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financiële steun.





v

Everything stated or expressed by man is a
note in the margin of a completely erased text.

From what’s in the note we can extract the gist

of what must have been in the text, but there’s
always a doubt, and the possible meanings are

many.

Fernando Pessoa





Table of Contents

1 Introduction 1

1.1 Particles, forces and strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Connecting strings to reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Cosmology as a window into fundamental physics . . . . . . . . . . . . . . . . 5

1.4 Topics studied in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Cosmology and supergravity 9

2.1 An introduction to cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The FLRW metric : the expanding universe . . . . . . . . . . . . . . . 9

2.1.2 Dynamics of the scale factor . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Λ and Cold Dark Matter : the standard model of cosmology . . . . . 13

2.1.4 Cosmology with scalar fields : acceleration and scaling . . . . . . . . . 15

2.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Complex and Kähler geometry . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Special Kähler geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Very special real geometry . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Quaternionic-Kähler geometry . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Supersymmetry, supergravity and target space geometry . . . . . . . . . . . . 27

2.4 An overview of supergravity theories . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Supergravity with eight supercharges . . . . . . . . . . . . . . . . . . . 31

2.4.2 Eleven-dimensional supergravity and type II supergravities in 10 di-

mensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Gauged maximal supergravity in four dimensions . . . . . . . . . . . . 39

3 Tits-Satake projections of homogeneous special geometry 43

3.1 Introduction : cosmological solutions in ungauged supergravity . . . . . . . . 43

3.2 Homogeneous special geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Homogeneous quaternionic-Kähler geometry and solvable algebras . . 46

3.2.2 The classification of homogeneous quaternionic-Kähler manifolds . . . 47

3.2.3 Higher-dimensional origin of homogeneous special geometry . . . . . . 53

3.2.4 Summary : the full classification of homogeneous special geometries . 55

3.2.5 Isometry groups of homogeneous special geometries . . . . . . . . . . . 55

3.3 Tits-Satake projection for symmetric spaces . . . . . . . . . . . . . . . . . . . 59

3.3.1 The Tits-Satake projection for non-maximally split symmetric spaces 59

i



ii Table of Contents

3.3.2 The paint group for symmetric quaternionic-Kähler spaces . . . . . . . 62

3.3.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Tits-Satake projection for general homogeneous special geometries . . . . . . 70

3.4.1 The general procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 Results for the Tits-Satake projection of homogeneous special manifolds 75

3.4.3 The paint group in homogeneous special geometries . . . . . . . . . . 76

3.4.4 The subpaint group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Results and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Description of the Tits-Satake projections . . . . . . . . . . . . . . . . 83

3.5.2 The universality classes . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Scaling cosmologies in N = 8 gauged supergravity 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Truncating N = 8 gauged supergravity . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Dilatonic scaling cosmologies in N = 8 gauged supergravity . . . . . . . . . . 97

4.4 Higher-dimensional origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Scaling solutions and de Sitter vacua . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Dirac actions for D-branes in flux backgrounds 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 D-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.2 Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.3 D-branes in flux backgrounds . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 The quadratic fermionic action on a general background . . . . . . . . . . . . 110

5.2.1 The quadratic fermionic action on a general background . . . . . . . . 110

5.3 κ-fixing and supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Consistency with T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 The world-volume geometry and a canonical action . . . . . . . . . . . . . . . 118

5.5.1 The world-volume geometry . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.2 A canonical fermionic action . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A Simple Lie algebras 125

A.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Structure of simple Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2.1 The Cartan-Weyl basis and roots . . . . . . . . . . . . . . . . . . . . . 127

A.2.2 Simple roots, the Cartan matrix and Dynkin diagrams . . . . . . . . . 128

A.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.3 Real forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3.2 Cartan decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3.3 Cosets and symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . 132

A.3.4 The Iwasawa decomposition . . . . . . . . . . . . . . . . . . . . . . . . 135



Table of Contents iii

B Properties of real Clifford algebras 137

B.0.5 The normal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.0.6 The almost complex case . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.0.7 The quaternionic case . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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Chapter 1

Introduction

1.1 Particles, forces and strings

String theory is an ambitious attempt to reconcile the two cornerstones of twentieth century
physics: quantum mechanics and general relativity. Our current understanding of nature

is for a large part based on quantum field theory, which is the combination of quantum

mechanics and special relativity. Quantum field theory has allowed us to describe the world
of elementary particles to great accuracy. Indeed, everything in nature around us is made up

of a few elementary particles that interact with each other via four fundamental forces. Two

of these forces we are familiar with in everyday life, namely gravity and electromagnetism.
At subatomic scales, two other forces, namely the strong and weak force, become important.

In the late 1940’s, it became clear that quantum field theory was a very successful paradigm
to combine quantum mechanics and electromagnetism. In the 1970’s, it was understood

that also the weak and strong nuclear forces are successfully described by quantum field

theory. This led to a theory called the Standard Model, which is a quantum field theory
that incorporates electromagnetism and the strong and weak forces. It is a gauge theory,

which means that it is invariant under a local symmetry group. For the Standard Model,
this gauge group is SU(3)×SU(2)×U(1). The Standard Model contains fields associated to

spin-1/2 particles, such as quarks and leptons, a spin-0 Higgs boson, as well as spin-1 gauge

bosons, that are responsible for the mediation of forces. Although gravity is the dominating
force at very large length scales, as far as current particle physics experiments are concerned

it is not very important. Indeed, at the energy scales that are nowadays accessible in particle
accelerators, gravity is so weak compared to the other forces that its effects can be ignored.

Combined with general relativity at long distance scales, the Standard Model thus describes

virtually all physics down to the scales that are currently probed by particle experiments.
At higher and higher energies, probing smaller and smaller distances, gravity is expected

to become more important. So, although a consistent quantum theory of gravity is not

needed to describe current particle experiments, it is expected to be important at very high
energies. Furthermore, one can easily think of other situations, in which quantum gravity

effects become very important, such as at the very early stages of the Universe or in black
holes.

One could try to quantize Einstein’s theory of gravity in a way similar to other quantum

1



2 CHAPTER 1. INTRODUCTION

field theories. However, such a quantum field theory of gravity is plagued with infinities that

severely limit its predictive power. The appearance of infinities in calculations of physical

quantities is a problem of most quantum field theories. For so-called renormalizable theories,
there exists a procedure, called renormalization, which removes these infinities and makes

it possible to predict quantities in a meaningful way. The Standard Model is an example of

such a renormalizable quantum field theory. The renormalization procedure, however, fails
in a quantum field theory of gravity. A breakdown of renormalizability often signals the

appearance of new physics at some energy scale, which for quantum gravity is given by the
Planck mass (in units in which ~ = c = 1):

mPl = G
−1/2
N , (1.1)

where GN denotes Newton’s constant. Einstein gravity is then considered to be the low
energy limit of a more general theory that is also valid at and beyond the Planck scale.

The most promising candidate for such a consistent theory of quantum gravity is super-

string theory (see refs. [1, 2, 3]). In string theory, elementary particles correspond to tiny
vibrating strings. Strings can be open or closed and different vibration modes of a string

lead to different particles. The particle spectrum of a quantized closed superstring contains
a massless spin-2 particle. This particle is then identified as the graviton, the particle that

mediates the gravitational force. Furthermore, in the spectrum of open and closed strings

one can also find massless spin-1 particles, leading to Standard Model-like forces. Apart
from massless particles, string theory contains a tower of massive states. Their masses M

are of the order of the tension T of the string:

M2 ∼ T , T =
1

2πα′ , (1.2)

where we have introduced the so-called Regge slope parameter α′. The characteristic length
scale ls of a string is of order

√
α′. The massive modes of a vibrating string thus have masses

of order 1/ls. These masses are often taken to be of order 1018 GeV1. Strings interact with
each other by joining and splitting. The strength of these string interactions is controlled

by the string coupling constant gs. The endpoints of an open string can always join to form

a closed string. Open string theories can thus not exist without closed strings. Hence, any
consistent theory contains closed strings, and thus has a graviton in its particle spectrum.

String theory is finite order by order in perturbation theory and thus does not suffer

from the infinity problems of quantum field theories. A very special property of string
theory is also that it contains no adjustable dimensionless parameters. In particular, the

string coupling constant turns out to be determined by the theory itself and cannot be
chosen at will. This is in contrast with the Standard Model, which contains 29 parameters

such as particle masses, which have to be determined by experiment and put in by hand.

Superstring theories also enjoy a symmetry, called supersymmetry, which exchanges bosons
and fermions.

Actually, there are five consistent superstring theories, defined perturbatively (i.e., as a
series expansion in gs). They are called type IIA, type IIB, type I, heterotic SO(32) and

heterotic E8 × E8. The type I theory has SO(32) as a gauge group, while the 2 heterotic

theories have respectively SO(32) and E8 ×E8 as gauge group. The type II theories do not

1 It has been pointed out that it is possible to have a string scale of order 1 TeV in [4].
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have gauge groups. All superstring theories can be most easily formulated in 10-dimensional

flat Minkowski space. The type II theories are invariant under the maximal amount of

supersymmetry, namely under 32 supercharges, while the other theories are invariant under
16 supercharges. As the massive string modes have very high masses, one is usually interested

in describing only the light (massless) modes. Their dynamics is captured in a low energy

effective action, that correctly reproduces scattering amplitudes for these light modes at low
energies. The high degree of supersymmetry determines the form of these effective actions

up to two derivatives. It turns out that they are given by 10-dimensional supergravity
theories, that are invariant under 16 or 32 local supercharges. Supergravity theories form

a supersymmetric extension of Einstein gravity; so, at low energies, string theory indeed

recovers (an extension of) general relativity.

Originally, it was thought that only type I theory contains both open and closed strings,

while the other theories were believed to describe only closed strings. In the 90’s however, it

was found that type II theories can also contain open strings. Unlike the closed strings, these
cannot move freely through space-time, but their ends are confined on (p + 1)-dimensional

hypersurfaces that were called Dp-branes. These Dp-branes turn out to be dynamical objects
that are free to move and change their shapes. The tension TDp of D-branes is inversely

proportional to the string coupling constant : TDp ∼ 1/gs. At weak coupling, D-branes are

thus very heavy. They correspond to nonperturbative physical objects in string theory.

Although the five string theories all seem to be completely different, it was found in the
mid 90’s that they are related through various dualities, which means that two (at first sight)

completely different theories can be equivalent. These different theories are often useful in
a specific region of their parameter space, where calculations are more easily done. It can

happen that calculations that are hard in one theory, are a lot easier in the dual theory.

For instance, it can happen that strong coupling behavior in one theory is mapped to weak
coupling behavior in the dual theory. Calculations at strong coupling can then be performed

by mapping them to computations at weak coupling in the dual theory. An example of such
a string duality is given by T-duality. It turns out that a theory where strings are moving

on a background of flat space where one direction is compactified on a circle of radius R,

can be equivalent to a (possibly different) theory, that is now compactified on a circle with
radius α′/R. In this way, one can relate the type IIA and type IIB superstring, as well as

the heterotic SO(32) and heterotic E8 × E8 string theories. Another duality is S-duality,

that relates the strong coupling limit of a string theory to the weak coupling limit of another
one. It was for instance shown that the SO(32) heterotic string and the type I string are

related in this way, while the type IIB theory is self-dual under S-duality. It also turns out
that the type IIA and heterotic E8 × E8 string theories at strong coupling lead to an 11-

dimensional theory of which little is known. D-branes play their role in the dualities as well.

It may happen that D-branes in one perturbative description of string theory correspond
to fundamental strings in another theory. An example of this is given by the fundamental

string of heterotic SO(32), which is under S-duality mapped to the D1-string of the type I
theory. Similarly, the fundamental string of type II theory is at weak coupling much lighter

than the D1-brane, while at strong coupling it is the other way around. D-branes are in a

sense thus as fundamental as strings. The existence of the various dualities has led to the
idea that the five different string theories are just different descriptions of one fundamental

theory that has been called M-theory. However, what M-theory precisely is, still remains a
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mystery.

1.2 Connecting strings to reality

Although superstrings lead to a very compelling consistent theory of quantum gravity, valid
at very high energy scales, much work still needs to be done, both from a conceptual and

from a more practical point of view. From a conceptual point of view, we still do not have

a good idea about how M-theory could be formulated. From a more practical point of
view, a very important question is how we can connect string theory, that is most naturally

formulated in 10 dimensions, to our four-dimensional reality and whether we can make
predictions for physics beyond the Standard Model that could possibly show up in future

particle experiments.

In order to make contact with four-dimensional physics, one usually assumes that 6 di-

mensions are curled up in the shape of a compact internal manifold. The sizes of these
compact manifolds are then assumed to be rather small, such that at low energies space-

time effectively looks four-dimensional. One often assumes that these internal manifolds are
very specific, such that a certain fraction of the original supersymmetries is broken. For

instance, by compactifying superstring theories on Calabi-Yau manifolds, only one quarter

of the original 32 or 16 supersymmetries are preserved. Compactification of string theories
generically leads to a set of massless states as well as states that are highly massive. The dy-

namics of the massless states at low energies is then governed by a four-dimensional effective
supergravity action. In the case of Calabi-Yau compactifications for instance, one obtains

supergravities in four dimensions that are invariant under either four or eight supersymme-

try transformations. A lot of work was subsequently done on Calabi-Yau compactifications
of the E8 × E8 heterotic string, as it can lead to four-dimensional effective theories with

interesting gauge groups that can be viewed as extensions of the Standard Model. With

the advent of D-branes, it was realized that also type II theories could give rise to inter-
esting four-dimensional physics upon compactification. It turns out that the dynamics of

open strings that end on a Dp-brane is described by a U(1) gauge theory that lives on
the (p + 1)-dimensional world-volume of the brane. In case N D-branes lie on top of each

other, this gauge group is enlarged to U(N). Moreover, stacks of D-branes can intersect

each other at angles. This can then lead to interesting spectra of particles that are local-
ized on possibly four-dimensional intersections of the branes. In this way, compactification

including D-branes might give a very geometrical way of realizing the Standard Model in a
fundamental theory like string theory.

One major drawback of these lower-dimensional effective theories is that they usually

contain a lot of scalar fields, called moduli, with undetermined vacuum expectation values.

They correspond to continuous deformations of the shape and size of the internal manifold.
These scalar fields are unobserved in nature and their vacuum expectation values also deter-

mine various other quantities in the low energy effective action, such as coupling constants.
String models are thus not predictive, as long as vacuum expectation values for these mo-

duli are not determined. It is thus desirable to devise a mechanism such that these scalars

acquire a fixed value. Recently, it was found that one can fix these scalars by allowing
non-trivial background fluxes along the internal manifold. Indeed, the massless string spec-

trum contains various anti-symmetric tensor fields. Allowing non-trivial expectation values
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for their field strengths along the internal space leads to potentials for the moduli in the

lower-dimensional effective theories. If one includes other, nonperturbative effects, coming

for instance from Euclidean D-branes that wrap cycles of the internal space, one can in fact
engineer models where all moduli are fixed at a minimum of a potential.

Combining the ideas of compactifications with fluxes and D-branes provides a first step
towards getting realistic models of four-dimensional low energy physics, which might be

useful in obtaining predictions for physics beyond the Standard Model. The current belief
is that a very large number of consistent string theory compactifications can be obtained,

due to different choices of compactification manifolds, fluxes and minima of the moduli

potential. Each of these scenarios leads to different low energy physics (different gauge
groups, values of coupling constants, etc.). Although it is by now clear that Standard Model-

like constructions (or extensions thereof) can be embedded in string theory in various ways,

much work still needs to be done. Compactifications including fluxes, which are crucial in
these constructions, are less well understood than ordinary Calabi-Yau compactifications for

instance.

1.3 Cosmology as a window into fundamental physics

One of the main problems string theory has to cope with is the lack of experimental input.
Cosmology might well provide us with an arena in which string theory scenarios can be

confronted with specific data. Indeed, in recent decades, cosmology has turned into a real

precision science, where very specific and accurate data can be obtained. Various unexpected
facts about our universe have arisen from such data, as we shall now explain.

Cosmological observations have made clear that current physical theories of elementary
particles only deal with approximately 5% of the content of the universe. Approximately 25%

of the universe seems to consist of what is called dark matter. This corresponds to some form
of matter that does not emit electromagnetic radiation, but of which the presence can be

inferred thanks to its gravitational effect on ordinary visible matter, like stars and galaxies.

Not very much is known about the true nature of dark matter. However, supersymmetric
extensions of the Standard Model, which might be obtainable from string theory, often

contain weakly interacting particles that are good candidates for this dark matter.

In the late nineties, several research groups obtained data that showed that our universe

is currently undergoing a phase in which its expansion is accelerating. Until then, it was
generally believed that gravity would slow down the expansion of the universe. The dis-

covery of accelerated expansion thus came as a complete surprise. This acceleration can be

explained by assuming that the universe is filled with a strange form of energy, called dark
energy, that opposes gravity at large distances. In its simplest form, that seems to fit the

observations rather well, dark energy corresponds to a positive cosmological constant. It
turns out that dark energy constitutes approximately 70% of the matter/energy content of

the universe. Not only is the expansion of the universe currently accelerating, but a number

of theoretical problems as well as observations also suggest that the universe underwent
a period of exponential expansion soon after the Big Bang. This period is known as the

inflationary era.

Various proposals have been made for inflation or for the nature of dark energy. Ulti-

mately however, one might wish to embed these proposals in a more fundamental theory.
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As string theory seems to give us a fundamental theory, it is an interesting endeavor to see

what its implications are for cosmology and to see whether these can be matched with the

large number of cosmological data that are currently obtained or that will be obtained in
the near future.

1.4 Topics studied in this thesis

Connecting string theory to known low energy physics and to cosmology can be very useful,
as it might shed more light on the structure of the theory and open up the possibility for

definite predictions from string theory that can be falsified in the future. The topics that
are studied in this thesis should be seen in this light.

Chapters 3 and 4 of the thesis are centered around the issue of finding time-dependent

solutions in supergravity theories. In chapter 3, we will study a method that is useful in

finding cosmological solutions of supergravity theories. This method is known as the Tits-
Satake projection. In chapter 4, we will search for a specific kind of cosmological solutions,

the so-called scaling cosmologies, in gauged four-dimensional N = 8 supergravity. The
importance of these scaling cosmologies lies in the fact that they can correspond to the early-

or late-time behavior of more general cosmological solutions of gauged supergravity. Some

of the solutions we find moreover describe accelerating cosmologies. Chapter 5 of this thesis
then studies D-branes in backgrounds where fluxes have been turned on. As mentioned, such

backgrounds are very useful in constructing realistic models in string theory, as well as in
connecting string theory to cosmology. More specifically, we will focus on the structure of the

fermionic part of the effective action, describing D-brane dynamics in general backgrounds.

The outline of the thesis is as follows. In chapter 2 we start by giving some background in

cosmology, that is meant to put chapters 3 and 4 in a broader context. We start by introduc-
ing some basic concepts, such as the assumptions of homogeneity and isotropy, the Hubble

law and the Friedmann equations. Next, we review some of the more recent observations
that have been obtained in cosmology. We end this part by explaining how scalar fields can

account for accelerated expansion. In the context of cosmological solutions in the presence

of scalar fields, we introduce the scaling cosmologies that will play an important role in
chapter 4. In section 2.2 we give some mathematical background on special geometry that

will be important for chapter 3. After a short review on complex and Kähler geometry, we

discuss the different special geometries that appear in theories with 8 supercharges, namely
special Kähler, very special real and quaternionic-Kähler geometry. We end chapter 2 with

a discussion on supergravity theories. We first give a general account on supersymmetry
and supergravity, indicating for instance the relation between supersymmetry and geometry.

Indeed, supersymmetric theories often contain some scalar fields that can be seen as coor-

dinates on a manifold, called the target space. It turns out that supersymmetry severely
restricts the possibilities for these target spaces. We will illustrate this via an example.

After this, we briefly discuss the supergravity theories that will play a role in this thesis. We
start with the theories with 8 supersymmetries that will enter in chapter 3, putting special

emphasis on how the geometrical structures introduced in section 2.2 enter. Next, we intro-

duce some maximal supergravity theories, namely type II supergravities in 10 dimensions
and gauged maximal supergravity in four dimensions. In the latter case, a global symmetry

group of the Lagrangian is promoted to a local symmetry, using some of the vector fields that
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are present in the theory. This gauging procedure introduces a potential for the scalars in

the theory, which makes gauged supergravities interesting from a cosmological point of view.

Ten-dimensional type II supergravities and gauged, maximal four-dimensional supergravity
will enter the thesis in chapters 5 and 4 respectively.

Chapter 3 deals with the Tits-Satake projection in the context of supergravity theories

with 8 supercharges. Essentially, the Tits-Satake projection is a way of truncating a compli-
cated theory in such a way that after truncation, one obtains a model in which cosmological

solutions can often be found in an algorithmic way. More specifically, the Tits-Satake pro-

jection is a projection on the scalar target spaces that appear in supergravity theories. The
projection is such that solutions of the truncated model also constitute a set of solutions

of the original, more complicated theory. Moreover, the Tits-Satake projection also leads
to a way of obtaining more general solutions of the original theory, starting from the solu-

tions of the projected theory. The Tits-Satake projection was known in a specific class of

supergravity theories, namely the ones with symmetric target spaces. It was used in ref. [5]
to construct cosmological solutions of N = 6, four-dimensional supergravity. In this thesis,

this method is extended to a larger class of supergravities, namely the ones exhibiting so-
called homogeneous special geometry. This extension was worked out in collaboration with

Pietro Fré, Floriana Gargiulo, Ksenya Rulik, Mario Trigiante and Antoine Van Proeyen

in ref. [6]. Homogeneous special geometry is discussed in section 3.2. We first review the
classification of homogeneous quaternionic-Kähler geometries, comment on their relation

with homogeneous special Kähler and very special real geometry and discuss the structure

of their isometry algebras. In section 3.3, we explain how Tits-Satake projections can be
obtained for symmetric spaces. The aim of this section is to infer some concepts that can

be generalized for the more general class of homogeneous special geometries. This section
contains a more theoretical discussion, as well as a specific example. The generalization of

the Tits-Satake projection to all homogeneous special geometries is done in section 3.4. We

again first give a more theoretical discussion, whose fine points are explained in more detail
in subsequent subsections. We end this chapter with a discussion of the results obtained for

the Tits-Satake projection of homogeneous special geometries. As an application, we argue
that the Tits-Satake projection gives us a tool for grouping N = 2 supergravity theories with

homogeneous target spaces in a small number of universality classes. We mention the cosmic

billiard phenomenon as a physical reason as to why such a grouping in universality classes
might be relevant. Finally, we also give an example in which the Tits-Satake projection can

be given a microscopic meaning in string compactifications including stacks of D-branes.

In chapter 4, we study scaling cosmologies in N = 8 gauged supergravity in four dimen-
sions, in which case there is a potential for the scalars. We perform a truncation of the

theory, in which we only keep gravity as well as a subset of the scalar fields in the theory.

This truncation, as well as the resulting theory is explained in section 4.2. It turns out
that the potential is of the so-called ’multiple exponential’ type, meaning that it is a sum of

exponential terms. In section 4.3, we review some results concerning scaling cosmologies in
theories with multiple exponential potentials and flat target spaces. We indicate that, after

truncation, some N = 8 gauged supergravity theories allow for scaling cosmologies. We give

the different possibilities that can occur and comment on various properties of the corre-
sponding cosmologies. The higher-dimensional origin of these four-dimensional solutions is

commented upon in section 4.4. We end this chapter with some comments on the relation
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between scaling cosmologies and de Sitter vacua in supergravity theories. This chapter is

based on work done in collaboration with Thomas Van Riet and Dennis Westra [7].

Chapter 5 then studies fermionic actions for D-branes in general backgrounds with fluxes.
We start with some elementary facts about D-branes and comment on the relevance of

knowing the structure of the fermionic terms in D-brane effective actions in the presence

of fluxes. Building on earlier results of refs. [8, 9], a concise form of this action is given to
quadratic order in the fermions in section 5.2. We also indicate how kappa-symmetry can be

fixed and how the supersymmetry transformations of the physical D-brane degrees of freedom
are found. We moreover show how our action is consistent with T-duality, thus providing an

important check on this result. The fermionic action found in section 5.2 is not in canonical

form. In section 5.5, we show how, by performing appropriate field redefinitions, one can
obtain an action in canonical form. The results discussed in this chapter were obtained

in collaboration with Luca Martucci, Dieter Van den Bleeken and Antoine Van Proeyen in
ref. [10].

Finally, we end this thesis with an appendix on simple Lie algebras, on real Clifford

algebras and an appendix that summarizes some conventions used throughout this thesis.



Chapter 2

Cosmology and supergravity

In this chapter, we will introduce some necessary background material. The first part focuses
on some aspects of modern cosmology. We will give a short review of the current status in

cosmology, focusing on the recent observation of the accelerated expansion of the universe

and the role of scalar fields in finding explanations for this phenomenon. In a second part, we
give some mathematical background concerning some geometrical notions that will appear in

this work. More specifically, we will define the different types of special geometry that occur

in supergravity theories with 8 supercharges. The last section deals with supergravity. After
a short general introduction to supersymmetry and supergravity, we will briefly introduce

the different supergravity theories that appear in this thesis. More specifically, we will
discuss theories with 8 supercharges, maximal supergravities in 10 and 11 dimensions and

maximal gauged supergravity in four dimensions. These theories will appear in this thesis

in chapters 3, 5 and 4 respectively. The review offered here is very short and by no means
complete. We will only highlight some specific aspects of these theories that will be relevant

later on.

2.1 An introduction to cosmology

In this section, we will review some basic facts concerning modern cosmology. Some good

references for this part are given in [11, 12, 13]. The first part focuses on elementary
cosmology, reviewing how the dynamics of an expanding universe is analyzed. The second

part gives a short resume of the current observational status in cosmology, focusing on several

observational constraints imposed on the value of certain cosmological parameters. These
measurements also indicate that the expansion of the universe is currently accelerating. In

the third part, we then indicate how coupling scalar fields to gravity can take account of
this acceleration. We introduce a specific type of cosmological solutions in models of gravity

coupled to scalar fields, that will play a role in chapter 4, namely the scaling cosmologies.

2.1.1 The FLRW metric : the expanding universe

One of the main simplifying assumptions that allows us to use general relativity to the

entire universe, is the fact that the universe is spatially homogeneous and isotropic on

9
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large scales. Isotropy is the assumption that the universe looks the same in all directions,

while homogeneity means that the universe looks the same at every point. Evidence for

isotropy mainly comes from observations of the cosmic microwave background. Invoking the
Copernican principle, namely that we do not occupy a special point in the universe, then

implies isotropy around every point in the universe and hence homogeneity. The upshot

of these two assumptions is that space-time on cosmological scales can be described by the
so-called Friedmann-Lemâıtre-Robertson-Walker metric (FLRW metric):

ds2 = −dt2 + a2(t)
[ dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.1)

where a(t) is called the scale factor. It describes the relative size of the spatial sections,

which are the slices of constant cosmic time t, at different times. The parameter k describes
the curvature of the spatial sections and is normalized to either +1, 0 or −1. For k = 1 one

has positively curved spatial sections, that are thus locally isomorphic to three-spheres. For
k = 0 the hypersurfaces of constant t are locally flat, while for k = −1 they are negatively

curved (locally hyperbolic).

A very useful quantity in cosmology that can be defined from the scale factor is the

Hubble parameter H :

H(t) =
ȧ(t)

a(t)
, (2.2)

where ˙ means a derivative with respect to cosmic time t. One can show that, when a photon

is emitted at time te with wavelength λe, it will be observed today, at time t0, with a
wavelength λ0, obeying:

λ0

λe
=
a(t0)

a(te)
≡ 1 + z . (2.3)

When z > 0 photons are redshifted, while when z < 0 they undergo a blueshift. Around

1920, Slipher, Hubble and Humason measured the shifts in spectral lines of a number of

objects that were later identified as galaxies. Almost all spectral lines were redshifted. Since
the redshifts z ≪ 1 in their observations, the Newtonian Doppler-shift formula leads to the

conclusion that these galaxies move away from us with radial velocity v = cz. Furthermore,
their observations also indicated that the redshifts increase with increasing distance from

the galaxy to the earth. In fact, Hubble obtained the following linear relation (we have

chosen units in which c = 1):

z = H0d , (2.4)

where d is the distance earth-galaxy, and H0 is a constant known as Hubble’s constant.

These observations immediately lead to the conclusion that our universe is expanding:
ȧ > 0. Hubble’s law for nearby sources (z ≪ 1) can be easily derived. Indeed, small redshifts

correspond to small values of (t0 − te), such that we can expand

a(te) = a(t0) − ȧ(t0)(t0 − te) . (2.5)
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Since (to leading order in z) the difference (t0 − te) is equal to the distance d to the source,

we can rewrite this equation as

a(te) = a(t0)
[
1 −H(t0)d

]
, (2.6)

Again to leading order in z, this immediately leads to

1 + z =
1

1 −H(t0)d
≈ 1 +H(t0)d , (2.7)

leading to Hubble’s law. The Hubble constant H0 is thus given by the value of the Hubble

parameter (2.2) at the present time t0.

Note that for larger redshifts this simple linear behavior is no longer valid. Studying
the relation between redshift and distance is however very useful, since it provides us with

information regarding the expansion rate of the universe. In fact, as we are going to discuss
later, precise measurements of this relation have led to the discovery that the expansion of

the universe is accelerating.

2.1.2 Dynamics of the scale factor

In the previous section, we used homogeneity and isotropy to introduce the FLRW metric

and the scale factor a(t). The dynamics of the scale factor can be analyzed by plugging the
metric (2.1) in the Einstein equations:

Rµν − 1

2
Rgµν = 8πGNTµν , (2.8)

where GN is Newton’s constant. These equations relate the time evolution of the scale factor
to the matter content of the universe via the energy-momentum tensor Tµν .

For simplicity, one often assumes that this energy-momentum tensor assumes the form

it has for a perfect fluid1:

T00 = ρ , Tij = pgij (i, j = 1, 2, 3) , (2.9)

where ρ is the energy density of the fluid, p the pressure of the fluid, while gij represents
the spatial part of the metric (2.1). Note that this form of the energy-momentum tensor is

consistent with the assumptions of homogeneity and isotropy.

Using the FLRW metric (2.1) in the Einstein equations (2.8), one finds two equations:

H2 =
8πGN

3

∑

i

ρi −
k

a2
, (2.10)

ä

a
= −4πGN

3

∑

i

(ρi + 3pi) . (2.11)

We have denoted the different species of energy/matter present in the universe with the
index i. The first of the above equations is known as the Friedmann equation, while the

second equation is more commonly known as the acceleration equation. Useful quantities

1 Tµν is written here in the rest frame of the fluid.
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that are often introduced are the density parameter Ωi of a species i and the total density

parameter Ω:

Ωi =
8πGN

3H2
ρi =

ρi

ρc
, Ω =

∑

i

Ωi =
ρ

ρc
(ρ =

∑

i

ρi) , (2.12)

where ρc is the critical density, that corresponds to the energy density of a flat universe:

ρc =
3H2

8πGN
. (2.13)

The Friedmann equation can then be rewritten in the following way:

Ω − 1 =
k

H2a2
. (2.14)

An immediate consequence of this equation is that the local curvature of the universe is

related to the total density as follows:

Ω > 1 ↔ k = +1 ,

Ω = 1 ↔ k = 0 ,

Ω < 1 ↔ k = −1 . (2.15)

Note that the Friedmann equation and the acceleration equation are mutually consistent,
provided the following equation holds:

ρ̇+ 3H(ρ+ p) = 0 . (2.16)

This equation simply expresses energy-momentum conservation ∇µT
µν = 0.

In order to solve for the scale factor, an equation of state is needed, specifying a relation

between ρ and p. For now, we will assume a simple equation of state:

p = wρ , (2.17)

where w is a constant. Conservation of energy-momentum (2.16) then implies that

ρ ∝ a−3(1+w) . (2.18)

Although the equation of state (2.17) is very simple, it turns out that it is obeyed by a lot of

interesting fluids. One can for instance consider non-relativistic, non-interacting particles,
often denoted as dust. This obeys p = 0 and ρ ∝ a−3. Radiation2 on the other hand obeys

p = 1
3ρ and ρ ∝ a−4. A cosmological constant in Einstein’s equations is introduced by

taking an energy-momentum tensor of the form:

Tµν = − Λ

8πGN
gµν . (2.19)

One can see that a cosmological constant also behaves as a perfect fluid, obeying the equation
of state (2.17) with w = −1.

