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Chapter 1

Introduction

1.1 Particles, forces and strings

String theory is an ambitious attempt to reconcile the two cornerstones of twentieth century
physics: quantum mechanics and general relativity. Our current understanding of nature
is for a large part based on quantum field theory, which is the combination of quantum
mechanics and special relativity. Quantum field theory has allowed us to describe the world
of elementary particles to great accuracy. Indeed, everything in nature around us is made up
of a few elementary particles that interact with each other via four fundamental forces. Two
of these forces we are familiar with in everyday life, namely gravity and electromagnetism.
At subatomic scales, two other forces, namely the strong and weak force, become important.
In the late 1940’s, it became clear that quantum field theory was a very successful paradigm
to combine quantum mechanics and electromagnetism. In the 1970’s, it was understood
that also the weak and strong nuclear forces are successfully described by quantum field
theory. This led to a theory called the Standard Model, which is a quantum field theory
that incorporates electromagnetism and the strong and weak forces. It is a gauge theory,
which means that it is invariant under a local symmetry group. For the Standard Model,
this gauge group is SU(3) x SU(2) x U(1). The Standard Model contains fields associated to
spin-1/2 particles, such as quarks and leptons, a spin-0 Higgs boson, as well as spin-1 gauge
bosons, that are responsible for the mediation of forces. Although gravity is the dominating
force at very large length scales, as far as current particle physics experiments are concerned
it is not very important. Indeed, at the energy scales that are nowadays accessible in particle
accelerators, gravity is so weak compared to the other forces that its effects can be ignored.
Combined with general relativity at long distance scales, the Standard Model thus describes
virtually all physics down to the scales that are currently probed by particle experiments.
At higher and higher energies, probing smaller and smaller distances, gravity is expected
to become more important. So, although a consistent quantum theory of gravity is not
needed to describe current particle experiments, it is expected to be important at very high
energies. Furthermore, one can easily think of other situations, in which quantum gravity
effects become very important, such as at the very early stages of the Universe or in black
holes.

One could try to quantize Einstein’s theory of gravity in a way similar to other quantum
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field theories. However, such a quantum field theory of gravity is plagued with infinities that
severely limit its predictive power. The appearance of infinities in calculations of physical
quantities is a problem of most quantum field theories. For so-called renormalizable theories,
there exists a procedure, called renormalization, which removes these infinities and makes
it possible to predict quantities in a meaningful way. The Standard Model is an example of
such a renormalizable quantum field theory. The renormalization procedure, however, fails
in a quantum field theory of gravity. A breakdown of renormalizability often signals the
appearance of new physics at some energy scale, which for quantum gravity is given by the
Planck mass (in units in which h =c¢=1):

mpr = G2, (1.1)

where G denotes Newton’s constant. Einstein gravity is then considered to be the low
energy limit of a more general theory that is also valid at and beyond the Planck scale.

The most promising candidate for such a consistent theory of quantum gravity is super-
string theory (see refs. [1, 2, 3]). In string theory, elementary particles correspond to tiny
vibrating strings. Strings can be open or closed and different vibration modes of a string
lead to different particles. The particle spectrum of a quantized closed superstring contains
a massless spin-2 particle. This particle is then identified as the graviton, the particle that
mediates the gravitational force. Furthermore, in the spectrum of open and closed strings
one can also find massless spin-1 particles, leading to Standard Model-like forces. Apart
from massless particles, string theory contains a tower of massive states. Their masses M
are of the order of the tension T of the string:

9 1
M= ~T, T=—, (1.2)
21l

where we have introduced the so-called Regge slope parameter o’. The characteristic length
scale I of a string is of order v/o/. The massive modes of a vibrating string thus have masses
of order 1/Is. These masses are often taken to be of order 10'® GeV?!. Strings interact with
each other by joining and splitting. The strength of these string interactions is controlled
by the string coupling constant gs. The endpoints of an open string can always join to form
a closed string. Open string theories can thus not exist without closed strings. Hence, any
consistent theory contains closed strings, and thus has a graviton in its particle spectrum.

String theory is finite order by order in perturbation theory and thus does not suffer
from the infinity problems of quantum field theories. A very special property of string
theory is also that it contains no adjustable dimensionless parameters. In particular, the
string coupling constant turns out to be determined by the theory itself and cannot be
chosen at will. This is in contrast with the Standard Model, which contains 29 parameters
such as particle masses, which have to be determined by experiment and put in by hand.
Superstring theories also enjoy a symmetry, called supersymmetry, which exchanges bosons
and fermions.

Actually, there are five consistent superstring theories, defined perturbatively (i.e., as a
series expansion in gs). They are called type IIA, type IIB, type I, heterotic SO(32) and
heterotic Eg x Eg. The type I theory has SO(32) as a gauge group, while the 2 heterotic
theories have respectively SO(32) and Eg x Eg as gauge group. The type II theories do not

I Tt has been pointed out that it is possible to have a string scale of order 1 TeV in [4].
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have gauge groups. All superstring theories can be most easily formulated in 10-dimensional
flat Minkowski space. The type II theories are invariant under the maximal amount of
supersymmetry, namely under 32 supercharges, while the other theories are invariant under
16 supercharges. As the massive string modes have very high masses, one is usually interested
in describing only the light (massless) modes. Their dynamics is captured in a low energy
effective action, that correctly reproduces scattering amplitudes for these light modes at low
energies. The high degree of supersymmetry determines the form of these effective actions
up to two derivatives. It turns out that they are given by 10-dimensional supergravity
theories, that are invariant under 16 or 32 local supercharges. Supergravity theories form
a supersymmetric extension of Einstein gravity; so, at low energies, string theory indeed
recovers (an extension of) general relativity.

Originally, it was thought that only type I theory contains both open and closed strings,
while the other theories were believed to describe only closed strings. In the 90’s however, it
was found that type II theories can also contain open strings. Unlike the closed strings, these
cannot move freely through space-time, but their ends are confined on (p + 1)-dimensional
hypersurfaces that were called Dp-branes. These Dp-branes turn out to be dynamical objects
that are free to move and change their shapes. The tension Tp, of D-branes is inversely
proportional to the string coupling constant : Tp, ~ 1/gs. At weak coupling, D-branes are
thus very heavy. They correspond to nonperturbative physical objects in string theory.

Although the five string theories all seem to be completely different, it was found in the
mid 90’s that they are related through various dualities, which means that two (at first sight)
completely different theories can be equivalent. These different theories are often useful in
a specific region of their parameter space, where calculations are more easily done. It can
happen that calculations that are hard in one theory, are a lot easier in the dual theory.
For instance, it can happen that strong coupling behavior in one theory is mapped to weak
coupling behavior in the dual theory. Calculations at strong coupling can then be performed
by mapping them to computations at weak coupling in the dual theory. An example of such
a string duality is given by T-duality. It turns out that a theory where strings are moving
on a background of flat space where one direction is compactified on a circle of radius R,
can be equivalent to a (possibly different) theory, that is now compactified on a circle with
radius o/ /R. In this way, one can relate the type ITA and type 1IB superstring, as well as
the heterotic SO(32) and heterotic Fg x Fg string theories. Another duality is S-duality,
that relates the strong coupling limit of a string theory to the weak coupling limit of another
one. It was for instance shown that the SO(32) heterotic string and the type I string are
related in this way, while the type IIB theory is self-dual under S-duality. It also turns out
that the type ITA and heterotic Eg x Fg string theories at strong coupling lead to an 11-
dimensional theory of which little is known. D-branes play their role in the dualities as well.
It may happen that D-branes in one perturbative description of string theory correspond
to fundamental strings in another theory. An example of this is given by the fundamental
string of heterotic SO(32), which is under S-duality mapped to the D1-string of the type I
theory. Similarly, the fundamental string of type II theory is at weak coupling much lighter
than the D1-brane, while at strong coupling it is the other way around. D-branes are in a
sense thus as fundamental as strings. The existence of the various dualities has led to the
idea that the five different string theories are just different descriptions of one fundamental
theory that has been called M-theory. However, what M-theory precisely is, still remains a
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mystery.

1.2 Connecting strings to reality

Although superstrings lead to a very compelling consistent theory of quantum gravity, valid
at very high energy scales, much work still needs to be done, both from a conceptual and
from a more practical point of view. From a conceptual point of view, we still do not have
a good idea about how M-theory could be formulated. From a more practical point of
view, a very important question is how we can connect string theory, that is most naturally
formulated in 10 dimensions, to our four-dimensional reality and whether we can make
predictions for physics beyond the Standard Model that could possibly show up in future
particle experiments.

In order to make contact with four-dimensional physics, one usually assumes that 6 di-
mensions are curled up in the shape of a compact internal manifold. The sizes of these
compact manifolds are then assumed to be rather small, such that at low energies space-
time effectively looks four-dimensional. One often assumes that these internal manifolds are
very specific, such that a certain fraction of the original supersymmetries is broken. For
instance, by compactifying superstring theories on Calabi-Yau manifolds, only one quarter
of the original 32 or 16 supersymmetries are preserved. Compactification of string theories
generically leads to a set of massless states as well as states that are highly massive. The dy-
namics of the massless states at low energies is then governed by a four-dimensional effective
supergravity action. In the case of Calabi-Yau compactifications for instance, one obtains
supergravities in four dimensions that are invariant under either four or eight supersymme-
try transformations. A lot of work was subsequently done on Calabi-Yau compactifications
of the Es x Fg heterotic string, as it can lead to four-dimensional effective theories with
interesting gauge groups that can be viewed as extensions of the Standard Model. With
the advent of D-branes, it was realized that also type II theories could give rise to inter-
esting four-dimensional physics upon compactification. It turns out that the dynamics of
open strings that end on a Dp-brane is described by a U(1) gauge theory that lives on
the (p + 1)-dimensional world-volume of the brane. In case N D-branes lie on top of each
other, this gauge group is enlarged to U(N). Moreover, stacks of D-branes can intersect
each other at angles. This can then lead to interesting spectra of particles that are local-
ized on possibly four-dimensional intersections of the branes. In this way, compactification
including D-branes might give a very geometrical way of realizing the Standard Model in a
fundamental theory like string theory.

One major drawback of these lower-dimensional effective theories is that they usually
contain a lot of scalar fields, called moduli, with undetermined vacuum expectation values.
They correspond to continuous deformations of the shape and size of the internal manifold.
These scalar fields are unobserved in nature and their vacuum expectation values also deter-
mine various other quantities in the low energy effective action, such as coupling constants.
String models are thus not predictive, as long as vacuum expectation values for these mo-
duli are not determined. It is thus desirable to devise a mechanism such that these scalars
acquire a fixed value. Recently, it was found that one can fix these scalars by allowing
non-trivial background fluxes along the internal manifold. Indeed, the massless string spec-
trum contains various anti-symmetric tensor fields. Allowing non-trivial expectation values
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for their field strengths along the internal space leads to potentials for the moduli in the
lower-dimensional effective theories. If one includes other, nonperturbative effects, coming
for instance from Euclidean D-branes that wrap cycles of the internal space, one can in fact
engineer models where all moduli are fixed at a minimum of a potential.

Combining the ideas of compactifications with fluxes and D-branes provides a first step
towards getting realistic models of four-dimensional low energy physics, which might be
useful in obtaining predictions for physics beyond the Standard Model. The current belief
is that a very large number of consistent string theory compactifications can be obtained,
due to different choices of compactification manifolds, fluxes and minima of the moduli
potential. Each of these scenarios leads to different low energy physics (different gauge
groups, values of coupling constants, etc.). Although it is by now clear that Standard Model-
like constructions (or extensions thereof) can be embedded in string theory in various ways,
much work still needs to be done. Compactifications including fluxes, which are crucial in
these constructions, are less well understood than ordinary Calabi-Yau compactifications for
instance.

1.3 Cosmology as a window into fundamental physics

One of the main problems string theory has to cope with is the lack of experimental input.
Cosmology might well provide us with an arena in which string theory scenarios can be
confronted with specific data. Indeed, in recent decades, cosmology has turned into a real
precision science, where very specific and accurate data can be obtained. Various unexpected
facts about our universe have arisen from such data, as we shall now explain.

Cosmological observations have made clear that current physical theories of elementary
particles only deal with approximately 5% of the content of the universe. Approximately 25%
of the universe seems to consist of what is called dark matter. This corresponds to some form
of matter that does not emit electromagnetic radiation, but of which the presence can be
inferred thanks to its gravitational effect on ordinary visible matter, like stars and galaxies.
Not very much is known about the true nature of dark matter. However, supersymmetric
extensions of the Standard Model, which might be obtainable from string theory, often
contain weakly interacting particles that are good candidates for this dark matter.

In the late nineties, several research groups obtained data that showed that our universe
is currently undergoing a phase in which its expansion is accelerating. Until then, it was
generally believed that gravity would slow down the expansion of the universe. The dis-
covery of accelerated expansion thus came as a complete surprise. This acceleration can be
explained by assuming that the universe is filled with a strange form of energy, called dark
energy, that opposes gravity at large distances. In its simplest form, that seems to fit the
observations rather well, dark energy corresponds to a positive cosmological constant. It
turns out that dark energy constitutes approximately 70% of the matter/energy content of
the universe. Not only is the expansion of the universe currently accelerating, but a number
of theoretical problems as well as observations also suggest that the universe underwent
a period of exponential expansion soon after the Big Bang. This period is known as the
inflationary era.

Various proposals have been made for inflation or for the nature of dark energy. Ulti-
mately however, one might wish to embed these proposals in a more fundamental theory.
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As string theory seems to give us a fundamental theory, it is an interesting endeavor to see
what its implications are for cosmology and to see whether these can be matched with the
large number of cosmological data that are currently obtained or that will be obtained in
the near future.

1.4 Topics studied in this thesis

Connecting string theory to known low energy physics and to cosmology can be very useful,
as it might shed more light on the structure of the theory and open up the possibility for
definite predictions from string theory that can be falsified in the future. The topics that
are studied in this thesis should be seen in this light.

Chapters 3 and 4 of the thesis are centered around the issue of finding time-dependent
solutions in supergravity theories. In chapter 3, we will study a method that is useful in
finding cosmological solutions of supergravity theories. This method is known as the Tits-
Satake projection. In chapter 4, we will search for a specific kind of cosmological solutions,
the so-called scaling cosmologies, in gauged four-dimensional N = 8 supergravity. The
importance of these scaling cosmologies lies in the fact that they can correspond to the early-
or late-time behavior of more general cosmological solutions of gauged supergravity. Some
of the solutions we find moreover describe accelerating cosmologies. Chapter 5 of this thesis
then studies D-branes in backgrounds where fluxes have been turned on. As mentioned, such
backgrounds are very useful in constructing realistic models in string theory, as well as in
connecting string theory to cosmology. More specifically, we will focus on the structure of the
fermionic part of the effective action, describing D-brane dynamics in general backgrounds.

The outline of the thesis is as follows. In chapter 2 we start by giving some background in
cosmology, that is meant to put chapters 3 and 4 in a broader context. We start by introduc-
ing some basic concepts, such as the assumptions of homogeneity and isotropy, the Hubble
law and the Friedmann equations. Next, we review some of the more recent observations
that have been obtained in cosmology. We end this part by explaining how scalar fields can
account for accelerated expansion. In the context of cosmological solutions in the presence
of scalar fields, we introduce the scaling cosmologies that will play an important role in
chapter 4. In section 2.2 we give some mathematical background on special geometry that
will be important for chapter 3. After a short review on complex and Kéhler geometry, we
discuss the different special geometries that appear in theories with 8 supercharges, namely
special Kahler, very special real and quaternionic-Kéhler geometry. We end chapter 2 with
a discussion on supergravity theories. We first give a general account on supersymmetry
and supergravity, indicating for instance the relation between supersymmetry and geometry.
Indeed, supersymmetric theories often contain some scalar fields that can be seen as coor-
dinates on a manifold, called the target space. It turns out that supersymmetry severely
restricts the possibilities for these target spaces. We will illustrate this via an example.
After this, we briefly discuss the supergravity theories that will play a role in this thesis. We
start with the theories with 8 supersymmetries that will enter in chapter 3, putting special
emphasis on how the geometrical structures introduced in section 2.2 enter. Next, we intro-
duce some maximal supergravity theories, namely type II supergravities in 10 dimensions
and gauged maximal supergravity in four dimensions. In the latter case, a global symmetry
group of the Lagrangian is promoted to a local symmetry, using some of the vector fields that
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are present in the theory. This gauging procedure introduces a potential for the scalars in
the theory, which makes gauged supergravities interesting from a cosmological point of view.
Ten-dimensional type II supergravities and gauged, maximal four-dimensional supergravity
will enter the thesis in chapters 5 and 4 respectively.

Chapter 3 deals with the Tits-Satake projection in the context of supergravity theories
with 8 supercharges. Essentially, the Tits-Satake projection is a way of truncating a compli-
cated theory in such a way that after truncation, one obtains a model in which cosmological
solutions can often be found in an algorithmic way. More specifically, the Tits-Satake pro-
jection is a projection on the scalar target spaces that appear in supergravity theories. The
projection is such that solutions of the truncated model also constitute a set of solutions
of the original, more complicated theory. Moreover, the Tits-Satake projection also leads
to a way of obtaining more general solutions of the original theory, starting from the solu-
tions of the projected theory. The Tits-Satake projection was known in a specific class of
supergravity theories, namely the ones with symmetric target spaces. It was used in ref. [5]
to construct cosmological solutions of N' = 6, four-dimensional supergravity. In this thesis,
this method is extended to a larger class of supergravities, namely the ones exhibiting so-
called homogeneous special geometry. This extension was worked out in collaboration with
Pietro Fré, Floriana Gargiulo, Ksenya Rulik, Mario Trigiante and Antoine Van Proeyen
in ref. [6]. Homogeneous special geometry is discussed in section 3.2. We first review the
classification of homogeneous quaternionic-Kahler geometries, comment on their relation
with homogeneous special Kahler and very special real geometry and discuss the structure
of their isometry algebras. In section 3.3, we explain how Tits-Satake projections can be
obtained for symmetric spaces. The aim of this section is to infer some concepts that can
be generalized for the more general class of homogeneous special geometries. This section
contains a more theoretical discussion, as well as a specific example. The generalization of
the Tits-Satake projection to all homogeneous special geometries is done in section 3.4. We
again first give a more theoretical discussion, whose fine points are explained in more detail
in subsequent subsections. We end this chapter with a discussion of the results obtained for
the Tits-Satake projection of homogeneous special geometries. As an application, we argue
that the Tits-Satake projection gives us a tool for grouping N' = 2 supergravity theories with
homogeneous target spaces in a small number of universality classes. We mention the cosmic
billiard phenomenon as a physical reason as to why such a grouping in universality classes
might be relevant. Finally, we also give an example in which the Tits-Satake projection can
be given a microscopic meaning in string compactifications including stacks of D-branes.

In chapter 4, we study scaling cosmologies in A = 8 gauged supergravity in four dimen-
sions, in which case there is a potential for the scalars. We perform a truncation of the
theory, in which we only keep gravity as well as a subset of the scalar fields in the theory.
This truncation, as well as the resulting theory is explained in section 4.2. It turns out
that the potential is of the so-called 'multiple exponential’ type, meaning that it is a sum of
exponential terms. In section 4.3, we review some results concerning scaling cosmologies in
theories with multiple exponential potentials and flat target spaces. We indicate that, after
truncation, some N = 8 gauged supergravity theories allow for scaling cosmologies. We give
the different possibilities that can occur and comment on various properties of the corre-
sponding cosmologies. The higher-dimensional origin of these four-dimensional solutions is
commented upon in section 4.4. We end this chapter with some comments on the relation
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between scaling cosmologies and de Sitter vacua in supergravity theories. This chapter is
based on work done in collaboration with Thomas Van Riet and Dennis Westra [7].

Chapter 5 then studies fermionic actions for D-branes in general backgrounds with fluxes.
We start with some elementary facts about D-branes and comment on the relevance of
knowing the structure of the fermionic terms in D-brane effective actions in the presence
of fluxes. Building on earlier results of refs. [8, 9], a concise form of this action is given to
quadratic order in the fermions in section 5.2. We also indicate how kappa-symmetry can be
fixed and how the supersymmetry transformations of the physical D-brane degrees of freedom
are found. We moreover show how our action is consistent with T-duality, thus providing an
important check on this result. The fermionic action found in section 5.2 is not in canonical
form. In section 5.5, we show how, by performing appropriate field redefinitions, one can
obtain an action in canonical form. The results discussed in this chapter were obtained
in collaboration with Luca Martucci, Dieter Van den Bleeken and Antoine Van Proeyen in
ref. [10].

Finally, we end this thesis with an appendix on simple Lie algebras, on real Clifford
algebras and an appendix that summarizes some conventions used throughout this thesis.



Chapter 2

Cosmology and supergravity

In this chapter, we will introduce some necessary background material. The first part focuses
on some aspects of modern cosmology. We will give a short review of the current status in
cosmology, focusing on the recent observation of the accelerated expansion of the universe
and the role of scalar fields in finding explanations for this phenomenon. In a second part, we
give some mathematical background concerning some geometrical notions that will appear in
this work. More specifically, we will define the different types of special geometry that occur
in supergravity theories with 8 supercharges. The last section deals with supergravity. After
a short general introduction to supersymmetry and supergravity, we will briefly introduce
the different supergravity theories that appear in this thesis. More specifically, we will
discuss theories with 8 supercharges, maximal supergravities in 10 and 11 dimensions and
maximal gauged supergravity in four dimensions. These theories will appear in this thesis
in chapters 3, 5 and 4 respectively. The review offered here is very short and by no means
complete. We will only highlight some specific aspects of these theories that will be relevant
later on.

2.1 An introduction to cosmology

In this section, we will review some basic facts concerning modern cosmology. Some good
references for this part are given in [11, 12, 13]. The first part focuses on elementary
cosmology, reviewing how the dynamics of an expanding universe is analyzed. The second
part gives a short resume of the current observational status in cosmology, focusing on several
observational constraints imposed on the value of certain cosmological parameters. These
measurements also indicate that the expansion of the universe is currently accelerating. In
the third part, we then indicate how coupling scalar fields to gravity can take account of
this acceleration. We introduce a specific type of cosmological solutions in models of gravity
coupled to scalar fields, that will play a role in chapter 4, namely the scaling cosmologies.

2.1.1 The FLRW metric : the expanding universe

One of the main simplifying assumptions that allows us to use general relativity to the
entire universe, is the fact that the universe is spatially homogeneous and isotropic on

9
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large scales. Isotropy is the assumption that the universe looks the same in all directions,
while homogeneity means that the universe looks the same at every point. Evidence for
isotropy mainly comes from observations of the cosmic microwave background. Invoking the
Copernican principle, namely that we do not occupy a special point in the universe, then
implies isotropy around every point in the universe and hence homogeneity. The upshot
of these two assumptions is that space-time on cosmological scales can be described by the
so-called Friedmann-Lemaitre-Robertson-Walker metric (FLRW metric):

ds? = —dt* + a*(t) + r%(d6? + sin® 6d¢?) | , (2.1)

1—kr2
where a(t) is called the scale factor. It describes the relative size of the spatial sections,
which are the slices of constant cosmic time ¢, at different times. The parameter k describes
the curvature of the spatial sections and is normalized to either +1,0 or —1. For k = 1 one
has positively curved spatial sections, that are thus locally isomorphic to three-spheres. For
k = 0 the hypersurfaces of constant ¢ are locally flat, while for £ = —1 they are negatively
curved (locally hyperbolic).

A very useful quantity in cosmology that can be defined from the scale factor is the
Hubble parameter H:

e = 4 (2.2)

where "means a derivative with respect to cosmic time ¢. One can show that, when a photon
is emitted at time t. with wavelength )., it will be observed today, at time ty, with a
wavelength Ao, obeying:

20 _ =1+4z. (2.3)

When z > 0 photons are redshifted, while when z < 0 they undergo a blueshift. Around
1920, Slipher, Hubble and Humason measured the shifts in spectral lines of a number of
objects that were later identified as galaxies. Almost all spectral lines were redshifted. Since
the redshifts z < 1 in their observations, the Newtonian Doppler-shift formula leads to the
conclusion that these galaxies move away from us with radial velocity v = cz. Furthermore,
their observations also indicated that the redshifts increase with increasing distance from
the galaxy to the earth. In fact, Hubble obtained the following linear relation (we have
chosen units in which ¢ = 1):

2= Hod, (2.4)

where d is the distance earth-galaxy, and Hj is a constant known as Hubble’s constant.

These observations immediately lead to the conclusion that our universe is expanding:
a > 0. Hubble’s law for nearby sources (z < 1) can be easily derived. Indeed, small redshifts
correspond to small values of (¢ — t.), such that we can expand

a(te) = a(to) — alto)(to —te) - (2.5)
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Since (to leading order in z) the difference (to — t.) is equal to the distance d to the source,
we can rewrite this equation as

alt.) = a(to) |1 = H(to)d] (2.6)

Again to leading order in z, this immediately leads to

1

lbz=—
T T T Hg)d

~ 1+ H(ty)d, (2.7)
leading to Hubble’s law. The Hubble constant Hy is thus given by the value of the Hubble
parameter (2.2) at the present time ty.

Note that for larger redshifts this simple linear behavior is no longer valid. Studying
the relation between redshift and distance is however very useful, since it provides us with
information regarding the expansion rate of the universe. In fact, as we are going to discuss
later, precise measurements of this relation have led to the discovery that the expansion of
the universe is accelerating.

2.1.2 Dynamics of the scale factor

In the previous section, we used homogeneity and isotropy to introduce the FLRW metric
and the scale factor a(t). The dynamics of the scale factor can be analyzed by plugging the
metric (2.1) in the Einstein equations:

1
R, — §Rgm, =8rGNT (2.8)

where Gy is Newton’s constant. These equations relate the time evolution of the scale factor
to the matter content of the universe via the energy-momentum tensor 7,,.

For simplicity, one often assumes that this energy-momentum tensor assumes the form
it has for a perfect fluid!:

TOO =P, Tl] = PGij (17.7 = 17 27 3) ’ (29)

where p is the energy density of the fluid, p the pressure of the fluid, while g;; represents
the spatial part of the metric (2.1). Note that this form of the energy-momentum tensor is
consistent with the assumptions of homogeneity and isotropy.

Using the FLRW metric (2.1) in the Einstein equations (2.8), one finds two equations:

81 k
H? = 3N§ pi— (2.10)
a 47TGN
. = T3 > “(pi +3pi).- (2.11)

3

We have denoted the different species of energy/matter present in the universe with the
index ¢. The first of the above equations is known as the Friedmann equation, while the
second equation is more commonly known as the acceleration equation. Useful quantities

1 Tuy is written here in the rest frame of the fluid.
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that are often introduced are the density parameter €2; of a species ¢ and the total density
parameter €:

871G i
91‘:375\[&':5—7 Q:ZQi:pﬁ (P:ZPi)a (2.12)

where p, is the critical density, that corresponds to the energy density of a flat universe:

3H?
e = . 2.13
Pe= SrGn (2.13)
The Friedmann equation can then be rewritten in the following way:
k

An immediate consequence of this equation is that the local curvature of the universe is
related to the total density as follows:

Q>1 < k=41,
Q=1 < k=0,
Q<1 o k=-1. (2.15)

Note that the Friedmann equation and the acceleration equation are mutually consistent,
provided the following equation holds:

p+3H(p+p)=0. (2.16)

This equation simply expresses energy-momentum conservation V,T"" = 0.
In order to solve for the scale factor, an equation of state is needed, specifying a relation
between p and p. For now, we will assume a simple equation of state:

p=uwp, (2.17)
where w is a constant. Conservation of energy-momentum (2.16) then implies that
p o a”30Hw) (2.18)

Although the equation of state (2.17) is very simple, it turns out that it is obeyed by a lot of
interesting fluids. One can for instance consider non-relativistic, non-interacting particles,
often denoted as dust. This obeys p =0 and p < a~2. Radiation? on the other hand obeys
p = %p and p o a~. A cosmological constant in Einstein’s equations is introduced by
taking an energy-momentum tensor of the form:

A

Ty = ————Guv -
s 87TGNg#

(2.19)

One can see that a cosmological constant also behaves as a perfect fluid, obeying the equation
of state (2.17) with w = —1.

2 Usually one not only includes photons here, but also other highly relativistic particles.
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To study the behavior of some exact solutions of the Friedmann equation, we will look
at the case where the spatial sections are flat (k = 0). We will see that recent observations
indicate that this choice is not only mathematically but also physically appealing. Assuming
a constant equation of state parameter w > —1, the following solution for the scale factor is
obtained:

£\ (2/3(14w))
) : (2.20)

a(t) =ap | —
(0 =ao (1
where a¢ denotes the present value of the scale factor. Note that for matter domination
(w = 0) or radiation domination (w = 1/3), the universe starts at an initial singularity,
where a = 0. This singularity is known as the Big Bang. The age of such a universe is given
by

2

ST (2.21)

tg =
When w is not close to —1, a good approximation of the age of such a universe is thus given
by the inverse of the Hubble constant. One often calls H; ! the Hubble time.

One can also study solutions of (2.10) when k& = £1. The same qualitative behavior is
found, irrespective whether one assumes matter domination or radiation domination. For
positive spatial curvature, one finds that the universe expands from an initial singularity
with @ = 0 (Big Bang) and then collapses again (Big Crunch). For negative curvature, one
finds that the universe expands forever after the Big Bang.

Finally, we remark that all ordinary matter has positive energy density and non-negative
pressure. From the acceleration equation (2.11), one can then easily see that the expansion
of the universe will always decelerate. It seems however that an accelerated expansion of
the universe has occurred at least twice. It is generally believed that a phase of acceleration,
called inflation, took place in the very early universe. As we will indicate in the next
section, recent observations have also shown that the expansion of our universe is presently
accelerating. These phases of acceleration cannot be explained by assuming ordinary forms
of matter, but some different forms of matter will have to be introduced. One way of dealing
with this is given by the introduction of a cosmological constant. Indeed, it follows from
the acceleration equation (2.11) and (2.19) that for a positive cosmological constant A, the
expansion of the universe will be accelerating. A different way of getting acceleration consists
of adding scalar fields; this will be explained in section 2.1.4.

2.1.3 A and Cold Dark Matter : the standard model of cosmology

Traditionally, one of the most important problems in observational cosmology was the de-
termination of the Hubble constant Hy. One often writes it in terms of the dimensionless
number h as follows:

Hy =100 hkm/sec/Mpc. (2.22)
The value for h found by the Hubble Space Telescope Key Project is [14]:

h=0.71+ 0.06. (2.23)
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This value is largely agreed upon by other methods [15]. Other cosmological parameters
can also be measured. In the following, we describe two recent observations that allowed
to severely constrain the values of cosmological parameters such as the density parameters
that determine the energy/matter content of our universe.

Measurements of the CMB

The Cosmic Microwave Background (CMB) consists of radiation that exhibits an almost
perfect black body spectrum with temperature Toyp = 2.725+0.001 K. The Hot Big Bang
model gives a good explanation for this CMB. Indeed, since the ratio of the energy density
of radiation to the energy density of dust scales as 1/a(t), and since particles that now
contribute to matter used to be hotter and were relativistic at early times, one can conclude
that the early universe was dominated by radiation. At early times, photons were energetic
enough to ionize hydrogen and hence the universe was filled with a charged and opaque
plasma. This phase lasted long enough until the photons redshifted enough to allow for the
formation of neutral hydrogen atoms, an era denoted as recombination. After recombination,
photons decoupled and went free through the universe. Note that at early times, densities
were high enough for matter to be in thermal equilibrium, yielding a black body spectrum.
The effect of the expansion of the universe is then to retain this initial black body spectrum,
but at lower and lower temperatures : 7" o 1/a.

Although nearly isotropic, there are small angular anisotropies AT /T in the CMB tem-
perature, of order 10~°. Studying these anisotropies gives a wealth of information regarding
various cosmological parameters. A careful analysis of these anisotropies leads to constraints
on essentially all cosmological parameters. Considering for instance the results of the WMAP
mission [16, 17, 18], the total density of the universe is constrained as follows:

0.98 < Quopar < 1.08, (2.24)

at 95% confidence level. Note that this gives strong evidence for a flat universe. Much
tighter constraints on the parameters can be obtained by assuming either a flat universe
or a reasonable value for the Hubble constant. If one assumes a flat universe, one obtains
the following set of values for the Hubble constant, the matter density 2, the so-called
vacuum energy density 25 (= 1 —Qps under the assumption & = 0) and the baryon density
QBZ

h = 0.72+0.05, (2.25)
Qu=1-Qy = 029+0.07, (2.26)
Qp = 0.047+0.006. (2.27)

A few comments are in order here. First of all, note that the total amount of luminous
matter in stars and galaxies is of the order €y, ~ 0.001, so most of the baryonic matter
is not in the form of stars, but in the form of ionized gas. Even then, the baryonic matter
only constitutes a small fraction of the total matter density. So, we must conclude that
most of the matter is not made of particles we know today, but constitutes some other form
of matter that is denoted as dark matter. This dark matter is cold (non-relativistic) and
has been cold for a long period of time. The remaining energy 24 is called dark energy. It
represents a constituent that has an equation of state parameter w close to —1. It can for
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instance be modelled by a positive cosmological constant and thus leads to an accelerated
expansion of the universe. These results are confirmed by type Ia supernovae measurements,
which we now describe.

Type Ia supernovae measurements

The first evidence for the fact that matter does not dominate the universe, but that dark
energy is needed to explain observations, came from the study of so-called type Ia supernovae.
These events are widely believed to be explosions occurring when the mass of a white
dwarf, onto which material from a companion star is accreting, becomes larger than the
Chandrasekhar limit. These supernovae are very bright, so they can be detected at high
redshifts (z ~ 1). Since the Chandrasekhar limit is a universal quantity, these explosions
are also of a nearly uniform intrinsic luminosity, a property which makes them very useful
in determining distances in the universe. Type Ia supernovae thus allow for more complete
measurements of the redshift-distance relation. There are some differences in the observed
peak brightness of nearby supernovae, but these differences are fortunately closely related
to the shapes of the light curves. So, measuring the apparent luminosity along with the
behavior of the light curve allows to perform measurements that are precise enough to
distinguish between various cosmological models.

Two groups have independently searched for distant supernovae in order to measure
cosmological parameters : the High-Z Supernova Team [19] and the Supernova Cosmology
Project [20]. It turns out that their data are much better fitted by a universe dominated
by a cosmological constant than by a flat matter-dominated model. The supernova results
alone allow for a large range of possible values of ), and 24, but if one for instance takes
Qpr ~ 0.3, it turns out that Q4 is highly constrained:

Qp ~ 0.7, (2.28)
corresponding to a vacuum energy density
pa ~ (1073 eV)*. (2.29)

These observations thus confirm the existence of dark energy and the accelerated expansion
of the universe.

2.1.4 Cosmology with scalar fields : acceleration and scaling

The recent observations described above strongly suggest that the expansion of our universe
is currently accelerating due to the presence of dark energy. Furthermore, a number of the-
oretical problems suggest that the very early universe went through a period of exponential
expansion, namely the inflationary age. As already emphasized, accelerated expansion can-
not occur taking into account ordinary types of matter and/or radiation. We have already
mentioned the cosmological constant as a mean of getting acceleration. The purpose of this
section is to show that the inclusion of scalar fields can also lead to accelerated expansion.
Although current observations constrain the equation of state parameter w to be close to
—1 today (so mimicking a cosmological constant), these measurements generally have little
to say about a possible time evolution of w. So, one can actually look a little further than a
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pure cosmological constant and look at situations where the equation of state changes with
time, such as when scalar fields are present in the theory. Scalar fields also appear in a
variety of particle physics models such as string theory and supergravity and it’s interesting
to see whether some of these can be used to construct viable cosmological models. We refer
to [21] for a review on different possibilities for modelling dark energy.

To see how scalar fields can give rise to accelerated expansion, consider the simple model
of a single scalar field ¢ minimally coupled to gravity. We thus consider the ordinary
Einstein-Hilbert action, to which we add the following action for the scalar field:

1
Sscalar = /d4$ V _g{ - 59“V3u¢>3u¢ - V(¢) ) (230)
where V(¢) denotes a potential term for the scalar field. In a flat FLRW space-time, the

equation of motion for the scalar field is given by:

. .4V
3H — =0. 2.31
o+3HO+ o (2.31)
The H ¢ term plays the role of a friction term and is called the Hubble friction. The energy-
momentum tensor for such a scalar field takes the following form:

Ty = 0,000 — g0 [ 597000050 + V(9)] (232)

Restricting to our flat FLRW background and scalars that only depend on time, we obtain
from this energy-momentum tensor the following expressions for the energy and pressure
densities of the scalar field:

1.
po= FHRHV), (2.33)
1.4
po= 3BV (2:34)
The Friedmann equation and acceleration equation then take the form:
kK271,
o = 58+ V()]
=562+ v,
a K2
L e 7 } , 2.35
. ) (2.33)
where 12 = 87G . Acceleration will thus occur when ¢? < V(¢). From (2.33), one can also

infer that when ¢? < V(¢), the scalar field will obey an equation of state with parameter
w ~ —1, thus mimicking a cosmological constant. This is often summarized by stating that
flat potentials give rise to accelerated expansion. In the context of inflation, the requirements
on the potential are often expressed in terms of the so-called slow-roll parameters:

_ m_%l(iﬂ) _miy 1PV

T 167 \V do 81 V dg?’ (2.36)

where mp| = G;,l/2 ~ 10! GeV denotes the Planck mass. Inflation then occurs when the
slow-roll conditions, namely € < 1, 7 < 1 are satisfied. These slow-roll conditions are useful
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in the context of the inflationary era that occurred in the very early universe. In the context
of late-time acceleration, they are not so useful, since apart from dark energy, one should
also take (dark) matter into account and the contribution of the latter is not included in
the slow-roll parameters. One can however define other parameters, such as ¢ = —H JH?,
to check whether accelerated expansion takes place.

The simplest case in which acceleration can occur, is the case in which the scalar field
¢ is constant: ¢ = ¢g. From (2.31), one sees that in this case ¢y must correspond to a
stationary point of the potential. The energy-momentum tensor (2.32) then simplifies to

Tuw = =gV (b0) - (2.37)

Comparison with (2.19) shows that the value of the potential at the stationary point plays
the role of a cosmological constant. When this value is positive (corresponding to positive
cosmological constant), the second equation of (2.35) shows that acceleration occurs. Such
solutions correspond to so-called de Sitter universes, namely vacuum solutions of the Einstein
equations with positive cosmological constant.

One does not need to restrict oneself to solutions in which the scalar fields are constant.
Let us for instance study a model with one scalar field and a simple exponential potential
V(¢) = Ae*® in a more systematic way, where we assume that the potential is positive:
A > 0. Define the following variables (putting x? = 1/2):

b Ae®?®

In terms of these two variables, the equations of motion (2.10,2.11,2.31) can be rewritten as

X24+y =1,
X' = -3XY —V3aY,
Y =Y (V122X +6X?), (2.39)

where ’ denotes taking a derivative with respect to In a(t):

,_df _f
F= dlna ~ H' (240)

Note that in terms of the variables (2.38), the dynamical equations are written in a simple
first order form. This allows us to identify some simple solutions. Indeed, consider a
dynamical system of the following form:

#(t) = f(a), (2.41)

where the functions f? only depend on the 2! variables and no longer on their derivatives.
Trivial solutions of such a system are given by the zeros of the functions f%:

T'(t) = ab, where f'(x9) =0. (2.42)

These simple solutions are called critical points. Their importance lies in the fact that they
can correspond to repellers and attractors and thus capture important information about
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the dynamics. A general solution of these systems will generically interpolate between two
critical points.

Apart from the first equation, the system of equations (2.39) takes the form of (2.41).
Note that the first equation in (2.39) can be forgotten if this equation is obeyed at some
initial time, since one can show that X2 + Y is constant along solutions. One can then
search for critical points of the last two equations in (2.39). The following 3 critical points
are found:

« 042

(va):{(170)7(_170)7(_%71_?)}' (2'43)

The first two critical points are called non-proper, since Y = 0 means that the scalar field
assumes an infinite value in this solution. There’s no potential energy then, so these solutions
are also denoted as kinetic dominated solutions. The scale factor for these solutions is a
power-law : a(t) ~ t1/3. The third critical point corresponds to a true solution of Einstein’s
equations and is given by:

2 1 6 — 2a? 2
— It —1n(7), a(t) ~ t/o" 9.44
o=ttt (X 0 (2.44)
This solution only exists when the potential is not too steep (a? < 3) and when a? < 1, the
solution describes an accelerating universe.

A specific property of the last solution is that the kinetic energy scales as the potential
energy:

Ae®® ~ §% ~ 1

= (2.45)

This property is usually referred to as a scaling property and the solutions that obey such
a scaling relation are denoted as scaling solutions. Scaling solutions can be divided in three
classes, namely matter scaling solutions, curvature scaling solutions and scalar dominated
scaling solutions. Curvature scaling solutions have k # 0 and p, = 0, where p, denotes
the energy density of a possible extra barotropic fluid that is present in the model. Matter
scaling solutions are characterized by k& = 0 and p, # 0. For scalar dominated solutions,
both k£ and p, are zero.

In the literature, one can find many definitions for the scaling property. The definition
that we will adopt in this thesis is the most restrictive one and entails that the ratio of the
energy densities of different constituents remains constant during evolution. For a matter-
scaling solution, the energy density of the background barotropic fluid evolves in a constant
ratio with respect to the scalar field energy density. Scaling cosmologies have a scale factor
that is power-law: a(t) ~ t. We refer to [21, 22, 23] for more phenomenological issues
concerning scaling solutions.

Although we encountered scaling cosmologies here in the context of a model with one
scalar field, they also appear in models with multiple scalar fields. In chapter 4 of this
thesis, we will consider scaling solutions in models with more than one scalar field, where
the potential takes the form of a sum of exponentials. Such systems can generically be
obtained by performing a truncation of supergravity theories.
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2.2 Geometry

Geometry plays a crucial role in supergravity and string theory. In this section, we will
introduce the so-called special geometries, that will enter this thesis in chapter 2. This sec-
tion merely offers some necessary mathematical background; the precise way in which these
structures enter supergravity theories will be explained in the next section. We will first
start by recalling some notions of complex and Kéahler geometry. Next, we will give a small
review of special Kéhler, very special real and quaternionic-Kéhler geometry. We assume
some familiarity with notions of differential geometry, such as differentiable manifolds, met-
rics, connections and curvatures. We refer to [24, 25] for thorough treatments of differential
geometry.

2.2.1 Complex and Kahler geometry

Let us start by recalling the definition of a complex manifold.

2.2.1 Definition. M is a complex manifold if the following axioms hold:
1. M is a topological space.

2. M is equipped with a family of pairs {(Ua, ¢u)}, where {Uy} is a family of open sets
that cover M and ¢, is a homeomorphism from U, to an open subset U of C™.

