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2.1 Introduction

In modern experimental particle physics, Shower Monte Carlo programs have
become an indispensable tool for data analysis. From a user perspective, these
programs provide an approximate but extremely detailed description of the final
state in a high energy reaction involving hadrons. They provide an exclusive
description of the reaction, as opposite to typical QCD calculations, that are
only suitable to compute inclusive quantities.

Shower Monte Carlo programs are a mixture of several heterogeneous
components, that are all needed to give a realistic description of the formation
of the final state:

1. A large library of Standard Model and Beyond the Standard Model cross
sections. The user can choose the hard scattering process within this library.

2. An algorithm for the generation of dominant perturbative QCD effects,
called the shower algorithm. The shower algorithm adds to a given hard
scattering a number of enhanced coloured parton emission processes. The
enhancement is given by collinear and soft singularities, that can contribute
large logarithms of the hard scale of the process over some typical strong
interaction scale cutoff. These large log are of the order of the inverse of a
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strong coupling constant, and can thus give contributions of order 1 to the
hard process.

3. They implement some model of hadron formation, given the state of high
energy partons that arises from steps 1 and 2.

4. They implement some model for the underlying event.

5. They include libraries for the decay of weakly unstable hadrons.

The name “Shower” is from item 2, that can be considered the kernel of a
Shower Monte Carlo program. The shower generation algorithm is in essence
a method for the computation of a potentially infinite number of Feynman
graphs (i.e. all those that are enhanced by infrared logarithms, so that their
contribution to the cross section can be considered of order one). Besides being
useful for simulation of physical processes, the shower algorithms also provide
a remarkably simple mental model of the most important QCD effects in high
energy processes, providing insights into jet structure, fragmentation functions,
structure functions and their Altarelli-Parisi evolution.

2.2 Shower basics

2.2.1 Collinear Factorization

QCD emission processes are enhanced in the collinear limit, that is to say, when
an emitted parton (gluon or quark) is collinear to an incoming or outgoing
parton in the scattering process. In this limit, the cross section is dominated
by a subprocess in which a parent parton with small virtuality is produced that
decays into the two collinear partons. There are three possible decay processes:
q → qg, g → gg and g → qq̄. The cross section factorizes into the product of
a cross section for the production of the parent parton times a splitting factor.
This factorization is depicted schematically in the following graphical formula,
for the case of the q → qg splitting process

, (2.1)

that has the following meaning: given a tree level amplitude with n + 1 final
state particles, assuming that a final state quark becomes collinear to a final
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state gluon (i.e. their relative angle goes to zero), we have:

|Mn+1|2dΦn+1 ⇒ |Mn|2dΦn
αS

2π

dt

t
Pq,qg(z) dz

dφ

2π
. (2.2)

where Mn+1 and Mn are the amplitudes for the n + 1 and n body processes,
represented by the black blobs in fig. 2.1. The n and particle phase space is
defined as usual

dΦn = (2π)4δ4

(
n∑

i=1

ki − q

)
n∏

i=1

d3ki

2k0
i (2π)3

, (2.3)

where q is the total incoming momentum. The parameters t, z and φ describe
the kinematics of the splitting process: t is a parameter with the dimension of
a mass, vanishing in the collinear limit, z a variable that, in the collinear limit,
yields the momentum fraction of the outgoing quark relative to the momentum
of the quark that has split

k → z(k + l) for t → 0, (2.4)

and φ is the azimuth of the 
k,
l plane around to the
−−→
k + l direction. Pq,qg(z) is

the Altarelli-Parisi splitting function

Pq,qg(z) = CF
1 + z2

1 − z
. (2.5)

Observe that there is some arbitrariness in the definition of t and z, since dt/t
is invariant if we change t by some (possibly z dependent) scale factor, and for
z we only require that eq. (2.4) is satisfied in the collinear limit. We can, for
example, define

z =
k0

k0 + l0
, (2.6)

or more generally define

z =
k · η

k · η + l · η , (2.7)

that reduces to the definition (2.6) for η = (1,
0), and is perfectly acceptable
as long as η does not coincide with the collinear direction. For t we can use,
for example

virtuality : t = (k + l)2 ≈ E2θ2z(1 − z), (2.8)
transverse momentum : t = k2

⊥ = l2⊥ ≈ E2θ2z2(1 − z)2, (2.9)
angular variable : t = E2θ2, (2.10)
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where the kinematic is illustrated in the following figure

(2.11)

where E ≈ (k + l)0, θ is the angle between 
k and 
l and the ≈ relations hold for
small θ. Assuming that there is nothing special about the z → 0 and z → 1
points, alternative choices in the definition of t and z make a difference in
subleading terms in eq. (2.2), that is to say, for terms that are non-singular
when t → 0. Unfortunately, the z → 1 and z → 0 points are special: in
fact, eq. (2.5) yields a divergent integration when z → 1. This is an infrared
divergence in QCD, since when z → 1 the energy of the radiated gluon goes
to zero. We will forget for the moment about this complication, and deal with
collinear divergences only. The treatment of the soft region will be discussed
later on.

The factorization of eq. (2.2) holds as long as the angle (or, more gener-
ally, the t variable) between the collinear partons is the smallest in the whole
amplitude. This is, in some sense, natural: factorization holds if the interme-
diate quark with momentum k + l can be considered, to all effects, as if it was
on shell, that is to say, its virtuality must be negligible compared to all other
energy scales entering the amplitude. It follows then that factorization can be
applied recursively to an amplitude, to obtain its most singular contribution.
This is shown pictorially in the following graphical formula

, (2.12)

where we have two angles becoming small, maintaining a strong ordering rela-
tion, θ′ � θ → 0.

Factorization formulae, similar to the one for a qg collinear configuration
(illustrated in eq. (2.1) and eq. (2.2)), also hold for the case of a gg, and qq̄
collinear configuration, the only difference being in the form of the splitting
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functions. We thus have three possibilities

Pq,qg(z) = CF
1 + z2

1 − z
,

Pg,gg(z) = CA

(
z

1 − z
+

1 − z

z
+ z(1 − z)

)
Pg,qq̄(z) = tf

(
z2 + (1 − x)2

)
(2.13)

Some of the Pi,jl(z) functions are singular for z → 1 or z → 0. These singular-
ities have an infrared origin. In the following, we tacitly assume that they are
regularized by a tiny parameter η

1
1 − z

=⇒ 1
1 − z + η

,
1
z

=⇒ 1
z + η

. (2.14)

Notice that the Pi,jl functions in eqs. (2.13) are related to the standard1

Altarelli-Parisi splitting functions 1), that are given by

Pgg(z) = 2Pg,gg(z),
Pqq(z) = Pq,qg(z),
Pqg(z) = Pq,qg(1 − z),
Pgq(z) = Pg,qq̄(z). (2.15)

The difference lies in the fact that the Altarelli-Parisi splitting functions tag
one of the final state partons. Thus, in the g → gg case there is an extra factor
of 2, because we can tag either gluons. Similarly, the q → qg splitting process
is associated to two different Altarelli-Parisi splitting functions, since one can
tag the final quark or the final gluon.

Strictly speaking, in the case of the g → gg and g → qq̄ a complication
arises: an azimuthal dependent term, that has zero azimuthal average should
be added to eq. (2.2). This term is a consequence of the fact that, at fixed
helicities of the final state gg or qq̄ partons, the intermediate gluon can have
two helicities, and they can interfere. We will ignore this complication in the
following, reminding the reader that in some shower algorithms this angular
correlation effects are dealt with to some extent.

