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Abstract
We model a gyroscope that exploits quantum effects in an atomic Bose–Einstein condensate to
gain a tunable enhancement in precision. Current inertial navigation systems rely on the
Sagnac effect using unentangled photons in fibre-optic systems and there are proposals for
improving how the precision scales with the number of particles by using entanglement. Here
we exploit a different route based on sharp resonances associated with quantum phase
transitions. By adjusting the interaction between the particles and/or the shape of their
trapping potential we are able to tune the width of the resonance and hence the precision of the
measurement. Here we show how we can use this method to increase the overall sensitivity of
a gyroscope by adjusting the system parameters as the measurement proceeds and our
knowledge of the rotation improves. We illustrate this with an example where the precision is
enhanced by a factor of more than 20 over the case without tuning, after 100 repetitions.
Metrology schemes with tunable precision based on quantum phase transitions could offer an
important complementary method to other quantum-enhanced measurement and sensing
schemes.

Keywords: quantum metrology, cold atoms, gyroscope

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum metrology is expected to be one of the key enabling
quantum technologies in the near future with great potential for
advancing experimental science and industrial applications.
Recent experiments have demonstrated quantum improve-
ments in measuring protein concentration [1], tracking lipid
granules in yeast cells [2], searching for gravitational waves
[3], and the detection of single-neuron activity [4]. The canon-
ical approach to quantum metrology involves using entangled
probe states to measure an external parameter with a precision
that surpasses the standard quantum limit (SQL), where the
uncertainty Δφ scales as 1/

√
N, for N particles. With care-
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fully chosen states and measurements it is possible, at least
in principle, to reach the Heisenberg limit (HL) where Δφ
scales as 1/N [5]. However, in practice it is often better to
look instead for advantages we can achieve in a given physical
system with finite resources, rather than chase the HL. In this
paper, we present a scheme in this spirit by considering what
advantages can be achieved over classical schemes for specific
gyroscopes rather than focussing on how the precision scales
with the number of particles.

Recent work has shown that there is much more rich-
ness and subtlety to quantum metrology than the standard
entanglement-enhanced approach suggests and it is possible,
for example, to surpass the SQL by exploiting nonlinearities
[6] or long-range order in condensed matter systems [7] or
without needing entanglement between interferometer paths
[8], or between particles [9, 10]. Here we make use of quan-
tum phase transitions and, while this involves entanglement,
it does so in an indirect way that is different from what has
previously been presented. We are more interested in the fea-
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ture that quantum phase transitions have narrow resonances
where the probe states rapidly vary as we scan over an exter-
nal parameter, suggesting that they may be useful for precision
metrology. This is backed up by the fact that the Fisher infor-
mation, which is widely used to quantify measurement pre-
cisions, is proportional to the square of the rate at which the
measurement-outcome probability distribution changes with
the parameter of interest. However, these very narrow struc-
tures also have a major disadvantage since they can only mea-
sure the parameter over their very narrow range. In other
words, we would need extremely good prior information about
the value of the parameter we are measuring, which to some
extent defeats the purpose of the measurement. In this work,
we show how we can overcome this problem by proposing
a scheme that exploits the narrow resonances but has a tun-
able precision. This means that we can start with a broad
resonance matching our initial (poorly-defined) knowledge
of the parameter and then, as measurements are made and
information is obtained, the precision can be progressively
improved by a kind of ‘boot-strapping’ method. We demon-
strate that this allows for significant advantages in measuring
rotation rates which could, in turn, be important for the devel-
opment of new inertial navigation devices as well as other
wider applications.