3. Given U, and Ug such that Uy (Ug # 0, the map ¢ppa = dpo byt from ¢po(Us (N Up)
to ¢3(Un (Ug) is holomorphic.

A complex manifold is thus a space that locally looks like C™. The number n is called
the complex dimension of M and is also denoted by n = dimc M. Note that when one views
complex manifolds as real manifolds, they have real dimension 2n.

The notion of complex manifold can also be stated differently in terms of extra structure
defined on the manifold. A good introduction to this can be found in [24, 25, 26]. Suppose
that a 2n-dimensional manifold admits a globally defined (1, 1)-tensor J with local expression
JuYdz* ® 0, with the following property:

TV T,0 =~ (2.46)

The manifold is then called an almost complex manifold and J is called an almost complex
structure.

It turns out that complex manifolds are always almost complex. The reverse is not
necessarily true : not every almost complex manifold is also a complex manifold. In order
to determine whether an almost complex manifold is also complex, one defines the so-called
Nijenhuis tensor N, ”:

1
N = <0l = (= v). (2.47)

The following theorem holds:

2.2.1 Theorem. An almost complex manifold is a compler manifold if and only if the
Nijenhuis tensor of the associated almost complex structure vanishes.
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So, one can also say that a complex manifold is a 2n-dimensional real manifold that
is equipped with an almost complex structure whose Nijenhuis tensor vanishes. On an
arbitrary almost complex manifold, it is always possible to find complex coordinates {z°, 25}
(i=1,---,n) in a point p such that J assumes the following canonical form:

Ji =i, =67, I =J7=0. (2.48)

When the Nijenhuis tensor vanishes, it is possible to find such holomorphic coordinates in
an entire neighborhood around the point p. The transition functions relating coordinates in
overlapping patches are moreover holomorphic.

When the (almost) complex manifold is endowed with a metric h,,, one can construct
a new metric g,,, on the manifold in the following fashion:

1
Juv = §(hu1/ + JupJVUhpa) . (249)
This metric is positive definite if h is and it moreover satisfies the property
Juv = Ju° 1 9po - (2.50)

Depending on whether the manifold is almost complex or complex, a metric obeying the
property (2.50) is called an almost hermitian metric or a hermitian metric and the corre-
sponding manifold is called almost hermitian or hermitian. In terms of the holomorphic
coordinates, a hermitian metric takes a form in which the components that are pure in their
indices are zero:

ds® = gijdzidii, 9ij =955 =0. (2.51)
Note that if one defines

Kuw =900, (2.52)
the property (2.50) is equivalent to the antisymmetry of /C,,,:

Kuw=-K,.. (2.53)

One thus sees that on an (almost) hermitian manifold, a natural two-form can be defined
using the (almost) complex structure. This two-form K = 1K, dz" A dz” is called the
fundamental two-form.

For Riemannian manifolds, one can introduce a natural connection that is torsionless
and preserves the metric, namely the Levi-Civita connection. In a similar manner, one can
introduce a natural connection on hermitian manifolds, defined by imposing that it preserves
the metric and the complex structure. This does not uniquely determine the connection yet.
It leads to the conditions:

ko pk
Iy =T =0, (2.54)

together with the complex conjugates of these constraints. If one furthermore imposes that
the torsion is pure in its lower indices, the connection is uniquely determined and it is pure
in all its indices. Explicitly it is given by:

Y = gMig;. (2.55)

A Kahler manifold is a hermitian manifold that obeys an additional restriction:



2.2. Geometry 21

2.2.2 Definition. A hermitian manifold is said to be Kdhler if the fundamental two-form
K is closed:

dk =0. (2.56)

When dealing with Ké&hler manifolds, one often refers to the fundamental two-form as
the Kahler form. In the rest of this chapter, we will adopt a normalization for the K&hler
form such that in holomorphic coordinates it is given by:

i S
K= %gﬁdzl AdzZ. (2.57)
The closure of I has some interesting consequences. Indeed, if we write out the condition
(2.56) explicitly in terms of holomorphic indices, we get:

dK ~i8;9;5dz" A dz? A dZF + 059,527 Adzd A dZF. (2.58)
Both terms should be separately zero, implying that
019k = 0595, 0:9;1 = Orgji - (2.59)

From this, it follows that in local coordinate patches the hermitian metric can be expressed
in terms of a real function K = K(z, z), called the Kahler potential:

9i; = 0:0;K . (2.60)

On the overlap of two coordinate patches U, and Ug, the respective Kahler potentials K,
and K g are related by a Kéhler transformation:

Koy = K(p) + fap(2) + fap () - (2.61)

A second important property of Kéhler manifolds is that due to (2.59), the hermitian con-
nection (2.55) is symmetric in its lower indices and hence coincides with the Christoffel
connection. For Kéhler manifolds, one thus finds that the Levi-Civita connection also pre-
serves the complex structure.

This fact has implications for the holonomy group of Kéhler manifolds. The holonomy
group of a manifold is defined by using the notion of parallel transport of tangent vectors.
Suppose that the manifold M is endowed with an affine connection. Consider a point p € M.
Denoting the tangent space at p by T, M, we can parallel transport a vector X € T, M along
a closed loop ¢ going through p. The resulting vector X’ € T, M can be different from X,
hence parallel transport along closed loops generates an action on T, M. Upon parallel
transport of X along every possible loop, this action on 7, M defines a group, called the
holonomy group of the connection. It turns out that this holonomy group is generated
by the curvature tensor of the connection R,.,%(p), seen as a two-form. We will always
consider holonomy groups of the Levi-Civita connection. In that case, as the Levi-Civita
connection preserves the metric, the length of a tangent vector is not changed upon parallel
transport along a closed loop. For an m-dimensional Riemannian manifold, one thus sees
that the holonomy group should be contained in SO(n). For a Kahler manifold, the fact that
the Levi-Civita connection also preserves the complex structure, implies that the holonomy
group of a (complex) n-dimensional Kéhler manifold is contained in U(n).
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Kahler geometry occurs naturally in supergravity theories with 4 supercharges, as we
will see in an explicit example in the next section. The Kéahler manifolds that appear in
supergravity theories generically obey an extra condition, namely the Kéhler form should
be of even integer cohomology. By this, we mean that the integral over an arbitrary 2-cycle?
7 gives an even integer:

/ICWd:v“d:C” =2n, new. (2.62)
.

Kéhler manifolds obeying (2.62) are then called Hodge-Kéahler manifolds or Kéhler manifolds
of the restricted type.

2.2.2 Special Kahler geometry

There are many equivalent ways to define special Kéhler geometry. Moreover, one should
also make the distinction between rigid special Kahler geometry and local special K&hler
geometry, the former relevant for theories invariant under rigid supersymmetry, the latter
appearing in supergravity. As we will be mainly concerned with supergravity theories, we
will only discuss local special geometry here. An excellent review on special Kéahler geometry
can be found in [27].

We will adopt the following definition for special Kéhler manifolds:

2.2.3 Definition. A special Kdhler manifold is an n-dimensional Hodge-Kdhler manifold
M, with the following properties:

1. On every coordinate chart there exist complex projective coordinate functions Z1(z),
I=0,---,n and a holomorphic function F(Z!) that is homogeneous of second degree,
such that the Kdhler potential is

K(z,2) = —log {iZI%F(Z) - iZI%F(Z)} . (2.63)

2. On overlaps of charts U, and Ug, the corresponding functions of property 1 are con-
nected by transition functions of the form:

4 ) fap(2) ( z )
= el Mg , (2.64)
( or () oF (8)

where fop is holomorphic and Myg € Sp(2n + 2,R).

3. On overlaps of three charts, the transition functions of property 2 satisfy the cocycle

conditions:
efocﬁ‘efﬁ"yef'ya J— 1 ,
MogMg Mo = 1. (2.65)

3 An m-cycle is an m-dimensional submanifold that has no boundary and is itself not the boundary of an
m + 1-dimensional submanifold.
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Note that, using (2.64), the Kéhler potentials in overlaps of charts are indeed related by
a Kahler transformation:

Ky = K(g) = fap(2) = fap(2) - (2.66)

The holomorphic function F' is called the prepotential. The above definition clearly depends
on the existence of such a prepotential. There exists a different definition of special K&hler
geometry, in which the prepotential is no longer explicitly present.

2.2.4 Definition. A special Kdhler manifold is an n-dimensional Hodge-Kdhler manifold
M, that is the base manifold of a Sp(2n + 2,R) x U(1) bundle. There should exist a holo-
morphic section v(z) such that the Kdhler potential is given by

K = —log[—i < v,v >]. (2.67)

We have denoted by < v,w > the symplectic inner product

<v,w>=v"Quw  with Q= ( g —011 > . (2.68)

On the overlap of two coordinate charts U, and Ug, the sections v(,) and v(g) are related by
transition functions of the form:

V(o) = ef‘"ﬂ(z)Maﬁ v(g) 5 (2.69)

where fop(2) is holomorphic and Myg € Sp(2n + 2,R). These transition functions should
satisfy the cocycle conditions. The section v should moreover satisfy:

<v,0v> = 0, (2.70)
<'DiU,DjU> = 0, (271)

where the Kdhler covariant derivative is defined as Dyv = 0;v + (0; K)v.

Instead of using the section v, in supergravity one often expresses everything in terms

of the section V = e%/2v. Introducing derivatives that are covariant with respect to (2.66)
and (2.69):
1 1
U, = DZ-VE(’?iV+§(8iK)V, DgVE&ZV—§(&Z-K)V,
_ _ 1 _ _ 1 _
U; = D;VE[}Z-V+§(Z}Z-K)V, DZVE&V—E(&K)V,

one can define:

- XI(sz) o fiIE'DiXI
V= ( Fr(z,2) > ’ Ui = ( hi;; = D; Fy ) : (2.72)

This allows one to introduce the following symmetric matrix:

Nig=(hy F)(F x7)7. (2.73)
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This so-called period matrix will play a special role in N' = 2 supergravity, as we will see
later on. Note that under symplectic transformations, the section V and the period matrix
N7; transform in the following fashion:

~ A B A B
vV - V:(C D)V, (c D)ESp(2n+2,R),
N — N=(C+DN)A+BN)". (2.74)

We have given two definitions for special Kahler geometry. They are however equivalent,
XI

P >, there always exists an Sp(2n + 2,R)
T

in the sense that, given a section V = (

I

I
holomorphic function F (X ), that is homogeneous of degree two:

- X -
transformation leading to a new section V = ( 7 > such that Fr is the derivative of a

. o - -
Fr=——F(X), (2.75)

We will come back to the importance of having two definitions when we discuss N = 2
supergravity in four dimensions in the next section.

2.2.3 Very special real geometry

Very special real manifolds are determined by a constant symmetric tensor Cryx. Consider
the n + 1-dimensional subspace of R"t! defined as

M ={y" e R"|C(y) = Crixy'y’y"™ > 0}, (2.76)

endowed with the following metric:
1
arj = —galaJlnC(y). (277)

The very special real manifold is then defined as the n-dimensional hypersurface C(y) = 1,
equipped with the metric induced from the embedding space M:

Guv = =3Crixy Yy’ . (2.78)

One can find coordinates ¢ on the manifold by looking for a parametric solution of
Crixh!(9)h” (¢)h*(¢) = 1. We have used y’, to denote the ordinary derivative of y’
with respect to ¢". For later purposes, we define the object

Nis = arslow=1 = —2C1ixy™ + 3yrys yr = Crixy’y"™ . (2.79)

We will come back later to the role played by very special real geometry and the definition
(2.79) in supergravity.
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2.2.4 Quaternionic-Kéahler geometry

The last type of geometry that will play a prominent role in this thesis is quaternionic-Kéhler
geometry. We will now review the definition of quaternionic-Ké&hler manifolds, as well as
some important properties.

Let us start by giving the definition of a quaternionic-Kéhler manifold.

2.2.5 Definition. A quaternionic-Kdhler manifold is a real 4n-dimensional manifold
(n > 1)*, with coordinates ¢*, X =1,--- ,4n and endowed with a metric gxy such that

1. there exists an almost quaternionic structure on it. This means that the manifold is
endowed with a triplet of (1,1)-tensors J®xY, a = 1,2,3 that satisfy the following
relation:

JoJP = 5P 4 2P, (2.80)

A manifold endowed with an almost quaternionic structure is also called an almost
quaternionic manifold.

2. the almost quaternionic structure is integrable, i.e., it is covariantly constant with
respect to the Levi-Ciwita connection T'xy? and a non-trivial SU(2)-connection wx®:

8XJ“yZ — FXYUJQUZ + FXUZJQYU + 2€aﬁ'waﬁJ'yyZ =0. (281)
3. the metric gxy 1is hermitian with respect to the three almost complex structures J<:
gxy =Jx7JvYgzu . (2.82)
Note that one does not sum over « in the above equation.

The fact that the SU(2)-connection in the second statement of the above definition is
non-trivial means that the SU(2)-curvature tensor

Rxy® = 20 xwy)* + 26 wxPuwy ™, (2.83)

is non-vanishing. When this curvature is vanishing, the manifold is called hyperkéhler. Hy-
perkahler geometry is relevant to rigid supersymmetry, while quaternionic-Kéahler geometry
appears in supergravity theories.

In analogy with the construction of the Kahler 2-form in Kéhler geometry, one can define
three so-called hyperkahler 2-forms:

1
Ko = 5/cgzycqu AdgY Yy =J%x%gyz. (2.84)

In contrast to Kahler geometry, they are not closed but only covariantly closed with respect
to the SU(2)-connection one-form w® = wx“dg™:

dK® +2eP70P AKY = 0. (2.85)

4 For n = 1 there are some problems with this definition. In this case, one also has to impose that the Rie-
mann tensor is annihilated by the J, meaning that J*x Y Ryywz +J%v Y Rxvwz +J%w Y Rxyvvz +
J*2V Rxywyv = 0. This condition is automatically satisfied for n > 1.
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For Kahler geometry, the existence of a closed Kéhler 2-form implies that their holon-
omy group is contained in U(n) instead of in SO(2n). Similarly, also quaternionic-Kéhler
manifolds have a restricted holonomy group; in this case the holonomy group should be
contained in SU(2) x USp(2n).

It is then convenient to introduce a vielbein field fi' on the manifold having as flat’
indices a pair (i, A) consisting of one SU(2)-index ¢ = 1,2 and one USp(2n)-index A =

1,---,2n. This vielbein is related to the metric by:
gxy = & f{ei;Cas, (2.86)

where €;; = —¢;; and Cap = —Cpy4 are respectively the flat SU(2)- and USp(2n)-metrics.
This vielbein also satisfies a vielbein postulate, meaning that it is covariantly constant with
respect to the Levi-Civita connection, the SU(2)-connection wx® and a USp(2n)-connection
Axa®

Dx fi = ox fi —TxvZfi* + joiij;A +AxptfiP =0, (2.87)
where w in is defined in terms of wx® and the Pauli-matrices c® by

wx;' =i(0); ' wx®. (2.88)
Defining the USp(2n)-curvature tensor as follows:

Rxyp™ =20xAyvip” + 28 x(c1 Ayyp©, (2.89)

the vielbein postulate relates the Riemann tensor® to this USp(2n)-curvature and the SU(2)-
curvature:
nyUVf[ijAf‘j/B — iEikaya(UQ)kj(cAB + EinXYCB(CAC ) (290)

As the Riemann tensor generates the holonomy group, this equation explicitly tells us that
the holonomy group of the manifold is contained in SU(2) x USp(2n).

Finally, let us mention that for quaternionic-Ké&hler manifolds the SU(2)-curvature is
proportional to the hyperkédhler 2-form:

1
Rxy® = gung‘(y . (2.91)
In supergravity theories, the number v is determined by the gravitational coupling constant
K
_ .2
v=—kK". (2.92)

The Ricci tensor is moreover proportional to the metric; quaternionic-Kéhler manifolds are
thus Einstein spaces:

1
Rxy = ngyR, R:4n(n—|—2)l/. (2.93)

As v is negative in supergravity, the above equation implies that the quaternionic-Kéhler
manifolds relevant for supergravity have negative scalar curvature.

5 We have adopted the following definition for the Riemann tensor here : Rxyz"V = 28[X1"y]ZW +

2FV[XWFy]ZV. The Ricci tensor is then defined as Rxy = Rzxy 2.
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2.3 Supersymmetry, supergravity and target space ge-
ometry

A deep theorem due to Coleman and Mandula [28] investigates all symmetries of a relativis-
tic field theory that are compatible with having non-trivial scattering amplitudes. Their
result is that, when there are massive particles present in the theory, the symmetry algebra
consists of a direct product of the Poincaré algebra (containing translations P, and Lorentz
transformations M,;) with an algebra G consisting of internal symmetries®. They, how-
ever, only looked at symmetries that form a closed algebra under commutation relations.
When one also includes symmetry algebras that involve anti-commutation relations as well,
more general possibilities occur as symmetries of the S-matrix, as was shown by Haag,
Lopuszaniski and Sohnius [29]. Such symmetry algebras are called superalgebras and its
generators can be either bosonic or fermionic. The bosonic part of the algebra still consists
of a direct product of the Poincaré algebra and internal symmetries”. The fermionic gen-
erators are called supercharges; they commute with the translations and they form spinor
representations of the Lorentz group. The symmetry transformations generated by these
supercharges change the spin or helicity of the state on which they are acting, as opposed to
the bosonic symmetries. In a quantum theory, one can consequently split the Hilbert space
in a part consisting of bosonic states and a part consisting of fermionic states, where the
supersymmetry generators ) act as:

Q|boson >= |fermion >, Q|fermion >= |boson > . (2.94)

Note that due to the fact that translations commute with the supercharges, bosonic and
fermionic states that are related by supersymmetry have the same mass. In general, the
supersymmetry generators do not have to form an irreducible representation under the
Lorentz group. When they are reducible and decompose into A irreducible representations,
one has so-called AV -extended supersymmetry. Working in four dimensions, where one can
split spinors in left and right chirality, the fermionic generators can be written as:

. 1 X 1
Qla = 5(1 - 75)046@21 ) Qia = 5(1 + 75)066621'(3 ) (295)

where « is a spinor index and 4 is an index running from 1 to A/, denoting the different
irreducible representations under the Lorentz group. Note that we have denoted the chirality
of the fermionic generators by the position of the i-index. Let us for definiteness list the non-

6 When the theory only contains massless particles, the possible algebras consist of a direct product of the
conformal algebra and an algebra G of internal symmetries.

7 As in the Coleman-Mandula theorem, when only massless fields are present, the Poincaré algebra can be
generalized to the algebra of conformal transformations.
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zero commutators of the superalgebra of A-extended supersymmetry in four dimensions:

[Map, Mea] = Nae Mayp — e Maja » [Pas Moc] = napPey

(Man, @) =~ (@

U9, Q4] = dEQL — 301Q5. U(1),Qk) = —5Qh,

U, U] =8y — 8lUit,

{Q4:Qpj}t = (1"C™apPud; - (2.96)

The first line gives the commutation relations of the Poincaré algebra, consisting of trans-
lations P, and Lorentz generators M,,. The second line indicates how the supersymmetry
generators Qfl transform in a spinor representation of the Lorentz group. It is furthermore
also possible that they transform non-trivially under some part of the internal symme-
tries. These internal symmetries that rotate the supersymmetry generators constitute the
R-symmetry group. It can be shown that for A-extended supersymmetry, the R-symmetry
is given by U(N) &, which we have written above as SU(N) x U(1), generated by respectively
U7 and U(1). The third line then indicates how the R-symmetry acts on the supersymmetry
generators, while the fourth line shows how the U7 close an SU(N)-algebra. The last anti-
commutator can be seen as the defining relation of supersymmetry, namely the fact that the
anticommutator of 2 supersymmetries gives a translation. From this, it follows for instance
that, when translations constitute an invertible operation, supersymmetric theories exhibit
an equal number of bosonic and fermionic degrees of freedom. This relation also makes clear
that theories invariant under local supersymmetry transformations, should be invariant un-
der local translations (diffeomorphisms) as well and hence incorporate gravity. Theories that
are invariant under local supersymmetry are correspondingly called supergravity theories.

Note that there is a bound on the number of supercharges in theories invariant under
rigid or local supersymmetry. For theories with rigid supersymmetry, this bound is 16
supercharges, while for supergravity, the bound is 32 supercharges. When there are more
than 32 supercharges, the representations of the superalgebra generically contain states
with helicity higher than two, leading to inconsistent interactions. The possibilities for
supersymmetric theories can then be scanned for all space-time dimensions, by combining
this bound on the number of supercharges with the dimension of the minimal spinor in the
case under consideration. One finds for instance that in space-time dimensions twelve® or
higher there are no supergravity theories, since the dimension of a minimal spinor is 64.
In 4 dimensions, the minimal spinor has four components. One can thus have supergravity
theories for values of N up to 8. Later on, we will be specifically interested in theories with
8 and 32 supercharges, i.e., N'= 2 and N/ = 8 supergravity.

In field theories, one is interested in a realization of the supersymmetry algebra (2.96) on
fields. A set of fields that transform into each other according to an irreducible representation
of the superalgebra is then called a (super)multiplet. When one considers supergravity, there
is always a gravity multiplet present in the theory. This gravity multiplet contains a spin-2

8 This conclusion holds in four dimensions. In other dimensions, different R-symmetry groups can occur,
depending on the reality conditions that are obeyed by the fermions.

9 We only consider 1 time-like direction here. When one has two time-like directions, the dimension of a
minimal spinor is 32.
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graviton, as well as A spin-3/2 superpartners, that are called gravitini. The gravity multiplet
can furthermore also contain additional bosonic and fermionic fields, depending on the space-
time dimension and number N one is considering. For theories with 32 supercharges, this
is the only multiplet that occurs. When the number of supercharges is 16 or lower, other
(possibly different) supermultiplets can be coupled to the gravity multiplet. These are then
denoted as matter multiplets.

Supersymmetry and supergravity have an intimate connection with geometry. Super-
multiplets often contain scalar fields. The kinetic terms of these scalar fields generically
assume the form of a non-linear sigma model:

1
Skin = —3 /d4$ 9xv(9)0.0%0"¢" . (2.97)

The scalars ¢~ are then interpreted as maps from space-time to a manifold M, called the
target space, that is equipped with a metric gxy(q). The scalars can thus be seen as
coordinates on M. Supersymmetry leads to restrictions on these target spaces. In order
to see how this works, we give the following result of [30]. Consider the following action in
2 dimensions, for scalar fields ¢* and fermion fields X, X =1,--- , n:

S = —%/ A’z (gXY(Q)aaaran + 9xv (P Datp” + %vayw(wxwy)(wvww)) '

(2.98)

The covariant derivative D, on the fermions is defined using the Levi-Civita connection T'ss ,
in the following way:

Da1/}X = 8a¢X + Fgf(zaaqydjz ) (299)

while Rxvyw denotes the Riemann curvature tensor. Note that the action for the scalars
takes the form (2.97). The action (2.98) is invariant under the following supersymmetry
transformations:

s¢* = @,
% = =P e =T (@Y 2. (2.100)

The action is also invariant under coordinate reparametrizations ¢ — ¢’X(q). Under these

reparametrizations, the fermions transform as vectors : /X = %d}y. These diffeomor-
phisms moreover also commute with the supersymmetry transformations, due to the presence
of the second term in the above transformation of 1)~ .

At this point, the only restriction imposed on the manifold M is that it is Riemannian,
namely that it is equipped with a positive definite metric gxy. The question asked in [30] is
whether the action (2.98) admits additional supersymmetry invariances than the ones stated
in (2.100). Possible extra supersymmetries can be parametrized using a general ansatz:

5qX = JYXEwY )
p* = —IyXP¢ e — Y@ W7 — VL (@ Y )vath? — Py (evseY )vse?
(2.101)
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where I, J, S,V and P denote tensors on the target space M. Invariance of the action (2.98)
then imposes the following constraints:

gxz v =gvzIx?, VzJx¥ =0, W, =P, =0,

Sy =Ty vV, JIx?1z" =%, (2.102)

where V7 denotes the covariant derivative with respect to the Levi-Civita connection. The
two fermionic invariances (2.100) and (2.101) should also satisfy an A/ = 2 superalgebra.
Introducing

J;?)Y _ 5)12 , J‘g(l)Y _ Jqu (2103)
this leads to:
J@ gO=1 4 ) jla)=1 — 95eb = 4 p =0, 1. (2.104)

Taking the values a = 0,b = 1 for the indices, we learn from this equation that J(1) =
—JMW=1 implying:

Ix%JzY = —6%. (2.105)

The action (2.98) thus allows for an extra supersymmetry if and only if the manifold M
is equipped with a tensor JxY such that (2.105) holds. In other words, the manifold is
equipped with an almost complex structure. The metric on the manifold is furthermore
hermitian with respect to this almost complex structure:

gxyJu Y =guv . (2.106)

One thus finds that M is an almost hermitian manifold. As the almost complex structure
JxY is covariantly constant with respect to the Levi-Civita connection, one also finds that
the Nijenhuis tensor of JxY vanishes and that the Kihler form on M is closed. One
eventually concludes that requiring that (2.98) admits 4 supercharges implies that the target
space M is a complex Kéhler manifold.

Although the above analysis was performed in 2 dimensions, one can obtain similar
conclusions in 4 dimensions. Indeed, four-dimensional N/ = 1 supersymmetric models are
invariant under 4 supercharges and the scalars in these models generically span a Kéahler ma-
nifold. From this example, we can thus conclude that supersymmetry often puts restrictions
on the geometries spanned by scalars in a theory.

2.4 An overview of supergravity theories

In this section, we will give a short overview of the different supergravity theories that will
be used in this thesis. We will first look at theories in 5 and 4 dimensions that are invariant
under eight supercharges, putting emphasis on the special geometries that appear as target
spaces in these theories. We will also indicate how dimensional reduction leads to addi-
tional relations between these special geometries. Finally, we will discuss some supergravity
theories that are maximally supersymmetric, namely type II theories in 10 dimensions and
gauged N = 8 supergravity in four dimensions.
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2.4.1 Supergravity with eight supercharges
N = 2 supergravities in five dimensions

In five-dimensional supergravity with 8 supercharges, the gravity multiplet consists of the
finfbein e, 2 gravitini wz and one vector field A,. There are furthermore 2 kinds of mat-
ter multiplets possible!?, namely vector multiplets and hypermultiplets. A vector multiplet
consists of one vector, two spin 1/2-fermions that obey symplectic Majorana reality condi-
tions and one real scalar. The field content of a hypermultiplet is given by four real scalars
and two symplectic Majorana fermions. The bosonic part of the Lagrangian, describing the
coupling of the gravity multiplet to n vector multiplets and m hypermultiplets, is given by
[31]:

R 1 1 1
Lomsa = V795 — FNUFLFW — 200 (@)0,6°0°6" — Shyy (@)0,a* 0
1
—l—gC]JKE#VpUT.FPIW]:gUAf, (2107)

where the field strengths of the vectors are given by F, l{'l’ = 28[HA£}. The scalars of the vector

multiplets are denoted by ¢ (v = 1,---,n), while ¢¥ (X = 1,---,4m) denote the scalars
of the hypermultiplets. The index I runs from 0 to n. Indeed, the total number of vectors
in the theory is n + 1, with n vectors residing in the vector multiplets and 1 vector coming
from the gravity multiplet. The last term in (2.107) is called the Chern-Simons term. It is
determined by a constant, symmetric 3-tensor C7jx .

The kinetic terms of the scalars assume the form of a non-linear sigma model (2.97). In
the present case, it turns out that supersymmetry restricts this target space M to consist
of a direct product of 2 factors:

M=VSR® QK. (2.108)

The first factor VSR, describing the geometry of the vector multiplet scalars ¢, is a very
special real manifold, determined by the tensor Cryx. The second factor encodes the ma-
nifold spanned by the hypermultiplet scalars ¢* and corresponds to a quaternionic-Kihler
space. Note that the choice of a target space of the form (2.108) determines the bosonic La-
grangian (2.97). Once such a choice is made, the kinetic terms of the scalars can be written
in terms of the metric on the product manifold (2.108). The kinetic terms of the vectors are
determined by the object N7y, which for very special real geometry was defined in (2.79).
The choice of a very special real manifold also determines the Chern-Simons terms via the
tensor C7yi. This conclusion not only holds for the bosonic part of the Lagrangian, but
also for the fermionic part as well as for the supersymmetry transformation rules. They are
equally well described in terms of geometrical objects, such as curvature tensors, defined on
a very special real and a quaternionic-K&hler manifold.

N = 2 supergravity in four dimensions

In A = 2 supergravity in four dimensions, the gravity multiplet again consists of a vierbein
e%, 2 gravitini ¢, 97, that now obey Majorana conditions and one vector A,. Again, one

10 One can also introduce tensor multiplets. However for the theories discussed here, these are equivalent
to vector multiplets.
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can add vector or hypermultiplets as possible matter multiplets. The field content of the
hypermultiplets is the same as in 5 dimensions, with the fermions now obeying Majorana
conditions. We will again denote the scalars in the hypermultiplets by ¢X. A vector multiplet
now consists of one vector, 2 Majorana spinors and one complex scalar. The bosonic action
in this case is given by [32]:

R . = 1 1
Lbos,ad = \/—g(i — 9;0,2'0"7 — §hxy(q)3#qX3“qY + Z(ImNIJ)f,iu]:JW)
1 vpo
—g (ReN©1)e™ 7 F o
R -1 1
= —9(5 — 9;50,2'0"% — §hXY(q)5MqX8”qY + §Im(NIJ-7:JJ—7:+JHV)) '

(2.109)

We have denoted the field strengths of the vectors by F, ;iv' In the last line, we have introduced
the (anti-)self-dual field strengths:

1 ~ ~ i
+ o
P = 5P F0) s Fuw = =50mpe P (e =V=9). (2.110)
As in five dimensions, the index I on the vectors runs from 0 to n. The complex scalars of
the vector multiplets have been denoted by 2%, i=1,--- ,n.

As in the five-dimensional case, supersymmetry tells us that the target space of the
scalars has a direct product form:

M=SK® QK. (2.111)

The manifold SK describing the geometry of the scalars of the vector multiplets, is now a
special Kahler manifold, while the manifold QX spanned by the hypermultiplet scalars is
again a quaternionic-Kéhler manifold.

Similar to the situation in five dimensions, the full Lagrangian and supersymmetry trans-
formation rules are determined by geometrical quantities that can be defined on a special
Kahler manifold and a quaternionic-Kahler manifold. For instance, given a prepotential F,
one can reconstruct the special Kahler metric and period matrix A7 appearing in (2.109),
as well as other geometrical objects that determine couplings of fermion fields to other fields
in the theory. N = 2 supergravity was originally constructed in a formulation in which a
prepotential F' for the vector multiplet sector is present [32], however, in [33] theories were
found that could not be formulated using a prepotential. These models are constructed by
applying a duality transformation to a model with prepotential. In order to explain this
point, we note that in four dimensional supergravity theories a generalization of Maxwell
electric-magnetic dualities is possible. Consider the kinetic terms of the vector fields in
(2.109). Defining

Gl = 21% = Ny FHim, (2.112)
2%
the set of Bianchi identities and field equations (neglecting possible fermionic terms) can be
written as follows

MmF N = 0,

9,ImG"; = 0. (2.113)
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This set of equations is invariant under G ¢(2n + 2, R) transformations:

£+ + +
FV\os( 2= (4 BY (5T (2.114)
G+ Gy ¢ D Gy
Note that the G, are related to F,, as in (2.112). We will thus require that under a duality
transformation, the matrix Ny transforms to N7 such that

é;frl} :N[Jﬁ+J#U- (2115)

The matrix N is then related to the original one as in (2.74). Requiring that N is again
symmetric, one then finds that

A B
S= ( o ) € Sp(2n + 2, R). (2.116)

Note that these symplectic transformations in general do not leave the action invariant, they
merely constitute an invariance of the combined set of field equations and Bianchi identities.

Suppose now that we start from a formulation in terms of a prepotential F. One can
then perform a duality transformation. Supersymmetry implies that this transformation
also acts on the section V', such as to reproduce the transformation law (2.74). So under a
duality transformation:

X! . X! A B X!
V—<FI>—’V—<F,>—(OD><FI>- (2.117)
Although the F; one starts from are derivatives of F' with respect to X7, this is not neces-
sarily true anymore for the Fr;. In general, it is not possible to find a function F, such that
Fr = ;}; —. The two theories one obtains in this way have different actions and correspond
to dual formulations of the same theory.
This is the reason why we adopted two definitions for special Kéahler geometry. One

definition is very suitable in the case when one has a prepotential at hand, while the other
can also be used in more general setups.

Dimensional reduction and special geometry inclusions

In previous sections, we have described the different theories with 8 supercharges in 5 and
4 dimensions as well as the corresponding target space geometries. In this section, we will
explain how dimensional reduction gives a recipe to construct mappings from very special
real to special Kahler geometry and from special Kéhler to quaternionic-Kéahler geometry.
Let us first briefly explain how dimensional reduction is performed and then apply it to the
supergravity theories with 8 supercharges previously introduced.

Consider a massless complex scalar field ¢ in a space-time which is a direct product of
four-dimensional Minkowski space-time and a circle. Parametrizing Minkowski space-time
by coordinates x* and the circle by a coordinate z (where z is periodic with period 27 R),
one can expand ¢ as a Fourier series:

pla,z) =Y " g, (ah). (2.118)

n
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Using the fact that the five-dimensional d’Alembertian (s = [y 4+ 02, one sees that the five-
dimensional Klein-Gordon equation [5¢ = 0 leads to separate equations for the different
Fourier modes ¢,,:

n2

R2
Each of the Fourier modes can thus be interpreted as a four-dimensional field with a mass
given by (n/R)%. Choosing the radius R of the circle to be small, one sees that the modes
with n # 0 become highly massive and we can neglect them when we consider low energies.
At energy scales of order 1/R, the tower of massive modes becomes visible and space-time
appears five-dimensional again.

When other fields are present, one can play a similar game. Denoting higher-dimensional
coordinates as 2™, M = 1,---,D + 1, one can split them into a compact (space-like)
coordinate z and D non-compact coordinates xz*. The example given above shows that at
sufficiently low energies, one can take all fields to be independent of z, i.e., one only keeps
the zero-modes in their Fourier expansion. Consider now for instance the D + 1-dimensional
metric gpsn, where the dependence of z is now suppressed. The index M can now take the
values pt or z, leading to the following components : §,., §u- and ... From a D-dimensional
viewpoint, these look like a symmetric tensor, a vector and a scalar respectively. This shows
that the higher-dimensional metric decomposes in terms of lower-dimensional fields into a
metric g, a vector ALO) and a scalar ¢ respectively. Similarly, a D + 1-dimensional vector
field Ay, gives rise to a D-dimensional vector field A, and a scalar x.

Although we have shown this procedure for one compact coordinate, one can also consider
more general cases in which there are several compact directions, that span a manifold that
is often denoted as the internal manifold. In the simplest case, these internal manifolds
are tori, but more general possibilities can occur as well. Note that the procedure can in
general be more complicated than described above. One generic feature of compactifications
is the appearance of scalar fields in the lower-dimensional effective theory. These scalar fields
are often called moduli; they parametrize the size and shape of the internal manifold. The
simplest example of such a modulus is given by the scalar field that comes from the reduction
of the metric in a circle compactification as described above.

Let us now perform a simple toroidal reduction of the N' = 2 supergravity theories
of the previous section. It can be shown that for such reductions on tori, the number of
supersymmetries is not reduced in the process. This implies that one is led to a lower
dimensional theory that is again invariant under eight supersymmetries. Suppose we start
from N = 2 supergravity in five dimensions, coupled to n, vector multiplets. From the
reduction of the metric, one gets a four-dimensional metric, a vector field and a scalar. The
Ny 4 1 vectors in the theory reduce to n, + 1 vectors and n, + 1 scalars, while the n, scalars
that were already present in the vector multiplets give rise to n, four-dimensional scalars.
In total, the four-dimensional field content is given by a metric, n, + 2 vectors and 2n,, + 2
scalars. This is summarized in table 2.1.

So, one sees that the bosonic field content in four dimensions consists of the content of
the gravity multiplet and that of n, + 1 vector multiplets. Also at the level of the fermions,
this matching occurs. Indeed, the 2 spinors in one vector multiplet reduce to two spinors in
four dimensions. The two gravitini /%, give rise to two gravitini i, in four dimensions and
two extra fermions %, that sit in a four-dimensional vector multiplet.

Oy — —5n = 0. (2.119)
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5d 4d
spin-2 | spin-1 | spin-0
gMN Yuv A;(LO) ¢
Al A | X | 1=0,--m,
(bv (bv 'U:].,"',TLU

Table 2.1 In this table, we summarize the dimensional reduction of the bosonic fields of N' =
2, 5-dimensional supergravity to four dimensions. The first column shows the 5-dimensional
fields. The second, third and fourth columns show the fields that appear under dimensional
reduction, classified according to spin. The last column contains remarks concerning index
ranges.

The resulting theory in 4 dimensions is thus N' = 2 supergravity coupled to n, + 1
vector multiplets, implying that the four-dimensional action can be described in terms of
special Kéahler geometry. Indeed, it turns out that the dimensionally reduced action assumes
the form of (2.109) (without the kinetic term for the hypermultiplets), where the objects
pertaining to special geometry can be derived from the prepotential

B O[JKXIXJXK
=0
Similarly, one can reduce N' = 2 supergravity coupled to n, + 1 vector multiplets in four
dimensions to three dimensions. The four-dimensional metric again reduces to a metric in
three dimensions, a vector field and a scalar. The vector fields reduce to three-dimensional

vector fields and scalars. However, in three dimensions one can take into account that a
vector field Ay, is dual to a scalar ¢ via the usual Hodge duality:

Dip = €07 A (2.121)

F(X) (2.120)

where we have used indices 7, j, k to denote coordinates in three dimensions. The dimensional
reduction from four to three dimensions is summarized in the table 2.2.

4d 3d

guu Gij (P(O) o

Al et | ¢t A={0,1}
F 21

Table 2.2 This table summarizes how the bosonic fields in four dimensions reduce to three
dimensions. The first column shows the four-dimensional fields. The second column contains
the spin-2 three-dimensional fields. The third column contains three-dimensional spin-0
fields, coming from the dualization of a vector. The fourth column contains the other spin-0
fields. We have denoted four-dimensional fields using a tilde. Indices p are four-dimensional,
while indices 1, ) are three-dimensional.

One sees that in total one now has 4(n, + 2) scalar fields, corresponding to the bosonic
field content of n,+2 hypermultiplets. So, in three dimensions one ends up with supergravity
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with 8 supercharges coupled to n, + 2 hypermultiplets. As expected, the bosonic Lagrangian
consists of an Einstein-Hilbert term and a non-linear sigma model exhibiting quaternionic-
Kahler geometry.

In this way, dimensional reduction provides a mapping between very special real geom-
etry, special Kéhler geometry and quaternionic-Kéahler geometry. Performing dimensional
reduction from 5 to 4 dimensions leads to a mapping of the set of very special real ge-
ometries to a subset of all special Kéhler geometries. This map is called the r-map and
the special Kdhler geometries in its image are denoted as very special Ké&hler geometries.
The mapping between special Kahler geometry and quaternionic-Kéahler geometry that is
induced by reduction from 4 to 3 dimensions is denoted as the c-map and its image consists
of the special quaternionic-Kéhler geometries. Quaternionic-Kéahler geometries that are in
the image of the c o r-map are often called very special quaternionic-Kahler manifolds. This
is summarized in fig. 2.1.

very special real

very spemol
quo‘rermomc

Figure 2.1 Summary of the actions of the r- and c-map, relating the 3 different sorts of
geometries appearing in theories with 8 supercharges.

2.4.2 Eleven-dimensional supergravity and type II supergravities
in 10 dimensions

In eleven dimensions, the minimal spinor has 32 components. There is thus a unique su-
pergravity theory, that contains one massless supermultiplet, the gravity multiplet which
consists of the following on-shell degrees of freedom?!?

gun | Cunp | Ym
44 84 128 |

(2.122)

The corresponding supergravity theory was constructed in [34]. The bosonic part of the
Lagrangian is given by

1
Siia = dllx\/_[R - —GQ} ——_[aGranc, (2.123)
22, 241 1262,
11 'We will use latin indices m, n, p, - - - to denote curved coordinates in 10 dimensions, while in 11 dimensions,
we will use capital indices M, N, P,---. These theories are used in chapter 4, where this convention will

be appropriate. Flat indices in 10 dimensions will be denoted with underlined latin letters.
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where G = dC' and k17 denotes the 11-dimensional gravitational coupling constant.

In 10 dimensions, one has more possibilities to construct supergravity theories. Indeed,
the minimal spinor is Majorana-Weyl and has 16 real components. This means that minimal
N = 1 supergravity in 10 dimensions has 16 supercharges. One can also construct maximal
N = 2 theories. For these so-called type II theories, one has two possibilities : either the
two independent supersymmetries correspond to two Majorana-Weyl spinors with different
chirality (type ITA) or they constitute two Majorana-Weyl spinors with the same chirality
(type IIB). Again, there is only one massless multiplet in each case, namely the gravity
multiplet. In both cases, this multiplet contains the metric Gy,n, a two-form B(y) and a
scalar @ (called the dilaton). These fields constitute what is often called the common sector
or the NS-NS subsector. In type IIA, the bosonic sector of the gravity multiplet further
contains a one-form C(;) and a three-form gauge potential C3). In type IIB on the other
hand, the bosonic sector is completed with an extra scalar Cq), a two-form C(,) and a four-
form gauge potential C(4) satisfying a self-duality constraint. These extra form fields C(,,
are called R-R forms. In both cases, the fermionic sector consists of the gravitino v, and
a dilatino A. In the type ITA case, the spinors have different chirality and can be combined
in one Majorana spinor with 32 components. In type IIB, the spinors are doublets of two
spinors with the same chirality. Let us summarize the field content of type Il supergravities
by listing their fields and their on-shell degrees of freedom for type ITA:

Gmn | By |2 | C) | Cay | ¥m A
35 28 |1 8 56 | 56+56 | 8+8 | (2.124)
while for type IIB:
Gmn | Bea) |21 C0) | Oy | Ca) | ¥ A (2.125)
35 28 |1 1 28 35 | 56456 | 8+ 38

To write the supergravity actions, let us start by introducing the generalized R-R field-
strengths!?