2.2.2 Fixed order calculations

The factorization formula, eq. (2.2), reminds us immediately that real radiative
corrections to any inclusive quantity are divergent. This is better seen in the

1In fact, the unregularized Altarelli-Parisi splitting function. The difference
with the standard, regularized splitting function will be clarified later.
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simple example of e+e− → qq̄. The real radiative corrections to this process are
given by the e+e− → qq̄g emission process. When the gluon becomes collinear
to the quark or to the antiquark, eq. (2.2) implies that there is a divergent
dt/t integration. This divergence is, of course, limited by some physical cutoff,
like the quark masses, or by confinement effects. But, even if we can reassure
ourselves that no real infinity arises, the divergence implies that the real cross
section is sensitive to low energy phenomena, that we cannot control or under-
stand within perturbative QCD. Furthermore, the divergence yields a factor
αS(Q) log Q/λ, where Q is the annihilation scale, and λ some typical hadronic
scale, that acts as a cut-off. This factor is of order 1, since αS(Q) is of order
1/ log Q/λ. Fortunately, one can show that, if virtual corrections are included,
these divergences cancel, thanks to a mechanism known as the Kinoshita-Lee-
Nauemberg theorem. In the case at hand, the order αS virtual correction to
the e+e− → qq̄ process contains a negative term behaving as αS(Q) log Q/λ,
that cancels the divergence in the real emission term. Thus, the inclusive cross
section, (that, being inclusive, requires that we sum over both the qq̄ and the
qq̄g final states) does not depend upon the cutoff λ, and gives rise to the well-
known 1 + α/π correction factor to the total hadronic cross section in e+e−

annihilation. At the same time, however, it becomes clear that it is impossible,
at fixed order in QCD, to give a realistic description of the final state.

2.2.2.1 Similarities with QED

The reader familiar with the infrared problem in QED will find there some
similarities with the problems discussed above. Also in QED, in order to get
finite cross sections at any finite order in perturbation theory, one has to sum
virtual contributions to real photon emission contributions, where photons with
energy below a given resolution must be included. Thus, also in QED, at
fixed order in the coupling constant, we cannot compute fully exclusive cross
sections: we must always sum inclusively over soft photons below the resolution
parameter.

While soft divergences are normally treated in textbooks on QED, collinear
divergences are seldom considered. In fact, in electrodynamics, the mass of the
electron screens the collinear divergences. This is easily understood: a massive,
on shell electron cannot decay into an electron plus a photon, unless the photon
has zero energy. At very high energy, however, the electron mass becomes neg-
ligible, and one should also consider the collinear singularities in QED. Charge
particles, as well as photons, produced at ultra-high energy, will give rise to
true electromagnetic jets. Even at more moderate energies, when considering,
for example, the electron produced in the decay of a heavy object, for the pur-
pose of mass measurements, it is better to measure the energy of the associated
electromagnetic jet (as measured, for example, by an electromagnetic calorime-
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ter) rather than that of the electron (as measured by a tracker), in order not
to become sensitive to photon collinear emissions.

2.2.3 Exclusive final states

In order to describe the exclusive, detailed final state, we must thus sum the
perturbative expansion to all orders in αS . This is in fact possible if we limit
ourselves to the most singular terms of the perturbative expansion, that is to
say, all terms that carry the collinear singularities dt/t, in strongly ordered
sequences of angles. Sticking to our e+e− example, we consider configurations
where the final state q and q̄ split into a qg (q̄g) pair at small angle. Each final
state parton is allowed to split in turn into a pair of partons with even smaller
angle. Thanks to the factorization properties of the amplitude, one can easily
estimate the corresponding cross section. If one allows for n splitting processes,
the cross section goes as

σ0α
n
S

∫
dt1
t1

. . .
dtn
tn

× θ(Q2 > t1 > . . . > tn > λ2) = σ0
1
n!

αn
S logn Q2

λ2
, (2.16)

where Q is the annihilation energy (that provides an upper cut-off to the vir-
tualities in the splitting processes) and λ is an infrared cut-off. The θ function
here is defined to be equal to 1 if its argument is true, zero otherwise. It is be-
cause of eq. (2.16) that the collinear approximation is sometimes called leading
log approximation. As discussed previously, virtual corrections to all orders
in perturbation theory yield a comparable term. Their leading logarithmic
contribution should then be included in order to get sensible results.

2.2.4 Counting logs

The leading logarithmic approximation requires some more explanation. Let
us look at a simplified factorization formula

M1dΦ1 ≈ M0
dt

t
, (2.17)

that holds when t � Q2, Q being the typical scales in the amplitude M1. We
have ∫

M1dΦ1 = M0

∫
dt

t
θ(Q2 > t > λ2) + O(1) = log

Q2

λ2
+ O(1). (2.18)

which follows from the fact that in the difference∫
M1dΦ1 − M0

∫
dt

t
(2.19)
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the singularity for small t cancels. Thus the difference must be of order 1. So,
even if we have said that the factorization formula holds for t � Q2, in order to
get the leading logarithm, we can integrate it for t up to Q2. And furthermore,
if we instead integrate it, for example, up to Q2/2 instead of Q2, the difference
is log 2, and thus is of order 1, and the leading logarithm remains the same.

2.2.5 Leading log calculation of multiparticle production

I will now just give the recipe for the calculation of our multiparticle cross
section, with the inclusion of the virtual corrections at the leading log level.
The outcome of the recipe is the cross section associated to each given final
state. We assume that we start from some hard process, like, for example, the
production of a qq̄ pair in e+e− annihilation. The cross section for the hard
process is computed by usual means. The recipe tells us how to compute a
weight for the evolution of each coloured parton in the hard process into an
arbitrary number of coloured partons.

We begin by specifying how to construct all possible event structures:

i. We choose a Born kinematics, specifying the hard interaction.

ii. For each primary coloured parton produced in the hard interaction, we
consider all possible tree-level graphs that can arise from it, obtained by
letting the quark split into a qg pair, the gluon split into a gg or qq̄ pair
for any quark flavour, as many times as one wishes.

iii. With each splitting vertex in the graph, one associates a t, z, and φ value.

iv. One imposes that the t are ordered: the t for splitting near the hard process
must be less than the hard process scale Q2, and all subsequent t’s are in
decreasing order as we go toward the branches of the tree-graph.

v. Given the initial hard parton momenta, and the t, z and ϕ variables at
each splitting vertex, one reconstructs all the momenta in the tree graph.

We now specify the weight to be assigned to the given configuration:

a) The hard process has weight equal to its differential (Born level) cross sec-
tion.

b) Each vertex has the weight

θ(t − t0)
αS(t)
2π

dt

t
Pi,jl(z) dz

dφ

2π
(2.20)
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where αS(t) is the QCD running coupling

αS(t) =
1

b0 log t
Λ2

QCD

. (2.21)

In order not to reach unphysical values of the running coupling constant, we
must introduce an infrared cutoff t0 > Λ2

QCD. The θ function in eq. (2.20)
sets the lower bound on t. The upper bound is determined by the t ordering
of point (iv).

c) Each line in the graph has weight Δi(t′, t′′), where t′ is the t value associated
with the upstream vertex, t′′ with the downstream vertex, and

Δi(t′, t′′) = exp

⎡⎣−∑
(jl)

∫ t′

t′′

dt

t

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)

⎤⎦ (2.22)

In case the line is a final one, t′′ is replaced by an infrared cutoff t0. The
weights Δi(t′, t′′) are called Sudakov form factors. They represent all the
dominant virtual corrections to our tree graph.

At the end of this procedure, some hadronization model will be invoked, in order
to convert the showered final state partons into hadrons. For now, in order to
better clarify the shower mechanisms, we will just neglect the hadronization
stage, and consider the final states (and the initial states) as made of partons.

The form of the weight at (b) is simply a consequence of a recursive
application of the factorization formula. The prescription for the argument of
αS and the Sudakov form factors (c) are slightly more subtle: they arise from
the inclusion of all leading-log virtual corrections to the process.