Other work has investigated using phase transitions in
quantum metrology to achieve the HL in different schemes
[11–15]. Our approach focuses instead on tunable quantum-
enhanced sensors and the advantages they can give with finite
resources. Although this idea may be able to be applied more
generally, such as in the coupling of a qubit with a laser
at its critical point [15] or the Jaynes–Cummings [16] and
Dicke [17] models of atom–light coupled systems, we focus
here on one particular system for definiteness. We consider
trapped Bose–Einstein condensates (BECs) that are stirred
and undergo a quantum phase transition to create a vortex.
Unlike their classical counterparts, quantum phase transitions
can be accessed even at zero temperature by varying physi-
cal parameters of the system. BECs are a promising system
for future metrology experiments [5, 18–20] since techniques
have been developed that allow species with different proper-
ties to be condensed [21], the trapping time to be increased,
and new imaging techniques to be developed. Matter–wave
interferometers using BECs or cold-atom clouds have already
been used successfully in enhanced measurements of mag-
netic fields [22, 23], gravitational fields [24, 25] and rotations
[26–28].

The best available rotation sensors make use of fibre-optic
and metre-scale ring laser gyroscopes [29]. Atom interferom-
etry offers a different approach with high stability and much
smaller enclosed areas that are better suited to deployment
in the field. Sagnac sensors, for example, use light fields to
coherently spilt and recombine atomic wave packets in free
fall and have dimensions on the centimetre scale [30, 31].
Another, even more compact, approach is to use waveguides
or atomic traps. Other more-general schemes for ultraprecise
measurements and sensing include systems such as hybrid
atomic and optomechanical cavities [32–34]. Our scheme fol-
lows the compact atom-trap route and is based on the idea of

Dagnino et al [35] where a BEC is trapped in a quasi-two-
dimensional weakly anisotropic potential and the rate of rota-
tion of the potential is varied. As a BEC is unable to rotate at
a non-quantised rate, it can only gain angular momentum by
forming quantised vortices. Below a critical rotation rate of the
potential, Ωc, the BEC will have zero angular momentum but,
as we pass through the critical value, the BEC will undergo a
quantum phase transition forming a quantised vortex. As this
point, the ground state of the system experiences macroscopic
symmetry-breaking accompanied by entanglement across the
system and is dominated by two macroscopically occupied
states. The phase transition is very sharp in the external rota-
tion rate, which makes this system useful for metrology and,
of particular interest is the fact that the width can be varied
by changing other parameters such as the degree of anisotropy
or the interaction strength between atoms. This feature allows
us to propose a quantum-enhanced gyroscope with a tunable
precision.

2. Model

Our model consists of N bosonic atoms of mass M held in an
axially symmetric harmonic potential with a frequency of ω⊥
in the xy plane, and ωz in the z axis. Setting h̄ωz to be suffi-
ciently large in comparison with the interaction energy forces
all the bosons to occupy the lowest axial energy level, making
the model behave quasi-two-dimensionally at low tempera-
tures. For our calculations, we will take N = 6, for compu-
tational convenience. Larger numbers of particles have been
studied for this model in other work [36] and are qualita-
tively similar. We have all the features we need for the present
scheme with N = 6 and, since we are not concerned here
with how the measurement precision scales with N, we do not
need to consider more particles, which greatly simplifies our
numerics.

The Hamiltonian in the rotating reference frame [37] is
given by,

Ĥ =
N∑

i=1

(
− h̄2

2M
∇2

i +
1
2

Mωzz
2
i +

1
2

Mω2
⊥ρ

2
i

+ 2AMω2
⊥(x2

i − y2
i ) − ΩLzi

)
+

1
2

N∑
j�=k

gh̄2

M
δ(−→r j −−→rk ),

(1)

where A is a dimensionless parameter that quantifies the xy
anisotropy in the potential and is taken to be small, A � 1,
to ensure the solutions to the Hamiltonian converge [38];
ρ ≡

√
x2 + y2 is the radial coordinate in the xy plane; Ω is

the external rotation frequency; Lzi is the z-component of the
angular momentum of the ith atom; and M is the mass of an
atom. The Hamiltonian is summed over the contributions from
the N atoms. The last term describes the energy of interac-
tions between atoms and is quantified by the dimensionless
parameter g = as

√
8πMωz/h̄, where as is the 3D scattering

length. For reasonable experimental parameters, g takes val-
ues of order 0.1 and can be varied e.g. by changing ωz. For a
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given value of ωz, the potential energy in the z-direction, i.e.
(Mωzz2

i )/2 can be ignored in the Hamiltonian because it is a
constant since the system will always be in the lowest energy
level in that direction for sufficiently large ωz.

