased, the upper limit on the Higgs mass

confidence regions becomes significantly relaxed. This is due to a cancellation between

the effects of the heavy octet and the Higgs in their contributions to oblique parameters,

that is made possible by a positive ∆T contribution that the octets give to χ2. For the

three-parameter fit, the χ2 test is of the form

(C−1)i,j(∆θi) (∆θj) = 596 (∆S)2 − 1159 (∆S) (∆T ) + 751 (∆T )2 (5.29)

where we neglect contributions that are not logarithmically sensitive to the Higgs mass

at one loop, since this is all that is relevant to the argument. For the three-parameter fit,

the 68% confidence region is defined by (C−1)i,j(∆θi) (∆θj) < 3.536 and is easily satisfied

for light Higgs masses. As the Higgs mass grows, its contribution to (∆S) and (∆T )

becomes dominated by the logarithmic dependence

(∆S) ' α

12π
log

(
M2

H

M̂2
H

)
and (∆T ) ' − 3α

16π
log

(
M2

H

M̂2
H

)
, (5.30)

where M̂H is the reference value of the Higgs mass, which for our fit is 96 GeV. The

crucial point is that (∆T ) is negative for MH > M̂H and for the SM this quickly excludes

large Higgs masses because of the sign flip in the (∆S) (∆T ) term in χ2.

Including the contribution of the octets in the large mass regime (v2/M2
S � 1) modifies

these expressions to

(∆S) ' α

12 π
log

(
M2

H

M̂2
H

)
+

λ2 v
2

6πM2
S

,

(∆T ) ' − 3α

16π
log

(
M2

H

M̂2
H

)
+

v4

96 π2M2
Ss

2
WM

2
W

(λ2
2 − (2λ3)2), (5.31)

7Note that we expect a careful study of the non oblique Higgs and octet mass dependence of Rb will
further constrain this parameter space with all scalars heavy but not remove it.
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where the factor λ2
2 − (2λ3)2 comes from a factor of (M2

R −M2
±)(M2

I −M2
±) in the octet

contribution, and is a measure of the total mass splitting in the doublet. For λi > 0,

we know M2
R > M2

± and so the octets give a positive contribution to (∆T ) so long as

M2
I > M2

±. The octets (or any other doublet with gauge couplings and small mass

splittings) then allow (∆T ) in Eqn. 5.31 to be positive, and so allow a large degree of

cancellation between the (∆S)2, (∆T )2 and (∆S)(∆T ) terms in Eqn. 5.29. The size of the

positive (∆T ) contribution scales with the upper limit on λi, explaining the significant

relaxation of the Higgs mass bound in Figure 5.8. We find that the Higgs and the octet

scalars could both have masses ∼ 1 TeV and still lie within the 95% contour mass region

allowed by EWPD. We also note that we restrict our searches to positive λi (which must

be so for at least some of the couplings to ensure the absence of runaway directions in

the potential), however clearly negative λ2 could also act to relax the EWPD bound on

the Higgs mass by giving a negative contribution to (∆S).

We emphasize the generic nature of the mechanism, wherein the contributions of TeV

scale new physics can mask the contributions of a heavy Higgs to electroweak precision

observables. It applies in particular when EW symmetry breaking leads to a mass split-

ting of an extra SU(2) doublet, since the extra doublet can give a positive contribution

to (∆T ) proportional to the mass splittings of the doublet components. This has been

recognized as a simple way to raise the EWPD bound on the Higgs mass by satisfying

the positive (∆T ) criteria of [104]. Expressed as an effect on the ρ parameter, it also

has a long history going back to observations by Veltman [103], being rediscovered for

two-Higgs-doublet models in [105], and used for the construction of the Inert Two Higgs

doublet (IDM) model [106].8 In this latter model, the Higgs mass is raised, addressing the

”LEP paradox”, and the naturalness of the SM Higgs sector is also improved by raising

the cutoff scale of the modified SM. In the IDM model a parity symmetry is imposed to

avoid FCNC’s.

8For a similar construction see [107]
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We note that the example of the general scalar sector consistent with flavour con-

straints, the Manohar-Wise model examined in this chapter, naturally has a number of

the benefits of models like the IDM while avoiding the imposition of a parity symmetry.

Allowing the second doublet to couple to quarks improves its potential for detection,

without introducing large FCNCs due to MFV. It is interesting that the effect of raising

the Higgs mass has emerged naturally from the most general MFV scalar sector and was

not a model building motivation of the MW model. Variants of the MW model, can ad-

dress the naturalness of the scalar sector through raising the cut off scale and further the

colour charge of the octet provided some rational for the second doublet not obtaining

a vev , through the avoidance of the spontaneous breaking of colour. Also, for the entire

parameter range, octets skew the distribution of the allowed Higgs masses so that the

direct production bound on the Higgs mass and the EWPD fit of the Higgs mass can be

in better agreement.

Implications for the tension between leptonic and hadronic asymmetries

Although the SM produces a good quality global fit to EWPD, there exists a mild tension

in the data between the leptonic and hadronic asymmetries. In particular AbFB deviates

from the SM predicition by 2.5σ and favours a heavy Higgs ∼ 400GeV, while Ae differs

from the SM by ∼ 2σ and favours a Higgs mass far below the direct production bound.

Here we address the question of whether the oblique contributions of octet scalars can

change this tension.

To this end we calculate χ2 for the hadronic asymmetries AbFB, A
c
FB, Ab, Ac, and for

the leptonic asymmetries using Aτ and the Ae values given in Table 5.A. The results

are shown in Figure 5.9, where the solid curves plot χ2 with the SM Higgs alone and the

dashed curves include the octets for a particular mass spectrum allowed by EWPD. The

two panels compare results for relatively light and relatively heavy octet scalars.