2 Usually one not only includes photons here, but also other highly relativistic particles.
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To study the behavior of some exact solutions of the Friedmann equation, we will look

at the case where the spatial sections are flat (k = 0). We will see that recent observations

indicate that this choice is not only mathematically but also physically appealing. Assuming
a constant equation of state parameter w > −1, the following solution for the scale factor is

obtained:

a(t) = a0

(
t

t0

)(2/3(1+w))

, (2.20)

where a0 denotes the present value of the scale factor. Note that for matter domination
(w = 0) or radiation domination (w = 1/3), the universe starts at an initial singularity,

where a = 0. This singularity is known as the Big Bang. The age of such a universe is given

by

t0 =
2

3(1 + w)H0
. (2.21)

When w is not close to −1, a good approximation of the age of such a universe is thus given
by the inverse of the Hubble constant. One often calls H−1

0 the Hubble time.

One can also study solutions of (2.10) when k = ±1. The same qualitative behavior is

found, irrespective whether one assumes matter domination or radiation domination. For
positive spatial curvature, one finds that the universe expands from an initial singularity

with a = 0 (Big Bang) and then collapses again (Big Crunch). For negative curvature, one

finds that the universe expands forever after the Big Bang.
Finally, we remark that all ordinary matter has positive energy density and non-negative

pressure. From the acceleration equation (2.11), one can then easily see that the expansion
of the universe will always decelerate. It seems however that an accelerated expansion of

the universe has occurred at least twice. It is generally believed that a phase of acceleration,

called inflation, took place in the very early universe. As we will indicate in the next
section, recent observations have also shown that the expansion of our universe is presently

accelerating. These phases of acceleration cannot be explained by assuming ordinary forms
of matter, but some different forms of matter will have to be introduced. One way of dealing

with this is given by the introduction of a cosmological constant. Indeed, it follows from

the acceleration equation (2.11) and (2.19) that for a positive cosmological constant Λ, the
expansion of the universe will be accelerating. A different way of getting acceleration consists

of adding scalar fields; this will be explained in section 2.1.4.

2.1.3 Λ and Cold Dark Matter : the standard model of cosmology

Traditionally, one of the most important problems in observational cosmology was the de-
termination of the Hubble constant H0. One often writes it in terms of the dimensionless

number h as follows:

H0 = 100 h km/sec/Mpc . (2.22)

The value for h found by the Hubble Space Telescope Key Project is [14]:

h = 0.71 ± 0.06 . (2.23)



14 CHAPTER 2. COSMOLOGY AND SUPERGRAVITY

This value is largely agreed upon by other methods [15]. Other cosmological parameters

can also be measured. In the following, we describe two recent observations that allowed

to severely constrain the values of cosmological parameters such as the density parameters
that determine the energy/matter content of our universe.

Measurements of the CMB

The Cosmic Microwave Background (CMB) consists of radiation that exhibits an almost

perfect black body spectrum with temperature TCMB = 2.725± 0.001 K. The Hot Big Bang

model gives a good explanation for this CMB. Indeed, since the ratio of the energy density
of radiation to the energy density of dust scales as 1/a(t), and since particles that now

contribute to matter used to be hotter and were relativistic at early times, one can conclude
that the early universe was dominated by radiation. At early times, photons were energetic

enough to ionize hydrogen and hence the universe was filled with a charged and opaque

plasma. This phase lasted long enough until the photons redshifted enough to allow for the
formation of neutral hydrogen atoms, an era denoted as recombination. After recombination,

photons decoupled and went free through the universe. Note that at early times, densities
were high enough for matter to be in thermal equilibrium, yielding a black body spectrum.

The effect of the expansion of the universe is then to retain this initial black body spectrum,

but at lower and lower temperatures : T ∝ 1/a.
Although nearly isotropic, there are small angular anisotropies ∆T/T in the CMB tem-

perature, of order 10−5. Studying these anisotropies gives a wealth of information regarding
various cosmological parameters. A careful analysis of these anisotropies leads to constraints

on essentially all cosmological parameters. Considering for instance the results of the WMAP

mission [16, 17, 18], the total density of the universe is constrained as follows:

0.98 ≤ Ωtotal ≤ 1.08 , (2.24)

at 95% confidence level. Note that this gives strong evidence for a flat universe. Much
tighter constraints on the parameters can be obtained by assuming either a flat universe

or a reasonable value for the Hubble constant. If one assumes a flat universe, one obtains
the following set of values for the Hubble constant, the matter density ΩM , the so-called

vacuum energy density ΩΛ (= 1−ΩM under the assumption k = 0) and the baryon density

ΩB:

h = 0.72 ± 0.05 , (2.25)

ΩM = 1 − ΩΛ = 0.29 ± 0.07 , (2.26)

ΩB = 0.047 ± 0.006 . (2.27)

A few comments are in order here. First of all, note that the total amount of luminous
matter in stars and galaxies is of the order Ωlum ∼ 0.001, so most of the baryonic matter

is not in the form of stars, but in the form of ionized gas. Even then, the baryonic matter
only constitutes a small fraction of the total matter density. So, we must conclude that

most of the matter is not made of particles we know today, but constitutes some other form

of matter that is denoted as dark matter. This dark matter is cold (non-relativistic) and
has been cold for a long period of time. The remaining energy ΩΛ is called dark energy. It

represents a constituent that has an equation of state parameter w close to −1. It can for
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instance be modelled by a positive cosmological constant and thus leads to an accelerated

expansion of the universe. These results are confirmed by type Ia supernovae measurements,

which we now describe.

Type Ia supernovae measurements

The first evidence for the fact that matter does not dominate the universe, but that dark

energy is needed to explain observations, came from the study of so-called type Ia supernovae.

These events are widely believed to be explosions occurring when the mass of a white
dwarf, onto which material from a companion star is accreting, becomes larger than the

Chandrasekhar limit. These supernovae are very bright, so they can be detected at high
redshifts (z ∼ 1). Since the Chandrasekhar limit is a universal quantity, these explosions

are also of a nearly uniform intrinsic luminosity, a property which makes them very useful

in determining distances in the universe. Type Ia supernovae thus allow for more complete
measurements of the redshift-distance relation. There are some differences in the observed

peak brightness of nearby supernovae, but these differences are fortunately closely related
to the shapes of the light curves. So, measuring the apparent luminosity along with the

behavior of the light curve allows to perform measurements that are precise enough to

distinguish between various cosmological models.

Two groups have independently searched for distant supernovae in order to measure

cosmological parameters : the High-Z Supernova Team [19] and the Supernova Cosmology
Project [20]. It turns out that their data are much better fitted by a universe dominated

by a cosmological constant than by a flat matter-dominated model. The supernova results
alone allow for a large range of possible values of ΩM and ΩΛ, but if one for instance takes

ΩM ∼ 0.3, it turns out that ΩΛ is highly constrained:

ΩΛ ∼ 0.7 , (2.28)

corresponding to a vacuum energy density

ρΛ ∼ (10−3 eV)4 . (2.29)

These observations thus confirm the existence of dark energy and the accelerated expansion
of the universe.

2.1.4 Cosmology with scalar fields : acceleration and scaling

The recent observations described above strongly suggest that the expansion of our universe

is currently accelerating due to the presence of dark energy. Furthermore, a number of the-

oretical problems suggest that the very early universe went through a period of exponential
expansion, namely the inflationary age. As already emphasized, accelerated expansion can-

not occur taking into account ordinary types of matter and/or radiation. We have already
mentioned the cosmological constant as a mean of getting acceleration. The purpose of this

section is to show that the inclusion of scalar fields can also lead to accelerated expansion.

Although current observations constrain the equation of state parameter w to be close to
−1 today (so mimicking a cosmological constant), these measurements generally have little

to say about a possible time evolution of w. So, one can actually look a little further than a
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pure cosmological constant and look at situations where the equation of state changes with

time, such as when scalar fields are present in the theory. Scalar fields also appear in a

variety of particle physics models such as string theory and supergravity and it’s interesting
to see whether some of these can be used to construct viable cosmological models. We refer

to [21] for a review on different possibilities for modelling dark energy.

To see how scalar fields can give rise to accelerated expansion, consider the simple model
of a single scalar field φ minimally coupled to gravity. We thus consider the ordinary

Einstein-Hilbert action, to which we add the following action for the scalar field:

Sscalar =

∫
d4x

√−g
[
− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.30)

where V (φ) denotes a potential term for the scalar field. In a flat FLRW space-time, the
equation of motion for the scalar field is given by:

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (2.31)

The Hφ̇ term plays the role of a friction term and is called the Hubble friction. The energy-

momentum tensor for such a scalar field takes the following form:

Tµν = ∂µφ∂νφ− gµν

[1

2
gαβ∂αφ∂βφ+ V (φ)

]
. (2.32)

Restricting to our flat FLRW background and scalars that only depend on time, we obtain

from this energy-momentum tensor the following expressions for the energy and pressure

densities of the scalar field:

ρ =
1

2
φ̇2 + V (φ) , (2.33)

p =
1

2
φ̇2 − V (φ) . (2.34)

The Friedmann equation and acceleration equation then take the form:

H2 =
κ2

3

[1

2
φ̇2 + V (φ)

]
,

ä

a
= −κ

2

3

[
φ̇2 − V (φ)

]
, (2.35)

where κ2 = 8πGN . Acceleration will thus occur when φ̇2 < V (φ). From (2.33), one can also
infer that when φ̇2 ≪ V (φ), the scalar field will obey an equation of state with parameter

w ≃ −1, thus mimicking a cosmological constant. This is often summarized by stating that

flat potentials give rise to accelerated expansion. In the context of inflation, the requirements
on the potential are often expressed in terms of the so-called slow-roll parameters:

ǫ =
m2

Pl

16π

( 1

V

dV

dφ

)
, η =

m2
Pl

8π

1

V

d2V

dφ2
, (2.36)

where mPl = G
−1/2
N ∼ 1019 GeV denotes the Planck mass. Inflation then occurs when the

slow-roll conditions, namely ǫ≪ 1, η ≪ 1 are satisfied. These slow-roll conditions are useful
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in the context of the inflationary era that occurred in the very early universe. In the context

of late-time acceleration, they are not so useful, since apart from dark energy, one should

also take (dark) matter into account and the contribution of the latter is not included in
the slow-roll parameters. One can however define other parameters, such as ε = −Ḣ/H2,

to check whether accelerated expansion takes place.

The simplest case in which acceleration can occur, is the case in which the scalar field

φ is constant: φ = φ0. From (2.31), one sees that in this case φ0 must correspond to a

stationary point of the potential. The energy-momentum tensor (2.32) then simplifies to

Tµν = −gµνV (φ0) . (2.37)

Comparison with (2.19) shows that the value of the potential at the stationary point plays

the role of a cosmological constant. When this value is positive (corresponding to positive
cosmological constant), the second equation of (2.35) shows that acceleration occurs. Such

solutions correspond to so-called de Sitter universes, namely vacuum solutions of the Einstein

equations with positive cosmological constant.

One does not need to restrict oneself to solutions in which the scalar fields are constant.

Let us for instance study a model with one scalar field and a simple exponential potential
V (φ) = Λeαφ in a more systematic way, where we assume that the potential is positive:

Λ > 0. Define the following variables (putting κ2 = 1/2):

X =
φ̇√
12H

, Y =
Λeαφ

6H2
. (2.38)

In terms of these two variables, the equations of motion (2.10,2.11,2.31) can be rewritten as

X2 + Y = 1 ,

X ′ = −3XY −
√

3αY ,

Y ′ = Y (
√

12αX + 6X2) , (2.39)

where ′ denotes taking a derivative with respect to ln a(t):

f ′ =
df

d lna
=

ḟ

H
. (2.40)

Note that in terms of the variables (2.38), the dynamical equations are written in a simple

first order form. This allows us to identify some simple solutions. Indeed, consider a
dynamical system of the following form:

ẋi(t) = f i(x) , (2.41)

where the functions f i only depend on the xi variables and no longer on their derivatives.

Trivial solutions of such a system are given by the zeros of the functions f i:

xi(t) = xi
0 , where f i(x0) = 0 . (2.42)

These simple solutions are called critical points. Their importance lies in the fact that they

can correspond to repellers and attractors and thus capture important information about
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the dynamics. A general solution of these systems will generically interpolate between two

critical points.

Apart from the first equation, the system of equations (2.39) takes the form of (2.41).

Note that the first equation in (2.39) can be forgotten if this equation is obeyed at some
initial time, since one can show that X2 + Y is constant along solutions. One can then

search for critical points of the last two equations in (2.39). The following 3 critical points
are found:

(X,Y ) = {(1, 0), (−1, 0), (− α√
3
, 1 − α2

3
)} . (2.43)

The first two critical points are called non-proper, since Y = 0 means that the scalar field

assumes an infinite value in this solution. There’s no potential energy then, so these solutions
are also denoted as kinetic dominated solutions. The scale factor for these solutions is a

power-law : a(t) ∼ t1/3. The third critical point corresponds to a true solution of Einstein’s

equations and is given by:

φ = − 2

α
ln t+

1

α
ln
(6 − 2α2

α4Λ

)
, a(t) ∼ t1/α2

. (2.44)

This solution only exists when the potential is not too steep (α2 < 3) and when α2 < 1, the

solution describes an accelerating universe.

A specific property of the last solution is that the kinetic energy scales as the potential

energy:

Λeαφ ∼ φ̇2 ∼ 1

t2
. (2.45)

This property is usually referred to as a scaling property and the solutions that obey such

a scaling relation are denoted as scaling solutions. Scaling solutions can be divided in three
classes, namely matter scaling solutions, curvature scaling solutions and scalar dominated

scaling solutions. Curvature scaling solutions have k 6= 0 and ρb = 0, where ρb denotes

the energy density of a possible extra barotropic fluid that is present in the model. Matter
scaling solutions are characterized by k = 0 and ρb 6= 0. For scalar dominated solutions,

both k and ρb are zero.

In the literature, one can find many definitions for the scaling property. The definition
that we will adopt in this thesis is the most restrictive one and entails that the ratio of the

energy densities of different constituents remains constant during evolution. For a matter-

scaling solution, the energy density of the background barotropic fluid evolves in a constant
ratio with respect to the scalar field energy density. Scaling cosmologies have a scale factor

that is power-law: a(t) ∼ tP . We refer to [21, 22, 23] for more phenomenological issues
concerning scaling solutions.

Although we encountered scaling cosmologies here in the context of a model with one

scalar field, they also appear in models with multiple scalar fields. In chapter 4 of this

thesis, we will consider scaling solutions in models with more than one scalar field, where
the potential takes the form of a sum of exponentials. Such systems can generically be

obtained by performing a truncation of supergravity theories.
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2.2 Geometry

Geometry plays a crucial role in supergravity and string theory. In this section, we will

introduce the so-called special geometries, that will enter this thesis in chapter 2. This sec-
tion merely offers some necessary mathematical background; the precise way in which these

structures enter supergravity theories will be explained in the next section. We will first

start by recalling some notions of complex and Kähler geometry. Next, we will give a small
review of special Kähler, very special real and quaternionic-Kähler geometry. We assume

some familiarity with notions of differential geometry, such as differentiable manifolds, met-

rics, connections and curvatures. We refer to [24, 25] for thorough treatments of differential
geometry.

2.2.1 Complex and Kähler geometry

Let us start by recalling the definition of a complex manifold.

2.2.1 Definition. M is a complex manifold if the following axioms hold:

1. M is a topological space.

2. M is equipped with a family of pairs {(Uα, φα)}, where {Uα} is a family of open sets

that cover M and φα is a homeomorphism from Uα to an open subset U of Cn.

3. Given Uα and Uβ such that Uα

⋂
Uβ 6= ∅, the map φβα = φβ ◦ φ−1

α from φα(Uα

⋂
Uβ)

to φβ(Uα

⋂
Uβ) is holomorphic.

A complex manifold is thus a space that locally looks like Cn. The number n is called

the complex dimension of M and is also denoted by n = dimCM. Note that when one views

complex manifolds as real manifolds, they have real dimension 2n.
The notion of complex manifold can also be stated differently in terms of extra structure

defined on the manifold. A good introduction to this can be found in [24, 25, 26]. Suppose
that a 2n-dimensional manifold admits a globally defined (1, 1)-tensor J with local expression

Jµ
νdxµ ⊗ ∂ν with the following property:

Jµ
νJν

ρ = −δρ
µ . (2.46)

The manifold is then called an almost complex manifold and J is called an almost complex

structure.
It turns out that complex manifolds are always almost complex. The reverse is not

necessarily true : not every almost complex manifold is also a complex manifold. In order
to determine whether an almost complex manifold is also complex, one defines the so-called

Nijenhuis tensor Nµν
ρ:

Nµν
ρ =

1

6
Jµ

σ∂[σJν]
ρ − (µ ↔ ν) . (2.47)

The following theorem holds:

2.2.1 Theorem. An almost complex manifold is a complex manifold if and only if the

Nijenhuis tensor of the associated almost complex structure vanishes.
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So, one can also say that a complex manifold is a 2n-dimensional real manifold that

is equipped with an almost complex structure whose Nijenhuis tensor vanishes. On an

arbitrary almost complex manifold, it is always possible to find complex coordinates {zi, z̄ ī}
(i = 1, · · · , n) in a point p such that J assumes the following canonical form:

Ji
j = iδj

i , Jī
j̄ = −iδī

j̄ , Jī
j = Ji

j̄ = 0 . (2.48)

When the Nijenhuis tensor vanishes, it is possible to find such holomorphic coordinates in

an entire neighborhood around the point p. The transition functions relating coordinates in
overlapping patches are moreover holomorphic.

When the (almost) complex manifold is endowed with a metric hµν , one can construct

a new metric gµν on the manifold in the following fashion:

gµν =
1

2
(hµν + Jµ

ρJν
σhρσ) . (2.49)

This metric is positive definite if h is and it moreover satisfies the property

gµν = Jµ
ρJν

σgρσ . (2.50)

Depending on whether the manifold is almost complex or complex, a metric obeying the

property (2.50) is called an almost hermitian metric or a hermitian metric and the corre-
sponding manifold is called almost hermitian or hermitian. In terms of the holomorphic

coordinates, a hermitian metric takes a form in which the components that are pure in their
indices are zero:

ds2 = gij̄dzidz̄ j̄ , gij = gīj̄ = 0 . (2.51)

Note that if one defines

Kµν ≡ Jµ
ρgρν , (2.52)

the property (2.50) is equivalent to the antisymmetry of Kµν :

Kµν = −Kνµ . (2.53)

One thus sees that on an (almost) hermitian manifold, a natural two-form can be defined

using the (almost) complex structure. This two-form K = 1
2Kµνdxµ ∧ dxν is called the

fundamental two-form.
For Riemannian manifolds, one can introduce a natural connection that is torsionless

and preserves the metric, namely the Levi-Civita connection. In a similar manner, one can
introduce a natural connection on hermitian manifolds, defined by imposing that it preserves

the metric and the complex structure. This does not uniquely determine the connection yet.

It leads to the conditions:

Γk
ij̄ = Γk̄

ij = 0 , (2.54)

together with the complex conjugates of these constraints. If one furthermore imposes that
the torsion is pure in its lower indices, the connection is uniquely determined and it is pure

in all its indices. Explicitly it is given by:

Γk
ij = gkl̄∂igjl̄ . (2.55)

A Kähler manifold is a hermitian manifold that obeys an additional restriction:
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2.2.2 Definition. A hermitian manifold is said to be Kähler if the fundamental two-form

K is closed:

dK = 0 . (2.56)

When dealing with Kähler manifolds, one often refers to the fundamental two-form as

the Kähler form. In the rest of this chapter, we will adopt a normalization for the Kähler
form such that in holomorphic coordinates it is given by:

K =
i

2π
gij̄dzi ∧ dz̄ j̄ . (2.57)

The closure of K has some interesting consequences. Indeed, if we write out the condition

(2.56) explicitly in terms of holomorphic indices, we get:

dK ∼ i∂igjk̄dzi ∧ dzj ∧ dz̄k̄ + i∂īgjk̄dz ī ∧ dzj ∧ dz̄k̄ . (2.58)

Both terms should be separately zero, implying that

∂igjk̄ = ∂jgik̄ , ∂īgjk̄ = ∂k̄gjī . (2.59)

From this, it follows that in local coordinate patches the hermitian metric can be expressed

in terms of a real function K = K(z, z̄), called the Kähler potential:

gij̄ = ∂i∂j̄K . (2.60)

On the overlap of two coordinate patches Uα and Uβ , the respective Kähler potentials K(α)

and K(β) are related by a Kähler transformation:

K(α) = K(β) + fαβ(z) + f̄αβ(z̄) . (2.61)

A second important property of Kähler manifolds is that due to (2.59), the hermitian con-
nection (2.55) is symmetric in its lower indices and hence coincides with the Christoffel

connection. For Kähler manifolds, one thus finds that the Levi-Civita connection also pre-

serves the complex structure.
This fact has implications for the holonomy group of Kähler manifolds. The holonomy

group of a manifold is defined by using the notion of parallel transport of tangent vectors.

Suppose that the manifold M is endowed with an affine connection. Consider a point p ∈ M.
Denoting the tangent space at p by TpM, we can parallel transport a vector X ∈ TpM along

a closed loop c going through p. The resulting vector X ′ ∈ TpM can be different from X ,
hence parallel transport along closed loops generates an action on TpM. Upon parallel

transport of X along every possible loop, this action on TpM defines a group, called the

holonomy group of the connection. It turns out that this holonomy group is generated
by the curvature tensor of the connection Rµνρ

σ(p), seen as a two-form. We will always

consider holonomy groups of the Levi-Civita connection. In that case, as the Levi-Civita
connection preserves the metric, the length of a tangent vector is not changed upon parallel

transport along a closed loop. For an n-dimensional Riemannian manifold, one thus sees

that the holonomy group should be contained in SO(n). For a Kähler manifold, the fact that
the Levi-Civita connection also preserves the complex structure, implies that the holonomy

group of a (complex) n-dimensional Kähler manifold is contained in U(n).
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Kähler geometry occurs naturally in supergravity theories with 4 supercharges, as we

will see in an explicit example in the next section. The Kähler manifolds that appear in

supergravity theories generically obey an extra condition, namely the Kähler form should
be of even integer cohomology. By this, we mean that the integral over an arbitrary 2-cycle3

γ gives an even integer:

∫

γ

Kµνdxµdxν = 2n , n ∈ Z . (2.62)

Kähler manifolds obeying (2.62) are then called Hodge-Kähler manifolds or Kähler manifolds
of the restricted type.

2.2.2 Special Kähler geometry

There are many equivalent ways to define special Kähler geometry. Moreover, one should
also make the distinction between rigid special Kähler geometry and local special Kähler

geometry, the former relevant for theories invariant under rigid supersymmetry, the latter
appearing in supergravity. As we will be mainly concerned with supergravity theories, we

will only discuss local special geometry here. An excellent review on special Kähler geometry

can be found in [27].

We will adopt the following definition for special Kähler manifolds:

2.2.3 Definition. A special Kähler manifold is an n-dimensional Hodge-Kähler manifold

M, with the following properties:

1. On every coordinate chart there exist complex projective coordinate functions ZI(z),

I = 0, · · · , n and a holomorphic function F (ZI) that is homogeneous of second degree,

such that the Kähler potential is

K(z, z̄) = − log
[
iZ̄I ∂

∂ZI
F (Z) − iZI ∂

∂Z̄I
F̄ (Z̄)

]
. (2.63)

2. On overlaps of charts Uα and Uβ, the corresponding functions of property 1 are con-
nected by transition functions of the form:

(
Z

∂F

)

(α)

= efαβ(z)Mαβ

(
Z

∂F

)

(β)

, (2.64)

where fαβ is holomorphic and Mαβ ∈ Sp(2n+ 2,R).

3. On overlaps of three charts, the transition functions of property 2 satisfy the cocycle
conditions:

efαβefβγefγα = 1 ,

MαβMβγMγα = 1 . (2.65)

3 An m-cycle is an m-dimensional submanifold that has no boundary and is itself not the boundary of an
m + 1-dimensional submanifold.
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Note that, using (2.64), the Kähler potentials in overlaps of charts are indeed related by

a Kähler transformation:

K(α) = K(β) − fαβ(z) − f̄αβ(z̄) . (2.66)

The holomorphic function F is called the prepotential. The above definition clearly depends

on the existence of such a prepotential. There exists a different definition of special Kähler
geometry, in which the prepotential is no longer explicitly present.

2.2.4 Definition. A special Kähler manifold is an n-dimensional Hodge-Kähler manifold

M, that is the base manifold of a Sp(2n + 2,R) × U(1) bundle. There should exist a holo-
morphic section v(z) such that the Kähler potential is given by

K = − log[−i < v̄, v >] . (2.67)

We have denoted by < v,w > the symplectic inner product

< v,w >≡ vT Ωw with Ω =

(
0 −

0

)
. (2.68)

On the overlap of two coordinate charts Uα and Uβ, the sections v(α) and v(β) are related by

transition functions of the form:

v(α) = efαβ(z)Mαβ v(β) , (2.69)

where fαβ(z) is holomorphic and Mαβ ∈ Sp(2n + 2,R). These transition functions should
satisfy the cocycle conditions. The section v should moreover satisfy:

< v, ∂iv > = 0 , (2.70)

< Div,Djv > = 0 , (2.71)

where the Kähler covariant derivative is defined as Div = ∂iv + (∂iK)v.

Instead of using the section v, in supergravity one often expresses everything in terms

of the section V ≡ eK/2v. Introducing derivatives that are covariant with respect to (2.66)

and (2.69):

Ui ≡ DiV ≡ ∂iV +
1

2
(∂iK)V , DīV ≡ ∂īV − 1

2
(∂īK)V ,

Ūī ≡ DīV̄ ≡ ∂īV̄ +
1

2
(∂īK)V̄ , DiV̄ ≡ ∂iV̄ − 1

2
(∂iK)V̄ ,

one can define:

V =

(
XI(z, z̄)

FI(z, z̄)

)
, Ui =

(
f I

i ≡ DiX
I

hiI ≡ DiFI

)
. (2.72)

This allows one to introduce the following symmetric matrix:

NIJ ≡
(
h̄īI FI

) (
f̄J

ī
XJ

)−1
. (2.73)
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This so-called period matrix will play a special role in N = 2 supergravity, as we will see

later on. Note that under symplectic transformations, the section V and the period matrix

NIJ transform in the following fashion:

V → Ṽ =

(
A B

C D

)
V ,

(
A B

C D

)
∈ Sp(2n+ 2,R) ,

N → Ñ = (C +DN )(A+BN )−1 . (2.74)

We have given two definitions for special Kähler geometry. They are however equivalent,

in the sense that, given a section V =

(
XI

FI

)
, there always exists an Sp(2n + 2,R)

transformation leading to a new section Ṽ =

(
X̃I

F̃I

)
such that F̃I is the derivative of a

holomorphic function F̃ (X̃I), that is homogeneous of degree two:

F̃I =
∂

∂X̃I
F̃ (X̃) . (2.75)

We will come back to the importance of having two definitions when we discuss N = 2

supergravity in four dimensions in the next section.

2.2.3 Very special real geometry

Very special real manifolds are determined by a constant symmetric tensor CIJK . Consider

the n+ 1-dimensional subspace of Rn+1 defined as

M = {yI ∈ Rn+1|C(y) = CIJKy
IyJyK > 0} , (2.76)

endowed with the following metric:

aIJ = −1

3
∂I∂J lnC(y) . (2.77)

The very special real manifold is then defined as the n-dimensional hypersurface C(y) = 1,
equipped with the metric induced from the embedding space M :

gwv = −3CIJKy
IyJ

,wy
K
,v . (2.78)

One can find coordinates φw on the manifold by looking for a parametric solution of

CIJKh
I(φ)hJ (φ)hK(φ) = 1. We have used yI

,w to denote the ordinary derivative of yI

with respect to φw. For later purposes, we define the object

NIJ = aIJ |C(y)=1 = −2CIJKy
K + 3yIyJ , yI = CIJKy

JyK . (2.79)

We will come back later to the role played by very special real geometry and the definition

(2.79) in supergravity.
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2.2.4 Quaternionic-Kähler geometry

The last type of geometry that will play a prominent role in this thesis is quaternionic-Kähler
geometry. We will now review the definition of quaternionic-Kähler manifolds, as well as

some important properties.

Let us start by giving the definition of a quaternionic-Kähler manifold.

2.2.5 Definition. A quaternionic-Kähler manifold is a real 4n-dimensional manifold

(n > 1)4, with coordinates qX , X = 1, · · · , 4n and endowed with a metric gXY such that

1. there exists an almost quaternionic structure on it. This means that the manifold is

endowed with a triplet of (1, 1)-tensors Jα
X

Y , α = 1, 2, 3 that satisfy the following
relation:

JαJβ = −δαβ + εαβγJγ . (2.80)

A manifold endowed with an almost quaternionic structure is also called an almost
quaternionic manifold.

2. the almost quaternionic structure is integrable, i.e., it is covariantly constant with

respect to the Levi-Civita connection ΓXY
Z and a non-trivial SU(2)-connection ωX

α:

∂XJ
α

Y
Z − ΓXY

UJα
U

Z + ΓXU
ZJα

Y
U + 2εαβγωX

βJγ
Y

Z = 0 . (2.81)

3. the metric gXY is hermitian with respect to the three almost complex structures Jα:

gXY = Jα
X

ZJα
Y

UgZU . (2.82)

Note that one does not sum over α in the above equation.

The fact that the SU(2)-connection in the second statement of the above definition is

non-trivial means that the SU(2)-curvature tensor

RXY
α = 2∂[XωY ]

α + 2εαβγωX
βωY

γ , (2.83)

is non-vanishing. When this curvature is vanishing, the manifold is called hyperkähler. Hy-

perkähler geometry is relevant to rigid supersymmetry, while quaternionic-Kähler geometry
appears in supergravity theories.

In analogy with the construction of the Kähler 2-form in Kähler geometry, one can define
three so-called hyperkähler 2-forms:

Kα =
1

2
Kα

XY dqX ∧ dqY , Kα
XY = Jα

X
ZgY Z . (2.84)

In contrast to Kähler geometry, they are not closed but only covariantly closed with respect

to the SU(2)-connection one-form ωα = ωX
αdqX :

dKα + 2εαβγωβ ∧ Kγ = 0 . (2.85)

4 For n = 1 there are some problems with this definition. In this case, one also has to impose that the Rie-
mann tensor is annihilated by the Jα, meaning that Jα

X
V RV Y WZ +Jα

Y
V RXV WZ +Jα

W
V RXY V Z +

Jα
Z

V RXY WV = 0. This condition is automatically satisfied for n > 1.
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For Kähler geometry, the existence of a closed Kähler 2-form implies that their holon-

omy group is contained in U(n) instead of in SO(2n). Similarly, also quaternionic-Kähler

manifolds have a restricted holonomy group; in this case the holonomy group should be
contained in SU(2) × USp(2n).

It is then convenient to introduce a vielbein field f iA
X on the manifold having as ’flat’

indices a pair (i, A) consisting of one SU(2)-index i = 1, 2 and one USp(2n)-index A =
1, · · · , 2n. This vielbein is related to the metric by:

gXY = f iA
X f jB

Y εijCAB , (2.86)

where εij = −εji and CAB = −CBA are respectively the flat SU(2)- and USp(2n)-metrics.

This vielbein also satisfies a vielbein postulate, meaning that it is covariantly constant with

respect to the Levi-Civita connection, the SU(2)-connection ωX
α and a USp(2n)-connection

∆XA
B:

DXf
iA
Y = ∂Xf

iA
Y − ΓXY

Zf iA
Z + ωXj

if jA
Y + ∆XB

Af iB
Y = 0 , (2.87)

where ωXj
i is defined in terms of ωX

α and the Pauli-matrices σα by

ωXj
i = i(σα)j

iωX
α . (2.88)

Defining the USp(2n)-curvature tensor as follows:

RXY B
A = 2∂[X∆Y ]B

A + 2∆[X|C|
A∆Y ]B

C , (2.89)

the vielbein postulate relates the Riemann tensor5 to this USp(2n)-curvature and the SU(2)-
curvature:

RXY
UV f iA

U f jB
V = iεikRXY

α(σα)k
jCAB + εijRXY C

BCAC . (2.90)

As the Riemann tensor generates the holonomy group, this equation explicitly tells us that
the holonomy group of the manifold is contained in SU(2) × USp(2n).