If we scale the energies by h̄ω⊥, the second-quantised
Hamiltonian [39] in the rotating frame is then,

Ĥ = 2
∑

k

nkN̂k +
∑

k

|mk|N̂k − ΩL̂ + N̂ +
∑
k1,k2

Vk1k2 â†
k1

âk2

+
1
2

∑
k1,k2

∑
l1,l2

Uk1k2l1l2 â†
k1

â†
k2

âl1 âl2 , (2)

where â†
k creates a boson in the state k = (nk, mk); mk spec-

ifies the number of units of angular momentum the particle
has; nk specifies the Landau level; N̂k = â†

kâ is the occupation
number operator for state k; and L̂ =

∑
k mkN̂k is the angu-

lar momentum operator for the system. The anisotropic term,
Vk1k2 is given by,

Vk1k2 = A

√
nk1 !nk2 !

(nk1 + |mk1 |)!(nk2 + |mk2 |)!
I1(k1, k2)

× (δmk2
,mk1±2 ), (3)

where

I1(k1, k2) =
∫ ∞

0
e−xx

|mk1
|+|mk2

|+2

2 L
|mk1

|
nk1

(x)L
|mk2

|
nk2

(x)dx.

The interaction Uk1k2l1l2 term is

Uk1k2l1l2 =
g
π

1

2
∑

|mt |
2

√
Πt

nt!

(nt + |mt|)!
I2(k1, k2, l1, l2)

× (δmk1
+mk2

,ml1
+ml2

), (4)

where

I2(k1, k2, l1, l2) =
∫ ∞

0
e−xx

∑
|mt |
2 L

|mk1
|

nk1

( x
2

)
L
|mk2

|
nk2

×
( x

2

)
L
|ml1

|
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( x
2

)
L
|ml2

|
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( x
2

)
dx.

Lm
n (x) are Laguerre polynomials and t takes values k1, k2, l1, l2

so that,

Πt
nt !

(nt + |mt|)!
=

nk1 !nk2 !nl1 !nl2 !

(nk1 + |mk1|)!(nk2 + |mk2|)!(nl1 + |ml1 |)!(nl2 + |ml2 |)!
.

As we might expect, the interaction term only couples states
that have the same total angular momenta, which can be seen
directly from the form of Uk1k2l1l2 in equation (4). By contrast,
the anisotropic part of the potential given by equation (3) con-
nects states that have angular momenta that differ by ±2 units,
which makes sense as the anisotropy is necessary to impart
any angular momentum to the system. For our numerical sim-
ulations, we choose a Fock basis that, in the absence of any
anisotropy, gives a block diagonal matrix in terms of angular
momenta. The basis states are given by

|N0, N1, . . .〉 = Πk
â†Nk

k√
Nk!

|0〉, (5)

where the k index corresponds to both an angular momentum
and a Landau level as specified above.

In order to make the numerical calculation tractable, we
need to truncate the basis and can do this consistently with
the following two approximations. Firstly, we restrict the state
to be in either the lowest Landau level or the first Lan-
dau level. The nLLth Landau level constraint is imposed by
including only basis states which satisfy the relation, 1 +(∑N

i=1[ni + (|mi| − mi)/2]
)

� nLL, where nLL is the Landau

level upper constraint. For our calculations, which include the
lowest and first excited Landau level, we set nLL = 2. This con-
dition means that a particle can have either one unit of angular
momentum, one unit of radial excitation, or neither. We have
numerically checked that adding another Landau level has a
negligible effect on the critical frequency for the interaction
strengths considered here as outlined in [36], which justifies
this truncation.