2.2.5.1 Momentum reshuffling

The final momentum assignment of step v is affected by some ambiguities, due
to the fact that a parton line, when followed by a splitting process, acquires
a positive virtuality larger than its mass. Because of these virtualities, the
momenta of the parton must be adjusted, in order to conserve energy and
momentum. For example, in the process e+e− → qq̄, the initial quarks have
energy Q/2, and (neglecting masses) momenta equal to their energy and oppo-
site. If the quark undergoes a splitting process, it can no longer be considered
an on-shell parton, and thus its momentum must be adjusted according to the
standard formulae for two body decays, including the effect of the masses of
the decay products. This procedure (referred to as momentum reshuffling) does
not affect the leading logarithmic structure of the result.
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2.2.6 Typical structure of a shower

According to the recipe (i-v) and (a-c), the shower will be characterized by a
tree of splittings with decreasing angles, as depicted in figure 2.1. At a given

Figure 2.1: Typical shower development.

splitting vertex, the splitting angle will be typically smaller by a factor αS than
its upstream angle. As the angles become small, they will reach a point where
the scale t is of the order of ΛQCD, so that αS ≈ 1, angles are no longer ordered
and the whole picture breaks down. At this stage the shower stops, and some
model of hadronization is needed in order to complete the description of the
formation of the final state. Notice also the role of the Sudakov form factors
of eq. (2.22). They suppress the configurations containing lines with very large
differences between upstream and downstream angles. In fact, using eq. (2.21)
we estimate

Δi(t′, t′′) ≈ exp

⎡⎣−C

∫ t′

t′′

dt

t

1
log t

Λ2
QCD

⎤⎦ =

⎛⎝ log t′′
Λ2

QCD

log t′
Λ2

QCD

⎞⎠C

, (2.23)

which becomes very small if t′ � t′′. The behaviour of Δ as a function of t
is shown in fig. 2.2. As can be seen from eq. (2.22) and from figure 2.2, the
Sudakov form factor suppresses the configurations that have no radiation down
to very small scales.
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t′

Δ(t′, t′′)

t′′

1

0

Figure 2.2: Typical behaviour of the Sudakov form factor.

2.2.7 Formal representation of a shower

In the following we will introduce some graphical notation for the representation
of a shower. We use the symbol

Si(t, E) = , (2.24)

to represent the ensemble of all possible showers originating from parton i at
a scale t. The dependence of the shower upon the parton direction is not
explicitly shown, since we will not need it in the following. We can think of
Si(t, E) as a function defined on the set Fof all final states (by final state we
mean here a set of partons with specific momentum assignments), yielding the
weight of the shower for that particular final state. When writing∑

F
Si(t, E), (2.25)

we mean sum over all final states F , i.e. the total weight of the shower attached
to parton i. Of course, F is not a discrete set, so, rather than a sum we should
have a sum over the number and type of final state particles and an integral
over their momenta. Alternatively we may imagine to divide the phase space
into small cells, so that F can be imagined as a discrete set, and the sum
notation is appropriate.
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2.2.8 Shower equation

We can easily convince ourselves that the rules given in items (i-v) imply a
recursive equation, that is illustrated in the following graphical equation

(2.26)

The meaning of the figure is quite intuitive: the ensemble of all possible shower
histories is obtained by adding the case in which no branching takes place2,
to the case where one branching occurs, followed recursively by two showers
starting at smaller energies and scales. The small blobs along the parton lines
represent the Sudakov form factors, and the blob connecting the i, j, l partons is
the splitting probability. Notice that the phase spaces of the two independent
showers, after the splitting, do not overlap in our collinear approximation,
because the angle at the vertex t′ is larger than all subsequent angles.

The mathematical translation of eq. (2.26) is given by the equation

Si(t, E) = Δi(t, t0)Si(t0, E) +
∑
(jl)

∫ t

t0

dt′

t′

∫ 1

0

dz

∫ 2π

0

dφ

2π

αS(t′)
2π

Pi,jl(z) Δi(t, t′)Sj(t′, zE)Sl(t′, (1 − z)E), (2.27)

where the two terms correspond to the terms in the figure: no branching, plus
one branching followed by two showers. Si(t0, E) represents the final state
consisting of the incoming particle i alone, that has undergone no branching
(since no branching is possible below t0). Notice that the shower diagram for
Si(t0, E) consist of a single line with the Sudakov form factor Δi(t0, t0) = 1,
i.e. the shower assigns probability 1 for particle i to remain the same (i.e. to
undergo no branchings).

2In this case the shower terminates with the given final state parton. The
hadronization model will take over when all showers are terminated, building
up the hadrons from the given set of coloured partons.

Volume XLIX  22-10-2009  17:34  Pagina 45



46 P. Nason

We can easily see that S satisfies the differential equation

t
∂Si(t, E)

∂t
=

∑
(jl)

∫ 1

0

dz

∫ 2π

0

dφ

2π

αS(t)
2π

Pi,jl(z) Sj(t, zE)Sl(t, (1 − z)E)

+

⎡⎣−∑
(jl)

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)

⎤⎦Si(t, E), (2.28)

that arises because the derivative with respect to t can act on the upper limit
of the integral in the second term of eq. (2.27), giving rise to the first term of
eq. (2.28), or on the Sudakov form factors in both terms of eq. (2.27), giving rise
to the square bracket term in eq. (2.28). Eq. (2.28) is particularly instructive. It
has the following meaning: if we raise the scale of the process by an infinitesimal
amount, the shower has a larger probability to split into two subshowers (the
first term on the right hand side), and a smaller probability to remain the same
(the second term). By summing eq. (2.28) over all possible final state, and
defining

S inc
i (t, E) =

∑
final states

Si(t, E), (2.29)

we see that S inc
i (t, E) obeys the equation

t
∂Sinc

i (t, E)
∂t

=
∑
(jl)

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)Sinc
j (t, zE)Sinc

l (t, (1 − z)E)

+

⎡⎣−∑
(jl)

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)

⎤⎦Sinc
i (t, E). (2.30)

We immediately see that Sinc
i (t, E) = 1 satisfies the above equation, and is also

consistent with the obvious initial condition Sinc
i (t0, E) = 1. We thus state the

shower unitarity property

S inc
i (t, E) =

∑
F

Si(t, E) = 1. (2.31)

This property is at the basis of the formulation of the shower Monte Carlo
algorithms. It has the following important consequence: the total cross section
computed at the Born level is equal to the total multiparticle cross section. Of
course, this statement holds in the approximation we are working with. Since
we are only considering collinear-enhanced corrections, we should state more
precisely that the net effect of collinear-enhanced processes is one, when we
sum over all processes. We also remind the reader that this result also holds in
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QED. As known from textbooks QED, large soft effects cancel in inclusive cross
sections, leaving only small (i.e. O(α)) corrections to the Born cross section.
The same is true also for collinear divergences, a fact that (as already remarked
in 2.2.2.1) should be kept in mind when considering final stated with electrons
at the LHC.

It is also instructive to check unitarity by expanding the shower order by
order in αS . At order αS , for example, we may have at most a single splitting,
since each splitting cost a factor αS . When we sum over all final states reached
by parton i, we should thus consider only the one and two parton final state.
The weight of the one parton final state, at order αS is just the Taylor expansion
of the Sudakov form factor at order αS

Δi(Q, t0) = 1 −
∑
(jl)

∫ Q

t0

dt

t

∫ 1

0

dz
αS

2π
Pi,jl(z) + O(α2

S), (2.32)

while the total weight for a two parton final state is∫ Q

t0

dt

t
Δi(Q, t)

⎡⎣∑
(jl)

∫ 2π

0

dφ

2π

∫ 1

0

dz
αS

2π
Pi,jl(z)

⎤⎦Δj(t, t0)Δl(t, t0)

=
∫ Q

t0

dt

t

∑
(jl)

∫ 1

0

dz
αS

2π
Pi,jl(z) + O(α2

S), (2.33)

that summed to eq (2.32) yields 1. At this point, one can see that the form
of the Sudakov form factor is dictated by the fact that collinear singularities,
according to the Kinoshita-Lee-Nauenberg theorem, must cancel.