Fay=dCw) , Fpy=dCu , Fg =dCpo) + CoHs) ,
F(4) = dC(g) -+ H(g) A C(l) , F(5) = dC(4) + H(g) A C(g) , (2.126)

where H(g) = dB(Q).
The type IIA supergravity action is the following:

1
2[{%0 /leI\/ —G{872q> [R + 4(8(1))2 — W(H(B))Q]
1 1

1
—ﬁ(F(g))z — W(F(4))2} — H%O /B(Q) A\ dC(3) A dO(g) R (2127)

Srra

whereas the type IIB supergravity action is given by:
1

2
2K

1
—Z(F\)?
5(F)

[ aav=a{e 2 [rr 400y - 5o () )

2.3l
1 1
- ﬁ(F@))Q - H(F@))Q}

12 We are using essentially the same conventions as in [35].

SiiB
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+ﬁ /dC(g) A Hgy A (0(4) + %B(g) A 0(2)) . (2.128)
10
In both actions, k19 denotes the gravitational coupling constant. In type IIB, one has to
supplement the action with a self-duality condition on F{5) that has to be imposed by hand
at the level of the equations of motion.
The supersymmetry transformations for both ITA and type IIB can be written in the
form

O0cm = Dme , 0= Acg (2.129)

where the supersymmetry parameter ¢ is a Majorana spinor for type IIA and a doublet of
Majorana-Weyl spinors of positive chirality for type IIB. It is useful to split the operators
D,, and A as follows:

Dy =DO 4+ W, , A=ANLAD (2.130)

In type ITA, we have

1
D(O) — vm + mHmonnpr(lo) N
1 1 1
Wpn = _geé(anpanF(lo) + Ianqunpqr)Fm )
1 1
1 m mn
A = §(r On® + 5 HoT Pr(w)) ,
1 3 mn 1 mn
A(2) — geé(EanF F(lO) - Ianqu pq) I (2]‘3]‘)
while in type IIB
1
0) — _— np
D = Ym + 4. 2'Hmon1 g3, .
W = et [Fnrn(m) + 5 Fapa L1015 Fopare TP (102)} T s
: . 3 !
1 - = m - mnp
AL = 2(r On® + 5 HT 03) :
1 1
AP = —§€q> [mem(iag) + ﬁanmenpgl} ) (2.132)

where V,, = O, + %Qmﬂl"np is the covariant derivative.

Note that supergravity in 11 dimensions and 10 dimensions are not unrelated. Upon
dimensional reduction, 11-dimensional supergravity leads to a non-chiral supergravity in
10 dimensions with 32 supercharges and hence gives the type IIA theory. Indeed, the 11-
dimensional metric gives upon reduction rise to the 10-dimensional metric, a vector field
that can be identified with C(;) and a scalar, namely the dilaton ®. The three-form in 11
dimensions leads to a three-form (when taking all indices in the non-compact directions) and
a two-form (when taking one index along the compact direction) in 10 dimensions. These
can be identified with C(3) and By respectively.

It turns out that also the type ITA and type IIB supergravity theories are not unrelated.
To see this, let us verify how their bosonic field content looks like upon dimensional reduction.
The reduction of type ITA gives rise to a metric, one three-form, two two-forms, 3 vector
fields and three scalar fields. In the type IIB case, one gets the 9-dimensional metric, two
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two-forms, 3 vector fields and 3 scalar fields from the reduction of the metric, Bs), ®, C(g)
and C(g). The reduction of the four-form requires some extra care because of its self-duality.
In principle, it gives rise to a four-form and a three-form. However, these two forms are
related by the self-duality constraint and one can eliminate one of the two. Usually, one then
eliminates the four-form. So, one can conclude that upon dimensional reduction both type
ITA and type IIB theories lead to the same spectrum in 9 dimensions. It is also possible to
show explicitly that the actions of the type ITA and IIB theories reduce to the same action,
describing maximal supergravity in 9 dimensions. As a consequence, it is possible to relate
the type ITA and IIB theories using the following rules:

- 1 ~ 1
=¢ — =InG Ggg = —

¢=¢ 2 Nlrgg , 99 Goo '

~ GmoGno — BmoBhng ~ 1

Gmﬁ = Gmﬁ - 9 G’rﬁ = = >
G99 ? Ggg

= BroGrg — GmoBno = Gmo

Bimn = Bmn — ) Big = ——
G99 ? Ggg

~(n n—1 — n—1

~(n n+1 =~(n

Cr(?n)...mn = ngﬁ:..).mn - nt[mlc‘(QIth.”mn] ) (2.133)

where the barred fields correspond to the transformed fields, the 9-direction denotes the
compact direction and m, 7, --- # 9. As these rules form the supergravity manifestation of
a stringy duality, that was called T-duality, they are often called T-duality rules.

2.4.3 Gauged maximal supergravity in four dimensions

Maximal (A = 8) supergravity in four dimensions can be obtained from 11-dimensional
supergravity by performing a dimensional reduction in which the compact coordinates are
coordinates on a seven-torus. This theory was originally constructed in [36]. As the theory
is maximally supersymmetric, only the gravity multiplet is present. Its field content consists
of the metric g,,, 28 vector fields Aﬁ with field strengths F;{w 70 scalars ¢, 8 gravitini
and 56 Majorana fermions, constituting 128 bosonic and 128 fermionic on-shell degrees of
freedom. The bosonic part of the Lagrangian is given by:

R 1 ; .1
Lomn—s = V73 ~ 505(0)0u6'0"¢ + (N1, FI)
1 vpo
—g(ReNU)s“ S (2.134)

The 70 scalars form a non-linear sigma model with metric g;;. This target space corresponds
to the non-compact symmetric coset space

Ery

Mscalar = SU(8) .

(2.135)
As before, N7; represents a scalar-dependent matrix, that can be calculated according to
a standard construction [37] that is valid for supergravity theories with symmetric target
spaces.
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The symmetry group of the kinetic term of the scalars in (2.134) corresponds to the
isometry group of (2.135) and is in this case given by Er(17). This E;17) however does
not lead to a symmetry of the full Lagrangian, but is only a symmetry of the combined
set of field equations and Bianchi identities. The action is only invariant under a subgroup
G C E7¢47). In fact, one can construct different actions of ungauged N' = 8 supergravity,
each having a different global invariance group G. These actions are however related via
electric-magnetic duality as discussed in section 2.4.1 and hence lead to the same set of
equations of motion and Bianchi identities.

In the most known case, described in [38], the invariance group of the action is given
by G = S¥(8,R). The 28 vector fields in the theory transform in the antisymmetric 28
representation of S¢(8,R) and one can use them to gauge a subgroup K C S¢(8,R), i.e., to
promote K from a global to a local invariance of the Lagrangian. This procedure basically
consists of replacing ordinary derivatives by derivatives that are gauge-covariant with respect
to K and by replacing ordinary abelian field strengths by non-abelian ones. The minimal
couplings one thus introduces however explicitly break supersymmetry. It turns out that
supersymmetry can be restored by adding parts to the supersymmetry transformations of
the fermions as well as extra terms to the Lagrangian. In this way, the gauging procedure
also introduces a potential for the scalars that is proportional to the square of the gauge
coupling constant. The first example of such a gauged A/ = 8 supergravity was given in [39],
where de Wit and Nicolai gauged an SO(8) subgroup of S#(8,R). Later on, starting from
this prime example more general gaugings were considered. It turns out that, when S £(8,R)
is the invariance group of the Lagrangian, the most general gaugings consist of the so-called
CSO(p, q,r)-gaugings, where p+q+r = 8 [40, 41, 42]*3. Denoting the 28 generators of these
CSO groups by Agy = —Apg, with a,b=1,---,8, they obey the following algebra:

[Aab7 Acd] = Aadnbc - Aacnbd - Abdnac + Abcnad 3 (2136)
where
1y O 0
Nab = 0 —Tgxq O : (2.137)
0 0 O0pxrr

Note that when ¢ = r = 0 the gauge algebra is the one of SO(8). When r = 0, the
corresponding gauge groups are the non-compact groups SO(p, q) with p + ¢ = 8. When
r # 0, the CSO(p,q,r) groups are not semi-simple and they can be obtained as group
contractions of SO(p + r, q).

Like ungauged N' = 8 supergravity, that can be obtained from higher dimensions by
performing dimensional reductions on tori, the CSO(p, g, r)-gaugings of the theory can also
be seen to have a higher-dimensional origin. In this case, the compact directions no longer
form a torus. The SO(8)-gauging for instance can be obtained by reducing 11-dimensional
supergravity on a seven-sphere S7 [44, 45, 46]. For general CSO-gaugings, the higher-
dimensional origin was found in [47]. In this case, the compactification manifold no longer
corresponds to a sphere and in fact no longer needs to be compact any more. We will come
back to these issues in chapter 4.

13 Other gaugings have been found later, starting from dual actions with different symmetry groups G, see
for instance [43]. For the rest of this thesis we only consider the CSO-gaugings.
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Due to the fact that gauged supergravities contain potentials for the various scalar fields
in the theory, one can wonder about their relevance for cosmology. Various investigations
have been performed that were aimed at finding stationary points of the scalar potential
in various gauged supergravities that lead to vacua with a positive cosmological constant
(see for instance [48, 49, 50, 51, 52, 53]). For the above described CSO-gaugings of A = 8
supergravity, a detailed study has been performed in [54]. It was found that de Sitter vacua
can be found for SO(p, ¢)-gaugings. The de Sitter vacua that are found in this way are
however never stable : they always correspond to saddle points of the potential. In chapter
4 of this thesis, we will perform a search for a different type of cosmological solutions in
the CSO-gauged supergravities. Instead of searching for de Sitter vacua, we will search for
scaling cosmologies, as described in section 2.1.4.






Chapter 3

Tits-Satake projections of
homogeneous special geometry

3.1 Introduction : cosmological solutions in ungauged
supergravity

The observation that the expansion of our universe is accelerating, invoked a renewed interest
in the study of cosmological solutions in supergravity and string theory. In order to gain
insight in the structure of time-dependent solutions of supergravity theories, the authors
of [55] first focused on ungauged maximal supergravity. More specifically, they focused
on time-dependent solutions of maximal ungauged supergravity in three dimensions. All
bosonic fields are then exhausted by the metric and scalars. Once one has found interesting
cosmological solutions, one can use the inverse process of dimensional reduction’® to interpret
these three-dimensional cosmologies in terms of higher-dimensional ones.

For maximal supergravity in 3 dimensions, the bosonic action takes the form of a non-
linear sigma model:

1 1 ) -

Laa = V=3 |3 Rl9) = 59:(6)0,6'0,67 " | . (3.1)
There are 128 scalars, so the index 4,5 = 1,---,128. The target space with metric g;;(¢) is
given by the symmetric coset manifold:

Es(s)
= . 3.2
M SO(16) (32)

In [55], a systematic search for solutions of the equations of motion of this theory is per-
formed, where the scalars depend only on time and the metric assumes the following form:

ds3p = —A%(t)dt* + B(t)(dr? + r2d¢?). (3.3)

1 The inverse process of dimensional reduction is also known as dimensional oxidation.
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One can show that, after choosing an appropriate time variable, the equations of motion for
the scalars reduce to the geodesic equations for the metric g;;(¢):

¢+ T’ 9" =0, (3.4)

where 1"; . denotes the Levi-Civita connection for the metric g;;(¢). Once one has obtained
a solution of (3.4), a solution for the metric can be found via the Einstein equations. The
problem of finding time-dependent solutions of maximal supergravity is thus reduced to the
problem of solving the geodesic equations in the target space manifold (3.2).

Using the solvable parametrization of the coset (3.2), an algorithm was constructed that
allows one to find the solutions of the geodesic equations (3.4). This algorithm not only
works for the coset (3.2), but holds more generally for non-linear sigma models coupled to
gravity, where the target space is a maximally non-compact coset space. These are coset
spaces G/H, where G is the split real form of a semi-simple Lie algebra and H is its maximal
compact subgroup. In [56], it was shown that for such non-linear sigma models the resulting
dynamical equations are indeed integrable and a complete set of solutions can be found.

The algorithm developed in [55] is rather specific for cosets that are maximally non-
compact. Such cosets appear generically in maximal supergravity theories, however for
phenomenological purposes one is more interested in non-maximal supergravity theories.
For these, it is no longer true that the target spaces appearing after reduction to three
dimensions are necessarily maximally non-compact cosets. When the target spaces are still
symmetric spaces, there exists a way of obtaining a large class of time-dependent solutions,
even when the coset is not maximally non-compact. This procedure is based on the so-called
Tits-Satake theory in mathematics [57] and was for instance illustrated in [5]. Essentially,
one performs a consistent truncation of the original sigma model such that the truncated
model corresponds to a sigma model on a maximally non-compact coset. One can then solve
the geodesic equations of the truncated model. Since the truncation is a consistent one, these
solutions are automatically solutions of the original theory. As was illustrated in a specific
example in [5], in this way one can obtain an interesting class of non-trivial time-dependent
solutions of non-maximal supergravity theories with symmetric target spaces.

This truncation procedure is known as the Tits-Satake projection of symmetric spaces
and can be seen as a mapping that projects non-maximally non-compact coset spaces to
maximally non-compact ones. The term ’projection’ is a good one, as it happens that in
general several different symmetric spaces project onto the same maximally non-compact
coset. This feature has led to the grouping of supergravity theories with symmetric target
spaces in universality classes. One universality class then consists of all supergravity theories
whose target spaces have the same Tits-Satake projection. This organization of theories
in classes is physically important since all theories in one class share a similar dynamical
behavior. Indeed, all theories in one class share a common set of solutions, namely the
solutions of the Tits-Satake projected model. These solutions do not represent the most
general solution of a specific member in one class; however it turns out that in a lot of cases
this Tits-Satake projection already captures some important part of the time evolution of
all theories in the same universality class.

Symmetric spaces only comprise a small fraction of the possible target spaces appearing
in supergravity theories. Indeed, the geometry of scalar manifolds is restricted by super-
symmetry and depends on the number of supercharges fig. For instance, when g > 12 the
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manifolds are necessarily symmetric spaces within certain classes (16 > o > 12) or just
completely fixed cosets for 32 > fig > 16. For 12 > #o > 8 however, the scalar manifolds are
not necessarily symmetric spaces. In fact, they don’t have to be homogeneous anymore. A
natural question is then whether the procedure of Tits-Satake projection can be extended
to a more general class of supergravity theories than just the ones that exhibit symmetric
target spaces. The aim of this chapter is to show that one can indeed extend the Tits-Satake
projection to a class of N' = 2 special geometries, namely the ones that are homogeneous,
but not necessarily symmetric. We will mainly focus on homogeneous quaternionic-Kéhler
manifolds, since these are the ones appearing in three-dimensional supergravity with 8 su-
percharges. For a lot of these spaces, the c- and r-maps can be inverted to obtain a higher-
dimensional origin in terms of very special real and special Kéhler manifolds. Although
special geometries are not necessarily homogeneous, a large and rich class of them is. These
homogeneous special geometries have all been classified and studied systematically [58, 59].
They describe a large class of supergravity models associated for instance with orbifold or
orientifold compactification of superstrings and also with a variety of brane constructions
[60, 61, 62]. They occur for instance in T? x K3 compactifications and in the large radius
limit of other Calabi-Yau compactifications. In this chapter, we will make clear that one
can still perform the Tits-Satake projection on these spaces. Hence, techniques that were
available in the study of time-dependent solutions of supergravity theories with symmetric
target spaces, can now be applied to this more general class of N' = 2 supergravities.

This chapter is organized as follows. In the next section, we will give a general discussion
on homogeneous special geometry. We will review the classification of these geometries as
done by [63, 64, 65]. We will describe in detail the structure of their solvable algebras.
Furthermore, we will also discuss the structure of their isometry algebras, as this will be
relevant later on in the construction. In section 3.3, we will show how the Tits-Satake
projection is done for symmetric spaces and we will illustrate this by means of an explicit
example. Using this discussion, we will then show in section 3.4 how one can extend this
projection to general homogeneous special geometries. Final results and applications will be
given in section 3.5. Among the applications, we will in particular discuss the organization
of supergravity theories in universality classes. Part of the material in this chapter heavily
relies on the theory of semi-simple Lie algebras and their real forms. A summary of some
relevant points on this is given in appendix A.

3.2 Homogeneous special geometry

In this section, we will review the classification of homogeneous quaternionic-Kéahler mani-
folds [63, 64, 65]. We will first review some important properties and theorems concerning
homogeneous quaternionic-Kéahler geometry, that allow one to classify these manifolds in
an algebraic way. This algebraic classification will then be presented in more detail. Fur-
thermore, we will also discuss the r- and c-maps in the context of homogeneous special
geometry. Finally, we will give a brief summary of the structure of the isometry groups of
these quaternionic-Kéhler spaces. Although this is a rather technical review, later sections
will heavily make use of the material presented here.
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3.2.1 Homogeneous quaternionic-Kéahler geometry and solvable al-
gebras

Homogeneous quaternionic-Kéhler manifolds correspond to coset spaces. They are thus of
the form G/H, where G is the isometry group of the manifold and H the isotropy group
that leaves a point in the space fixed. We will not require G to be a semi-simple group.
Furthermore, H is not necessarily a symmetric subgroup of G 2, so the space G/H is not
necessarily symmetric. We will furthermore only be interested in non-compact homogeneous
quaternionic-Kéhler manifolds, as these are the ones that are relevant for supergravity.

Alekseevsky conjectured that all non-compact homogeneous quaternionic-Kéhler spaces
are exhausted by the so-called normal quaternionic manifolds [63]. This means that these
spaces admit a completely solvable® Lie group of isometries that acts on the manifold in
a simply transitive manner?. The following theorem [63] then provides the main tool in
classifying normal quaternionic spaces:

3.2.1 Theorem. If a Riemannian manifold M, with metric g, admits a simply transitive
solvable group of isometries exp(Solvag), then it is metrically equivalent to this solvable
group manifold:

M =~ explSolvpm],
g |8€M = <>, (35)

where <,> s a Buclidean metric defined on the solvable Lie algebra Solv .

This theorem then implies that one can identify normal quaternionic-Kéhler spaces with
solvable group manifolds. These are generated by normal metric Lie algebras Solv g, i.e.,
completely solvable Lie algebras endowed with a Euclidean metric. The problem of clas-
sifying homogeneous quaternionic-Kéahler spaces then boils down to classifying the normal
metric algebras that generate them. In this way, one can translate the differential-geometric
problem of classifying homogeneous quaternionic-Ké&hler manifolds into an algebraic prob-
lem. All notions of differential geometry of these spaces can be rephrased in an algebraic
language. The metric g is translated to the Euclidean metric <,> on Solv. The Levi-
Civita connection on the manifold is equally well converted to the Nomizu operator which
is defined as follows:

L : Solvag x Solvas — Solvag : (X,Y) — LxY, (3.6)
VX,Y,Z €Solvp : 2 <LxY,Z >=< [X,Y],Z>-< X,[V,Z] >—-<Y,[X,Z] > .

Using the Nomizu operator, one can define the Riemann curvature operator Riem, that is
the translation of the usual Riemann tensor:

Riem(X, Y) = [Lx,Ly] — L[)Qy] , X,Y € Solv - (37)

2 H is a symmetric subgroup of G if in the orthogonal decomposition G = H & K, their corresponding Lie
algebras obey [H,K] C K and [K,K] C H.

3 A solvable Lie algebra Solv is completely solvable if the adjoint operation ad x for all generators X € Solv
has only real eigenvalues.

4 A group acts on a manifold in a simply transitive way if every two points in the manifold are connected
by one and only one group element.
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The holonomy algebra I' of Solv, is defined as the Lie algebra generated by the curvature
operator Riem and all of its commutators with Nomizu operators:

[Lxl,...,[ka,Riem(Xk+1,Xk+2)]...], X € SOlVM . (3.8)

This holonomy algebra can be shown to coincide with the Lie algebra of the holonomy group
of the manifold.

In order to generate quaternionic-Kahler manifolds, the solvable algebras under consid-
eration should also be equipped with a quaternionic structure. This quaternionic structure
corresponds to the linear Lie algebra ) generated by three operators J¢, acting on Solv g
and obeying (2.80). The solvable algebras that generate normal quaternionic-Kéhler mani-
folds are called quaternionic algebras and are defined as follows:

3.2.1 Definition. A normal metric Lie algebra is called quaternionic if there exists a qua-
ternionic structure Q on it, such that the holonomy algebra T is contained in the algebra of
SU(2) x USp(2n).

This is the algebraic counterpart of the fact that the holonomy group of quaternionic-
Kéhler manifolds is contained in SU(2) x USp(2n). The Riemann tensor splits up in a part
corresponding to an SU(2)-curvature R* and a USp(2n)-curvature R:

Riem(X,Y) = R*(X,Y) J* + R(X,Y). (3.9)

This equation is the algebraic equivalent of (2.90). The statement (2.91) in the definition of a
quaternionic-K&hler manifold that the SU(2)-curvature should be proportional to the hyper-
Kahler 2-forms induced by the three complex structures J'23, is then given in algebraic
terms as:

RUX,)Y)=—3v < J*X,)Y > . (3.10)

The complex structures J< should also satisfy integrability conditions, expressed in terms
of the Nijenhuis tensor [63].

We will now review the classification of normal quaternionic metric Lie algebras. We
will just state the results without proofs, putting emphasis on the precise structure of these
solvable algebras as this will be relevant later on.

3.2.2 The classification of homogeneous quaternionic-Kahler man-
ifolds

The first step in the classification consists in showing that due to the complete solvability of
Solvag and the structure equation (3.9) any normal quaternionic algebra contains a subal-
gebra of quaternionic dimension 1, called the canonical quaternionic subalgebra E. One can
moreover show that E can be only one of two possibilities that we will denote for now as
E =Solv(SU(2,1)) or E = Solv(USp(2,2)). This already leads to two different possibilities.

1. E = Solv(USp(2,2)) : One can show that for any quaternionic dimension n there is a
unique normal quaternionic Lie algebra Solvg admitting Solv(USp(2,2)) as canonical
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quaternionic subalgebra. The corresponding quaternionic manifolds are the following
symmetric spaces:

USp(2,2n)
USp(2) x USp(2n)

exp Solvg ~ (3.11)

They are more commonly known as the hyperbolic spaces.

. E =Solv(SU(2,1)) : In this case, the corresponding normal quaternionic algebras

Solvg have the following structure:

Solvg =U + U,
[U,U] cU, [U, U] cu, [U U] cu. (3.12)

The subalgebra U C Solvg is stable with respect to the action of the complex struc-
ture J': J'U = U. One can show that U is a solvable algebra, that generates a
homogeneous Kéhler manifold. Such an algebra is called a Kéahler algebra and one
often calls U the principal K&hler algebra. The subspace U is related to U by the
action of a second complex structure J2: U=J2U. The representation Ty : U—U,
induced by the adjoint action of U, is called a @-representation as it has to satisfy
certain non-trivial conditions. The most important condition is that Ty is symplectic
with respect to a suitable form J expressed in terms of J!. The structure of U can be
represented as follows:

Ui, U=F+X, (3.13)

where U7 are called elementary Kahler subalgebras while r is equal to the dimension
of a Cartan subalgebra of Solvg, i.e., the rank of Solvg. The two-dimensional sub-
algebras F are so-called key algebras. In general, a key algebra F' can be described
in terms of an orthonormal basis {h, g}, where g = J* h. The commutation relation
between the basis elements is [h, g] = ug. The number p is called the root of the key
algebra; from the requirement that Ty is a Q-representation, it follows that it can
only take the values (1, f f) defining the type I, type II and type III key alge-

bras, respectively. Any key algebra generates a space S%((ll U An elementary Kahler

subalgebra F + X ° is then defined by the following commutation relations:

I
[h,g]l =g, [h,af]:?:, l9,2] =0, [,y =p < J'zy>g, (3.14)

x,y being elements of X. The collection of r generators h; of the Fr generate the
Cartan subalgebra of Solvg.

The canonical quaternionic subalgebra has the structure E = Fy + J2 Fy, where Fy is
a key algebra of type I, which is stable under the action of the complex structure J!.

5 An elementary Kihler algebra, is of type I, II or III, when its key algebra is of type I, IT or III.
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The intersection of U with F is given by Fp, so the structure of U can alternatively
be specified as

r—1

U= Fy+ Solvsg , Solvgx = Z Fi+X;. (3.15)

=1

The second term, denoted as Solvgy, is called the special Kéahler subalgebra. It is a
normal Kéhler subalgebra of rank r — 1.

It turns out that the possible ranks of normal quaternionic algebras range from 1 to 4.
All spaces with F = Solv(USp(2,2)) have rank 1, while the spaces with E = Solv(SU(2,1))
have ranks from 1 to 4. We now give an overview of these algebras according to their rank.
For later convenience, we will also indicate the weights® of the different generators, with
respect to the Cartan subalgebra of Solvg. These can for instance be found in [63, 64, 66].

Rank 1. For the rank 1 spaces, two important classes can be distinguished, according
to whether the canonical quaternionic subalgebra is Solv(USp(2, 2)) or Solv(SU(2, 1)).
The algebras with Solv(USp(2, 2)) as canonical quaternionic subalgebra will be denoted
as Solvg(—3, P), where P > 0. They are the only spaces with Solv(USp(2,2)) as
canonical subalgebra and they are given explicitly by the following symmetric spaces:

USp(2P +2,2)

exp [Solvg (=3, P)] ~ TSp2P 12 < SU@) (3.16)

When P = 0, their solvable algebra consists of four generators : one Cartan generator
and three generators of weight 1. This weight then corresponds to a positive root
of SU(1,1). For P > 0, the weight structure is different; in that case, there is an
additional set of 4 P generators with weight % In this case, the full set of weights
of the solvable algebra does not represent a positive root system of a Lie algebra of
simple type.

When the canonical quaternionic subalgebra is Solv(SU(2, 1)), there’s one correspond-
ing manifold of rank 1 that can be described according to the scheme of (3.12) and
(3.15). The corresponding homogeneous space has Solvsx = 0 and can be obtained
as the reduction of pure N/ = 2 supergravity in four dimensions to three dimensions.
We will denote this space by SG4. It is given by the symmetric space %
The solvable algebra consists of one Cartan generator hg, while there are two distinct
weights associated to two spaces go and ¢:

(7o :(0) go: (1) q:(3)] (3.17)

The weight space gg is one-dimensional, whereas ¢ is two-dimensional.

Rank 2. In this case, there are two distinct possibilities. The first is given by Solvgx = F,

where F' is a key algebra of type III. This corresponds to the quaternionic manifold

%, whose isometry algebra is maximally split. As this case is obtained by

6 By weights (or gradings) we mean here the eigenvalues of the different generators under the adjoint action
of the Cartan subalgebra. So, the weights can be seen as the roots of the solvable algebra.
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dimensional reduction of 5-dimensional pure N' = 2 supergravity to three dimensions,
we will denote it by SGs. The solvable algebra that generates this space has two
Cartan generators (hg, h1) and the weights are summarized in the following scheme:

h'O : (030) go : (170) qo : (1a_ﬁ) Dbo - (Lﬁ)
1 V3 V3 (3.18)
hi : (070) g1 - (07%) q1 : (17_7) p1 ot (177)

Note that all weight spaces in the above diagram are one-dimensional.

The second possibility is represented by the series % .

terized by the following special Kéhler subalgebra:

They are charac-

Solveg = F+Y, (319)

where F' is a key algebra of type I. The corresponding algebras will be denoted by
Solvg(—2, P) and they are more explicitly characterized by the following weights:

(3:—-3) 2:(3:3)
)

These weights are associated to six different subsets of generators, two of which, namely
go and g; are one-dimensional. The spaces ¢ and p are two-dimensional while the
dimension of the spaces Y and Y depends on the value of the parameter P:

)

0,

N

)

N
~ ol
N

(3.20)

~'S

q:
Y :

—~
=)

—
No[—=

)

SIS

dimY =dimY =2P. (3.21)
For the case of Solvg(—2,0), the spaces Y and Y are absent and the set of weights
gives a positive root system of SO(3,2), whereas the full set of weights (3.20) does not
have a simple Lie algebra description for P # 0.

Rank 3. The special Kahler subalgebra of the quaternionic algebras of rank 3 is a sum of

two elementary Kéhler algebras of types I and II, respectively, where the second one
has no X-part. It is convenient to rename X; =Y

Solvsk = (Fl + Y) + Fy, (322)

The space Y forms a symplectic representation of the type II key algebra Fj, and
under this action it splits into two subspaces Y = YT +Y~, with Y~ = J' Y+, There
is a corresponding quaternionic algebra for every integer P > 0, that is denoted as
Solvg(—1, P). The algebra consists of 3 Cartan generators hg, b1 and h, while the
weights of the other generators are summarized in the following table:

R R T (X R TR e T e Ay
hi:(0,0,0) g1 :(0,1,0) o (-3 L) miGi-d)
h+:(0’070) g+:(0705%) q+ (%5%50) p+:(%a_%70)

. 1 1 - . 1 1 % (1 1 " — 1 1
YJF . (07§7ﬁ) Y . (0757_ﬂ) YJF . (5; 7ﬁ) Y (5,0,—ﬂ)
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The dimensions of the weight spaces of type Y are related to the parameter P in the
following way:

dmY*t =dimY~ =dimY* =dimY~ = P, (3.24)
while the other weight spaces are one-dimensional. We can distinguish two cases:

e Solvp(—1,0). In this case, there are no generators of type Y and the solvable

algebra corresponds to the solvable algebra that generates the symmetric coset
SO(3,4)
SO(3)xS0@)
e Solvg(—1,P) with P # 0. These algebras are not related to any simple Lie
algebra. The corresponding quaternionic spaces are not symmetric.

Rank 4. For the rank 4 quaternionic algebras, the subalgebra U has the following structure:

U = F0+SOIVSK:F0+(F1+X1)+(FQ+X2)+F3,
[FfaFJ] = 07 I7J:07172737
1 .
Fro= Ahrgr}s [he gl =grs iy Xi] = 5Xi, 7 =123 (3.25)

It is convenient to set Xo = X and X1 =Y + Z, where [F3,Y] = 0 and [Fy, Z] = Z.
Decomposing the spaces X, Y into eigenspaces with respect to the adjoint action of hg

and the space Z in eigenspaces with respect to hq, the corresponding eigenspaces are
denoted as X1+ and X~ = J' X1, etc.

The gradings of the generators with respect to the Cartan subalgebra (hg, h1, ha, h3)
are summarized in the following table [61, 63]:

(0 0 0 0) go : (1707070) qo - (%7_%7:%{_%) Po - (%7%7%71%) L
:(0,0,0,0) g1 :(0,1,0,0) qi - (?7:57?7?) b1t (?7571—?7—?)
+(0,0,0,0) g2 : (0,0,1,0) @ (53:733) P2 (35733 73)
(O O O ) g3 - (0707071) q~3 : (%a%a%a_%) p~3 : (%a_%a_%vé)

: (0,0,%,%) X~ :(0,0,3,—3) XT:(3,1,00) X~ :(3,-3,0,0)

O SR (O 4 S0 R S e

720450 270440 75 dood) 7 Goo-d
(3.26)

The corresponding solvable algebras will be denoted by Solvg (g, P, P). The numbers
q, P and P are related to the dimensions of the subspaces of type X, Y and Z. The
parameter ¢ gives the dimension of the spaces” of type X:

g=dimX. (3.27)

As will be made more explicit later on, the spaces Y+ J ZT form a real representation
of the Clifford algebra in g+ 1 dimensions with positive signature. A similar result holds
for the other spaces of types Y, Z. This representation can in general be reducible.

7 Here and below, dim X = dim X+ = dim X~ = dim X+ =dim X’, and similar for Y and Z.
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When ¢ # 0 mod 4 however, there exists only one irreducible representation of this
Clifford algebra. The representation formed by the spaces Y |JZ is thus uniquely
specified once the number of irreducible representations that constitute it is given. This
number is denoted by P. When ¢ = 0 mod 4, there exist 2 inequivalent representations
of the Clifford algebra and one needs 2 numbers, P and P to indicate the representation
content of the representation formed by Y | J Z. The numbers P and P are thus related
to the dimension of the union of spaces of type Y and Z:

. dimY +dimZ
g#0 - (p+p):u7 dimY = dim Z,

Dy
¢g=0 : P=dimY, P=dimZ, (3.28)

where D,y is the dimension of the irreducible representations of the Clifford algebra in
g+ 1 dimensions with positive signature. Information concerning real Clifford algebras
and their representations can be found in appendix B. In general, the dimension of
these manifolds is related to the parameters (g, P, P) in the following way:

dim Solvg(q, P, P) = 4(n + 1), n=34+q+ P+ P)Dy1. (3.29)

All quaternionic solvable algebras of rank 4 necessarily have the subset of generators
(h1,91,q1,p1), where I = 0,1,2,3, and can have some or all of the three spaces of
types X, Y, Z. We can thus distinguish the following particular cases:

e Solvp(0,0,0) = Solv(SO(4,4)), where the spaces X,Y,Z are all absent. The
weights of the generators (hy, gr,qr, pr) in (3.26) correspond to the positive root

system of SO(4,4). The corresponding space is %.

e Solvg(P,0,0) = Solvg (0, P,0) = Solvg(0,0, P) = Solv(SO(4, 4+ P)), where only
one of the types of spaces X, Y or Z is present. The set of weights of the
generators involved in this case (for example (hr, g7, qr1,p1, Y ¥, f/i)) corresponds
to the positive root system of the simple Lie algebra SO(4,5). These solvable

algebras generate the symmetric spaces %.

e Solvg(0,P,P), PP # 0. Note that the set of weights in this case does not

correspond to any positive root system of the simple type. These algebras lead
to quaternionic spaces that are non-symmetric.

e Solvg(g, P, P), P+ P > 0. In these cases all three spaces X,Y, Z are present and
the complete set of weights given in (3.26) closes the positive root system of the
Lie algebra F), whereas the full solvable algebra generically does not give rise to
a symmetric space.

After we have displayed the weight system of the quaternionic spaces of rank 4 in (3.26),
we can see that the other normal quaternionic spaces are truncations of this one (apart from
an exception for the case indicated as SGs).

In general, the non-generic cases can be obtained by deleting some rows of (3.26), and
restricting the weights consequently. The full list of rows is (0123XY Z). For ¢ = 0, (3.27)
already implies that the row X is absent. If P = 0, we also do not have the Z row, according
to (3.28), and for P = P = 0 neither the Y row. This exhausts the rank 4 cases.
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The table for rank 3, i.e., (3.23) can be obtained by deleting also one of the rows that
contain generators in the Cartan subalgebra. Keeping only hy = %(hg + h3), rather than
ho and hg, we have obtained weight vectors for the rank 3 spaces from the general ones in
(3.26). The rows Y and Z become identical when restricted to the weights under (hg, k1, h4)
such that we only have to keep one of them. For P = 0, this row is also absent.

For ¢ = —2, the rows 2 and 3 are absent. As such, the weight vectors have only two
components, which implies that some weights in (3.26) become identical, namely those of
go and ¢q1, of po and p1, of YT and Y~ and of Yt and Y ~. This leads to the reduced table
in (3.20). The Y generators are absent for P = 0.

The other rank 2 system is SG5, whose weight vectors are modified with respect to the
systems denoted generically as Solvg(g, P, P), as shown in (3.18). Only rows 0 and 1 occur,
but due to the modified weights, there is no degeneracy as was the case for Solvg(—2,0).

Finally, SG4 consists of only the 0 row, and as such only the first component of the root
vectors is relevant. Then ¢y and po are identical, and this leads to (3.17).

The equations (3.27) and (3.28), which were mentioned for rank 4, also have a general
validity, except of course for ¢ < 0. However, in that case the negative value indicates the
number of rows of (0123) that have to be deleted such that (3.29) is also generally valid.

3.2.3 Higher-dimensional origin of homogeneous special geometry

From the above construction, it is clear that there is a one-to-one correspondence between
the quaternionic algebra Solvg and its special Kéhler subalgebra Solvgk, at least in the
case when the canonical quaternionic subalgebra E is given by Solv(SU(2,1)) 8. This corre-
spondence is in fact the inverse of the c-map, discussed in section 2.4.1, which maps the 2n-
dimensional special Kahler manifold exp[Solvgk] to the 4(n + 1)-dimensional quaternionic-
Kéhler manifold exp[Solvg]. This formalism thus allows one to see how the special Kahler
subalgebra is enlarged to a quaternionic algebra, upon dimensional reduction from 4 to 3
dimensions. A similar discussion can be developed for the r-map, mapping the solvable al-
gebras that generate very special real manifolds to special Kéhler algebras. These relations
can more generally be summarized as in the table 3.1, representing first the generators of
the quaternionic algebra Solvg as in (3.26), but rotated over 90°. In this way, the different
rows are related by the action of the complex structures?. Furthermore, it indicates how the
algebras Solvgg and Solvg are embedded in Solvg. The inverse c- and r-map can then be
defined by deleting generators as indicated.

One can in fact also give a six-dimensional origin of a lot of the homogeneous quaternionic-
Kaéhler spaces. As was shown in [59, 67], all homogeneous quaternionic spaces of rank 3 and
4 can be obtained from a reduction of (1,0) supergravities in 6 dimensions over a three-torus.
These supergravities have an obligatory gravitational multiplet, consisting of the metric, an
anti-selfdual 2-form and two gravitini (gan, By, ¥ijar), where M = 0,...,5; i = 1,2.
Furthermore, three kinds of matter multiplets can be coupled, namely tensor multiplets,
vector multiplets and hypermultiplets. One tensor multiplet contains a self-dual 2-form, 2

8 The hyperbolic spaces generated by Solv(—3, P), where E = Solv(USp(2,2)) are not in the image of the
c-map.

9 The action of J! is really column by column in these tables, but applying J2? and hence also J on
generators of the lowest row leads to a linear combination of the generators in the row indicated by J2A,
resp. J3A.
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Table 3.1 Generators of the solvable algebras of special manifolds. The generators in dif-
ferent rows are related by complex structures as indicated in the last column. The three
tables indicate the generators of the quaternionic algebra Solvg, the c—dual Kdhlerian al-
gebra Solvgg and the real special algebra Solvg. The last line indicates the multiplicity of
any entry in the column, where the last two columns are merged to get to a common expres-
sion. If q is zero or negative, the X column is absent, and the negative number indicates the
number of columns to the left of it that are absent too, such that the general formula (3.29)
always holds.

Do |p1|p2|p3| X | YT Z- || —J3A=J%J'A
Q| ¢ |@|g|XT| YT Z+ J2A
Solvp =

vQ go|lgr1|g2|gs| X | Y™ 7~ JTA
ho | hi|ha | Rs | XT | YT zZ+ A
Solvsic = alg|lg | X | Y™ 7~ JTA
hi|ha|hs | XT| YT zZ+ A
SOlVR: X v 7= i
ha | h3 A

# [T]T1[1[1] q [(P+P)Dy|

spinor fields and a scalar (BIJ[{ N X' ®). A vector multiplet on the other hand consists of a
six-dimensional vector and two gaugini (A,r, A?). The hypermultiplets contain 4 scalar fields
and 2 spinor fields. Hypermultiplets are not relevant in our construction, since hyperscalars
already span a quaternionic space in six dimensions that does not become enlarged when
stepping down to d = 5,4, 3, so they cannot give rise to chains of manifolds connected with
r- and c-maps. The full theory is given in [68].

The total bosonic field content of the gravity-matter system of d = 6, (1, 0) supergravity,
excluding hypermultiplets is:

(grin, By n, ALy, 0%), I=1,....,n0+1, A=1,....ny, a=1,...,nr, (3.30)

where we included ny vector multiplets and np tensor multiplets. The np scalars parametrize
the symmetric space

o SO(TLT, 1)

MGd - W . (331)

The action of these theories contains a topological term [69, 70, 71] that describes cou-
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plings of tensor multiplets to vector multiplets:
Lcs :O[AEBI/\FA/\FE, (3.32)

where FA are the field strengths of the vectors. This generic form was already conjectured
in [72, 73] and was found in [74]. For specific values of the constant tensor Crays, these
theories give rise to the homogeneous quaternionic-Kahler manifolds of rank 3 and 4 in
three dimensions.

The parameters (¢, P, P) are then related to the number of tensor and vector multiplets
of d = 6 supergravity as follows:

nr=q+1, ny=(P+P)Dgy. (3.33)

3.2.4 Summary : the full classification of homogeneous special ge-
ometries

We can now summarize the two previous sections by giving the full classification of ho-
mogeneous quaternionic-K&hler manifolds, as well as their possible 4- and 5-dimensional
counterparts. So far, we have used the notation Solvg to denote the solvable algebras that
generate homogeneous quaternionic-Kéahler manifolds. Similarly, we will use Solvsk r to
denote the solvable algebras that generate homogeneous special Kahler, respectively very
special real manifolds and that can be obtained from Solvg as indicated in table 3.1. As
these solvable algebras are basically characterized by the three numbers ¢, P, P, we will de-

note them as Solvg sk .r (q, P, P) As in [75], the family of spaces (very special real, special

Kéhler and quaternionic-Kahler) will then be denoted as L(q, P, P) For the family of spaces
that have pure supergravity as higher-dimensional origin in 4, respectively 5 dimensions, we
will employ the notation SGy, respectively SGs.

The full list of homogeneous special geometries is then given in table 3.2. The horizontal
lines in the table separate spaces of different rank. When the space is symmetric, we ex-
plicitly mention to which coset space it corresponds. When the space is non-symmetric, we
mention the solvable algebra by which it is generated. When there is no entry in the table,
the corresponding manifold does not exist. For instance for the spaces of type L(—3, P),
there is only a quaternionic version, which is not in the image of the c-map. The correspond-
ing supergravity theory in 3 dimensions can thus not be uplifted to 4 dimensions. This is in
contrast to the case where the entry is SG, which also denotes an empty scalar manifold. In
this case however, one can lift the 3-dimensional supergravity theory to pure supergravity
in 4 or 5 dimensions, depending on whether one deals with the SG4 or SGs series.
Furthermore, note that the last four lines are in fact already included in L(gq, P). We have
however listed them separately as they correspond to symmetric spaces. The list of symme-
tric spaces then consists of L(—3, P), SGy, L(—2, P), SGs, L(—1,0), L(0, P), L(1,1), L(2,1),
L(4,1), L(8,1). The real member of the L(—1, P) series is also symmetric, it’s corresponding
Kahler and quaternionic-Kéahler versions however are non-symmetric.

3.2.5 Isometry groups of homogeneous special geometries

In the previous parts, we have reviewed the classification of homogeneous quaternionic-
Kahler manifolds. The key element in this construction is the fact that one can rephrase
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Table 3.2 Homogeneous very special real, special Kdahler and quaternionic spaces.