The second truncation follows the work of Morris and Feder
[38], which shows that for a sufficiently small value of the
anisotropy, states with a high angular momentum do not con-
tribute to the many-body ground state. This allows us to restrict
the basis to states with L � Lmax where Lmax is taken as Lmax =
N + 2 and ensures convergence of the energies of the Hamil-
tonian [35]. For a small non-zero value of A, the anisotropic
term, equation (3), connects the subspaces separated by two
units of total angular momentum.

As the rate of rotation of the condensate is adiabatically
increased, the system changes from being at rest to contain-
ing one vortex, crossing a critical rotation rate, Ωc, that signals
the symmetry-breakingquantum phase transition [35]. In order
to understand what is happening, it is convenient to describe
the ground state in the region of Ωc with a two mode (TM)
approximation given by,

|ΨTM〉 =
N/2∑
n=0

Cn|N − 2n〉Ψ1 |2n〉Ψ2 , (6)

where |A〉Ψ1 |B〉Ψ2 represents A(B) bosons in the most (sec-
ond most) populated mode corresponding to state Ψ1(Ψ2). For
clarity, this is not the same basis as given in equation (5),
but rather these two states are the eigenstates corresponding
to the two largest eigenvalues of the single-particle density
matrix, ρkl = 〈Ψ|âl

†âk|Ψ〉. They have equal populations at Ωc

and account for almost all of the population, justifying the
TM approximation. At very low rotations the most populated
single-particle state Ψ1 is almost entirely composed of m = 0
momentum particles. Just below Ωc, Ψ1 is composed of both
m = 0 and m = 2 units of angular momentum [35]. Just above
Ωc, Ψ1 and Ψ2 switch occupancy with Ψ2 becoming the most
occupied state. This state is composed almost entirely of par-
ticles with m = 1 unit of momentum. By adjusting the system
parameters, we can tune the width of the transition between
these two cases. This is the physical process that is used for
our measurement scheme. The TM approximation has been
introduced here just to aid understanding of the processes
involved and is not used in the simulation results presented
in section 3.
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Figure 1. Plot of P(0|Ω) versus Ω for different combinations of g
and A values. The gradient of P(0|Ω) can be varied by changing
these parameters, enabling the precision of the scheme to be tuned.

3. Results

We now describe the scheme that utilizes the results above
to develop a quantum-enhanced gyroscope with tunable pre-
cision. We use the fact that well below Ωc all the particles
have zero angular momentum and, as they pass through the
phase transition, they acquire angular momentum. Our mea-
surement protocol starts by calculating the probability that, for
a given rotation rate, Ω, all of the particles have zero angu-
lar momentum, P(0|Ω). A plot of this function for different
values of g and A is shown in figure 1. For this calculation
we use the full quantum state (with the two basis truncations
discussed above) rather than the TM model to numerically
find the ground state. Using the (truncated) basis given in
equation (5), the zero momentum states correspond to the kets
with k = (0, 0) and (0, 1), i.e. states with zero angular momen-
tum in either the lowest or first Landau levels. To determine
the probability P(0|Ω), we numerically find the ground state of
(2) and then sum the probabilities of the k = (0, 0) and (0, 1)
components.

The gradient of P(0|Ω) in figure 1 determines the precision
of the measurement scheme, but also limits its range. Impor-
tantly, both these parameters can be adjusted by changing the
values of g and A (as seen in figure 1), which allows us to tune
the sensor. We want to harness the power of the steep gradi-
ents without being constrained by their limited ranges. It is
not optimal to choose the transition region to be much broader
than our prior knowledge of the rotation since, although that
would ensure we can easily reach the transition region, the
slope will not be as steep at it could have been. On the other
hand, if the transition region is chosen to be much narrower
than our prior knowledge, then we will often miss the tran-
sition region altogether since our best guess of the rotation

is more uncertain than this. In such cases we will end up
where P(0|Ω) has zero slope and will gain no information.
The best choice, therefore, is when the transition region width
is matched to our prior knowledge. For our simulations, we
take the prior to be a flat distribution over some range (though
this is not necessary) and choose values of g and A to ensure
that the region of steep gradient for P(0|Ω) covers the full
range of the prior. For the values of g and A that we have
investigated, this region can comfortably extend to 0.06ω⊥.
Given a typical trapping frequency of 200 Hz, this means that
the rotation must be known initially to within 12 Hz. This is
well within the range required for applications such as inertial
navigation.