Shower unitarity makes it possible to write the branching process as a
sequence of independent branching processes (i.e. as a Markov chain). In fact,
after a branching, the total weight of the two newly initiated subshowers is one,
i.e. they do not influence that branching process we are considering.

2.2.9 Shower algorithm for final state showers

It is apparent now that the development of the shower can be computed nu-
merically using a simple probabilistic algorithm. We interpret

αS(t′)
2π

dt′

t′
Pi,jl(z) dz

dφ

2π
(2.34)

as the elementary branching probability in the phase space element dt′, dz, dφ.
So

αS(t′)
2π

dt′

t′

∫ 1

0

dzPi,jl(z) (2.35)
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is the branching probability in the dt′ interval. Now we notice that, dividing
the [t, t′] interval into N small subintervals of width δt, calling ti the center of
each subinterval, we have

Δi(t, t′) =
N∏

i=1

(
1 − αS(ti)

2π

δt

ti

∫
Pi,jl(z) dz

dφ

2π

)
, (2.36)

that is to say, the Sudakov form factor corresponds to the non-emission prob-
ability in the given [t, t′] interval. The probability that, starting at the scale t,
the first branching is in the phase space element dt′, dz, dφ, is then

Δi(t, t′)
αS(t′)

2π

dt′

t′
Pi,jl(z) dz

dφ

2π
, (2.37)

i.e. is the product of the no-branching probability from the scale t down to
t′ times the branching probability in the interval dt′, dz, dφ. This is precisely
equivalent to our shower recipe, if we remember that, because of unitarity, the
total weight associated to further branchings of partons i and j is 1.

One can easily set up an algorithm for the generation of the process:

a) Generate a hard process configuration with a probability proportional to
its parton level cross section (for example, for the e+e− → hadrons case
the configuration consists of two back-to-back quarks, with energy Q/2,
distributed as (1 + cos2 θ)d cos θdφ,). Q is in this case the typical scale of
the process.

b) For each final state coloured parton, generate a shower in the following way:

i. Set t = Q

ii. Generate a random number 0 < r < 1.

iii. Solve the equation r = Δi(t, t′) for t′.

iv. If t′ < t0 then no further branching is generated, and the shower stops.

v. If t′ � t0 then generate jl and z with a distribution proportional to
Pi,jl(z), and a value for the azimuth φ with uniform probability in the
interval [0, 2π]. Assign energies Ej = zEi and El = (1−z)Ei to partons
j and l. The angle between their momenta is fixed by the value of t′.
Given the angle and the azimuth φ (together with the fact that the sum
of their momenta must equal to the momentum of i) the directions of
j and l are fully reconstructed

vi. For each of the branched partons j and l, set t = t′ and go back to step
bii.
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2.2.10 A very simple example

The branching algorithm in a Shower Monte Carlo resembles closely the prob-
lem of the generation of decay events from a radioactive source. We call pdt
the elementary radiation probability in the time interval dt. The probability
Δ(t′) of having no radiation from time 0 up to time t′ is given by the product
of no-radiation probability in each time subinterval from 0 to t′

Δ(t) = (1 − pdt)
t′
dt = exp[−pt′] (2.38)

and the probability distribution for the first emission is

exp[−pt′]pdt′ = −dΔ(t′). (2.39)

Thus, the probability distribution for the first emission is uniform in Δ(t′); in
order to generate the first emission at time t′, 0 < t′ < t, we generate a random
number 0 < r < 1 and solve for r = Δ(t′)/Δ(t).

2.2.11 The inclusive cross section for single hadron production

We will now compute the inclusive cross section for single hadron production,
and show that it obeys the Altarelli-Parisi equation for fragmentation function.
We begin by defining the fragmentation function

Dm
i (t, x) =

1
δx

∑
F(m,x,δx)

Si(t, E) = , (2.40)

where F(m, x, δx) stands here for all final states having a parton of type m
with energy between xE and (x+ δx)E. Notice that Dm

i (t, x) does not depend
upon the absolute value of the energy, since the shower recipe only involves
energy fractions. It is easy to see that the fragmentation function must obey
the equation represented below

(2.41)
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The meaning of the equation is quite simple. If we want to keep a final state
particle of type m and energy xE, the no-radiation term can contribute only
if i = m and x = 1. In case a splitting takes place, particle m can be found in
either of the two following showers. The graphical equation in eq. (2.41) can
be written more precisely as follows

Dm
i (t, x) = Δi(t, t0)δimδ(1 − x)

+
∑
(jl)

∫ t

t0

dt′

t′

∫ 1

x

dz

z

αS(t′)
2π

Pi,jl(z) Δi(t, t′)Dm
j (t′, x/z) (2.42)

+
∑
(jl)

∫ t

t0

dt′

t′

∫ 1−x

0

dz

1 − z

αS(t′)
2π

dt′

t′
Pi,jl(z) Δi(t, t′)Dm

l (t′, x/(1 − z)).

The presence of the 1/z and 1/(1 − z) on the middle member of eq. (2.42)
is better understood if we imagine to multiply everything by δx; we see then
that D(t, x) is multiplied by δx, and D(t′, x/z), D(t′, x/(1− z)) are multiplied
by δx/z and δx/(1 − z) respectively, as the definition of D suggests. As a
consequence of eq. (2.28), Di(t, x) must also satisfy the equation

t
∂Di(t, x)

∂t
=

∑
(jl)

∫ 1

0

αS(t)
2π

Pi,jl(z)
dz

z
Dj(t, x/z)

+
∑
(jl)

∫ 1

0

αS(t)
2π

Pi,jl(z)
dz

z
Dl(t, x/(1 − z))

+

⎡⎣−∑
(jl)

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)

⎤⎦Di(t, x), (2.43)

Eq. (2.43) is just another way of writing the Altarelli-Parisi equations for frag-
mentation functions. Let us see in details how this works. We replace z → 1−z
in the second term on the right hand side of eq. (2.43), and then use eqs. (2.15)
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to combine it with the first term. We get

t
∂Dm

i (t, x)
∂t

=
αS(t)
2π

∑
j

∫ 1

x

dz

z
Pij(z) Dm

j (t, x/z)

+

⎡⎣−∑
(jl)

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)

⎤⎦Di(t, x)

=
αS(t)
2π

∫ 1

0

dz

⎡⎣1
z

∑
j

Pij(z) Dm
j (t, x/z)θ(z − x) − Dm

i (t, x)
∑
(jl)

Pi,jl(z)

⎤⎦
=

αS(t)
2π

∑
j

∫ 1

x

dz

z
P̂ij(z) Dm

j (t′, x/z). (2.44)

In the last equality we have introduced the regularized Altarelli-Parisi splitting
functions P̂ij . They are defined as follows

P̂qg(z) = Pqg(z),

P̂gq(z) = Pgq(z),

P̂qq(z) = Pqq(z) − δ(1 − z)
∫ 1

0

Pq,qg(z)dz,

P̂gg(z) = Pgg(z) − δ(1 − z)
∫ 1

0

[Pg,gg(z) + Pg,qq̄(z)] dz. (2.45)

It is easy to verify that the above definitions are equivalent to the usual regu-
larized Altarelli-Parisi splitting functions, defined in terms of the so called “+”
distributions

P̂gg(z) = 2CA

[
z

(1 − z)+
+

1 − z

z
+ z(1 − z) +

(
11
12

− nfTf

3CA

)
δ(1 − z)

]
,

P̂qq(z) = CF

[
1 + z2

(1 − z)+
+

3
2
δ(1 − z)

]
, (2.46)

by using the property

1
1 − z + η

− log
1
η
δ(1 − z) =⇒ 1

(1 − z)+
. (2.47)

2.2.12 Initial state radiation

Until now, we have considered the problem of collinear splitting affecting final
state partons. The phenomenon of collinear splitting of initial state partons is
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also relevant for hadronic collisions, and is commonly called initial state radi-
ation (ISR from now on). The reader familiar with LEP physics will certainly
remember the importance of QED ISR in e+e− collisions near the Z peak.
QCD ISR is fully analogous, from a formal point of view, to QED ISR. There
are, however, a few important differences:

• The QCD coupling is much larger: thus QCD ISR is even more important.