C(h) range real Kéhler quaternionic
USp(2P+2,2)
L(-3,P) | P20 TSPEP T2 XS]
SU(1,2)
SGy SG SU@=U)
U(P+1,1 U(P+2,2
L(_2’P) P =0 U(P(-|—1)><U)(1) U(P(+2)><U)(2)
SU(1,1 G
5Gs SG RuON ST@IXSUED)
2
S0(2,1 SO(3,4)
L(—l,O) SO(1,1) { sc§(2))} so(3)(xso(4)
L(-1,P) | P>1 s Solvsk (—1, P) Solv(—1, P)
SOPELY so?zgg;fé%(z) x SO(P+4,4)
L(0, P) P=0 SS(S)((erll)) SU(1,1) SO(P44)xSO(@)
. . ’ . U(1) . .
LO,P,P) | P>P>1 | Solvg(0,P,P)  Solvgx(0,P,P)  Solvg(0,P,P)
qg=1
L(q, P) P Solvr(g, P) Solvsk (g, P) Solvg(g, P)
Liam, )| {20 Solvp(4m, P, P)  Solvsx(4m, P, P) Solvo(4m, P, P)
m, P, . olvgr(4m, P, olv m, P, olvg(4m, P,
P>P>1 f 5K @
S(3,R) Sp(6) F
L(1,1) SO(3) ) 7USp(6§S)SU(2)
$(3,0) SU(3,3) £
L(2,1) SU3) SUG)IxSUG) XU SU06)%80()
SU*(6) SO*(12) E7(_s
L(4,1) S50) SUE=U(D) SO2) <800
Eg(—26) Eq7(—25) Eg(—24)
L(S’ 1) Fy(—52) Eg(—78)xU(1) E7(_133)xSU(2)

this as a classification of solvable Lie algebras. These solvable Lie algebras provide trans-
lational symmetries of the spaces they generate. They are however only a part of the full
symmetry groups. We will now discuss the structure of the full isometry algebras of homo-
geneous special geometries [75]. This knowledge will be relevant later on in extending the
Tits-Satake projection for symmetric spaces to general homogeneous special geometries. In
this section, we will concentrate on the families of manifolds that have a very special real
member. From table 3.2, it can be seen that this does not include all homogeneous spaces.
The other cases however correspond to symmetric spaces and their Tits-Satake projection
can be analyzed in the standard way, as will be explained in the next section. We will first
discuss these isometry algebras for the special real manifolds occurring in five dimensions.
Next, we will indicate what happens upon applying the r- and c-map.

Isometry algebras of homogeneous very special real spaces
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As mentioned in section 2.2.3, very special real manifolds are defined by an equation of
the form C(y) = 1, where C(y) is a cubic polynomial of variables y that are functions of the
physical scalar fields. We will indicate these y-variables here as y = (y', %2, y%,y") where a
and A run over ¢ + 1 and (P + P)Dq+1 values, respectively. For homogeneous very special
real manifolds, the polynomial C(y) assumes the following form:

Cly) = 3{y1(y2)2 —yly y® — Pyt + %AzyayAyE} : (3.34)

In this equation, y,ax are the matrix elements of gamma-matrices v,, that form a real
representation of the Euclidean Clifford algebra in ¢ + 1 dimensions. As already mentioned
in the previous section, this representation is not necessarily irreducible. The number of
irreducible representations contained in this representation is denoted by numbers P and
P, depending on whether there is only one or whether there are two inequivalent irre-
ducible representations of this Clifford algebra. These gamma-matrices are thus in general
(P+ P)Dqﬂ-dimensional real matrices. The isometry group of the corresponding spaces is
then given by the linear transformations of the y that leave (3.34) invariant.

The structure of the isometry algebra X can be summarized by decomposing it with
respect to the adjoint action of one of the Cartan generators A. One finds that X has the
following structure:

X = XO + Xg/g 5 (335)

where the subscript denotes the grading with respect to A. The space X3/, consists of
generators §A, which are always present. Generically, there are no generators with negative
gradings, e;cept when the space is symmetric. In that case, in (3.35) there is an extra space
X_3/o consisting of generators ¢ A and the algebra is semi-simple. The space A has the
following structure:

Xo =s0(1,1) @ so(qg+1,1) & S,y(P, P), (3.36)

where the so(1,1) factor is generated by A. The generators of the additional invariances
of (3.34), which are denoted by S, (P, P) are given by the antisymmetric matrices S that
commute with the matrices 7,. These groups S, (P, P) can be found in appendix B. For
later purposes, we mention that the generators of X3 /2 transform as a spinor representation
under the adjoint action of so(¢ + 1,1), while under the adjoint action of S,(P, P) they
transform in a vector representation.

The solvable part of this isometry algebra, that acts transitively on the manifold is given
by:

Solvg = so0(1,1) @ Solv(so(q+ 1,1)) + Xs3/2
= {), Solv(so(q+1,1)), £*}. (3.37)
The solvable algebra of so(q + 1,1) consists of one Cartan generator and ¢ nilpotent gen-
erators. In this way, we can make contact with previously used notations. Indeed, we

have 2 Cartan generators (namely the generator of so(1,1) and the Cartan generator of
Solv(so(q + 1,1))). They agree with hg, hs (or suitable linear combinations thereof) in the
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last part of table 3.1. The ¢ nilpotent generators of Solv(so(g + 1,1)) constitute the space
X7, while Y™ and Z~ together form X3 5.

Isometry algebras for homogeneous very special Kahler spaces

Upon dimensional reduction, the isometry algebras of real spaces discussed above, are en-
larged to isometry algebras of homogeneous special Kahler spaces. The rank of the space is
now increased with one unit. Decomposing the isometry algebra W into eigenspaces with
respect to the adjoint action of one of the Cartan generators ), the following structure
occurs:

W=Wi+W; +W;,

W =X @so(q+2,2) ®S,(P,P),

Wi = §A + b, = (1, spinor, vector) ,

W =b, =(2,0,0), (3.38)

where for W{ and Wj we mention in brackets in which representations the generators trans-
form. The first number in brackets denotes the grading with respect to )\’, while the other
two entries denote the representation under the adjoint action of so(q + 2,2) and S,(P, P)
respectively. Note that in general no generators with negative gradings occur. This is differ-
ent for the symmetric spaces, where there are generators (¢ A a®) at grading —1, and where
there is a generators a® at grading —2. In these cases the algebra is semi-simple.

The solvable subalgebra of translational isometries is given by the following set of gen-
erators:

Solvsx = {X,Solv(so(q +2,2)),&" by, by } . (3.39)

Again, it is possible to make contact with the second part of table 3.1. The solvable algebra
of s0(q+ 2, 2) consists of 2¢+ 4 generators. Two of these belong to the Cartan subalgebra of
Solvsrk, 2q of them constitute the 2 spaces X and X —, while the remaining 2 generators,
together with b; constitute the g-generators. Furthermore, the generators §A and b, deliver
the Y*-, Z*-generators. -

Isometry algebras for homogeneous very special quaternionic spaces

After dimensional reduction from 4 to 3 dimensions, the very special Kéhler spaces of the
previous section are enlarged to very special quaternionic manifolds. The corresponding
isometry algebras are likewise extended and now have the following form (the index M runs
over g + 2 values):

V o= Vi+ Vi + Vs,

Vi = €@s0(qg+3,3)8S8,(P,P),
vV, = (éA,QA) @ (gA,ﬁA) = (1, spinor, vector) ,
Vé = €+ D (leéMvéo) D Ql = (2,V6CtOI‘, O) ) (340)

where we also indicated the representation of Vi and V) under the adjoint action of the
three subalgebras of V. As in the previous cases, we decomposed the isometry algebra in
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terms of the gradings with respect to the Cartan generator €. Again, for the symmetric
spaces, the isometry algebra will be extended with additional generators, with gradings —1
and —2 with respect to €, such that the algebra is semi-simple. The solvable algebra in the
quaternionic case is spanned by the following generators:

SO]VQ = {gla SO]V(EU(q + 37 3))7§Aab/\;blngvéA7§+7glaEM;éo} . (341)

3.3 Tits-Satake projection for symmetric spaces

In this section, we will review how the Tits-Satake projection is done for symmetric spaces.
The aim is to extract some notions in this construction that can later be generalized for
general homogeneous special manifolds. We will first give a more theoretical discussion on
how the Tits-Satake projection is effectuated. In this discussion, the notion of paint group
will appear; this will turn out to be a very important concept. We will then study these
paint groups more specifically for the symmetric quaternionic-Kéahler manifolds. Finally, we
will illustrate the full construction in a concrete example.

3.3.1 The Tits-Satake projection for non-maximally split symme-
tric spaces

In this section, we will consider symmetric spaces that are non-compact, as these are the
ones that are relevant for supergravity. The spaces we will deal with are thus coset spaces
of the form:

Gr

M=, (3.42)

where G is a non-compact real form of a complex semi-simple Lie group and H is its
maximal compact subgroup. The Lie algebra of G will be denoted by Gr and is a real
form of a complex semi-simple algebra G. For such a non-compact coset, one can decompose
Gr in the Lie algebra H of H and the orthogonal complement K (the Cartan decomposition):

Gr=HoK. (3.43)

A Cartan subalgebra Hg, of Gr can be constructed by first searching for a maximal set of
commuting elements in K and then completing this set with appropriate generators in H.
The part of Hg, that lies in K defines the non-compact Cartan subalgebra H":

H™ = Ho, () K. (3.44)

The dimension of H"° is often denoted as the non-compact rank r,. or simply the rank of
the coset Gr/H. This non-compact rank is thus always smaller or equal then the rank of G.
When equality is fulfilled, the manifold is maximally non-compact (also called maximally
split); in this case Gg corresponds to the normal real form of some complex Lie algebra. We
will however mainly concentrate on the case where the rank of the coset is strictly smaller
than the rank of G. In that case, one can make a non-trivial orthogonal split of the Cartan
subalgebral® in a non-compact and a compact part:

Hey = HO™ @ H™ . (3.45)

10 We will often abbreviate 'Cartan subalgebra’ by CSA.
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Consequently, every vector in the dual of the full Cartan subalgebra (so in particular every
root «) can be decomposed in a part « that lies along the compact directions of the CSA
and a part o) that lies along the non-compact CSA:

a=aL ®ap. (3.46)

One can then perform a geometrical projection of the root system onto the non-compact
CSA. This geometrical projection constitutes the first step in performing the Tits-Satake
projection. More specifically, by putting all a; equal to zero for each root «, one has
projected the original root system Ag onto a new system of vectors A (the so-called restricted
root system) living in a Euclidean space of dimension equal to the non-compact rank 7.
Note that this restricted root system A is not really a root system in the usual sense. Indeed,
generically roots will occur in A with multiplicities and it can moreover also happen that 2q
is a restricted root if | is one. If one however makes abstraction of the fact that roots can
occur with multiplicities, one obtains a new root system Arg, where the roots are now non-
degenerate. This root system Arg is the Tits-Satake projection of the original root system.
So schematically, the projection is done by putting a; = 0 and deleting multiplicities:

o0 —0 — deleting
HTS : AG — ATS : AG (S A [— ATS~ (3.47)
multiplicities

In a lot of cases, it can happen that Arg is actually a root system of simple type (this can
for instance happen when A contains no roots that are doubles of other roots).

Once the projection is defined at the level of the root system, we can promote it to a
projection at the level of the solvable algebra Solv(Gr/H) that generates the coset Gg/H.
A useful observation in constructing Solv(Gr/H) consists in noticing that the original roots
can be divided in three sets, based upon their behavior with respect to the geometrical
projection on the non-compact CSA, in the following way:

* A first set of roots consists of all roots that vanish upon projection. These are the
roots that lie fully along the compact directions of the CSA, henceforth we will denote
them as compact roots. The set of compact roots will be denoted by Acomp.-

* A second set of roots is formed by all roots for which the projection is one-to-one. We
will denote the set of these roots by A”. They then project in a one-to-one way onto
a subset of the restricted roots that we will denote by Afg.

* Of course, in the projection it can happen that many different roots project onto the
same restricted root. These roots then constitute the third class of roots. We will
denote this subset of the original root system as A° and the subset of the restricted
root system onto which they project as Ajg. So, there are several different roots in
A’ that project onto the same restricted root in Ajg.

Schematically, this division of the original root system in different subsets can be summarized
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as follows:
Ag = A7 U Aa? U Acomp
| It } It I s
Ars = A U A%

Vol € Afg @ dimTIpg [aﬂ =1,
Vo' € Ay @ dimTIpg [of] = m[a®] > 1. (3.48)

Note that all roots of type n are orthogonal to the compact roots. This follows from the
fact that for any two root vectors o and [ such that there is no root of the form 8 + ma
with m € Z\{0}, the inner product of § and « vanishes. One can also see that in the trivial
case of maximally split symmetric spaces, where Acomp is empty, all root vectors are in A"
or ALy (the Tits-Satake projection is then trivial). Furthermore, under addition of root
vectors the following properties are satisfied:

Ag Arg

A"+ AT C A" Afg + Al € Afg

A4 AD C A9 Al + Asg C A (3.49)
A%+ A5 C ATJAS | At + Ajg © Abg | Afg '
AComp +AT=(

Acomp + A9 C AP

When constructing Solv(Gr/H) explicitly via the Iwasawa decomposition, this division of
roots in three different subsets implies that the generators of Solv(Gr/H) can also be divided
in three different types. The generators of this solvable algebra are schematically given in
the following way:

Solv(Gr/H) = {H;i®ue, Qpspr} - (3.50)

The generators that were denoted by H; correspond to the non-compact Cartan generators
of Gr. Then, there are two kinds of nilpotent generators. First, there are the generators
that were denoted by ®. They correspond to the (positive) n-roots. Since for these, the
projection is one-to-one, we can denote them via an index of, indicating the restricted root
upon which the n-root projects. Secondly, there are the generators of type €2, that roughly
correspond to the (positive) d-roots. Since there are several d-roots that project to the same
restricted root «®, one has to use an extra index I taking values from 1 to the multiplicity
m[a?®] of that restricted root in the projection.

The crucial observation that allows one to perform the Tits-Satake projection of the
solvable algebra (3.50), is the existence of a compact subalgebra Gpaint C Gg that acts as
an algebra of outer automorphisms of the solvable algebra Solvg, = Solv(Gr/H) C Gg:

[Gpaint, SOIVGR] C SO]VGR . (3.51)

This paint algebra Gpaint is essentially given by the compact Cartan generators, together
with generators that involve step operators E“ corresponding to compact roots. One can
then study in more detail how the generators of the solvable algebra behave with respect to
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the adjoint action of the paint group. The Cartan generators H; and the generators @, are
singlets under the action of Gpaint, i.€., each of them commutes with the whole of Gpaint:

[Hi7 Gpaint] = [(I)ae s Gpaint] = 0. (352)

On the other hand, all generators {),s|; associated to one restricted root o, transform
among themselves under the adjoint action of the paint algebra Gpaint, according to a linear
representation D] which, for different restricted roots o can be different:

. J
VX € Gpun ¢ [X, Qaei] = (DINX]) 7 Qayy (3.53)

This makes it rather easy to define the Tits-Satake projection of Solv(Gr/H), since one
simply has to single out a subalgebra G, ¢ C Gpaint of the paint algebra such that with

subpain
respect to Ggubpaim, each m[a®]-dimensional representation D!l branches as follows:
8 Ggubpaint
Dl T 1 o J . (3.54)
~— ~—

singlet  (m[as]—1)—dimensional
Accordingly, one can split the range of the multiplicity index I as follows:
I={0,z}, x=1,...,m[e’] — 1. (3.55)

The index 0 corresponds to the singlet, while x ranges over the representation J. The
restriction to the singlets then defines a solvable subalgebra Solvg, of the original solvable
algebra Solvg,. Solvg, then generates a coset Grs/Hrs that is maximally non-compact.
Moreover, the root system of Grg is given by the Tits-Satake projected root system Ars.
We then denote Solvg,s as the Tits-Satake projection of Solvg, and similarly Grg/Hrg is
identified as the Tits-Satake projection of Gg/H.

As a by-product, one can obtain a more precise relation between Solvg.,q and Solvg,. It
turns out that the tensor product J ® J contains both the identity representation 1 and the
representation J itself. Furthermore, there exists, in the representation /\3.] a G(s)ubpaint_
invariant tensor a*¥® such that the two solvable Lie algebras Solvg, and Solvg,s can be
written as indicated in table 3.3.

3.3.2 The paint group for symmetric quaternionic-Kahler spaces

In the previous construction, the paint algebra manifested itself as a crucial notion. Indeed,
once the paint group is known, one can study how the solvable algebra splits in represen-
tations with respect to this paint group. Knowledge of these representations then allows
one to choose an appropriate subpaint group, by which one can single out the Tits-Satake
projection of the symmetric space.

Essentially, this paint group is the part of the maximal compact subalgebra H, spanned
by the compact CSA H™P and step operators associated to compact roots. For symme-
tric spaces, these paint groups can be read off from the so-called Satake diagrams. These
diagrams are a useful tool in classifying real forms of complex Lie algebras (see for instance
[76]). They consist of ordinary Dynkin diagrams where two kinds of extra decorations can
be added:
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SO]V((;,R SOIVGTS
[HZ,HJ]:O [HlaHJ]:O
(Hi, 0] = i @ [H , EO‘[} = ait
[Hi\, Qoeir] = o™ Qe |H;, B~ | = o' B
(@0, Bge] = Nyege Doey e E* | E®| = Nyege EX+8°
[ @0, Q1] = Naege Qarypos B EP| = Nyeg. B +F°
IfaS—I—BSGA%«S: . . o
[Qasll, QBS‘J} = 61(] Nasﬁsq)as+ﬁs [Ea s EP ] = Nas/@sEa B
If o + 3% € Ajg :
[Qa5|07 QBSIO} - NQSﬁSQas-i-ﬁSIO
Q s Q s - Nas sQas sl s s
[ as]|0y 263 |I] B N +5%| [Ea , Eﬁ ] — NasgsEa +8
[Qasta s Qpojy) = Nawp 0" Qs i 510
+Nasﬁsamyz QOLSJrﬁS'Z

Table 3.3 This table summarizes the commutation relations of Solvg, and Solvg,s. It is
understood that Nog = 0 if a + 5 ¢ Ars.

e Some of the dots of the Dynkin diagram can be painted in black. They denote simple
roots that lie fully along the compact directions of the CSA (so simple roots in Acomp)-

e Some of the dots can be connected by means of a two-sided arrow. They denote simple
roots that result in the same restricted root setting ov; = 0. These necessarily belong
to AY.

Given the Satake diagram, the paint group can then be read from it in the following way. The
black dots form a Dynkin diagram of the semi-simple type. The paint group then contains
a factor corresponding to this painted subdiagram. This factor contains step operators
associated to the roots in Acomp as well as as many elements of H°™P as there are roots
colored in black in the diagram. Furthermore, for every arrow, there is one additional SO(2)-
factor that commutes with the rest of the paint group. Each of these arrows leads to an
additional generator in H°°™P.

In the following table, we have summarized all Satake diagrams of isometry groups of
the symmetric quaternionic-Kéhler spaces. The first column contains the Satake diagram as
well as a reference to which family L(q, P) the quaternionic-Kéhler manifold belongs. The
second column contains the total number of dots that form the diagram, while the third
column contains the total number of black dots in the diagram. Using this information, one
can then infer the paint group, that is given in the last column, along the lines described
above.
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Table 3.4 Satake diagrams and paint groups for symmetric
quaternionic-Kahler manifolds.

Satake diagram dots black dots paint group
L(_37 0)
0 =0 2 1 50(3)
L(_37 P)7 P 2 1
31_82_._.....=. P+2 P+1 SO(3)XUSP(2P)
SGa
o—o 2 SO(2)
~— 7
L(—2,0)
o—o—o 3 SO(2)
\_/
L(-2,P) a1 as
po1 0O T
[ J
P+3 P-1 SO(2) x U(P)
°
oO—O—e
L(0, P), P odd
00— @—co=— 0 | ZF+3 | B SO(P)
L(0,P), P even, P>4 Y
B U e ....a” Py P SO(P)
N\
[ J

Continued on next page
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Table 3.4 continued

Satake diagram dots black dots paint group
o 4
L(0,2) s
oO—.. ._o/ 5 SO(2)
N
O as
L(2,1) O ap
o oo & 6 SO(2) x SO(2)
7
L(4,1) ® o,
oe—o0—e— <|>a4— 0—0o' 7 3 S0(3)*
L(8,1) ® a5
o—e—e—e—o0—0—o | 8 4 SO(8)

One could do a similar analysis for the symmetric very special real and special Kahler
spaces. One will however find that the paint group is a property of the family L(g, P). In
other words, all symmetric spaces that are related by the c- and r-maps have the same paint
groups. The paint group is thus a concept that is invariant under dimensional reduction.

3.3.3 An example

In order to make the previous discussion more clear, we will now illustrate it in a concrete
example. The example is chosen such that it is computationally rather simple and yet
relevant to A/ = 2 homogeneous special geometry. More precisely, we will discuss the Tits-
Satake projection of the quaternionic member of the L(8,1) family, which is given by the
following symmetric space:

Gr _ Eg(—24)

. 3.56
H E7(,133) X SU(2) ( )

We will show more explicitly that performing the Tits-Satake projection along the lines
explained above, leads to the following result:
Eg(_o4) Fya)
N )
E7(_133) X SU(2) USp(ﬁ) X SU(2)

Trg (3.57)

Note that the projected manifold Fy4)/(USp(6) x SU(2)) is maximally non-compact and is
moreover again a quaternionic manifold. It is the quaternionic member of the L(1, 1) family.
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The complex Eg algebra has rank 8 and in the real section Eg(_o4) there are 4 compact
Cartan generators and 4 non-compact ones. Let ¢;,7 = 1,--- , 8 denote an orthonormal basis
of 8-component vectors. The Eg root system is composed of the following 240 roots:

1 1 1 itei N 61j 1 1 1 (i#£5) 112
Ap. = t3€ k562 £ 563 £ 5€eq 565 + 566 £ 5€7 + 5e8 128 358)
even number of minus signs
240
We will make the following choice for the simple roots:
oy = {0,1,-1,0,0,0,0,0},
as = {0,0,1,—1,0,0,0,0},
as = {0,0,0,1,—1,0,0,0},
ay = {0,0,0,0,1,-1,0,0},
a; = {0,0,0,0,0,1,-1,0},
ag = {0,0,0,0,0,1,1,0},
11 1 1 1 1 1 1
o = Ty Ty Ty Ty e
as = {1,-1,0,0,0,0,0,0}. (3.59)

The Satake diagram can be found as the last one in table 3.4. Note that the nodes
a3, y, a5, ag have been painted in black. This means that the corresponding Cartan gen-
erators such as e.g., ai’H; are compact. In this way, these Satake diagrams allow one to
construct the splitting (3.45) of the Cartan subalgebra explicitly. Note also that in this
case the black roots close a Dynkin diagram of a D4 algebra. As they correspond to simple
compact roots, they correspond to the simple roots of the paint group. From the Satake
diagram, one can thus also conclude that the paint group in this case is given by

Gpaint = 80(8)7 (360)

as was also mentioned in table 3.4. Let us now perform the Tits-Satake projection of
the root system explicitly. This case is rather simple since the span of the simple com-
pact roots as, ay, as, g is just given by the FEuclidean space along the orthonormal axes
€4, €5 €6, €7. These thus span the compact CSA. The Euclidean space along the orthonormal
axes €1, € €3, €g span the non-compact CSA. Denoting the components of root vectors in the
basis €; by o', the splitting (3.46) is very simple. We just have:

OCJ_:{OC4,065,CY6,O(7} ; a|‘:{a1,a2,a3,a8}, (3.61)

and the projection (3.47) immediately yields the following restricted root system:

+e; L (i#£j5 ; i,7=1,2,3,8) 24
B +e; (i=1,2,3,8) 8
Ars = tle +le +1es +ies 16 (- (3:62)

48
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which can be seen to coincide with the root system of the simple complex algebra Fj.

With reference to the notations introduced in the previous section, let us now identify
the subsets A” and A? in the positive root subsystem of AES and their corresponding images
in the projection, namely Afq and As.

Altogether, performing the projection the following is observed:

e There are 24 roots that have null projection on the non-compact space, namely
a=0& a=d¢+¢ ;5 1,5=4,506,7. (3.63)

Step operators corresponding to these roots, together with the four compact Cartan
generators, form a Dy algebra, whose dimension is exactly 28. In the chosen real form,
such a subalgebra of Eg(_g4) is the compact algebra SO(8) and its exponential acts
as the paint group, as already mentioned in (3.60). All the remaining roots have a
non—vanishing projection on the compact space. In particular:

e There are 12 positive roots of Eg that are exactly projected on the 12 positive long
roots of Fy, namely the first line of (3.62), which we therefore identify with A%g. For
these roots, we have ar; = 0 and they constitute the A” system mentioned above:

AL, DAT={e+e}=Ag 5 i<j ; i,j=127338. (3.64)

e There are 8 different positive roots of Eg that have the same projection on each of the
12 = 4 & 8 positive short roots of Fy, i.e., the second and third line of (3.62). Namely,
all the remaining 12 x 8 = 96 roots of Eg are all projected on short roots of Fy. The
set of Fy positive short roots can be split as follows:

T = M Ubh, UAT
Afee = e} i=1,2,3,8] 4
Spin = :I:%el + %62 + %63 + %Eg 4
even number of minus signs (3.65)
Aspin = :I:%el + %62 + %63 + %68 4
odd number of minus signs
12

Correspondingly, the subset A° C Ap, defined by its projection property
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IIts (A‘s) = A% is also split in three subsets as follows:

Ai = Aéfcc U Agpin U Agpin
s B . . 1=1,2,3,8
A, = € @(xe) e <j_4’576’7 4% 8| 32
Rl oL

Al = S (f3e £ 36 £ie3 + Ses) @ (gea £ 565 £ e £ 567) p |4 x 8| 32
o) even # of — signs ay even # of — signs

AL = ((F3a £ 36 £ 563 + 5e5) & (Eges £ 565 £ 566 £5e7) 0 | 4x 8| 32
oy odd # of — signs oy odd # of —

96
(3.66)

We can now verify the general statements made in the previous sections about the paint
group representations to which the various roots are assigned. First of all, we see that
the long roots of Fy, namely those 12 given in (3.64) are singlets under the paint group
Gpaint = SO(8). All other roots fall into multiplets with the same Tits-Satake projection
and each of these latter has always the same multiplicity, in our case m = 8. So, the
short roots of Fj(4) fall into 8-dimensional representations of Gpaing = SO(8). Let us now
determine these representations. SO(8) has three kinds of octets 8y, 8¢ and 85 and, as we
stated, not every root a; of the Tits-Satake algebra Grg falls in the same representation D
of the paint group although in this case all D!*"! have the same dimension. Looking back
at our result, we easily find the answer. The positive roots in the subset Aiec that project
on one restricted root, have as compact part o) the weights of the vector representation of
SO(8). Hence, the roots of A%, are assigned to the 8, of the paint group. The positive roots
in Agpin have instead as compact part the weights of the spinor representation of SO(8) and
so they are assigned to the 85 irreducible representation. Finally, with a similar argument,
we see that the roots of AS;W are in the conjugate spinor representation 8z. It is now very

easy to define the Tits-Satake projection, since one can now easily give the subpaint group

Gippaint - We have to find a subgroup G° C SO(8) such that under reduction with respect
to it, the three octet representations branch simultaneously as :
0
8, & 107,
GO
8& — 167,
GO
8& — 1d7. (3.67)

Such group G° exists and it is uniquely identified as the 14 dimensional Go(~14)- Hence, the
subpaint group is Gy(_14). Considering now (3.3), we see that the commutation relations
of the solvable Lie algebra Solv (Eg(_24)/E7(_133) X SU(2)) precisely fall into the general

11 We will sometimes omit the ‘subpaint’ indication for convenience.
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form displayed in the first column of that table with the index x = 1,...,7 spanning the
fundamental 7-dimensional representation of G5(_14) and the invariant antisymmetric ten-
sor a”¥* being given by the Ggy(_14)-invariant octonionic structure constants. Indeed, the
representation J mentioned in the previous section is the fundamental 7 and we have the
decomposition:

TQT= 1407 ©27T01 . (3.68)
N—— N——
antisymmetric symmetric
This shows that the tensor product J ® J contains both the singlet and J.

Note that this is not the only space that projects onto the quaternionic member of the
L(1,1) family. For instance, in the example studied in paper [5], namely

. Er(-s5) R Fag
T8 S0(12) x SU(2) USp(6) x SU(2)’

IT (3.69)
the image of the Tits-Satake projection yields the same maximally split coset as in the
case presently illustrated, although the original manifold is a different one. The only differ-
ence that distinguishes the two cases resides in the paint group. There we have Gpaint =
SO(3) x SO(3) x SO(3) and the subpaint group was identified as GO, paine = SO(3)diag-
Correspondingly, the index x = 1,2, 3 spans the triplet representation of SO(3) which is the
J appropriate to that case and the invariant tensor a®¥# is given by the Levi-Civita symbol

e®¥#. Similarly, it turns out that also

Es(2) Fy

s SU6) < U@~ USp(6) x SU@)

(3.70)

where the paint group in this case is given by SO(2) x SO(2).

Let us now consider the group theoretical meaning of the splitting of Fjy) roots into
the three subsets Ajq., A, Afm’ which are assigned to different representations of the
paint group SO(8). This is easily understood if we recall that there exists a subalgebra
SO(4,4) C Fy4) with respect to which we have the following branching rule of the adjoint
representation of Fy(4):

52 50U ggne g gne g gne g goe | (3.71)
The superscript nc is introduced just in order to recall that these are representations of
the non-compact real form SO(4,4) of the D, Lie algebra. By 28, 8,, 8, and 8z, we have
already denoted and we continue to denote the representations in the compact real form
SO(8) of the same Lie algebra. The algebra SO(4,4) is regularly embedded and therefore
its Cartan generators are the same as those of Fjy(4). The 12 positive long roots of Fy4 are
the only positive roots of SO(4,4), while the three sets Aj.., A%, A:pﬁ just correspond
to the positive weights of the three representations 8¢, 8¢ and 8%°, respectively. This is in
agreement with the branching rule (3.71). So, the conclusion is that the different paint group
representation assignments of the various root subspaces correspond to the decomposition of
the Tits-Satake algebra Fy4) with respect to what we can call the 'sub Tits-Satake algebra’
12 Ggubrs = SO(4,4). From this example, we can try to define this sub Tits-Satake algebra

12 This concept corresponds to the algebra G in [77].
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in a more intrinsic way. GsubTs is the normalizer of the paint group Gpaint Within the original
group Gr. Indeed, there is a maximal subgroup:

80(4, 4) X SO(8) C Eg(_24) s (372)
with respect to which the adjoint of Eg(_o4) branches as follows:

948 SO4HXSO®)

(1,28) ¢ (28"°,1) P (8,7, 8y) P (85", 8s) ® (85", 8s), (3.73)
and the last three terms in this decomposition display the pairing between representations of
the paint group and representations of the sub Tits-Satake group. Actually, also the subpaint
group Ggubpaim = Gy(_14) can be viewed in a similar fashion, namely as the normalizer of
the Tits-Satake subgroup Grs = Fjy(4) within the original group Ggr = FEg(_24). Indeed, we
have a subgroup

Fyay) X Ga(—1a) C Eg(-24), (3.74)
such that the adjoint of Eg(_y4) branches as follows:

Fya)yXGa(—14)
—

248 52,1) @ (1,14) & (26,7). (3.75)

The two decompositions (3.73) and (3.75) lead to the same decomposition with respect to
the intersection group:

Gintscc = (GTS X Ggubpaint) ﬂ (GsubTS X Gpaint) = GsubTS X Ggubpaint
= (Fuay x Ga(—10)) [ ) (SO(4,4) x SO(8)) = SO(4,4) x Ga(_14) - (3.76)
We find

248 — (1,14) ® (1,7) @ (1,7) © (82°,7) @ (8, 7) @ (82, 7)
B(28™,1) @ (82,1) @ (8"°,1) & (82, 1). (3.77)

The adjoint of the Tits-Satake subalgebra Grs = Fj(4) is reconstructed by collecting together
all the singlets with respect to the subpaint group Ggubpaint' Alternatively, the adjoint of
the paint algebra Gpaint = SO(8) is reconstructed by collecting together all the singlets with
respect to the sub Tits-Satake algebra Gyuprs = SO(4,4).

Finally, we can recognize the sub Tits-Satake algebra as the algebra generated by the

CSA and roots A’ (and their negatives) in the decomposition (3.48).

3.4 Tits-Satake projection for general homogeneous spe-
cial geometries

In the previous section, we discussed the Tits-Satake projection in the context of symmetric
spaces. Starting from a geometrical projection of the root system, the notions of paint
and subpaint groups can be defined. These then constitute the main tools that allow one
to single out the Tits-Satake projection of symmetric spaces. As presented so far, the
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construction was rather specific to symmetric spaces, as it relied on the theory of real forms
of semi-simple algebras. In this case, paint groups can be obtained rather easily using
some practical tools, such as for instance Satake diagrams. One can wonder whether the
construction can be generalized to all homogeneous special geometries, including the non-
symmetric ones. In this section, we will explain that this can be done, due to the fact that
it is possible to find appropriate paint and subpaint groups. We will first schematically
enumerate the several steps that have to be performed in the Tits-Satake projection of
homogeneous special geometries. Next, we will focus in more detail on specific steps of
the construction. More specifically, we will indicate how the paint and subpaint groups are
generalized for homogeneous special geometry.

3.4.1 The general procedure

For a homogeneous special space, generated by the solvable algebra Solvaq, the general
procedure relies on the following items:

A] There exists a compact algebra Gpaint, which acts as an algebra of outer automorphisms
of the solvable algebra Solvas. The algebra Gpains can be found as follows. As discussed in
section 3.2.5, although Solv g consists of translational isometries, the isometry algebra Gijfl
of the homogeneous special geometries generically contains more symmetries than just the
ones in the solvable algebra. Let us define the subalgebra of automorphisms of Solv:

D Aut [Solvay] = {X € Gy | VU € Solvy @ [X, ] € Solva } . (3.78)

Since the algebra Aut [Solvag] contains Solvag as an ideal, we can define the algebra of
external automorphisms as the quotient:
Aut [Solv ]
Autgy: [Sol = — 3.79
Ut [Solvad] Solv aq (379)
and we identify Gpain as the maximal compact subalgebra of Autgy [Solvaq]. Actually, one
can see that

Gpaint = AutEXt [SOIVM] . (380)

Indeed, the algebra Autgy [Solvay] is composed of isometries which belong to the stabilizer
subalgebra H C G of any point of the manifold, since Solvaq acts transitively. In virtue
of the Riemannian structure of M, we have H C so(n) where n = dim (Solva) and hence
also Autpy [Solvaq] C so(n) is a compact Lie algebra. Later on, we will give a precise
identification of the paint group for all homogeneous special geometries.

We can now reformulate the notion of maximally non-compact or maximally split alge-
bras in such a way that it applies to the case of all considered solvable algebras, independently
whether they come from symmetric spaces or not. We will call the algebra Solv x4 maximally
split if the paint algebra is trivial, namely:

Solv o = maximally split < Autgx, [Solva] = 0. (3.81)

For maximally split algebras, the Tits-Satake projection will be trivial, namely Solv s will
project onto itself.
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B] Consider now non-maximally split algebras for which thus Autgy, [Solvaq] # 0. Let r
be the rank of Solvas and denote the Cartan generators by H;. Let there furthermore be
n nilpotent generators WW,. The set of singlets under the action of the paint algebra Gpaint
closes a solvable subalgebra Solvguprs C Solvaq. It consists of the whole set of Cartan
generators H; plus a subset of p nilpotent generators W, associated with roots o:

Solveubrs = span {H;, Wy} ,
[SOIVsubTS ) SOIVsubTS] C SOleubTS )
VX e Gpaint , YU € SOleubTS : [X, \I/] =0. (382)

We will refer to Solvgu,rs as the ’sub Tits-Satake algebra’. It has the same rank as the
original solvable algebra Solvas. We will see later on that there is a very short list of
possible cases for Solvg,prs. In all possible cases, it is the solvable Lie algebra of a symmetric
maximally split coset Gguprs/HsubTs. In this way, eventually, we have the notion of a semi-
simple Lie algebra Ggu,rs. These are given in table 3.5, and correspond to the notion of

Table 3.5 Gaubrs. The solvable algebra of the (mazimally split) coset Ggyprs/HsubTs 8
the sub Tits-Satake algebra. The lines distinguish spaces of different rank, similar to the
scheme in table 8.2. The inverse c—map leads from the last column to the middle one, and
the inverse r—map to the first column, each time reducing the rank with 1.

real Kahler quaternionic

SO(1,1)

SU(1,1)

SO(2,2)
Ga2)

|2 SO(3,4)

K SO(4,4)

sub Tits-Satake algebra as it was used for symmetric spaces. However, for homogeneous
spaces we start only with the solvable algebras, and as such Solvgyprs is the algebra that
is intrinsically defined as the sub Tits-Satake algebra. This subtlety becomes more relevant
for the Tits-Satake algebra itself, where the solvable algebra is not in all cases the solvable

algebra of a symmetric space, and thus a corresponding semi-simple group Grg is not always
well defined.

C1] Considering the orthogonal decomposition of the original solvable Lie algebra with
respect to its sub Tits-Satake algebra:

Solvar = Solveubrs @ Kehort , (3.83)

we find that the orthogonal subspace Kgpot decomposes into a sum of ¢ subspaces:

q
Kshort = @ D [,P;u Qp] ’ (384)
=1
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where each D [P; , Q] is the tensor product
D[PF. Q] = P ® Qq (3.85)

of an irreducible representation Q,, of the compact paint algebra Gpaint with an irreducible
module Pg of the solvable sub Tits-Satake algebra Solvg,,Ts. An irreducible module P; of
SolvgupTs decomposes in the following way:

ne
Ph =P W],  n,=dimP], (3.86)
s=1

where each W[a(P*S)] is an eigenspace of the CSA of Ggyprs, which coincides with that of
Solvguprs and eventually with the CSA of the original Solv . Explicitly, this means:

VH; € CSA (Solva) , V0 € Wa®)] ® Q, : [Hi, ¥ =a' v, (3.87)

The r-component vectors a#*) are identified as the non-negative weights of some irreducible
representation P, of the simple Lie algebra Geups:

N

Po=Ps &P, P, =D W-al]. (3.88)
s=1

C2] The decomposition of Kyt mentioned in (3.84) has actually a general form depending
on the rank. We will discuss this here for the quaternionic-K&hler manifolds, as the other
ones can be obtained by restriction of the generators using the inverse c— and r—maps as
discussed in section 3.2.3.

r = 4) In this case, there are just three modules of Gguprs = SO(4,4) involved in the sum
of (3.84) namely Ps,, Ps,, Pss, where 8 5 denotes the vector, spinor and conjugate
spinor representation, respectively. All these three modules are 8-dimensional, which
means that for all of them there are 4 positive weights and 4 negative ones. Denoting
the half-spaces formed by the positive weights by 47

v,s,8» W€ can write:

Kshort = (4\—1:7 Qv) @ (4;_7 QS) @ (4;7 Qg) ) (389)

where Qv s are three different irreducible representations of Gpaint that will be dis-
cussed later in this section. In the generic case, all three representations Q s s are
non-vanishing and this corresponds to L(q, P) or L(4m, P, P) with ¢, P,m > 1. Special
cases where two of the three representations Gpaint vanish correspond to the classes
L(0, P), while for L(0, P, P) only one of these representations vanishes. The limiting
case is that where all three representations are deleted and the full algebra is just

Solv (%), which is L(0,0). Note that (3.89) is the generalization of the de-

composition (3.73) applying to the case L(8,1). There, we have Gpainy = SO(8) and
the aforementioned irreducible modules are:

Qv=8, ; Qs=8; ; Qs=8s. (390)
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r = 3) In this case, there is only one module of Ggrs = SO(3,4) involved in the sum
of (3.84) namely Pg, where 8¢ denotes the 8-dimensional spinor representation of
SO(3,4). Denoting by 47 the space spanned by the eigenspaces corresponding to
positive spinor weights, we can write:

Kshort - (4;_7 QS) 3 (391)

where the representation Qs of the paint group will be discussed in later sections.
When Qs is non-vanishing, we describe the L(—1, P) spaces with P > 1, which at
the quaternionic level are never given by symmetric spaces. When Qg vanishes, we
degenerate in the case L(—1,0), which is already maximally split.

r = 2) In this case, there is one exceptional case, namely SGs, where Gr = Gsuprs = Ga(2)-
In all other cases, there are two modules of SO(2, 2) involved in the sum of (3.84) and
these are the spinor module P4, and the vector module P4,. Both modules are 4-
dimensional and in our adopted notations we can write:

Kshort = (2;’_7 Qs) 2] (23_7 QV) . (392)

Later on in this section, we will discuss the representations Qs, Q. of the paint group
and show how the coset manifolds in the series L(—2, P) can be reconstructed. When
P = 0, only the representation Q is non-vanishing.

r = 1) In this case, we have to distinguish between Gguprs = SO(1,1) or Gsuprs = SU(1, 1).
When Gguprs = SU(1, 1), we have:

Kshort = (1:7 Qs) ) (393)

where 17 denotes the positive weight subspace of the spinor representation of so(1,2),
i.e., the fundamental of su(1,1), which is two-dimensional. The representation Qg will
be discussed later. When Gg,prs = SO(1, 1) on the other hand, we have:

Kshort = (1;’_7 Qs) 2] (13_7 QV) . (394)

In this case, 17 denotes a subspace of weight 1/2 with respect to Gguprs = s0(1,1),
while the subspace 1§ has weight 1. When Qg is non-vanishing, we describe the
spaces L(—3,P), P > 1. When Qs vanishes, we are describing the space L(—3,0).
The representations Qg and Q. of the paint group that appear here will be discussed
later.

We can now note a regularity in the decomposition of Kgor¢. For all values of the rank, we
generically have the space (S*,Qs) that associates a representation of the paint group to
the half-spinor representation of the sub Tits-Satake algebra. In addition to this, we can
also have the representations Q. and Qs, which we associate to what we can name the V*
and ST half-modules. These latter can exist in rank 4 and some of them can vanish in lesser
rank. Using this notation which covers all the cases, we can now give a general definition of
the Tits-Satake projection.
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D] The paint algebra Gpaint contains a subalgebra
G(s)ubpaint C Gpaint7 (395)

such that with respect to G°

subpaint’ each of the three irreducible representations Qv s
branches as:

0

Gsu paint
Quss =2 1 ©Jyss, (3.96)

singlet

where the representation Jy s 5 is in general reducible.

E] The restriction to the singlets of Ggubpaint defines a Lie subalgebra of Solv, namely,
if we set:

Solvrs = Solvenrs @ (VT,1) @ (81,1) @ (3*,1) , (3.97)
we get:

[Solvrs, Solvrs] C Solvrg . (3.98)

Summarizing, for all homogeneous special geometries, one can define the Tits-Satake
projection at the level of solvable algebras by stating:

IIts :  Solvyy — Solvrs C Solvay
U € Solvrg if and only if : VX € G (X, 0] =0. (3.99)

subpaint

In other words, we define the Tits-Satake solvable subalgebra Solvrs as spanned by all the
singlets under the subpaint group G?

subpaint*

3.4.2 Results for the Tits-Satake projection of homogeneous special
manifolds

The discussion of section 3.4.1 outlined the scheme of Tits-Satake projections. We will now
demonstrate how the generators of table 3.1 and their weights given in (3.26) [61] fit in this
picture, as outlined in point C] of the previous section.