The measurement scheme proceeds by adiabatically adding
an external rotation to our system so that the sum of it and the
mid-point of our prior information match the known Ωc for
our system. This guarantees that we will end up somewhere
in the region of the steep gradient shown in figure 1, i.e. the
region of high measurement sensitivity. The condensate is then
rapidly (non-adiabatically) shifted out of the transition region
to the lower side. This fixes the populations in the different
levels, which can then be measured to calculate the most likely
rotation rate.

The probability of all particles not rotating, P(0|Ω), is
shown in figure 1 for different values of g and A. Here we
use the notation of 0 to represent all particles not rotating and
later ¬0 to represent any other state. We generate a random
number, R, to select an outcome from this distribution that
models the outcome of a measurement. If R � P(0|Ω) then we
take all the particles to be not rotating and update the prior,
using Bayesian methods, as P(Ω|0) ∝ P(0|Ω)P(Ω). For any
other measurement result, i.e. R > P(0|Ω), the prior is updated
as P(Ω|¬0) ∝ [1 − P(0|Ω)]P(Ω). Each iteration improves the
measurement by incorporating the previous information, both
honing in on the unknown rotation, figure 2, and increas-
ing the precision by reducing the standard deviation, σ, of
each curve.

3.1. Tuning the parameters

The results illustrated in figure 2 do not yet make use of the
great advantage of this scheme, namely its tunability. In this
section we show how, by tuning the system parameters as
the measurement proceeds, it is possible to achieve smaller
standard deviations with fewer measurements.

We start by choosing values of g and A that give rise to
a broad transition region as in figure 1 with a width compa-
rable to our (initially poor) prior knowledge of the rotation.
The Bayesian estimation procedure described above is then
run for a fixed number of repeats. This gives us improved
knowledge of the rotation, given by a narrower Bayesian dis-
tribution as shown in figure 2. We can now refine the next
stage of the measurement by choosing a new combination of
g and A values that produce a curve with a width that matches
our updated Bayesian probability distribution. This process
of updating the values of g and A to follow the width of the
Bayesian curve is key to the tuning technique. In principle
we could do this continuously, updating g and A after every
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Figure 2. Bayesian prediction of Ω, P(Ω|M), shown for different
numbers of measurements, μ, where M is a vector containing the μ
measurement outcomes. As expected, the precision of the prediction
improves as μ is increased. For the case shown here, g = 0.5 and
A = 0.04 and the true rotation is 0.90ω⊥. After 100 repeats the
distribution was centred around 0.8980 with a standard deviation of
σ = 0.0037; after 1000 repeats (not pictured due to scale), σ was
0.0012; after 104 repeats, σ was 3.8 × 10−4. These results have not
yet made use of the tunability of the measurement scheme.

measurement, but in practice it is simpler and still very effec-
tive to update the values only once or twice during a measure-
ment run.