Finally, let us mention that for quaternionic-Kähler manifolds the SU(2)-curvature is
proportional to the hyperkähler 2-form:

RXY
α =

1

2
νKα

XY . (2.91)

In supergravity theories, the number ν is determined by the gravitational coupling constant

κ:

ν = −κ2 . (2.92)

The Ricci tensor is moreover proportional to the metric; quaternionic-Kähler manifolds are

thus Einstein spaces:

RXY =
1

4n
gXYR , R = 4n(n+ 2)ν . (2.93)

As ν is negative in supergravity, the above equation implies that the quaternionic-Kähler
manifolds relevant for supergravity have negative scalar curvature.

5 We have adopted the following definition for the Riemann tensor here : RXY Z
W = 2∂[XΓY ]Z

W +

2ΓV [X
W ΓY ]Z

V . The Ricci tensor is then defined as RXY = RZXY
Z .
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2.3 Supersymmetry, supergravity and target space ge-

ometry

A deep theorem due to Coleman and Mandula [28] investigates all symmetries of a relativis-

tic field theory that are compatible with having non-trivial scattering amplitudes. Their
result is that, when there are massive particles present in the theory, the symmetry algebra

consists of a direct product of the Poincaré algebra (containing translations Pa and Lorentz
transformations Mab) with an algebra G consisting of internal symmetries6. They, how-

ever, only looked at symmetries that form a closed algebra under commutation relations.

When one also includes symmetry algebras that involve anti-commutation relations as well,
more general possibilities occur as symmetries of the S-matrix, as was shown by Haag,

 Lopuszański and Sohnius [29]. Such symmetry algebras are called superalgebras and its
generators can be either bosonic or fermionic. The bosonic part of the algebra still consists

of a direct product of the Poincaré algebra and internal symmetries7. The fermionic gen-

erators are called supercharges; they commute with the translations and they form spinor
representations of the Lorentz group. The symmetry transformations generated by these

supercharges change the spin or helicity of the state on which they are acting, as opposed to

the bosonic symmetries. In a quantum theory, one can consequently split the Hilbert space
in a part consisting of bosonic states and a part consisting of fermionic states, where the

supersymmetry generators Q act as:

Q|boson >= |fermion > , Q|fermion >= |boson > . (2.94)

Note that due to the fact that translations commute with the supercharges, bosonic and
fermionic states that are related by supersymmetry have the same mass. In general, the

supersymmetry generators do not have to form an irreducible representation under the
Lorentz group. When they are reducible and decompose into N irreducible representations,

one has so-called N -extended supersymmetry. Working in four dimensions, where one can

split spinors in left and right chirality, the fermionic generators can be written as:

Qi
α =

1

2
(1 − γ5)α

βQi
β , Qiα =

1

2
(1 + γ5)α

βQiβ , (2.95)

where α is a spinor index and i is an index running from 1 to N , denoting the different

irreducible representations under the Lorentz group. Note that we have denoted the chirality

of the fermionic generators by the position of the i-index. Let us for definiteness list the non-

6 When the theory only contains massless particles, the possible algebras consist of a direct product of the
conformal algebra and an algebra G of internal symmetries.

7 As in the Coleman-Mandula theorem, when only massless fields are present, the Poincaré algebra can be
generalized to the algebra of conformal transformations.
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zero commutators of the superalgebra of N -extended supersymmetry in four dimensions:

[Mab,Mcd] = ηa[cMd]b − ηb[cMd]a , [Pa,Mbc] = ηa[bPc] ,

[Mab, Q
i
α] = −1

4
(γabQ

i)α ,

[Ui
j , Qk

α] = δk
i Q

j
α − 1

2
δj
iQ

k
α , [U(1), Qi

α] = − i

2
Qi

α ,

[Ui
j , Uk

l] = δl
iUk

j − δj
kUi

l ,

{Qi
α, Qβj} = (γµC−1)αβPµδ

i
j . (2.96)

The first line gives the commutation relations of the Poincaré algebra, consisting of trans-

lations Pa and Lorentz generators Mab. The second line indicates how the supersymmetry
generators Qi

α transform in a spinor representation of the Lorentz group. It is furthermore

also possible that they transform non-trivially under some part of the internal symme-
tries. These internal symmetries that rotate the supersymmetry generators constitute the

R-symmetry group. It can be shown that for N -extended supersymmetry, the R-symmetry

is given by U(N ) 8, which we have written above as SU(N )×U(1), generated by respectively
Ui

j and U(1). The third line then indicates how the R-symmetry acts on the supersymmetry

generators, while the fourth line shows how the Ui
j close an SU(N )-algebra. The last anti-

commutator can be seen as the defining relation of supersymmetry, namely the fact that the

anticommutator of 2 supersymmetries gives a translation. From this, it follows for instance

that, when translations constitute an invertible operation, supersymmetric theories exhibit
an equal number of bosonic and fermionic degrees of freedom. This relation also makes clear

that theories invariant under local supersymmetry transformations, should be invariant un-

der local translations (diffeomorphisms) as well and hence incorporate gravity. Theories that
are invariant under local supersymmetry are correspondingly called supergravity theories.

Note that there is a bound on the number of supercharges in theories invariant under

rigid or local supersymmetry. For theories with rigid supersymmetry, this bound is 16

supercharges, while for supergravity, the bound is 32 supercharges. When there are more
than 32 supercharges, the representations of the superalgebra generically contain states

with helicity higher than two, leading to inconsistent interactions. The possibilities for
supersymmetric theories can then be scanned for all space-time dimensions, by combining

this bound on the number of supercharges with the dimension of the minimal spinor in the

case under consideration. One finds for instance that in space-time dimensions twelve9 or
higher there are no supergravity theories, since the dimension of a minimal spinor is 64.

In 4 dimensions, the minimal spinor has four components. One can thus have supergravity

theories for values of N up to 8. Later on, we will be specifically interested in theories with
8 and 32 supercharges, i.e., N = 2 and N = 8 supergravity.

In field theories, one is interested in a realization of the supersymmetry algebra (2.96) on

fields. A set of fields that transform into each other according to an irreducible representation

of the superalgebra is then called a (super)multiplet. When one considers supergravity, there
is always a gravity multiplet present in the theory. This gravity multiplet contains a spin-2

8 This conclusion holds in four dimensions. In other dimensions, different R-symmetry groups can occur,
depending on the reality conditions that are obeyed by the fermions.

9 We only consider 1 time-like direction here. When one has two time-like directions, the dimension of a
minimal spinor is 32.
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graviton, as well as N spin-3/2 superpartners, that are called gravitini. The gravity multiplet

can furthermore also contain additional bosonic and fermionic fields, depending on the space-

time dimension and number N one is considering. For theories with 32 supercharges, this
is the only multiplet that occurs. When the number of supercharges is 16 or lower, other

(possibly different) supermultiplets can be coupled to the gravity multiplet. These are then

denoted as matter multiplets.

Supersymmetry and supergravity have an intimate connection with geometry. Super-
multiplets often contain scalar fields. The kinetic terms of these scalar fields generically

assume the form of a non-linear sigma model:

Skin = −1

2

∫
d4x gXY (q)∂aq

X∂aqY . (2.97)

The scalars qX are then interpreted as maps from space-time to a manifold M, called the
target space, that is equipped with a metric gXY (q). The scalars can thus be seen as

coordinates on M. Supersymmetry leads to restrictions on these target spaces. In order

to see how this works, we give the following result of [30]. Consider the following action in
2 dimensions, for scalar fields qX and fermion fields ψX , X = 1, · · · , n:

S = −1

2

∫
d2x

(
gXY (q)∂aq

X∂aqY + gXY (q)ψ̄XγaDaψ
Y +

1

6
RXV Y W (ψ̄XψY )(ψ̄V ψW )

)
.

(2.98)

The covariant derivative Da on the fermions is defined using the Levi-Civita connection ΓX
Y Z

in the following way:

Daψ
X = ∂aψ

X + ΓX
Y Z∂aq

Y ψZ , (2.99)

while RXV Y W denotes the Riemann curvature tensor. Note that the action for the scalars

takes the form (2.97). The action (2.98) is invariant under the following supersymmetry

transformations:

δqX = ǭψX ,

δψX = −/∂qXǫ− ΓX
Y Z(ǭψY )ψZ . (2.100)

The action is also invariant under coordinate reparametrizations qX → q′X(q). Under these

reparametrizations, the fermions transform as vectors : ψ′X = ∂q′X

∂qY ψY . These diffeomor-

phisms moreover also commute with the supersymmetry transformations, due to the presence

of the second term in the above transformation of ψX .

At this point, the only restriction imposed on the manifold M is that it is Riemannian,
namely that it is equipped with a positive definite metric gXY . The question asked in [30] is

whether the action (2.98) admits additional supersymmetry invariances than the ones stated
in (2.100). Possible extra supersymmetries can be parametrized using a general ansatz:

δqX = JY
X ǭψY ,

δψX = −IY X /∂φY ǫ− SX
Y Z(ǭψY )ψZ − V X

Y Z(ǭγaψY )γaψ
Z − PX

Y Z(ǭγ5ψ
Y )γ5ψ

Z ,

(2.101)
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where I, J, S, V and P denote tensors on the target space M. Invariance of the action (2.98)

then imposes the following constraints:

gXZJY
Z = gY ZIX

Z , ∇ZJX
Y = 0 , V X

Y Z = PX
Y Z = 0 ,

SX
Y Z = ΓX

ZV JY
V , JX

ZIZ
Y = δY

X , (2.102)

where ∇Z denotes the covariant derivative with respect to the Levi-Civita connection. The
two fermionic invariances (2.100) and (2.101) should also satisfy an N = 2 superalgebra.

Introducing

J
(0)
X

Y = δY
X , J

(1)
X

Y = JX
Y , (2.103)

this leads to:

J (a)J (b)−1 + J (b)J (a)−1 = 2δab , a, b = 0, 1 . (2.104)

Taking the values a = 0, b = 1 for the indices, we learn from this equation that J (1) =
−J (1)−1, implying:

JX
ZJZ

Y = −δY
X . (2.105)

The action (2.98) thus allows for an extra supersymmetry if and only if the manifold M
is equipped with a tensor JX

Y such that (2.105) holds. In other words, the manifold is
equipped with an almost complex structure. The metric on the manifold is furthermore

hermitian with respect to this almost complex structure:

gXY JU
XJV

Y = gUV . (2.106)

One thus finds that M is an almost hermitian manifold. As the almost complex structure

JX
Y is covariantly constant with respect to the Levi-Civita connection, one also finds that

the Nijenhuis tensor of JX
Y vanishes and that the Kähler form on M is closed. One

eventually concludes that requiring that (2.98) admits 4 supercharges implies that the target

space M is a complex Kähler manifold.

Although the above analysis was performed in 2 dimensions, one can obtain similar
conclusions in 4 dimensions. Indeed, four-dimensional N = 1 supersymmetric models are

invariant under 4 supercharges and the scalars in these models generically span a Kähler ma-
nifold. From this example, we can thus conclude that supersymmetry often puts restrictions

on the geometries spanned by scalars in a theory.

2.4 An overview of supergravity theories

In this section, we will give a short overview of the different supergravity theories that will

be used in this thesis. We will first look at theories in 5 and 4 dimensions that are invariant
under eight supercharges, putting emphasis on the special geometries that appear as target

spaces in these theories. We will also indicate how dimensional reduction leads to addi-

tional relations between these special geometries. Finally, we will discuss some supergravity
theories that are maximally supersymmetric, namely type II theories in 10 dimensions and

gauged N = 8 supergravity in four dimensions.
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2.4.1 Supergravity with eight supercharges

N = 2 supergravities in five dimensions

In five-dimensional supergravity with 8 supercharges, the gravity multiplet consists of the

fünfbein ea
µ, 2 gravitini ψi

µ and one vector field Aµ. There are furthermore 2 kinds of mat-
ter multiplets possible10, namely vector multiplets and hypermultiplets. A vector multiplet

consists of one vector, two spin 1/2-fermions that obey symplectic Majorana reality condi-
tions and one real scalar. The field content of a hypermultiplet is given by four real scalars

and two symplectic Majorana fermions. The bosonic part of the Lagrangian, describing the

coupling of the gravity multiplet to n vector multiplets and m hypermultiplets, is given by
[31]:

Lbos,5d =
√−g

(R
2
− 1

4
NIJFI

µνFJ|µν − 1

2
gvw(φ)∂µφ

v∂µφw − 1

2
hXY (q)∂µq

X∂µqY
)

+
1

8
CIJKε

µνρστFI
µνFJ

ρσA
K
τ , (2.107)

where the field strengths of the vectors are given by FI
µν = 2∂[µA

I
ν]. The scalars of the vector

multiplets are denoted by φv (v = 1, · · · , n), while qX (X = 1, · · · , 4m) denote the scalars

of the hypermultiplets. The index I runs from 0 to n. Indeed, the total number of vectors
in the theory is n+ 1, with n vectors residing in the vector multiplets and 1 vector coming

from the gravity multiplet. The last term in (2.107) is called the Chern-Simons term. It is

determined by a constant, symmetric 3-tensor CIJK .
The kinetic terms of the scalars assume the form of a non-linear sigma model (2.97). In

the present case, it turns out that supersymmetry restricts this target space M to consist
of a direct product of 2 factors:

M = VSR⊗QK . (2.108)

The first factor VSR, describing the geometry of the vector multiplet scalars φv, is a very

special real manifold, determined by the tensor CIJK . The second factor encodes the ma-

nifold spanned by the hypermultiplet scalars qX and corresponds to a quaternionic-Kähler
space. Note that the choice of a target space of the form (2.108) determines the bosonic La-

grangian (2.97). Once such a choice is made, the kinetic terms of the scalars can be written
in terms of the metric on the product manifold (2.108). The kinetic terms of the vectors are

determined by the object NIJ , which for very special real geometry was defined in (2.79).

The choice of a very special real manifold also determines the Chern-Simons terms via the
tensor CIJK . This conclusion not only holds for the bosonic part of the Lagrangian, but

also for the fermionic part as well as for the supersymmetry transformation rules. They are
equally well described in terms of geometrical objects, such as curvature tensors, defined on

a very special real and a quaternionic-Kähler manifold.

N = 2 supergravity in four dimensions

In N = 2 supergravity in four dimensions, the gravity multiplet again consists of a vierbein

ea
µ, 2 gravitini ψ1

µ, ψ
2
µ, that now obey Majorana conditions and one vector Aµ. Again, one

10 One can also introduce tensor multiplets. However for the theories discussed here, these are equivalent
to vector multiplets.
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can add vector or hypermultiplets as possible matter multiplets. The field content of the

hypermultiplets is the same as in 5 dimensions, with the fermions now obeying Majorana

conditions. We will again denote the scalars in the hypermultiplets by qX . A vector multiplet
now consists of one vector, 2 Majorana spinors and one complex scalar. The bosonic action

in this case is given by [32]:

Lbos,4d =
√−g

(R
2
− gij̄∂µz

i∂µz̄ j̄ − 1

2
hXY (q)∂µq

X∂µqY +
1

4
(ImNIJ )FI

µνFJµν
)

−1

8
(ReNIJ)εµνρσFI

µνFJ
ρσ ,

=
√−g

(R
2
− gij̄∂µz

i∂µz̄ j̄ − 1

2
hXY (q)∂µq

X∂µqY +
1

2
Im
(
NIJF+I

µν F+Jµν
))

.

(2.109)

We have denoted the field strengths of the vectors by FI
µν . In the last line, we have introduced

the (anti-)self-dual field strengths:

F±I
µν =

1

2
(FI

µν ± F̃I
µν) , F̃I

µν = − i

2
eεµνρσFIρσ (e =

√−g) . (2.110)

As in five dimensions, the index I on the vectors runs from 0 to n. The complex scalars of
the vector multiplets have been denoted by zi, i = 1, · · · , n.

As in the five-dimensional case, supersymmetry tells us that the target space of the
scalars has a direct product form:

M = SK ⊗QK . (2.111)

The manifold SK describing the geometry of the scalars of the vector multiplets, is now a
special Kähler manifold, while the manifold QK spanned by the hypermultiplet scalars is

again a quaternionic-Kähler manifold.

Similar to the situation in five dimensions, the full Lagrangian and supersymmetry trans-
formation rules are determined by geometrical quantities that can be defined on a special

Kähler manifold and a quaternionic-Kähler manifold. For instance, given a prepotential F ,
one can reconstruct the special Kähler metric and period matrix NIJ appearing in (2.109),

as well as other geometrical objects that determine couplings of fermion fields to other fields

in the theory. N = 2 supergravity was originally constructed in a formulation in which a
prepotential F for the vector multiplet sector is present [32], however, in [33] theories were

found that could not be formulated using a prepotential. These models are constructed by
applying a duality transformation to a model with prepotential. In order to explain this

point, we note that in four dimensional supergravity theories a generalization of Maxwell

electric-magnetic dualities is possible. Consider the kinetic terms of the vector fields in
(2.109). Defining

Gµν
+I ≡ 2i

∂L
∂F+I

µν

= NIJF+Jµν , (2.112)

the set of Bianchi identities and field equations (neglecting possible fermionic terms) can be
written as follows

∂µImF+I
µν = 0 ,

∂µImGµν
+I = 0 . (2.113)
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This set of equations is invariant under G ℓ(2n+ 2,R) transformations:

(
F̃+

G̃+

)
= S

(
F+

G+

)
=

(
A B

C D

)(
F+

G+

)
. (2.114)

Note that the Gµν are related to Fµν as in (2.112). We will thus require that under a duality

transformation, the matrix NIJ transforms to ÑIJ such that

G̃µν
+I = ÑIJ F̃+Jµν . (2.115)

The matrix Ñ is then related to the original one as in (2.74). Requiring that Ñ is again
symmetric, one then finds that

S =

(
A B
C D

)
∈ Sp(2n+ 2,R) . (2.116)

Note that these symplectic transformations in general do not leave the action invariant, they

merely constitute an invariance of the combined set of field equations and Bianchi identities.
Suppose now that we start from a formulation in terms of a prepotential F . One can

then perform a duality transformation. Supersymmetry implies that this transformation
also acts on the section V , such as to reproduce the transformation law (2.74). So under a

duality transformation:

V =

(
XI

FI

)
−→ Ṽ =

(
X̃I

F̃I

)
=

(
A B

C D

)(
XI

FI

)
. (2.117)

Although the FI one starts from are derivatives of F with respect to XI , this is not neces-
sarily true anymore for the F̃I . In general, it is not possible to find a function F̃ , such that

F̃I = ∂F̃
∂X̃I

. The two theories one obtains in this way have different actions and correspond

to dual formulations of the same theory.
This is the reason why we adopted two definitions for special Kähler geometry. One

definition is very suitable in the case when one has a prepotential at hand, while the other
can also be used in more general setups.

Dimensional reduction and special geometry inclusions

In previous sections, we have described the different theories with 8 supercharges in 5 and

4 dimensions as well as the corresponding target space geometries. In this section, we will
explain how dimensional reduction gives a recipe to construct mappings from very special

real to special Kähler geometry and from special Kähler to quaternionic-Kähler geometry.
Let us first briefly explain how dimensional reduction is performed and then apply it to the

supergravity theories with 8 supercharges previously introduced.

Consider a massless complex scalar field φ in a space-time which is a direct product of
four-dimensional Minkowski space-time and a circle. Parametrizing Minkowski space-time

by coordinates xµ and the circle by a coordinate z (where z is periodic with period 2πR),
one can expand φ as a Fourier series:

φ(xµ, z) =
∑

n

einz/Rφn(xµ) . (2.118)
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Using the fact that the five-dimensional d’Alembertian �5 = �4 +∂2
z , one sees that the five-

dimensional Klein-Gordon equation �5φ = 0 leads to separate equations for the different

Fourier modes φn:

�4φn − n2

R2
φn = 0 . (2.119)

Each of the Fourier modes can thus be interpreted as a four-dimensional field with a mass

given by (n/R)2. Choosing the radius R of the circle to be small, one sees that the modes
with n 6= 0 become highly massive and we can neglect them when we consider low energies.

At energy scales of order 1/R, the tower of massive modes becomes visible and space-time
appears five-dimensional again.

When other fields are present, one can play a similar game. Denoting higher-dimensional

coordinates as xM , M = 1, · · · , D + 1, one can split them into a compact (space-like)
coordinate z and D non-compact coordinates xµ. The example given above shows that at

sufficiently low energies, one can take all fields to be independent of z, i.e., one only keeps

the zero-modes in their Fourier expansion. Consider now for instance the D+1-dimensional
metric ĝMN , where the dependence of z is now suppressed. The index M can now take the

values µ or z, leading to the following components : ĝµν , ĝµz and ĝzz. From a D-dimensional
viewpoint, these look like a symmetric tensor, a vector and a scalar respectively. This shows

that the higher-dimensional metric decomposes in terms of lower-dimensional fields into a

metric gµν , a vector A(0)
µ and a scalar φ respectively. Similarly, a D + 1-dimensional vector

field ÂM gives rise to a D-dimensional vector field Aµ and a scalar χ.

Although we have shown this procedure for one compact coordinate, one can also consider
more general cases in which there are several compact directions, that span a manifold that

is often denoted as the internal manifold. In the simplest case, these internal manifolds

are tori, but more general possibilities can occur as well. Note that the procedure can in
general be more complicated than described above. One generic feature of compactifications

is the appearance of scalar fields in the lower-dimensional effective theory. These scalar fields
are often called moduli; they parametrize the size and shape of the internal manifold. The

simplest example of such a modulus is given by the scalar field that comes from the reduction

of the metric in a circle compactification as described above.
Let us now perform a simple toroidal reduction of the N = 2 supergravity theories

of the previous section. It can be shown that for such reductions on tori, the number of

supersymmetries is not reduced in the process. This implies that one is led to a lower
dimensional theory that is again invariant under eight supersymmetries. Suppose we start

from N = 2 supergravity in five dimensions, coupled to nv vector multiplets. From the
reduction of the metric, one gets a four-dimensional metric, a vector field and a scalar. The

nv + 1 vectors in the theory reduce to nv + 1 vectors and nv + 1 scalars, while the nv scalars

that were already present in the vector multiplets give rise to nv four-dimensional scalars.
In total, the four-dimensional field content is given by a metric, nv + 2 vectors and 2nv + 2

scalars. This is summarized in table 2.1.
So, one sees that the bosonic field content in four dimensions consists of the content of

the gravity multiplet and that of nv + 1 vector multiplets. Also at the level of the fermions,

this matching occurs. Indeed, the 2 spinors in one vector multiplet reduce to two spinors in
four dimensions. The two gravitini ψ̂i

M give rise to two gravitini ψi
µ in four dimensions and

two extra fermions ψi
z , that sit in a four-dimensional vector multiplet.



2.4. An overview of supergravity theories 35

5 d 4 d

spin-2 spin-1 spin-0

ĝMN gµν A(0)
µ φ

ÂI
M AI

µ χI I = 0, · · · , nv

φ̂v φv v = 1, · · · , nv

Table 2.1 In this table, we summarize the dimensional reduction of the bosonic fields of N =

2, 5-dimensional supergravity to four dimensions. The first column shows the 5-dimensional

fields. The second, third and fourth columns show the fields that appear under dimensional
reduction, classified according to spin. The last column contains remarks concerning index

ranges.

The resulting theory in 4 dimensions is thus N = 2 supergravity coupled to nv + 1

vector multiplets, implying that the four-dimensional action can be described in terms of

special Kähler geometry. Indeed, it turns out that the dimensionally reduced action assumes
the form of (2.109) (without the kinetic term for the hypermultiplets), where the objects

pertaining to special geometry can be derived from the prepotential

F (X) =
CIJKX

IXJXK

X0
. (2.120)

Similarly, one can reduce N = 2 supergravity coupled to nv + 1 vector multiplets in four
dimensions to three dimensions. The four-dimensional metric again reduces to a metric in

three dimensions, a vector field and a scalar. The vector fields reduce to three-dimensional
vector fields and scalars. However, in three dimensions one can take into account that a

vector field Ak is dual to a scalar ϕ via the usual Hodge duality:

∂iϕ = ǫijk∂
jAk , (2.121)

where we have used indices i, j, k to denote coordinates in three dimensions. The dimensional
reduction from four to three dimensions is summarized in the table 2.2.

4 d 3 d

g̃µν gij ϕ(0) σ

ÃA
µ ϕA ζA A = {0, I}
z̃I zI

Table 2.2 This table summarizes how the bosonic fields in four dimensions reduce to three

dimensions. The first column shows the four-dimensional fields. The second column contains
the spin-2 three-dimensional fields. The third column contains three-dimensional spin-0

fields, coming from the dualization of a vector. The fourth column contains the other spin-0

fields. We have denoted four-dimensional fields using a tilde. Indices µ are four-dimensional,
while indices i, j are three-dimensional.

One sees that in total one now has 4(nv + 2) scalar fields, corresponding to the bosonic

field content of nv+2 hypermultiplets. So, in three dimensions one ends up with supergravity
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with 8 supercharges coupled to nv +2 hypermultiplets. As expected, the bosonic Lagrangian

consists of an Einstein-Hilbert term and a non-linear sigma model exhibiting quaternionic-

Kähler geometry.
In this way, dimensional reduction provides a mapping between very special real geom-

etry, special Kähler geometry and quaternionic-Kähler geometry. Performing dimensional

reduction from 5 to 4 dimensions leads to a mapping of the set of very special real ge-
ometries to a subset of all special Kähler geometries. This map is called the r-map and

the special Kähler geometries in its image are denoted as very special Kähler geometries.
The mapping between special Kähler geometry and quaternionic-Kähler geometry that is

induced by reduction from 4 to 3 dimensions is denoted as the c-map and its image consists

of the special quaternionic-Kähler geometries. Quaternionic-Kähler geometries that are in
the image of the c ◦ r-map are often called very special quaternionic-Kähler manifolds. This

is summarized in fig. 2.1.

very special real special Kähler

very special Kähler

quaternionic

special

quaternionic

very special

quaternionic

r-map

c-map

Figure 2.1 Summary of the actions of the r- and c-map, relating the 3 different sorts of
geometries appearing in theories with 8 supercharges.

2.4.2 Eleven-dimensional supergravity and type II supergravities

in 10 dimensions

In eleven dimensions, the minimal spinor has 32 components. There is thus a unique su-

pergravity theory, that contains one massless supermultiplet, the gravity multiplet which
consists of the following on-shell degrees of freedom11

gMN CMNP ψM

44 84 128
. (2.122)

The corresponding supergravity theory was constructed in [34]. The bosonic part of the

Lagrangian is given by

S11d =
1

2κ2
11

∫
d11x

√−g
[
R − 1

2 · 4!
G2
]
− 1

12κ2
11

∫
G ∧G ∧ C , (2.123)

11 We will use latin indices m, n, p, · · · to denote curved coordinates in 10 dimensions, while in 11 dimensions,
we will use capital indices M, N, P, · · · . These theories are used in chapter 4, where this convention will
be appropriate. Flat indices in 10 dimensions will be denoted with underlined latin letters.
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where G = dC and κ11 denotes the 11-dimensional gravitational coupling constant.

In 10 dimensions, one has more possibilities to construct supergravity theories. Indeed,

the minimal spinor is Majorana-Weyl and has 16 real components. This means that minimal
N = 1 supergravity in 10 dimensions has 16 supercharges. One can also construct maximal

N = 2 theories. For these so-called type II theories, one has two possibilities : either the

two independent supersymmetries correspond to two Majorana-Weyl spinors with different
chirality (type IIA) or they constitute two Majorana-Weyl spinors with the same chirality

(type IIB). Again, there is only one massless multiplet in each case, namely the gravity
multiplet. In both cases, this multiplet contains the metric Gmn, a two-form B(2) and a

scalar Φ (called the dilaton). These fields constitute what is often called the common sector

or the NS-NS subsector. In type IIA, the bosonic sector of the gravity multiplet further
contains a one-form C(1) and a three-form gauge potential C(3). In type IIB on the other

hand, the bosonic sector is completed with an extra scalar C(0), a two-form C(2) and a four-
form gauge potential C(4) satisfying a self-duality constraint. These extra form fields C(n)

are called R-R forms. In both cases, the fermionic sector consists of the gravitino ψm and

a dilatino λ. In the type IIA case, the spinors have different chirality and can be combined
in one Majorana spinor with 32 components. In type IIB, the spinors are doublets of two

spinors with the same chirality. Let us summarize the field content of type II supergravities
by listing their fields and their on-shell degrees of freedom for type IIA:

Gmn B(2) Φ C(1) C(3) ψm λ

35 28 1 8 56 56 + 56 8 + 8
, (2.124)

while for type IIB:

Gmn B(2) Φ C(0) C(2) C(4) ψm λ

35 28 1 1 28 35 56 + 56 8 + 8
. (2.125)

To write the supergravity actions, let us start by introducing the generalized R-R field-
strengths12

F(1) = dC(0) , F(2) = dC(1) , F(3) = dC(2) + C(0)H(3) ,
F(4) = dC(3) +H(3) ∧ C(1) , F(5) = dC(4) +H(3) ∧ C(2) , (2.126)

where H(3) = dB(2).

The type IIA supergravity action is the following:

SIIA =
1

2κ2
10

∫
d10x

√
−G
{
e−2Φ

[
R+ 4(∂Φ)2 − 1

2 · 3!
(H(3))

2
]

− 1

2 · 2!
(F(2))

2 − 1

2 · 4!
(F(4))

2
}
− 1

4κ2
10

∫
B(2) ∧ dC(3) ∧ dC(3) , (2.127)

whereas the type IIB supergravity action is given by:

SIIB =
1

2κ2
10

∫
d10x

√
−G
{
e−2Φ

[
R+ 4(∂Φ)2 − 1

2 · 3!
(H(3))

2
]

−1

2
(F(1))

2 − 1

2 · 3!
(F(3))

2 − 1

4 · 5!
(F(5))

2
}

12 We are using essentially the same conventions as in [35].



38 CHAPTER 2. COSMOLOGY AND SUPERGRAVITY

+
1

4κ2
10

∫
dC(2) ∧H(3) ∧ (C(4) +

1

2
B(2) ∧ C(2)) . (2.128)

In both actions, κ10 denotes the gravitational coupling constant. In type IIB, one has to
supplement the action with a self-duality condition on F(5) that has to be imposed by hand

at the level of the equations of motion.
The supersymmetry transformations for both IIA and type IIB can be written in the

form

δεψm = Dmε , δελ = ∆ε , (2.129)

where the supersymmetry parameter ε is a Majorana spinor for type IIA and a doublet of

Majorana-Weyl spinors of positive chirality for type IIB. It is useful to split the operators
Dm and ∆ as follows:

Dm = D(0)
m +Wm , ∆ = ∆(1) + ∆(2) . (2.130)

In type IIA, we have

D(0) = ∇m +
1

4 · 2!
HmnpΓnpΓ(10) ,

Wm = −1

8
eΦ
(1

2
FnpΓnpΓ(10) +

1

4!
FnpqrΓnpqr

)
Γm ,

∆(1) =
1

2

(
Γm∂mΦ +

1

2 · 3!
HmnpΓmnpΓ(10)

)
,

∆(2) =
1

8
eΦ
( 3

2!
FmnΓmnΓ(10) −

1

4!
FmnpqΓmnpq

)
, (2.131)

while in type IIB

D(0) = ∇m +
1

4 · 2!
HmnpΓnpσ3 ,

Wm =
1

8
eΦ
[
FnΓn(iσ2) +

1

3!
FnpqΓnpqσ1 +

1

2 · 5!
FnpqrtΓ

npqrt(iσ2)
]
Γm ,

∆(1) =
1

2

(
Γm∂mΦ +

1

2 · 3!
HmnpΓmnpσ3

)
,

∆(2) = −1

2
eΦ
[
FmΓm(iσ2) +

1

2 · 3!
FmnpΓmnpσ1

]
, (2.132)

where ∇m = ∂m + 1
4Ωm

npΓnp is the covariant derivative.
Note that supergravity in 11 dimensions and 10 dimensions are not unrelated. Upon

dimensional reduction, 11-dimensional supergravity leads to a non-chiral supergravity in
10 dimensions with 32 supercharges and hence gives the type IIA theory. Indeed, the 11-

dimensional metric gives upon reduction rise to the 10-dimensional metric, a vector field

that can be identified with C(1) and a scalar, namely the dilaton Φ. The three-form in 11
dimensions leads to a three-form (when taking all indices in the non-compact directions) and

a two-form (when taking one index along the compact direction) in 10 dimensions. These
can be identified with C(3) and B(2) respectively.