• The QCD coupling grows for small momentum transfer. Thus we can
never neglect ISR in QCD.

Because of these differences, while for QED initial state radiation at LEP it
was enough to work at one or two orders in the electromagnetic coupling, in
QCD one has to resort to an all order treatment. In other words, in QCD
initial state quarks and gluons always gives rise to an initial state showers, in
the same way as final state quarks and gluons always manifest themselves as
jets (i.e. as final state showers).

The treatment of initial state radiation in a shower Monte Carlo is very
similar to the case of final state radiation. In this case, the basic factorization
formula refers to the radiation from initial state particles that give rise to some
hard collision. In this case, after radiation, the initial state acquires a spacelike
virtuality, that is limited in magnitude by the scale of the hard process. The
factorization formula, however, has essentially the same form

dσISR
j (p, . . .) =

αS

2π

dt

t
dzPij(z)dσi(zp, . . .), (2.48)

where now we consider a production process with a parton j entering the graph.
The process is represented in the graph below

(2.49)

In this case the initial parton is on shell, and the parton with reduced mo-
mentum zp acquires a negative virtuality. This is unlike the case of final state
radiation, where the virtuality is positive. Multiple initial state radiation takes
place with the virtuality ordered from small (absolute) values (near the initial
state parton) to large values (near the hard scattering), limited by the hardness
of the scattering process. In fact, factorization holds as long as the virtuality
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of the parton entering the hard scattering is negligible with respect to all the
other scales entering the hard scattering amplitude. On the other hand, the
radiated partons (like the gluon in (2.49)) can undergo further splitting with
positive virtualities. This yields the following picture for a shower arising from
an initial state parton in the collinear approximation

. (2.50)

We have t1 < t2 < Q, and t1 > t′, t2 > t′′ > t′′′. The intermediate lines
between t1 and t2 and between t2 and the hard scattering are spacelike. All
other intermediate lines are timelike. The splitting functions and Sudakov form
factors for initial state radiation splittings are the same that enter in the final
state radiation process (differences arise only at the Next-to-Leading level). We
now introduce a notation for the initial state shower

Si(m, x, t, E) = . (2.51)

The meaning of the notation is as follows: δxSi(m, x, t, E) is a function on
all possible states (yielding the weight of the shower for such states) having a
spacelike parton of type m with energy between xE and (x+δx)E, and scale t.

The shower equation for the initial state (i.e., the spacelike shower) can
be represented with the following graphical equation

(2.52)

The blobs marked with S represent spacelike showers, while the solid blob
represents the timelike showers discussed in the previous subsections. Solving
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this equation would correspond to the so called forward evolution solution of
the evolution equation. In modern Monte Carlo programs, it is preferred to
solve the evolution equation in the opposite direction, i.e. according to the
backward evolution method. The shower equation is then represented in an
equivalent way, but with a recursive procedure that starts at the high scale
instead of the low scale, as follows

(2.53)

The blob marked with I at the splitting vertex is given by the inclusive splitting
kernel Pjm, instead of the exclusive one Pj,ml (this is because either branched
parton can be spacelike). It is easy to convince ourselves that the pictures in
fig. 2.52 and 2.53 represent the same object, with a different recursion rule.

The probability for the first branching is obtained by summing over all
final states in the graphical equation of fig. 2.53. This sums yields 1 for the
timelike blobs, as shown previously. Not so for the spacelike blob, that yields∑

F
Si(m, x, t, E) = f (i)

m (x, t), (2.54)

the (scale dependent) parton density function3, and the graphical equation of
fig. 2.53 yields

f (i)
m (x, t) = δmiδ(1 − x)Δm(t, t0)

+
∫ t

t0

dt′

t′
dz

z

∑
j

f
(i)
j (z, t′)

αS(t′)
2π

P̂jm

(x

z

)
Δm(t, t′), (2.55)

and taking the derivative of both sides with respect to t yields

t
∂f

(i)
m (x, t)
∂t

=
αS(t)
2π

∑
j

∫ 1

x

dz

z
P̂jm(x/z) f

(i)
j (z, t)

+

⎡⎣−∑
(jl)

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)

⎤⎦ f (i)
m (x, t), (2.56)

3Since we are not yet considering hadrons, our parton density is now the
probability to find a parton in a parton.
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which is equivalent to the ordinary Altarelli-Parisi equation for the parton
densities. From fig. 2.53 and eq. (2.54) we find the probability distribution for
the first backward branching

dPfirst =
∑

j

f
(i)
j (z, t′)

αS(t′)
2π

Pmj(x/z)Δm(t, t′)
dt

t

dz

z

dφ

2π
. (2.57)

In order to generate the first branching, we must express eq. (2.57) as a differ-
ential in t′. Using the Altarelli Parisi equation, from eq. (2.57) we obtain

dPfirst

dt′
=

∂f
(i)
m (t′, x)

∂t
Δm(t′, t) +

⎡⎣∑
(jl)

∫ 1

0

dz
αS(t)
2π

Pi,jl(z)

⎤⎦ ×

f (i)
m (t′, x)Δm(t, t′) =

∂

∂t′
[
f (i)

m (t′, x)Δm(t, t′)
]
. (2.58)

Thus, the probability distribution for the first branching is uniform in f
(i)
m (t′, x)

Δm(t, t′). We just generate a random number 0 < r < 1, and then solve the
equation

r =
f

(i)
m (t′, x)Δm(t, t′)

f
(i)
m (t, x)

(2.59)

for t′. Observe that the factor f
(i)
m (t, x) in the denominator is introduced to

normalize the right hand side to 1 when t′ = t. The Sudakov form factor
Δm(t′, t) becomes very small when t′ become small. Thus, the right hand side
of eq. (2.59) can become very small, its smallest value being reached when
t′ = t0. If r is below the smallest possible value, no branching takes place.
Sometimes the equivalent formula

exp

⎡⎣−∑
j

∫ t

t′

dt′′

t′′
αS(t′′)

2π

∫ 1

x

dz

z
Pmj(z)

f
(i)
j (t′′, x/z)

f
(i)
m (t′′, x)

⎤⎦ =
f

(i)
m (t′, x)Δm(t, t′)

f
(i)
m (t, x)

(2.60)
is used.

We notice that, as in final state radiation, the Sudakov form factor sup-
presses the dt/t singularity for small values of t, thus yielding a finite expression
for the first emission probability.