The results of a simulation in figure 3 show how this tech-
nique can substantially improve a measurement. Line (a) uses
only the initial values of g = 0.5 and A = 0.04 and serves
as a reference benchmark against which we can compare our
results. Line (b) starts with the same g and A as before but, after
ten measurements, these parameters are updated to match the
width of the new Bayesian distribution. This gives an improve-
ment in the standard deviation by a factor of about 1.5 after
100 measurements. Line (c) follows a similar procedure, but
tunes the g and A values twice—after 12 measurements and
again after 32 measurements. In this case the precision of the
measurement is improved by a factor of more than 20 after
100 measurements, when compared with the untuned case.
Alternatively, the untuned precision after 104 measurements
(σ = 3.8 × 10−4), can be achieved with fewer than 100 mea-
surements using the tuning scheme shown in figure 3(c). The
large μ behaviour of each of the curves in figure 3 shows
the μ−1/2 scaling that we would expect. Note that the ‘boot
strapping’ nature of this scheme is important. We would not
get the same results just by initially choosing the final values
of g and A in line (c). The reason for this is that the transi-
tion would then be much narrower than our prior knowledge
of Ω and there would be a high probability that we would
miss the transition altogether and gain no information from
the measurement (see figure 1). The process of matching the
width of the transition to our prior knowledge and then updat-
ing it as we gain more information is key. The details of this
scheme have been chosen just to illustrate the technique and

Figure 3. Logarithm of the standard deviation of the Bayesian
distribution P(Ω|M) as a function of the number of measurements,
μ. Three different results are shown corresponding to (a) no tuning
of the parameters, g = 0.5 and A = 0.04, (b) one tuning after 12
measurements, and (c) two tunings after 12 and 32 measurements.
The case with no tuning is the benchmark corresponding to the
SQL. We see that tuning enables significant improvements in
precision to be achieved.

larger gains could be achieved with an optimisation of the
tuning strategy.

4. Discussion

The tunability of the phase transition has two major benefits.
Firstly, we can start with a broad transition region, giving the
experimentalist a large region to aim for when the rotation
is not very well known. Secondly, we are not then bound by
this rather imprecise measurement tool but can refine it as the
measurement proceeds to gain further advantages in the over-
all precision. A nice feature of this scheme is that by varying
either g or A we can achieve the desired tuning. This means
that an experimentalist can choose to vary whichever is more
practical.

An efficient way of implementing this scheme could be to
create an array of traps by using an optical lattice. By mak-
ing use of the superfluid to Mott insulator phase transition it is
possible to achieve an array where each of the traps contains
the same fixed small number of atoms [40], which is important
for our scheme. It is also possible to achieve the Mott-like fea-
tures that we need at finite temperatures [41]. Once we are in
the Mott regime, the optical lattice can be adiabatically trans-
formed to create an array of traps with the desired populations
and geometries. For our simulations, we model an array with
200 lattice sites, though this could be scaled up to larger num-
bers. By using this array, 200 results can be taken with a single
measurement run. This is a big advantage for measuring time-
dependent systems since, if the rotation rate is changing with
time, we would need to gather sufficiently good statistics to
measure it at a given time before it changes. By making all
the measurements on a single shot, we greatly increase the
bandwidth of our sensor. Our simulations use the initial val-
ues g = 0.5 and A = 0.04 and follow the procedure described
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above. A single run gives us 200 measurements in parallel
and significantly changes the Bayesian distribution resulting
in σ = 0.0026. At this point we apply the tuning and a sec-
ond array is created and measured using updated values of
g and A. These values are chosen as g = 0.6 and A = 0.025
to approximately match the width of the distribution, i.e. σ =
0.0026. The array method means that we can only alter the g
and A values at measurement numbers corresponding to inte-
ger multiples of the number of traps. This restricts us a little
but this restriction is far outweighed by the practical advan-
tages of the scheme. After this process (i.e. 400 trap measure-
ments in total) our simulation gives σ = 1.8 × 10−4. This is
a factor of 10 improvement over the untuned case with 400
measurements. It is possible to gain a bigger advantage with
three or more tunings and the details of this can be worked
out for specific implementations taking into account practical
considerations.