Note that we can obtain the following weights

Hy : (0,0,0,0) g0 : (1,1,0,0) 2 : (0,1,—1,0)  po : (1,0,1,0)

H, : (0,0,0,0) g1 : (1,—1,0,0) a1 : (0,1,1,0) p1: (1,0,—1,0)

Hs : (0,0,0,0) g2 : (0,0,1,1) g2 : (1,0,0,—1) p2 : (0,1,0,1)

H, : (0,0,0,0) gs ¢ (0,0,1,-1) ¢ : (1,0,0,1) ps : (0,1,0,—1)
Xt :(0,0,1,0) X~ :(0,0,0,1) Xt :(1,0,0,0) X~ :(0,1,0,0)
RN S I G R R RN CE ST R GRRCH S S
2G4ty zoodbboh 2o dddhoy 2 ddody
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after changing the basis of the CSA in the following way:
Hy=ho+hi, Hy =ho—hy, H3 = ho + hs, Hy=hy—hs. (3.101)
The subset (H;, gi, gi, pi) can be recognized as the CSA and the 12 positive roots of the Dy
simple root system. They generate the solvable sub Tits-Satake algebra:
SO(4,4)
SO(4) x SO(4) ] -

With reference to the general decomposition of Kgnort mentioned in (3.89), the following
identification can be made:

span {H;, gi, ¢;, pi} = S0lvguprs = Solv { (3.102)

span{XJr,X_,)N(J“,X'_} = (43_an)7
span V1Y VHY L = (46.Q0)
span{z+,Z*,Z+,Z*} = (47, Qs) . (3.103)

Indeed, the weights assigned to the 4 different sets of type X are the 4 positive weights of
the 8-dimensional vector representation of SO(4,4). The weights assigned to the 4 sets of
generators of type Y are the 4 positive weights of the 8—dimensional spinor representation
s of SO(4,4), as there are an even number of minus signs in the eigenvalues 1. The odd
number of minus signs for the operators of type Z identifies them with the positive weights
of the representation § of SO(4, 4).

Let us examine the cases of lower rank. Note that the case ¢ = —3 is not a special
quaternionic manifold. Its symmetry structure is not of the form of table 3.1, but its weight
structure is summarized under (3.16). Using these weights, one can infer the statements
made in (3.94). For the other cases, we have explained at the end of section 3.2.2 how
they can be obtained from truncating the general structure of rank 4 spaces. Using these
truncations, the statements in point C2] of the previous section can be verified. There is
an anomaly for the case SG5 where the weights do not follow the scheme of (3.26), but were
given in (3.18). These can be recognized as the CSA and 6 positive roots of Gy. In this
case, we have a maximally split algebra and the Tits-Satake projection is trivial.

In general, the Tits-Satake projection of the algebra is a subalgebra consisting of only
one generator with the same weight vector. Therefore, it removes the redundancy of the
X, Y and Z columns indicated in the last row of table 3.1. In the generic case, the Tits-
Satake projected algebra is thus just the algebra with one entry in any entry of table 3.1
that is present. As mentioned in the general outline above, this reduction can be done in
a group theoretical way, by restricting to the singlets with respect to the subpaint group.
Therefore, one has to identify the paint groups for homogeneous special geometry, as well as
the representations of this paint group to which each of the X, Y and Z spaces are assigned.
Once this is done, one can choose the appropriate subpaint groups. These steps will be taken
in the following subsections.

3.4.3 The paint group in homogeneous special geometries

In section 3.3.2, we mentioned how the paint group for non-compact symmetric spaces can
be inferred from the corresponding Satake diagrams. In this section, we shall determine the
paint groups for general homogeneous special geometries.
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From table 3.2, one can see that all homogeneous quaternionic spaces of rank less than 3
are symmetric. For these, it is thus possible to use Satake diagrams to determine the paint
groups.

The spaces of rank 3 and 4 all have a five-dimensional origin. We can thus use the
structure of their isometry groups, as exhibited in section 3.2 to find the corresponding paint
groups. Focusing at the isometry algebra of the quaternionic spaces, one can immediately
recognize that the part S;(P, P) (if non-trivial) will always be part of the paint group.
Indeed, it acts as a group of external automorphisms on V| and V5. Since moreover it
commutes with the rest of V), it also acts as a group of external automorphisms on the part
of V) that belongs to the solvable algebra (3.41).

Moreover, also the so(g + 3,3) part of V| acts as a group of automorphisms on V; and
V4. This implies that the part of so(g+ 3, 3) that acts as a group of external automorphisms
on its own solvable algebra will also be part of the paint group. But this is nothing but the
paint group of SO(q + 3, 3) and can be inferred from the corresponding Satake diagram fig.
3.1. Tt can be easily verified that this contributes an SO(g)-factor to the paint group.

Figure 3.1 The Satake diagram of SO(q + 3,3) for q odd. The paint group is represented
by the subdiagram made of filled circles and is seen to be SO(q). For q even, the Satake
diagram is different, but a similar conclusion regarding the paint group holds.

O—O0—0O—@——8—>0

The argument for the Kéhler and real spaces is completely analogous. One should just
replace so(q + 3, 3) by so(q + 2,2), so(g+ 1,1) respectively. In each case, one can conclude
that the paint group for a general homogeneous special geometry is given by:

Gpaint = SO(q) x S,(P, P). (3.104)

Note that for the symmetric special geometries, this formula indeed gives the paint groups
that were obtained in table 3.4. The paint group is thus common to all members of a
L(q, P, P) family and is hence invariant under dimensional reduction. Accidentally, this
structure is insensitive to the sign of ¢. Indeed, although the structure of the solvable
algebra is very different, for say ¢ = 3 and for ¢ = —3, the paint group is the same in both
cases and the same irreducible representations are present. From this, it follows that also
the subpaint group and the relevant decompositions will be the same for +q.

The action of the paint group on the solvable algebra of the corresponding manifolds can
also be induced from section 3.2.5. Let us focus on the real spaces for a moment.

e The Cartan generators of the solvable algebra are singlets under the paint group.

e The ¢ nilpotent generators of Solv(so(q+ 1,1)) (corresponding to the generators of
type X in previous notations) transform as a vector under the SO(q) part of the paint
group, while they are inert under S, (P, P).
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e The generators éA transform in a (in general reducible) spinor representation of SO(g+
1,1). The space {A however splits into two subspaces Y and Z, with different gradings
with respect to the non-compact Cartan generator of SO(g + 1,1) (denoted by a).
Since the SO(q) part of the paint group commutes with this Cartan generator, the §A
split into two (in general reducible) spinor representations under the SO(q) factor of
the paint group. These correspond to the spaces Y and Z in previous notations. Since
Sq(P, P) commutes with o as well, the spaces Y and Z will also separately transform
in (vector) representations of the S, (P, P) factor of the paint group.

Since for the Kéhler and quaternionic-K&hler spaces, the generators of the solvable algebra
occur in the same representations as in the case of the real spaces, the story for them is
essentially the same as described above. The only difference is that the number of singlets
is increased, giving rise to non-trivial Ggyps algebras.

We can now easily match the above findings with the general discussion of section 3.4.1.
There, we worked at the level of the quaternionic member of each family, since this allowed
to include all cases, also those that are not in the image of the c-map or of the r-map.
Yet the invariance of the paint group with respect to these maps precisely means that the
Qv 5,5 representations remain the same in real, in special Kahler and in quaternionic-Kéahler
algebras. What changes is just the Ggu,rs algebra which, climbing up from quaternionic
to real geometry (dimensional oxidation), is progressively reduced in rank. The result was
anticipated in item B] of section 3.4.1 and is given in table 3.5.

The information contained in the above discussion is what was needed in order to de-
termine the desired representations Qv s s of the paint group, respectively associated with
the vector, spinor and conjugate spinor weights of the sub Tits-Satake algebra. The results
for this, which are an immediate consequence of the real Clifford algebra representations
discussed in appendix B, are summarized in table 3.6. In writing the spinor representa-
tions, one may comment about the way that the spinor representations are denoted. In real
components, the representations of SO(gq) are of dimension %’Dqﬂ. The complex or quater-
nionic structure acts on the same components. A notation (%’DQH,P) as representation of
SO(q) x U(P) for the complex case means that it is a complex P-dimensional representation
for U(P) but the complex structure is taken into account for the counting of real components
in the first factor. Alternatively, we could have written it as (1D,1,2P) when we take real
components for the representation of U(P) and complex spinor representations. Similarly,
in the quaternionic case we can write the representations of SO(q) x USp(2P) as (3Dg41, P),
as (3Dg41,2P) (dividing the complex structures over the two sides) or as (§Dg41,4P).

Note that for ¢ = —2 the Q. representation does not originate from the X-generators as
for ¢ > 1, but from the equality of the roots gy and ¢1, of pg and p; as explained at the end
of section 3.2.2. On the other hand, for ¢ = —3 we do not have the scheme of table 3.1, but
the result follows from the known scheme for symmetric spaces.

3.4.4 The subpaint group

The subpaint group whose Lie algebra was denoted as Ggubpaint was defined in section 3.4.1
through its property (3.96) relative to the decomposition of the representations Qy ss. As
noted in the discussion on symmetric spaces, it can alternatively also be seen as the subgroup
of the paint group that commutes with the Tits-Satake subalgebra. Searching for subpaint
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Table 3.6 The assignments of paint group representations in homogeneous special geome-
tries.

| Family | Paint group | Qv | Qs | Qs |
L(-3,P) SO(3) x USp(2P) (3,1) (4,P) -
SGy SO(2) 2 -
L(-2,P) SO(2) x U(P) (2,1) (2,P) -
SGs 1 - -
| L(-1,P) | SO(P) | | p | - |
L(0,P,P) | SO(P)xSO(P) | | (P,1) | (1,P)
normal
Lz P) | S0@xS0P) | @D | Dy, P) | (EDpri. P)
qg=1,7mod8
L(q.P.P) | SO(q)xSO(P) | (@1L,1) | (3Dyrt, P+ | (3Dgrr, P 1)+
g =8 mod8 xSO(P) (1Dg41,1,P) | (3Dg41,1,P)
complex
(g, P) SO xU(P) | @1) | (DertP) | (iDyir.P)
q=2,6mod8
quaternionic
L(g, P) SO(q) x USp(2P) | (4:1) | (3Dg+1,P) (3Dg+1, P)
q=3,5mod8
L(g,P,P) [ SO(q) x USp(2P) | (¢, 1, 1) | (3Dgs1, P, 1)+ | (3Dg1, P, 1)+
g =4 mod8 xUSp(2P) (4Dg41,1,P) | (3Dg41,1,P)

subalgebras is thus the group theoretical formulation of how the Tits-Satake projection is
defined.
0

To single out the subpaint group G, paint C Gpaint for a homogeneous space L(g, P, P),
whose paint group is Gpaint = SO(q) x Sq(P, P) the following strategy can be adopted:

1. Since the representation Q. corresponding to the X—space generators is always of the
form:

Qv = (q,1), (3.105)

where q denotes the vector representation of SO(g) and 1 the singlet representation
of S4(P, P), one first decomposes this representation with respect to the subgroup:

SO(¢g — 1) € SO(q), (3.106)

as then @ — 1 + (q — 1). The singlet, named X, is the only element of the X—space
which survives the Tits-Satake projection.

2. Next, one looks for a subgroup Ggubpaint C SO(g—1)xSy(P, P) such that the decompo-
sitions of the spinor representations Qg and Qsz, respectively associated with the spaces
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Y and Z, contain each at least one singlet. By choosing appropriate singlets that close
a subalgebra, one can then complete the Tits-Satake projection. For instance, for very
special real spaces, one can infer from the gradings in (3.26), that [X~,Z7] =Y. By
choosing appropriate singlets X,, Z, in X~ and Z~, the corresponding singlet Y,~
in Y~ is defined by [X,,Z, | =Y, .

Thus in order to figure out the subpaint group, one should consider the explicit spinor
representations of the Clifford algebra in ¢ + 1 Euclidean dimensions. Here, we explore one
by one the cases —3 < ¢ < 9 with arbitrary P. The results depend on the structure of the
Sq(P, P) part of the paint group, and as such the cases with different ¢ are divided into
three groups: normal, almost complex and quaternionic, as explained in appendix B.

There are also two quaternionic spaces that are outside of the L(q, P, P) families, namely
pure N = 2 supergravities in 4 and 5 dimensions. They are both symmetric spaces, out of
which only the first one, SG4, is non—split and has a non—trivial paint group: SO(2). The
subpaint group in this case is empty, because in order to get singlets we have to break the
paint group completely.

The normal case

g = 1. The paint group is Gpaint = SO(P). Only P-dimensional vector representations
are present in the solvable algebra. These decompose as P — 1 + (P — 1) under
SO(P — 1), which is therefore identified as the subpaint group.

q = 0. The paint group is Gpaint = SO(P) x SO(P), and there are again only vector
representations. Analogously as in the previous case, we thus find that the subpaint
group is G =SO(P —1) x SO(P —1).

subpaint

g = 7. The paint group is Gpaint = SO(7) x SO(P). The two representations that are
involved are (7,1) = Qy and (8,P) = Qs = Qs, where 8 is the real 8-dimensional
spinor representation of SO(7). The subpaint group that allows to find singlets in
both is GO paine = SU(3) x SO(P — 1), where SU(3) C Gy C SO(7). Indeed, the
representations split as follows:

(7.1) —» (1,1) +(3,1) + (3,1),
8P —-1,1+(1,1)+(1,P-1)+(1,P—-1)+(6,1)
+(6,P—1). (3.107)

q = 8. The paint group is Gpaint = SO(8) x SO(P) x SO(P). In this case, there are two
inequivalent real spinor representations of SO(8) involved: 85 and 8. The represen-
tations of the full paint group are Qy, = (8y,1,1), Qs = (8,P,1) & (8s, 1,P) and
Qs = (85,P,1) @ (85,1, P). Following the strategy described above, we select first
the subgroup SOg(7) C SO(8) , which splits the 8-dimensional vector representation
(space X) into a singlet plus a 7-dimensional vector. Both spinor representations
remain irreducible under the action of this subgroup. Hence, we have to look for a
smaller subgroup inside SOg(7). This is G2, which can be defined as the intersection
SO0(7) N SO+(7) N SO_(7), where SO(7)+ are the stability subgroups of the spinor
and conjugate spinor representations, respectively. In this case, in order to obtain
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singlets in the spinor representation it suffices to split just one of the two vector
representations, either P, or P. Indeed, e.g., under G2 x SO(P — 1) x SO(P) the
representations split as follows:

(8v,1,1) —
(8,P,1) + (8:,1,P) —

1,1,1) +(7,1,1),
1,1,1) +(7,1,1) + (1,P - 1,1)
+(7,P-1,1) 4 (1,1,P) + (7,1,P),
(85,P, 1)+ (85,1,P) — (1,1,1)+(7,1,1)+ (1,P —1,1)
+(7,P—-1,1)+ (1,1,P) + (7,1,P). (3.108)

(
(

In this way, we obtain singlets in the decomposition of all three involved represen-

tations. The subpaint group is thus either Ggubpaim = Gy x SO(P — 1) x SO(P)
or G ppaint = G2 x SO(P) x SO(P —1). In case P = 0, the subpaint group is
(S)ubpaint = G2 X SO(P - 1)

g = 9. The paint group is Gpaint = SO(9) x SO(P). Real spinor representations of SO(9)
are 16-dimensional. The involved representations of the paint group are Qy = (9,1)
and Qs = Qs = (16,P). The subpaint group is G = SO(7)4+ x SO(P — 1),

subpaint

where SO(7);+ C SO(8) € SO(9). This subpaint group induces the following splitting:

(9,1)
(16,P)

— (1,1)+(8s,1), (3.109)
- (L)+Q,P—-1)+(7y,1) +(7y,P—1) + (8,1) + (8,P — 1).
In general, we thus conclude that we started from paint groups of the form SO(q) x SO(P) x
SO(P). The first factor is broken to the common stability subgroup of the vector and spinor
representations. Furthermore, we break SO(P) to SO(P — 1). In case P,P > 1, we have
to break only one of the factors in SO(P) x SO(P) in this way, except for ¢ = 0, which is
special due to the fact that in that case the two factors belong to different restricted roots
of the solvable algebra.
The almost complex case

The search for the subpaint algebra is analogous to the one for the real case. We only need
to be more careful in treating the complex structure. The paint group is SO(q) x U(P). We
will consider this complex structure as part of the unitary group. In order to find a singlet
in the representation Qg or Qg, we have to consider the stability subgroup of a vector of
U(P), which is U(P — 1). Furthermore, we have to find as in the real case the common
stability group of a vector and spinor representation of SO(q). We will do this explicitly for
g = —2,2 and 6. The subpaint group is then the product of the latter with U(P — 1).

g = £2. SO(2) is already broken by the vector representation. The analysis is thus finished
at this point and we obtain G(s)ubpaint = U(P —1). Note that the vector as well as the
2-dimensional spinor representations split in 2 singlets.

g = 6. The vector representation breaks SO(6) to SO(5). The spinor representation of
SO(6), which is a real 8-dimensional representation, is the same as the one of SO(5). To
analyze the latter, it is convenient to use the isomorphism so(5) ~ usp(4) ~ su(2, H).
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Then the spinor representation becomes a vector representation. A typical vector can
be put along one quaternion, such that it is left invariant under the transformations
of the other quaternions. Therefore the stability group is su(1,H) ~ su(2). Note that
we do not have to consider the generator associated with the complex structure on
the Clifford algebra here, as this has been taken into account on the side of the U(P)
factor. When we consider the decompositions of the vector and spinor representations
under SO(6) — SO(5) — SU(2), we can consider, e.g., the 5 as the antisymmetric
traceless representation of usp(4), and obtain as such:

6—->1+5—-1+1+2+2, 8—-8—-1+1+1+1+4. (3.110)

Hence ultimately, in this case G2 = SU(2) x U(P —1), and there are just more singlets

subpaint

in each of the spaces X, Y and Z. In order to define the Tits-Satake projection, we have to
select one singlet among the X generators, commute it with one of the Y’s and single out
the corresponding 7.

The quaternionic case

g = %3. In this case, the paint group is Gpaint = SO(3) x USp(2P). The representations

present are Q, = (3,1) and Qs = Qs = (2,2P). Note that the last one was (in real
notations) denoted as (4,P) in table 3.6. Splitting the paint group first as SO(3) x
USp(2) x USp(2P — 2), and then taking the diagonal of the SO(3) x USp(2) factor,
the representation (2,2P) splits as follows under this SO(3)diag X USp(2P — 2):

(2,2P) — (1,1)+(3,1) +(2,2P —2). (3.111)

In order to obtain a singlet in the vector representation, we then take an SO(2) sub-
group of SO(3)diag. The subpaint group is thus:
GO

subpaint —

SO(2)diag X USp(2P — 2). (3.112)

g = 4. The story here is similar to the previous case. The paint group is Gpaint = SO(4) X

USp(2P) x USp(2P). One can choose either to break the P or the P sector. We will
do the former, i.e., break USp(2P) to USp(2) x USp(2P — 2). It is useful to consider
SO(4) as SO(3), x SO(3)g. The vector representation breaks into one singlet and one
triplet under the diagonal subgroup of the two SO(3)z,r. The subpaint group is the
further diagonal with USp(2), and is thus given by:

GO

subpaint —

SO(3)diag X USp(2P — 2) x USp(2P). (3.113)

g = 5. The paint group is Gpainy = SO(5) x USp(2P). The vector representation Qy = (5,1)

breaks SO(5) to SO(4). We split it as usual into two subgroups SO(3)z,z. The 8-
dimensional spinor representation then splits as 4 + 4, where each one transforms only
under one of the factors SU(2),,,zr mentioned above, such that only one of these factors
has to be broken to get the subpaint group. Then, we consider again the subgroup
USp(2) x USp(2P — 2) C USp(2P) and define the subpaint group as the product:

Gubpaint = SO(3)diag X SO(3)r x USp(2P — 2), (3.114)
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where the diagonal is taken between SO(3)r and USp(2). The representations have
the following splittings:

(5,1) — (1,1,1)+(2,2,1),
(4,2P) — (1,1,1)+(3,1,1)+(2,1,2P —2) + (2,2,1)
+(1,2,2P — 2). (3.115)

We summarize the results in table 3.7.

Table 3.7 The paint and subpaint algebras of special manifolds for the first 10 values of the
parameter q.

q Gpaint G(s)ubpalnt
0 | SO(P) x SO(P) SO(P —1) x SO( 1)
1| SO(P) SO(P —1)
2 | SO(2) x U(P) U(P —1)
3| SO(3) x USp(2P) SO(2) x USp(2P —2))
4 | SO(4) x USp(2P) x USp(2P) | SO(3) x USp(2P — 2) x USp(2P)
5 | SO(5) x USp(2P) SO(4) x USp(2P — 2))
6 | SO(6) x U(P) SU(2) x U(P —1)
7 | SO(7) x SO(P) SU(3) x SO(P —1)
8 | SO(8) x SO(P) x SO(P) Ga x SO(P — 1) x SO(P)
9 | SO(9) x SO(P) SO (7 ) x SO(P —1)

3.5 Results and applications

In this section, we will collect the results from previous sections to describe the result of the
Tits-Satake projection for all homogeneous special geometries. Next, we will mention some
applications of these results. The main application will be the organization of supergravity
theories in universality classes. We will give these different universality classes and will also
comment on the physical relevance of such a grouping. Finally, we will also give an example
in which one can assign a microscopic meaning to the Tits-Satake projection.

3.5.1 Description of the Tits-Satake projections

Let us start by analyzing the very special manifolds that include the L(q, P, P) families
with ¢ > —1 and pure supergravity in five dimensions: SGs. In table 3.9, we give the
corresponding real, special Kahler and quaternionic versions of the Tits-Satake projected
isometry algebras. What is important to note here is that the original infinite set of isometry
algebras, extensively discussed in section 3.2, projects onto a finite set of algebras. This
means that infinite families all share the same Tits-Satake projections, which reflects the
fact that each family has the same system of restricted roots and the only difference between
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different members of a family comes from multiplicities of these restricted root spaces that
are removed in the Tits-Satake projection.

The remaining spaces that are not very special are of lower rank r < 2, namely L(—3,0),
L(-3,P), SG4, L(—2,0), L(—2, P). Since they are all symmetric spaces, one can determine
the corresponding paint groups and Tits-Satake projections, using the Satake diagrams
mentioned in table 3.4.

The reason why we call these cases exotic is because the resulting Tits-Satake projected
algebras do not correspond to N = 2 supergravity models any more, so performing the Tits-
Satake projection of, say, a special Kéhler space, one arrives at a space that is no longer
special Kahler. We analyze the resulting Tits-Satake projected spaces in detail below.

rank =1

e [(—3,0) corresponds to the symmetric coset W%)p@)' The Tits—Satake projec-

tion of USp(2,2) leads to SU(1, 1) and the projected manifold

SU(1,1)

M=)

(3.116)

is not quaternionic! Indeed, the space L(—3,0) encodes four scalars belonging to just
one hypermultiplet, so it cannot be further restricted to a quaternionic submanifold.

e By SG4, one denotes the quaternionic space % The Tits-Satake projection

of Solv(SU(2,1)) gives a so—called bc; system'?, given by the solvable algebra
Solvrg = Span{h, A, 2\}, (3.117)

where (h, \) are generators of Solv(SU(1, 1)) and 2X denotes a generator corresponding
to a restricted root that is the double of the restricted root of A\. The resulting space
Mg is 3—dimensional and hence not quaternionic.

USp(2,2P+2)
P(2)x USp(2P¥2) *

e The L(—3, P) family consists of the symmetric quaternionic spaces g
Their restricted root system can be described in the following way:

Mrs: ON, mya=4P, moy=3, (3.118)

where O means that the Dynkin diagram of this restricted root system is the one of A;.
The simple (restricted) root A occurs with a multiplicity my. Its double furthermore
appears with multiplicity moy. The Tits—Satake projection is not a symmetric space
and gives again a bey system, as in (3.117).

rank = 2

e [(—2,0)is in its quaternionic version given by the symmetric coset % So, the

space is not split. The Tits—Satake projection in this case leads to the six-dimensional
manifold:

S0(2,3)

Mrs = SO(2) x SO(3)

(3.119)

13 The names bc; and bea that are used to denote some of the Tits-Satake projected algebras denote,
respectively, rank one and rank two non-simple Lie algebras, see e.g. [76] for more detailed explanations.
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e The quaternionic version of L(—2, P) is the symmetric space %. The re-

stricted root system is again described by giving its Dynkin diagram as well as the
multiplicities of the (restricted) simple roots and their possible doubles:

O

Mg : Ao A1 my, =2, max, =0, my, =2P, ma, =1.
(3.120)

In this case, the Tits-Satake projection gives a bco system.

These results are summarized in the table 3.8, where we organize exotic spaces by just
denoting the type of restricted root system that characterizes their Tits-Satake projections.
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Table 3.8 The solvable algebras and Tits-Satake projections of homogeneous special Kdahler and quaternionic-Kdahler manifolds that
are not very special. In this table, P denotes positive definite integers. After the column denoting the series, we mentioned the
columns of generators in table 3.1 that are present in this case. The manifolds are always the coset of Ggr with its mazimal compact
subgroup, and the described algebras are the solvable parts of the Iwasawa decomposition of the algebras that are mentioned.

name gen. Special Kahler Quaternionic-Kahler
Gr Grs Gsub-TS GRr GTs Gsub—Ts
L(-3,0) usp(2,2) su(1,1) s0(1,1)
L(-3,P) usp(2P +2,2) bey so0(1,1)
ber = su(l,1) =
SGy (0) SG - - su(2,1) ZO (go
0
ho o
su(l,1) = su(l,1) = 50(3,2) = 50(2,2) =
L(-2,0) (01) | su(1,1) 7 7 su(2,2) oon go g1
h h go 9t ho h
ho hi
bes — ~bCQ:
Y1* su(l,1) = Y- Y- 50(2,2) =
L(=2,P) (01Y) | su(P +1,1) 9 su(P +2,2) G P g 9
I h ho h
I 1 9o g1 0 1
ho M

SNOINHODONWOH 40 SNOILOUIOYdd HMVLVS-SLIL ‘¢ HHLdVHD

AHLINOAD TVIODHAS



Table 3.9 The algebras of the very special manifolds. In this table q, m, P and P are always integers > 1. After the column
denoting the series, we mentioned the columns of generators in table 3.1 that are present in this case (+ denotes the sum of columns
2 and 8). We mention which element of the series gives the Tits-Satake and sub-Tits-Satake algebra, and in case the corresponding
manifold is symmetric, we also mention the isometry group G. In case the projected manifold is non-symmetric on the other hand,
we mention its solvable algebra.

name gen. Real Kahler quaternionic-Kahler a

Grs Grs Grs sub—TS
SG5 (01) — SG5 : (1,1) SG5 : 92(2) SG5
L(-1,0) (01+) L(—1,0) : so(1,1) L(— 1,0) ¢ su(1,1)2 L(—1,0) : s0(3,4) L(=1,0)
L(-1,P) (01+Y) |L(-1,1) : s0(2,1) L(-1,1) : Solvgx(—1,1) | L(-1,1) : Solvg(—1,1) ’
L(0,0) (0123) | L(0,0) : so(L,1) @ so(L,1) | L(0,0) : su(L,1)3 L(0,0) : so(4,4)
L(0, P) (0123Y) | L(0,1) : so(1,1)®s0(2,1) | L(0,1) : su(l,1)®so(3,2) | L(0,1) : so(5,4)
L(0, P, P) (0123YZ) | L(0,1,1) : Solvg(0,1,1) | L(0,1,1) : Solvsx(0,1,1) | L(0,1,1) : Solvg(0,1,1) | L(0,0)
igi;j%m (0123XYZ) | L(1,1) : s((3,R) L(1,1) : sp(6) L1,1) : fu

suorjedijdde pue synsay ‘G'¢
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3.5.2 The universality classes

We can now group supergravities exhibiting homogeneous special geometry in universality
classes, based on the Tits-Satake projection. All manifolds that have the same projection
constitute one specific universality class. For the exotic cases discussed above, we conclude
that there are 4 such universality classes, exhibited in table 3.11. As far as the other special
homogeneous manifolds is concerned, they correspond to infinite families of supergravity
theories with 8 supercharges in dimensions d = 5, d = 4 or d = 3, falling into altogether 7
universality classes, displayed in table 3.10. Members within the same class are distinguished
by different choices of the paint group and of its representations Qy ss. The maximal split
representative of the class, namely the Tits-Satake projected manifold is in five out of seven
cases a symmetric coset manifold. The only cases where the Tits-Satake manifold is not
symmetric are the families that project onto L(—1,1) and L(0,1,1). The most populated
universality class, which encompasses most of the homogeneous special geometries is the
class L(1,1).

Table 3.10 The seven universality classes of very special homogeneous geometries.

Universality Class | Members of the class
>
L1, 1) L(q, P) . for ¢q,P >1
L(4m,P,P) for mPP#0
L(0,1,1) L(0,P,P) for PP #0
L(0, P,0) for P#0
L(0,1) L(q,0) for ¢>0
L(0,0) L(0,0)
L(—1,0) L(~1,0)
L(-1,1) L(-1,P) for P>1
SGs SGs

Table 3.11 Exotic universality classes of homogeneous geometries and their Tits Satake
T00% Systems.

Universality | Members of the class
Class
beo L(-2,P),P>0
b L(-2,0)
bcy SG4,L(—3,P), P>0
a1 L(—3, O)

That such an organization in universality classes is physically relevant, is shown by the
so-called cosmic billiard phenomenon. This effect arises in the study of time-dependent so-
lutions of supergravity theories. Such studies have been mostly performed in the case where
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the target spaces are symmetric, for instance for pure supergravities or for supergravities
with more than eight supercharges. If one assumes configurations where the scalar fields
only depend on time and one adopts the solvable parametrization of the scalar manifold,
the action (3.1) can be written as follows:

S:/dt Ikt > e~ 28R (qs,q's) . (3.121)

O¢EZ+

In this formula, h denotes a vector of scalar fields that are associated with the Cartan
generators of the solvable algebra, while N, (&, ¢) are a set of polynomial functions depending
on the scalar fields ¢ that are associated with the nilpotent generators in the solvable algebra.
Note that the sum in the formula runs over all positive restricted roots of the symmetric
space. It turns out that the fields h; evolve within the domain where - h> 0, for all a € N
and they experience bounces when approaching walls defined by & -h =0 for any @. This type
of scalar field evolution leads to the cosmic billiard phenomenon. Indeed the fields e™(*) can
be identified with the cosmic scale factors relative to the various compact and non-compact
dimensions of the 10- or 11-dimensional space-time manifold and the bouncing phenomena
correspond to inversions in the expansion/contraction development of these scale factors.
Note that the walls are only determined by different restricted root vectors, irrespective of
the multiplicity with which they occur. In other words, different symmetric spaces, that
however have the same Tits-Satake projected root system, have the same walls. Hence, in
order to define the main features of billiard dynamics, only a subset of the scalar fields ¢ is
needed. This subset contains one nilpotent scalar for each positive restricted root. This is
sufficient to define the positions of all the walls that cause the inversions in the motion of a
billiard ball with coordinates h;(t).

This clearly shows that a very essential part of the dynamics of all the models in one
universality class, is already determined by the Tits-Satake projection that represents the
class. Moreover, as was shown in [5] all solutions of the Tits-Satake projected model, which
is often completely integrable, are solutions of every member in the class and can be further
arbitrarily rotated by means of the paint group to new more general solutions. From the
point of view of cosmic billiards, an open problem is that of understanding the relation
between the complete integral of the evolutionary equations in the non-projected case with
respect to those of the projected one. Indeed, counting of the integration constants shows
that the non-projected model contains more solutions than the ones that can be obtained
as rotations of solutions of the Tits-Satake projected model. It remains to be seen in future
investigations how one can understand the structure of the missing solutions and what their
relation with the bulk of solutions produced by the Tits-Satake projection is.

Another example of how the Tits-Satake projection singles out a simple model in one
universality class that captures some but not all of the relevant dynamics, is given by the
following [66, 78, 79, 80]. One considers the low energy effective theory of type IIB su-
perstring theory, compactified on a K3 x T?/Zy-orientifold, in the presence of ng parallel
D3-branes and n; parallel D7-branes. The branes are all space-time filling and the D7 branes
are wrapped on K3. One furthermore also allows the field strengths of some form fields to
have non-trivial vacuum expectation values along the compact directions. The branes are
supposed to be in the Coulomb phase and massive modes are integrated out. It was found
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that this resulting low energy four-dimensional effective theory is described by an N' = 2
supergravity theory. There is a hypermultiplet sector in this model that contains for in-
stance the moduli that describe the shape of K3. The vector multiplet sector of the low
energy supergravity contains three complex scalars s,t,u originating from the bulk sector
and spanning a manifold of the form:

1,1 1,1 1,1
u) /. v/, v /,
The s scalar describes the volume of K3 and the R-R four—form C(4y on K3, t the T2
complex structure and u the IIB axion—dilaton system:

s = 0(4) - iVOl(Kg),
P g2 ; Vdetg
922 gaz
u = O(O) —ie? 5 (3123)

where the matrix g denotes the metric on 72. The corresponding three vector fields
A}L, Aﬁ, Ai, together with the vector contained in the graviton multiplet, Aﬂ, originate
from the components B,,,, C,, of the ten dimensional NS-NS and R-R 2-forms, a = 1,2
labelling the directions of T2. There are furthermore n3 +ny extra vector multiplets, coming
from the D-branes. In particular, there are ng complex scalars y” and n; complex scalars
2k (r=1,...,n3; k=1,...,n7) that describe the positions of the D3- and D7-branes along
T2. Due to the addition of these D-branes, the special Kéhler manifold (3.122) is enlarged.
It turns out that the scalars of the vector multiplet sector now span a special Kéahler space

that can be described in terms of the prepotential®:

1 1
F(s,t,u,z” y") = stu — 532’“2’c - §uyryr . (3.124)

This special Kéhler manifold is the one that belongs to the family L(0,ns,n7). It is thus
homogeneous, but non-symmetric when both D3- and D7-branes are present.

The Tits-Satake projection of this space is given by the non-symmetric space L(0,1,1),
corresponding to the situation in which only 1 D3-brane and 1 D7-brane are present. In
this case, the Tits-Satake projection has a microscopical meaning, namely it consists of
disregarding the number of branes. It is thus clear that one can not describe the full
dynamics of a specific model with a generic number of D3- and D7-branes by just looking
at the Tits-Satake projection. However, the Tits-Satake projection can be very useful as it
can provide us with a tractable model in which some essential parts of the dynamics can be
analyzed.

3.6 Conclusion

In this chapter, we have discussed the Tits-Satake projection of homogeneous special ge-
ometries that can occur as target spaces in supergravity theories with 8 supercharges. This

14 Using this prepotential, one can write down the kinetic terms of the scalars. It turns out that the full
Lagrangian (for instance the kinetic terms of the vectors) can not be written in terms of a prepotential.
It is however related to the theory in terms of the prepotential (3.124) via electric-magnetic duality. We
refer to [66, 80] for more details.
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projection was known in the context of symmetric spaces. As symmetric spaces only consti-
tute a small fraction of the possible target space geometries that can appear in supergravity,
we reconsidered this method in order to give an extension to the more general class of ho-
mogeneous special geometries. Due to the fact that crucial notions that can be defined for
symmetric spaces (such as paint and subpaint groups), also appear in homogeneous special
geometry, we succeeded in giving such an extension.

The Tits-Satake projection offers an efficient tool in analyzing time-dependent solutions
of (ungauged) supergravity theories. It allows us to group supergravity theories with homo-
geneous special target spaces in a small number of universality classes that are such that all
geometries in one class have the same projection. The different members of one universality
class are distinguished by the fact that they have different paint groups. We commented on
the relevance of these universality classes. We mentioned the cosmic billiard phenomenon
as an example of how time-dependent solutions of all models in one universality class share
some basic features. These basic features are already visible at the level of the Tits-Satake
projection. Often, the Tits-Satake projection gives a tractable model, whose dynamics can
be analyzed analytically. Solutions that can be found in this way are then common to the
whole universality class. As not all solutions of a specific model can be obtained via its
Tits-Satake projection, one of the open questions is how the dynamics of specific models in
a universality class can be described beyond the Tits-Satake projection. In some cases, such
a grouping in universality classes can also be seen from a more microscopical viewpoint. An
example of this was given in terms of string compactifications including D-branes, where the
Tits-Satake projection corresponds to disregarding the multiplicities of the branes.






Chapter 4

Scaling cosmologies in N = 8
gauged supergravity

4.1 Introduction

In the previous chapter, we studied the Tits-Satake projection in the context of homogeneous
special geometry. We mentioned how this procedure is relevant in studying time-dependent
solutions of non-maximal supergravity theories. Systematic studies of such solutions have
been performed in the context of ungauged supergravity in [5, 55]. In order to understand
the possible (late-time) cosmological scenarios in supergravity and string theory, one should
however also consider gauged supergravities, in which case there can be a non-trivial poten-
tial for the scalars. As was shown in section 2.1.4, this can lead to interesting phenomena,
such as acceleration and scaling behavior. In this chapter, we will make a modest step
in understanding the behavior of cosmological solutions in the context of A/ = 8 gauged
supergravity.

Extensive research on the vacuum structure of gauged extended supergravities has been
carried out; for instance, de Sitter vacua in such theories can generically be found [52, 53,
54, 81, 82, 83, 84, 85]. In most cases, these vacua correspond to saddle points of the scalar
potential. Stable de Sitter vacua have only been constructed for /' < 2 supergravity (see for
instance [53, 85] for constructions in A/ = 2 supergravity). For these examples, it is however
unclear whether they have a higher-dimensional origin or a string interpretation.

As mentioned in the introduction, the possibilities for dark energy go beyond a positive
cosmological constant. More specifically, we mentioned scaling cosmologies as an interesting
class of cosmological solutions. As was shown in an example in section 2.1.4, these corre-
spond to critical points of an autonomous system. As such, they can correspond to repellers
and attractors. They can thus correspond to the early-time or late-time behavior of general
cosmological solutions of the system under consideration. In contrast to de Sitter vacua,
scaling cosmologies have not been given that much attention in supergravity. In reference
[86], an unstable accelerating scaling solution was found in N' = 8 supergravity as an al-
ternative to acceleration from de Sitter solutions. In [87], an example of a stable scaling
solution was found in N' = 4 gauged supergravity. Finally, reference [88] considered scaling

93
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solutions of 6-dimensional gauged chiral supergravity compactified to 4 dimensions.

This chapter aims at finding scaling cosmologies in A = 8, d = 4 supergravity. Although
N = 8 supergravity is probably not very realistic from a particle physics point of view, it
has some attractive features; it only contains one multiplet, namely the gravity multiplet
and its different gaugings are well known. This simplicity makes it easier to oversee all
the possibilities for finding interesting solutions. More explicitly, in this chapter we will
restrict ourselves to the CSO-gaugings that have been introduced in section 2.4.3. For these
gaugings, a higher-dimensional origin is known explicitly [47].

Performing an exhaustive study of cosmological solutions in supergravity theories is
notoriously difficult because of the many scalar fields and the corresponding complicated
potentials. For instance, in A/ = 8 supergravity there are 70 scalars that parametrize the
coset space Er(;7)/SU(8) and the complexity of the potential depends on the gauge group
of the theory. We will therefore truncate the scalar sector and we will try to find solutions
in this truncated version of the theory. It turns out that after performing these truncations,
the potential is of the so-called 'multiple exponential’ type, meaning that it is a sum of
exponential terms. This will be explained in section 4.2.

In section 4.3, we will search for scaling solutions of these truncations of N/ = 8 gauged
supergravity. We will first review general results on scaling cosmologies in systems with
multiple exponential potentials. We will then show that the potentials in N' = 8 CSO-
gauged supergravity indeed have the correct form to allow for scaling cosmologies. We will
explicitly give these scaling solutions and discuss some of their properties.

The fact that the CSO-gaugings can be given a higher-dimensional interpretation, means
that we can view our solutions not only as solutions of N' = 8, d = 4 gauged supergravity,
but that we can also see them as solutions of 11-dimensional supergravity. Some of the
scaling solutions that are found in section 4.3 describe accelerating universes. This seems
to suggest that we have obtained accelerating cosmologies by compactifying 11-dimensional
supergravity. A famous no-go theorem [89, 90, 91] however comments on the impossibility
of this. In section 4.4, we will therefore discuss the higher-dimensional origin of our scaling
solutions more explicitly and show how some of the assumptions of the no-go theorem are
violated.

Finally, in section 4.5, we will mention an interesting interplay between finding de Sitter
solutions and scaling cosmologies.

The scaling solutions studied here are of two kinds, namely matter scaling and scalar
dominated scaling solutions. In the former type, we will thus allow for the presence of
an extra barotropic fluid in the model, while in the latter type the energy density of the
barotropic fluid vanishes and the potential energy of the scalar fields scales as the kinetic
energy'. Note that we make some restrictions in this chapter. We consider only flat FLRW-
universes and ignore scaling solutions that exist on the boundary of the scalar manifold?. We
refer to [93] for a general treatment of scaling solutions in the presence of spatial curvature,
that also includes solutions on the boundary of the scalar manifold.

1 This is also true for matter scaling solutions so the only difference is that the fluid vanishes.
2 They are called non-proper solutions in references [92, 93].



4.2. Truncating A = 8 gauged supergravity 95

4.2 Truncating N = 8 gauged supergravity

In this chapter, we will consider an action describing N scalar fields ¢ coupled to gravity:
1 i -
5= [dtev=g] 55 R - 59(0)0,8 097 ~ V(9)] + St (4.1)

where k2 = 877Gy with G Newton’s constant. In the rest of this chapter, we will often
choose units in which k2 = % We have added an action Spatter, describing a possible
barotropic fluid with energy density p and pressure p, subject to a simple equation of state
as in (2.17). For later convenience, we rename the parameter w in (2.17) to v — 1. In a flat

FLRW-background, ds? = —dt? + a(t)2d#?, the equations of motion read:

¢ +T%d " + 3HG' = —g" 9,V (4.2)

p+3vHp=0, .

p=(-1p, (4.4)
KQ

HQZ?(T+V+p), (4.5)

H=—r*(T+ 37p), (4.6)

with T the kinetic energy of the scalars, T = %gij (¢)¢i & and H = a/a, the Hubble
parameter. A scaling cosmology is then a solution of the above equations for which:

V() ~ T(t) ~ p(t). (4.7)

From the Friedmann equation (4.5) and the acceleration equation (4.6), we find that the
scale factor is power-law® : a(t) ~ tF. Note that the solution describes an accelerating
cosmology when P > 1. Summarizing, a scaling solution is characterized by:

V(t) ~ ) ~ plt) ~ H(1) ~ HI(E) ~ o5 (4.8)
We will view the action (4.1) as the bosonic part of the action of an AN/ = 8 gauged su-
pergravity, where the vector fields have been truncated. In that case, the number of scalar
fields N is equal to 70 and the metric g;;(¢) corresponds to the metric on the scalar coset
E7(4+7)/SU(8). The specific form of the potential depends on which gauging is considered.
Obtaining an explicit expression for these potentials is a difficult task. One often makes
truncations to get manageable expressions. We will therefore focus on the S£4(8,R)/SO(8)-
submanifold of F7(y7)/SU(8) that contains 35 scalar fields. The other 35 scalars correspond
to pseudoscalar fields and can be consistently truncated. After this truncation, the La-

grangian for the metric and the 35 scalars can be written in terms of a coset representative
L of the S4(8,R)/ SO(8)-coset [94]:

L= \/—_g{R + o MoM ) - v} , (4.9)

3 We will use the capital letter P to denote the power-law of the scale factor. This should not be confused
with the capital letter P that was used in denoting families of homogeneous special geometries in the
previous chapter.
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where M = LLT. The potential is then given by [94]:
v = g {Tr{mMm)?) - J(miM))? (4.10)

where g is the gauge coupling constant. In this expression, n is the diagonal matrix, whose
elements appear as structure constants of the CSO(p, g, r)-algebra (see section 2.4.3).