It turns out that also the type IIA and type IIB supergravity theories are not unrelated.

To see this, let us verify how their bosonic field content looks like upon dimensional reduction.
The reduction of type IIA gives rise to a metric, one three-form, two two-forms, 3 vector

fields and three scalar fields. In the type IIB case, one gets the 9-dimensional metric, two
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two-forms, 3 vector fields and 3 scalar fields from the reduction of the metric, B(2), Φ, C(0)

and C(2). The reduction of the four-form requires some extra care because of its self-duality.

In principle, it gives rise to a four-form and a three-form. However, these two forms are
related by the self-duality constraint and one can eliminate one of the two. Usually, one then

eliminates the four-form. So, one can conclude that upon dimensional reduction both type

IIA and type IIB theories lead to the same spectrum in 9 dimensions. It is also possible to
show explicitly that the actions of the type IIA and IIB theories reduce to the same action,

describing maximal supergravity in 9 dimensions. As a consequence, it is possible to relate
the type IIA and IIB theories using the following rules:

φ̄ = φ− 1

2
lnG99 , Ḡ99 =

1

G99
,

Ḡm̄n̄ = Gm̄n̄ − Gm̄9Gn̄9 −Bm̄9Bn̄9

G99
, Ḡm̄9 =

1

G99
,

B̄m̄n̄ = Bm̄n̄ − Bm̄9Gn̄9 −Gm̄9Bn̄9

G99
, B̄m̄9 =

Gm̄9

G99

C̄
(n)
9m̄2...m̄n

= C
(n−1)
m̄2...m̄n

− (n− 1)G−1
99 G9[m̄2

C
(n−1)
|9|m̄3...m̄n] ,

C̄
(n)
m̄1...m̄n

= C
(n+1)
9m̄1...m̄n

− nB9[m̄1
C̄

(n)
|9|m̄2...m̄n] , (2.133)

where the barred fields correspond to the transformed fields, the 9-direction denotes the

compact direction and m̄, n̄, · · · 6= 9. As these rules form the supergravity manifestation of

a stringy duality, that was called T-duality, they are often called T-duality rules.

2.4.3 Gauged maximal supergravity in four dimensions

Maximal (N = 8) supergravity in four dimensions can be obtained from 11-dimensional

supergravity by performing a dimensional reduction in which the compact coordinates are

coordinates on a seven-torus. This theory was originally constructed in [36]. As the theory
is maximally supersymmetric, only the gravity multiplet is present. Its field content consists

of the metric gµν , 28 vector fields AI
µ with field strengths F I

µν , 70 scalars φi, 8 gravitini

and 56 Majorana fermions, constituting 128 bosonic and 128 fermionic on-shell degrees of
freedom. The bosonic part of the Lagrangian is given by:

Lbos,N=8 =
√−g

(R
2
− 1

2
gij(φ)∂µφ

i∂µφj +
1

4
(ImNIJ )F I

µνF
J|µν

)

−1

8
(ReNIJ )εµνρσF I

µνF
J
ρσ . (2.134)

The 70 scalars form a non-linear sigma model with metric gij . This target space corresponds
to the non-compact symmetric coset space

Mscalar =
E7(+7)

SU(8)
. (2.135)

As before, NIJ represents a scalar-dependent matrix, that can be calculated according to
a standard construction [37] that is valid for supergravity theories with symmetric target

spaces.
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The symmetry group of the kinetic term of the scalars in (2.134) corresponds to the

isometry group of (2.135) and is in this case given by E7(+7). This E7(+7) however does

not lead to a symmetry of the full Lagrangian, but is only a symmetry of the combined
set of field equations and Bianchi identities. The action is only invariant under a subgroup

G ⊂ E7(+7). In fact, one can construct different actions of ungauged N = 8 supergravity,

each having a different global invariance group G. These actions are however related via
electric-magnetic duality as discussed in section 2.4.1 and hence lead to the same set of

equations of motion and Bianchi identities.
In the most known case, described in [38], the invariance group of the action is given

by G = S ℓ(8,R). The 28 vector fields in the theory transform in the antisymmetric 28

representation of S ℓ(8,R) and one can use them to gauge a subgroup K ⊂ S ℓ(8,R), i.e., to
promote K from a global to a local invariance of the Lagrangian. This procedure basically

consists of replacing ordinary derivatives by derivatives that are gauge-covariant with respect
to K and by replacing ordinary abelian field strengths by non-abelian ones. The minimal

couplings one thus introduces however explicitly break supersymmetry. It turns out that

supersymmetry can be restored by adding parts to the supersymmetry transformations of
the fermions as well as extra terms to the Lagrangian. In this way, the gauging procedure

also introduces a potential for the scalars that is proportional to the square of the gauge
coupling constant. The first example of such a gauged N = 8 supergravity was given in [39],

where de Wit and Nicolai gauged an SO(8) subgroup of S ℓ(8,R). Later on, starting from

this prime example more general gaugings were considered. It turns out that, when S ℓ(8,R)
is the invariance group of the Lagrangian, the most general gaugings consist of the so-called

CSO(p, q, r)-gaugings, where p+q+r = 8 [40, 41, 42]13. Denoting the 28 generators of these
CSO groups by Λab = −Λba, with a, b = 1, · · · , 8, they obey the following algebra:

[Λab,Λcd] = Λadηbc − Λacηbd − Λbdηac + Λbcηad , (2.136)

where

ηab =




p×p 0 0
0 − q×q 0

0 0 0r×r



 . (2.137)

Note that when q = r = 0 the gauge algebra is the one of SO(8). When r = 0, the
corresponding gauge groups are the non-compact groups SO(p, q) with p + q = 8. When

r 6= 0, the CSO(p, q, r) groups are not semi-simple and they can be obtained as group
contractions of SO(p+ r, q).

Like ungauged N = 8 supergravity, that can be obtained from higher dimensions by

performing dimensional reductions on tori, the CSO(p, q, r)-gaugings of the theory can also
be seen to have a higher-dimensional origin. In this case, the compact directions no longer

form a torus. The SO(8)-gauging for instance can be obtained by reducing 11-dimensional
supergravity on a seven-sphere S7 [44, 45, 46]. For general CSO-gaugings, the higher-

dimensional origin was found in [47]. In this case, the compactification manifold no longer

corresponds to a sphere and in fact no longer needs to be compact any more. We will come
back to these issues in chapter 4.

13 Other gaugings have been found later, starting from dual actions with different symmetry groups G, see
for instance [43]. For the rest of this thesis we only consider the CSO-gaugings.
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Due to the fact that gauged supergravities contain potentials for the various scalar fields

in the theory, one can wonder about their relevance for cosmology. Various investigations

have been performed that were aimed at finding stationary points of the scalar potential
in various gauged supergravities that lead to vacua with a positive cosmological constant

(see for instance [48, 49, 50, 51, 52, 53]). For the above described CSO-gaugings of N = 8

supergravity, a detailed study has been performed in [54]. It was found that de Sitter vacua
can be found for SO(p, q)-gaugings. The de Sitter vacua that are found in this way are

however never stable : they always correspond to saddle points of the potential. In chapter
4 of this thesis, we will perform a search for a different type of cosmological solutions in

the CSO-gauged supergravities. Instead of searching for de Sitter vacua, we will search for

scaling cosmologies, as described in section 2.1.4.





Chapter 3

Tits-Satake projections of

homogeneous special geometry

3.1 Introduction : cosmological solutions in ungauged

supergravity

The observation that the expansion of our universe is accelerating, invoked a renewed interest

in the study of cosmological solutions in supergravity and string theory. In order to gain

insight in the structure of time-dependent solutions of supergravity theories, the authors
of [55] first focused on ungauged maximal supergravity. More specifically, they focused

on time-dependent solutions of maximal ungauged supergravity in three dimensions. All
bosonic fields are then exhausted by the metric and scalars. Once one has found interesting

cosmological solutions, one can use the inverse process of dimensional reduction1 to interpret

these three-dimensional cosmologies in terms of higher-dimensional ones.

For maximal supergravity in 3 dimensions, the bosonic action takes the form of a non-

linear sigma model:

L3d =
√−g

[1

2
R[g] − 1

2
gij(φ)∂µφ

i∂νφ
jgµν

]
. (3.1)

There are 128 scalars, so the index i, j = 1, · · · , 128. The target space with metric gij(φ) is
given by the symmetric coset manifold:

M =
E8(8)

SO(16)
. (3.2)

In [55], a systematic search for solutions of the equations of motion of this theory is per-
formed, where the scalars depend only on time and the metric assumes the following form:

ds23D = −A2(t)dt2 +B2(t)(dr2 + r2dφ2) . (3.3)

1 The inverse process of dimensional reduction is also known as dimensional oxidation.

43
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One can show that, after choosing an appropriate time variable, the equations of motion for

the scalars reduce to the geodesic equations for the metric gij(φ):

φ̈i + Γi
jkφ̇

j φ̇k = 0 , (3.4)

where Γi
jk denotes the Levi-Civita connection for the metric gij(φ). Once one has obtained

a solution of (3.4), a solution for the metric can be found via the Einstein equations. The

problem of finding time-dependent solutions of maximal supergravity is thus reduced to the
problem of solving the geodesic equations in the target space manifold (3.2).

Using the solvable parametrization of the coset (3.2), an algorithm was constructed that

allows one to find the solutions of the geodesic equations (3.4). This algorithm not only

works for the coset (3.2), but holds more generally for non-linear sigma models coupled to
gravity, where the target space is a maximally non-compact coset space. These are coset

spaces G/H , where G is the split real form of a semi-simple Lie algebra and H is its maximal
compact subgroup. In [56], it was shown that for such non-linear sigma models the resulting

dynamical equations are indeed integrable and a complete set of solutions can be found.

The algorithm developed in [55] is rather specific for cosets that are maximally non-

compact. Such cosets appear generically in maximal supergravity theories, however for
phenomenological purposes one is more interested in non-maximal supergravity theories.

For these, it is no longer true that the target spaces appearing after reduction to three

dimensions are necessarily maximally non-compact cosets. When the target spaces are still
symmetric spaces, there exists a way of obtaining a large class of time-dependent solutions,

even when the coset is not maximally non-compact. This procedure is based on the so-called
Tits-Satake theory in mathematics [57] and was for instance illustrated in [5]. Essentially,

one performs a consistent truncation of the original sigma model such that the truncated

model corresponds to a sigma model on a maximally non-compact coset. One can then solve
the geodesic equations of the truncated model. Since the truncation is a consistent one, these

solutions are automatically solutions of the original theory. As was illustrated in a specific
example in [5], in this way one can obtain an interesting class of non-trivial time-dependent

solutions of non-maximal supergravity theories with symmetric target spaces.

This truncation procedure is known as the Tits-Satake projection of symmetric spaces

and can be seen as a mapping that projects non-maximally non-compact coset spaces to
maximally non-compact ones. The term ’projection’ is a good one, as it happens that in

general several different symmetric spaces project onto the same maximally non-compact

coset. This feature has led to the grouping of supergravity theories with symmetric target
spaces in universality classes. One universality class then consists of all supergravity theories

whose target spaces have the same Tits-Satake projection. This organization of theories
in classes is physically important since all theories in one class share a similar dynamical

behavior. Indeed, all theories in one class share a common set of solutions, namely the

solutions of the Tits-Satake projected model. These solutions do not represent the most
general solution of a specific member in one class; however it turns out that in a lot of cases

this Tits-Satake projection already captures some important part of the time evolution of
all theories in the same universality class.

Symmetric spaces only comprise a small fraction of the possible target spaces appearing
in supergravity theories. Indeed, the geometry of scalar manifolds is restricted by super-

symmetry and depends on the number of supercharges ♯Q. For instance, when ♯Q ≥ 12 the
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manifolds are necessarily symmetric spaces within certain classes (16 ≥ ♯Q ≥ 12) or just

completely fixed cosets for 32 ≥ ♯Q > 16. For 12 > ♯Q ≥ 8 however, the scalar manifolds are

not necessarily symmetric spaces. In fact, they don’t have to be homogeneous anymore. A
natural question is then whether the procedure of Tits-Satake projection can be extended

to a more general class of supergravity theories than just the ones that exhibit symmetric

target spaces. The aim of this chapter is to show that one can indeed extend the Tits-Satake
projection to a class of N = 2 special geometries, namely the ones that are homogeneous,

but not necessarily symmetric. We will mainly focus on homogeneous quaternionic-Kähler
manifolds, since these are the ones appearing in three-dimensional supergravity with 8 su-

percharges. For a lot of these spaces, the c- and r-maps can be inverted to obtain a higher-

dimensional origin in terms of very special real and special Kähler manifolds. Although
special geometries are not necessarily homogeneous, a large and rich class of them is. These

homogeneous special geometries have all been classified and studied systematically [58, 59].
They describe a large class of supergravity models associated for instance with orbifold or

orientifold compactification of superstrings and also with a variety of brane constructions

[60, 61, 62]. They occur for instance in T2 × K3 compactifications and in the large radius
limit of other Calabi-Yau compactifications. In this chapter, we will make clear that one

can still perform the Tits-Satake projection on these spaces. Hence, techniques that were
available in the study of time-dependent solutions of supergravity theories with symmetric

target spaces, can now be applied to this more general class of N = 2 supergravities.

This chapter is organized as follows. In the next section, we will give a general discussion
on homogeneous special geometry. We will review the classification of these geometries as

done by [63, 64, 65]. We will describe in detail the structure of their solvable algebras.

Furthermore, we will also discuss the structure of their isometry algebras, as this will be
relevant later on in the construction. In section 3.3, we will show how the Tits-Satake

projection is done for symmetric spaces and we will illustrate this by means of an explicit
example. Using this discussion, we will then show in section 3.4 how one can extend this

projection to general homogeneous special geometries. Final results and applications will be

given in section 3.5. Among the applications, we will in particular discuss the organization
of supergravity theories in universality classes. Part of the material in this chapter heavily

relies on the theory of semi-simple Lie algebras and their real forms. A summary of some

relevant points on this is given in appendix A.

3.2 Homogeneous special geometry

In this section, we will review the classification of homogeneous quaternionic-Kähler mani-
folds [63, 64, 65]. We will first review some important properties and theorems concerning

homogeneous quaternionic-Kähler geometry, that allow one to classify these manifolds in
an algebraic way. This algebraic classification will then be presented in more detail. Fur-

thermore, we will also discuss the r- and c-maps in the context of homogeneous special

geometry. Finally, we will give a brief summary of the structure of the isometry groups of
these quaternionic-Kähler spaces. Although this is a rather technical review, later sections

will heavily make use of the material presented here.
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3.2.1 Homogeneous quaternionic-Kähler geometry and solvable al-

gebras

Homogeneous quaternionic-Kähler manifolds correspond to coset spaces. They are thus of

the form G/H , where G is the isometry group of the manifold and H the isotropy group

that leaves a point in the space fixed. We will not require G to be a semi-simple group.
Furthermore, H is not necessarily a symmetric subgroup of G 2, so the space G/H is not

necessarily symmetric. We will furthermore only be interested in non-compact homogeneous

quaternionic-Kähler manifolds, as these are the ones that are relevant for supergravity.

Alekseevsky conjectured that all non-compact homogeneous quaternionic-Kähler spaces
are exhausted by the so-called normal quaternionic manifolds [63]. This means that these

spaces admit a completely solvable3 Lie group of isometries that acts on the manifold in

a simply transitive manner4. The following theorem [63] then provides the main tool in
classifying normal quaternionic spaces:

3.2.1 Theorem. If a Riemannian manifold M, with metric g, admits a simply transitive

solvable group of isometries exp(SolvM), then it is metrically equivalent to this solvable
group manifold:

M ≃ exp [SolvM ] ,

g |e∈M = <,> , (3.5)

where <,> is a Euclidean metric defined on the solvable Lie algebra SolvM.

This theorem then implies that one can identify normal quaternionic-Kähler spaces with
solvable group manifolds. These are generated by normal metric Lie algebras SolvM, i.e.,

completely solvable Lie algebras endowed with a Euclidean metric. The problem of clas-
sifying homogeneous quaternionic-Kähler spaces then boils down to classifying the normal

metric algebras that generate them. In this way, one can translate the differential-geometric

problem of classifying homogeneous quaternionic-Kähler manifolds into an algebraic prob-
lem. All notions of differential geometry of these spaces can be rephrased in an algebraic

language. The metric g is translated to the Euclidean metric <,> on SolvM. The Levi-

Civita connection on the manifold is equally well converted to the Nomizu operator which
is defined as follows:

L : SolvM × SolvM → SolvM : (X,Y ) → LXY , (3.6)

∀X,Y, Z ∈ SolvM : 2 < LXY, Z >=< [X,Y ], Z > − < X, [Y, Z] > − < Y, [X,Z] > .

Using the Nomizu operator, one can define the Riemann curvature operator Riem, that is
the translation of the usual Riemann tensor:

Riem(X,Y ) = [LX ,LY ] − L[X,Y ] , X, Y ∈ SolvM . (3.7)

2 H is a symmetric subgroup of G if in the orthogonal decomposition G = H ⊕ K, their corresponding Lie
algebras obey [H, K] ⊂ K and [K, K] ⊂ H.

3 A solvable Lie algebra Solv is completely solvable if the adjoint operation adX for all generators X ∈ Solv
has only real eigenvalues.

4 A group acts on a manifold in a simply transitive way if every two points in the manifold are connected
by one and only one group element.
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The holonomy algebra Γ of SolvM is defined as the Lie algebra generated by the curvature

operator Riem and all of its commutators with Nomizu operators:

[LX1 , . . . , [LXk
,Riem(Xk+1, Xk+2)] . . . ], Xk ∈ SolvM . (3.8)

This holonomy algebra can be shown to coincide with the Lie algebra of the holonomy group
of the manifold.

In order to generate quaternionic-Kähler manifolds, the solvable algebras under consid-

eration should also be equipped with a quaternionic structure. This quaternionic structure
corresponds to the linear Lie algebra Q generated by three operators Jα, acting on SolvM
and obeying (2.80). The solvable algebras that generate normal quaternionic-Kähler mani-

folds are called quaternionic algebras and are defined as follows:

3.2.1 Definition. A normal metric Lie algebra is called quaternionic if there exists a qua-
ternionic structure Q on it, such that the holonomy algebra Γ is contained in the algebra of

SU(2) × USp(2n).

This is the algebraic counterpart of the fact that the holonomy group of quaternionic-

Kähler manifolds is contained in SU(2) × USp(2n). The Riemann tensor splits up in a part

corresponding to an SU(2)-curvature Rα and a USp(2n)-curvature R:

Riem(X,Y ) = Rα(X,Y )Jα +R(X,Y ) . (3.9)

This equation is the algebraic equivalent of (2.90). The statement (2.91) in the definition of a

quaternionic-Kähler manifold that the SU(2)-curvature should be proportional to the hyper-

Kähler 2–forms induced by the three complex structures J1,2,3, is then given in algebraic
terms as:

Rα(X,Y ) = − 1
2ν < JαX,Y > . (3.10)

The complex structures Jα should also satisfy integrability conditions, expressed in terms
of the Nijenhuis tensor [63].

We will now review the classification of normal quaternionic metric Lie algebras. We

will just state the results without proofs, putting emphasis on the precise structure of these
solvable algebras as this will be relevant later on.

3.2.2 The classification of homogeneous quaternionic-Kähler man-

ifolds

The first step in the classification consists in showing that due to the complete solvability of
SolvM and the structure equation (3.9) any normal quaternionic algebra contains a subal-

gebra of quaternionic dimension 1, called the canonical quaternionic subalgebra E. One can

moreover show that E can be only one of two possibilities that we will denote for now as
E = Solv(SU(2, 1)) or E = Solv(USp(2, 2)). This already leads to two different possibilities.

1. E = Solv(USp(2, 2)) : One can show that for any quaternionic dimension n there is a

unique normal quaternionic Lie algebra SolvQ admitting Solv(USp(2, 2)) as canonical
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quaternionic subalgebra. The corresponding quaternionic manifolds are the following

symmetric spaces:

exp SolvQ ≃ USp(2, 2n)

USp(2) × USp(2n)
. (3.11)

They are more commonly known as the hyperbolic spaces.

2. E = Solv(SU(2, 1)) : In this case, the corresponding normal quaternionic algebras

SolvQ have the following structure:

SolvQ = U + Ũ ,

[U,U ] ⊂ U ,
[
U, Ũ

]
⊆ Ũ ,

[
Ũ , Ũ

]
⊂ U . (3.12)

The subalgebra U ⊂ SolvQ is stable with respect to the action of the complex struc-

ture J1: J1 U = U . One can show that U is a solvable algebra, that generates a

homogeneous Kähler manifold. Such an algebra is called a Kähler algebra and one
often calls U the principal Kähler algebra. The subspace Ũ is related to U by the

action of a second complex structure J2: Ũ = J2 U . The representation TU : Ũ → Ũ ,
induced by the adjoint action of U , is called a Q-representation as it has to satisfy

certain non-trivial conditions. The most important condition is that TU is symplectic

with respect to a suitable form Ĵ expressed in terms of J1. The structure of U can be
represented as follows:

U =

r∑

I=1

UI , UI = FI +XI , (3.13)

where UI are called elementary Kähler subalgebras while r is equal to the dimension
of a Cartan subalgebra of SolvQ, i.e., the rank of SolvQ. The two–dimensional sub-

algebras FI are so-called key algebras. In general, a key algebra F can be described

in terms of an orthonormal basis {h, g}, where g = J1 h. The commutation relation
between the basis elements is [h, g] = µg. The number µ is called the root of the key

algebra; from the requirement that TU is a Q-representation, it follows that it can
only take the values (1, 1√

2
, 1√

3
), defining the type I, type II and type III key alge-

bras, respectively. Any key algebra generates a space SU(1,1)
U(1) . An elementary Kähler

subalgebra F +X 5 is then defined by the following commutation relations:

[h, g] = µ g , [h, x] =
µ

2
x , [g, x] = 0 , [x, y] = µ < J1 x, y > g , (3.14)

x, y being elements of X . The collection of r generators hI of the FI generate the
Cartan subalgebra of SolvQ.

The canonical quaternionic subalgebra has the structure E = F0 + J2 F0, where F0 is

a key algebra of type I, which is stable under the action of the complex structure J1.

5 An elementary Kähler algebra is of type I, II or III, when its key algebra is of type I, II or III.
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The intersection of U with E is given by F0, so the structure of U can alternatively

be specified as

U = F0 + SolvSK , SolvSK =
r−1∑

i=1

Fi +Xi . (3.15)

The second term, denoted as SolvSK , is called the special Kähler subalgebra. It is a
normal Kähler subalgebra of rank r − 1.

It turns out that the possible ranks of normal quaternionic algebras range from 1 to 4.
All spaces with E = Solv(USp(2, 2)) have rank 1, while the spaces with E = Solv(SU(2, 1))

have ranks from 1 to 4. We now give an overview of these algebras according to their rank.
For later convenience, we will also indicate the weights6 of the different generators, with

respect to the Cartan subalgebra of SolvQ. These can for instance be found in [63, 64, 66].

Rank 1. For the rank 1 spaces, two important classes can be distinguished, according

to whether the canonical quaternionic subalgebra is Solv(USp(2, 2)) or Solv(SU(2, 1)).
The algebras with Solv(USp(2, 2)) as canonical quaternionic subalgebra will be denoted

as SolvQ(−3, P ), where P ≥ 0. They are the only spaces with Solv(USp(2, 2)) as
canonical subalgebra and they are given explicitly by the following symmetric spaces:

exp [SolvQ (−3, P )] ≃ USp(2P + 2, 2)

USp(2P + 2) × SU(2)
. (3.16)

When P = 0, their solvable algebra consists of four generators : one Cartan generator

and three generators of weight 1. This weight then corresponds to a positive root

of SU(1, 1). For P > 0, the weight structure is different; in that case, there is an
additional set of 4P generators with weight 1

2 . In this case, the full set of weights

of the solvable algebra does not represent a positive root system of a Lie algebra of

simple type.

When the canonical quaternionic subalgebra is Solv(SU(2, 1)), there’s one correspond-
ing manifold of rank 1 that can be described according to the scheme of (3.12) and

(3.15). The corresponding homogeneous space has SolvSK = 0 and can be obtained
as the reduction of pure N = 2 supergravity in four dimensions to three dimensions.

We will denote this space by SG4. It is given by the symmetric space SU(1,2)
SU(2)×U(1) .

The solvable algebra consists of one Cartan generator h0, while there are two distinct
weights associated to two spaces g0 and q:

h0 : (0) g0 : (1) q : (1
2 ) (3.17)

The weight space g0 is one-dimensional, whereas q is two-dimensional.

Rank 2. In this case, there are two distinct possibilities. The first is given by SolvSK = F ,
where F is a key algebra of type III. This corresponds to the quaternionic manifold

G2(+2)

SU(2)×SU(2) , whose isometry algebra is maximally split. As this case is obtained by

6 By weights (or gradings) we mean here the eigenvalues of the different generators under the adjoint action
of the Cartan subalgebra. So, the weights can be seen as the roots of the solvable algebra.
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dimensional reduction of 5-dimensional pure N = 2 supergravity to three dimensions,

we will denote it by SG5. The solvable algebra that generates this space has two

Cartan generators (h0, h1) and the weights are summarized in the following scheme:

h0 : (0, 0) g0 : (1, 0) q0 : (1,− 1
2
√

3
) p0 : (1, 1

2
√

3
)

h1 : (0, 0) g1 : (0, 1√
3
) q1 : (1,−

√
3

2 ) p1 : (1,
√

3
2 )

(3.18)

Note that all weight spaces in the above diagram are one-dimensional.

The second possibility is represented by the series SU(2,P+2)
S(U(2)×U(P+2)) . They are charac-

terized by the following special Kähler subalgebra:

SolvSK = F + Y , (3.19)

where F is a key algebra of type I. The corresponding algebras will be denoted by
SolvQ(−2, P ) and they are more explicitly characterized by the following weights:

h0 : (0, 0) g0 : (1, 0) q : (1
2 ,− 1

2 ) p : (1
2 ,

1
2 )

h1 : (0, 0) g1 : (0, 1) Y : (0, 1
2 ) Ỹ : (1

2 , 0)
(3.20)

These weights are associated to six different subsets of generators, two of which, namely

g0 and g1 are one-dimensional. The spaces q and p are two-dimensional while the
dimension of the spaces Y and Ỹ depends on the value of the parameter P :

dimY = dim Ỹ = 2P . (3.21)

For the case of SolvQ(−2, 0), the spaces Y and Ỹ are absent and the set of weights
gives a positive root system of SO(3, 2), whereas the full set of weights (3.20) does not

have a simple Lie algebra description for P 6= 0.

Rank 3. The special Kähler subalgebra of the quaternionic algebras of rank 3 is a sum of
two elementary Kähler algebras of types I and II, respectively, where the second one

has no X-part. It is convenient to rename X1 = Y :

SolvSK = (F1 + Y ) + F2 , (3.22)

The space Y forms a symplectic representation of the type II key algebra F2, and

under this action it splits into two subspaces Y = Y + +Y −, with Y − = J1 Y +. There
is a corresponding quaternionic algebra for every integer P ≥ 0, that is denoted as

SolvQ(−1, P ). The algebra consists of 3 Cartan generators h0, h1 and h+, while the

weights of the other generators are summarized in the following table:

h0 : (0, 0, 0) g0 : (1, 0, 0) q0 : (1
2 ,− 1

2 ,− 1√
2
) p0 : (1

2 ,
1
2 ,

1√
2
)

h1 : (0, 0, 0) g1 : (0, 1, 0) q1 : (1
2 ,− 1

2 ,
1√
2
) p1 : (1

2 ,
1
2 ,− 1√

2
)

h+ : (0, 0, 0) g+ : (0, 0, 1√
2
) q+ : (1

2 ,
1
2 , 0) p+ : (1

2 ,− 1
2 , 0)

Y + : (0, 1
2 ,

1
2
√

2
) Y − : (0, 1

2 ,− 1
2
√

2
) Ỹ + : (1

2 , 0,
1

2
√

2
) Ỹ − : (1

2 , 0,− 1
2
√

2
)

(3.23)



3.2. Homogeneous special geometry 51

The dimensions of the weight spaces of type Y are related to the parameter P in the

following way:

dimY + = dim Y − = dim Ỹ + = dim Ỹ − = P , (3.24)

while the other weight spaces are one-dimensional. We can distinguish two cases:

• SolvQ(−1, 0). In this case, there are no generators of type Y and the solvable

algebra corresponds to the solvable algebra that generates the symmetric coset
SO(3,4)

SO(3)×SO(4) .

• SolvQ(−1, P ) with P 6= 0. These algebras are not related to any simple Lie
algebra. The corresponding quaternionic spaces are not symmetric.

Rank 4. For the rank 4 quaternionic algebras, the subalgebra U has the following structure:

U = F0 + SolvSK = F0 + (F1 +X1) + (F2 +X2) + F3 ,

[FI , FJ ] = 0 , I, J = 0, 1, 2, 3 ,

FI = {hI , gI} ; [hI , gI ] = gI , [hi, Xi] =
1

2
Xi , i, j = 1, 2, 3. (3.25)

It is convenient to set X2 = X and X1 = Y + Z, where [F2, Y ] = 0 and [F2, Z] = Z.
Decomposing the spaces X,Y into eigenspaces with respect to the adjoint action of h3

and the space Z in eigenspaces with respect to h2, the corresponding eigenspaces are
denoted as X+ and X− = J1X+, etc.

The gradings of the generators with respect to the Cartan subalgebra (h0, h1, h2, h3)

are summarized in the following table [61, 63]:

h0 : (0, 0, 0, 0) g0 : (1, 0, 0, 0) q0 : (1
2 ,− 1

2 ,− 1
2 ,− 1

2 ) p0 : (1
2 ,

1
2 ,

1
2 ,

1
2 )

h1 : (0, 0, 0, 0) g1 : (0, 1, 0, 0) q1 : (1
2 ,− 1

2 ,
1
2 ,

1
2 ) p1 : (1

2 ,
1
2 ,− 1

2 ,− 1
2 )

h2 : (0, 0, 0, 0) g2 : (0, 0, 1, 0) q2 : (1
2 ,

1
2 ,− 1

2 ,
1
2 ) p2 : (1

2 ,− 1
2 ,

1
2 ,− 1

2 )
h3 : (0, 0, 0, 0) g3 : (0, 0, 0, 1) q3 : (1

2 ,
1
2 ,

1
2 ,− 1

2 ) p3 : (1
2 ,− 1

2 ,− 1
2 ,

1
2 )

X+ : (0, 0, 1
2 ,

1
2 ) X− : (0, 0, 1

2 ,− 1
2 ) X̃+ : (1

2 ,
1
2 , 0, 0) X̃− : (1

2 ,− 1
2 , 0, 0)

Y + : (0, 1
2 , 0,

1
2 ) Y − : (0, 1

2 , 0,− 1
2 ) Ỹ + : (1

2 , 0,
1
2 , 0) Ỹ − : (1

2 , 0,− 1
2 , 0)

Z+ : (0, 1
2 ,

1
2 , 0) Z− : (0, 1

2 ,− 1
2 , 0) Z̃+ : (1

2 , 0, 0,
1
2 ) Z̃− : (1

2 , 0, 0,− 1
2 )

(3.26)

The corresponding solvable algebras will be denoted by SolvQ(q, P, Ṗ ). The numbers

q, P and Ṗ are related to the dimensions of the subspaces of type X , Y and Z. The

parameter q gives the dimension of the spaces7 of type X :

q = dimX . (3.27)

As will be made more explicit later on, the spaces Y +
⋃
Z+ form a real representation

of the Clifford algebra in q+1 dimensions with positive signature. A similar result holds

for the other spaces of types Y , Z. This representation can in general be reducible.