The figure shows that the preferred value of the Higgs mass is strongly dependent
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Figure 5.9: The χ2 of the leptonic asymmetries (red) and hadronic asymmetries (blue)

as a function of Higgs mass in GeV. The solid curves show the contribution of the

Higgs alone and the dashed curves are for the Higgs and the octets. The figure on

the left is for octet masses (M±,MR,MI) = (300, 400, 330)GeV and on the right is for

(M±,MR,MI) = (900, 1000, 940)GeV.

on the mass splitting of the octets. As discussed in Section 5.3.1, the octets, unlike the

Higgs, give a positive contribution to ∆T , which depends on the mass splitting in the

doublet. This increases the allowed value of the Higgs mass. The octets can change the

pull of Ae, for example, to favour large Higgs masses, however they also do the same to

AbFB. As can be seen from Figure 5.9, although the leptonic and hadronic asymmetries

can now both prefer a Higgs masses above the direct production bound of 114.4 GeV,

they are not brought in to closer agreement in their predictions for the value of MH .

We see from this that the octet oblique contributions do not in themselves remove the

tension between the leptonic and hadronic asymmetries. However, because the octets are

coloured it is possible that their non-oblique corrections to AbFB might be able to bring

together the leptonic and hadonic observables. We leave this observation to a more

complete calculation, which lies beyond the scope of this chapter.
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Z * *

S−  
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Z *
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Figure 5.10: The tree level production mechanism for S+ + S− and S0
R + S0

I at LEPII.

5.3.2 Direct-production constraints from LEP

The octets would have been directly produced at LEP2 if they were light enough through

the processes in Figure 5.10.

The production cross sections are given by

σS+S− =
dA
4

(
4πα2

3s

)
λ3/2

(
1,
M2

+

s
,
M2

+

s

)
(5.32)

×
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, (5.33)

where we have defined dA = 8, ae = −(4sW cW )−1

λ(x,y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (5.34)

v+ =
s2
W − c2

W

2sW cW
, v0 =

1

2sW cW
, ve =

−1 + 4s2
W

4sW cW
(5.35)

The highest COM energy at which LEP2 operated was
√
s = 209 GeV, where approxi-

mately

∫
Ldt ∼ 0.1 fb−1 of integrated luminosity was collected. We give a rough estimate

of the sensitivity of LEP2 to light octets by requiring less than 10 total events for a given

set of masses, σ×
∫
Ldt < 10. Note that these limits are essentially kinematic limits for

production, and more accurate exclusions in the mass parameter space are possible, but

these will be dependent on the detailed decays of the octets and SM backgrounds and be

weaker constraints. The LEP2 production bounds are shown in Figure 5.11.



Chapter 5. Light Octet Scalars, a Heavy Higgs and Minimal Flavour Violation98

Figure 5.11: Comparison of the 68% (red or light) and 95% (blue or dark) confidence

regions when λi < 1. The LEP2 production bound for ten events is the black line.
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5.3.3 Tevatron constraints

Dijet constraints on the production cross section.

Heavy octet production via gluon fusion has been examined in some detail in the literature

see [27, 109, 96]. We use the results of [27, 109, 96] to determine the production cross

sections for light octets and consider the relevant bounds on the model in this region from

the Tevatron. The single production cross section we use, [109], neglects for simplicity

the scalar mass splitting and assumes that ηU , λ4 and λ5 are real. However, note that this

is partially justified for light masses as EWPD selects for an approximately degenerate

mass spectrum with an approximate SU(2)C symmetry in the underlying potential, giving

λ4 = λ?5 and one need only assume one of the couplings are real. 9 For the sake of

simplicity we will also neglect the effects of mixing of the SI , SR states that can occur if

the effective yukawa couplings of the octet carries a phase as discussed in the Appendix.

The pair production cross section for the charged scalars is twice that for the real scalars

[27] and so is not shown.

The tree level pair production dominates the loop suppressed single production in the

low mass region for small λ4,5. However as λ4,5 increase the single production contribution

takes over, which occurs at λ4,5 ∼ 2 for the neutral scalar, SR, with a mass of 200 GeV.

A direct search strategy to find octets is to look for narrow resonance structures above

the QCD background for states that decay into dijets. CDF has recently performed such

a search [114] with 1.13 fb−1 of data that could discover octet bound states [110] or

single Si that decay to dijets above the QCD background. The cross sections for the

production of these states at the Tevatron, leading to dijet resonance structures, are

orders of magnitude below the QCD background in the regions of parameter space we

consider, this is shown in Fig. 5.12

The low mass region is not directly ruled out, although a dedicated study to refine the

9Note that setting λ4 and λ5 to real values removes the scalar loop contributions to the single
production of SI , which can become large as the values of λ4,5 increases.
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Figure 5.12: Shown is the production cross section of σ(g g → SR) red short dashed line,

σ(g g → SI) blue long dashed line, and the σ(g g → SR SR) given by the solid green line.

The results are for Tevatron with
√
s = 1.96 TeV, αs(MZ) = 0.1217, mt = 173.1 GeV,

MZ = 91.1876 GeV and the NLO CTEQ5 pdfs. The values of (λ4, λ5) chosen are (0, 0)

upper left, (1, 1) upper right and (10, 10) for the bottom graph. In all three graphs we

have set ηU = 0.2. The dependence on ηU is weak and as ηU decreases the production

cross sections decrease. Also shown is a 95% confidence limit band (the shaded region)

derived from [114] that places an upper bound on new physics that decays to dijets. The

region is defined by the upper limit on σ(X)B(X → jj) ∗A(|y| < 1) where the difference

between the W ′ and RS graviton G? 95% confidence upper bounds are taken and the

acceptance fraction requires the leading jets to have rapidity magnitude |y| < 1. The

exclusion region depends weakly on the shape of the resonance, so a dedicated study is

required to exactly bound the octet decay to dijets, however, the octet signal is orders

of magnitude below the exclusion regions obtained from Tevatron before branching and

acceptance ratios further reduce the signal. A resummation of large threshold logarithms

for single S production was performed in [96]. The K factors for single S production was

found to be ∼ 2 for 500 GeV a octet mass and this K factor falls as the mass decreases.