The coset S¢(8,R)/SO(8) is parametrized by 7 dilatons ¢* and 28 axions x®. In the
solvable parametrization of the coset, the dilatons are associated to the Cartan generators
H; of S£(8,R), while the axions are associated to the positive root generators E%:

apga _Lyipg
L=eX"E%em 20 (4.11)

where the exponentials involve a sum over the positive roots a and a sum over the 7 Cartan
generators, denoted by the index 4.

Note that one can perform an extra truncation; since the axions appear at least squared in
the potential it is consistent to put them to zero?. Working in the fundamental representation
of S4(8,R), the matrix M then assumes the following diagonal form:

e~ P19
M= . (4.12)

The 8 vectors Ea denote the weights of S ¢(8, R) in the fundamental representation. They
obey the following relations:

2

i i 30— 95 3, By = 20, — = . 4.13

;&a ! zajﬂaﬂa + Ba By =260 — = (4.13)
An explicit choice is given by the following vectors:

g = (1,1, L L L L L,

Y AR ARV T ARV, ARV TRV 2

g — (_1 4 1 1 1 _1 L)

2 — ' /3 V6 V100 V15’ V21’ V287

g — (0 -2 1 1 1 _1_ L)

3 — ' /37 V6 V10’ V1B’ V21 v28/?

Gy = (0,0,=3, - L _L L,

4 = M 60 V100 V15 V210 V2870

2 _ —4 1 1 1

65 - (anvoa_loaﬁaﬁvﬁ)v

2 _ -5 1 1

ﬁﬁ - (07070707?7\/?7%)7

S -6 _1

67 - (070707070737%)7

Bs = (0=070=070’07%)' (4.14)

After this truncation, one can easily see that the kinetic terms of the scalars become canon-
ical, while the potential is a sum of exponentials:

p+q p+q
. . 2 = 7 a2 = g
Localar = _%5”_ 99 — L Z e~ 2006 4 g2 Znaanbbef(ﬁawb).ab. (4.15)
a=1 a<b

4 The kinetic term allows a truncation of all the axions since the dilatons parametrize a totally geodesic
submanifold. We refer to [95] for more details concerning this point.
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In the next section, we will analyze this model for the existence of scaling solutions.

4.3 Dilatonic scaling cosmologies in N' = 8 gauged su-
pergravity

The potential in (4.15) belongs to the class of so-called multiple exponential potentials.
These are given by a sum of M exponential terms that depend on N scalar fields:

M
V((b) = ZAa exp[&a : Qg] ) (416)
a=1

where o?aﬁ = Zfil a;¢'. Scaling solutions of systems with multiple exponential potentials,
where the kinetic terms of the scalars are in canonical form, have been studied in great detail
[92, 93, 96, 97, 98, 99, 100]. For convenience, we will first review the main results of these

studies. Next, we are going to use this discussion to find scaling solutions of the system
(4.15).

Scaling for multiple exponential potentials

It was shown in [92], that it is convenient to separate exponential potentials in two classes
I and II. Class I is characterized by the fact that the d,-vectors are linearly independent
whereas for class II they are linearly dependent. Models that belong to the first class
are known in the literature under the name ’'Generalized assisted inflation’ [100]. Class I
generically allows exact scaling solutions, whereas class II can have exact scaling solutions
only when the d@,-vectors are ’affinely related’ [92, 93]. This means that there exists a set of
R independent @, such that after relabelling a = 1,..., R, the remaining @} are expressed
as ayp = ZaRzl CpaOla, Where the coefficients ¢y, fulfill the constraint:

R
Y a=1, forallb=R+1,....M. (4.17)
a=1

Both types of potentials that allow for scaling solutions have the property that after an
orthogonal field redefinition ¢ — ¢, the potential can always be written as the following
product [93, 99]:

Vip) =€ Ulpa;-..,on)- (4.18)

Let us prove (4.18) for class I and then for class IT with affinely related &,-vectors. We
will assume that a field rotation is performed such that the minimal number, R, of scalars
appears in the potential and that consequently N — R scalar fields are free. This number R
equals the number of linearly independent &,-vectors [92]. So, class I has R = M and class
IIR<M.

If the &, are linearly independent, there exists a (unit) vector E such that

ad., FE=c

, (4.19)
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where ¢ is a number that is independent of the index a. Indeed, if we multiply (4.19) with
0,5 and sum over a, we obtain:

Zaaj ag B = CZ Qg - (4.20)

It can be shown that the matrix B;; = Za (i 0g; has an inverse (because R = M) and
the above equation can be solved to find E?. If we now write the scalar fields in a different
basis:

b=p1E+ 3L, (4.21)

then we have in the new basis that a,; = ¢ for all a and consequently the potential takes
the form (4.18).

Now assume that the @, are linearly dependent in an affine way. Consider the R inde-
pendent vectors &, with a = 1,..., R. For this subset, we can repeat the same procedure as
above to find a unit vector E that obeys (4.19). Then we have in the new basis that a,; = ¢
fora=1,...,R. Consider ay; for b > R:

R R
ap = Zcbaaal =c Zcb“ =c. (4.22)
a=1 a=1

Again the potential can be factorized as in (4.18).

It is easy to prove the inverse: if the potential can be written as (4.18), then either the
@ are linearly independent or they are dependent in an affine way.

As proven in [93, 99], the exact scaling solution is such that the overall scalar ¢ is non-
constant, while all the other scalars are constant. Therefore the exact scaling solutions of
multiple exponential potentials are such that the potential is truncated to a single exponen-
tial potential®. It must then be possible to rewrite the potential like in (4.18). Furthermore,
the function U must have stationary points (OU = 0) in order to have a truncation consistent
with the equations of motion. If this is satisfied, the truncated action is given by:

5= /\/—_Q{R - %(8901)2 — A e + (Smatter) » (4.23)

where A is the value of the function U at the stationary point. If the scaling solution exists,
it is given by:

2 In(8£=2) 1 P2
t) ~tf t)=—="Int+ —<42 t)=6(1— w=)—.
alt) ~ 17, () = 2t TTA ) = 6(1 - )
e Let us first assume that the barotropic fluid vanishes, in which case the scaling solution
is the scalar dominated solution with P = 1/c¢?. The scaling solution exists when A > 0
and P> 1/3 or A < 0 and P < 1/3. An accelerating solution (P > 1) requires ¢* < 1.
The scaling solution with A < 0 is never stable® and the scaling solution with A > 0 is

(4.24)

5 In [101], the same was proven for purely positive exponential terms and a special class of dilaton couplings.

6 Strictly speaking, the stability of scaling solutions should be understood in the sense of stability of critical
points in autonomous systems. The scaling solutions are critical points of an autonomous system, similar
to the simple system discussed in section 2.1.4. The critical point is then called stable, when small
fluctuations around the critical point solution don’t grow exponentially. Such an analysis was performed
in [93].
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stable if the extremum of U is a minimum and the fluid perturbations imply an extra
stability condition c% > %

e If on the other hand there is a non-zero barotropic fluid, one has a matter scaling
solution [96]. The matter scaling solution is such that the energy densities of the
barotropic fluid and the scalar fields are non-vanishing and have a fixed ratio. The
scale factor of a matter scaling solution is that of a universe containing only the
barotropic fluid, that is a(t) ~ t¥ with P = % The solution exists when A > 0 and

c% < % When U is in a minimum, the solution is stable.

The CSO-dilaton potentials

In order to see whether we can find scaling solutions of the model whose scalar sector is
described by (4.15), we will first write the potential in a more suitable form. From the
explicit expressions (4.14), it is clear that one can always find a field redefinition such that
the scalar matrix M, given in (4.12), assumes the following form:

M= ( ez [(M(¢pr, -, )] (4.25)

i)
0 F(QD7¢£,---7¢;71) '

In this expression M = LL” where L is now a coset representative of an S £(8—7, R)/SO(8 —
r) coset, where again only the dilatonic scalars are kept. F denotes an r X r-matrix.

The scalars ¢, ¢}, -+ ,¢._; on which it depends, are connected to the original dilatons
Ps—r, -+, P7 via an orthogonal transformation. The number c¢ is determined by
8
A=——-1. (4.26)
pP+q

The potential (4.10) then takes the following form:
V = g% U(M) = g2 | Tr[(1M)?] - H(TaM))?) (4.27)

where 77 = diag(1,, —1,). More explicitly, the following expression for the potential is
obtained:

V = g%eU(¢) = g%e? [% Y e N ﬁaaﬁbbe*ﬁé*ﬁé’ﬂ : (4.28)
a<b

where the vectors B; are now weight vectors of the fundamental representation of S¢(p +
¢,IR). They can be obtained from the S¢(8,R)-weights, by keeping only the first p + ¢
weights and by deleting the last r columns in these.

For ¢ # 0, this potential belongs to class IT with affinely related d,-vectors. Therefore
the potential is of the appropriate form for scaling solutions!

To find a scaling solution, it is sufficient to find a stationary point of U that has the
correct sign to allow for a scaling solution. The stationary points of U are most easily found
using Lagrange multipliers as was shown in [84]. One defines X, = e %«'®. We will split the
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index a in indices {i,i}, where i = 1,--- ,pand i =p+1,--- ,p+ ¢. In this notation, U(¢)
can be rewritten as:

2
U(X):ZX3+ZX§—% (ZXZ-—Z)Q) : (4.29)

These X;, X;-variables are not unconstrained, since they obey [[, X, = 1. One then in-
troduces a Lagrange multiplier to enforce this constraint and demands that the following
function

SN =UX)+x][x:[[xi-D. (4.30)

has stationary points against variations with respect to X and A. This leads to the following
set of equations:

65/6X; =0= X2 — %Xi(ZXj —ZX;)+%;0,
J j
, 1 A
65/6X; =0 = X: +§Xg(ZXj—ZX3)+§ =0,
i j
8S/ox=0=[[Xa=1. (4.31)

Defining 0 = (3, X; — Y _; Xj), one can view the first two equations of this set as quadratic
equations for X; and X; with coefficients determined by ¢ and A. The solutions are

1 1
x=2:lmmm, x--Zilme (4.32)

One can show from (4.31) that A < 0 and that one therefore has to choose the positive signs
in (4.32), since X, is positive by definition. All X; therefore have the same value that we
will denote by X. Similarly, all X; assume an equal value X. One can also derive that
A= —2XX from which it follows that:

(p—2)X =(¢-2)X. (4.33)

The values of X and X can then be found by noting that X? X9 = 1.

In order to have the overall exponent e“? in the potential, we require that p + ¢ < 8.
Going through all possibilities for the extrema of U and taking into account the existency
conditions for matter scaling and scalar dominated solutions, one is led to table 4.1.

We remark that there is no scalar dominated solution such that P lies between 1/3 and
1. This implies that in these models a matter scaling solution can never coexist with a scalar
dominated scaling cosmology.

The accelerating scaling solutions (P > 1) are found for the CSO(3, 3, 2)-gauging and the
CSO(4, 3,1)-gauging. The first was found by Townsend in [102] where it was constructed
by a reduction of a de Sitter vacuum in 5-dimensional SO(3, 3)-gauged supergravity. The
second possibility with P = 7 is as far as we know not found before. The cosmologies of the
CSO(1, 1, 6)-gauging were considered before [103] where the solutions were obtained from a
reduction of seven-dimensional pure gravity on a group manifold.

Since the matrix 0;0;U evaluated at an extremum is not positive definite, the solutions
are unstable.
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Gauging matter scaling | scalar dominated
1. CSO(1,0,7) | P=2/(3v) i

2. CSO(1,1,6) | P =2/(3y) ?

3. CSO(2,2,4) P=1

4. CSO(3,3,2) El P=3

5. CSO(4,3,1) El P=7

Table 4.1 N = 8 gaugings and their scaling solutions. Whenever a certain type of scaling
solution exists, it is indicated in the table via the power of the corresponding scale factor.
means that there does not exist a scaling solution of the type under consideration.

4.4 Higher-dimensional origin

In the previous section, we obtained accelerating scaling cosmologies from CSO-gaugings in
N = 8 gauged supergravity. As we are going to review in this section, these solutions can be
viewed as solutions of 11-dimensional supergravity. We have thus obtained accelerating cos-
mologies from a higher-dimensional supergravity. Generally, obtaining accelerating universes
from 10- or 11-dimensional supergravity by performing a ’reasonable’ compactification, is
considered a hard problem due to the existence of a no-go theorem [89, 90, 91]. We will first
briefly review the arguments behind this theorem. We will then give the higher-dimensional
origin of the scaling solutions we found and mention how they evade the no-go theorem.

A no-go theorem and how to evade it

Consider a warped compactification with the following metric:
ds® = Q(y)ga(2),n dz”dz” + g (y)apdy®dy”, (4.34)

where g,, denotes the metric on the n-dimensional internal manifold M,, (with coordinates
y*,a=4,--- 34+ n), while g4 denotes the metric on the 4-dimensional non-compact space-
time (with coordinates *, = 0,---,3). The function Q(y) denotes the warp factor and
only depends on the internal coordinates. We will furthermore take it non-vanishing, in
order to avoid singularities. Calculating the Ricci-tensor then gives:

(Rasn)on = (Ra)oo + 1972 0)Ba0 (), (4.3

where O, denotes the Laplacian in the internal manifold and Ryy,, R4 denote the Ricci-
tensors of the full metric (4.34) and the metric g4 respectively. Multiplying (4.35) on both
sides with Q%(y) and integrating the resulting equation over the internal manifold, one
obtains:

/ dy" Q% (y)(Rasn)oo = (R4)00/ dy" Q*(y). (4.36)

n Moy,
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Note that we dropped the term } [, dy™ 3,Q%(y) because we assumed that the internal
manifold has no boundary. From (4.36), one immediately notices that

P
(R4+n)00 >0= (R4)00 = —35 >0. (437)

In order to have an accelerating universe, one needs that (R44n)o0 iS negative in some
part of space-time. Unfortunately, the energy-momentum tensors of 10- and 11-dimensional
supergravity are such that the Einstein equations imply that (R4, )00 is positive.

Note, however, that this argument involves a lot of assumptions. One has for instance
assumed that the integrals in (4.36) are well-defined. An easy way to evade this consists
in giving up the compactness of the internal space. In case of these non-compactifications,
one can find de Sitter vacua, see e.g., [47, 83, 102]. The disadvantage of this is that the
four-dimensional mass spectrum is continuous and there seems to be no obvious way to
circumvent this problem.

Even when considering true compactifications, there exist various ways to evade the
no-go theorem. Suppose one has obtained a four-dimensional effective theory from a true
compactification, consisting of scalars coupled to gravity with a potential. Consider the
case in which there is only one scalar for simplicity. The second equation in (2.35) implies
that, when the four-dimensional scalar potential is positive, acceleration is possible whenever
q5 = 0. As was argued in for instance [86], solutions in which (b passes through zero will
appear rather generically. Saying that the no-go theorem can not be evaded then almost
boils down to saying that these potentials are never positive. This statement is however
false. All that can be inferred about these potentials is that they have no positive stationary
points [104, 105]. Finding de Sitter vacua (in which the scalar fields are constant) from
compactification is thus a very hard problem. On the other hand, if one allows some of the
scalars to depend on time, one can find accelerating cosmologies in models that are obtained
via compactification of a higher-dimensional theory. Note that the time-dependent scalars
correspond to some of the moduli of the internal manifold, implying that the metric on
M., is time-dependent. In the derivation of the no-go theorem, we however assumed that
the internal metric is time-independent. Using time-dependent internal manifolds can thus
evade the no-go theorem. An example of this approach is given in [105]. Essentially, they
consider compactifications on Einstein spaces of negative curvature. The isometry groups
of these spaces are non-compact. So although these spaces are non-compact, one can make
them compact by modding out by a discrete subgroup of the isometry group.

Note that also the fact that (R4in)o0 is positive is an assumption. Although true in 10-
or 11-dimensional supergravity, in the context of string or M-theory, this assumption can be
easily violated. Indeed, string theory contains orientifolds that can (at least locally) violate
this assumption [106]. Also the introduction of branes can lead to various nonperturbative
corrections to the potential that can change this picture. It has been shown in [107, 108]
that after introduction of such effects one can indeed obtain de Sitter vacua.

Higher-dimensional origin of the scaling solutions

In [47], it was shown that the non-compact gaugings are associated with 11-dimensional su-
pergravity solutions that have a non-compact internal space. For the CSO(p, ¢, r)-gaugings,
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the internal space HP9" is a hypersurface in IR®, defined by the following equation:

ABZ Z = an = nL, .
Tapz28 =R? and T =L"nL 4.38

4 are Cartesian coordinates of IR® and R is determined by the flux of the 4-form

where z

field strength in 11 dimensions”.
The metric on the hypersurface is then induced from the Euclidean metric on IR®. Given

a solution in 4 dimensions with a metric g4 and some scalars as only non-vanishing fields,

the 11-dimensional metric g1; is then determined as:
g11 = Adga(x) + A5 gy(a,y), (4.39)

where gy(z,y) is the metric on HP?" and A(z,y) is a warp factor:
T3 gzizB
= A

From the explicit solutions for the scalar matrix M, we notice that our scaling solutions
correspond to SO(p) x SO(g)-invariant directions in the scalar coset®:

A (4.40)

X1pp O 0
T=e% 0 —Xlgxg 0 . (4.41)
0 0 Orxr

The constants X and X are the constant diagonal components of the S £(p+¢, R)/ SO(p+q)-
scalar matrix M = diag(X 1,, X 1,).

We follow the same spirit of [83] and choose coordinates in which the Euclidean metric
on R?® is given by:

8
ds? = do? + 02dQ2_ | +d6? +6%dQ2_, + > dzdz?, (4.42)
A=p+q+1

with dQ2 the round metric on the unit n-sphere. In terms of these non-Cartesian coordinates,
the hypersurface (4.38) is explicitly given by:

0'2 — (X)62 = ye_%‘p ~t. (4‘43)

Because the ratio X /X appears often we call it A. If we introduce new coordinates r, p in
the following way:

G=pr, o=p1l+MH)2, (4.44)

then the hypersurface (4.43) is defined by p? = R;e*%“" and the metric on HP?" is found

to be:

1+ (A +2%)r?
1+ Ar2

=,

8
dr2+(1+Ar2)dQ§,1+r2dQ§,1}+ 3 (de?)?. (445)
u=p+q+1

9 _c
dsz, = e 2“"[

7 The flux parameter R also corresponds to the inverse of the gauge coupling constant.
8 In terms of the SO(p) x SO(q) invariant scalars s and t defined in [54, 109, 83], our solutions have constant
s and running t.
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The warp factor is:
A=X(1+(\+A2y2)es? (4.46)

and the 11-dimensional metric is then given by (4.39).

Note that the uplifted solutions violate the aforementioned no-go theorem in two respects.
First of all, they correspond to non-compactifications. One can also not compactify these
spaces by modding out by an appropriate discrete set of isometries as was for instance
done in [105]. Secondly, the internal metric (4.45) and the warp factor (4.46) both depend
explicitly on the running scalar ¢. The internal spaces are thus time-dependent.

4.5 Scaling solutions and de Sitter vacua

In section 4.3, we have found accelerating scaling solutions, that are however unstable. A
natural question is then whether stable scaling solutions with eternal acceleration are possi-
ble at all in supergravity? If one lowers the amount of supersymmetry, then stable solutions
are possible. In A/ = 4 gauged supergravity, a (non-accelerating) stable scaling solution was
found in reference [87] and, as we shortly outline below, stable eternal accelerating scaling
solutions can be present in N' = 2 theories. These stability properties are similar for de
Sitter vacua in supergravity, where stable vacua are only found for N < 2.

The existence of stable scaling solutions in A/ = 2 gauged supergravity follows from the
fact that there exist stable de Sitter vacua in d = 5 [53]. Suppose one has a de Sitter critical
point in 5-dimensional supergravity. One can then truncate the system to pure gravity and
a positive cosmological constant, A. If we reduce this theory on a circle and truncate the
Kaluza-Klein vector, using the following usual metric ansatz:

1 o /2
ds® = e\/;pdsi +e 2\/;/) dz?, (4.47)
we find:
Sy = / da*V=g,[R — 1(0p)* — AeV5 7). (4.48)

This theory has an accelerating scaling solution:

1
dsi = —dt* + t5da3 \/;(p =-2Int+C, (4.49)

where C' is a constant. Plugging this in the metric ansatz (4.47) and redefining time via
7 ~ Int, we find that the uplift of the 4-dimensional scaling solution is:

ds2 = —dr? + ' dx3, (4.50)

where C’ is also constant. This is indeed a 5-dimensional de Sitter universe in flat FLRW-
coordinates. When the de Sitter solution is stable, so is the scaling solution obtained via
reduction.
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4.6 Conclusion

In this chapter, we investigated scaling solutions in N' = 8 gauged supergravity. When
restricted to the dilatons, the potential becomes a sum of exponentials. We showed that
for the CSO(p, g, r)-gaugings, the exponentials exhibit a special form, namely they have so-
called affine couplings. This special form is necessary for the existence of scaling solutions.
We find eternal accelerating solutions for which the barotropic fluid vanishes. From the
point of view of 11-dimensional supergravity, the solutions correspond to geometries with
non-compact and time-dependent internal spaces. If we assume the presence of a barotropic
fluid, we also find matter scaling solutions. The solutions we obtained have one running
scalar and all other scalars are trapped in a saddle point or maximum of the potential, and
are therefore unstable.

It would be interesting to study scaling solutions in non-maximal supergravities. This
would entail a detailed study of the possible gaugings and the structure of the potentials
that appear in these theories. In this context, we remarked that knowledge of de Sitter
vacua in 5 dimensions, leads to knowledge of scaling cosmologies in 4 dimensions.

Scaling solutions correspond to critical points of the cosmological dynamical system and
therefore describe the early- or late-time behavior of general cosmological solutions. From
this point of view, one can note a similarity with the generic behavior of cosmological
solutions in ungauged supergravity. Apart from the intermediate billiard behavior that
was mentioned in section 3.5.2, it was found in [55, 56] that the asymptotic behavior of
cosmological solutions in maximal ungauged supergravity corresponds to metrics with power-
law scale factors and constant axionic fields. Our scaling solutions are thus very similar to
the asymptotic behavior of cosmological billiard dynamics in ungauged supergravity. A more
complete analysis would involve solutions that interpolate between scaling vacua in order to
understand how the cosmic billiard behavior is realized in gauged extended supergravity.






Chapter 5

Dirac actions for D-branes in
flux backgrounds

5.1 Introduction

5.1.1 D-branes

One of the great discoveries in string theory concerns the role played by Dp-branes in the
theory [110]. These can be introduced by considering so-called Dirichlet boundary conditions
for open strings. This means that the endpoints of the string are confined to a (p + 1)-
dimensional hypersurface. The string can move freely along the hypersurface, but is not
allowed to move in the transverse directions. Dp-branes are thus introduced as (p + 1)-
dimensional hypersurfaces on which open strings end.

Quantization of open strings with Dirichlet boundary conditions leads to states that
correspond to fields that only depend on the coordinates along the brane, i.e., to fields that
live on the world-volume of the brane. The open string spectrum then usually contains
massless states and a tower of highly massive states. Often, one also finds a mode with
negative mass squared, i.e., a tachyon. This tachyonic mode represents an instability of
the D-brane. For certain values of p, stable D-branes can occur in superstring theories. In
these cases, the spectrum of open strings that start and end on the brane is tachyon-free. It
turns out that in type ITA string theory, stable D-branes occur for even values of p, while
in type IIB string theory stable branes have odd values of p. In these cases, the D-branes
carry a conserved electric or magnetic Ramond-Ramond charge that ensures their stability.
These stable D-branes then also preserve half of the 32 supersymmetries of the type II string
theory.

The massless states in the open string spectrum correspond to 9 — p real scalars ¢,
one vector A,, a = 0,---,p, as well as some fermions. The scalars can be interpreted as
describing transverse fluctuations of the brane. They thus describe the shape of the brane.
Although D-branes were introduced as rigid hyperplanes, the excitations of open strings
ending on them imply that they can be seen as dynamical objects in string theory. Together,
these massless states comprise the vector multiplet of a (p + 1)-dimensional U(1) gauge

107
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theory with 16 supercharges, indicating that the brane indeed preserves 16 supersymmetries.
The low energy dynamics of the massless open string states on a Dp-brane describes a
supersymmetric gauge theory in a (p+ 1)-dimensional space-time. This low energy dynamics
is described by an effective action. The bosonic parts of the effective actions describing the
world-volume dynamics of D-branes are well known. The fermionic part of these actions is
however less well known. It is on this fermionic part that this chapter will mainly focus.

Finally, let us mention what happens to D-branes when applying T-duality. We have
already mentioned in section 2.4.2 that T-duality exchanges the type IIA and type IIB
supergravity theories. Under T-duality, a Dp-brane is mapped to either a D(p + 1)- or a
D(p—1)-brane. In the presence of a space-like compact Killing direction x°, the background
fields transform under T-duality as in (2.133). If the 9-direction in which T-duality is
performed lies along the world-volume of the Dp-brane, one ends up with a D(p — 1)-brane.
The 9-component of the world-volume gauge field A then becomes a new physical scalar
field that describes the fluctuation of the D(p — 1)-brane in the new transverse direction.
If one performs a T-duality along a direction transverse to the Dp-brane, one ends up with
a D(p + 1)-brane. In this case, the world-volume scalar that describes fluctuations in the
T-duality direction, becomes a component of the gauge vector. The action of T-duality on
the fermionic world-volume fields has been worked out in [111].

5.1.2 Fluxes

As superstring theories naturally live in 10 space-time dimensions, one usually assumes that
6 spatial dimensions are compact, in order to make contact with our four-dimensional reality.
Moreover, if string theory is really a unified theory of nature, it should definitely contain the
Standard Model of particle physics, which has been tested to great accuracy. Originally, the
string theory that was found to be most promising for phenomenological purposes was the
heterotic theory with Eg x Eg gauge group, as this is large enough to contain the Standard
Model gauge group. As was shown in [112], this theory allows for a space-time solution of the
form My x CY3, where M, is four-dimensional Minkowski space-time and CY3 is a Calabi-
Yau threefold. These vacua moreover preserve only 1/4 of the original 16 supersymmetries.
Compactification of heterotic string theory on Calabi-Yau manifolds therefore leads to N =
1 theories in 4 dimensions that might be phenomenologically viable. One of the largest
drawbacks of these compactifications is the fact that they lead to a large number of moduli
in the lower-dimensional effective theory. These moduli describe changes in size (so-called
Kéhler moduli) or shape (complex structure moduli) of the internal Calabi-Yau manifold
and correspond to massless scalar fields that interact at least gravitationally. As such, they
usually lead to disagreement with observations. Generically, coupling constants in the four-
dimensional effective theory depend on these moduli. As their vacuum expectation values
are undetermined in conventional Calabi-Yau compactifications, this also leads to a problem
of predictivity.

This so-called moduli problem can be solved by considering more general compactifi-
cations, including fluxes (see refs. [113, 114, 115] for some reviews). This means that one
allows for non-trivial fluxes associated to certain n-form fields in the theory, through some
non-trivial cycles of the compactification manifold. In other words, if A denotes an n-form
potential, with (n + 1)-form field strength F = dA, and ~,,11 denotes a non-trivial cycle in
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the internal manifold, one allows for non-zero values of

/ F. (5.1)

In the four-dimensional effective theory, these fluxes induce a potential for some of the
moduli, thereby fixing some of them at minima of the potential. By taking also various
nonperturbative corrections into account, one can generically fix all moduli. Fluxes thus
play an important role in searching for realistic vacua of string theory. Moreover, they are
also very important in the construction of de Sitter vacua in string theory as was shown in
[107].

5.1.3 D-branes in flux backgrounds

In the previous section, we emphasized that compactifications with fluxes play a crucial
role in obtaining phenomenologically interesting lower-dimensional effective theories from
string theory. Due to the fact that interesting gauge theories live on their world-volume,
also D-branes are important in the construction of phenomenological string models. There
is thus a natural need to study D-branes that are put in general supergravity backgrounds
where fluxes are switched on. The aim of this chapter is to study the world-volume actions
that describe D-brane dynamics in such generic supergravity backgrounds.

The bosonic part of the D-brane action in a generic background is well understood (at
least in the case of a single D-brane). The fermionic part is however less well understood.
In principle, a complete D-brane action is known in a superspace formalism [116, 117]. Al-
though such a superspace action is complete and elegant, the precise manner in which the
background fields enter the fermionic terms of the action is hidden. Any explicit calculation
or consideration involving the world-volume fermions cannot be done only using such an im-
plicit superspace formalism. The explicit form of these terms is indeed necessary in several
interesting situations where the contribution of the world-volume fermionic dynamics be-
comes relevant. For example, they are necessary to write down the effect of background fluxes
in the effective action governing some phenomenologically interesting brane configurations
[118, 119, 120]. Also, Euclidean brane configurations are sources of nonperturbative cor-
rections in lower-dimensional effective theories obtained by compactification [121, 122, 123].
Finally, the knowledge of the explicit form of the fermionic terms is indeed necessary for any
kind of quantum world-volume computation (see for example [124]).

An important step towards the understanding of the fermionic terms in the Dp-brane
actions in backgrounds with fluxes was obtained in [8, 9]. In these papers, the fermionic
action was given for any Dp-brane on any (bosonic) supergravity background to quadratic
order in the fermions. However, the final results of [8, 9] are rather complicated. For instance,
new kinetic terms appear that apparently destroy the Dirac-like form of the actions. It is
the aim of this chapter to study these results further. In this chapter, we will show how the
seemingly complicated actions of [8, 9] can be rewritten into a more geometrical form that
naturally generalizes the Dirac-like operator. Our final result contains a kinetic term of the
schematic form

(M—1H*’T4V,, , (5.2)
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where the precise form of M,g will be given later on. This kinetic term (5.2) is still not in
canonical form. We will, however, see how a redefinition of the world-volume metric leads
to a fermionic action in canonical form.

The organization of this chapter is as follows. In section 5.2.1, we recall some results
concerning the world-volume actions describing D-brane dynamics. We recall the structure
of the bosonic part of the action and focus on the results of the papers [8, 9] giving the
explicit form for the fermionic bilinear action for any Dp-brane on any (bosonic) supergravity
background. We then show how it is possible to rewrite this fermionic action in a new, more
geometrical form. In section 5.3, we comment on some important symmetries of the D-brane
action and how to fix some of them in order to obtain a description in terms of physical
degrees of freedom. As an explicit check on our result for the fermionic action, we consider
its invariance under T-duality in section 5.4. In section 5.5, we then explain how one can
obtain a canonical action. For some notational aspects concerning this chapter, we refer to
appendix C.

5.2 The quadratic fermionic action on a general back-
ground

D-brane actions on general backgrounds have been formulated using the superspace formal-
ism in [116, 117]. Unfortunately, although superspace actions are in principle complete, the
explicit couplings between the physical fields as well as the fermionic sector of the theory
are quite obscure in this formalism. In order to be able to make any calculations involving
the world-volume fermions, one has to expand these superactions in components. If one
starts from the superactions of [116, 117], such a calculation can be really cumbersome and
requires a case by case study (see for example [125] and the recent [126]). The fermionic
action for any D-brane on any background was obtained in [8, 9] to quadratic order in the
fermions by following a somehow different route. The starting point was the normal co-
ordinate expansion of the M2-brane superaction presented in [127]. Then, by dimensional
reduction and T-duality all the Dp-brane actions quadratic in the fermions were derived in
a unified and compact form dictated by the consistency with T-duality. We will then start
from the results of [8, 9] and show how these results can be recast in a more geometrical
form.

5.2.1 The quadratic fermionic action on a general background

The dynamics of the world-volume of the brane is usually described in the following way.
The world-volume of the brane is parametrized by the coordinates £%, a = 0,...,p. The
embedding of the brane in the full 10-dimensional space-time is then given by specifying the
10-dimensional space-time coordinates ™, m = 0,...,9 as functions of these world-volume
coordinates : ™ = z™(¢{%). Note that from the point of view of the world-volume, the
x™(€%) correspond to scalar fields living on the world-volume. There is furthermore also a
U(1)-vector field A* living on the world-volume, as well as a pair of Majorana-Weyl fermions
f; and 5. In the type ITA case, 61 and 02 have opposite chirality and they can be combined
in one 32-component Majorana spinor § = 6, 4+65. In type IIB, both spinors in this pair have



5.2. The quadratic fermionic action on a general background 111

the same positive chirality. Our conventions regarding spinors are summarized in appendix
C.
The bosonic part of the Dp-brane action is given by:

Sy = —TDp/dp+1€€_‘I’\/—det(g+f) +TDP/ZP[C<n>]€f= (5.3)

where 1p,, is the brane tension!. The first term in this action is usually called the Dirac-

Born-Infeld (DBI) action, while the second term is known as the Chern-Simons (CS) action.
Denoting the background metric by Gy, gag is its pull-back on the world-volume:

ox™ Ox™

Pull-backs of background fields on the world-volume will also be indicated by the symbol
Pl]; thus g could alternatively be written as P[G]a.g. The other field F,3 appearing in
the DBI action is a combination of the field strength f = dA of the gauge field living on the
brane and the pull-back of the background NS-NS two-form By,,:

Fap = P[Blap + fap - (5.5)

The CS action involves the same combination F as well as the pull-backs of the R-R forms
C(n) on the world-volume. The notation of the CS action employed in (5.3) is a formal one.
The exponential of F appearing in there should be interpreted via its series expansion:

6]: — i']-'" , (56)
i
where multiplication of forms should be understood as taking wedge products of forms. The
CS action then involves a formal sum of wedge products of this exponential with R-R forms.
It is then understood that the CS action consists of the forms in this formal sum that have
the correct degree for the integration to make sense, i.e., one only keeps the forms of degree
p+1.
The fermionic part of the world-volume action was calculated to quadratic order in the
fermions in [8, 9] and is given by:

51()? — % /dp+1§ e~®y/—det(g+ F)0(1 — I'p,)(T*D, — A + Lpy)b, (5.7)

where I'y, are pull-backs of the gamma matrices I'y,,. This action is determined by operators
I'pp and Lp,. For type IIA D-branes, these are given by:

Ipien) = Z

q+r=n

Lpen = Z

q21,q+r=n

(_)TJrl(I‘(lo))T+1€0t1»»»062q[31~ﬂ2r+1
q'(2r + 1)12¢\/—det(g + F)
(_)r-i-l (1—‘(10))7‘+1€0¢1~~~0¢2q51~~~627‘+1

q!(2r + 1)!129,/—det(g + F)

‘FOCIOQ .'.‘Fa2q71a2qr/81---ﬁ27'+1 s (58)

Y
falag fa2q71a2q1—‘51~~ﬂw+1 D’Y )

(5.9)

I In terms of the string coupling constant gs and the Regge slope o, T];; is given by = (2m)P () B gs-
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while for type IIB D-branes:

V1 (i55) (g2 ) e 22451 B2r
Poaey = 3 (=) (io2)(03)

Foras * Fasy 10,1 B1...8a, 5(0.10
q!(27")!2‘1 —det(g—l—f) 102 2g—1Q2q+ B1...02 ( )

qg+r=n+1

_\r+1g Toar...a2¢B1...B2r
Ioonry = 3 (-) ' (10'2)(0'3) € Fars o Farr oDy
e Labrentl q'(2r)129+/—det(g + F)

(5.11)

In the above expressions, D, (which enters through its pull-back D) and A are the opera-
tors appearing in the supersymmetry transformation laws of the background gravitino and
dilatino (2.130), (2.131) and (2.132).

Note that a naive counting of degrees of freedom leads to a paradoxical result. There
are 10 scalar fields ™™ and one gauge vector A% with p — 1 physical degrees of freedom.
So, it seems that in total there are 9 + p bosonic degrees of freedom. On the other hand,
the fields 61 and 05 together have 32 real components. The Dirac equation however implies
that only half of these survive as independent propagating degrees of freedom. So, it seems
that the number of physical fermionic degrees of freedom is 16. The numbers of bosonic
and fermionic degrees of freedom therefore do not seem to match, in contradiction to what
supersymmetry tells us. The solution to this paradox is the observation that the world-
volume action enjoys a number of extra local symmetries. First of all, it is invariant under
world-volume diffeomorphisms, i.e., reparametrizations of the world-volume coordinates £¢.
Secondly, it is also invariant under a fermionic symmetry, called kappa-symmetry. It was
shown in [9] that the full action given by (5.3) plus (5.7), is symmetric under the following
kappa-symmetry transformations:

60 = RE(1+Tp,),
0z = —%5K§Fm9 ,
0pAa = %Mf(w)rae —~ %Bmsﬁérme : (5.12)
where
for type IIA : T'(19) = (1) » for type IIB : T'(10) = I'(10) ® 03 , (5.13)

and k is the fermionic parameter of the kappa-symmetry. It turns out that the number of
physical fermionic degrees of freedom is reduced by a factor of one half by fixing the kappa-
symmetry, thus leaving only 8 physical fermionic degrees of freedom. Reparametrization
invariance on the other hand allows one to fix p + 1 of the 2™, leaving only 9 — p of the
™ as physical degrees of freedom. Together with the p — 1 degrees of freedom of the gauge
vector this then also gives 8 bosonic degrees of freedom, as required by supersymmetry.
Later on in this chapter, we will come back to the problem of how kappa-symmetry and
reparametrization invariance can be fixed in a suitable fashion.

In the restricted case when F,g = 0, the action for the fermions takes an explicit canon-
ical Dirac-like form as can be seen from (5.7). The background fluxes then contribute with
mass terms through the operators D, and A. The effect of a non-zero F, g is twofold. First,
it is included in the I'p, operators (5.8) and (5.10). Secondly, we have the new terms Lp,,
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which not only add new non-derivative couplings between background and world-volume
fields, but also add new kinetic terms. The rest of this section will then be devoted to
showing how these new terms can be reorganized such that the fermionic Lagrangian (5.7)
is written in a more geometrical form where the effect of the field F,3 can be reabsorbed
in a shift of the pulled-back world-volume metric gog. This simplifies the final form of the
action considerably and makes its structure more transparent.

First of all, let us introduce the operator

€1 Qpt1

0) _

| NSO 5.14
e (p+1)ly/=detg (5.14)

0)

Note that I‘%p squares to (—1)P~1(P=2)/2 By using the formula

€a1-~-a7‘BT+1-~~ﬁp+1FQT+1...ﬁp+l = (_)T(T_l)/Q(p +1-— r)!\/TetgFal"'m‘Fgg , (5.15)

one can write the chiral operators (5.8) and (5.10) in the following form [117]:

__ V—detg o o+ L'10)? o
Toen) = WFD 2n)(Ta0)) Z qu e LT Fanan  Fasg e
(5.16)

RV det g (0) n+1 . ( ) ...
I'pensny = WFD(%H)(%) (—102); 12 e oml e Y R
(5.17)

From (5.9), one analogously finds that in the type ITA case
—y/—detg (0) n
Lpon —_— T X
D(2n) TP D(any (L10))
-1
- 10 ! aq...o

Z ( ( )) e QQ71~F(J¢10[2 . -]'—azquazqufazq—lvDV , (518)

— 1)!192¢9—1
1 (g - 1)tz

which can in turn be rewritten as

—det g (0)

)n+1
—det(g +F) PG

Lpen = —Tpenlanl*Fa’Ds — X

(T(10)

—2
-I 10 ! aq...a
Z Eq —(2);;121—‘ P23 T g - 'fazqfsazqu;fazqfs%]:’Yle’Yz '(5'19)
2

By iterating this last step (and by doing an analogous calculation for the IIB case), the
following formulae can be found:

Lpen = —Ipen Z (1) (FN)* Ty Dy
g>1
Lp@nty = —Ibpent) Z(—%)q(]‘—q)aﬁFaDﬁ ) (5.20)

g>1
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where (F9)*8 = Fo Fn,, - -]—"%?*2%71?%*15.
By putting these results together, it is easy to see that we can write the fermionic action
(5.7) in the compact and elegant form:

S = 712),, /dpﬂg e~ ®\/=det(g + F) 0(1 — Tp,) [(M~1)*TsD, — Al0.  (5.21)
where the operator Mg is defined as
Mag =gapg + f(lo)faﬁ . (522)

One can now see that the operators Lp, that in the action (5.7) were disturbing, are the
source of the natural geometrical coupling to the matrix

This matrix substitutes the metric already in the bosonic action or in the definition of the
natural volume element defined on the brane. In this way, we see how the effect of the Fug
field, given by the couplings contained in the operators Lp,, can be schematically reabsorbed
in the following redefinition of the kinetic term:

¢°*PTsVy — (M~ H*TsD, . (5.24)

We will discuss the effect of non-zero 5,3 on the world-volume geometry in more detail
in section 5.5. First however, we will discuss how one can fix the x-symmetry (5.12) and
reparametrization invariance in order to obtain an action that is expressed in terms of
physical fields. We will also establish the supersymmetry transformations of the physical
fields under which the complete rk-fixed action is invariant. Finally, we will show how the
action we have obtained is consistent with T-duality, giving an important check on our
result.

5.3 k-fixing and supersymmetry

In section 5.2.1, we already alluded to the fact that the action (5.21), once completed with
the bosonic action (5.3), is invariant under world-volume diffeomorphisms and x-symmetry
(5.12). In particular, we have mentioned how these extra symmetries account for the correct
number of physical bosonic and fermionic degrees of freedom. In this section, we would like
to discuss some aspects regarding their gauge-fixing and the consequent effects on the way
the possible background supersymmetries are realized on the brane.