7 Here and below, dim X = dimX+ = dimX− = dim X̃+ = dim X̃−, and similar for Y and Z.
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When q 6= 0 mod 4 however, there exists only one irreducible representation of this

Clifford algebra. The representation formed by the spaces Y
⋃
Z is thus uniquely

specified once the number of irreducible representations that constitute it is given. This
number is denoted by P . When q = 0 mod 4, there exist 2 inequivalent representations

of the Clifford algebra and one needs 2 numbers, P and Ṗ to indicate the representation

content of the representation formed by Y
⋃
Z. The numbers P and Ṗ are thus related

to the dimension of the union of spaces of type Y and Z:

q 6= 0 : (P + Ṗ ) =
dim Y + dimZ

Dq+1
, dimY = dimZ ,

q = 0 : P = dimY , Ṗ = dimZ , (3.28)

where Dq+1 is the dimension of the irreducible representations of the Clifford algebra in

q+1 dimensions with positive signature. Information concerning real Clifford algebras
and their representations can be found in appendix B. In general, the dimension of

these manifolds is related to the parameters (q, P, Ṗ ) in the following way:

dim SolvQ(q, P, Ṗ ) = 4(n+ 1) , n = 3 + q + (P + Ṗ )Dq+1 . (3.29)

All quaternionic solvable algebras of rank 4 necessarily have the subset of generators

(hI , gI , qI , pI), where I = 0, 1, 2, 3, and can have some or all of the three spaces of

types X,Y, Z. We can thus distinguish the following particular cases:

• SolvQ(0, 0, 0) ≡ Solv(SO(4, 4)), where the spaces X,Y, Z are all absent. The

weights of the generators (hI , gI , qI , pI) in (3.26) correspond to the positive root

system of SO(4, 4). The corresponding space is SO(4,4)
SO(4)×SO(4) .

• SolvQ(P, 0, 0) = SolvQ(0, P, 0) = SolvQ(0, 0, P ) ≡ Solv(SO(4, 4 +P )), where only

one of the types of spaces X , Y or Z is present. The set of weights of the
generators involved in this case (for example (hI , gI , qI , pI , Y

±, Ỹ ±)) corresponds

to the positive root system of the simple Lie algebra SO(4, 5). These solvable

algebras generate the symmetric spaces SO(4,4+P )
SO(4)×SO(4+P ) .

• SolvQ(0, P, Ṗ ), P Ṗ 6= 0. Note that the set of weights in this case does not

correspond to any positive root system of the simple type. These algebras lead

to quaternionic spaces that are non-symmetric.

• SolvQ(q, P, Ṗ ), P + Ṗ > 0. In these cases all three spaces X,Y, Z are present and
the complete set of weights given in (3.26) closes the positive root system of the

Lie algebra F4, whereas the full solvable algebra generically does not give rise to

a symmetric space.

After we have displayed the weight system of the quaternionic spaces of rank 4 in (3.26),

we can see that the other normal quaternionic spaces are truncations of this one (apart from
an exception for the case indicated as SG5).

In general, the non-generic cases can be obtained by deleting some rows of (3.26), and

restricting the weights consequently. The full list of rows is (0123XYZ). For q = 0, (3.27)
already implies that the row X is absent. If Ṗ = 0, we also do not have the Z row, according

to (3.28), and for P = Ṗ = 0 neither the Y row. This exhausts the rank 4 cases.
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The table for rank 3, i.e., (3.23) can be obtained by deleting also one of the rows that

contain generators in the Cartan subalgebra. Keeping only h+ = 1√
2
(h2 + h3), rather than

h2 and h3, we have obtained weight vectors for the rank 3 spaces from the general ones in
(3.26). The rows Y and Z become identical when restricted to the weights under (h0, h1, h+)

such that we only have to keep one of them. For P = 0, this row is also absent.

For q = −2, the rows 2 and 3 are absent. As such, the weight vectors have only two

components, which implies that some weights in (3.26) become identical, namely those of

q0 and q1, of p0 and p1, of Y + and Y − and of Ỹ + and Ỹ −. This leads to the reduced table
in (3.20). The Y generators are absent for P = 0.

The other rank 2 system is SG5, whose weight vectors are modified with respect to the
systems denoted generically as SolvQ(q, P, Ṗ ), as shown in (3.18). Only rows 0 and 1 occur,

but due to the modified weights, there is no degeneracy as was the case for SolvQ(−2, 0).

Finally, SG4 consists of only the 0 row, and as such only the first component of the root

vectors is relevant. Then q0 and p0 are identical, and this leads to (3.17).

The equations (3.27) and (3.28), which were mentioned for rank 4, also have a general

validity, except of course for q < 0. However, in that case the negative value indicates the
number of rows of (0123) that have to be deleted such that (3.29) is also generally valid.

3.2.3 Higher-dimensional origin of homogeneous special geometry

From the above construction, it is clear that there is a one-to-one correspondence between

the quaternionic algebra SolvQ and its special Kähler subalgebra SolvSK , at least in the
case when the canonical quaternionic subalgebra E is given by Solv(SU(2, 1)) 8. This corre-

spondence is in fact the inverse of the c-map, discussed in section 2.4.1, which maps the 2n-
dimensional special Kähler manifold exp[SolvSK ] to the 4(n+ 1)-dimensional quaternionic-

Kähler manifold exp[SolvQ]. This formalism thus allows one to see how the special Kähler

subalgebra is enlarged to a quaternionic algebra, upon dimensional reduction from 4 to 3
dimensions. A similar discussion can be developed for the r-map, mapping the solvable al-

gebras that generate very special real manifolds to special Kähler algebras. These relations
can more generally be summarized as in the table 3.1, representing first the generators of

the quaternionic algebra SolvQ as in (3.26), but rotated over 90◦. In this way, the different

rows are related by the action of the complex structures9. Furthermore, it indicates how the
algebras SolvSK and SolvR are embedded in SolvQ. The inverse c- and r-map can then be

defined by deleting generators as indicated.

One can in fact also give a six-dimensional origin of a lot of the homogeneous quaternionic-

Kähler spaces. As was shown in [59, 67], all homogeneous quaternionic spaces of rank 3 and
4 can be obtained from a reduction of (1, 0) supergravities in 6 dimensions over a three-torus.

These supergravities have an obligatory gravitational multiplet, consisting of the metric, an

anti-selfdual 2-form and two gravitini (gMN , B
−
MN , ψi|M ), where M = 0, . . . , 5; i = 1, 2.

Furthermore, three kinds of matter multiplets can be coupled, namely tensor multiplets,

vector multiplets and hypermultiplets. One tensor multiplet contains a self–dual 2-form, 2

8 The hyperbolic spaces generated by Solv(−3, P ), where E = Solv(USp(2, 2)) are not in the image of the
c-map.

9 The action of J1 is really column by column in these tables, but applying J2 and hence also J3 on
generators of the lowest row leads to a linear combination of the generators in the row indicated by J2A,
resp. J3A.
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Table 3.1 Generators of the solvable algebras of special manifolds. The generators in dif-

ferent rows are related by complex structures as indicated in the last column. The three
tables indicate the generators of the quaternionic algebra SolvQ, the c–dual Kählerian al-

gebra SolvSK and the real special algebra SolvR. The last line indicates the multiplicity of
any entry in the column, where the last two columns are merged to get to a common expres-

sion. If q is zero or negative, the X column is absent, and the negative number indicates the

number of columns to the left of it that are absent too, such that the general formula (3.29)
always holds.

p0 p1 p2 p3 X̃− Ỹ − Z̃− −J3A = J2J1A

q0 q1 q2 q3 X̃+ Ỹ + Z̃+ J2A
SolvQ =

g0 g1 g2 g3 X− Y − Z− J1A

h0 h1 h2 h3 X+ Y + Z+ A

SolvSK =
g1 g2 g3 X− Y − Z− J1A

h1 h2 h3 X+ Y + Z+ A

SolvR =
X− Y − Z− A

h2 h3 A

# 1 1 1 1 q (P + Ṗ )Dq+1

spinor fields and a scalar (B+
MN , χ

i, φ). A vector multiplet on the other hand consists of a
six-dimensional vector and two gaugini (AM , λi). The hypermultiplets contain 4 scalar fields

and 2 spinor fields. Hypermultiplets are not relevant in our construction, since hyperscalars

already span a quaternionic space in six dimensions that does not become enlarged when
stepping down to d = 5, 4, 3, so they cannot give rise to chains of manifolds connected with

r- and c-maps. The full theory is given in [68].

The total bosonic field content of the gravity-matter system of d = 6, (1, 0) supergravity,
excluding hypermultiplets is:

(gMN , B
I
MN , A

Λ
M , φα) , I = 1, . . . , nT +1 , Λ = 1, . . . , nV , α = 1, . . . , nT , (3.30)

where we included nV vector multiplets and nT tensor multiplets. The nT scalars parametrize
the symmetric space

M6d =
SO(nT , 1)

SO(nT )
. (3.31)

The action of these theories contains a topological term [69, 70, 71] that describes cou-



3.2. Homogeneous special geometry 55

plings of tensor multiplets to vector multiplets:

LCS = CIΛΣB
I ∧ FΛ ∧ FΣ , (3.32)

where FΛ are the field strengths of the vectors. This generic form was already conjectured

in [72, 73] and was found in [74]. For specific values of the constant tensor CIΛΣ, these
theories give rise to the homogeneous quaternionic-Kähler manifolds of rank 3 and 4 in

three dimensions.

The parameters (q, P, Ṗ ) are then related to the number of tensor and vector multiplets
of d = 6 supergravity as follows:

nT = q + 1, nV = (P + Ṗ )Dq+1 . (3.33)

3.2.4 Summary : the full classification of homogeneous special ge-

ometries

We can now summarize the two previous sections by giving the full classification of ho-

mogeneous quaternionic-Kähler manifolds, as well as their possible 4- and 5-dimensional
counterparts. So far, we have used the notation SolvQ to denote the solvable algebras that

generate homogeneous quaternionic-Kähler manifolds. Similarly, we will use SolvSK,R to
denote the solvable algebras that generate homogeneous special Kähler, respectively very

special real manifolds and that can be obtained from SolvQ as indicated in table 3.1. As

these solvable algebras are basically characterized by the three numbers q, P, Ṗ , we will de-

note them as SolvQ,SK,R

(
q, P, Ṗ

)
. As in [75], the family of spaces (very special real, special

Kähler and quaternionic-Kähler) will then be denoted as L(q, P, Ṗ ). For the family of spaces

that have pure supergravity as higher-dimensional origin in 4, respectively 5 dimensions, we
will employ the notation SG4, respectively SG5.

The full list of homogeneous special geometries is then given in table 3.2. The horizontal

lines in the table separate spaces of different rank. When the space is symmetric, we ex-
plicitly mention to which coset space it corresponds. When the space is non-symmetric, we

mention the solvable algebra by which it is generated. When there is no entry in the table,

the corresponding manifold does not exist. For instance for the spaces of type L(−3, P ),
there is only a quaternionic version, which is not in the image of the c-map. The correspond-

ing supergravity theory in 3 dimensions can thus not be uplifted to 4 dimensions. This is in
contrast to the case where the entry is SG, which also denotes an empty scalar manifold. In

this case however, one can lift the 3-dimensional supergravity theory to pure supergravity

in 4 or 5 dimensions, depending on whether one deals with the SG4 or SG5 series.
Furthermore, note that the last four lines are in fact already included in L(q, P ). We have

however listed them separately as they correspond to symmetric spaces. The list of symme-
tric spaces then consists of L(−3, P ), SG4, L(−2, P ), SG5, L(−1, 0), L(0, P ), L(1, 1), L(2, 1),

L(4, 1), L(8, 1). The real member of the L(−1, P ) series is also symmetric, it’s corresponding

Kähler and quaternionic-Kähler versions however are non-symmetric.

3.2.5 Isometry groups of homogeneous special geometries

In the previous parts, we have reviewed the classification of homogeneous quaternionic-

Kähler manifolds. The key element in this construction is the fact that one can rephrase
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Table 3.2 Homogeneous very special real, special Kähler and quaternionic spaces.

C(h) range real Kähler quaternionic

L(−3, P ) P ≥ 0 USp(2P+2,2)
USp(2P+2)×SU(2)

SG4 SG SU(1,2)
SU(2)×U(1)

L(−2, P ) P ≥ 0 U(P+1,1)
U(P+1)×U(1)

U(P+2,2)
U(P+2)×U(2)

SG5 SG SU(1,1)
U(1)

G2(2)

SU(2)×SU(2)

L(−1, 0) SO(1, 1)
[

SO(2,1)
SO(2)

]2
SO(3,4)

SO(3)×SO(4)

L(−1, P ) P ≥ 1 SO(P+1,1)
SO(P+1) SolvSK(−1, P ) SolvQ(−1, P )

L(0, P ) P ≥ 0
SO(P+1,1)
SO(P+1) ×

SO(1, 1)

SO(P+2,2)
SO(P+2)×SO(2)×
SU(1,1)

U(1)

SO(P+4,4)
SO(P+4)×SO(4)

L(0, P, Ṗ ) P ≥ Ṗ ≥ 1 SolvR(0, P, Ṗ ) SolvSK(0, P, Ṗ ) SolvQ(0, P, Ṗ )

L(q, P )

{
q ≥ 1

P ≥ 1
SolvR(q, P ) SolvSK(q, P ) SolvQ(q, P )

L(4m,P, Ṗ )

{
m ≥ 1

P ≥ Ṗ ≥ 1
SolvR(4m,P, Ṗ ) SolvSK(4m,P, Ṗ ) SolvQ(4m,P, Ṗ )

L(1, 1) S ℓ(3,R)
SO(3)

Sp(6)
U(3)

F4(4)

USp(6)×SU(2)

L(2, 1) S ℓ(3,C)
SU(3)

SU(3,3)
SU(3)×SU(3)×U(1)

E6(2)

SU(6)×SU(2)

L(4, 1) SU∗(6)
Sp(6)

SO∗(12)
SU(6)×U(1)

E7(−5)

SO(12)×SU(2)

L(8, 1)
E6(−26)

F4(−52)

E7(−25)

E6(−78)×U(1)

E8(−24)

E7(−133)×SU(2)

this as a classification of solvable Lie algebras. These solvable Lie algebras provide trans-
lational symmetries of the spaces they generate. They are however only a part of the full

symmetry groups. We will now discuss the structure of the full isometry algebras of homo-
geneous special geometries [75]. This knowledge will be relevant later on in extending the

Tits-Satake projection for symmetric spaces to general homogeneous special geometries. In

this section, we will concentrate on the families of manifolds that have a very special real
member. From table 3.2, it can be seen that this does not include all homogeneous spaces.

The other cases however correspond to symmetric spaces and their Tits-Satake projection
can be analyzed in the standard way, as will be explained in the next section. We will first

discuss these isometry algebras for the special real manifolds occurring in five dimensions.

Next, we will indicate what happens upon applying the r- and c-map.

Isometry algebras of homogeneous very special real spaces
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As mentioned in section 2.2.3, very special real manifolds are defined by an equation of

the form C(y) = 1, where C(y) is a cubic polynomial of variables y that are functions of the
physical scalar fields. We will indicate these y-variables here as y = (y1, y2, yα, yΛ) where α

and Λ run over q + 1 and (P + Ṗ )Dq+1 values, respectively. For homogeneous very special

real manifolds, the polynomial C(y) assumes the following form:

C(y) = 3
{
y1(y2)2 − y1yαyα − y2yΛyΛ + γαΛΣy

αyΛyΣ
}
. (3.34)

In this equation, γαΛΣ are the matrix elements of gamma-matrices γα, that form a real

representation of the Euclidean Clifford algebra in q + 1 dimensions. As already mentioned

in the previous section, this representation is not necessarily irreducible. The number of
irreducible representations contained in this representation is denoted by numbers P and

Ṗ , depending on whether there is only one or whether there are two inequivalent irre-
ducible representations of this Clifford algebra. These gamma-matrices are thus in general

(P + Ṗ )Dq+1-dimensional real matrices. The isometry group of the corresponding spaces is

then given by the linear transformations of the y that leave (3.34) invariant.
The structure of the isometry algebra X can be summarized by decomposing it with

respect to the adjoint action of one of the Cartan generators λ. One finds that X has the
following structure:

X = X0 + X3/2 , (3.35)

where the subscript denotes the grading with respect to λ. The space X3/2 consists of

generators ξΛ, which are always present. Generically, there are no generators with negative
gradings, except when the space is symmetric. In that case, in (3.35) there is an extra space

X−3/2 consisting of generators ζ
Λ

and the algebra is semi-simple. The space X0 has the
following structure:

X0 = so(1, 1) ⊕ so(q + 1, 1) ⊕ Sq(P, Ṗ ) , (3.36)

where the so(1, 1) factor is generated by λ. The generators of the additional invariances

of (3.34), which are denoted by Sq(P, Ṗ ) are given by the antisymmetric matrices S that
commute with the matrices γα. These groups Sq(P, Ṗ ) can be found in appendix B. For

later purposes, we mention that the generators of X3/2 transform as a spinor representation

under the adjoint action of so(q + 1, 1), while under the adjoint action of Sq(P, Ṗ ) they

transform in a vector representation.
The solvable part of this isometry algebra, that acts transitively on the manifold is given

by:

SolvR = so(1, 1) ⊕ Solv(so(q + 1, 1)) + X3/2

= {λ , Solv(so(q + 1, 1)), ξΛ} . (3.37)

The solvable algebra of so(q + 1, 1) consists of one Cartan generator and q nilpotent gen-

erators. In this way, we can make contact with previously used notations. Indeed, we
have 2 Cartan generators (namely the generator of so(1, 1) and the Cartan generator of

Solv(so(q + 1, 1))). They agree with h2, h3 (or suitable linear combinations thereof) in the
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last part of table 3.1. The q nilpotent generators of Solv(so(q + 1, 1)) constitute the space

X−, while Y − and Z− together form X3/2.

Isometry algebras for homogeneous very special Kähler spaces

Upon dimensional reduction, the isometry algebras of real spaces discussed above, are en-
larged to isometry algebras of homogeneous special Kähler spaces. The rank of the space is

now increased with one unit. Decomposing the isometry algebra W into eigenspaces with
respect to the adjoint action of one of the Cartan generators λ′, the following structure

occurs:

W = W ′
0 + W ′

1 + W ′
2 ,

W ′
0 = λ′ ⊕ so(q + 2, 2) ⊕ Sq(P, Ṗ ) ,

W ′
1 = ξΛ + bΛ = (1, spinor, vector) ,

W ′
2 = b1 = (2, 0, 0) , (3.38)

where for W ′
1 and W ′

2 we mention in brackets in which representations the generators trans-

form. The first number in brackets denotes the grading with respect to λ′, while the other

two entries denote the representation under the adjoint action of so(q + 2, 2) and Sq(P, Ṗ )
respectively. Note that in general no generators with negative gradings occur. This is differ-

ent for the symmetric spaces, where there are generators (ζ
Λ
, aΛ) at grading −1, and where

there is a generators a1 at grading −2. In these cases the algebra is semi-simple.
The solvable subalgebra of translational isometries is given by the following set of gen-

erators:

SolvSK = {λ′, Solv(so(q + 2, 2)), ξΛ, bΛ, b1} . (3.39)

Again, it is possible to make contact with the second part of table 3.1. The solvable algebra
of so(q+ 2, 2) consists of 2q+ 4 generators. Two of these belong to the Cartan subalgebra of

SolvSK , 2q of them constitute the 2 spaces X+ and X−, while the remaining 2 generators,

together with b1 constitute the g-generators. Furthermore, the generators ξΛ and bΛ deliver
the Y ±-, Z±-generators.

Isometry algebras for homogeneous very special quaternionic spaces

After dimensional reduction from 4 to 3 dimensions, the very special Kähler spaces of the
previous section are enlarged to very special quaternionic manifolds. The corresponding

isometry algebras are likewise extended and now have the following form (the index M runs
over q + 2 values):

V = V ′
0 + V ′

1 + V ′
2 ,

V ′
0 = ǫ′ ⊕ so(q + 3, 3) ⊕ Sq(P, Ṗ ) ,

V ′
1 = (ξΛ, bΛ) ⊕ (αΛ, β

Λ) = (1, spinor, vector) ,

V ′
2 = ǫ+ ⊕ (α1, β

M , β0) ⊕ b1 = (2, vector, 0) , (3.40)

where we also indicated the representation of V ′
1 and V ′

2 under the adjoint action of the

three subalgebras of V ′
0. As in the previous cases, we decomposed the isometry algebra in
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terms of the gradings with respect to the Cartan generator ǫ′. Again, for the symmetric

spaces, the isometry algebra will be extended with additional generators, with gradings −1

and −2 with respect to ǫ′, such that the algebra is semi-simple. The solvable algebra in the
quaternionic case is spanned by the following generators:

SolvQ = {ǫ′, Solv(so(q + 3, 3)), ξΛ, bΛ, b1, αΛ, β
Λ, ǫ+, α1, β

M , β0} . (3.41)

3.3 Tits-Satake projection for symmetric spaces

In this section, we will review how the Tits-Satake projection is done for symmetric spaces.

The aim is to extract some notions in this construction that can later be generalized for
general homogeneous special manifolds. We will first give a more theoretical discussion on

how the Tits-Satake projection is effectuated. In this discussion, the notion of paint group

will appear; this will turn out to be a very important concept. We will then study these
paint groups more specifically for the symmetric quaternionic-Kähler manifolds. Finally, we

will illustrate the full construction in a concrete example.

3.3.1 The Tits-Satake projection for non-maximally split symme-

tric spaces

In this section, we will consider symmetric spaces that are non-compact, as these are the

ones that are relevant for supergravity. The spaces we will deal with are thus coset spaces
of the form:

M =
GR

H
, (3.42)

where GR is a non-compact real form of a complex semi-simple Lie group and H is its
maximal compact subgroup. The Lie algebra of GR will be denoted by GR and is a real

form of a complex semi-simple algebra G. For such a non-compact coset, one can decompose
GR in the Lie algebra H of H and the orthogonal complement K (the Cartan decomposition):

GR = H ⊕ K . (3.43)

A Cartan subalgebra HGR
of GR can be constructed by first searching for a maximal set of

commuting elements in K and then completing this set with appropriate generators in H.
The part of HGR

that lies in K defines the non-compact Cartan subalgebra Hnc:

Hnc ≡ HGR

⋂
K . (3.44)

The dimension of Hnc is often denoted as the non-compact rank rnc or simply the rank of
the coset GR/H . This non-compact rank is thus always smaller or equal then the rank of G.

When equality is fulfilled, the manifold is maximally non-compact (also called maximally
split); in this case GR corresponds to the normal real form of some complex Lie algebra. We

will however mainly concentrate on the case where the rank of the coset is strictly smaller

than the rank of G. In that case, one can make a non-trivial orthogonal split of the Cartan
subalgebra10 in a non-compact and a compact part:

HGR
= Hcomp ⊕Hnc . (3.45)

10 We will often abbreviate ’Cartan subalgebra’ by CSA.
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Consequently, every vector in the dual of the full Cartan subalgebra (so in particular every

root α) can be decomposed in a part α⊥ that lies along the compact directions of the CSA

and a part α|| that lies along the non-compact CSA:

α = α⊥ ⊕ α|| . (3.46)

One can then perform a geometrical projection of the root system onto the non-compact

CSA. This geometrical projection constitutes the first step in performing the Tits-Satake
projection. More specifically, by putting all α⊥ equal to zero for each root α, one has

projected the original root system ∆G onto a new system of vectors ∆ (the so-called restricted

root system) living in a Euclidean space of dimension equal to the non-compact rank rnc.
Note that this restricted root system ∆ is not really a root system in the usual sense. Indeed,

generically roots will occur in ∆ with multiplicities and it can moreover also happen that 2α||
is a restricted root if α|| is one. If one however makes abstraction of the fact that roots can

occur with multiplicities, one obtains a new root system ∆TS, where the roots are now non-

degenerate. This root system ∆TS is the Tits-Satake projection of the original root system.
So schematically, the projection is done by putting α⊥ = 0 and deleting multiplicities:

ΠTS : ∆G 7→ ∆TS : ∆G

α⊥=07−→ ∆
deleting
7−→

multiplicities
∆TS . (3.47)

In a lot of cases, it can happen that ∆TS is actually a root system of simple type (this can

for instance happen when ∆ contains no roots that are doubles of other roots).

Once the projection is defined at the level of the root system, we can promote it to a

projection at the level of the solvable algebra Solv(GR/H) that generates the coset GR/H .

A useful observation in constructing Solv(GR/H) consists in noticing that the original roots
can be divided in three sets, based upon their behavior with respect to the geometrical

projection on the non-compact CSA, in the following way:

⋆ A first set of roots consists of all roots that vanish upon projection. These are the

roots that lie fully along the compact directions of the CSA, henceforth we will denote
them as compact roots. The set of compact roots will be denoted by ∆comp.

⋆ A second set of roots is formed by all roots for which the projection is one-to-one. We
will denote the set of these roots by ∆η. They then project in a one-to-one way onto

a subset of the restricted roots that we will denote by ∆ℓ
TS.

⋆ Of course, in the projection it can happen that many different roots project onto the

same restricted root. These roots then constitute the third class of roots. We will
denote this subset of the original root system as ∆δ and the subset of the restricted

root system onto which they project as ∆s
TS. So, there are several different roots in

∆δ that project onto the same restricted root in ∆s
TS.

Schematically, this division of the original root system in different subsets can be summarized
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as follows:

∆G = ∆η
⋃

∆δ
⋃

∆comp

↓ ΠTS ↓ ΠTS ↓ ΠTS

∆TS = ∆ℓ
TS

⋃
∆s

TS

∀αℓ ∈ ∆ℓ
TS : dim Π−1

TS

[
αℓ
]

= 1 ,

∀αs ∈ ∆s
TS : dim Π−1

TS [αs] = m[αs] > 1 . (3.48)

Note that all roots of type η are orthogonal to the compact roots. This follows from the

fact that for any two root vectors α and β such that there is no root of the form β + mα
with m ∈ Z\{0}, the inner product of β and α vanishes. One can also see that in the trivial

case of maximally split symmetric spaces, where ∆comp is empty, all root vectors are in ∆η

or ∆ℓ
TS (the Tits-Satake projection is then trivial). Furthermore, under addition of root

vectors the following properties are satisfied:

∆G ∆TS

∆η + ∆η ⊂ ∆η ∆ℓ
TS + ∆ℓ

TS ⊂ ∆ℓ
TS

∆η + ∆δ ⊂ ∆δ ∆ℓ
TS + ∆s

TS ⊂ ∆s
TS

∆δ + ∆δ ⊂ ∆η
⋃

∆δ ∆s
TS + ∆s

TS ⊂ ∆ℓ
TS

⋃
∆s

TS

∆comp + ∆η = ∅
∆comp + ∆δ ⊂ ∆δ

(3.49)

When constructing Solv(GR/H) explicitly via the Iwasawa decomposition, this division of
roots in three different subsets implies that the generators of Solv(GR/H) can also be divided

in three different types. The generators of this solvable algebra are schematically given in

the following way:

Solv(GR/H) =
{
Hi,Φαℓ ,Ωαs|I

}
. (3.50)

The generators that were denoted by Hi correspond to the non-compact Cartan generators

of GR. Then, there are two kinds of nilpotent generators. First, there are the generators

that were denoted by Φ. They correspond to the (positive) η-roots. Since for these, the
projection is one-to-one, we can denote them via an index αℓ, indicating the restricted root

upon which the η-root projects. Secondly, there are the generators of type Ω, that roughly
correspond to the (positive) δ-roots. Since there are several δ-roots that project to the same

restricted root αs, one has to use an extra index I taking values from 1 to the multiplicity

m[αs] of that restricted root in the projection.

The crucial observation that allows one to perform the Tits-Satake projection of the

solvable algebra (3.50), is the existence of a compact subalgebra Gpaint ⊂ GR that acts as
an algebra of outer automorphisms of the solvable algebra SolvGR

≡ Solv(GR/H) ⊂ GR:

[Gpaint , SolvGR
] ⊂ SolvGR

. (3.51)

This paint algebra Gpaint is essentially given by the compact Cartan generators, together
with generators that involve step operators Eα corresponding to compact roots. One can

then study in more detail how the generators of the solvable algebra behave with respect to
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the adjoint action of the paint group. The Cartan generators Hi and the generators Φαℓ are

singlets under the action of Gpaint, i.e., each of them commutes with the whole of Gpaint:

[Hi , Gpaint] = [Φαℓ , Gpaint] = 0 . (3.52)

On the other hand, all generators Ωαs|I associated to one restricted root αs, transform
among themselves under the adjoint action of the paint algebra Gpaint, according to a linear

representation D[αs] which, for different restricted roots αs can be different:

∀X ∈ Gpaint :
[
X , Ωαs|I

]
=
(
D[αs][X ]

) J

I
Ωαs|J . (3.53)

This makes it rather easy to define the Tits-Satake projection of Solv(GR/H), since one

simply has to single out a subalgebra G0
subpaint ⊂ Gpaint of the paint algebra such that with

respect to G0
subpaint, each m[αs]–dimensional representation D[αs] branches as follows:

D[αs]
G

0
subpaint
=⇒ 1︸︷︷︸

singlet

⊕ J︸︷︷︸
(m[αs]−1)−dimensional

. (3.54)

Accordingly, one can split the range of the multiplicity index I as follows:

I = {0, x} , x = 1, . . . ,m[αs] − 1 . (3.55)

The index 0 corresponds to the singlet, while x ranges over the representation J. The

restriction to the singlets then defines a solvable subalgebra SolvGTS of the original solvable

algebra SolvGR
. SolvGTS then generates a coset GTS/HTS that is maximally non-compact.

Moreover, the root system of GTS is given by the Tits-Satake projected root system ∆TS.

We then denote SolvGTS as the Tits-Satake projection of SolvGR
and similarly GTS/HTS is

identified as the Tits-Satake projection of GR/H .

As a by-product, one can obtain a more precise relation between SolvGTS and SolvGR
. It

turns out that the tensor product J⊗J contains both the identity representation 1 and the
representation J itself. Furthermore, there exists, in the representation

∧3
J a G0

subpaint-

invariant tensor axyz such that the two solvable Lie algebras SolvGR
and SolvGTS can be

written as indicated in table 3.3.

3.3.2 The paint group for symmetric quaternionic-Kähler spaces

In the previous construction, the paint algebra manifested itself as a crucial notion. Indeed,
once the paint group is known, one can study how the solvable algebra splits in represen-

tations with respect to this paint group. Knowledge of these representations then allows

one to choose an appropriate subpaint group, by which one can single out the Tits-Satake
projection of the symmetric space.

Essentially, this paint group is the part of the maximal compact subalgebra H, spanned
by the compact CSA Hcomp and step operators associated to compact roots. For symme-

tric spaces, these paint groups can be read off from the so-called Satake diagrams. These

diagrams are a useful tool in classifying real forms of complex Lie algebras (see for instance
[76]). They consist of ordinary Dynkin diagrams where two kinds of extra decorations can

be added:
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SolvGR
SolvGTS

[Hi , Hj ] = 0 [Hi , Hj ] = 0

[Hi , Φαℓ ] = αiℓ Φαℓ

[
Hi , E

αℓ
]

= αiℓ

[
Hi , Ωαs|I

]
= αis Ωαs|I

[
Hi , E

αs]
= αis Eαs

[
Φαℓ , Φβℓ

]
= Nαℓβℓ Φαℓ+βℓ

[
Eαℓ

, Eβℓ
]

= Nαℓβℓ Eαℓ+βℓ

[
Φαℓ , Ωβs|I

]
= Nαℓβs Ωαℓ+βs|I

[
Eαℓ

, Eβs
]

= Nαℓβs Eαℓ+βs

If αs + βs ∈ ∆ℓ
TS :[

Ωαs|I , Ωβs|J
]

= δIJ NαsβsΦαs+βs

[
Eαs

, Eβs]
= NαsβsEαs+βs

If αs + βs ∈ ∆s
TS :




[
Ωαs|0 , Ωβs|0

]
= NαsβsΩαs+βs|0[

Ωαs|0 , Ωβs|x
]

= NαsβsΩαs+βs|x[
Ωαs|x , Ωβs|y

]
= NαsβsδxyΩαs+βs|0

+Nαsβsaxyz Ωαs+βs|z

[
Eαs

, Eβs]
= NαsβsEαs+βs

Table 3.3 This table summarizes the commutation relations of SolvGR
and SolvGTS . It is

understood that Nαβ = 0 if α+ β /∈ ∆TS.