The read-out for this scheme only requires us to determine
the probability of all the atoms having zero angular momen-
tum. This is the same as the probability of being in the ground
state away from the transition region. Once we have performed
the measurement process and rapidly shifted away from the
transition region (as described above) we could remove all
the excited states. One possible way of achieving this is by
using Laguerre–Gaussian beams, which have a helical phase
front and carry an orbital angular momentum [42–44]. The
orbital angular momentum of the Laguerre–Gaussian beam
can be selectively transferred to the centre of mass angular
momentum mode of the particles that already have a non-
zero angular momentum, exciting them out of the trap. An
easier way may simply be to lower the trap height so that
all but the ground state are not bound. Once the excited
states have been removed, fluorescence spectroscopy could
provide a readout mechanism telling us the fraction of traps
in the ground state. We do not need to be able to count
atoms, just the fraction of traps which still have atoms remain-
ing in them. The practicalities for this are currently being
investigated.

So far we have considered only pure states that are effec-
tively at zero temperature. We should conclude by comment-
ing on how noise is likely to affect our results. One of the
strengths of our scheme is the simplicity of the read-out—it
is just a bucket detection where we only need to know the
fraction of particles with zero angular momentum. For a sys-
tem with no classical noise sources such as finite temperature
effects or laser fluctuations causing the trapping potential to
jiggle, everything behaves as described above; if we do have
these noise effects, we will get a mixed state that includes some
component of the other levels. However, our read-out means
that this does not affect things much. The lowest level acts just
as before, but there is some depletion of the zero momentum
state due to the noise. Since we are only interested in how the
fraction in the zero-momentum mode changes as a function of
Ω, we can get around the problem by first calibrating our sys-
tem for Ω = 0. We are then able to measure other values of
Ω by detecting changes in the ground state fraction using the
method described above.

Although non-zero temperatures should not affect our
scheme too much, the loss of particles is likely to be much
more important. Many of the details of the scheme such as
the energy levels and location of Ωc depend on the fact that
we have a particular number particles in each trap (N = 6 for
the case considered here). If particles are lost, this number
changes and we get an error. We would avoid this problem
if we could run the scheme much faster than the loss rate of
particles. Trapped Bose condensates routinely have lifetimes
of more than 10 s [45, 46] and so if our scheme was much
quicker than this, loss would not be important. The problem
is that our scheme relies on us remaining in the ground state
by adiabatically changing the rotation of the trap. As we get
close to the critical point, the energy gap gets very small and
so the adiabatic process becomes slow. This puts a speed limit
on how quickly we can change things and we need to compare
this with the trap lifetime.

It turns out that we can speed up the process and minimise
the effects of loss by making use of the fact that we have a crit-
ical region (rather than a critical point) and so we do not need
to go all the way to Ωc. This can be seen, in figure 1 where
there is a clear range of Ω values over which enhanced mea-
surements can be achieved. This means that a small distance
from Ωc (but still in the critical region) we can get a measure-
ment advantage, but the adiabaticity criterion will not be so
stringent and so the scheme can be run more quickly, reducing
the effects of loss. A simulation of this for the case of g = 0.5,
A = 0.04 is shown in figure 4. Line (b) shows the time needed
to reach a reach a final rotation offset (Ω− Ωc). We see that,
for zero offset, the time needed is a few seconds and so loss
would play a role. The times get longer too for different val-
ues of g and A that give narrower resonances. For comparison,
the precision (as measured by the HWHM) for each offset is
plotted as line (a). There is generally a trade-off between the
time taken and the precision achieved. However, we see that
the HWHM does not change much over the range Ω− Ωc ∈
[−0.1ω⊥, 0] while the time needed to create this state varies
by a factor of more than 10. This means that only going as far
as Ω = Ωc − 0.1ω⊥ in the state preparation will give a very
similar measurement precision but take much less time. This
not only allows us to develop schemes that are not affected
by loss (by operating much faster than the trap lifetime), but
is also highly desirable for creating higher bandwidth sen-
sors, which are important for applications such as inertial
navigation.