This indicates that threshold enhancements will not raise the cross section enough to

exclude octets for the entire low mass region.
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lower mass bound is warranted due to the shape dependence of the exclusion bound.10

Gauge boson decays and Lepton Signatures

The decays of the octets involving gauge bosons

SR,I → W± S∓, SR,I → Z SI,R

S± → W± SR,I , S± → Z S±. (5.36)

were studied in some detail in [27, 97]. These decays are of phenomenological interest

as the gauge bosons can be a source of leptons to trigger on at LHC and Tevatron. The

EWPD constraints |M± −MI | < 50 GeV and for most of the allowed parameter space

|Mi − Mj| < MW ,MZ , as the mass splitting of the doublets scale as v2/Ms for large

masses. This causes the decays to proceed through an offshell gauge boson for most

of the allowed parameter space. In this case an effective local operator can be used to

approximate the decays.

For example consider SR → S− `+ ν through an off shell W . The effective Lagrangian

at leading order is given by the product of scalar octet and left handed lepton currents

Leff =
−i g2

1√
2M2

W

(SR ∂µS+) (ν̄L γ
µ `L). (5.37)

Exact formula for three body decays such as this exist in the literature [112]. For the

masses allowed by EWPD11 generally the energy release is ∆ = MR−M± < MR,M−,MW .

The resulting decay width at leading order in ∆/MR is

Γ` =
α2 ∆5

60π s4
W M4

W

. (5.38)

10Other possible indirect search strategies for the effects of octet scalars include determining the effect
of the octets on the At

fb. In a similar manner to axigluons [116], these new exotic coloured states

could contribute to At
fb as they are coloured, couple strongly to tops, and are not a vectorlike state.

Interestingly, At
fb has recently been measured [117, 118] to be At

FB = 0.19 ± 0.065(stat) ± 0.024(syst)

which is a deviation larger than 2 sigma from its SM value [116] of At
FB = 0.05± 0.015.

11This assumes that the initial state that is eventually triggered on is not highly boosted. This is
generally the case due to the kinematic reach of the Tevatron and LHC.
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When MR > 2mt the decays to leptons through an offshell W,Z are suppressed decay

channels. The dominant decay widths are to t b̄, t t̄ unless ηU � ηD. The ratio of Γ` to

this decay, in the limit MR � 2mt, is given by

Γ`
ΓS0

R→t t̄
' 0.005GeV

MR |ηU |2

(
∆

50 GeV

)5

(5.39)

for α = 1/128, sW = 0.48 and mt = 173 GeV.

When MR < 2mt the offshell W,Z will be dominant decay channels for light masses

for much of the parameter space. Taking mb = 4.23 GeV, and the other factors as before,

the ratio of the offshell decay to the S0
R → b b̄ decay is given by

Γ`
ΓS0

R→b b̄
' 4α2

15 s4
W |ηD|2

(
∆5 v2

m4
W m2

bMR

)
,

' 8 GeV

MR |ηD|2

(
∆

50 GeV

)5

. (5.40)

If the dominant fermionic decays are to charm quarks due to a mild hierarchy of

ηU > (mb/mc) ηD, then taking mc = 1.3 GeV gives the branching ratio

Γ`
ΓS0

R→c c̄
' 82 GeV

MR |ηU |2

(
∆

50 GeV

)5

. (5.41)

Thus when quark decays are suppressed through MR < 2mt the dominant decay

mode will be through an offshell W,Z for much of the parameter space of ηU , ηD allowed

by other constraints, notably the constraints due to Rb. This sets a lower bound on the

decay width of the heavier octet species given parametrically by Eqn. 5.38. This sets an

upper bound on the lifetime of these components of the octet doublet of 4.5/∆5 ps which

yields a upper bound on the decay length of the form 10−3/∆5 m.12 Thus the heavier

octet species will decay promptly inside the detector and not leave a long lived charged

track signature.

12Here we have converted units assuming that ∆ is given in GeV as a pure number, ie for ∆ = 50 GeV
we have a upper bound on the lifetime of 1.2× 10−2 as.
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As dominant decay modes of the heavy components of the octet doublet (when

Mi < 2mt) can be three body decays, the final state signature would be excess monojet

or dijet (depending on the boost of the final state octet) events in association with a

lepton and missing energy, or enhancements of dilepton signatures with a monojet or

dijet. Dedicated studies of these signatures are warranted. The lifetime of the lightest

component of the octet doublet is dictated by its decay to fermion pairs.

Constraints from t t̄ decays.

For neutral octet masses above 2mt, decays into top quark pairs can be dominant. These

were previously considered in [109]. The observed limits on excess σX · B(X → t t̄) at

Tevatron with 0.9 fb−1 of data [115] do not rule out octets in the intermediate mass region

350−1000 GeV. The production cross section for single gg → SR production can become

large enough for the bound on t t̄ to be relevant, however this requires λ4 ∼ λ5 ∼ 75 which

is well into a nonperturbative region of the potential making any conclusion suspect. We

illustrate these limits in Fig. 5.13

Constraints from b̄ b b̄ b decays.

The dominant decays for light masses will be to quarks S+ → tb̄, SR,I → bb̄ below the tt̄

threshold for ηU,D ∼ O(1). In this regime [97] places a lower bound on the scalar mass of

approximately 200 GeV from the CDF search for a scalar particle decaying dominantly

to bb̄ when produced in association with b quarks [113] This bound is avoided for almost

all of the available parameter space for light octet masses. SI,R can decay preferentially

to charms, which corresponds to a mild hierarchy of couplings

|ηD|2

|ηU |2
<
m2
c

m2
b

∼ 1

10
(5.42)

when neglecting O(m2
b,c/M

2
S) terms. Neutral scalar masses below 200GeV are allowed

for ηD . 0.1, given an upper limit of ηU ∼ 0.3 from [109] for masses in this range. The
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Figure 5.13: Shown is the production cross section of σ(g g → SR) red short dashed line,

σ(g g → SI) blue long dashed line, and the σ(g g → SR SR) given by the solid green line.