• Some of the dots of the Dynkin diagram can be painted in black. They denote simple

roots that lie fully along the compact directions of the CSA (so simple roots in ∆comp).

• Some of the dots can be connected by means of a two-sided arrow. They denote simple
roots that result in the same restricted root setting α⊥ = 0. These necessarily belong

to ∆δ.

Given the Satake diagram, the paint group can then be read from it in the following way. The

black dots form a Dynkin diagram of the semi-simple type. The paint group then contains
a factor corresponding to this painted subdiagram. This factor contains step operators

associated to the roots in ∆comp as well as as many elements of Hcomp as there are roots

colored in black in the diagram. Furthermore, for every arrow, there is one additional SO(2)-
factor that commutes with the rest of the paint group. Each of these arrows leads to an

additional generator in Hcomp.
In the following table, we have summarized all Satake diagrams of isometry groups of

the symmetric quaternionic-Kähler spaces. The first column contains the Satake diagram as

well as a reference to which family L(q, P ) the quaternionic-Kähler manifold belongs. The
second column contains the total number of dots that form the diagram, while the third

column contains the total number of black dots in the diagram. Using this information, one
can then infer the paint group, that is given in the last column, along the lines described

above.
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Table 3.4 Satake diagrams and paint groups for symmetric

quaternionic-Kähler manifolds.

Satake diagram dots black dots paint group

α1 α2

L(−3, 0)

2 1 SO(3)

α1 α2

L(−3, P ), P ≥ 1

P + 2 P + 1 SO(3) × USp(2P )

SG4

2 SO(2)

L(−2, 0)

3 SO(2)

α1 α2L(−2, P )

P ≥ 1

P + 3 P − 1 SO(2) × U(P )

α1 α4

L(0, P ), P odd

P+1
2 + 3 P+1

2 − 1 SO(P )

α1 α4

L(0, P ), P even, P ≥ 4

P
2 + 4 P

2 SO(P )

Continued on next page
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Table 3.4 continued

Satake diagram dots black dots paint group

α1 α3

α4

α5

L(0, 2)

5 SO(2)

α6 α5 α4 α3 α1

α2L(2, 1)

6 SO(2) × SO(2)

α7 α6 α5 α4 α3 α1

α2L(4, 1)

7 3 SO(3)3

α6 α4 α3 α2 α1 α8

α5

α7

L(8, 1)

8 4 SO(8)

One could do a similar analysis for the symmetric very special real and special Kähler
spaces. One will however find that the paint group is a property of the family L(q, P ). In

other words, all symmetric spaces that are related by the c- and r-maps have the same paint

groups. The paint group is thus a concept that is invariant under dimensional reduction.

3.3.3 An example

In order to make the previous discussion more clear, we will now illustrate it in a concrete

example. The example is chosen such that it is computationally rather simple and yet

relevant to N = 2 homogeneous special geometry. More precisely, we will discuss the Tits-
Satake projection of the quaternionic member of the L(8, 1) family, which is given by the

following symmetric space:

GR

H
=

E8(−24)

E7(−133) × SU(2)
. (3.56)

We will show more explicitly that performing the Tits-Satake projection along the lines

explained above, leads to the following result:

ΠTS :
E8(−24)

E7(−133) × SU(2)
−→ F4(4)

USp(6) × SU(2)
. (3.57)

Note that the projected manifold F4(4)/(USp(6) × SU(2)) is maximally non-compact and is

moreover again a quaternionic manifold. It is the quaternionic member of the L(1, 1) family.
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The complex E8 algebra has rank 8 and in the real section E8(−24) there are 4 compact

Cartan generators and 4 non-compact ones. Let ǫi, i = 1, · · · , 8 denote an orthonormal basis

of 8-component vectors. The E8 root system is composed of the following 240 roots:

∆E8 ≡





±ǫi ± ǫj (i 6= j) 112

± 1
2 ǫ1 ± 1

2ǫ2 ± 1
2ǫ3 ± 1

2ǫ4 ± 1
2ǫ5 ± 1

2ǫ6 ± 1
2ǫ7 ± 1

2ǫ8︸ ︷︷ ︸
even number of minus signs

128

240




. (3.58)

We will make the following choice for the simple roots:

α1 = {0, 1,−1, 0, 0, 0, 0, 0} ,
α2 = {0, 0, 1,−1, 0, 0, 0, 0} ,
α3 = {0, 0, 0, 1,−1, 0, 0, 0} ,
α4 = {0, 0, 0, 0, 1,−1, 0, 0} ,
α5 = {0, 0, 0, 0, 0, 1,−1, 0} ,
α6 = {0, 0, 0, 0, 0, 1, 1, 0} ,

α7 = {−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
} ,

α8 = {1,−1, 0, 0, 0, 0, 0, 0} . (3.59)

The Satake diagram can be found as the last one in table 3.4. Note that the nodes
α3, α4, α5, α6 have been painted in black. This means that the corresponding Cartan gen-

erators such as e.g., αi
3Hi are compact. In this way, these Satake diagrams allow one to

construct the splitting (3.45) of the Cartan subalgebra explicitly. Note also that in this
case the black roots close a Dynkin diagram of a D4 algebra. As they correspond to simple

compact roots, they correspond to the simple roots of the paint group. From the Satake
diagram, one can thus also conclude that the paint group in this case is given by

Gpaint = SO(8) , (3.60)

as was also mentioned in table 3.4. Let us now perform the Tits-Satake projection of

the root system explicitly. This case is rather simple since the span of the simple com-
pact roots α3, α4, α5, α6 is just given by the Euclidean space along the orthonormal axes

ǫ4, ǫ5 ǫ6, ǫ7. These thus span the compact CSA. The Euclidean space along the orthonormal

axes ǫ1, ǫ2 ǫ3, ǫ8 span the non-compact CSA. Denoting the components of root vectors in the
basis ǫi by αi, the splitting (3.46) is very simple. We just have:

α⊥ =
{
α4 , α5 , α6 , α7

}
; α‖ =

{
α1 , α2 , α3 , α8

}
, (3.61)

and the projection (3.47) immediately yields the following restricted root system:

∆TS =





±ǫi ± ǫj (i 6= j ; i, j = 1, 2, 3, 8) 24

±ǫi (i = 1, 2, 3, 8) 8
± 1

2ǫ1 ± 1
2ǫ2 ± 1

2ǫ3 ± 1
2ǫ8 16

48




, (3.62)
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which can be seen to coincide with the root system of the simple complex algebra F4.

With reference to the notations introduced in the previous section, let us now identify

the subsets ∆η and ∆δ in the positive root subsystem of ∆+
E8

and their corresponding images
in the projection, namely ∆ℓ

TS and ∆s
TS.

Altogether, performing the projection the following is observed:

• There are 24 roots that have null projection on the non-compact space, namely

α‖ = 0 ⇔ α = ±ǫi ± ǫj ; i, j = 4, 5, 6, 7 . (3.63)

Step operators corresponding to these roots, together with the four compact Cartan

generators, form a D4 algebra, whose dimension is exactly 28. In the chosen real form,
such a subalgebra of E8(−24) is the compact algebra SO(8) and its exponential acts

as the paint group, as already mentioned in (3.60). All the remaining roots have a

non–vanishing projection on the compact space. In particular:

• There are 12 positive roots of E8 that are exactly projected on the 12 positive long

roots of F4, namely the first line of (3.62), which we therefore identify with ∆ℓ
TS. For

these roots, we have α⊥ = 0 and they constitute the ∆η system mentioned above:

∆+
E8

⊃ ∆η = {ǫi ± ǫj} = ∆ℓ
TS ; i < j ; i, j = 1, 2, 3, 8 . (3.64)

• There are 8 different positive roots of E8 that have the same projection on each of the
12 = 4⊕ 8 positive short roots of F4, i.e., the second and third line of (3.62). Namely,

all the remaining 12 × 8 = 96 roots of E8 are all projected on short roots of F4. The
set of F4 positive short roots can be split as follows:

∆s
TS = ∆s

vec

⋃
∆s

spin

⋃
∆s

spin

∆s
vec = {ǫi} i = 1, 2, 3, 8 4

∆s
spin = ± 1

2ǫ1 ± 1
2ǫ2 ± 1

2ǫ3 + 1
2ǫ8︸ ︷︷ ︸

even number of minus signs

4

∆s
spin

= ± 1
2ǫ1 ± 1

2ǫ2 ± 1
2ǫ3 + 1

2ǫ8︸ ︷︷ ︸
odd number of minus signs

4

12

(3.65)

Correspondingly, the subset ∆δ ⊂ ∆E8 defined by its projection property
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ΠTS

(
∆δ
)

= ∆s
TS is also split in three subsets as follows:

∆δ
+ = ∆δ

vec

⋃
∆δ

spin

⋃
∆δ

spin

∆δ
vec =





ǫi︸︷︷︸
α‖

⊕ (±ǫj)︸ ︷︷ ︸
α⊥





,

(
i = 1, 2, 3, 8
j = 4, 5, 6, 7

)
4 × 8 32

∆δ
spin =





(
± 1

2 ǫ1 ± 1
2ǫ2 ± 1

2ǫ3 + 1
2ǫ8
)

︸ ︷︷ ︸
α‖ even # of − signs

⊕
(
± 1

2ǫ4 ± 1
2ǫ5 ± 1

2ǫ6 ± 1
2 ǫ7
)

︸ ︷︷ ︸
α⊥ even # of − signs





4 × 8 32

∆δ
spin

=





(
± 1

2 ǫ1 ± 1
2ǫ2 ± 1

2ǫ3 + 1
2ǫ8
)

︸ ︷︷ ︸
α‖ odd # of − signs

⊕
(
± 1

2ǫ4 ± 1
2ǫ5 ± 1

2ǫ6 ± 1
2 ǫ7
)

︸ ︷︷ ︸
α⊥ odd # of −





4 × 8 32

96

(3.66)

We can now verify the general statements made in the previous sections about the paint

group representations to which the various roots are assigned. First of all, we see that
the long roots of F4, namely those 12 given in (3.64) are singlets under the paint group

Gpaint = SO(8). All other roots fall into multiplets with the same Tits-Satake projection
and each of these latter has always the same multiplicity, in our case m = 8. So, the

short roots of F4(4) fall into 8–dimensional representations of Gpaint = SO(8). Let us now

determine these representations. SO(8) has three kinds of octets 8v, 8s and 8s̄ and, as we
stated, not every root αs of the Tits-Satake algebra GTS falls in the same representation D

of the paint group although in this case all D[αs] have the same dimension. Looking back
at our result, we easily find the answer. The positive roots in the subset ∆δ

vec that project

on one restricted root, have as compact part α⊥ the weights of the vector representation of

SO(8). Hence, the roots of ∆δ
vec are assigned to the 8v of the paint group. The positive roots

in ∆δ
spin have instead as compact part the weights of the spinor representation of SO(8) and

so they are assigned to the 8s irreducible representation. Finally, with a similar argument,

we see that the roots of ∆δ
spin

are in the conjugate spinor representation 8s̄. It is now very

easy to define the Tits-Satake projection, since one can now easily give the subpaint group

G0
subpaint

11. We have to find a subgroup G0 ⊂ SO(8) such that under reduction with respect
to it, the three octet representations branch simultaneously as :

8v

G0

−→ 1⊕ 7 ,

8s

G0

−→ 1⊕ 7 ,

8s̄

G0

−→ 1⊕ 7 . (3.67)

Such group G0 exists and it is uniquely identified as the 14 dimensional G2(−14). Hence, the

subpaint group is G2(−14). Considering now (3.3), we see that the commutation relations

of the solvable Lie algebra Solv
(
E8(−24)/E7(−133) × SU(2)

)
precisely fall into the general

11 We will sometimes omit the ‘subpaint’ indication for convenience.
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form displayed in the first column of that table with the index x = 1, . . . , 7 spanning the

fundamental 7-dimensional representation of G2(−14) and the invariant antisymmetric ten-

sor axyz being given by the G2(−14)-invariant octonionic structure constants. Indeed, the
representation J mentioned in the previous section is the fundamental 7 and we have the

decomposition:

7 ⊗ 7 = 14 ⊕ 7︸ ︷︷ ︸
antisymmetric

⊕ 27 ⊕ 1︸ ︷︷ ︸
symmetric

. (3.68)

This shows that the tensor product J ⊗ J contains both the singlet and J.
Note that this is not the only space that projects onto the quaternionic member of the

L(1, 1) family. For instance, in the example studied in paper [5], namely

ΠTS :
E7(−5)

SO(12) × SU(2)
−→ F4(4)

USp(6) × SU(2)
, (3.69)

the image of the Tits-Satake projection yields the same maximally split coset as in the

case presently illustrated, although the original manifold is a different one. The only differ-
ence that distinguishes the two cases resides in the paint group. There we have Gpaint =

SO(3) × SO(3) × SO(3) and the subpaint group was identified as G0
subpaint = SO(3)diag.

Correspondingly, the index x = 1, 2, 3 spans the triplet representation of SO(3) which is the
J appropriate to that case and the invariant tensor axyz is given by the Levi-Civita symbol

εxyz. Similarly, it turns out that also

ΠTS :
E6(2)

SU(6) × SU(2)
−→ F4(4)

USp(6) × SU(2)
, (3.70)

where the paint group in this case is given by SO(2) × SO(2).

Let us now consider the group theoretical meaning of the splitting of F4(4) roots into
the three subsets ∆s

vec, ∆s
spin, ∆s

spin
, which are assigned to different representations of the

paint group SO(8). This is easily understood if we recall that there exists a subalgebra

SO(4, 4) ⊂ F4(4) with respect to which we have the following branching rule of the adjoint

representation of F4(4):

52
SO(4,4)→ 28nc ⊕ 8nc

v ⊕ 8nc
s ⊕ 8nc

s̄ . (3.71)

The superscript nc is introduced just in order to recall that these are representations of

the non-compact real form SO(4, 4) of the D4 Lie algebra. By 28, 8v, 8s and 8s̄, we have
already denoted and we continue to denote the representations in the compact real form

SO(8) of the same Lie algebra. The algebra SO(4, 4) is regularly embedded and therefore

its Cartan generators are the same as those of F4(4). The 12 positive long roots of F4(4) are
the only positive roots of SO(4, 4), while the three sets ∆s

vec, ∆s
spin, ∆s

spin
just correspond

to the positive weights of the three representations 8nc
v , 8nc

s and 8nc
s̄ , respectively. This is in

agreement with the branching rule (3.71). So, the conclusion is that the different paint group

representation assignments of the various root subspaces correspond to the decomposition of

the Tits-Satake algebra F4(4) with respect to what we can call the ’sub Tits-Satake algebra’
12 GsubTS = SO(4, 4). From this example, we can try to define this sub Tits-Satake algebra

12 This concept corresponds to the algebra Gs in [77].
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in a more intrinsic way. GsubTS is the normalizer of the paint group Gpaint within the original

group GR. Indeed, there is a maximal subgroup:

SO(4, 4) × SO(8) ⊂ E8(−24) , (3.72)

with respect to which the adjoint of E8(−24) branches as follows:

248
SO(4,4)×SO(8)−→ (1,28) ⊕ (28nc,1) ⊕ (8v

nc,8v) ⊕ (8s
nc,8s) ⊕ (8s̄

nc,8s̄) , (3.73)

and the last three terms in this decomposition display the pairing between representations of
the paint group and representations of the sub Tits-Satake group. Actually, also the subpaint

group G0
subpaint = G2(−14) can be viewed in a similar fashion, namely as the normalizer of

the Tits-Satake subgroup GTS = F4(4) within the original group GR = E8(−24). Indeed, we
have a subgroup

F4(4) ×G2(−14) ⊂ E8(−24) , (3.74)

such that the adjoint of E8(−24) branches as follows:

248
F4(4)×G2(−14)−→ (52,1) ⊕ (1,14) ⊕ (26,7) . (3.75)

The two decompositions (3.73) and (3.75) lead to the same decomposition with respect to

the intersection group:

Gintsec ≡
(
GTS ×G0

subpaint

)⋂
(GsubTS ×Gpaint) = GsubTS ×G0

subpaint

=
(
F4(4) ×G2(−14)

)⋂
(SO(4, 4) × SO(8)) = SO(4, 4) ×G2(−14) . (3.76)

We find

248 → (1,14) ⊕ (1,7) ⊕ (1,7) ⊕ (8nc
v ,7) ⊕ (8nc

s ,7) ⊕ (8nc
s̄ ,7)

⊕(28nc,1) ⊕ (8nc
v ,1) ⊕ (8nc

s ,1) ⊕ (8nc
s̄ ,1) . (3.77)

The adjoint of the Tits-Satake subalgebraGTS = F4(4) is reconstructed by collecting together

all the singlets with respect to the subpaint group G0
subpaint. Alternatively, the adjoint of

the paint algebra Gpaint = SO(8) is reconstructed by collecting together all the singlets with

respect to the sub Tits-Satake algebra GsubTS = SO(4, 4).

Finally, we can recognize the sub Tits-Satake algebra as the algebra generated by the

CSA and roots ∆ℓ (and their negatives) in the decomposition (3.48).

3.4 Tits-Satake projection for general homogeneous spe-

cial geometries

In the previous section, we discussed the Tits-Satake projection in the context of symmetric

spaces. Starting from a geometrical projection of the root system, the notions of paint
and subpaint groups can be defined. These then constitute the main tools that allow one

to single out the Tits-Satake projection of symmetric spaces. As presented so far, the
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construction was rather specific to symmetric spaces, as it relied on the theory of real forms

of semi-simple algebras. In this case, paint groups can be obtained rather easily using

some practical tools, such as for instance Satake diagrams. One can wonder whether the
construction can be generalized to all homogeneous special geometries, including the non-

symmetric ones. In this section, we will explain that this can be done, due to the fact that

it is possible to find appropriate paint and subpaint groups. We will first schematically
enumerate the several steps that have to be performed in the Tits-Satake projection of

homogeneous special geometries. Next, we will focus in more detail on specific steps of
the construction. More specifically, we will indicate how the paint and subpaint groups are

generalized for homogeneous special geometry.

3.4.1 The general procedure

For a homogeneous special space, generated by the solvable algebra SolvM, the general
procedure relies on the following items:

A] There exists a compact algebra Gpaint which acts as an algebra of outer automorphisms

of the solvable algebra SolvM. The algebra Gpaint can be found as follows. As discussed in
section 3.2.5, although SolvM consists of translational isometries, the isometry algebra Giso

M
of the homogeneous special geometries generically contains more symmetries than just the

ones in the solvable algebra. Let us define the subalgebra of automorphisms of SolvM:

Giso
M ⊃ Aut [SolvM] =

{
X ∈ Giso

M | ∀Ψ ∈ SolvM : [X , Ψ] ∈ SolvM
}
. (3.78)

Since the algebra Aut [SolvM] contains SolvM as an ideal, we can define the algebra of

external automorphisms as the quotient:

AutExt [SolvM] ≡ Aut [SolvM]

SolvM
, (3.79)

and we identify Gpaint as the maximal compact subalgebra of AutExt [SolvM]. Actually, one

can see that

Gpaint = AutExt [SolvM] . (3.80)

Indeed, the algebra AutExt [SolvM] is composed of isometries which belong to the stabilizer
subalgebra H ⊂ Giso

M of any point of the manifold, since SolvM acts transitively. In virtue

of the Riemannian structure of M, we have H ⊂ so(n) where n = dim (SolvM) and hence
also AutExt [SolvM] ⊂ so(n) is a compact Lie algebra. Later on, we will give a precise

identification of the paint group for all homogeneous special geometries.

We can now reformulate the notion of maximally non-compact or maximally split alge-
bras in such a way that it applies to the case of all considered solvable algebras, independently

whether they come from symmetric spaces or not. We will call the algebra SolvM maximally

split if the paint algebra is trivial, namely:

SolvM = maximally split ⇔ AutExt [SolvM] = ∅ . (3.81)

For maximally split algebras, the Tits-Satake projection will be trivial, namely SolvM will

project onto itself.
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B] Consider now non-maximally split algebras for which thus AutExt [SolvM] 6= ∅. Let r

be the rank of SolvM and denote the Cartan generators by Hi. Let there furthermore be

n nilpotent generators Wα. The set of singlets under the action of the paint algebra Gpaint

closes a solvable subalgebra SolvsubTS ⊂ SolvM. It consists of the whole set of Cartan

generators Hi plus a subset of p nilpotent generators Wαℓ associated with roots αℓ:

SolvsubTS = span {Hi,Wαℓ} ,
[SolvsubTS , SolvsubTS] ⊂ SolvsubTS ,

∀X ∈ Gpaint , ∀Ψ ∈ SolvsubTS : [X,Ψ] = 0 . (3.82)

We will refer to SolvsubTS as the ’sub Tits-Satake algebra’. It has the same rank as the

original solvable algebra SolvM. We will see later on that there is a very short list of
possible cases for SolvsubTS. In all possible cases, it is the solvable Lie algebra of a symmetric

maximally split coset GsubTS/HsubTS. In this way, eventually, we have the notion of a semi-
simple Lie algebra GsubTS. These are given in table 3.5, and correspond to the notion of

Table 3.5 GsubTS. The solvable algebra of the (maximally split) coset GsubTS/HsubTS is
the sub Tits-Satake algebra. The lines distinguish spaces of different rank, similar to the

scheme in table 3.2. The inverse c–map leads from the last column to the middle one, and

the inverse r–map to the first column, each time reducing the rank with 1.

real Kähler quaternionic

SO(1, 1)
SU(1, 1)

SU(1, 1)
SO(2, 2)

G2(2)

SO(1, 1) [SU(1, 1)]2 SO(3, 4)

[SO(1, 1)]2 [SU(1, 1)]3 SO(4, 4)

sub Tits-Satake algebra as it was used for symmetric spaces. However, for homogeneous

spaces we start only with the solvable algebras, and as such SolvsubTS is the algebra that

is intrinsically defined as the sub Tits-Satake algebra. This subtlety becomes more relevant
for the Tits-Satake algebra itself, where the solvable algebra is not in all cases the solvable

algebra of a symmetric space, and thus a corresponding semi-simple group GTS is not always
well defined.

C1] Considering the orthogonal decomposition of the original solvable Lie algebra with

respect to its sub Tits-Satake algebra:

SolvM = SolvsubTS ⊕Kshort , (3.83)

we find that the orthogonal subspace Kshort decomposes into a sum of q subspaces:

Kshort =

q⊕

℘=1

D
[
P+

℘ ,Q℘

]
, (3.84)
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where each D
[
P+

℘ ,Q℘

]
is the tensor product

D
[
P+

℘ ,Q℘

]
= P+

℘ ⊗ Q℘ (3.85)

of an irreducible representation Q℘ of the compact paint algebra Gpaint with an irreducible

module P+
℘ of the solvable sub Tits-Satake algebra SolvsubTS. An irreducible module P+

℘ of

SolvsubTS decomposes in the following way:

P+
℘ =

n℘⊕

s=1

W[α(℘,s)], n℘ = dimP+
℘ , (3.86)

where each W[α(℘,s)] is an eigenspace of the CSA of GsubTS, which coincides with that of

SolvsubTS and eventually with the CSA of the original SolvM. Explicitly, this means:

∀Hi ∈ CSA (SolvM) , ∀Ψ ∈ W[α(℘,s)] ⊗ Q℘ : [Hi , Ψ] = αi (℘,s) Ψ . (3.87)

The r-component vectors α(℘,s) are identified as the non-negative weights of some irreducible
representation P℘ of the simple Lie algebra GsubTS:

P℘ = P+
℘ ⊕ P−

℘ , P−
℘ =

n℘⊕

s=1

W[−α(℘,s)] . (3.88)

C2] The decomposition of Kshort mentioned in (3.84) has actually a general form depending

on the rank. We will discuss this here for the quaternionic-Kähler manifolds, as the other
ones can be obtained by restriction of the generators using the inverse c– and r–maps as

discussed in section 3.2.3.

r = 4) In this case, there are just three modules of GsubTS = SO(4, 4) involved in the sum
of (3.84) namely P8v

, P8s
, P8s̄

, where 8v,s,̄s denotes the vector, spinor and conjugate

spinor representation, respectively. All these three modules are 8-dimensional, which
means that for all of them there are 4 positive weights and 4 negative ones. Denoting

the half-spaces formed by the positive weights by 4+
v,s,̄s, we can write:

Kshort =
(
4+
v
,Qv

)
⊕
(
4+
s
,Qs

)
⊕
(
4+
s̄ ,Qs̄

)
, (3.89)

where Qv,s,̄s are three different irreducible representations of Gpaint that will be dis-

cussed later in this section. In the generic case, all three representations Qv,s,̄s are
non-vanishing and this corresponds to L(q, P ) or L(4m,P, Ṗ ) with q, P,m ≥ 1. Special

cases where two of the three representations Gpaint vanish correspond to the classes
L(0, P ), while for L(0, P, Ṗ ) only one of these representations vanishes. The limiting

case is that where all three representations are deleted and the full algebra is just

Solv
(

SO(4,4)
SO(4)×SO(4)

)
, which is L(0, 0). Note that (3.89) is the generalization of the de-

composition (3.73) applying to the case L(8, 1). There, we have Gpaint = SO(8) and
the aforementioned irreducible modules are:

Qv = 8v ; Qs = 8s ; Qs̄ = 8s̄ . (3.90)
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r = 3) In this case, there is only one module of GsubTS = SO(3, 4) involved in the sum

of (3.84) namely P8s
where 8s denotes the 8-dimensional spinor representation of

SO(3, 4). Denoting by 4+
s the space spanned by the eigenspaces corresponding to

positive spinor weights, we can write:

Kshort =
(
4+
s
,Qs

)
, (3.91)

where the representation Qs of the paint group will be discussed in later sections.

When Qs is non-vanishing, we describe the L(−1, P ) spaces with P ≥ 1, which at
the quaternionic level are never given by symmetric spaces. When Qs vanishes, we

degenerate in the case L(−1, 0), which is already maximally split.

r = 2) In this case, there is one exceptional case, namely SG5, where GR = GsubTS = G2(2).

In all other cases, there are two modules of SO(2, 2) involved in the sum of (3.84) and

these are the spinor module P4s
and the vector module P4v

. Both modules are 4-
dimensional and in our adopted notations we can write:

Kshort =
(
2+
s
,Qs

)
⊕
(
2+
v
,Qv

)
. (3.92)

Later on in this section, we will discuss the representations Qs, Qv of the paint group
and show how the coset manifolds in the series L(−2, P ) can be reconstructed. When

P = 0, only the representation Qv is non-vanishing.

r = 1) In this case, we have to distinguish betweenGsubTS = SO(1, 1) orGsubTS = SU(1, 1).
When GsubTS = SU(1, 1), we have:

Kshort =
(
1+
s
,Qs

)
, (3.93)

where 1+
s denotes the positive weight subspace of the spinor representation of so(1, 2),

i.e., the fundamental of su(1, 1), which is two-dimensional. The representation Qs will
be discussed later. When GsubTS = SO(1, 1) on the other hand, we have:

Kshort =
(
1+
s
,Qs

)
⊕
(
1+
v
,Qv

)
. (3.94)

In this case, 1+
s denotes a subspace of weight 1/2 with respect to GsubTS = so(1, 1),

while the subspace 1+
v

has weight 1. When Qs is non-vanishing, we describe the

spaces L(−3, P ), P ≥ 1. When Qs vanishes, we are describing the space L(−3, 0).

The representations Qs and Qv of the paint group that appear here will be discussed
later.

We can now note a regularity in the decomposition of Kshort. For all values of the rank, we

generically have the space (S+,Qs) that associates a representation of the paint group to
the half-spinor representation of the sub Tits-Satake algebra. In addition to this, we can

also have the representations Qv and Qs̄, which we associate to what we can name the V+

and S̄+ half-modules. These latter can exist in rank 4 and some of them can vanish in lesser
rank. Using this notation which covers all the cases, we can now give a general definition of

the Tits-Satake projection.
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D] The paint algebra Gpaint contains a subalgebra

G0
subpaint ⊂ Gpaint , (3.95)

such that with respect to G0
subpaint, each of the three irreducible representations Qv,s,̄s

branches as:

Qv,s,̄s

G
0
subpaint
=⇒ 1︸︷︷︸

singlet

⊕Jv,s,̄s , (3.96)

where the representation Jv,s,̄s is in general reducible.

E] The restriction to the singlets of G0
subpaint defines a Lie subalgebra of SolvM, namely,

if we set:

SolvTS ≡ SolvsubTS ⊕
(
V+,1

)
⊕
(
S+,1

)
⊕
(
S+

,1
)
, (3.97)

we get:

[SolvTS , SolvTS] ⊂ SolvTS . (3.98)

Summarizing, for all homogeneous special geometries, one can define the Tits-Satake

projection at the level of solvable algebras by stating:

ΠTS : SolvM −→ SolvTS ⊂ SolvM

Ψ ∈ SolvTS if and only if : ∀X ∈ G0
subpaint : [X,Ψ] = 0 . (3.99)

In other words, we define the Tits-Satake solvable subalgebra SolvTS as spanned by all the
singlets under the subpaint group G0

subpaint.

3.4.2 Results for the Tits-Satake projection of homogeneous special

manifolds

The discussion of section 3.4.1 outlined the scheme of Tits-Satake projections. We will now

demonstrate how the generators of table 3.1 and their weights given in (3.26) [61] fit in this

picture, as outlined in point C] of the previous section.

Note that we can obtain the following weights

H1 : (0, 0, 0, 0) g0 : (1, 1, 0, 0) q0 : (0, 1,−1, 0) p0 : (1, 0, 1, 0)
H2 : (0, 0, 0, 0) g1 : (1,−1, 0, 0) q1 : (0, 1, 1, 0) p1 : (1, 0,−1, 0)

H3 : (0, 0, 0, 0) g2 : (0, 0, 1, 1) q2 : (1, 0, 0,−1) p2 : (0, 1, 0, 1)
H4 : (0, 0, 0, 0) g3 : (0, 0, 1,−1) q3 : (1, 0, 0, 1) p3 : (0, 1, 0,−1)

X+ : (0, 0, 1, 0) X− : (0, 0, 0, 1) X̃+ : (1, 0, 0, 0) X̃− : (0, 1, 0, 0)

Y + : (1
2 ,− 1

2 ,
1
2 ,− 1

2 ) Y − : (1
2 ,− 1

2 ,− 1
2 ,

1
2 ) Ỹ + : (1

2 ,
1
2 ,

1
2 ,

1
2 ) Ỹ − : (1

2 ,
1
2 ,− 1

2 ,− 1
2 )

Z+ : (1
2 ,− 1

2 ,
1
2 ,

1
2 ) Z− : (1

2 ,− 1
2 ,− 1

2 ,− 1
2 ) Z̃+ : (1

2 ,
1
2 ,

1
2 ,− 1

2 ) Z̃− : (1
2 ,

1
2 ,− 1

2 ,
1
2 )

(3.100)
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after changing the basis of the CSA in the following way:

H1 = h0 + h1 , H2 = h0 − h1 , H3 = h2 + h3 , H4 = h2 − h3 . (3.101)

The subset (Hi, gi, qi, pi) can be recognized as the CSA and the 12 positive roots of the D4

simple root system. They generate the solvable sub Tits-Satake algebra:

span {Hi, gi, qi, pi} = SolvsubTS ≡ Solv

[
SO(4, 4)

SO(4) × SO(4)

]
. (3.102)

With reference to the general decomposition of Kshort mentioned in (3.89), the following
identification can be made:

span
{
X+, X−, X̃+, X̃−

}
=

(
4+
v
,Qv

)
,

span
{
Y +, Y −, Ỹ +, Ỹ −

}
=

(
4+
s ,Qs

)
,

span
{
Z+, Z−, Z̃+, Z̃−

}
=

(
4+
s̄ ,Qs̄

)
. (3.103)

Indeed, the weights assigned to the 4 different sets of type X are the 4 positive weights of

the 8–dimensional vector representation of SO(4, 4). The weights assigned to the 4 sets of
generators of type Y are the 4 positive weights of the 8–dimensional spinor representation

s of SO(4, 4), as there are an even number of minus signs in the eigenvalues ± 1
2 . The odd

number of minus signs for the operators of type Z identifies them with the positive weights

of the representation s of SO(4, 4).