2.2.13 Shower algorithm for processes with incoming hadrons

We can now formulate the full recipe for the generation of a process with
incoming hadrons.One can easily set up an algorithm for the generation of the
process:
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a) Generate a hard process configuration with a probability proportional to
its parton level cross section. This cross section includes now the parton
density functions evaluated at the typical scale Q of the process

b) For each final state coloured parton, generate a shower in the following way:

i. Set t = Q

ii. Generate a random number 0 < r < 1.

iii. Solve the equation r = Δi(t, t′) for t′.

iv. If t′ < t0 then no further branching is generated, and the shower stops.

v. If t′ � t0 then generate jl and z with a distribution proportional to
Pi,jl(z), and a value for the azimuth φ, with uniform probability in the
interval [0, 2π]. Assign energies Ej = zEi and El = (1−z)Ei to partons
j and l. The angle between their momenta is fixed by the value of t′.
Given the angle and the azimuth φ (together with the fact that the sum
of their momenta must equal to the momentum of i) the directions of
j and l are fully reconstructed

vi. For each of the branched partons j and l, set t = t′ and go back to step
bii.

c) For each initial state coloured parton, generate a shower in the following
way

i. Set t = Q

ii. Generate a random number 0 < r < 1.

iii. Solve the equation r = Δi(t, t′) for t′.

r =
f

(h)
i (t′, x)Δi(t, t′)

f
(h)
i (t, x)

,

where f (h) is the parton density for the hadron where parton i is found,
and x = Ei/Eh is the momentum fraction of the parton.

iv. If t′ < t0 then no further branching is generated, and the shower stops.

v. If t′ � t0 then generate j and z with a distribution proportional to
Pij(z), and a value for the azimuth φ, with uniform probability in the
interval [0, 2π]. Call l the radiated parton, and assign energies Ej =
zEi and El = (1 − z)Ei to partons j and l. The angle between their
momenta is fixed by the value of t′. Given the angle and the azimuth
φ (together with the fact that the sum of their momenta must equal to
the momentum of i) the directions of j and l are fully reconstructed
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vi. For parton j, set t = t′ and go back to step c, cii. For parton l, set
t = t′ and go back to step b, bii.

2.2.14 Soft divergences

Besides having collinear divergences, QCD cross sections are also affected by
soft divergences, that are associated to gluons with small energy, even in the
case when the angles are not small. Soft and collinear divergences can take
place at the same time, giving rise to the so-called double-log singularities.
In the previous discussion we have only considered collinear singularities. We
have assumed that there is nothing special about the z → 1 and z → 0 limits
in the branching, that is to say, we have reasoned under the false assumption
that the splitting functions are all finite in these limits. In particular, we have
neglected the kinematic constraints that arise in these regions. Let us assume,
for example, that our t variable is the virtuality, and let us focus upon a single
splitting at a scale t and a given value of z, that we assume to be the energy
fraction. The two splitting partons have energies zE and (1 − z)E, so they
form a system with virtuality given by (neglecting their masses)

2z(1 − z)E2(1 − cos θ), (2.61)

where θ is the angle between the two partons. Thus, we must have

z(1 − z)E2 ≥ t/4, (2.62)

in order for the splitting to be possible. Thus, the z integration is (roughly)
limited by

t

4E2
≤ z ≤ 1 − t

4E2
. (2.63)

If there are no soft singularities, this complication can be neglected, because,
under our assumptions, t � E2 at any stage of the branching. In fact, at
the beginning of the shower E ≈ √

Q, and after each branching E is reduced
by a factor of order 1, while

√
t is reduced by a factor of order αS . Thus the

ratio
√

t/E is of subleading logarithmic magnitude with respect to 1. On the
other hand, since we do have soft singularities (i.e. the splitting functions are
divergent for z → 0 and z → 1) these region of subleading logarithmic size
can give contributions of order 1. Furthermore, splittings with small (or large)
values of z are enhanced, and one can no longer conclude that the energy of the
partons are reduced by a factor of order 1 for each branching. In other words,
in order to achieve logarithmic accuracy, soft divergences should be accounted
for in a proper way.

Since soft emission is associated with the production of low energy parti-
cles, we expect them to have an important impact on the multiplicity of hadrons
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in the final state, and a smaller impact on the energy flow in the event. It is
thus obvious that a correct treatment of soft singularities (especially in the
double logarithmic region) is important in order to have a realistic description
of the final state.

As discussed earlier, the choice of the hardness parameter t affects the
treatment of soft divergences. Let us estimate the difference in the exponent
of the Sudakov form factor when we adopt the three different definitions of
the ordering parameter given in eqs. (2.8), (2.9) and eq. (2.10). If t is to be
interpreted as the virtuality of the incoming line, then we must have E2z(1 −
z) � t, in order for eq. (2.8) to hold4 for some value of θ. This yields a double
logarithmic integral of the form∫

dt

t

∫ 1−t/E2

t/E2

dz

1 − z
≈ 1

2
log2 t

E2
, (2.64)

the 1/(1 − z) factor arising from the splitting functions. If instead t is inter-
preted as the transverse momentum, then E2z2(1 − z)2 � t, and we get∫

dt

t

∫ 1−√
t/E

√
t/E

dz

1 − z
≈ 1

4
log2 t

E2
. (2.65)

If t is interpreted as the angle, we get yet another result∫
dt

t

∫ 1

0

dz

1 − z
≈ log t log

E

Λ
. (2.66)

In fact, if the ordering variable is proportional to the square of the angle, the
value of z is not constrained by it, and we must impose a cutoff on z in such
a way that the energy of the final state particles cannot become smaller than
some typical hadronic scale Λ.

It turns out that, in order to treat correctly the double logarithmic region,
one should use as ordering parameter the angular variable θ. This is a profound
result in perturbative QCD. It has also an intuitive explanation. Suppose that
we order the emission in virtuality. Soft emissions always yield small virtuality.
Thus, at the end of the shower, one has a large number of soft emissions,
essentially unrestricted in angle. But soft gluons emitted at large angles from
final state partons add up coherently. The soft gluons emitted from a bunch
of partons with angular separation that is smaller then the soft gluon emission
angle sees all the emitting partons as a single entity (see fig. 2.3). In other
words it is just as if the gluon was emitted from the parton that has originated

4We are interested here into small values of θ, so it is fair to assume θ < 1.
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Figure 2.3: Soft emissions at large angle add coherently, i.e. they behave as if
the emitter was the parton that originates the rest of the shower.

the rest of the cascade. Summarizing: if a parton is emitted at large angle,
and its energy is not small, then ordering in virtuality and ordering in angle
does not make any difference. If the parton energy is small, the parton should
be reordered by angle. Thus, ordering in angle from the beginning gives the
correct answer. Observe that angular ordering also emerges naturally in case
one has jets originating from the decay of a fast moving neutral object, like,
for example a relativistic Z. Angular ordering tells us that radiation at angles
larger than the angle of the two primary partons in the decay of the Z should
be suppressed. But this must be the case, since the radiation pattern from
the Z decay should be obtainable by considering the Z decaying in its own
rest frame, and then boosting all decay products with the Z velocity. The
effect of the boost is precisely to squeeze all shower products towards the Z
direction, with the emission at large angle from both primary partons being
highly suppressed.