The results are for Tevatron with
√
s = 1.96 TeV, αs(MZ) = 0.1217, mt = 173.1 GeV,

MZ = 91.1876 GeV and the NLO CTEQ5 pdfs are used. The D0 95% confidence limit

on σ(X)Γ(X → t t̄) is the upper solid black line [115]. The values of (λ4, λ5) are (10, 10)

for the left hand figure and (75, 75) for the right hand figure. ηU = 0.2 for both figures.

For perturbative λi . 10, current Tevatron production bounds on resonances in t t̄ do

not rule out octets of mass 350− 1000 GeV.
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three body decays discussed in Section 5.3.3 are actually dominant over quark decays for

much of the parameter space allowed by EWPD for light octet masses, invalidating the

assumptions of [97] for most of the remaining parameter space.

Constraints from γ γ decays.

A promising signature for octets at hadron colliders is the annihilation of a pair of charged

octets to photons, gg → S+ S− → γ γ. We can use the recent results of DO [120, 119]

that utilize 4.2 fb−1 of date to place 95% confidence upper limits on σ(h)×BR(h→ γ γ)

compared to the SM Higgs signal to directly constrain octet annihilation into γ γ. We

must consider annihilation decays of octet bound states, octetonia, studied in [110], as

the contribution from virtual octets will be a non-resonant signal and the Tevatron Higgs

search would not apply. Due to the fact that the results are reported only up to Higgs

masses of 150 GeV we are only able to exclude octets up to 75 GeV, which is already

disfavoured by LEP2. If the experimental study of h→ γ γ is extended to higher Higgs

masses at the Tevatron or LHC, this signal is likely to be a significant constraint on the

model.

We utilize the fact that this signature has been studied for octetonia in [110] to

demonstrate the potential of this signal to raise the mass limit on octets. The ratio we

are interested in is that of the octetonia σ(gg → O+) × BR(O+ → γ γ) to the SM rate

for σ(gg → h)×BR(h→ γ γ). We take [110]

σ(gg → O+)×BR(O+ → γ γ) ≈ 9π3 α2|ψ(0)|2

2MS ŝ2
δ(1−m2

O/ŝ) (5.43)

where ŝ is the partonic center of mass energy squared and |ψ(0)| is the wavefunction at

the origin. We have used the approximation BR(O+ → γ γ) ∼ α2/α2
s (2MS). For the

Higgs, we take the approximation

σ(gg → h)×BR(h→ γ γ) ≈ GF√
2

M2
H α

2
s

8 π ŝ

(
m4
t

M4
H

)
10−3 δ(1−M2

H/ŝ) (5.44)
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Neglecting order one factors the ratio of these two signals scales as

R ≈ 106 α
2

α2
s

|ψ(0)|2

ŝ

(
M2

H

MSm4
t GF

)
(5.45)

This ratio must be less than∼ 35 [120, 119] forMh = (100, 150) GeV orM± = (50, 75) GeV.

Unless the wavefunction at the origin was much smaller than its approximate expected

value given by [110]

|ψ(0)|2 =
N3
c α

3
s(mS v)M3

S

8π
, (5.46)

this bound will likely be violated for this entire mass range. Extending this analysis

to higher Higgs masses is expected to raise the lower mass bound on octet states for

this reason. For a recent comprehensive study of octetonia signals in gamma gamma for

octets from ∼ 200− 500 GeV see [110].

5.3.4 Flavour constraints reexamined for light scalars

Flavour constaints on (8,2)1/2 scalars were examined in some detail in linear MFV13

in [27] when the masses of the octet scalars were considered to be ∼ TeV. However,

although MFV suppresses flavour changing effects and ensures the vanishing of tree level

flavour changing neutral currents in linear MFV, when one goes beyond leading order in

the Yukawa couplings problematic flavour changing neutral currents are possible [109].

The correct way to examine such flavour issues is to utilize a nonlinear representation of

MFV14 such as formulated in [81, 82, 83] which is beyond the scope of this work.

We have reexamined the flavour constraints that were examined in [27] in linear

MFV for the light octet masses allowed by EWPD and not ruled out by direct pro-

duction bounds. Flavour constraints are largely irrelevant for |ηU | once the far more

restrictive constraint from Rb is known. To quantitatively demonstrate this consider

K0 − K̄0 mixing for relatively light masses Ms = 300 (400)GeV. We use the results

13Where one only utilizes a linear yukawa coupling for the scalars.
14We thanks J. Zupan for discussions on this point.
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of [27] for the contribution of the octets to the wilson coefficient (Cs) of the operator

(V ?
td Vts)(dL γ

ν sL)(dL γ
ν sL) and use the SM expression of [121] for the contribution of

this operator to K0 − K̄0 mixing and hence |εK |. One finds that the contribution of the

octets to |εK | is given by

∆|εK | = |CεBK Im[V ?
td Vts] Re[V ?

td Vts]CS| (5.47)

Using the measured values mK = 497.6 MeV, fK = (156.1 ± 0.8)MeV, (∆MK)exp =

3.483± 0.006)× 10−12MeV one obtains

Cε =
G2
F F

2
KmKM

2
W

6
√

2 π2 ∆MK

= 3.65× 104. (5.48)

Further, Lattice QCD [122] gives the input BK(2 GeV) = 0.54 ± 0.05, and using the

central values of fitted values for the CKM parameters A, η̄, ρ̄, λ from the PDG we find

that the shift in |εK | is given by

∆|εK | = 1.5 (1.6)× 10−12(|ηU |2 + 6 (3)|ηU |4) (5.49)

for Ms = 300 (400)GeV. Considering |εK |exp = (2.229 ± 0.010) × 10−3 while the same

values employed above gives the central value |εK |theory = 1.70 × 10−3 one can set an

upper limit on |ηU | from K0 − K̄0 mixing by conservatively assigning one tenth of the

discrepency between theory and experiment to the effect of octets. This gives an upper

bound on |ηU | of 48 (56) for Ms = 300 (400)GeV. The weak mass dependence of the

bound allows one to neglect Kaon mixing constraints for low masses, compared to Rb

constraints on |ηU |, for light masses Ms � 1 TeV, in linear MFV.