In order to consider the problem of k-fixing more clearly, it is convenient to write (5.12)
in a double spinor convention for both type ITA and type IIB. Details about this convention
are given in appendix C. In this notation, the first two transformation rules of (5.12) can
be written in exactly the same form but with a I'p, given by? (for both type IIA and IIB):

0 p(p+1) —det [at--a2q
FDp=(—)pFE;(03) 2 (102)\/WZ —————Faras Fanyras, - (5:25)

2 Note that, for type IIA, the I'pp in double spinor notation is not the same as (5.16) but is given by
FdD‘;“blc = 01I'ppo1 due to the chosen representation of the charge conjugation matrix. On the other

hand, the o1 factors in (C.16) have already been extracted from F( ), which is thus considered here as
the diagonal matrix in the extension index.
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On the other hand, the last transformation of (5.12) takes the form:
1. - 1 -
0pAa = —§6N9Fa036‘ — §Bam5,.i6‘1"m6‘ . (5.26)

As stressed in [128], it is important to note that the I'p, operators entering the k-
symmetry transformations (5.12) are off-diagonal:

0o Ipl
— . P
o= () o)
where
§ —2)(p— V—detg Poram
Fpp = ()T c (5.28)

Dp det g +]_— '2q a1a2 . .fa2q71a2q ,

and fg; (F) = (—)waP( F). This property allows one to fix the k-symmetry in a
simple manner. Using an irreducible 16-dimensional spinor s for which f(lo)ﬁ = —K, one
can rewrite the transformations (5.12) in the following way:

6Né1 = RFDp , 0.0 =FK. (529)

It is then clear that one can fix k-symmetry by adopting a covariant gauge-fixing f‘(lo)G =40
(i.e., 62 = 0), as was for instance discussed in [128, 129]. The resulting x-fixed action can
be easily seen to be expressible in terms of only #; in the following way:

CISK T’% /dp+1§e—‘1’ —det(g + }‘){él [(M~1)7T, D — AD]g,
—O TS (M) T W, — AP 91}, (5.30)

Note that the explicit form of this action involves terms that vanish by means of the symme-
try properties of the gamma matrices. Extracting all couplings is however a straightforward
task.

Let us now discuss how possible background supersymmetries are realized on the world-
volume. When the supergravity background possesses a Killing spinor € (so D,,e = Ae = 0),
then the gauge-unfixed D-brane action is symmetric under the following (leading order)
induced supersymmetry transformations [9] (in standard notation for ITA):

0.0 = ¢,
1 _
581401 = 591:‘(10)1—‘(15 — §Bam§1—‘m€ . (531)

These transformations have the same form in double spinor notation, up to the substitu-
tion f(lo) — —o3 in the last line. In order to write these transformations in their gauge-fixed
form, we have to be careful with the fact that the supersymmetry transformations do not
necessarily respect the chosen gauge for xk-symmetry. Indeed, after a supersymmetry trans-
formation (5.31), f3 = €2 and hence no longer zero. In order to compensate for this breaking
of the k-fixing condition § = f(lo)ﬂ, one has to add a compensating k-transformation (5.29)
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with k = —e2. Then, the resulting supersymmetry transformation of the physical fermionic
field 6, becomes:

6591 =& — §2FDp . (532)

Supersymmetry is thus preserved by a classical configuration, in which the fermions are
equal to zero, only if:

g =&l . (5.33)

The condition that has to be satisfied in order for the D-brane to preserve the background
supersymmetry ¢ is thus given by ETSZ])) = &. Then, using the relation (5.33), it is possible to
write the preserved supersymmetry transformations for the x-fixed action in terms of only
e1 as follows:

6591 = 8 ( F(Cl) 11—‘Dp)7
1 cl)
b = s& OIS s W) AT
1_ cl) 1 1 _ < (cl)— 1% m
0cAq = 55‘ (1 + F FDp)F 01 + §Bam81(1 + FDp FDp)F 01 . (534)

It is important to remark that these expressions only give the supersymmetry transforma-
tions in the lowest order of fermions (without fermion fields for the transformations of the
fermions, and linear in fermions for the transformations of the bosons). The supersymme-
try of the full action needs higher order terms. However, the transformations in (5.34) are
sufficient for determining the variation of the action linear in fermions. Therefore, they are
exact supersymmetries for the completely truncated action quadratic in both bosons and
fermions around some particular classical configuration.

To see how the transformations (5.34) look like in this linearized approximation, it is
convenient to fix the residual gauge invariance under world-volume diffeomorphisms in order
to identify the physical world-volume scalar fields. Usually, this is done by adopting the so-
called static gauge condition. In this case, one uses reparametrization invariance to identify
p + 1 of the space-time coordinates " with the world-volume coordinates £% : z¢ = £<.
Only the fluctuations 2™, where m = p + 1,...,9 labels the directions transverse to the
brane, are considered as physical, and one has to impose the condition dz® = 0. However,
since we are working in a general curved space, this kind of gauge-fixing is not the most
geometrical one due to the arbitrariness of the coordinate choice. It is then natural to break
explicitly the local SO(1,9) Lorentz invariance of the theory into SO(1, p) x SO(9 — p) and
select a class of adapted co-vielbeine e™ = (e2, ™), such that the pull-back on the brane
of the e is vanishing and the pulled-back e2 form a world-volume vielbein. Now one can
consider the fluctuations of the brane as described by a section #™ of the normal bundle
(i.e., P = emdx™). This means that the natural gauge-fixing condition is:

exox™ =0. (5.35)

In order to write the supersymmetry transformations for the completely gauge-fixed lin-
earized action, we now have to compensate the transformation (5.34) with a world-volume
diffeomorphism 6£(e) defined by the condition:

06 (e) PleY o = —exdea™ . (5.36)
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Taking into account this compensation and using the fact that ¢ = 0 when evaluated on
the classical configuration, the linearized gauge-fixed supersymmetry transformations (5.34)
become:

600 = (M YHPHVNG T 561 + (M HPT K, o B,
1 _
—g(Mfl)M(M*I)M(WH@w + fys)Laper

6€¢ﬁ = &:11—‘@6‘1,
beha = alaby + fGET701 + Bamer ™01 (5.37)

where Vév = 0y + %AQ@F@ indicates the normal bundle covariant derivative with con-
nection

A2 = Q00 (5.38)

where 2,2 is the pull-back of the spin connection of the target space vielbein ez, and K%
is the extrinsic curvature of the world-volume of the brane, defined by

Kop™ = Kgo® = ¢5Qas™ . (5.39)

The derivation of the first of (5.37) is straightforward but tedious, as it involves several
rearrangements using gamma matrix properties along the lines followed to derive (5.20) from
(5.9) and (5.11).

5.4 Consistency with T-duality

The original fermionic action (5.7) was constructed in [9] by using T-duality and assembling
the different terms in a rather indirect way, using the partial results obtained previously in
[8] and completing them by means of consistency conditions. Let us rederive the proof of the
T-duality consistency of the above actions given in [8, 9], starting from their new expression
given in (5.21). This is an important consistency check and it clarifies also the validity of
the arguments, given in [8, 9], to obtain the final form of the action (5.7). In order to do
this, let us first of all prove that the term

% /dp+1ge—‘1>\/— det(g + F) 0[(M~1)*’T3D, — A6, (5.40)
in the fermionic action (5.21) is left invariant in form by T-duality. One can check this
property directly by using the usual T-duality rules for the bosonic fields and Hassan’s T-
duality rules for the fermions [111]. It is, however, easier to derive this property in a less
direct way. Let us first introduce the following combination of bosonic and fermionic fields:

B=b- 000,
B = Bin — 00 (10D D0 - (5.41)

These can be seen as superfields expanded up to second order. One of the basic observations
of [9, 130] is that, using Hassan’s T-duality rules for fermions [111], these second-order



CHAPTER 5. DIRAC ACTIONS FOR D-BRANES IN FLUX
118 BACKGROUNDS

superfields transform (up to second order) in the same way the corresponding bosonic fields
do. The next step is to note that the term (5.40) can be seen as the second-order term
arising in the expansion of a DBI action for the superfields (5.41):

Spp = _TDp/dPng—‘I’\/— det(P[G + B] + f) . (5.42)

Once we know that the superfields (5.41) transform as the corresponding bosonic fields under
T-duality, we can immediately conclude that the action (5.42) is left invariant in form by
T-duality and then also its second-order term (5.40) is.

It is now easy to see that also the second contribution in the second-order action (5.21):

- / " 1g e= /= det(g + F) 0T, [(M~1)* T Do — A]6 (5.43)

is left invariant by T-duality. Since we already know that the term [(]\Zf “H)e8TsD,, — A} is
invariant in form under T-duality, we only need that the I'p,, are transformed into themselves
under T-duality. But this is indeed the case by definition, since in [9] these operators were
obtained one from the other by using T-duality. Then the whole action (5.21) is clearly
invariant in form under T-duality.

5.5 The world-volume geometry and a canonical action

In section 5.2.1, we have found a simple form for the quadratic fermionic action for a D-brane
in which couplings to the background geometry are more transparent. The action (5.21) is
however not in a canonical form, as the kinetic term is given by:

(M~1H*T4D,, . (5.44)

This feature is already visible in the bosonic action, as can be seen from the fact that the
natural integration measure is given by:

V—det(g+ F) . (5.45)

When one studies the world-volume physics around a particular background brane config-
uration with a nonzero F,g, a general fluctuation dM,s of (5.23) then has a Lagrangian
containing terms of the schematic form

V—det M(M~'---M~Y6M---6M) . (5.46)

This means that not only the natural volume element is given by \/— det M, but also that
the lower indices of the different (§M ), are raised not with a metric but with (M ~1)®?
analogously to what happens in the term (5.44) of the fermionic action. The effect is that
the kinetic terms arising from the expansion of the bosonic action are not in canonical form,
just like in the fermionic case.

In this section, we will explore the geometry characterizing the theory that lives on
the world-volume of the Dp-brane in more detail. We will from now on consider the dy-
namics of the brane around some classical configuration and use the condition (5.35) to fix
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the world-volume reparametrization invariance. Furthermore, we will always consider the
(bosonic) fields as evaluated at their classical value and write the contribution coming from
the dynamical fluctuations explicitly.

In the first subsection 5.5.1, we focus on the bosonic part of the full action. We show
how one can obtain an action in canonical form by deforming the world-volume geometry.
In the following subsection 5.5.2, we also obtain the fermionic action in canonical form by
writing it in terms of this deformed geometry.

5.5.1 The world-volume geometry

We will start our study of the world-volume geometry by first looking at the bosonic part
of the action. As we will eventually work with fermions, it is convenient to define the
deformed theory in terms of the vielbein instead of the metric. In particular, since we will
work around some fixed classical configuration, we can restrict to the class of adapted co-
vielbeine e = (e, em) such that P[e®™] = 0, introduced previously. The presence of a
world-volume field F, naturally selects a subclass of world-volume vielbeine e such that?:

[(p=1)/2]
F =tanh¢g e2 A el + Z tan ¢, €= A 2L (5.47)

r=1

This form is no longer invariant under the full world-volume SO(1,p) symmetry but only
preserves a residual SO(1, 1) x [SO(2)]l(P=1)/2] symmetry. This decomposition has been used
in [129] to write the world-volume chiral operators (5.16) and (5.17) (up to a sign) in a nice
form. We will then show that the effect of the field F can be reabsorbed in a non-isotropic
deformation of the world-volume metric.

Let us first make a preliminary observation. If we define:

X2 =Fl, (5.48)

then the action of the matrix (14 X) can be seen as the product of a rotation A € SO(1, 1) x
[SO(2)]((P=1)/2] and an operator T' defined as:
T=vV1-X2 |, A=(01+X)T". (5.49)

These properties can be immediately understood by writing A and T in our preferred vielbein
satisfying (5.47):

1
cosh ¢g (1) 0 0
0 cosh ¢o ? 0
T, = 0 0 =& (1) , (5.50)
0 0 0 5

3 Here and in the following, we often do not write explicitly the pull-back symbol P[.] and our notation
does not distinguish between the world-volume vielbein and the e2 belonging to the target space vielbein.
The resolution of these ambiguities should be clear from the context.



CHAPTER 5. DIRAC ACTIONS FOR D-BRANES IN FLUX

120 BACKGROUNDS
and
cosh ¢y sinh ¢g 0 0
sinh ¢y cosh ¢g 0 0 .
AP = 0 0 cos¢py  singy ... ) (5.51)

0 0 —singy cos @1

Using the matrix T, we can define a new non-isotropically deformed vielbein
e = elTyp (5.52)
and consequently a deformed metric
Gap = Napélés . (5.53)
The deformed metric is then related to the original one and F,3 by
Gap = Gas = Faryd" Fos - (5.54)
Writing the natural volume element entering the action in the form:

v—det g
det(1+ X))’

V/—det(g + F) = /—detgdet(1 + X) = (5.55)

one is led to the interpretation that we now have a world-volume theory defined in a deformed
string frame with a standard volume element /—det g, and a coupling to a world-volume
rescaled dilaton ®:

e = e®\/det(1 + X) . (5.56)

Let us now show that one can rewrite the bosonic action in a canonical form. Note that
the matrix (M ~1)*? entering the general expansion (5.46) takes the form:

(M~1)P = gof — Fol (5.57)

SO

where §°? is the inverse of Jas and Fob = egégX 28 In the deformed theory, the inverse

metric §*° thus separates from the contribution given by FB which can be directly iden-
tified as a “deformed” version of the background world-volume field strength. Then, when
formulated in terms of the new deformed geometry, the kinetic terms come in a canonical
form. The effect of a non-zero background F,s can not be completely reabsorbed in a de-
formation of the metric. Indeed, the Fob appearing in (5.57) adds other couplings in the
expansion (5.46), involving also derivatives of the bosonic world-volume fields, but since Fob
is antisymmetric, these are different in nature from kinetic terms and can be interpreted as
generalized electromagnetic couplings. In the following section, we will see how the defor-
mation of the world-volume geometry introduced here will allow us to isolate a kinetic term,
writing the fermionic action as a standard Dirac action plus mass terms coming from the
embedding in a curved background with fluxes and from the world-volume background field
strength Fo 3.
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5.5.2 A canonical fermionic action

We will now reconsider the fermionic action (5.21) and rewrite it in terms of the deformed
vielbein (5.52) defined in the previous section. Following [129], we write the chiral operators
(5.8) and (5.10) that enter the fermionic action in the form:

Ip, = eTao ) e~ Rlao (5.58)

We have defined the operators

pt+2
0y _ Fg)%(l—‘(w))T for type IIA | (5.50)
P | Do) (03) % for type TTB :
and
1 af
R = Yel™ (5.60)
is a Lorentz generator expressed easily in our preferred vielbein in the following way:
[(p—1)/2]
Yoy =docnet+ Y7 gped nett (5.61)
r=1

Let us observe that Rf‘(lo) generates on each irreducible component of a type IIA or
IIB spinor a Lorentz transformation belonging to the unbroken SO(1,1) x [SO(2)]lP=1)/2],
but also that it rotates the two irreducible components of a type ITA/IIB spinor in opposite
directions. We can then define, for both type ITA and IIB, a new “rotated” fermionic field
(recalling that the two irreducible components are rotated in opposite directions)?:

0 = efilang, (5.62)

This sort of generalized chiral rotation is naturally accompanied by the following redefinition
of the operators entering the fermionic action:

D&o) _ eRf(m) D&o)efRf(m) 7

Wa = ein(lU)WaefRf“O) ,

AM  — =R A(D),~RT(0) 7

A® eflao A@=Rlao) (5.63)

where the operators involved are defined in (2.131,2.132).
In the above redefinition, it can be useful to write the operator W,,, entering the action,
in terms of a new operator W defined by the relation W,,, = WT,,, and then

W = e Rlaojyehlao (5.64)

Then, it is possible to write the fermionic action (5.21) in a canonical form. Indeed, using
the fact that

e Tae® = AT, (5.65)

4 A similar rotation of the fermions accompanied by a vielbein redefinition of the kind given in (5.52) was
discussed in [131, 132].
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and that, for example,
Alef = (1+X)Pef (5.66)

it is possible to show that the action (5.21) can be written in the form:

Sy = o /dp+1§e—‘5\/Tetg{é(1 — 9 (fDO — AW)e
+O(1 — TSV e 2800 (597[(1 + F10)X) Y, T Wl — A<2>)®}, (5.67)
where
Fo=éals, D =gTy. (5.68)

Using the equations (5.65) and (5.66), it is possible to write the explicit form of the new
operators defined in (5.63) and (5.64). To do this, let us first of all extend the operator X,2
to an operator acting on all the indices, by simply putting all the remaining components
equal to zero. This redefinition can then be extended in an obvious way to all the other
operators constructed from Xgﬁ. Then, for example, we can define the complete deformed
vielbein érr, by simply generalizing the definition (5.52) into the definition ém7,2. Of
course, these extended redefinitions only make sense when restricted to the world-volume of
the brane. The operators A and A(® are defined in terms of operators 7 of the form:

T ~ Toym,, T2 (5.69)

Then, it is possible to see that the corresponding “hatted” operators have the form?®:

T ~ Ty L™ (L4 T 00) X)) ¥ (14 Ty X - (5.70)

One can do a completely analogous computation for W, where however in this case 1:‘(10) in
(5.70) is replaced by —f(lo)- Note further that:

1 (=)L (10y)? X X
Z 7' o
] 1o Q2g—1Q2g
v14+ X 7 q'29

e 2Rlao0) — e B (5.71)

and that the operator I‘](DOZ)) entering the definition of I‘](DOZ))/ in (5.59) can be written in terms

of the deformed quantities by simply adding “hats” everywhere in the definition (5.14).
It remains to rewrite f‘o‘f)&o) in terms of the deformed variables. The contribution by the
B field deforms analogous to (5.70). The pull-back of the target space covariant derivative

can be rewritten as:
. A 1. . 1 .
Vo = I'Dy+ Zrasaﬂrﬁ - §X,,BKQ5@ Y Ay

1 . Lo o oo
+§§aﬁKagﬂ Lo + 0" Aa™" i - (5.72)

5 Since XoB = éa&éﬁﬁ){gﬁ = GQQEB’BXQE = X.?, the objects in (5.67) and (5.70) are unambiguously
defined. n n
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In this expression, we have made use of the splitting of the pull-backed target space connec-
tion into a world-volume connection plus a part related to the extrinsic curvature and the
normal bundle connection, introduced in (5.38) and (5.39). The normal bundle connection
and extrinsic curvature are given by the embedding in the target space, and as such they
do not depend on the world-volume geometry. As we want to find the kinetic term in a
canonical form, we needed to introduce in (5.72) a covariant derivative D with respect to
the deformed frame, since this is the frame in which the world-volume geometry is naturally
described. This new derivative is defined using the connection @ of the deformed vielbein,
which is related to the original world-volume connection (wo®? = Q,%%) by:

wodB = 5,08 4 B8 (5.73)
with,
Bo2 = (14 T(g)X)ele {(1 + T 0 X) DX (14 Tagy X)
) . . . s -
—(1—X2)DBXL|E] 2T (10) — [DQX(1+F(10)X) U Tae, (574

where we have raised and lowered the flat indices by using 1,4 and its inverse as usual. This

discussion makes explicit that the operator faDEf)) contains the covariant derivative with

respect to the deformed metric together with some covariant couplings of the world-volume
fields to the background. If one takes the world-volume geometry as given by the deformed
metric (5.53), it can be seen that (5.67) consists of a canonical Dirac operator together with
some additional interactions, given by the embedding and the fluxes.

Let us next consider the effect of gauge fixing kappa-symmetry. We impose the gauge
fixing condition:

0 =100, (5.75)

which simply means that the second component of © is equal to zero. It can then easily be
seen that the action (5.67) written in terms of the first component of © (which we indicate
again with ©) reduces to:

SI/D(Z_‘) — %/d”“ge—‘f’\/Tetg{é(faﬁgm —A(l))@
—OI55 (7 [(1+ X)), T, — A®)e . (5.76)

We conclude this section by writing the linearized supersymmetry transformation rules
(5.37) in the new deformed variables:

A _ o~ 1 = A
0:0 = TV ax — Xo Koy ™0nl X = 5 (¢#™ Haap + fas) "X ,
5)((25@ = XF@@ ) R
SyAa = XLaO + BamepxI™o (5.77)

where xy = efle; and the scalar fields ¢™ describe the brane fluctuations in the normal
directions and f,p is the dynamical world-volume field strength. Note that the world-
volume part of these transformations takes the usual form valid when the world-volume
field strength F,p is vanishing, while the terms in (5.77) involving explicitly B,y and its
field strength H(s), are non-zero only if some of the off-diagonal components BameZ: of Ba)
are non-vanishing.
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5.6 Conclusion

The main results of this chapter are the transparent formulae for the quadratic fermionic
part of the Dp-brane actions on any supergravity background including possible fluxes. In
particular, (5.21) gives this parametrization and k-symmetric action, and (5.76) gives a
convenient, k-fixed form.

We started by re-expressing the results of [8, 9] by re-organizing terms in a more compact
notation. We clarified the underlying geometric structure, using the tensor ]\7[&[3, see (5.22),
in both types ITA and IIB. The formulation makes the invariance under T-duality easy to
be verified. Using a similar doublet notation for IIA and IIB, the x-gauge-fixing can be
discussed uniformly. The preserved supersymmetry transformations after gauge-fixing the
k-symmetry and world-volume reparametrizations are obtained in a linearized form. In order
to clarify the world-volume geometry, we have identified a new natural world-volume vielbein
such that the measure of integration is its determinant and all kinetic terms for the fermions
are recollected in the standard Dirac operator. Also the supersymmetry transformations in
this new metric are obtained, and the explicit form of the terms entering the x-fixed action
is discussed.

These new results can be useful for any kind of quantum calculation on the brane, in
particular for the understanding of nonperturbative effects in string theory. The results can
also be useful for constructing effective actions for string configurations where D-branes are
involved.



Appendix A

Simple Lie algebras

This appendix collects some facts on simple Lie algebras. We start by giving some basic
definitions on Lie algebras. We then discuss the structure of complex simple Lie algebras
and their classification. Finally, we discuss some aspects of real forms of Lie algebras, cosets,
symmetric spaces and Iwasawa decompositions. The goal of this appendix is to present a
short summary of material that is frequently used in this thesis. It is by no means meant to
offer a complete treatment. A very good reference concerning the material presented here
is given by [76, 133].

A.1 Basic definitions

A Lie algebra G is a (finite-dimensional) vector space over a field K, equipped with a bilinear
product [,] (called commutator):

[]:GxG—G, (A1)
satisfying
1. antisymmetry : [a,b] = —[b,a], Va,be€ G,
2. the Jacobi identity : [a, [b, c]] + [b, [c,a]] + [¢, [a,b]] =0, Va,b,ceG.

We will always consider cases in which K = R, C, i.e., we will restrict to real, respectively
complex Lie algebras. A Lie algebra G is called abelian when [G,G] = 0. Introducing a
basis { X1, ..., X, }, the commutator of two basis elements can be expanded in this basis:

(X0, X1 = fi" X (A.2)
k

The X; are called generators of the algebra, while the constants fijk are denoted as structure
constants. They satisfy:

1. antisymmetry : fi;* = —f;;",

2. Jacobi identity : fi;;* frne' =0 .

125
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A representation of a Lie algebra is a homomorphism ¢ from G to M(V), where M (V)
denotes the set of linear transformations of a vector space V', such that:

(X, Y]) = ¢(X)p(Y) = o(Y)o(X), VXY €G. (A.3)
The adjoint representation ad is defined by taking V = G:
ad : XeG—adx e M(G) : adxY =[X,Y] X, Y eG. (A4)

In terms of this adjoint representation, one can define a scalar product (,) on the algebra
as follows:

(X,Y) = Tr(adxady) VX,Y €G, (A.5)

ie., (X,Y) is given by the trace of the product of the matrices representing X and Y in
the adjoint representation. This inner product is called the Killing form; taking the inner
product of the generators leads to a metric g;;, the so-called Cartan metric':

9i = (Xi, X;5) = far f" . (A.6)

As one can always choose the structure constants to be real, g;; is real and symmetric.

A (Lie) subalgebra H of G is a vector subspace of G that is itself a Lie algebra, namely
[H,H] C H. . An ideal I of G is a subalgebra of G satisfying [I,G] C L

A Lie algebra G is called simple if it is nonabelian and the only ideals are G and the
trivial subalgebra containing only the null vector. A Lie algebra is called semi-simple if it
has no abelian ideals. An important theorem due to Cartan states that a Lie algebra is
semi-simple if and only if the Cartan metric is non-singular, det(g;;) # 0. This is equivalent
to saying that the Killing form is non-degenerate, i.e., (X, Y)=0VY e G= X =0. A
solvable algebra is a Lie algebra such that the series:

G9 =g, ¢ =[6O,c"), ..., ¢®W =[Gk gk, (A7)

stops for some value of k. The importance of these definitions lies in the fact that they
provide building blocks for Lie algebras. One can show that every semi-simple Lie algebra
can be decomposed into the direct sum of its simple ideals. A theorem due to Levi states
that every Lie algebra can be decomposed into the direct sum of simple Lie algebras and
solvable algebras.

A.2 Structure of simple Lie algebras

In the previous section, we have mentioned the Levi theorem that implies that simple Lie
algebras play a prominent role in Lie algebra theory, as they are building blocks for more
general Lie algebras. In this section, we will elaborate more on the structure of simple Lie
algebras.

1 In principle, we are considering non-abelian Lie algebras here.
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A.2.1 The Cartan-Weyl basis and roots

In this section, we will only treat simple complex Lie algebras. In the so-called Cartan- Weyl
basis, the generators of the algebra are constructed as follows. First, one finds a maximal
set of commuting generators H;, i = 1,...,r, such that ady, is semi-simple for all 4 2. This
set of generators is called the Cartan subalgebra of G (CSAg). The rank of G is then defined
as the dimension r of this Cartan subalgebra.

Suppose we have a representation R of the algebra that associates to every element X an
n x n-matrix R(X). Since the matrices R(H;) commute, we can simultaneously diagonalize
them. Denoting the eigenvectors by |u >, the eigenvalues are given by u’:

Hilp >= p'|p > (A-8)
The r-component vector (u!,---,u") is called a weight vector (or weight) of the represen-
tation R.

The weight vectors of the adjoint representation are called the roots (or root vectors) of
the algebra G. The eigenvectors that correspond to non-zero roots a are denoted by E¢
and are often called step operators (often also denoted as roots). One thus has:

adg, B“ = [H;, E*] = o'E*, (A.9)

where o are the components of the root a. The set of all roots of G is then called the
root system of G. The root system is denoted as Ag. One can then make the following
root-decomposition of the algebras:

G=CSAc @ Gu, Gu={X€G|[H;,X]=a'X VH,; € CSAg}, (A.10)
aEAg

where the direct sums denote direct sums of vector spaces. The root system Ag has the
following properties:

1. Ifa e A@, then —a € Ag.
2. If o € Ag, then the only multiples of « in the root system are 0 and +a.
3. a=0< G, = CSAG.

4. If o, 8 and « + B are roots, then [Gq, G| C Gaspg. If @, 3 are roots but a + 3 is no
root, then [G,,Gg] = 0.

5. The eigenspaces G, for a # 0 are one-dimensional.

6. If o, 8 € Ag and a + 3 # 0, then the Killing form vanishes on G, x Gg.

The upshot of all this is that the commutators of the generators in the Cartan-Weyl basis
can be summarized as:

[H’UHJ] = Oa
[Hi, E*] = o'E”~,
[E*E~*] = o'Hj,
[E*,EP] = NogE*t7, a+pB#0, a+B€Ag, (A.11)

2 An endomorphism is called semi-simple if in a suitable basis it can be expressed by means of a diagonal
matrix.
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while the scalar products of these generators are given by:

(Hi,H;) = 045,
(H;, %) = 0,
(E*,E™) = 1,
(E“,EP) = o0, a+B#0. (A.12)

A.2.2 Simple roots, the Cartan matrix and Dynkin diagrams

Using a fixed basis {Hj, ..., H.} of CSAg, one can introduce an ordering in Ag. A root
« is called positive if its first non-zero component is greater than zero. The set of positive
roots is then denoted as AE. A root is then called negative when it is not positive.

A root is called simple if it is positive and if it can not be written as the sum of two
other positive roots. The number of simple roots is given by the rank of the Lie algebra.
We will denote the simple roots by oy, i = 1,...,r 3. The simple roots obey the following
properties:

1. The simple roots «; are linearly independent and span the dual of CSAg.
2. For a4, o simple roots : ;- a; <0 .
3. If oy; and o ; are simple roots, then a; — ¢  is not a root.

4. Every positive root is a sum of simple roots with nonnegative integer coefficients :
Va € AE Ta= Zl n;a; with n; nonnegative integers.

The scalar product used in property 2 is simply defined as a; - o; =, al- a;?. In terms of
the simple roots, one can define an r X r-matrix A;;, the so-called Cartan matriz as follows:

@i Qj

Aij=2

(A.13)

aj-aj

The following properties of this Cartan matrix are worth noting:
1. Aj =2 and if ¢ # j then A;; <0.
2. A;; is an integer and if ¢ # j then A;; = 0,—1, -2 or —3.
3. The determinant of A;; is positive?.

The Cartan matrix can alternatively be represented in a graphical way. To every Cartan
matrix, one can associate a diagram consisting of nodes connected by lines in the following
way. To every simple root «;, one associates a node in the diagram. The number of lines
between the nodes corresponding to «o; and «; then equals A;;A4;;. From the properties
of the roots, it then follows that the number of lines is minimally 0, if a; - a; = 0, and
maximally 3. If A;;A;; > 1, the simple roots «; and «; have different lengths, in which case
one draws an arrow on the lines connecting the nodes of o; and o, pointing in the direction

3 Note that the simple roots are denoted with a lower index. This should not be confused with the
components of the roots, which carry an upper index.
4 This is true for finite-dimensional algebras.
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of the shorter root. A diagram obtained from the Cartan matrix in this way is called a
Dynkin diagram. Given a Dynkin diagram, it is possible to reconstruct the Cartan matrix.

The importance of the simple roots and the Cartan matrix lies in the fact that from the
simple roots the full set of roots can be reconstructed. The simple roots on the other hand
can be reconstructed from the Cartan matrix. The Cartan matrix thus specifies the complete
commutation relations of the algebra. This point can be made more manifest by going to
the so-called Chevalley basis. To each simple root a;, one associates three generators:

. . i H
ei=E%, fi=po, p =297 (A.14)
(67N 07
The commutation relations of these generators are then given by®:
[hiv hj] = 0,
[hie’] = Ajiel,
[, 7] = diihy. (A.15)

The remaining step operators can then be obtained by repeatedly taking commutators of
these basic generators, subject to the so-called Serre relations:

[ad:]'" el = 0,
I:a,dfi} o= 0. (A.16)
In the above equations, the power of (1—A;;) indicates the number of nestings in the commu-
tator, for instance [ad.i]* ¢/ = [e?, [e’,e7]]. That the Serre relations and the commutators
(A.15) can be written in terms of the Cartan matrix shows that the Cartan matrix indeed
contains all information on the structure of G.

Classifying complex simple Lie algebras thus boils down to classifying simple root systems
or equivalently classifying Cartan matrices.

A.2.3 Classification

The possible Cartan matrices and corresponding Dynkin diagrams turn out to be highly
restricted.
It turns out that there are four infinite series of Lie algebras:

1. the A, series containing the S¢(n + 1,C) algebras.
2. the B,, series containing the SO(2n + 1, C) algebras.
3. the C,, series containing the Sp(n, C) algebras.

4. the D,, series containing the SO(2n, C) algebras.

Besides these so-called classical algebras, it turns out that 5 extra Dynkin diagrams are
allowed, corresponding to the so-called exceptional algebras. These five exceptional algebras
are denoted as Fg, E7, Fs, Fy and Gs.

5 We have used a different normalization for the E®i generators, with respect to (A.11).
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A.3 Real forms

In the previous section, we have discussed the classification of complex simple Lie algebras.
The procedure of determining the structure of Lie algebras in terms of eigenvalue subspaces
of the Cartan subalgebra in fact requires the field of the algebra to be C. A natural question
is whether one can also classify real simple algebras. The answer to this is contained in the
theory of real forms. We will first define the notion of a real form of a complex algebra and
illustrate this with some examples. Next, we will introduce some important decompositions
of real semi-simple algebras, that are used in this thesis.

A.3.1 Definitions and examples

Let us start by recalling some definitions. Let V be a vector space over R. VC := V @ C
is called the complexification of V. Note that dimgV = dimcVC. In other words, the
complexification of a real vector space is obtained by multiplying vectors with complex
numbers instead of real numbers. Let W be a vector space over C. Restricting the definition
of scalar multiplication to R leads to a vector space W¥ over R and dime¢W = 1/2 dimg WE.
If {wy,...,w,} is a basis of W, a basis of W¥ is obtained as {wy, ..., w,,iwi,...,iw,}.

Let G be a complex Lie algebra. A real form of G is a subalgebra G, of the real Lie
algebra G® such that:

G® =G, 9iG,, (A.17)

where the direct sum should be interpreted as a direct sum of vector spaces. The real
forms of a complex algebra are thus such that their complexification is equal to the original
complex algebra. A given complex algebra in general admits more then one real form. The
importance of the notion of a real form lies in the fact that classifying all real forms of simple
complex Lie algebras gives a classification of all simple real Lie algebras.

Two special real forms can always be distinguished, namely the split real form and the
compact real form. The split real form (also called normal real form) of the complex algebra

- c;H; + ca B, Ci,Ccq € C (A.18)
St 3

aEAg

is obtained by restricting the complex coefficients to real coefficients. As all structure con-
stants are real numbers, this normal real form is closed under commutation. In terms of the
basis { H;, E“}, the Cartan metric has the following form:

1 H,

1 H,
g= 1 B - (A.19)

1 E—«

1 EP

1 E-8
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By going to the new basis { H;, LQ(EO‘ +E7%), %(EO‘ — E~)}, this metric is diagonalized:

1 H,

1 HT’
(E*+E~)/vV2 - (A.20)
(E* = E~%)/V2
1 (E° + E=9)/V2
-1/ (B°—EP)/V2
The compact real form can be obtained from the split real form by performing the so-called
Weyl unitary trick. This means that one multiplies the generators of the split form with
factors of i such that the Cartan metric becomes minus the identity. In other words, the
compact real form is given by linear combinations with real coefficients of the following
generators:

i 1
H,, — (B + E~%), —(E* — B~ } A21
{i;, ) 75 ) (A21)
By explicit computation, one can check that these generators close under commutation.
The complexification of both the normal and the compact real form is then indeed given by
(A.18). Note that for simple Lie groups, it holds that the group is compact if and only if
the Cartan metric on its Lie algebra is negative definite.

A.3.2 Cartan decomposition

The examples of the normal and compact real forms have shown that real forms are related
via the Weyl unitary trick, i.e., by multiplying certain generators with the imaginary unit.
One can also restate this example as follows. On the compact real form, one can consider
a notion of complex conjugation, such that generators of type (1/v/2)(E® — E~%) are real
and have eigenvalue +1 under this complex conjugation, while generators of type iH; and
(i/v2)(E®+ E~®) are purely imaginary and have eigenvalue —1 under complex conjugation.
The normal real form can then be obtained from the compact form by applying the Weyl
unitary trick on the subspace of purely imaginary generators.

The lesson from this is that new real forms can be obtained from the compact real form by
defining a suitable notion of complex conjugation. Such a complex conjugation corresponds
to an involutive automorphism o of the Lie algebra, namely an automorphism o satisfying:

o?=1. (A.22)

An involutive automorphism then has eigenvalues +1. Let G be a compact simple Lie
algebra. Given such an involution o, one can decompose G into its eigenspaces of o:

G=HoK, (A.23)

where H corresponds to the eigenspace with eigenvalue +1, while K is the eigenspace corre-
sponding to eigenvalue —1. The subspaces H and K are then orthogonal:

(H,K)=0. (A.24)
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One can furthermore also show that H is closed under commutation and hence forms a
subalgebra. In fact, the following commutation relations can be seen to hold:

[]HL H] = H,
[]HL K] = K,
[K, K] = H. (A.25)

Performing the Weyl unitary trick on the subspace K leads to another algebra G*:
G*'=HoiK. (A.26)

This new algebra is closed under commutation with real structure constants. Unless H = G,
this new algebra is not compact.

The decomposition (A.26) is called the Cartan decomposition. The subspace H is then
the maximal compact subalgebra of G*. For instance, for the normal real form, the maximal
compact subalgebra is spanned by the generators of type (1/v/2)(E* — E~%).

By this construction, it is possible to associate a non-compact real form G* with the
compact real form through the involution o. One can also show that as ¢ runs through all
possible involutive automorphisms of the compact real form G, the corresponding G* runs
through all real forms associated with the complex semi-simple algebra of which G is the
compact form. In this way, one can classify all possible real forms of complex semi-simple
algebras. The full classification is shown in table (A.1)S.

A.3.3 Cosets and symmetric spaces

Given a semi-simple Lie group G 7 and its maximal compact subgroup H, one can define
an equivalence relation in G. Two elements g and ¢’ in G are equivalent when they can be
connected by right multiplication with an element of H:

g~g if g=gh, hecH. (A.27)

The corresponding equivalence class is called a left coset. The set of all left cosets then
constitutes the coset space G/H.

Each coset can be characterized by a coset representative L(¢), labelled by as many
coordinates ¢° as needed. One supposes that each coset contains exactly one of the L(¢),
such that the coset representatives give a decent parametrization of the coset space. Once
a representative L(¢) is chosen, every group element g can be decomposed as:

g=L(¢)h, heH. (A.28)

Multiplying a coset representative from the left with an arbitrary group element g of G
brings one to another coset:

gL(¢) = L(¢)h, (A.29)

6 USp(2N), SU*(2N), SO*(2N) can be defined as groups of matrices over the quaternions H. One has
that USp(2N) = U(N, H), SO*(2N) = O(N,H). SU*(2N) = S¢(N, H), where S¢(N,H) consists of linear
transformations that have a determinant with modulus 1.

7 Note that we will often apply the same terminology to the Lie algebra G and the group G that is generated
by it via the exponential mapping.
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Compact form | Real form Maximal compact subalgebra
SU(n) SU(p,n — p) SU(p) x SU(n—p) x U(1l), 1<p<n
Se(n) SO(n)
SU(2n) SU*(2n) USp(2n)
SO(n SO(p,n —p) SO(p) x SO(n —p)
SO(2n) SO*(2n) U(n)
USp(2n) Sp(2n) U(n)
USp(2p, 2n — 2p) | USp(2p) x USp(2n — 2p)
Ga,_14 G2, 14 Ga,_14
G272 SU(2) X SU(2)
Fy 52 Fy 52 Fy 52
F47,20 SO(Q)
F474 USp(G) X SU(Q)
Es,—7s Es,—7s Es,—7s
Es,—26 Fy 50
E67_14 SO(lO) X 80(2)
E672 SU(6) X SU(2)
Es.6 USp(8)
E7 133 E7 133 E7 133
Eq o5 Eg, 78 x SO(2)
E77_5 80(12) X SU(2)
Erq SU(8)
Eg, 248 Esg, 248 Eg, 248
Eg _o4 E7 133 x SU(2)
Egg SO(16)

Table A.1 Classification of real forms of complex simple algebras. The first column indi-
cates the compact real form. The second column denotes the several real forms that can be
constructed from this compact form. The third column then contains the maximal compact
subalgebra. The second number in subscript in the notation for the real forms of the excep-
tional algebras denotes the number of non-compact minus the number of compact generators.

where in general ¢’ and h depend on ¢ and g. The decomposition of the (real) Lie algebra
G of G in the algebra H of H and the orthogonal complement K:

G=Heak, (A.30)
leads to a useful coset representative:
L = exp(K). (A.31)

These coset manifolds are homogeneous spaces, i.e., any two points can be connected via
an isometry transformation. The isometry group of the space is then given by G, while H
corresponds to the group that leaves a point fixed, the so-called isotropy group.
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Given a Lie algebra G, a subalgebra H such that an orthogonal decomposition (A.23)
holds, together with the commutation relations (A.25), is called a symmetric subalgebra.
The associated Lie group H is similarly called a symmetric subgroup. The coset space G/H
that one can associate to this is then also called a symmetric space®. The cosets found
by dividing a real form of a semi-simple algebra by its maximal compact subgroup thus
correspond to symmetric spaces.

The metric on a symmetric space can be found as follows. Using the coset representative
L(¢), one can define the one-form L~'dL. This one-form is Lie algebra valued and can

according to (A.30) be decomposed as follows:
L 'dL=E+Q, (A.32)

where F is a one-form taking values in K, while Q takes values in H. Note that L~'dL is
invariant under left multiplication of L with a ¢-independent element g € G. Under right
multiplication of L with local elements i € H, one has:

E — h7'Eh,
Q — h'Qh+h"tdh. (A.33)

Denoting the generators of K as K 4, F can be written as:
E=FE!¢'K,. (A.34)

Working in a specific matrix representation of the algebra, the metric on G/H is then
constructed as follows:

ds® = Tr[E?] = Ef'napEPdé'dd’ ,  nap ~ Tr(KaKp). (A.35)

Note that for the algebras that we consider, nap is proportional to the Cartan-Killing metric
restricted to K. One can thus interpret E as a vielbein one-form on the manifold, where the
flat metric is proportional to the Cartan-Killing metric restricted to K.

Note that sometimes one can give an alternative formula for the metric. Let us for
instance consider the cosets S ¢(n,R)/ SO(n). If we work in the fundamental representation,
the Lie algebra of HL = SO(n) is spanned by the anti-symmetric matrices. We thus have:

LYdL + (L7'dL)T LYdL — (L71dL)T

E= 5 , Q= 5 (A.36)
One then has

Tr[E?] = %Tr [L*ldLLfldL + LML(L )T (A.37)
Defining M = LLT, one can see that this expression is also given by

Tr{E?] = —i [amdm]. (A.38)

This form of the metric is for instance used in (4.9) to write down the kinetic terms of the
scalar fields in N = 8 supergravity in a suitable form.

8 Strictly speaking, symmetric spaces are spaces for which the covariant derivative of the Riemann curvature
tensor is zero. One can however show that this leads to coset spaces obtained by dividing a Lie group by
a symmetric subgroup.
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A.3.4 The Iwasawa decomposition

In the previous subsection, we saw how the Cartan decomposition leads to a specific para-
metrization of cosets G/H. There exists a different parametrization of cosets which is often
very useful. This is based on the fact that one can alternatively decompose an element of
a semi-simple Lie group G in a unique way as the product of an element of the maximal
compact subgroup H and an element of a solvable group S:

G=HS. (A.39)

This decomposition is known as the Iwasawa decomposition. At the level of the Lie algebra
G of G, this decomposition is given by

G=H®S, (A.40)

where H is the maximal compact subalgebra and S is a solvable Lie algebra. Note that S
is a subalgebra of G, in contrast to the subspace K appearing in the Cartan decomposition.
The solvable algebra S then determines the coset G/H as follows:

G

= = S). A4l
= = exp(S) (A41)
Let us now outline how one can construct the solvable algebra S explicitly. Considering the
Cartan decomposition of a non-compact algebra G, one starts by choosing a maximal set
Hx of commuting elements of K. Choosing a basis {Hi, ..., H,} for Hk, one can then define
the following subspaces of G:

Gr={X€eG|[H;,X]=XNX, NeR, VH; € Hx} . (A.42)

In this way, A = (A!,...,\") form 7-component vectors that, when non-zero, are called
restricted roots. Note that now the dimension of G, can be bigger than 1. Denoting the set
of restricted roots by X, one can split it in a set of positive restricted roots ¥+ and negative
restricted roots X~ in the same way as was done for ordinary roots. The solvable algebra S
is then given by:

S="MHk €P Ga. (A.43)

rext

The parametrization (A.41) is often called the solvable parametrization of the coset.