2.2.15 Ordering variables: HERWIG and PYTHIA

In HERWIG, the ordering variable is defined as t = E2θ2/2, where E is the
energy of the incoming parton, and θ is the angle of the two branched partons,
carrying energies zE and (1 − z)E. The Sudakov form factor is defined as
follows

Δi(t′, t′′) = exp

⎡⎣−∑
(jl)

∫ t′

t′′

dt

t

∫ 1

0

dzθ(k2
T (t, z) − t0)

αS

(
k2

T (t, z)
)

2π
Pi,jl(z) dz

⎤⎦ ,

(2.67)
with k2

T (t, z) = tz2(1− z)2. The integral in dz is always infrared divergent. An
infrared cut-off is needed, and is in fact provided by the θ function, that also
avoids the region where the argument of αS becomes smaller than a given scale
t0, of the order of ΛQCD. If a parton of energy E branches at a scale t into two
partons of energies zE and (1− z)E, angular ordering is achieved by choosing
as the initial condition for subsequent branchings the scales t/z and t/(1 − z).
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The PYTHIA program has never adopted the angular ordering scheme.
In PYTHIA, virtualities are strictly ordered in the shower. This yields a more
natural kinematics, since virtuality is kinematically ordered in a branching
process. The lack of coherence, however, causes an unphysical increase in
the number of soft partons, so that the particle multiplicity in e+e− annihi-
lation processes does not have the correct growth with energy. The remedy
in PYTHIA is to veto branchings that violate angular ordering. This scheme
(virtuality ordering with angular ordering imposed by veto) yields the correct
multiplicity distributions. It can be understood as follows. Configuration soft
radiation at a large angle θ sum up coherently, their sum being equivalent to
a soft emission from the first parent parton that comes from a branching at
angles larger than θ. Thus, many emissions become equivalent to a single emis-
sion, which can be approximated to zero, as far as the multiplicity is concerned.
This is what PYTHIA does. It turns out that PYTHIA, with the angular order
constraint, reproduces well the energy dependence of the multiplicity. On the
other hand, the author is not aware of any relevant output differences between
PYTHIA and HERWIG due to the remaining differences in the treatment of
soft radiation.

Recently, new showering schemes have become available. In HERWIG++,
new showering variable have been introduce, that should be better from the
point of view of boost invariance properties of the shower. The new versions
of PYTHIA also offer an alternative showering scheme, ordered in transverse
momentum, that implements a variant of the so called dipole shower approach,
first implemented in the ARIADNE Monte Carlo.

2.2.16 Flavour, colour and hadronization.

The flavour flow in the collinear approximation is well defined. At the end of a
shower we find quarks and antiquarks with a given flavour. The flavour content
of the generated hadrons will depend to some extent upon the flavour content
of the partons at the end of the shower, in a way that depends strictly upon
the model of hadron formation.

The colour flow is not followed in the collinear approximation. In fact, the
factorization formula deals with colour averaged cross sections. On the other
hand, we know that final state hadrons are colour singlet. Whether or not we
need to take colour into consideration depends only upon the hadronization
model.

2.2.16.1 Independent fragmentation

The simplest hadronization model is the so called independent fragmentation
model. This model converts each final state quark q of flavour f into hadrons.
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Each final state particle is treated independently from all the others. One
operates typically in the centre of mass of the parton system. One picks up a
random antiflavour f ′, to be associated with the flavour f to form a hadron
with flavour ff ′. The momentum of the hadron is taken to be a fraction z of
the momentum of the quark q, with a probability dictated by a fragmentation
function Ff ′(z), plus a transverse momentum, of the order of a typical hadronic
scale, typically distributed according to a negative exponential. In order to
conserve flavour and momentum, a quark with flavour f ′ is also generated,
with momentum equal to a fraction (1−z) of the initial quark momentum, and
an appropriate transverse momentum. The procedure is then continued with
the left-over quark, and it is stopped when the left over quark has momentum
below a certain threshold. Flavour is not conserved with this procedure, unless
one deals in some way with the left-over slow quarks. Also, the treatment of
gluons is to some extent arbitrary. One possible approach is to always force a
gluon splitting g → qq̄ at the end of the shower. In order to deal with baryon
production, quark flavours, also diquarks are introduced. One assumes that a
colour singlet baryon can be formed combining a quark and a diquark.

Independent fragmentation ignores colour, and thus does not need any
colour information about the showered partons. On the other hand it has some
clear drawbacks, related to the arbitrarity in the choice of the hadronization
frame. Consider in fact the simple example of a virtual photon with a relatively
low invariant mass, decaying into a qq̄ pair. We assume that, because of the
low mass, no parton is radiated by showering. It is clear that the multiplicity of
this event, in the independent fragmentation scheme, depends upon the frame
of reference in which we look at the event, the minimum multiplicity being
obtained in the photon CM frame. Of course, in this case we may then decide
to fragment the photon decay product in the photon rest frame, i.e. in the
frame of the colour singlet system formed by the qq̄ pair. But, in order to
be consistent, every colour singlet system formed by final state partons should
be decayed in its own reference frame, and this requirement is in conflict with
the setup of independent fragmentation, where a quark is decayed ignoring the
kinematics of all other partons.

2.2.16.2 Large Nc colour approximation

In order to deal more realistically with colour at the hadronization stage,
Shower Monte Carlo’s adopt the so called large Nc limit (also called planar
limit), Nc being the number of colours (i.e. Nc = 3 in QCD). We should
thus think that the number of colour is large, and keep only the dominant
contribution in this sense.

The colour rules for the Feynman diagrams also become extremely simple
in the large Nc limit. Colour and anticolour indices range from 1 to Nc. Each
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oriented quark line is assigned a colour index and an antiquark line is assigned
an anticolour index (ranging from 1 to Nc). An oriented gluon is assigned a
pair of indices, corresponding to a colour and an anticolour. This gives rise
to N2

c gluons. We know that, in fact, there are N2
c − 1 gluons, since the

combination
∑

c cc̄ (with c running over all colours) is colour neutral (i.e. is
a colour singlet). However, in the limit when Nc is considered to be large,
one can replace (N2

c − 1) → N2
c . Graphically, we may represent an oriented

colour index with an arrow, and an anticolour is represented by an arrow in
the opposite direction. The colour structure of a q → qg, g → gg and g → qq̄
splitting is shown in the following figure:

(2.68)
Notice that the two colour configurations associated to the gluon splitting ver-
tex turn into each other by exchanging the two final state gluons.

An illustration of the large Nc limit of a contribution to the e+e− →
hadrons cross section is given in fig. 2.4. The colour factor of the squared am-

Figure 2.4: Colour structure of the square of an amplitude in the large Nc limit.

plitude is obtained by summing over the colour indices, i.e. there is a factor
of Nc for each colour index. Notice that, when squaring the amplitude, in-
terference terms are suppressed by powers of 1/Nc. In fact, in order to have
interference, two colour indices must be the same, so that one looses a factor
of Nc.

When assigning a planar colour configuration to a set of showered par-
tons, one begins by computing the Born level cross section in the large Nc limit,
for each independent colour structure that is allowed, and chooses the initial
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colour structure with a probability proportional to the corresponding contri-
bution. In our e+e− → qq̄ example, there is only one such colour structure,
that assigns opposite colours to the quark and the antiquark. Starting from
the colour connections of the partons at the Born amplitude, one reconstructs
the colour connections of all partons in the shower, according to the rules given
in eq. (2.68). From the figure, we can see that there is only one way to assign
colour connections in a q → qg or a g → qq̄ vertex. On the other hand, there
are two possible assignments in the g → gg splitting, corresponding to the
exchange of two final state gluons. In this case, one chooses one of the two
assignments with a 50% probability. At the end of the procedure, one obtains
the colour connections of all partons in the showered system.

Notice that, in the large Nc limit, it is enough to know that the quark and
the antiquark are colour connected . One does not need to know which specific
colour is assigned to them. In fact, in the limit of large Nc, the probability that
two colour connected pairs of quarks have the same colour index is suppressed
by a 1/Nc factor, and thus can be neglected.

2.2.16.3 Cluster and string based fragmentation models

The cluster and string fragmentation models are both based upon the assign-
ments of colour connections illustrated in section 2.2.16.2.

In the cluster model, final state gluons are forced to split into quark-
antiquark pairs. Then one decays each colour connected quark-antiquark pair
independently. If the invariant mass of the colour connected pair is low enough,
one matches mass and flavour with a corresponding hadronic two-body system
(or with a resonance) with the same flavour. In angular ordered shower, one
can show that configurations with colour connected pairs with large invariant
mass are Sudakov suppressed (an effect known as preconfinement).