The B → Xs γ decay rate constrains the combination |ηU ηD|, in the limit ηU is small,

and was calculated in [27] . Using their result and the upper bound on |ηU | from Rb, we

determine the strongest upper bound on |ηD| for light masses by requiring that the octet

contribution to B → Xs γ is less than the ∼ 10% SM theoretical and experimental errors.

For M± = (75, 100, 200) and the corresponding maximum |ηU | = (0.26, 0.27, 0.33), one
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obtains an upper bound on |ηD| of (0.36, 0.39, 0.50). As |ηU | decreases, the upper bound

on |ηD| is relaxed.

Finally, the electric dipole moment of the neutron constrains the imaginary part of

the ηi and using [27] we find for light masses that Im[η?U η
?
D] < 1/10 for mS = 100 GeV.

5.4 Conclusions

We have considered the phenomenological constraints of the general scalar sector that

contains one (1,2)1/2 Higgs doublet and a one (8,2)1/2 colour octet scalar doublet. To this

end we have performed a modern fit in the STU and STUVWX approaches to EWPD and

used these results to determine the allowed masses for light octets. We have demonstrated

that, somewhat surprisingly, the six parameter fit formalism is more restrictive for light

states due to strong correlations amongst the fit observables. We find that the octet

doublet masses can be in the 100 GeV range. Such light octets can significantly effect

the discovery strategies for a light Higgs by modifying the Higgs production mechanism

through a one loop contribution to gg → h that is not well approximated by a local

operator. Octets will also induce a further effective coupling at one loop between h

and γ γ, ZZ and W+W− and would significantly effect Higgs discovery at LHC [123].

Despite this, we have shown that current production bounds on light octets at LEP2 and

Tevatron do not rule out the low mass region and further studies for narrow resonances

in the dijet invariant mass distribution and h→ γ γ signal are required. Currently, octets

are another example of physics beyond the SM that can significantly effect the properties

of the Higgs and yet are otherwise relatively unconstrained experimentally.15 For light

octets, one possible alternate search strategy is to utilize the Higgs pT distribution [126]

to find indirect evidence for onshell octet scalars that have eluded direct detection.

We have also performed a joint fit for the Higgs and the octets by varying the Higgs

15For further studies of the modification of the properties of the Higgs through otherwise experimen-
tally elusive new physics see [124, 125].
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mass oblique corrections at one loop while allowing the masses of the octets to vary.

Doing so we have demonstrated a mechanism that is quite general in its effect of giving

a positive contribution to the T parameter when an extra doublet is present and fit to

in EWPD. This allows the Higgs and octet to be simultaneously heavy and the Higgs

can be as massive as its unitarity bound. For the parameter space where the Higgs mass

is raised, h decaying to pairs of octets is kinematically suppressed. The search strategy

for the heavy Higgs remains substantially the same with difficulties in constructing a

mass peak due to the width of the Higgs resonance and large irreducible backgrounds

to SM processes producing W+ W− decays such as from t̄ t, and large Wj backgrounds.

Likewise very heavy octets are also very broad resonances for large masses and are difficult

to discover at hadron colliders with decays to t̄t dominating, and large SM backgrounds.

Further dedicated studies of LHC phenomenology of this scenario are warranted, as are

further dedicated studies to attempt to raise the lower mass bounds on octet scalar

doublets.

5.A EWPD fit

The data and theory predictions used in constructing the fit are given in Table 2.

The numbers we use for the theory predictions are based on the 2008 PDG results of

a global fit to the EWPD. The input values used in the theory predictions are

MZ = 91.1876± 0.0021GeV, MH = 96+29
−24GeV,

mt = 173.1± 1.4GeV, αs(MZ) = 0.1217± 0.0017GeV, (5.50)

α̂(MZ)−1 = 127.909± 0.0019, ∆α
(5)
had ≈ 0.02799± 0.00014.
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Observable Data Used Theory Prediction