Let us examine the cases of lower rank. Note that the case q = −3 is not a special
quaternionic manifold. Its symmetry structure is not of the form of table 3.1, but its weight

structure is summarized under (3.16). Using these weights, one can infer the statements
made in (3.94). For the other cases, we have explained at the end of section 3.2.2 how

they can be obtained from truncating the general structure of rank 4 spaces. Using these

truncations, the statements in point C2] of the previous section can be verified. There is
an anomaly for the case SG5 where the weights do not follow the scheme of (3.26), but were

given in (3.18). These can be recognized as the CSA and 6 positive roots of G2. In this
case, we have a maximally split algebra and the Tits-Satake projection is trivial.

In general, the Tits-Satake projection of the algebra is a subalgebra consisting of only

one generator with the same weight vector. Therefore, it removes the redundancy of the
X , Y and Z columns indicated in the last row of table 3.1. In the generic case, the Tits-

Satake projected algebra is thus just the algebra with one entry in any entry of table 3.1

that is present. As mentioned in the general outline above, this reduction can be done in
a group theoretical way, by restricting to the singlets with respect to the subpaint group.

Therefore, one has to identify the paint groups for homogeneous special geometry, as well as
the representations of this paint group to which each of the X, Y and Z spaces are assigned.

Once this is done, one can choose the appropriate subpaint groups. These steps will be taken

in the following subsections.

3.4.3 The paint group in homogeneous special geometries

In section 3.3.2, we mentioned how the paint group for non-compact symmetric spaces can
be inferred from the corresponding Satake diagrams. In this section, we shall determine the

paint groups for general homogeneous special geometries.
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From table 3.2, one can see that all homogeneous quaternionic spaces of rank less than 3

are symmetric. For these, it is thus possible to use Satake diagrams to determine the paint

groups.

The spaces of rank 3 and 4 all have a five-dimensional origin. We can thus use the

structure of their isometry groups, as exhibited in section 3.2 to find the corresponding paint
groups. Focusing at the isometry algebra of the quaternionic spaces, one can immediately

recognize that the part Sq(P, Ṗ ) (if non-trivial) will always be part of the paint group.

Indeed, it acts as a group of external automorphisms on V ′
1 and V ′

2. Since moreover it
commutes with the rest of V ′

0, it also acts as a group of external automorphisms on the part

of V ′
0 that belongs to the solvable algebra (3.41).

Moreover, also the so(q + 3, 3) part of V ′
0 acts as a group of automorphisms on V ′

1 and

V ′
2. This implies that the part of so(q+3, 3) that acts as a group of external automorphisms

on its own solvable algebra will also be part of the paint group. But this is nothing but the

paint group of SO(q + 3, 3) and can be inferred from the corresponding Satake diagram fig.

3.1. It can be easily verified that this contributes an SO(q)-factor to the paint group.

Figure 3.1 The Satake diagram of SO(q + 3, 3) for q odd. The paint group is represented

by the subdiagram made of filled circles and is seen to be SO(q). For q even, the Satake
diagram is different, but a similar conclusion regarding the paint group holds.

i i i y q q q y@
�

y

The argument for the Kähler and real spaces is completely analogous. One should just
replace so(q + 3, 3) by so(q + 2, 2), so(q + 1, 1) respectively. In each case, one can conclude

that the paint group for a general homogeneous special geometry is given by:

Gpaint = SO(q) × Sq(P, Ṗ ) . (3.104)

Note that for the symmetric special geometries, this formula indeed gives the paint groups

that were obtained in table 3.4. The paint group is thus common to all members of a

L(q, P, Ṗ ) family and is hence invariant under dimensional reduction. Accidentally, this
structure is insensitive to the sign of q. Indeed, although the structure of the solvable

algebra is very different, for say q = 3 and for q = −3, the paint group is the same in both
cases and the same irreducible representations are present. From this, it follows that also

the subpaint group and the relevant decompositions will be the same for ±q.
The action of the paint group on the solvable algebra of the corresponding manifolds can

also be induced from section 3.2.5. Let us focus on the real spaces for a moment.

• The Cartan generators of the solvable algebra are singlets under the paint group.

• The q nilpotent generators of Solv(so(q + 1, 1)) (corresponding to the generators of
type X in previous notations) transform as a vector under the SO(q) part of the paint

group, while they are inert under Sq(P, Ṗ ).
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• The generators ξΛ transform in a (in general reducible) spinor representation of SO(q+

1, 1). The space ξΛ however splits into two subspaces Y and Z, with different gradings

with respect to the non-compact Cartan generator of SO(q + 1, 1) (denoted by α).

Since the SO(q) part of the paint group commutes with this Cartan generator, the ξΛ

split into two (in general reducible) spinor representations under the SO(q) factor of

the paint group. These correspond to the spaces Y and Z in previous notations. Since
Sq(P, Ṗ ) commutes with α as well, the spaces Y and Z will also separately transform

in (vector) representations of the Sq(P, Ṗ ) factor of the paint group.

Since for the Kähler and quaternionic-Kähler spaces, the generators of the solvable algebra

occur in the same representations as in the case of the real spaces, the story for them is
essentially the same as described above. The only difference is that the number of singlets

is increased, giving rise to non-trivial GsubTS algebras.

We can now easily match the above findings with the general discussion of section 3.4.1.

There, we worked at the level of the quaternionic member of each family, since this allowed
to include all cases, also those that are not in the image of the c-map or of the r-map.

Yet the invariance of the paint group with respect to these maps precisely means that the

Qv,s,̄s representations remain the same in real, in special Kähler and in quaternionic-Kähler
algebras. What changes is just the GsubTS algebra which, climbing up from quaternionic

to real geometry (dimensional oxidation), is progressively reduced in rank. The result was
anticipated in item B] of section 3.4.1 and is given in table 3.5.

The information contained in the above discussion is what was needed in order to de-
termine the desired representations Qv,s,̄s of the paint group, respectively associated with

the vector, spinor and conjugate spinor weights of the sub Tits-Satake algebra. The results

for this, which are an immediate consequence of the real Clifford algebra representations
discussed in appendix B, are summarized in table 3.6. In writing the spinor representa-

tions, one may comment about the way that the spinor representations are denoted. In real
components, the representations of SO(q) are of dimension 1

2Dq+1. The complex or quater-

nionic structure acts on the same components. A notation (1
2Dq+1, P ) as representation of

SO(q)×U(P ) for the complex case means that it is a complex P -dimensional representation
for U(P ) but the complex structure is taken into account for the counting of real components

in the first factor. Alternatively, we could have written it as (1
4Dq+1, 2P ) when we take real

components for the representation of U(P ) and complex spinor representations. Similarly,

in the quaternionic case we can write the representations of SO(q)×USp(2P ) as (1
2Dq+1, P ),

as (1
4Dq+1, 2P ) (dividing the complex structures over the two sides) or as (1

8Dq+1, 4P ).

Note that for q = −2 the Qv representation does not originate from the X-generators as

for q ≥ 1, but from the equality of the roots q0 and q1, of p0 and p1 as explained at the end
of section 3.2.2. On the other hand, for q = −3 we do not have the scheme of table 3.1, but

the result follows from the known scheme for symmetric spaces.

3.4.4 The subpaint group

The subpaint group whose Lie algebra was denoted as G0
subpaint was defined in section 3.4.1

through its property (3.96) relative to the decomposition of the representations Qv,s,̄s. As
noted in the discussion on symmetric spaces, it can alternatively also be seen as the subgroup

of the paint group that commutes with the Tits-Satake subalgebra. Searching for subpaint
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Table 3.6 The assignments of paint group representations in homogeneous special geome-

tries.

Family Paint group Qv Qs Qs̄

L(−3, P ) SO(3) × USp(2P) (3,1) (4,P) –

SG4 SO(2) – 2 –

L(−2, P ) SO(2) × U(P) (2,1) (2,P) –

SG5 1 – – –

L(−1, P ) SO(P) – P –

L(0, P, Ṗ ) SO(P) × SO(Ṗ) – (P,1) (1,Ṗ )

normal

L(q, P ) SO(q) × SO(P ) (q, 1) (1
2Dq+1, P ) (1

2Dq+1, P )
q = 1, 7 mod 8

L(q, P, Ṗ ) SO(q) × SO(P ) (q, 1, 1) (1
2Dq+1, P, 1)+ (1

2Dq+1, P, 1)+

q = 8 mod 8 ×SO(Ṗ ) (1
2Dq+1, 1, Ṗ ) (1

2Dq+1, 1, Ṗ )

complex

L(q, P ) SO(q) × U(P ) (q, 1) (1
2Dq+1, P ) (1

2Dq+1, P )

q = 2, 6 mod 8

quaternionic

L(q, P ) SO(q) × USp(2P ) (q, 1) (1
2Dq+1, P ) (1

2Dq+1, P )
q = 3, 5 mod 8

L(q, P, Ṗ ) SO(q) × USp(2P ) (q, 1, 1) (1
2Dq+1, P, 1)+ (1

2Dq+1, P, 1)+

q = 4 mod 8 ×USp(2Ṗ ) (1
2Dq+1, 1, Ṗ ) (1

2Dq+1, 1, Ṗ )

subalgebras is thus the group theoretical formulation of how the Tits-Satake projection is
defined.

To single out the subpaint group G0
subpaint ⊂ Gpaint for a homogeneous space L(q, P, Ṗ ),

whose paint group is Gpaint = SO(q) × Sq(P, Ṗ ) the following strategy can be adopted:

1. Since the representation Qv corresponding to the X–space generators is always of the

form:

Qv = (q,1) , (3.105)

where q denotes the vector representation of SO(q) and 1 the singlet representation

of Sq(P, Ṗ ), one first decomposes this representation with respect to the subgroup:

SO(q − 1) ⊂ SO(q) , (3.106)

as then q → 1 + (q − 1). The singlet, named X• is the only element of the X–space

which survives the Tits-Satake projection.

2. Next, one looks for a subgroupG0
subpaint ⊂ SO(q−1)×Sq(P, Ṗ ) such that the decompo-

sitions of the spinor representations Qs and Qs̄, respectively associated with the spaces
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Y and Z, contain each at least one singlet. By choosing appropriate singlets that close

a subalgebra, one can then complete the Tits-Satake projection. For instance, for very

special real spaces, one can infer from the gradings in (3.26), that [X−, Z−] = Y −. By
choosing appropriate singlets X−

• , Z
−
• in X− and Z−, the corresponding singlet Y −

•
in Y − is defined by [X−

• , Z
−
• ] = Y −

• .

Thus in order to figure out the subpaint group, one should consider the explicit spinor

representations of the Clifford algebra in q + 1 Euclidean dimensions. Here, we explore one
by one the cases −3 ≤ q ≤ 9 with arbitrary P . The results depend on the structure of the

Sq(P, Ṗ ) part of the paint group, and as such the cases with different q are divided into
three groups: normal, almost complex and quaternionic, as explained in appendix B.

There are also two quaternionic spaces that are outside of the L(q, P, Ṗ ) families, namely

pure N = 2 supergravities in 4 and 5 dimensions. They are both symmetric spaces, out of

which only the first one, SG4, is non–split and has a non–trivial paint group: SO(2). The
subpaint group in this case is empty, because in order to get singlets we have to break the

paint group completely.

The normal case

q = ±1. The paint group is Gpaint = SO(P ). Only P–dimensional vector representations
are present in the solvable algebra. These decompose as P → 1 + (P − 1) under

SO(P − 1), which is therefore identified as the subpaint group.

q = 0. The paint group is Gpaint = SO(P ) × SO(Ṗ ), and there are again only vector

representations. Analogously as in the previous case, we thus find that the subpaint
group is G0

subpaint = SO(P − 1) × SO(Ṗ − 1).

q = 7. The paint group is Gpaint = SO(7) × SO(P ). The two representations that are
involved are (7,1) = Qv and (8,P) = Qs = Qs̄, where 8 is the real 8–dimensional

spinor representation of SO(7). The subpaint group that allows to find singlets in

both is G0
subpaint = SU(3) × SO(P − 1), where SU(3) ⊂ G2 ⊂ SO(7). Indeed, the

representations split as follows:

(7,1) → (1,1) + (3,1) + (3,1) ,

(8,P) → (1,1) + (1,1) + (1,P − 1) + (1,P − 1) + (6,1)

+(6,P− 1) . (3.107)

q = 8. The paint group is Gpaint = SO(8) × SO(P ) × SO(Ṗ ). In this case, there are two

inequivalent real spinor representations of SO(8) involved: 8s and 8s̄. The represen-

tations of the full paint group are Qv = (8v,1,1), Qs = (8s,P,1) ⊕ (8s,1, Ṗ) and
Qs̄ = (8s̄,P,1) ⊕ (8s̄,1, Ṗ). Following the strategy described above, we select first

the subgroup SO0(7) ⊂ SO(8) , which splits the 8–dimensional vector representation
(space X) into a singlet plus a 7–dimensional vector. Both spinor representations

remain irreducible under the action of this subgroup. Hence, we have to look for a

smaller subgroup inside SO0(7). This is G2, which can be defined as the intersection
SO0(7)

⋂
SO+(7)

⋂
SO−(7), where SO(7)± are the stability subgroups of the spinor

and conjugate spinor representations, respectively. In this case, in order to obtain
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singlets in the spinor representation it suffices to split just one of the two vector

representations, either P, or Ṗ. Indeed, e.g., under G2 × SO(P − 1) × SO(Ṗ ) the

representations split as follows:

(8v,1,1) → (1,1,1) + (7,1,1) ,

(8s,P,1) + (8s,1, Ṗ) → (1,1,1) + (7,1,1) + (1,P − 1,1)

+(7,P− 1,1) + (1,1, Ṗ) + (7,1, Ṗ) ,

(8s̄,P,1) + (8s̄,1, Ṗ) → (1,1,1) + (7,1,1) + (1,P − 1,1)

+(7,P− 1,1) + (1,1, Ṗ) + (7,1, Ṗ) . (3.108)

In this way, we obtain singlets in the decomposition of all three involved represen-
tations. The subpaint group is thus either G0

subpaint = G2 × SO(P − 1) × SO(Ṗ )

or G0
subpaint = G2 × SO(P ) × SO(Ṗ − 1). In case Ṗ = 0, the subpaint group is

G0
subpaint = G2 × SO(P − 1).

q = 9. The paint group is Gpaint = SO(9) × SO(P ). Real spinor representations of SO(9)

are 16–dimensional. The involved representations of the paint group are Qv = (9,1)
and Qs = Qs̄ = (16,P). The subpaint group is G0

subpaint = SO(7)+ × SO(P − 1),

where SO(7)+ ⊂ SO(8) ⊂ SO(9). This subpaint group induces the following splitting:

(9,1) → (1,1) + (8s,1) , (3.109)

(16,P) → (1,1) + (1,P − 1) + (7v,1) + (7v,P− 1) + (8s,1) + (8s,P − 1) .

In general, we thus conclude that we started from paint groups of the form SO(q)×SO(P )×
SO(Ṗ ). The first factor is broken to the common stability subgroup of the vector and spinor

representations. Furthermore, we break SO(P ) to SO(P − 1). In case P, Ṗ ≥ 1, we have

to break only one of the factors in SO(P ) × SO(Ṗ ) in this way, except for q = 0, which is
special due to the fact that in that case the two factors belong to different restricted roots

of the solvable algebra.

The almost complex case

The search for the subpaint algebra is analogous to the one for the real case. We only need

to be more careful in treating the complex structure. The paint group is SO(q)×U(P ). We

will consider this complex structure as part of the unitary group. In order to find a singlet
in the representation Qs or Qs, we have to consider the stability subgroup of a vector of

U(P ), which is U(P − 1). Furthermore, we have to find as in the real case the common

stability group of a vector and spinor representation of SO(q). We will do this explicitly for
q = −2, 2 and 6. The subpaint group is then the product of the latter with U(P − 1).

q = ±2. SO(2) is already broken by the vector representation. The analysis is thus finished
at this point and we obtain G0

subpaint = U(P − 1). Note that the vector as well as the

2-dimensional spinor representations split in 2 singlets.

q = 6. The vector representation breaks SO(6) to SO(5). The spinor representation of
SO(6), which is a real 8-dimensional representation, is the same as the one of SO(5). To

analyze the latter, it is convenient to use the isomorphism so(5) ∼ usp(4) ∼ su(2,H).
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Then the spinor representation becomes a vector representation. A typical vector can

be put along one quaternion, such that it is left invariant under the transformations

of the other quaternions. Therefore the stability group is su(1,H) ∼ su(2). Note that
we do not have to consider the generator associated with the complex structure on

the Clifford algebra here, as this has been taken into account on the side of the U(P )

factor. When we consider the decompositions of the vector and spinor representations
under SO(6) → SO(5) → SU(2), we can consider, e.g., the 5 as the antisymmetric

traceless representation of usp(4), and obtain as such:

6 → 1 + 5 → 1 + 1 + 2 + 2 , 8 → 8 → 1 + 1 + 1 + 1 + 4 . (3.110)

Hence ultimately, in this case G0
subpaint = SU(2)×U(P −1), and there are just more singlets

in each of the spaces X , Y and Z. In order to define the Tits-Satake projection, we have to

select one singlet among the X generators, commute it with one of the Y ’s and single out
the corresponding Z.

The quaternionic case

q = ±3. In this case, the paint group is Gpaint = SO(3) × USp(2P ). The representations
present are Qv = (3,1) and Qs = Qs̄ = (2,2P). Note that the last one was (in real

notations) denoted as (4,P) in table 3.6. Splitting the paint group first as SO(3) ×
USp(2) × USp(2P − 2), and then taking the diagonal of the SO(3) × USp(2) factor,
the representation (2, 2P ) splits as follows under this SO(3)diag × USp(2P − 2):

(2,2P) → (1,1) + (3,1) + (2,2P− 2) . (3.111)

In order to obtain a singlet in the vector representation, we then take an SO(2) sub-

group of SO(3)diag. The subpaint group is thus:

G0
subpaint = SO(2)diag × USp(2P − 2) . (3.112)

q = 4. The story here is similar to the previous case. The paint group is Gpaint = SO(4) ×
USp(2P ) × USp(2Ṗ ). One can choose either to break the P or the Ṗ sector. We will
do the former, i.e., break USp(2P ) to USp(2) × USp(2P − 2). It is useful to consider

SO(4) as SO(3)L ×SO(3)R. The vector representation breaks into one singlet and one

triplet under the diagonal subgroup of the two SO(3)L/R. The subpaint group is the
further diagonal with USp(2), and is thus given by:

G0
subpaint = SO(3)diag × USp(2P − 2) × USp(2Ṗ ) . (3.113)

q = 5. The paint group is Gpaint = SO(5)×USp(2P ). The vector representation Qv = (5,1)

breaks SO(5) to SO(4). We split it as usual into two subgroups SO(3)L/R. The 8-
dimensional spinor representation then splits as 4+4, where each one transforms only

under one of the factors SU(2)L/R mentioned above, such that only one of these factors
has to be broken to get the subpaint group. Then, we consider again the subgroup

USp(2) × USp(2P − 2) ⊂ USp(2P ) and define the subpaint group as the product:

G0
subpaint = SO(3)diag × SO(3)R × USp(2P − 2) , (3.114)
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where the diagonal is taken between SO(3)L and USp(2). The representations have

the following splittings:

(5,1) → (1,1,1) + (2,2,1) ,

(4,2P) → (1,1,1) + (3,1,1) + (2,1,2P− 2) + (2,2,1)

+(1,2,2P− 2) . (3.115)

We summarize the results in table 3.7.

Table 3.7 The paint and subpaint algebras of special manifolds for the first 10 values of the

parameter q.

q Gpaint G0
subpaint

0 SO(P ) × SO(Ṗ ) SO(P − 1) × SO(Ṗ − 1)
1 SO(P ) SO(P − 1)

2 SO(2) × U(P ) U(P − 1)

3 SO(3) × USp(2P ) SO(2) × USp(2P − 2))

4 SO(4) × USp(2P ) × USp(2Ṗ ) SO(3) × USp(2P − 2) × USp(2Ṗ )

5 SO(5) × USp(2P ) SO(4) × USp(2P − 2))
6 SO(6) × U(P ) SU(2) × U(P − 1)

7 SO(7) × SO(P ) SU(3) × SO(P − 1)

8 SO(8) × SO(P ) × SO(Ṗ ) G2 × SO(P − 1) × SO(Ṗ )

9 SO(9) × SO(P ) SO+(7) × SO(P − 1)

3.5 Results and applications

In this section, we will collect the results from previous sections to describe the result of the

Tits-Satake projection for all homogeneous special geometries. Next, we will mention some
applications of these results. The main application will be the organization of supergravity

theories in universality classes. We will give these different universality classes and will also

comment on the physical relevance of such a grouping. Finally, we will also give an example
in which one can assign a microscopic meaning to the Tits-Satake projection.

3.5.1 Description of the Tits-Satake projections

Let us start by analyzing the very special manifolds that include the L(q, P, Ṗ ) families

with q ≥ −1 and pure supergravity in five dimensions: SG5. In table 3.9, we give the
corresponding real, special Kähler and quaternionic versions of the Tits-Satake projected

isometry algebras. What is important to note here is that the original infinite set of isometry

algebras, extensively discussed in section 3.2, projects onto a finite set of algebras. This
means that infinite families all share the same Tits-Satake projections, which reflects the

fact that each family has the same system of restricted roots and the only difference between
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different members of a family comes from multiplicities of these restricted root spaces that

are removed in the Tits-Satake projection.

The remaining spaces that are not very special are of lower rank r ≤ 2, namely L(−3, 0),
L(−3, P ), SG4, L(−2, 0), L(−2, P ). Since they are all symmetric spaces, one can determine

the corresponding paint groups and Tits-Satake projections, using the Satake diagrams

mentioned in table 3.4.
The reason why we call these cases exotic is because the resulting Tits-Satake projected

algebras do not correspond to N = 2 supergravity models any more, so performing the Tits-
Satake projection of, say, a special Kähler space, one arrives at a space that is no longer

special Kähler. We analyze the resulting Tits-Satake projected spaces in detail below.

rank = 1

• L(−3, 0) corresponds to the symmetric coset USp(2,2)
USp(2)×USp(2) . The Tits–Satake projec-

tion of USp(2, 2) leads to SU(1, 1) and the projected manifold

MTS =
SU(1, 1)

U(1)
(3.116)

is not quaternionic! Indeed, the space L(−3, 0) encodes four scalars belonging to just

one hypermultiplet, so it cannot be further restricted to a quaternionic submanifold.

• By SG4, one denotes the quaternionic space SU(2,1)
SU(2)×U(1) . The Tits-Satake projection

of Solv(SU(2, 1)) gives a so–called bc1 system13, given by the solvable algebra

SolvTS = Span{h, λ, 2λ} , (3.117)

where (h, λ) are generators of Solv(SU(1, 1)) and 2λ denotes a generator corresponding

to a restricted root that is the double of the restricted root of λ. The resulting space

MTS is 3–dimensional and hence not quaternionic.

• The L(−3, P ) family consists of the symmetric quaternionic spaces USp(2,2P+2)
USp(2)×USp(2P+2) .

Their restricted root system can be described in the following way:

MTS : © λ , mλ = 4P , m2λ = 3 , (3.118)

where © means that the Dynkin diagram of this restricted root system is the one of A1.
The simple (restricted) root λ occurs with a multiplicity mλ. Its double furthermore

appears with multiplicity m2λ. The Tits–Satake projection is not a symmetric space
and gives again a bc1 system, as in (3.117).

rank = 2

• L(−2, 0) is in its quaternionic version given by the symmetric coset SU(2,2)
SU(2)×SU(2) . So, the

space is not split. The Tits–Satake projection in this case leads to the six-dimensional
manifold:

MTS =
SO(2, 3)

SO(2) × SO(3)
. (3.119)

13 The names bc1 and bc2 that are used to denote some of the Tits-Satake projected algebras denote,
respectively, rank one and rank two non-simple Lie algebras, see e.g. [76] for more detailed explanations.
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• The quaternionic version of L(−2, P ) is the symmetric space SU(2,P+2)
SU(2)×U(P+2) . The re-

stricted root system is again described by giving its Dynkin diagram as well as the

multiplicities of the (restricted) simple roots and their possible doubles:

MTS :

i

λ2

�
@

i

λ1 mλ1 = 2, m2λ1 = 0, mλ2 = 2P, m2λ2 = 1 .

(3.120)

In this case, the Tits-Satake projection gives a bc2 system.

These results are summarized in the table 3.8, where we organize exotic spaces by just
denoting the type of restricted root system that characterizes their Tits-Satake projections.
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Table 3.8 The solvable algebras and Tits-Satake projections of homogeneous special Kähler and quaternionic-Kähler manifolds that

are not very special. In this table, P denotes positive definite integers. After the column denoting the series, we mentioned the

columns of generators in table 3.1 that are present in this case. The manifolds are always the coset of GR with its maximal compact
subgroup, and the described algebras are the solvable parts of the Iwasawa decomposition of the algebras that are mentioned.

name gen. Special Kähler Quaternionic-Kähler

GR GTS Gsub−TS GR GTS Gsub−TS

L(−3, 0) usp(2, 2) su(1, 1) so(1, 1)

L(−3, P ) usp(2P + 2, 2) bc1 so(1, 1)

SG4 (0) SG − − su(2, 1)

bc1 =


q0
g0
h0




su(1, 1) =(

g0
h0

)

L(−2, 0) (01) su(1, 1)
su(1, 1) =(

g1
h1

) su(1, 1) =(
g1
h1

)
su(2, 2)

so(3, 2) =


q0 p1

g0 g1
h0 h1




so(2, 2) =(
g0 g1
h0 h1

)

L(−2, P ) (01Y ) su(P + 1, 1)

bc1 =

Y −

g1
h1




su(1, 1) =(
g1
h1

)
su(P + 2, 2)

bc2 =


Ỹ − Y −

q0 p1

g0 g1
h0 h1




so(2, 2) =(
g0 g1
h0 h1

)
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Table 3.9 The algebras of the very special manifolds. In this table q, m, P and Ṗ are always integers ≥ 1. After the column

denoting the series, we mentioned the columns of generators in table 3.1 that are present in this case (+ denotes the sum of columns

2 and 3). We mention which element of the series gives the Tits-Satake and sub-Tits-Satake algebra, and in case the corresponding
manifold is symmetric, we also mention the isometry group G. In case the projected manifold is non-symmetric on the other hand,

we mention its solvable algebra.

name gen. Real Kähler quaternionic-Kähler
GTS GTS GTS

Gsub−TS

SG5 (01) − SG5 : su(1, 1) SG5 : g2(2) SG5

L(−1, 0) (01+) L(−1, 0) : so(1, 1) L(−1, 0) : su(1, 1)2 L(−1, 0) : so(3, 4)
L(−1, P ) (01 + Y ) L(−1, 1) : so(2, 1) L(−1, 1) : SolvSK(−1, 1) L(−1, 1) : SolvQ(−1, 1)

L(−1, 0)

L(0, 0) (0123) L(0, 0) : so(1, 1) ⊕ so(1, 1) L(0, 0) : su(1, 1)3 L(0, 0) : so(4, 4)

L(0, P ) (0123Y ) L(0, 1) : so(1, 1) ⊕ so(2, 1) L(0, 1) : su(1, 1) ⊕ so(3, 2) L(0, 1) : so(5, 4)

L(0, P, Ṗ ) (0123Y Z) L(0, 1, 1) : SolvR(0, 1, 1) L(0, 1, 1) : SolvSK(0, 1, 1) L(0, 1, 1) : SolvQ(0, 1, 1) L(0, 0)

L(q, P )

L(4m,P, Ṗ )
(0123XYZ) L(1, 1) : sℓ(3,R) L(1, 1) : sp(6) L(1, 1) : f4(4)
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3.5.2 The universality classes

We can now group supergravities exhibiting homogeneous special geometry in universality
classes, based on the Tits-Satake projection. All manifolds that have the same projection

constitute one specific universality class. For the exotic cases discussed above, we conclude

that there are 4 such universality classes, exhibited in table 3.11. As far as the other special
homogeneous manifolds is concerned, they correspond to infinite families of supergravity

theories with 8 supercharges in dimensions d = 5, d = 4 or d = 3, falling into altogether 7
universality classes, displayed in table 3.10. Members within the same class are distinguished

by different choices of the paint group and of its representations Qv,s,̄s. The maximal split

representative of the class, namely the Tits-Satake projected manifold is in five out of seven
cases a symmetric coset manifold. The only cases where the Tits-Satake manifold is not

symmetric are the families that project onto L(−1, 1) and L(0, 1, 1). The most populated
universality class, which encompasses most of the homogeneous special geometries is the

class L(1, 1).

Table 3.10 The seven universality classes of very special homogeneous geometries.

Universality Class Members of the class

L(1, 1)
L(q, P ) for q, P ≥ 1

L(4m,P, Ṗ ) for mPṖ 6= 0

L(0, 1, 1) L(0, P, Ṗ ) for P Ṗ 6= 0

L(0, 1)
L(0, P, 0) for P 6= 0
L(q, 0) for q > 0

L(0, 0) L(0, 0)

L(−1, 0) L(−1, 0)

L(−1, 1) L(−1, P ) for P ≥ 1

SG5 SG5

Table 3.11 Exotic universality classes of homogeneous geometries and their Tits Satake
root systems.

Universality Members of the class
Class

bc2 L(−2, P ), P > 0

b2 L(−2, 0)

bc1 SG4, L(−3, P ), P > 0

a1 L(−3, 0)

That such an organization in universality classes is physically relevant, is shown by the
so-called cosmic billiard phenomenon. This effect arises in the study of time-dependent so-

lutions of supergravity theories. Such studies have been mostly performed in the case where
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the target spaces are symmetric, for instance for pure supergravities or for supergravities

with more than eight supercharges. If one assumes configurations where the scalar fields

only depend on time and one adopts the solvable parametrization of the scalar manifold,
the action (3.1) can be written as follows:

S =

∫
dt


~̇h · ~̇h+

∑

α∈∆
+

e−2~α·~h(t)Nα

(
φ, φ̇

)

 . (3.121)

In this formula, ~h denotes a vector of scalar fields that are associated with the Cartan

generators of the solvable algebra, whileNα(φ, φ̇) are a set of polynomial functions depending
on the scalar fields φ that are associated with the nilpotent generators in the solvable algebra.

Note that the sum in the formula runs over all positive restricted roots of the symmetric

space. It turns out that the fields hi evolve within the domain where ~α·~h > 0, for all ~α ∈ ∆
+

and they experience bounces when approaching walls defined by ~α·~h = 0 for any ~α. This type

of scalar field evolution leads to the cosmic billiard phenomenon. Indeed the fields ehi(t) can
be identified with the cosmic scale factors relative to the various compact and non-compact

dimensions of the 10- or 11–dimensional space-time manifold and the bouncing phenomena
correspond to inversions in the expansion/contraction development of these scale factors.

Note that the walls are only determined by different restricted root vectors, irrespective of

the multiplicity with which they occur. In other words, different symmetric spaces, that
however have the same Tits-Satake projected root system, have the same walls. Hence, in

order to define the main features of billiard dynamics, only a subset of the scalar fields φ is
needed. This subset contains one nilpotent scalar for each positive restricted root. This is

sufficient to define the positions of all the walls that cause the inversions in the motion of a

billiard ball with coordinates hi(t).

This clearly shows that a very essential part of the dynamics of all the models in one
universality class, is already determined by the Tits-Satake projection that represents the

class. Moreover, as was shown in [5] all solutions of the Tits-Satake projected model, which

is often completely integrable, are solutions of every member in the class and can be further
arbitrarily rotated by means of the paint group to new more general solutions. From the

point of view of cosmic billiards, an open problem is that of understanding the relation
between the complete integral of the evolutionary equations in the non-projected case with

respect to those of the projected one. Indeed, counting of the integration constants shows

that the non-projected model contains more solutions than the ones that can be obtained
as rotations of solutions of the Tits-Satake projected model. It remains to be seen in future

investigations how one can understand the structure of the missing solutions and what their
relation with the bulk of solutions produced by the Tits-Satake projection is.