The adiabaticity criterion varies for different values of g and
A and it is known that this needs to be properly accounted for
when considering scaling laws in metrology [14]. In partic-
ular, the situation can change if we consider the precision we
achieve as a function of experimental time rather than the num-
ber of measurements. We have checked figure 3 when plotted
as a function of time and seen that the top two curves (i.e. no
tuning and one tuning) largely overlap, meaning that there is no
real advantage to the case we considered where the parameters
were tuned once. By contrast, the case of two tunings (bot-
tom curve) does still show a significant improvement, meaning
that our scheme can still offer an advantage in the context of
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Figure 4. Effects of an offset in the rotation frequency, Ω, from the
critical frequency, Ωc in the state preparation for the parameters
g = 0.5 and A = 0.04. (a) Shows the final HWHM in units of ω⊥ of
the six-particle state (right hand scale) as a function of Ω− Ωc in
units of ω⊥. (b) Shows the time in seconds (left hand scale) required
to reach this offset frequency in order to maintain adiabaticity.

experimental time. However, this is something care needs to
be taken over in any implementation.

To summarise, a proposed implementation would be as fol-
lows. Atoms are cooled into a BEC and then an optical lattice
is turned on. By increasing the light intensity, a Mott insulator
transition can occur where each lattice site has the same num-
ber of atoms. The lattice can then be deformed to ensure that
the correct number of atoms, N, are in each trap of the array
and that the A and g values are such that the width of the reso-
nance matches our prior knowledge of the rotation rate Ω. We
then adiabatically increase the rotation rate of the array so that
the middle of our prior knowledge plus the rotation we apply is
in the critical transition region. We do not go all the way to the
critical frequency, Ωc to reduce the time needed, as discussed
above. We then non-adiabatically reduce the rotation rate to
bring the system out of the critical region. This locks the pop-
ulations into the different levels. Finally, we reduce the trap
heights so that all but the atoms in the zero-momentum states
leave the traps and then we image the remaining population
with fluorescence imaging techniques. This gives us P(Ω|M)
and we can repeat the process with new values of g and A to
match our updated knowledge of Ω.

While we have demonstrated the principle of a tunable
quantum-enhanced sensor, it is worth comparing its perfor-
mance with existing matter wave gyroscopes to see if any
advantage can be gained. Free-falling atom interferometers
represent the state of the art in atomic inertial sensors and,
in such a device, a sensitivity to rotation of 2.2 × 10−5 rad s−1

in 1 s was achieved with 107 atoms [30]. Our scheme
achieves 3.8 × 10−4ω⊥ with 104 measurements, i.e. 6 × 104

atoms. Extending to 107 atoms gives 2.7 × 10−5ω⊥. The
absolute performance depends on ω⊥ but since this is greater
than 1, we are not yet at the level of [30]. However, our
scheme has not been optimised, meaning bigger gains are
likely through careful tuning of the parameters and reducing
the value of ω⊥. This means that atomic lattice sensors could
be competitive with matter–wave interferometers based on the
Sagnac effect, but be much smaller with sub-millimeter dimen-
sions compared with a few centimeters. Overall this shows that
our scheme is not just an interesting new approach to quantum
metrology, but has potential advantages too.

In conclusion, we have demonstrated a quantum-enhanced
gyroscope scheme that, rather than relying on the enhanced
number scaling that accompanies entangled particles, makes
use of the sharp resonances associated with quantum phase
transitions. The key feature of this scheme is that the preci-
sion can be tuned. This allows the measurement to be opti-
mised through the course of a run and can lead to substantial
gains in precision over unoptimised cases. Our scheme has
the potential to compete with existing schemes, but has addi-
tional size advantages. We have also discussed possible ways
of implementing this scheme and mitigating the effects of the
main sources of error. Finally, while we have considered a
very specific realisation in this paper, we believe that the idea
of using quantum phase transitions for measurement schemes
with tunable precision could be applicable in other systems
[15–17]. This may form an important new approach that
complements more established ideas in quantum metrology
and sensing.
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