MW [GeV] 80.428 ± 0.039 80.380 ± 0.015

80.376 ± 0.033 80.380 ± 0.015

MZ [GeV] 91.1876 ± 0.0021 91.1874 ± 0.0021

ΓZ [GeV] 2.4952 ± 0.0023 2.4954 ± 0.0009

Γhad [GeV] 1.7444 ± 0.0020 1.7419 ± 0.0009

Γinv [MeV 499.0 ± 1.5 501.68 ± 0.07

Γl+l− [MeV] 83.984 ± 0.086 84.002 ± 0.016

σhad [nb] 41.541 ± 0.037 41.483 ± 0.008

Re 20.804 ± 0.050 20.736 ± 0.010

Rµ 20.785 ± 0.033 20.736 ± 0.010

Rτ 20.764 ± 0.045 20.736 ± 0.010

Rb 0.21629 ± 0.00066 0.21578 ± 0.00005

Rc 0.1721 ± 0.0030 0.17224 ± 0.00003

AeFB 0.0145 ± 0.0025 0.01627 ± 0.00023

AµFB 0.0169 ± 0.0013 0.01627 ± 0.00023

AτFB 0.0188 ± 0.0017 0.01627 ± 0.00023

AbFB 0.0992 ± 0.0016 0.1033 ± 0.0007

AcFB 0.0707 ± 0.0035 0.0738 ± 0.0006

s̄2
l (A

q
FB) 0.2316 ± 0.0018 0.2315 ± 0.0001

Ae 0.15138 ± 0.00216 0.1473 ± 0.0010

0.1544 ± 0.0060 0.1473 ± 0.0010

0.1498 ± 0.0049 0.1473 ± 0.0010

Aµ 0.142 ± 0.015 0.1473 ± 0.0010

Aτ 0.136 ± 0.015 0.1473 ± 0.0010

0.1439 ± 0.0043 0.1473 ± 0.0010

Ab 0.923 ± 0.020 0.9347 ± 0.0001

Ac 0.670 ± 0.027 0.6679 ± 0.0004

g2
L 0.3010 ± 0.0015 0.3039 ± 0.0002

g2
R 0.0308 ± 0.0011 0.03000 ± 0.00003

gνeV -0.040 ± 0.015 -0.0397 ± 0.0003

gνeA -0.507 ± 0.014 -0.5064 ± 0.0001

Qw(Cs) -73.16 ± 0.35 -73.16 ± 0.03

Qw(T l) -116.4 ± 3.6 -116.8 ± 0.04

ΓW [GeV] 2.141 ± 0.041 2.0902 ± 0.0009

Table 5.2: Observables used in fit to oblique parameters.
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The definitions of the oblique corrections we use are

αS

4s2
W c2

W

=

[
δΠZZ(M2

Z)− δΠZZ(0)

M2
Z

]
− (c2

W − s2
W )

sW cW
δΠ′Z γ(0)− δΠ′γ γ(0),

αT =
δΠWW (0)

M2
W

− δΠZZ(0)

M2
Z

,

αU

4s2
W

=

[
δΠWW (M2

W )− δΠWW (0)

M2
W

]
− c2

W

[
δΠZZ(M2

Z)− δΠZZ(0)

M2
Z

]
−s2

W δΠ′γ γ(0)− 2 sW cW δΠ′Z γ(0), (5.51)

αV = δΠ′ZZ(M2
Z)−

[
δΠZZ(M2

Z)− δΠZZ(0)

M2
Z

]
,

αW = δΠ′WW (M2
W )−

[
δΠWW (M2

W )− δΠWW (0)

M2
W

]
,

αX = −sW cW

[
δΠZ γ(M

2
Z)

M2
Z

− δΠ′Z γ(0)

]
The self energies to determine these results are given by the following in terms of PV

functions that match the definitions in [111] and are

16π2 µ4−n
∫

dn q

i (2 π)n
1

q2 −m2 + i ε
= A0(m2) (5.52)

16π2 µ4−n
∫

dn q

i (2 π)n
1

[q2 −m2
1 + i ε] [(q − p)2 −m2

2 + i ε]
= B0(p2,m2

1,m
2
2)

16π2 µ4−n
∫

dn q

i (2 π)n
qµ

[q2 −m2
1 + i ε] [(q − p)2 −m2

2 + i ε]
= pµB1(p2,m2

1,m
2
2)

16π2 µ4−n
∫

dn q

i (2 π)n
qµ qν

[q2 −m2
1 + i ε] [(q − p)2 −m2

2 + i ε]
= pµ pν B21(p2,m2

1,m
2
2),

+gµ ν B22(p2,m2
1,m

2
2)

Our results are

δΠWW (p2) =
g2

1

2π2

[
B22(p2,M2

I ,M
2
+) +B22(p2,M2

R,M
2
+)

− 1

2
A0(M2

+)− 1

4
A0(M2

R)− 1

4
A0(M2

I )
]

(5.53)

δΠZZ(p2) =
g2

1

2π2c2
W

[
(1− 2s2

W )2

(
B22(p2,M2

+,M
2
+)− 1

2
A0(M2

+)

)
+ B22(p2,M2

R,M
2
I )− 1

4
A0(M2

R)− 1

4
A0(M2

I )
]

(5.54)

δΠγγ(p
2) =

2e2

π2

[
B22(p2,M2

+,M
2
+)− 1

2
A0(M2

+)
]

(5.55)

δΠγZ(p2) =
eg1(1− 2s2

W )

π2cW

[
B22(p2,M2

+,M
2
+)− 1

2
A0(M2

+)
]

(5.56)
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For p2 = 0 these expressions become

δΠWW (0) =
g2

1

8π2

(
1

2
f(M+,MR) +

1

2
f(M+,MI)

)
(5.57)

δΠZZ(0) =
g2

1

8π2c2
W

(
1

2
f(MR,MI)

)
(5.58)

where

f(m1,m2) = m2
1 +m2

2 −
2m2

1m
2
2

m2
1 −m2

2

log
m2

1

m2
2

(5.59)

The derivatives of the vacuum polarizations are

δΠ′γγ(0) = − e2

6π2
B0(0,M2

+,M
2
+) (5.60)

δΠ′γZ(0) = −eg1(1− 2s2
W )

12π2cW
B0(0,M2

+,M
2
+) (5.61)

5.B Renormalization

We use dim reg in d = 4 − 2 ε dimensions. We introduce wavefunction renormalization

and mass renormalization constants for the octet fields as usual

Si =
S

(0)
i√
Zi
, Mi =

M
(0)
i√
ZMi

. (5.62)

However, in choosing renormalization conditions, we note that to define the masses and

the mass splittings one cannot use MS, as in MS the mass is defined to have only the

divergence subtracted from the bare mass. The resulting renormalized mass in MS is

not shifted by the finite components of the loop corrections that we have determined.

The renormalization prescription we use is the zero-momentum subtraction scheme [127],

where we require that the self energy and its derivative with respect to external momen-

tum, p2, vanishes at p2 → 0. Note that the second derivative term in the Taylor expansion

of the self energy does not contribute until two loop order and therefore can be neglected

here. The counter terms in the lagrangian are given by

∑
i

[
(Zi − 1)(∂µ Si ∂µSi)− (Zi ZMi − 1)M2

i S
2
i

]
. (5.63)
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With this prescription the wavefunction renormalization and the mass counterterm are

of the form

Zi = 1− a

ε
− dΣi(p

2)

d p2
|p2→0

ZMi = 1 +
b

ε
+ Σi(p

2) |p2→0 +(1− Zi) (5.64)

where a, b are the coefficients of the p2,M2 dependent one loop divergences respectively

and the Σi are the finite terms of the one loop self energy.