In the string fragmentation model, colour connected partons are collected
in a system consisting of a quark, several intermediate gluons, and an antiquark.
For example, in figure 2.4 there are two colour connected system, one formed
by the quark with colour c1 and the antiquark with colour c̄1, and the other
one starting with the quark with colour c2, including the two final state gluons
with colour [c̄2, c3] and [c̄3, c4] and ending with the antiquark c̄4. One then
imagines that a colour flux tube (i.e. a string) is stretched from the quark to
the antiquark of the colour connected system, going through each intermediate
gluon.

In the simplest case, the string is stretched between a quark and an anti-
quark. The hadronic system is generated by pair creation by quantum tunnel-
ing inside the string. In practice, at this stage the fragmentation algorithm is
similar to the independent fragmentation case. One goes to a frame where the
two string ends have opposite momenta, and, starting from each string end, one
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has a fragmentation function to describe the probability to generate a hadron
carrying away a given fraction of the longitudinal momentum of the string. To
be more specific, let us assume that the string end has flavour f . A hadron
will be generated with flavour ff ′, and the left over string will have a flavour
f ′ at his end. Unlike the case of independent fragmentation, besides having a
more reasonable description of the role of colour in fragmentation, also flavour
is treated consistently.

In the general case, with intermediate gluons in the colour connected
system, a similar procedure is adopted, with some care for the treatment of the
kinks in the string associated to the intermediate gluons.

It should be made clear that fragmentation models end up being one
of the most complex aspects of Shower Monte Carlo. The underlying theory
(i.e. QCD) is only used as a reasonable suggestions on certain features that
the models should have. The models have unavoidably a large number of
parameters, that are needed in order to represent faithfully the many final
state features that are observed in strong interactions.

2.2.17 Dipole approach to Shower Monte Carlo

The historical development of shower algorithms has privileged the treatment
of collinear radiation. One first deals with collinear shower, and then fixes the
soft radiation. A different approach has also been pursued: one generates first
a soft shower, and then fixes the collinear region. In this approach one begins
with a formula for soft emission from the primary partons. Unlike collinear
singularities, soft singularities do not factorize in a simple way in QCD. In
order to illustrate this fact we begin by first considering QED, where soft
singularities do indeed factorize according to the formula

|Mn+1γ |2 ⇒ |Mn|2(4πα)
n∑

i,j=1

QiQj
pi · pj

(pi · k)(pj · k)
, (2.69)

where pi are the momenta of the outgoing particles, and Qi their electric charge
in positron charge units, and k is the momentum of the emitted photon. For-
mula (2.69) holds as long as k is much smaller than all the amplitude momenta
pi. Thus, in QED, the emission of a soft photon factorizes in terms of the
original squared amplitude times the sum of so called eikonal factors, associ-
ated to photon emission from a pair of final state partons. This formula is
also independent upon the spin of the emitting particles; only their electric
charge counts. When i �= j each eikonal term comes from the interference of
the photon emission amplitude from partons i and j, as represented graphically
in fig. 2.5. In QCD, soft emission still involves the same eikonal factors that
operate in QED. But the charges are replaced by colour matrices. So, while in
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Figure 2.5: The contribution of a single eikonal factor in QED. The above
figure is a common way to represent the interference of two amplitudes: the
amplitude on the left, times the complex conjugate of the amplitude on the
right of the dashed line.

QED the contribution of a single eikonal factor (like the one involving partons
i and j in the figure) is always proportional to the Born squared matrix ele-
ment, in QCD it is proportional to a square of the Born matrix elements where
the colours of partons i and j have been scrambled. These colour scrambled
Born contributions are potentially different among each other, so that simple,
QED like factorization no longer holds. In order to recover some manageable
simplicity, one takes the large Nc limits of QCD. Planar soft emissions from
a planar squared amplitude always amounts to add one colour loop (i.e. to
an extra factor of Nc). Thus, a planar factorization formula holds in large Nc

QCD

|Mn+1g(p1 . . . pn, k)|2 ⇒
[
|Mn(p1 . . . pn)|2(4παNc)

∑
conn .

pi · pj

(pi · k)(pj · k)

]Symm

,

(2.70)
where the sum extends over all colour connected final state partons, and “Symm”
stands for symmetrization in the momenta of identical particles (the planar
squared amplitude not being symmetric). Thus, even in the planar limit, soft
factorization is not the same as in QED. It is however easily tractable, since
symmetrization is unnecessary (as long as one computes symmetric observ-
ables).

In the dipole approach, one associates Sudakov form factors to dipoles,
rather than to partons, computes a no-radiation probability, and generates the
emission with a procedure similar to the one used in the single parton shower
approach. One generates a t for each dipole, and then picks the hardest t to
decide which dipole is emitting. In the limit when the emitted gluon is parallel
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to a final state parton, one adjusts the eikonal factors in such a way that they
become correct even if the energy of the emitted parton is not small, in order to
reproduce the Altarelli Parisi splitting probability. If the emitting parton is a
gluon, two dipoles can contribute to its emission, and this has to be accounted
for properly.

2.3 Underlying event

The hadronization model deals with final state partons, turning them into
hadrons. Also initial state partons require some treatment, in order to give
a realistic description of the physics of the hadronic remnants. First of all,
what we have introduced as the parton density to find a parton in a parton
(eq. (2.54)) should be immediately interpreted as the probability to find a
parton in the incoming hadron. In the forward evolution scheme, this would
require to introduce an initial parton density at the scale t0. In the backward
evolution scheme this is unnecessary: one compute the cross section with the
full pdf at the scale of the process, using standard pdf parametrization. How-
ever, when the backward shower stops (i.e. a scale t < t0 is generated in the
backward evolution formalism), we should provide some model for the structure
of the remaining part of the incoming hadron. This is a subtle problem, that
cannot be treated in a rigorous way in QCD. The crudest approach one can
think of, is to force initial state gluons at the end of the shower to arise from
a quark in backward evolution, then let the remaining diquark in the incom-
ing proton, carrying the left over momentum of the initial hadron, hadronize
with the remaining particles in the event. In other approaches, if the backward
shower stops with a gluon, the remaining quarks in the incoming hadron are
put into a colour octet state, and this system is broken up with various rules,
to yield objects that the hadronization mechanism can handle. There is some
evidence 5 that, in order to represent the activity of the underlying event in
a reasonable way, the effect of multiparton interactions must also be included.
In other words, one must assume that the remnants of the incoming hadrons
can undergo relatively hard collisions. Even this phenomenon is implemented
with phenomenological models in Shower Monte Carlo programs. Among the
ingredients entering these models, one assumes that partons have a given trans-
verse distribution in a hadron. The cross section for secondary interactions is
assumed to be given by the partonic cross section with an appropriate cutoff in
transverse momentum. This cutoff has to be carefully tuned, since the partonic
cross section diverges as the cutoff goes to zero. The momentum of the spec-
tator partons has to be properly rescaled, to account for the momentum taken
away by the parton that initiates the spacelike shower. Flavour and colour of
the spectators has to be properly adjusted.
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2.4 Shower Monte Carlo resources

Here I collect useful references to Shower Monte Carlo physics. First of all, the
pedagogic introductions in refs. 7), 3) and 5) offer an alternative introduction
to the one presented here.

In ref. 2) a primer on the main available Monte Carlo codes and methods
is given.

The PYTHIA manual 6) is a valuable source of information on several
aspects of Shower Monte Carlo physics. In the original HERWIG paper 4),
more thorough discussion of the problem of soft radiation can be found.

In the web page http://www.hepforge.org/, links to various Monte
Carlo programs, as well as to tools typically used in this framework (like jet
algorithms and the like) can be found.
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