Appendix B

Properties of real Clifford
algebras

In this appendix, we will recall some properties of real Clifford algebras. Some reviews
are in [134, 135]. We will restrict to Clifford algebras with positive signature. The (¢ + 1)-
dimensional real Clifford algebra C(¢+1,0) is generated by real matrices v, (¢ =1,---,g+1)
satisfying:

VYo + VoY = 20, 1. (B.1)

The main properties are given in table B.1, which we will now further explain.

Table B.1 Real Clifford algebras C(q+ 1,0), the dimension Dyy1 of their irreducible repre-
sentations, and the metric preserving group in the centralizer of the Clifford algebra in the
(P + P)Dgy1-dimensional representation. Here F(n) stands for n x n matrices with entries

in the field F.

q g+1 Clg+1,0) Dyt1 | (P, P)

-1 0 R 1 SO(P)

0 1 RO R 1 SO(P) x SO(P)

1 2 R(2) 2 SO(P)

2 3 C(2) 4 U(P)

3 4 H(2) 8 U(P,H) = USp(2P)

4 5 H(2) @ H(2) 8 USp(2P) x USp(2P)

5 6 H(4) 16 U(P,H) = USp(2P)

6 7 C(8) 16 U(P)

7 8 R(16) 16 | SO(P)
n+7|n+8| R(16)xC(n,0) | 16 D,, | asforg+1=mn

When ¢+1=0,1,2 (mod 8), the matrices of the complex Clifford algebra can be chosen
to be real. So in these cases, the dimension of an irreducible representation is given by
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the dimension of the corresponding complex representation. If this occurs, the real Clifford
algebra is said to be of the normal type. In the other cases, it is possible to obtain a
real representation of dimension twice that of the complex representation. Indeed, many
representations contain only purely real or purely imaginary matrices. Real matrices of
double dimension are then obtained by considering the following matrices:

M=~*"®@ 1y if v is real, M =~*"®oy if v* is imaginary . (B.2)

Consider now a real irreducible representation of the Clifford algebra C(¢ + 1,0), given by
Dgy+1 X Dyqq-matrices vy, where Dyy; is given in table B.1. Consider a real Dyy1 X Dgq1-
matrix S satisfying:

15,7 = 0. (B.3)
According to Schur’s lemma, matrices that commute with an irreducible representation of
the Clifford algebra must form a division algebra. This leads to distinction in a normal,
almost complex and quaternionic case.

B.0.5 The normal case
As already mentioned, this occurs when

q+1=0,1,2 mod 8. (B.4)

In this case the general form of the matrices S, commuting with all y-matrices, is

S=al, (B.5)

where a is a real constant. The dimension of the irreducible representation is given by
Dyt1 = 2!, where g+1 = 2l or 21+ 1. For ¢+ 1 even this irreducible representation is unique
(up to similarity transformations), while for ¢ + 1 odd, the representations v,, and —v, are
inequivalent and constitute the 2 possible irreducible representations one can have. In this
case the product of all y-matrices is moreover given by plus or minus the identity.

B.0.6 The almost complex case

This occurs when

¢g+1=3,7 mod8. (B.6)

The irreducible representation is unique and has dimension Dy = 2/*1. The general form
of the matrices S is given by:

S=al+bJ, (B.7)

where a, b are real constants and where the real Dyy1 X Dyyi-matrix J commutes with all
~v-matrices and squares to —1. J is given by:

J=%7 Y41 (B.8)
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B.0.7 The quaternionic case
This occurs when
g+1=4,5,6 mod 8. (B.9)

The dimension of the irreducible representations is given by Dy1 = 2!+1 Tt is unique for
q + 1 even, while there exist two inequivalent irreducible representations when ¢ 4 1 is odd.
The two irreducible representations are again related to each other by a minus-sign. The
general form of the matrices S is now given by:

3
S=aol+ ) a;E;, (B.10)
j=1

where the constants ag, a; are all real. The three matrices E; commute with the y-matrices
and they satisfy a quaternion relation:

3
E;jE, = —0;,1 + Z ikl - (B.11)
=1

B.0.8 The structure of S,(P, P)

The representations of the real Clifford algebras we are working with, need not be irreducible.
If one has a reducible representation, one can choose it to be of the form

Vo = ]1p®7lifr for ¢ # 0 mod 4, (B.12)
Yo = n®~" for g=0mod4. (B.13)
where ”yjfr is an irreducible representation of the Clifford algebra, and 1 = diag(1p, —1p).

The group S, (P, P), appearing in the isometry groups of homogeneous very special spaces
is generated by all antisymmetric matrices that commute with all y-matrices. In the normal
case and when ¢ # 0 mod 4, the generators of S, (P, P) are given by:

S=A®1. (B.14)

where A is an antisymmetric P x P-matrix. When ¢ = 0 mod 4, the matrix A has to be
replaced by a matrix consisting of 2 blocks : one P x P and one P x P antisymmetric block.
In the almost complex case, the generators of S;(P, P) are of the following form:

S=A®1l, o S=B®J, (B.15)

where A, B are antisymmetric, respectively symmetric P x P-matrices. In the quaternionic
case, when ¢ # 0 mod 4, the generators of S;(P, P) are:

3
S=A®1, o S=Ba|> k|, (B.16)
j=1

where A, B are antisymmetric, respectively symmetric, P x P-matrices. Again, when
g = 0 mod 4, one should look upon A and B as (anti)symmetric matrices consisting of
(anti)symmetric P x P and P x P blocks.






Appendix C

Conventions

Throughout this work, we use the mostly plus convention for the space-time metric, i.e., the

metric has signature (—,+, -+ ,+). The Levi-Civita connection is defined by:
1
Fﬁp = 59#0(81/90;7 + 8pgal/ - 8091/;)) . (Cl)

The space-time curvature tensor is then defined by:

RVypo = 9,0t — 9,1 +TH 7 —TWI7 (C.2)

pTH VO oTrvp*

The Ricci tensor and the scalar curvature are given by:
Ry, =R upw, R=g¢""R,, . (C.3)

The Einstein equation reads:
1 2
Ruu - §gHVR =K Tuu ) (04)

where « is the gravitational coupling constant. In four space-time dimensions, it is given by
k? = 87Gx/c*, where G is Newton’s constant. These equations can be derived from the
following action:

S = /df’x(\/—_gi + ,cm) . (C.5)

2K2

The energy-momentum tensor 7}, is then defined in terms of the Lagrangian of the matter
fields £,,, as:
2 0L,
V=g ogm
Unless explicitly stated otherwise, we use units in which A = c¢ = k2 = 1.

We use the following terminology for (irreducible) spinors. In even dimensions, we can
project a spinor A on its left- or right-handed part:

T = (C.6)

1
/\L,R: 5(1:|:’}/*))\, (C?)
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where ~, denotes the product of all gamma matrices. Note that in four dimensions 7, is also
denoted as 5. The projection (C.7) is compatible with Lorentz transformations, i.e., Lorentz
transformations preserve the handedness of the spinor. A spinor of definite handedness (or
chirality) is called a Weyl spinor. It can also be possible to impose a reality condition on
the spinor:

M\ = BX\, (C.8)

where * denotes complex conjugation. This reality condition must be compatible with
Lorentz transformations, B must be unitary and A** is supposed to be equal to A. Whenever
this is possible, a spinor obeying (C.8) is called a Majorana spinor. When the condition
(C.8) respects the chiral projection (C.7), one speaks of Majorana-Weyl spinors. Whenever
the Majorana condition is not possible, it might still be possible to impose a twisted reality
condition:

(X)) = BQy M . (C.9)

This should satisfy the same consistency conditions as for Majorana spinors and €2 is an
antisymmetric matrix that satisfies QQ* = 1. Note that this condition involves multiple
spinors, as denoted by the index i. The condition (C.9) is called the symplectic Majorana
condition. We refer to [136] for more information, such as which conditions can be imposed
in specific dimensions and signatures.

We use Latin indices m,n,...=0,...,9 for 10-dimensional curved coordinates, whereas
for Dp-brane world-volume coordinates we use Greek indices a, 3,... = 0,...,p. The cor-
responding flat indices are underlined, e.g., the vielbein is given by e™ = ep‘dz™. The ten
dimensional (flat) gamma matrices are I',,; they obey:

{Ton, T} = 20 - (C.10)

Note that Clifford algebras in other dimensions obey a similar algebra. The 10-dimensional
chiral operator is I'(1gy = 99" Pulled back gamma matrices are then I'y, = I'yem0a2™.
The Levi-Civita symbol e**--@»+1 is a density, i.e., it takes values +1.

We use the standard convention for the expansion of the forms in components, i.e., a
p-form x(P) is expanded as:

1
X(p) = melmmpdxml Ao Adx™r (C.11)

Note that this differs from the conventions adopted in [8, 9], where a convention is adopted
in which the dz™ in the above expression are multiplied in the opposite order. The R-R
gauge fields C(™ are related to those used in [8, 9] by the substitution:

n(n—1)

C(7711..,mn - (_) 2 lemn ) (012)

in such a way that the associated differential forms in the two conventions are the same.
Another difference with these papers is that we have changed the definition of the charge con-
jugation matrix such that we avoid a factor i for any barred spinor. Le., we take § = i97TZ,
Complex conjugation reverses the order of spinors. The spinors we use in 10 dimensions are
real and chiral.
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Finally, we end this appendix with some comments on the double spinor notation used
from section 5.3 onwards. From the start, the spinors in type IIB are doublets. This means
that 6 stands for the 64-component spinor

(g;) , (C.13)

whose 32-component parts are both left-handed, i.e., 0; = T'(10y0; with i = 1,2. The I'
matrices do not mix with the extension index, i.e., I',,,0 stands for:

b1
(). 01
of which both components are now right-handed. In other words, the Clifford matrices in
the large space act as I';;,; ® 1. The conjugate spinor 6 is represented by:

(61 6,), (C.15)

and is from the right projected onto itself by %(1 —T10)) ® La.

For type ITA, in sections 5.2.1 and 5.4 and in the heavily-used references [8, 9] as in
many other papers, the two spinors are combined in a 32-component Majorana spinor 6 =
01 + 02, where 01 = I'(10)01 (left-handed) and 6 = —T'(10)02 (right-handed). We now define
here also the doublet spinor (C.13), where now both 32-component parts have opposite
chiralities. To obtain formulae that are similar to the IIB formulae, we use in the 64-
component representation different Clifford representations. The Clifford matrices in the
large space are represented by:

ouble 0 1—‘m

The charge conjugation matrix in the large space is taken to be C ® o1, where C is the 32 x 32
charge conjugation matrix. This implies that the conjugate spinor is:

(62 61). (C.17)

These two choices imply, e.g., that the expression 6,016 maintains its form when we go
from the 32-component notation to the 64-component notation. The matrix I'(;q) is still
represented by I'(1py ® 12, but on the doublet (C.13) it acts as 132 ® 03. Therefore 1:‘(10),
see (5.13), is represented on 6 in both ITA and I1IB as 132 ® 03. In any case it anticommutes
with the representations of the I'-matrices.






Appendix D

Nederlandse samenvatting

D.1 Snaartheorie

De natuur rondom ons is samengesteld uit een aantal elementaire deeltjes die met elkaar
interageren via vier fundamentele natuurkrachten. Twee van deze krachten zijn welbekend
uit het dagelijkse leven, met name de elektromagnetische kracht en gravitatie. De sterke en
zwakke wisselwerking, die de andere twee krachten uitmaken, zijn voornamelijk werkzaam
op subatomaire schaal. Onze beschrijving van de wereld van elementaire deeltjes en funda-
mentele wisselwerkingen is voornamelijk gebaseerd op relativistische quantumveldentheorie,
de combinatie van quantummechanica met speciale relativiteit. Met name de elektromag-
netische, sterke en zwakke wisselwerkingen blijken accuraat te kunnen worden beschreven
door quantumveldentheorieén. Dit heeft in de jaren ’70 geleid tot de ontwikkeling van het
Standaard Model van de deeltjesfysica. Het Standaard Model is een voorbeeld van een ijk-
theorie, wat betekent dat er invariantie is onder een lokale symmetriegroep. In het geval van
het Standaard Model is die ijkgroep gegeven door SU(3) x SU(2) x U(1). Verder bevat het
Standaard Model velden die geassocieerd zijn met spin-1/2 deeltjes, zoals quarks en lepto-
nen, een spin-0 Higgs boson en spin-1 ijkbosonen, die verantwoordelijk zijn voor de diverse
wisselwerkingen tussen de deeltjes.

De gravitatiekracht wordt niet beschreven in het Standaard Model. Hoewel gravita-
tie alomtegenwoordig is op grote afstandsschalen, waar Einstein’s algemene relativiteit een
bijzonder goede beschrijving geeft, hoeft men er niet echt rekening mee te houden bij het
beschrijven van deeltjesfysica-experimenten. Voor de energieén die op dit moment in deel-
tjesversnellers bereikt kunnen worden, is het zo dat de gravitatiekracht bijzonder zwak is
in vergelijking met de drie andere krachten. Het effect van gravitatie kan dus verwaarloosd
worden en men heeft dus niet echt nood aan een quantumtheorie voor de gravitatiekracht
om huidige experimentele resultaten te beschrijven. Bij zeer hoge energieén wordt er wel
verwacht dat gravitatie een belangrijke rol zal spelen. Bovendien kan men gemakkelijk situ-
aties bedenken waarin een theorie van quantumgravitatie nodig is, zoals bijvoorbeeld in het
begin van het universum of in het inwendige van zwarte gaten.

Einstein’s algemene relativiteitstheorie verzoenen met quantummechanica is echter geen
eenvoudige taak. Berekeningen in quantumveldentheorieén leveren vaak oneindig als ant-
woord op. Voor zogenaamde renormalizeerbare veldentheorieén bestaat er evenwel een pro-
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cedure, renormalizatie genaamd, die toelaat eindige resultaten te bekomen en zinvolle voor-
spellingen te doen. Het Standaard Model is een voorbeeld van zo’n renormalizeerbare theo-
rie. Indien men echter Einstein’s gravitatietheorie als veldentheorie probeert te quantiseren,
vindt men dat deze theorie niet renormalizeerbaar is. Niet-renormalizeerbaarheid is vaak
het signaal dat op een bepaalde energieschaal nieuwe fysica nodig is om fenomenen correct
te beschrijven. Voor quantumgravitatie is die energieschaal gegeven door de Planck massa:

mp; = Gy'/?, (D.1)

waarbij Gy de constante van Newton is en we in eenheden hebben gewerkt waarin A = ¢ = 1.
In dit opzicht dient Einstein’s gravitatietheorie beschouwd te worden als een lage-energie-
limiet van een meer algemene theorie die ook geldig is op en boven de Planckschaal.

De meest beloftevolle kandidaat voor een dergelijke consistente theorie van quantumgra-
vitatie is supersnaartheorie. In snaartheorie veronderstelt men dat de elementaire deeltjes
overeenstemmen met kleine, trillende snaren. Snaren kunnen open of gesloten zijn en ver-
schillende trillingswijzen van een snaar geven aanleiding tot verschillende deeltjes. Indien
men de gesloten snaar quantiseert vindt men dat het spectrum een massaloos spin-2 deeltje
bevat, dat geidentificeerd wordt als het graviton, het deeltje dat zorgt voor gravitationele
wisselwerkingen. Men kan bovendien ook massaloze spin-1 deeltjes vinden in het spectrum
van open en gesloten snaren, die verantwoordelijk kunnen zijn voor Standaard-Model-achtige
wisselwerkingen. Naast massaloze deeltjes bevat snaartheorie ook massieve deeltjes. Hun
massa’s M worden bepaald door de spanning van de snaar T":

MEaT, T——1 (D.2)
21l

waarbij we de zogenaamde Regge-parameter o hebben ingevoerd. De karakteristieke lengte
ls van een snaar is van de orde v/, De massieve toestanden van een trillende snaar hebben
dus massa’s van de orde 1/l;. Vaak neemt men aan dat die massa’s van de orde van 10'®
GeV zijn. Snaren interageren met elkaar door op te splitsen of samen te smelten. De sterkte
van deze snaarinteracties wordt bepaald door de snaarkoppelingsconstante gs. Open snaren
kunnen niet voorkomen zonder gesloten snaren, daar de eindpunten van een open snaar zich
altijd kunnen samenvoegen om een gesloten snaar te vormen. Elke consistente snaartheorie
bevat dus gesloten snaren en heeft dus een graviton in zijn deeltjesspectrum.

Een groot voordeel van snaartheorie is dat ze eindig is orde per orde in perturbatietheo-
rie. Bovendien bevat snaartheorie geen onbepaalde dimensieloze parameters. De snaarkop-
pelingsconstante bijvoorbeeld wordt bepaald door de theorie zelf en kan niet zomaar gekozen
worden. Dit is een groot verschil met het Standaard Model, dat 29 parameters bevat die
experimenteel dienen te worden bepaald. Supersnaartheorie wordt ook gekenmerkt door een
symmetrie die bosonen en fermionen uitwisselt en die supersymmetrie wordt genoemd.

Eigenlijk zijn er vijf consistente supersnaartheorieén. Dit zijn de zogenaamde ITA, 1IB,
type I, heterotische SO(32) en heterotische Es x Eg theorieén. Type I heeft SO(32) als
ijkgroep, terwijl de twee heterotische theorieén respectievelijk SO(32) en FEg x Es ijk-
groepen hebben. Alle supersnaartheorieén zijn het gemakkelijkst te formuleren in een
10-dimensionale vlakke Minkowskiruimte. De type II theorieén zijn bovendien invariant
onder 32 supersymmetrieén, terwijl de andere 16 supersymmetrieén hebben. Aangezien de
massieve toestanden zeer grote massa’s hebben, is men meestal geinteresseerd in het beschrij-
ven van de lichte (massaloze) snaarexcitaties. Hun dynamica kan worden beschreven door
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middel van lage-energie effectieve acties. Deze acties reproduceren verstrooiingsamplitudes
voor de massaloze snaardeeltjes bij lage energie. Deze effectieve acties zijn gegeven door
10-dimensionale supergravitatietheorieén, die invariant zijn onder 16 of 32 superladingen.
Deze supergravitatietheorieén vormen een supersymmetrische extensie van Einstein gravi-
tatie, zodat men bij lage energieén inderdaad een extensie van algemene relativiteitstheorie
bekomt.

Aanvankelijk dacht men dat alleen de type I theorie open en gesloten snaren bevat,
terwijl de andere theorieén geacht werden enkel gesloten snaren te beschrijven. In de jaren
90 werd echter gevonden dat type II theorieén ook open snaren kunnen bevatten. Deze
kunnen zich echter niet vrij doorheen de ruimte-tijd bewegen, maar zitten met hun uiteinden
vast aan (p + 1)-dimensionale hyperoppervlakken, die Dp-branen worden genoemd. Deze
Dp-branen blijken eveneens dynamische objecten te zijn die vrij kunnen bewegen en van
vorm kunnen veranderen. De spanning van een dergelijk Dp-braan is omgekeerd evenredig
met de snaarkoppelingsconstante : Tp, ~ 1/gs. Bij zwakke koppeling zijn D-branen dus
bijzonder zwaar. Snaartheorie is dus niet alleen een theorie van snaren maar bevat ook
niet-perturbatieve objecten als D-branen.

Hoewel aanvankelijk werd gedacht dat de vijf supersnaartheorieén allen verschillend zijn,
werd in de jaren ’90 vastgesteld dat ze in feite allemaal verbonden zijn door dualiteiten.
Verschillende theorieén blijken dus equivalent te zijn. Vaak is het zo dat berekeningen die
in een theorie moeilijk zijn, gemakkelijk blijken te zijn in de duale theorie, doordat bijvoor-
beeld gedrag bij sterke koppeling afgebeeld wordt op gedrag bij zwakke koppeling onder de
dualiteit. Een voorbeeld van zo’n snaardualiteit is gegeven door T-dualiteit. Dit betekent
dat een theorie waarin snaren bewegen in een vlakke ruimte waarin een richting gecompac-
tificeerd is als een cirkel met straal R, equivalent is aan een (mogelijk andere) theorie die
gecompactificeerd is op een cirkel met straal o//R. Op die manier kan men bijvoorbeeld
de type IIA supersnaar linken aan de IIB snaar. Een andere dualiteit is de zogenaamde
S-dualiteit, die de sterke koppelingslimiet van een snaartheorie linkt aan de zwakke koppe-
lingslimiet van een andere. De SO(32) heterotische snaar is via S-dualiteit verbonden met de
type I snaar, terwijl IIB snaartheorie zelf-duaal is onder S-dualiteit. Men heeft ook gevon-
den dat de type ITA en heterotische Eg x Fg snaartheorieén bij sterke koppeling equivalent
worden met een 11-dimensionale theorie waarover nog weinig geweten is. D-branen spelen
ook een specifieke rol in de dualiteiten. Zo kan het bijvoorbeeld gebeuren dat D-branen in
een perturbatieve beschrijving van snaartheorie overeenstemmen met fundamentele snaren
in een andere theorie. De fundamentele snaar van de heterotische SO(32) theorie wordt
onder S-dualiteit bijvoorbeeld afgebeeld op de D1-snaar van de type I theorie. Bij zwakke
koppeling is de fundamentele snaar van type II veel lichter dan de D1-braan, terwijl het
bij sterke koppeling juist andersom is. Dit toont nogmaals aan dat snaartheorie niet enkel
snaren bevat, maar dat D-branen even fundamenteel zijn als snaren. Het bestaan van de
verschillende dualiteiten heeft geleid tot het beeld dat de diverse snaartheorieén slechts ver-
schillende beschrijvingen zijn van een enkele fundamentele theorie, de zogenaamde M-theorie.
Wat M-theorie precies is, is echter nog steeds een groot mysterie.
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D.2 Realistische snaren

Hoewel supersnaren leiden tot een consistente quantumgravitatietheorie, die geldig is bij
zeer hoge energieén, stellen er zich toch nog veel problemen, die zowel van conceptuele als
meer praktische aard zijn. Een belangrijk conceptueel probleem is dat een goeie formulering
van M-theorie nog niet gekend is. Vanuit praktisch oogpunt, is het belangrijk om na te gaan
hoe de snaartheorie, die het best te formuleren is in 10 dimensies, kan gelinkt worden aan
onze vier-dimensionale realiteit. Met de komst van nieuwe deeltjesversnellers is van belang
om te zien of en hoe men uit snaartheorie voorspellingen kan bekomen over hoe de natuur
zich gedraagt bij hogere energieén dan momenteel bereikbaar zijn.

Om contact te maken met vier-dimensionele fysica veronderstelt men meestal dat 6 van
de 10 dimensies gecompactificeerd zijn. Deze vormen dan een compacte interne variéteit,
waarvan het volume voldoende klein wordt verondersteld, zodat bij lage energieén de ruimte-
tijd er effectief vier-dimensionaal uitziet. Vaak neemt men aan dat die interne variéteiten
specifiek gekozen zijn, zodat een gedeelte van de supersymmetrie gebroken is. Indien men
bijvoorbeeld een Calabi-Yau-variéteit kiest, blijkt dat slechts een vierde van de oorspronke-
lijke 32 of 16 supersymmetrieén behouden blijft. Compactificatie van snaartheorieén leidt
tot massaloze toestanden en toestanden die zeer massief zijn. De dynamica van de massaloze
toestanden bij lage energie wordt dan beschreven door een vier-dimensionale supergravita-
tietheorie. In het geval van Calabi-Yau-compactificaties bijvoorbeeld zijn die invariant onder
vier of acht superladingen. Aanvankelijk werd veel gewerkt aan Calabi-Yau-compactificaties
van de Eg x Eg heterotische snaartheorie, aangezien die leiden tot vier-dimensionale theorieén
die het Standaard Model kunnen bevatten. Dankzij de ontdekking van D-branen, realiseerde
men zich dat ook type II theorieén kunnen leiden tot interessante vier-dimensionale fysica.
De dynamica van open snaren die eindigen op een Dp-braan wordt beschreven door een U(1)
ijktheorie, die leeft op het (p+ 1)-dimensionale wereldvolume van de braan. In geval men N
opeengepakte D-branen beschouwt, wordt deze ijkgroep zelfs U(N). Bovendien kan men ook
verschillende opeenliggende D-branen beschouwen die elkaar onder bepaalde hoeken snijden.
Dit kan eventueel leiden tot interessante spectra van deeltjes, die gelocaliseerd zijn op vier-
dimensionale intersecties van de branen. Op die manier kan men met behulp van D-branen
het Standaard Model op een meetkundige wijze realiseren in snaartheorie.

Een groot nadeel van die vier-dimensionale effectieve theorieén is dat ze vaak een groot
aantal scalaire velden bevatten, waarvan de vacuum-verwachtingswaarde onbepaald is. Deze
zogenaamde moduli stemmen overeen met continue vervormingen van de vorm en grootte van
de interne variéteiten. Dergelijke scalaire velden zijn nog niet waargenomen en hun vacuum-
verwachtingswaarde bepaalt allerlei grootheden (zoals diverse koppelingsconstanten) in de
lage-energie effectieve acties. Zolang die scalaire velden niet vastliggen, is het moeilijk om
voorspellingen te halen uit snaartheorie. Recent werden echter mechanismes ontwikkeld om
die moduli vast te leggen. Onder de massaloze velden in het snaarspectrum bevinden zich
verschillende anti-symmetrische tensorvelden. Indien men hun veldsterktes een niet-triviale
verwachtingswaarde geeft langs de compacte richtingen (men spreekt van het aanzetten van
fluxen), bekomt men een potentiaal voor deze moduli in de lager-dimensionale effectieve the-
orieén. Indien men deze zogenaamde fluxcompactificaties combineert met niet-perturbatieve
effecten, afkomstig van bijvoorbeeld Euclidische D-branen die gewikkeld zijn rond bepaalde
cykels van de interne variéteit, kan men modellen bekomen waarbij alle moduli vastgelegd
kunnen worden in een minimum van de potentiaal.



D.3. Kosmologie 149

D-branen en compactificaties met fluxen vormen een eerste stap in het verkrijgen van
realistische modellen voor vier-dimensionale fysica uit snaartheorie. Op dit moment denkt
men dat een groot aantal consistente compactificaties van snaartheorie kan worden bekomen,
gekenmerkt door verschillende keuzes voor de interne variéteit, fluxen en minima van de
moduli-potentiaal. Elk van deze scenario’s leidt tot andere lage-energie-fysica. Hoewel
het stilaan duidelijk wordt dat het mogelijk is om Standaard-Model-achtige theorieén in
snaartheorie in te bedden, dient er echter nog heel wat werk verzet te worden. Compacti-
ficaties met fluxen zijn bijvoorbeeld veel minder goed begrepen dan standaard Calabi-Yau-
compactificaties.

D.3 Kosmologie

Eén van de problemen waar snaartheorie mee te kampen heeft, is het gebrek aan experi-
mentele input. Het zou echter wel eens kunnen dat kosmologie data aanbrengt waaraan
kosmologische scenario’s, die geinspireerd zijn door snaartheorie, kunnen worden getoetst.
Kosmologie is de laatste jaren immers uitgegroeid tot een preciese wetenschap, waar speci-
fieke en accurate data kunnen worden bekomen. Uit dergelijke data zijn enkele merkwaardige
feiten omtrent het heelal naar boven gekomen.

Uit kosmologische waarnemingen is gebleken dat de huidige fysische theorieén slechts 5%
van de inhoud van het universum behandelen. Ongeveer 25% van het heelal blijkt te bestaan
uit wat men donkere materie noemt. Deze naam doelt op een vorm van materie die geen
elektromagnetische straling uitzendt, maar waarvan de aanwezigheid kan worden nagegaan
dankzij de gravitationele aantrekkingskracht op gewone, zichtbare materie zoals sterren en
melkwegstelsels. Over donkere materie is niet echt veel geweten. Supersymmetrische exten-
sies van het Standaard Model, zoals die eventueel uit snaartheorie kunnen worden bekomen,
bevatten echter vaak zwak interagerende deeltjes die goede kandidaten vormen voor donkere
materie.

In de late jaren negentig werden ook heel wat data bekomen die erop wijzen dat de
uitdijing van ons universum momenteel versnelt. Voordien werd steeds aangenomen dat de
gravitatiekracht de uitdijing van het universum zou vertragen. De ontdekking van versnelde
expansie was dan ook verrassend. Deze versnelling kan worden verklaard door aan te nemen
dat het heelal gevuld is met een vreemde vorm van energie, de zogenaamde donkere energie,
die het effect van gravitatie op grote afstanden tegenwerkt. De eenvoudigste vorm van
dergelijke donkere energie, die goed in overeenstemming is met de waarnemingen, is gegeven
door een positieve kosmologische constante. Het blijkt dat donkere energie ongeveer 70%
uitmaakt van de materie/energie inhoud van het heelal. Op basis van allerlei theoretische
problemen neemt men overigens ook vaak aan dat het heelal niet alleen nu een periode van
versnelde expansie ondergaat, maar dat dit ook kort na de Big Bang gebeurde. Men spreekt
dan over de periode van inflatie.

Voor inflatie en donkere energie zijn al verschillende scenario’s voorgesteld. Men wil deze
uiteindelijk echter inbedden in een meer fundamentele theorie, zoals bijvoorbeeld snaartheo-
rie. Het is dus een interessante uitdaging om na te gaan wat de gevolgen van snaartheorie op
kosmologisch vlak zijn en of deze kunnen worden getoetst aan de weelde van kosmologische
data die op dit moment worden verkregen of die nog zullen worden verkregen in de nabije
toekomst.
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D.4 Deze thesis

Snaartheorie in contact brengen met gekende lage-energie-fysica en kosmologie is nuttig,
aangezien dit kan toelaten de structuur van de theorie beter te begrijpen en in de toekomst
zou kunnen leiden tot voorspellingen die falsifieerbaar zijn. Het werk in deze thesis dient
dan ook in deze context gezien te worden.

Hoofdstukken 3 en 4 van deze thesis behandelen diverse aspecten omtrent het vinden
van tijdsafhankelijke (kosmologische) oplossingen in supergravitatietheorieén. In hoofdstuk
3 bestuderen we een methode die nuttig is bij het zoeken van kosmologische oplossin-
gen van supergravitatietheorieén. Deze methode staat bekend als de Tits-Satake projec-
tie. In hoofdstuk 4 zullen we een specifieke soort van kosmologische oplossingen, de zo-
genaamde schaalkosmologieén, zoeken in geijkte vier-dimensionale A/ = 8 supergravitatie.
Deze schaalkosmologieén kunnen overeenstemmen met het gedrag van meer algemene kos-
mologische oplossingen van geijkte supergravitaties bij vroege of late tijden. In hoofdstuk
5 zullen we branen beschouwen in achtergronden waar fluxen zijn aangezet. Zoals vermeld
zijn dergelijke achtergronden belangrijk bij het construeren van realistische deeltjesfysica
modellen uit snaartheorie en bij het linken van snaartheorie aan kosmologie. In hoofdstuk
5 zullen we ons meer specifiek concentreren op de structuur van het fermionische deel van
de effectieve actie, die de dynamica van D-branen beschrijft in algemene achtergronden met
fluxen.

De structuur van deze thesis is als volgt. In hoofdstuk 2 beginnen we met wat achtergrond
te geven over kosmologie, die bedoeld is om de hoofdstukken 3 en 4 in een bredere context te
plaatsen. We introduceren enkele basisconcepten, zoals de wet van Hubble en de Friedmann-
vergelijkingen. Vervolgens bespreken we enkele van de recente kosmologische waarnemingen.
We beéindigen dit gedeelte met een discussie over hoe scalaire velden aanleiding kunnen
geven tot versnellende kosmologieén. Hier voeren we ook de schaalkosmologieén in die in
hoofdstuk 4 een prominente rol spelen. In sectie 2.2 verstrekken we wat wiskundige achter-
grond die nodig zal zijn voor hoofdstuk 3. Na een korte introductie in K&hler-meetkunde,
bespreken we de verschillende meetkundige structuren die verschijnen in theorieén met 8
superladingen. Het betreft hier de zogenaamde speciale meetkundes, met name speciale
Kabhler, zeer speciale reéle en quaternionische-Kéhler meetkunde. We beéindigen hoofdstuk
2 met een bespreking van supergravitatietheorieén. We belichten eerst wat algemene as-
pecten van supersymmetrie en supergravitatie, zoals het verband tussen supersymmetrie en
meetkunde. Supergravitatietheorieén bevatten vaak een groot aantal scalaire velden. Deze
kunnen gezien worden als codrdinaten op een welbepaalde doelruimte. Supersymmetrie legt
restricties op op de doelruimtes beschreven door deze scalairen. Hoe dit gebeurt wordt
geillustreerd aan de hand van een voorbeeld. Vervolgens bespreken we kort de verschillende
supergravitatietheorieén die voorkomen in deze thesis. We beginnen met de theorieén in
3, 4 en 5 dimensies die invariant zijn onder 8 superladingen. We besteden hierbij speciale
aandacht aan hoe deze theorieén bepaald worden door de geometrieén die beschreven wer-
den in sectie 2.2. Vervolgens bespreken we kort enkele theorieén die invariant zijn onder
het maximale aantal supersymmetrieén, namelijk 32. Meer specifiek behandelen we de type
IT supergravitaties in 10 dimensies en de geijkte maximale supergravitatie in 4 dimensies.
Die laatste theorie wordt gekenmerkt door het feit dat een globale symmetriegroep van de
Lagrangiaan lokaal wordt gemaakt met behulp van ijkvelden die in de theorie aanwezig zijn.
Deze ijkingsprocedure introduceert een potentiaal voor de scalaire velden in de theorie. Ge-
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ijkte supergravitatietheorieén bevatten dus een aantal scalaire velden met potentiaal, wat
ze interessant maakt voor het vinden van eventueel versnellende kosmologische oplossingen.
Type II supergravitaties in 10 dimensies en geijkte maximale supergravitatie in 4 dimensies
worden in de thesis respectievelijk gebruikt in hoofdstukken 5 en 4.

In hoofdstuk 3 beginnen we dan met de studie van de Tits-Satake projectie in de context
van supergravitatietheorieén met 8 superladingen. De Tits-Satake projectie is een nuttig
instrument bij de studie van tijdsathankelijke oplossingen van supergravitatietheorieén, om-
dat ze toelaat een ingewikkelde theorie te trunceren naar een simpeler model waarvan men
oplossingen kan vinden met behulp van algoritmes. Meer specifiek gaat het hier om een
projectie van een ingewikkelde doelruimte van scalairen op een eenvoudiger doelruimte. De
truncatie is zo dat oplossingen van de getrunceerde theorie ook oplossingen zijn van de
oorspronkelijke theorie. De Tits-Satake projectie levert eveneens een manier om meer al-
gemene oplossingen van het oorspronkelijke model te bekomen vanuit de oplossingen van de
getrunceerde theorie. De Tits-Satake projectie is welgekend in geval de scalaire doelruimtes
symmetrische ruimtes zijn. Deze methode werd bijvoorbeeld in [5] toegepast om kosmologi-
sche oplossingen van vier-dimensionale N' = 6 supergravitatie te construeren. In hoofdstuk
3 zullen we deze methode uitbreiden tot een grotere klasse van supergravitaties, waarbij de
doelruimtes niet noodzakelijk meer symmetrische ruimtes zijn. We zullen aantonen dat de
Tits-Satake projectie ook kan worden gedefinieerd voor speciale meetkundes die homogeen
zijn. Deze extensie werd uitgewerkt in samenwerking met P. Fré, F. Gargiulo, K. Rulik, M.
Trigiante en A. Van Proeyen in [6]. Dit hoofdstuk begint met een overzicht van de clas-
sificatie van de homogene quaternionische-Ké&hler variéteiten en hun relatie met homogene
speciale Kéahler en zeer speciale reéle ruimtes. We besteden hier ook aandacht aan de struc-
tuur van de isometrie algebra’s van deze ruimtes. In sectie 3.3 bespreken we vervolgens hoe
de Tits-Satake projectie van een symmetrische ruimte bekomen wordt. De bedoeling van dit
gedeelte is om enkele begrippen in te voeren die belangrijk zijn in de veralgemening van de
Tits-Satake projectie naar algemene homogene speciale meetkundes. Deze sectie start met
een theoretische discussie, die gevolgd wordt door een concreet voorbeeld. De veralgemening
van de projectie voor algemene homogene speciale doelruimtes wordt uitgewerkt in sectie
3.4. We geven hier opnieuw een algemene discussie, waarvan bepaalde punten vervolgens
meer expliciet worden uitgewerkt. Dit hoofdstuk wordt beéindigd met een samenvatting
van de resultaten. We belichten tevens enkele toepassingen. Als voornaamste toepassing
vermelden we dat de Tits-Satake projectie ons toelaat supergravitatietheorieén in een kleine
verzameling universaliteitsklassen onder te verdelen. Alle theorieén in zo'n klasse hebben
dezelfde Tits-Satake projectie en hun dynamica vertoont een gelijkaardig gedrag. Dit laat-
ste punt wordt geillustreerd aan de hand van het kosmisch-biljart-fenomeen. Dit fenomeen
toont duidelijk aan dat een aantal (maar niet alle) cruciale aspecten van de dynamica van
een bepaalde theorie al kunnen afgeleid worden door zich te beperken tot de Tits-Satake
projectie. We illustreren dit ook aan de hand van een voorbeeld waarin de Tits-Satake
projectie op een microscopische manier kan worden geinterpreteerd in compactificaties van
snaartheorie met opeengepakte D-branen.

In hoofdstuk 4 beschouwen we dan de geijkte maximale supergravitietheorieén in 4 dimen-
sies. Zoals reeds vermeld is er nu een potentiaal voor de scalairen. Dit heeft vaak interessante
gevolgen voor kosmologie. Zo bijvoorbeeld is er veel werk verricht naar configuraties waarbij
de scalairen constant zijn en in een minimum van de potentiaal vastgelegd zijn. Indien de
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waarde van de potentiaal in dit minimum positief is, geeft dit aanleiding tot een vacuum met
positieve kosmologische constante, een zogenaamd de-Sitter-vacuum. In dit hoofdstuk leggen
we ons echter toe op een ander soort kosmologische oplossingen, die minder vaak beschouwd
werden in supergravitatie. We onderzoeken namelijk deze geijkte supergravitaties op de
aanwezigheid van schaalkosmologieén. Dit zijn kosmologische oplossingen waarbij de ver-
schillende energiecomponenten (kinetische energie van de scalairen, potentiéle energie van de
scalairen, energiedichtheid van mogelijke andere materie) constante verhoudingen hebben.
Het belang van dergelijke oplossingen is dat ze kunnen overeenkomen met het gedrag van
meer algemene kosmologische oplossingen bij vroege of late tijden. We werken in dit hoofd-
stuk meer specifiek in een truncatie van de geijkte theorieén. Deze truncatie wordt uitgelegd
in sectie 4.2. De potentialen in deze getrunceerde theorie hebben een specifieke vorm; ze
zijn namelijk een som van exponentiéle termen. Resultaten omtrent schaalkosmologieén in
theorieén met dergelijke zogenaamde multi-exponentiéle potentialen zijn vrij goed gekend
en worden besproken in sectie 4.3. In deze sectie wordt eveneens duidelijk gemaakt dat
de potentialen voor bepaalde ijkingen de goede vorm hebben om schaalkosmologieén toe te
laten. We geven de gevallen waarin schaalkosmologieén optreden en bespreken enkele eigen-
schappen van deze oplossingen. In het bijzonder stemmen enkele van de oplossingen overeen
met versnellende kosmologieén. In sectie 4.3 bekijken we de hoger-dimensionale oorsprong
van de bekomen oplossingen. We beéindigen dit hoofdstuk met een interessant verband
tussen de-Sitter-vacua en schaalkosmologieén in supergravitatietheorieén. Het werk in dit
hoofdstuk gebeurde in samenwerking met T. Van Riet en D. B. Westra en verscheen in [7].
In hoofdstuk 5 tenslotte bestuderen we de fermionische acties voor D-branen in willekeu-
rige supergravitatie-achtergronden met fluxen. We beginnen met enkele elementaire feiten
omtrent D-branen en motiveren waarom kennis van het fermionische deel van de effectieve
D-braan-actie relevant is. Deze fermionische actie werd bekomen op kwadratische orde in
de fermionen in [8, 9]. De vorm van deze actie is echter vrij ingewikkeld. In dit hoofd-
stuk bouwen we verder op deze resultaten en bekomen we een compacte en elegante vorm
voor deze fermionische actie. Dit wordt gedaan in sectie 5.2. We bespreken hier tevens
enkele specifieke symmetrieén van deze actie, zoals invariantie onder reparametrizaties van
de coordinaten langsheen de braan, een fermionische symmetrie, kappa-symmetrie genaamd
en supersymmetrie. We tonen ook aan dat deze actie consistent is met T-dualiteit, wat een
belangrijke check geeft op dit resultaat. De actie die we bekomen is niet in canonische vorm.
In sectie 5.5 tonen we aan hoe, door geschikte veldherdefinities te doen, deze actie toch in
canonische vorm kan worden geschreven. De resultaten in dit hoofdstuk werden bekomen in
samenwerking met L. Martucci, D. Van den Bleeken en A. Van Proeyen in [10].
Samengevat zijn de belangrijkste resultaten van deze thesis:

e De uitbreiding van de Tits-Satake projectie, die gedefinieerd was voor symmetrische
ruimtes, naar willekeurige homogene speciale meetkundes.

e De groepering van supergravitatietheorieén met homogene speciale meetkunde in een
klein aantal universaliteitsklassen.

e Het geven van een voorbeeld waarin de Tits-Satake projectie microscopisch kan worden
geinterpreteerd. Het betreft hier een compactificatie met meerdere D-branen opeen.
De Tits-Satake projectie correspondeert dan met het geval waarin slechts 1 D-braan
in beschouwing wordt gebracht.
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Het geven van schaalkosmologieén in geijkte, vier-dimensionale maximale supergravi-
tatietheorieén. De identificatie van de ijkingen die dergelijke kosmologieén toelaten.
De identificatie van de gevallen waarin de schaalkosmologie versnellend is.

Het geven van de hoger-dimensionale oorsprong van de gevonden schaalkosmologieén.

Het geven van een verband tussen schaalkosmologieén en de Sitter vacua dat mogelij-
kerwijze toelaat eenvoudig stabiele schaalkosmologieén te vinden.

De constructie van een eenvoudige en elegante vorm voor het fermionisch gedeelte van
de effectieve actie, die D-braan dynamica beschrijft. Het herschrijven van deze actie
in canonische vorm.
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