Using this scheme and the divergence properties of the PV functions, the wavefunction

renormalization factors are determined to be

ZI = 1− y2
t |ηU |2 + y2

b |ηD|2

64π2 ε
+

g2
1

32π2 ε

[
1 +

1

2 c2
W

]
+
y2
t |ηU |2 log

[
m2
t

µ2

]
+ y2

b |ηD|2 log
[
m2
b

µ2

]
32π2

+
y2
t Im[ηU ]2 + y2

b Im[ηD]2

48π2
+

g2
1

16π2

[
b0(0,M2

W ,m
2
±) +

b0(0,M2
Z ,M

2
R)

2 c2
W

]

ZR = 1− y2
t |ηU |2 + y2

b |ηD|2

64π2 ε
+

g2
1

32π2 ε

[
1 +

1

2 c2
W

]
+
y2
t |ηU |2 log

[
m2
t

µ2

]
+ y2

b |ηD|2 log
[
m2
b

µ2

]
32π2

+
y2
t Re[ηU ]2 + y2

b Re[ηD]2

48 π2
+

g2
1

16π2

[
b0(0,M2

W ,M
2
±) +

b0(0,M2
Z ,M

2
I )

2 c2
W

]
Z± = 1− y2

t |ηU |2 + y2
b |ηD|2

64π2 ε
+

g2
1

32π2 ε

[
1 +

(1− 2 s2
W )2

2 c2
W

+ 2 s2
W

]
+

g2
1

32 π2

[
b0(0,M2

W ,M
2
I ) + b0(0,M2

W ,M
2
R) +

(1− 2s2
W )2b0(0,M2

Z ,M
2
±)

c2
W

− 4s2
W

(
log

[
M2
±

µ2

]
− 1

)]
− (y2

b |ηD|2 + y2
t |ηU |2)

32 π2
b0(0,m2

b ,m
2
t ) (5.65)
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Using these results the mass renormalization factors are determined to be

ZMI = (2− ZI)−
v2

32 π2M2
I

[
y4
t (Re[ηU ]2 + 3 Im[ηU ]2)

(
1

2 ε
− log

[
m2
t

µ2

])
(5.66)

+y4
b (Re[ηD]2 + 3 Im[ηD]2)

(
1

2 ε
− log

[
m2
b

µ2

])]
− v2 (y4

t |ηU |2 + y4
b |ηD|2)

32π2M2
I

+
g2

1

64 π2M2
I ε

[
3M2

W −M2
± +

(3M2
Z −M2

R)

2 c2

]
+

g2
1

32 π2M2
I

[
(M2

W − 2M2
±) b0[0,MW ,M±] +

(M2
Z − 2M2

R) b0[0,MZ ,MR]

2c2
W

+M2
±

(
1− log

[
M2
±

µ2

])
+ M2

W

(
1− 2 log

[
M2

W

µ2

])
+
M2

Z

2 c2
W

(
1− 2 log

[
M2

Z

µ2

])
+
M2

R

2 c2
W

(
1− log

[
M2

R

µ2

])]
ZMR = ZMI |M2

R→M
2
I ,ZI→ZR,Re↔Im

ZM± = (2− Z±)− v2 y4
b |ηD|2

64π2M2
±

[
1

ε
+ b0[0,mb,mt]− log

[
m2
b

µ2

]
+ 1

]
−v

2 y4
t |ηU |2

64 π2M2
±

[
1

ε
+ b0[0,mb,mt]− log

[
m2
t

µ2

]
+ 1

]
− y2

b y
2
t v

2

64π2M2
±

[
|ηD|2

(
1

ε
− log

[
m2
t

µ2

]
+ 1 + b0[0,mb,mt]

)
+|ηU |2

(
1

ε
− log

[
m2
b

µ2

]
+ 1 + b0[0,mb,mt]

)
− (ηD ηU + η?D η

?
U)

(
1

ε
+ 2 b0[0,mb,mt]

)]
+

g2
1

32 π2 ε

[
6M2

W −M2
R −M2

I

4M2
±

+
(1− 2s2

W )2

4 c2
W

(3M2
Z −M2

±)

M2
±

− s2
W

]
+

g2
1

64 π2M2
±

[
(M2

W − 2M2
I ) b0[0,MW ,MI ] + (M2

W − 2M2
R) b0[0,MW ,MR]

+(M2
Z − 2M2

±)
(1− 2s2

W )2

c2
W

b0[0,MZ ,M±] +M2
I

(
1− log

[
M2

I

µ2

])
+M2

R

(
1− log

[
M2

R

µ2

])
+ 2M2

W

(
1− 2 log

[
M2

W

µ2

])
+
M2

Z (1− 2s2
W )2

c2
W

(
1− 2 log

[
M2

Z

µ2

])
+M2

±
8s4

W − 8s2
W + 1

c2
W

(
1− log

[
M2
±

µ2

]) ]
(5.67)

The remaining renormalization is for the mixing operator SR SI which is renormal-

ized as usual by introducing a further counter term to subtract the only divergences of

composite operators as in MS

√
ZI
√
ZR (v2 SR SI)

ZRI
(5.68)
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where

ZRI = 1 +
ZR − 1

2
+
ZI − 1

2
+
y4
t Re[ηU ] Im[ηU ]− y4

b Re[ηD] Im[ηD]

32 π2 ε
(5.69)

5.C Mixing of SR and SI

For completeness in examining one loop effects we determine the mixing between SR and

SI . The mass matrix is given by

MRI =

 M2
I + δ〈T{SI SI}〉G + δ〈T{SI SI}〉Y δ〈T{SR SI}〉Y

δ〈T{SR SI}〉Y M2
R + δ〈T{SR SR}〉G + δ〈T{SR SR}〉Y

 .

(5.70)

We diagonalize the mass matrix by introducing a mixing angle and rotating the SR, SI

fields to a diagonal mass basis S ′R, S
′
I via SI

SR

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


 S ′I

S ′R

 . (5.71)

The mixing angle is given by

sin(θ) =
|y4
t B

?
0(p2,m2

t ,m
2
t )Re(ηU) Im(ηU)− y4

b B
?
0(p2,m2

b ,m
2
b)Re(ηD) Im(ηD)|

8π2 λ2

(5.72)

where B?
0 is the usual PV function with the divergence subtracted given by

B?
0(p2,m2

i ,m
2
i ) = −2 + log

(
m2
i

µ2

)
− β log

(
1 + β

1− β

)
(5.73)

where β =
√

1− 4m2
i /p

2, which would be the velocity of the scalar produced in the CM

frame which was subsequently to mix into another state with mass mj. We take p2 = m2
s

as the mass splittings are a small perturbation in a radiatively induced mixing. If we

take µ ' 1 TeV as the scale at which we impose exact SU(2C) on our scalar potential,

this gives a mixing angle

sin(θ) ' 0.04
|Re(ηU)| |Im(ηU)|

λ2

, (5.74)
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which depends weakly on the value of ms as the numerical coefficient changes by 25%

for ms varying between 0.01 − 300 GeV. This mixing angle, if non zero, will effect the

production cross section of the SI , SR states at LHC and Tevatron, and introduce mixing

between the octetonia states discussed in [110].
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Conclusion

We have addressed two classes of questions in this thesis. The first aimed at improving

our understanding of a variety of SM quantities, namely the CKM matrix element |Vub|

and the production of final state jets. The second line of investigation determines con-

straints on an extension of the SM scalar sector using a range of current data, including

electroweak precision measurements and flavour constraints.

It is important to over-constrain the SM unitarity triangle to test the consistency of

this picture. |Vub| is of particular interest since it is the side opposite the well measured

angle sin 2β. It is theoretically challenging to obtain due to cuts on the large background

from b → c processes, which give rise to a nonperturbative shape function at leading

order. The shape function is universal in B decays and can be eliminated by relating

different spectra. We consider the relation between the B → Xu`ν` P+ spectrum and

the B → Xsγ photon energy spectrum, given by a weight function, W (∆, Pγ). We study

the perturbative behaviour of this relation using a renormalon analysis and calculate the

weight function to order αnsβ
n−1
0 . We confirm the leading renormalon is at u = 1/2,

corresponding to non-perturbative corrections at O(ΛQCD/mb), where we know there to

be subleading shape functions present. We use a model of the photon spectrum to assess

the importance of terms in the expansion of the weight function. Our results can be used

117
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to estimate the perturbative uncertainty in the extraction of |Vub|, which we find to be

at the percent level.

Jet production tests QCD over a wide range of scales and is also important as a

background to new physics searches. Factorization of perturbatively calculable hard

interactions and jet functions from nonperturbative low-energy effects is critical to gaining

control over such QCD processes. SCET is a useful tool with which to study jets since

it separates physics associated with the jet and soft scale at the level of the Lagrangian,

making the proof of all orders factorization much more tractable. In order to begin to

address this problem, we show how to properly implement jet algorithms in the effective

theory, clarifying the connection between cutoffs in SCET and phase space limits. By

considering several jet algorithms at next-to-leading order, we show the consistency of

this approach with a non-trivial zero-bin subtraction, which properly accounts for double

counting in SCET. By studying the k⊥ algorithm, we show the dependence of factorization

on the ultraviolet cutoff.

If we view the SM as a low energy effective theory of an underlying theory that

has SU(3)UR × SU(3)DR × SU(3)QL flavour symmetry, which is broken to generate the

Yukawa matrices, we are led to the idea of MFV. Manohar and Wise showed that only one

type of exotic scalar can Yukawa couple to quarks consistently with MFV, a colour octet

electroweak doublet. We consider an extension of the SM with one additional octet scalar

and ask how light it can be, what the constraints on it are, and what the implications are

for the Higgs mass. We carry out an up-to-date fit to electroweak precision data with an

extended set of oblique parameters relevant for light states and find that the new scalars

can be light, O(100 GeV). We show that direct production bounds from LEPII and the

Tevatron do not rule out light octet scalars and find that a promising signal is the octet

decay to two photons. In order to investigate the impact of the new scalar on the Higgs

mass from electroweak precision data, we perform a joint fit. Mass splitting in the exotic

scalar doublet allows both the Higgs and octet scalar masses to be large and consistent
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with electroweak precision data.

6.1 Future Directions

Efforts to improve the determination of |Vub| continue, for example through the Analysis

of B-Meson Inclusive Spectra (SIMBA) project where a fit to charmless inclusive B

meson decay spectra is to be carried out using all available information. Our study of

the higher order perturbative corrections to the extraction of |Vub| based on relating the

semi-leptonic and radiative B meson decays can be used as inputs to such a fit and to

improve the accuracy of theoretical error estimates.

The work on final state jet production in SCET, in particular the consistent approach

developed to implement a given jet algorithm with arbitrary parameters in the effective

theory, has been used by other groups to study for example jet shape observables [128].

A future direction of this work is to apply the SCET approach to further study non-

global observables, beginning with ones with fewer scales such as the left hemisphere

mass distribution, which has been considered using perturbative QCD techniques [17].

Minimal flavour violation continues to be an interesting and actively explored idea

by which flavour changing neutral currents can be suppressed in extensions of the SM.

The phenomenology of coloured scalars at LHC also continue to be investigated. Our

work demonstrates that the colour-octet electroweak-doublet scalars can be light and

we strongly constrain their mass splitting using EWPD. This highlights possible phe-

nomenologically interesting search strategies.
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