Another example of how the Tits-Satake projection singles out a simple model in one
universality class that captures some but not all of the relevant dynamics, is given by the

following [66, 78, 79, 80]. One considers the low energy effective theory of type IIB su-
perstring theory, compactified on a K3 × T 2/Z2-orientifold, in the presence of n3 parallel

D3-branes and n7 parallel D7-branes. The branes are all space-time filling and the D7 branes

are wrapped on K3. One furthermore also allows the field strengths of some form fields to
have non-trivial vacuum expectation values along the compact directions. The branes are

supposed to be in the Coulomb phase and massive modes are integrated out. It was found
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that this resulting low energy four-dimensional effective theory is described by an N = 2

supergravity theory. There is a hypermultiplet sector in this model that contains for in-

stance the moduli that describe the shape of K3. The vector multiplet sector of the low
energy supergravity contains three complex scalars s, t, u originating from the bulk sector

and spanning a manifold of the form:
(

SU(1, 1)

U(1)

)

s

×
(

SU(1, 1)

U(1)

)

t

×
(

SU(1, 1)

U(1)

)

u

. (3.122)

The s scalar describes the volume of K3 and the R–R four–form C(4) on K3, t the T 2–

complex structure and u the IIB axion–dilaton system:

s = C(4) − i Vol(K3),

t =
g12
g22

− i

√
detg

g22
,

u = C(0) − i eϕ , (3.123)

where the matrix g denotes the metric on T 2. The corresponding three vector fields

A1
µ, A

2
µ, A

3
µ, together with the vector contained in the graviton multiplet, A0

µ, originate

from the components Bµa, Cµa of the ten dimensional NS–NS and R–R 2–forms, a = 1, 2
labelling the directions of T 2. There are furthermore n3 +n7 extra vector multiplets, coming

from the D-branes. In particular, there are n3 complex scalars yr and n7 complex scalars
zk (r = 1, . . . , n3; k = 1, . . . , n7) that describe the positions of the D3- and D7-branes along

T 2. Due to the addition of these D-branes, the special Kähler manifold (3.122) is enlarged.

It turns out that the scalars of the vector multiplet sector now span a special Kähler space
that can be described in terms of the prepotential14:

F (s, t, u, xk, yr) = stu− 1

2
szkzk − 1

2
uyryr . (3.124)

This special Kähler manifold is the one that belongs to the family L(0, n3, n7). It is thus

homogeneous, but non-symmetric when both D3- and D7-branes are present.

The Tits-Satake projection of this space is given by the non-symmetric space L(0, 1, 1),
corresponding to the situation in which only 1 D3-brane and 1 D7-brane are present. In

this case, the Tits-Satake projection has a microscopical meaning, namely it consists of
disregarding the number of branes. It is thus clear that one can not describe the full

dynamics of a specific model with a generic number of D3- and D7-branes by just looking

at the Tits-Satake projection. However, the Tits-Satake projection can be very useful as it
can provide us with a tractable model in which some essential parts of the dynamics can be

analyzed.

3.6 Conclusion

In this chapter, we have discussed the Tits-Satake projection of homogeneous special ge-

ometries that can occur as target spaces in supergravity theories with 8 supercharges. This

14 Using this prepotential, one can write down the kinetic terms of the scalars. It turns out that the full
Lagrangian (for instance the kinetic terms of the vectors) can not be written in terms of a prepotential.
It is however related to the theory in terms of the prepotential (3.124) via electric-magnetic duality. We
refer to [66, 80] for more details.
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projection was known in the context of symmetric spaces. As symmetric spaces only consti-

tute a small fraction of the possible target space geometries that can appear in supergravity,

we reconsidered this method in order to give an extension to the more general class of ho-
mogeneous special geometries. Due to the fact that crucial notions that can be defined for

symmetric spaces (such as paint and subpaint groups), also appear in homogeneous special

geometry, we succeeded in giving such an extension.
The Tits-Satake projection offers an efficient tool in analyzing time-dependent solutions

of (ungauged) supergravity theories. It allows us to group supergravity theories with homo-
geneous special target spaces in a small number of universality classes that are such that all

geometries in one class have the same projection. The different members of one universality

class are distinguished by the fact that they have different paint groups. We commented on
the relevance of these universality classes. We mentioned the cosmic billiard phenomenon

as an example of how time-dependent solutions of all models in one universality class share
some basic features. These basic features are already visible at the level of the Tits-Satake

projection. Often, the Tits-Satake projection gives a tractable model, whose dynamics can

be analyzed analytically. Solutions that can be found in this way are then common to the
whole universality class. As not all solutions of a specific model can be obtained via its

Tits-Satake projection, one of the open questions is how the dynamics of specific models in
a universality class can be described beyond the Tits-Satake projection. In some cases, such

a grouping in universality classes can also be seen from a more microscopical viewpoint. An

example of this was given in terms of string compactifications including D-branes, where the
Tits-Satake projection corresponds to disregarding the multiplicities of the branes.





Chapter 4

Scaling cosmologies in N = 8

gauged supergravity

4.1 Introduction

In the previous chapter, we studied the Tits-Satake projection in the context of homogeneous

special geometry. We mentioned how this procedure is relevant in studying time-dependent

solutions of non-maximal supergravity theories. Systematic studies of such solutions have
been performed in the context of ungauged supergravity in [5, 55]. In order to understand

the possible (late-time) cosmological scenarios in supergravity and string theory, one should
however also consider gauged supergravities, in which case there can be a non-trivial poten-

tial for the scalars. As was shown in section 2.1.4, this can lead to interesting phenomena,

such as acceleration and scaling behavior. In this chapter, we will make a modest step
in understanding the behavior of cosmological solutions in the context of N = 8 gauged

supergravity.

Extensive research on the vacuum structure of gauged extended supergravities has been
carried out; for instance, de Sitter vacua in such theories can generically be found [52, 53,

54, 81, 82, 83, 84, 85]. In most cases, these vacua correspond to saddle points of the scalar
potential. Stable de Sitter vacua have only been constructed for N ≤ 2 supergravity (see for

instance [53, 85] for constructions in N = 2 supergravity). For these examples, it is however

unclear whether they have a higher-dimensional origin or a string interpretation.

As mentioned in the introduction, the possibilities for dark energy go beyond a positive

cosmological constant. More specifically, we mentioned scaling cosmologies as an interesting

class of cosmological solutions. As was shown in an example in section 2.1.4, these corre-
spond to critical points of an autonomous system. As such, they can correspond to repellers

and attractors. They can thus correspond to the early-time or late-time behavior of general
cosmological solutions of the system under consideration. In contrast to de Sitter vacua,

scaling cosmologies have not been given that much attention in supergravity. In reference

[86], an unstable accelerating scaling solution was found in N = 8 supergravity as an al-
ternative to acceleration from de Sitter solutions. In [87], an example of a stable scaling

solution was found in N = 4 gauged supergravity. Finally, reference [88] considered scaling

93
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solutions of 6-dimensional gauged chiral supergravity compactified to 4 dimensions.

This chapter aims at finding scaling cosmologies in N = 8, d = 4 supergravity. Although

N = 8 supergravity is probably not very realistic from a particle physics point of view, it

has some attractive features; it only contains one multiplet, namely the gravity multiplet
and its different gaugings are well known. This simplicity makes it easier to oversee all

the possibilities for finding interesting solutions. More explicitly, in this chapter we will

restrict ourselves to the CSO-gaugings that have been introduced in section 2.4.3. For these
gaugings, a higher-dimensional origin is known explicitly [47].

Performing an exhaustive study of cosmological solutions in supergravity theories is

notoriously difficult because of the many scalar fields and the corresponding complicated
potentials. For instance, in N = 8 supergravity there are 70 scalars that parametrize the

coset space E7(+7)/ SU(8) and the complexity of the potential depends on the gauge group

of the theory. We will therefore truncate the scalar sector and we will try to find solutions
in this truncated version of the theory. It turns out that after performing these truncations,

the potential is of the so-called ’multiple exponential’ type, meaning that it is a sum of
exponential terms. This will be explained in section 4.2.

In section 4.3, we will search for scaling solutions of these truncations of N = 8 gauged

supergravity. We will first review general results on scaling cosmologies in systems with

multiple exponential potentials. We will then show that the potentials in N = 8 CSO-
gauged supergravity indeed have the correct form to allow for scaling cosmologies. We will

explicitly give these scaling solutions and discuss some of their properties.

The fact that the CSO-gaugings can be given a higher-dimensional interpretation, means
that we can view our solutions not only as solutions of N = 8, d = 4 gauged supergravity,

but that we can also see them as solutions of 11-dimensional supergravity. Some of the

scaling solutions that are found in section 4.3 describe accelerating universes. This seems
to suggest that we have obtained accelerating cosmologies by compactifying 11-dimensional

supergravity. A famous no-go theorem [89, 90, 91] however comments on the impossibility

of this. In section 4.4, we will therefore discuss the higher-dimensional origin of our scaling
solutions more explicitly and show how some of the assumptions of the no-go theorem are

violated.

Finally, in section 4.5, we will mention an interesting interplay between finding de Sitter
solutions and scaling cosmologies.

The scaling solutions studied here are of two kinds, namely matter scaling and scalar

dominated scaling solutions. In the former type, we will thus allow for the presence of

an extra barotropic fluid in the model, while in the latter type the energy density of the
barotropic fluid vanishes and the potential energy of the scalar fields scales as the kinetic

energy1. Note that we make some restrictions in this chapter. We consider only flat FLRW-
universes and ignore scaling solutions that exist on the boundary of the scalar manifold2. We

refer to [93] for a general treatment of scaling solutions in the presence of spatial curvature,

that also includes solutions on the boundary of the scalar manifold.

1 This is also true for matter scaling solutions so the only difference is that the fluid vanishes.
2 They are called non-proper solutions in references [92, 93].
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4.2 Truncating N = 8 gauged supergravity

In this chapter, we will consider an action describing N scalar fields φi coupled to gravity:

S =

∫
d4x

√−g
[ 1

2κ2
R− 1

2gij(φ)∂µφ
i ∂µφj − V (φ)

]
+ Smatter , (4.1)

where κ2 = 8πGN with GN Newton’s constant. In the rest of this chapter, we will often

choose units in which κ2 = 1
2 . We have added an action Smatter, describing a possible

barotropic fluid with energy density ρ and pressure p, subject to a simple equation of state

as in (2.17). For later convenience, we rename the parameter w in (2.17) to γ − 1. In a flat

FLRW-background, ds2 = −dt2 + a(t)2d~x2, the equations of motion read:

φ̈i + Γi
jkφ̇

j φ̇k + 3Hφ̇i = −gij∂jV , (4.2)

ρ̇+ 3γHρ = 0 , (4.3)

p = (γ − 1)ρ , (4.4)

H2 =
κ2

3
(T + V + ρ) , (4.5)

Ḣ = −κ2(T + 1
2γρ) , (4.6)

with T the kinetic energy of the scalars, T = 1
2gij(φ)φ̇i φ̇j and H = ȧ/a, the Hubble

parameter. A scaling cosmology is then a solution of the above equations for which:

V (t) ∼ T (t) ∼ ρ(t) . (4.7)

From the Friedmann equation (4.5) and the acceleration equation (4.6), we find that the
scale factor is power-law3 : a(t) ∼ tP . Note that the solution describes an accelerating

cosmology when P > 1. Summarizing, a scaling solution is characterized by:

V (t) ∼ T (t) ∼ ρ(t) ∼ H2(t) ∼ Ḣ(t) ∼ 1

t2
. (4.8)

We will view the action (4.1) as the bosonic part of the action of an N = 8 gauged su-

pergravity, where the vector fields have been truncated. In that case, the number of scalar

fields N is equal to 70 and the metric gij(φ) corresponds to the metric on the scalar coset
E7(+7)/ SU(8). The specific form of the potential depends on which gauging is considered.

Obtaining an explicit expression for these potentials is a difficult task. One often makes
truncations to get manageable expressions. We will therefore focus on the S ℓ(8,R)/ SO(8)-

submanifold of E7(+7)/ SU(8) that contains 35 scalar fields. The other 35 scalars correspond

to pseudoscalar fields and can be consistently truncated. After this truncation, the La-
grangian for the metric and the 35 scalars can be written in terms of a coset representative

L of the S ℓ(8,R)/ SO(8)-coset [94]:

L =
√−g

{
R+ 1

4Tr[∂M∂M−1] − V
}
, (4.9)

3 We will use the capital letter P to denote the power-law of the scale factor. This should not be confused
with the capital letter P that was used in denoting families of homogeneous special geometries in the
previous chapter.
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where M = LLT . The potential is then given by [94]:

V = g2
{

Tr[(ηM)2] − 1
2 (Tr[ηM])2

}
, (4.10)

where g is the gauge coupling constant. In this expression, η is the diagonal matrix, whose

elements appear as structure constants of the CSO(p, q, r)-algebra (see section 2.4.3).
The coset S ℓ(8,R)/ SO(8) is parametrized by 7 dilatons φi and 28 axions χα. In the

solvable parametrization of the coset, the dilatons are associated to the Cartan generators

Hi of S ℓ(8,R), while the axions are associated to the positive root generators Eα:

L = eχαEα

e−
1
2φiHi , (4.11)

where the exponentials involve a sum over the positive roots α and a sum over the 7 Cartan

generators, denoted by the index i.
Note that one can perform an extra truncation; since the axions appear at least squared in

the potential it is consistent to put them to zero4. Working in the fundamental representation

of S ℓ(8,R), the matrix M then assumes the following diagonal form:

M =




e−
~β1·~φ

. . .

e−
~β8·~φ


 . (4.12)

The 8 vectors ~βa denote the weights of S ℓ(8,R) in the fundamental representation. They

obey the following relations:
∑

a

βi
a = 0 ,

∑

a

βi
aβ

j
a = 2δij , ~βa · ~βb = 2δab −

2

n
. (4.13)

An explicit choice is given by the following vectors:

~β1 = (1, 1√
3
, 1√

6
, 1√

10
, 1√

15
, 1√

21
, 1√

28
) ,

~β2 = (−1, 1√
3
, 1√

6
, 1√

10
, 1√

15
, 1√

21
, 1√

28
) ,

~β3 = (0, −2√
3
, 1√

6
, 1√

10
, 1√

15
, 1√

21
, 1√

28
) ,

~β4 = (0, 0, −3√
6
, 1√

10
, 1√

15
, 1√

21
, 1√

28
) ,

~β5 = (0, 0, 0, −4√
10
, 1√

15
, 1√

21
, 1√

28
) ,

~β6 = (0, 0, 0, 0, −5√
15
, 1√

21
, 1√

28
) ,

~β7 = (0, 0, 0, 0, 0, −6√
21
, 1√

28
) ,

~β8 = (0, 0, 0, 0, 0, 0, −7√
28

) . (4.14)

After this truncation, one can easily see that the kinetic terms of the scalars become canon-

ical, while the potential is a sum of exponentials:

Lscalar = − 1
2δij ∂φ

i∂φj − g2

2

p+q∑

a=1

e−2~βa·~φ + g2

p+q∑

a<b

ηaaηbbe
−(~βa+~βb)·~φ . (4.15)

4 The kinetic term allows a truncation of all the axions since the dilatons parametrize a totally geodesic
submanifold. We refer to [95] for more details concerning this point.
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In the next section, we will analyze this model for the existence of scaling solutions.

4.3 Dilatonic scaling cosmologies in N = 8 gauged su-

pergravity

The potential in (4.15) belongs to the class of so-called multiple exponential potentials.
These are given by a sum of M exponential terms that depend on N scalar fields:

V (φ) =

M∑

a=1

Λa exp[~αa · ~φ ] , (4.16)

where ~αa ·~φ =
∑N

i=1 αaiφ
i. Scaling solutions of systems with multiple exponential potentials,

where the kinetic terms of the scalars are in canonical form, have been studied in great detail
[92, 93, 96, 97, 98, 99, 100]. For convenience, we will first review the main results of these

studies. Next, we are going to use this discussion to find scaling solutions of the system
(4.15).

Scaling for multiple exponential potentials

It was shown in [92], that it is convenient to separate exponential potentials in two classes
I and II. Class I is characterized by the fact that the ~αa-vectors are linearly independent

whereas for class II they are linearly dependent. Models that belong to the first class

are known in the literature under the name ’Generalized assisted inflation’ [100]. Class I
generically allows exact scaling solutions, whereas class II can have exact scaling solutions

only when the ~αa-vectors are ’affinely related’ [92, 93]. This means that there exists a set of
R independent ~αa such that after relabelling a = 1, . . . , R, the remaining ~αb are expressed

as ~αb =
∑R

a=1 cba~αa, where the coefficients cba fulfill the constraint:

R∑

a=1

cba = 1 , for all b = R+ 1, . . . ,M . (4.17)

Both types of potentials that allow for scaling solutions have the property that after an
orthogonal field redefinition ~φ → ~ϕ, the potential can always be written as the following

product [93, 99]:

V (ϕ) = ecϕ1 U(ϕ2, . . . , ϕN ) . (4.18)

Let us prove (4.18) for class I and then for class II with affinely related ~αa-vectors. We
will assume that a field rotation is performed such that the minimal number, R, of scalars

appears in the potential and that consequently N −R scalar fields are free. This number R
equals the number of linearly independent ~αa-vectors [92]. So, class I has R = M and class

II R < M .

If the ~αa are linearly independent, there exists a (unit) vector ~E such that

~αa · ~E = c , (4.19)
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where c is a number that is independent of the index a. Indeed, if we multiply (4.19) with

αaj and sum over a, we obtain:
∑

a,i

αaj αaiE
i = c

∑

a

αaj . (4.20)

It can be shown that the matrix Bij =
∑

a αaj αai has an inverse (because R = M) and

the above equation can be solved to find Ei. If we now write the scalar fields in a different
basis:

~φ = ϕ1
~E + ~ϕ⊥ , (4.21)

then we have in the new basis that αa1 = c for all a and consequently the potential takes

the form (4.18).
Now assume that the ~αa are linearly dependent in an affine way. Consider the R inde-

pendent vectors ~αa with a = 1, . . . , R. For this subset, we can repeat the same procedure as
above to find a unit vector ~E that obeys (4.19). Then we have in the new basis that αa1 = c

for a = 1, . . . , R. Consider αb1 for b > R:

αb1 =

R∑

a=1

cbaαa1 = c

R∑

a=1

cba = c . (4.22)

Again the potential can be factorized as in (4.18).
It is easy to prove the inverse: if the potential can be written as (4.18), then either the

~αa are linearly independent or they are dependent in an affine way.
As proven in [93, 99], the exact scaling solution is such that the overall scalar ϕ1 is non-

constant, while all the other scalars are constant. Therefore the exact scaling solutions of

multiple exponential potentials are such that the potential is truncated to a single exponen-
tial potential5. It must then be possible to rewrite the potential like in (4.18). Furthermore,

the function U must have stationary points (∂U = 0) in order to have a truncation consistent
with the equations of motion. If this is satisfied, the truncated action is given by:

S =

∫ √−g
[
R− 1

2 (∂ϕ1)2 − Λ ecϕ1

]
+ (Smatter) , (4.23)

where Λ is the value of the function U at the stationary point. If the scaling solution exists,
it is given by:

a(t) ∼ tP , ϕ1(t) = −2

c
ln t+

ln(6P−2
c2 Λ )

c
, ρ(t) = 6(1 − 1

c2P
)
P 2

t2
. (4.24)

• Let us first assume that the barotropic fluid vanishes, in which case the scaling solution
is the scalar dominated solution with P = 1/c2. The scaling solution exists when Λ > 0

and P > 1/3 or Λ < 0 and P < 1/3. An accelerating solution (P > 1) requires c2 < 1.

The scaling solution with Λ < 0 is never stable6 and the scaling solution with Λ > 0 is

5 In [101], the same was proven for purely positive exponential terms and a special class of dilaton couplings.
6 Strictly speaking, the stability of scaling solutions should be understood in the sense of stability of critical

points in autonomous systems. The scaling solutions are critical points of an autonomous system, similar
to the simple system discussed in section 2.1.4. The critical point is then called stable, when small
fluctuations around the critical point solution don’t grow exponentially. Such an analysis was performed
in [93].
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stable if the extremum of U is a minimum and the fluid perturbations imply an extra

stability condition 1
c2 >

2
3γ .

• If on the other hand there is a non-zero barotropic fluid, one has a matter scaling

solution [96]. The matter scaling solution is such that the energy densities of the
barotropic fluid and the scalar fields are non-vanishing and have a fixed ratio. The

scale factor of a matter scaling solution is that of a universe containing only the

barotropic fluid, that is a(t) ∼ tP with P = 2
3γ . The solution exists when Λ > 0 and

1
c2 <

2
3γ . When U is in a minimum, the solution is stable.

The CSO-dilaton potentials

In order to see whether we can find scaling solutions of the model whose scalar sector is
described by (4.15), we will first write the potential in a more suitable form. From the

explicit expressions (4.14), it is clear that one can always find a field redefinition such that

the scalar matrix M, given in (4.12), assumes the following form:

M =

(
e

c
2ϕ[M̃(φ1, · · · , φ7−r)] 0

0 F (ϕ, φ′1, · · · , φ′r−1)

)
. (4.25)

In this expression M̃ = L̃L̃T , where L̃ is now a coset representative of an S ℓ(8−r,R)/SO(8−
r) coset, where again only the dilatonic scalars are kept. F denotes an r × r-matrix.

The scalars ϕ, φ′1, · · · , φ′r−1 on which it depends, are connected to the original dilatons
φ8−r, · · · , φ7 via an orthogonal transformation. The number c is determined by

c2 =
8

p+ q
− 1 . (4.26)

The potential (4.10) then takes the following form:

V = g2ecϕU(M̃) = g2ecϕ
[
Tr[(η̃M̃)2] − 1

2 (Tr[η̃M̃])2
]
, (4.27)

where η̃ = diag( p,− q). More explicitly, the following expression for the potential is
obtained:

V = g2ecϕU(φ) = g2ecϕ
[

1
2

∑
e−2~β′

a·~φ −
∑

a<b

η̃aaη̃bbe
−(~β′

a+~β′
b)·~φ
]
, (4.28)

where the vectors ~β′
a are now weight vectors of the fundamental representation of S ℓ(p +

q, IR). They can be obtained from the S ℓ(8,R)-weights, by keeping only the first p + q
weights and by deleting the last r columns in these.

For c 6= 0, this potential belongs to class II with affinely related ~αa-vectors. Therefore

the potential is of the appropriate form for scaling solutions!

To find a scaling solution, it is sufficient to find a stationary point of U that has the
correct sign to allow for a scaling solution. The stationary points of U are most easily found

using Lagrange multipliers as was shown in [84]. One defines Xa = e−
~β′

a·~φ. We will split the
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index a in indices {i, ī}, where i = 1, · · · , p and ī = p+ 1, · · · , p+ q. In this notation, U(φ)

can be rewritten as:

U(X) =
∑

i

X2
i +

∑

ī

X2
ī − 1

2

(
∑

i

Xi −
∑

ī

Xī

)2

. (4.29)

These Xi, Xī-variables are not unconstrained, since they obey
∏

aXa = 1. One then in-

troduces a Lagrange multiplier to enforce this constraint and demands that the following
function

S(X,λ) = U(X) + λ(
∏

i

Xi

∏

ī

Xī − 1) , (4.30)

has stationary points against variations with respect to X and λ. This leads to the following
set of equations:

δS/δXi = 0 ⇒ X2
i − 1

2
Xi(
∑

j

Xj −
∑

j̄

Xj̄) +
λ

2
= 0 ,

δS/δXī = 0 ⇒ X2
ī +

1

2
Xī(
∑

j

Xj −
∑

j̄

Xj̄) +
λ

2
= 0 ,

δS/δλ = 0 ⇒
∏

a

Xa = 1 . (4.31)

Defining σ ≡ (
∑

i Xi −
∑

īXī), one can view the first two equations of this set as quadratic

equations for Xi and Xī with coefficients determined by σ and λ. The solutions are

Xi =
σ

4
± 1

4

√
σ2 − 8λ , Xī = −σ

4
± 1

4

√
σ2 − 8λ . (4.32)

One can show from (4.31) that λ < 0 and that one therefore has to choose the positive signs
in (4.32), since Xa is positive by definition. All Xi therefore have the same value that we

will denote by X . Similarly, all Xī assume an equal value X̄. One can also derive that

λ = −2XX̄ from which it follows that:

(p− 2)X = (q − 2)X̄ . (4.33)

The values of X and X̄ can then be found by noting that XpX̄q = 1.

In order to have the overall exponent ecϕ in the potential, we require that p + q < 8.

Going through all possibilities for the extrema of U and taking into account the existency
conditions for matter scaling and scalar dominated solutions, one is led to table 4.1.

We remark that there is no scalar dominated solution such that P lies between 1/3 and
1. This implies that in these models a matter scaling solution can never coexist with a scalar

dominated scaling cosmology.

The accelerating scaling solutions (P > 1) are found for the CSO(3, 3, 2)-gauging and the
CSO(4, 3, 1)-gauging. The first was found by Townsend in [102] where it was constructed

by a reduction of a de Sitter vacuum in 5-dimensional SO(3, 3)-gauged supergravity. The
second possibility with P = 7 is as far as we know not found before. The cosmologies of the

CSO(1, 1, 6)-gauging were considered before [103] where the solutions were obtained from a

reduction of seven-dimensional pure gravity on a group manifold.
Since the matrix ∂i∂jU evaluated at an extremum is not positive definite, the solutions

are unstable.
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Gauging matter scaling scalar dominated

1. CSO(1, 0, 7) P = 2/(3γ) ∄
2. CSO(1, 1, 6) P = 2/(3γ) ∄
3. CSO(2, 2, 4) ∄ P = 1
4. CSO(3, 3, 2) ∄ P = 3

5. CSO(4, 3, 1) ∄ P = 7

Table 4.1 N = 8 gaugings and their scaling solutions. Whenever a certain type of scaling

solution exists, it is indicated in the table via the power of the corresponding scale factor. ∄
means that there does not exist a scaling solution of the type under consideration.

4.4 Higher-dimensional origin

In the previous section, we obtained accelerating scaling cosmologies from CSO-gaugings in

N = 8 gauged supergravity. As we are going to review in this section, these solutions can be
viewed as solutions of 11-dimensional supergravity. We have thus obtained accelerating cos-

mologies from a higher-dimensional supergravity. Generally, obtaining accelerating universes
from 10- or 11-dimensional supergravity by performing a ’reasonable’ compactification, is

considered a hard problem due to the existence of a no-go theorem [89, 90, 91]. We will first

briefly review the arguments behind this theorem. We will then give the higher-dimensional
origin of the scaling solutions we found and mention how they evade the no-go theorem.

A no-go theorem and how to evade it

Consider a warped compactification with the following metric:

ds2 = Ω2(y)g4(x)µνdxµdxν + gn(y)abdyadyb , (4.34)

where gn denotes the metric on the n-dimensional internal manifold Mn (with coordinates
ya, a = 4, · · · , 3 + n), while g4 denotes the metric on the 4-dimensional non-compact space-

time (with coordinates xµ, µ = 0, · · · , 3). The function Ω(y) denotes the warp factor and
only depends on the internal coordinates. We will furthermore take it non-vanishing, in

order to avoid singularities. Calculating the Ricci-tensor then gives:

(R4+n)00 = (R4)00 +
1

4
Ω−2(y)2nΩ4(y) , (4.35)

where 2n denotes the Laplacian in the internal manifold and R4+n, R4 denote the Ricci-
tensors of the full metric (4.34) and the metric g4 respectively. Multiplying (4.35) on both

sides with Ω2(y) and integrating the resulting equation over the internal manifold, one

obtains:

∫

Mn

dyn Ω2(y)(R4+n)00 = (R4)00

∫

Mn

dyn Ω2(y) . (4.36)
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Note that we dropped the term 1
4

∫
Mn

dyn
2nΩ4(y) because we assumed that the internal

manifold has no boundary. From (4.36), one immediately notices that

(R4+n)00 > 0 ⇒ (R4)00 = −3
ä

a
> 0 . (4.37)

In order to have an accelerating universe, one needs that (R4+n)00 is negative in some

part of space-time. Unfortunately, the energy-momentum tensors of 10- and 11-dimensional
supergravity are such that the Einstein equations imply that (R4+n)00 is positive.

Note, however, that this argument involves a lot of assumptions. One has for instance

assumed that the integrals in (4.36) are well-defined. An easy way to evade this consists
in giving up the compactness of the internal space. In case of these non-compactifications,

one can find de Sitter vacua, see e.g., [47, 83, 102]. The disadvantage of this is that the
four-dimensional mass spectrum is continuous and there seems to be no obvious way to

circumvent this problem.

Even when considering true compactifications, there exist various ways to evade the
no-go theorem. Suppose one has obtained a four-dimensional effective theory from a true

compactification, consisting of scalars coupled to gravity with a potential. Consider the
case in which there is only one scalar for simplicity. The second equation in (2.35) implies

that, when the four-dimensional scalar potential is positive, acceleration is possible whenever

φ̇ = 0. As was argued in for instance [86], solutions in which φ̇ passes through zero will
appear rather generically. Saying that the no-go theorem can not be evaded then almost

boils down to saying that these potentials are never positive. This statement is however
false. All that can be inferred about these potentials is that they have no positive stationary

points [104, 105]. Finding de Sitter vacua (in which the scalar fields are constant) from

compactification is thus a very hard problem. On the other hand, if one allows some of the
scalars to depend on time, one can find accelerating cosmologies in models that are obtained

via compactification of a higher-dimensional theory. Note that the time-dependent scalars
correspond to some of the moduli of the internal manifold, implying that the metric on

Mn is time-dependent. In the derivation of the no-go theorem, we however assumed that

the internal metric is time-independent. Using time-dependent internal manifolds can thus
evade the no-go theorem. An example of this approach is given in [105]. Essentially, they

consider compactifications on Einstein spaces of negative curvature. The isometry groups

of these spaces are non-compact. So although these spaces are non-compact, one can make
them compact by modding out by a discrete subgroup of the isometry group.

Note that also the fact that (R4+n)00 is positive is an assumption. Although true in 10-
or 11-dimensional supergravity, in the context of string or M-theory, this assumption can be

easily violated. Indeed, string theory contains orientifolds that can (at least locally) violate

this assumption [106]. Also the introduction of branes can lead to various nonperturbative
corrections to the potential that can change this picture. It has been shown in [107, 108]

that after introduction of such effects one can indeed obtain de Sitter vacua.

Higher-dimensional origin of the scaling solutions

In [47], it was shown that the non-compact gaugings are associated with 11-dimensional su-

pergravity solutions that have a non-compact internal space. For the CSO(p, q, r)-gaugings,
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the internal space Hp,q,r is a hypersurface in IR8, defined by the following equation:

TABz
AzB = R2 and T = LT ηL , (4.38)

where zA are Cartesian coordinates of IR8 and R is determined by the flux of the 4-form
field strength in 11 dimensions7.

The metric on the hypersurface is then induced from the Euclidean metric on IR8. Given
a solution in 4 dimensions with a metric g4 and some scalars as only non-vanishing fields,

the 11-dimensional metric g11 is then determined as:

g11 = ∆
2
3 g4(x) + ∆− 1

3 gH(x, y) , (4.39)

where gH(x, y) is the metric on Hp,q,r and ∆(x, y) is a warp factor:

∆ =
T 2

ABz
AzB

R2
. (4.40)

From the explicit solutions for the scalar matrix M, we notice that our scaling solutions

correspond to SO(p) × SO(q)-invariant directions in the scalar coset8:

T = e
cϕ
2




X p×p 0 0
0 −X̄ q×q 0

0 0 0r×r


 . (4.41)

The constants X and X̄ are the constant diagonal components of the S ℓ(p+q, IR)/ SO(p+q)-

scalar matrix M̃ = diag(X p, X̄ q).
We follow the same spirit of [83] and choose coordinates in which the Euclidean metric

on R8 is given by:

ds2 = dσ2 + σ2dΩ2
p−1 + dσ̃2 + σ̃2dΩ2

q−1 +
8∑

A=p+q+1

dzAdzA , (4.42)

with dΩ2
n the round metric on the unit n-sphere. In terms of these non-Cartesian coordinates,

the hypersurface (4.38) is explicitly given by:

σ2 − (
X̄

X
)σ̃2 =

R2

X
e−

c
2ϕ ∼ t . (4.43)

Because the ratio X̄/X appears often we call it λ. If we introduce new coordinates r, ρ in
the following way:

σ̃ = ρr, σ = ρ(1 + λr2)1/2 , (4.44)

then the hypersurface (4.43) is defined by ρ2 = R2

X e−
c
2ϕ and the metric on Hp,q,r is found

to be:

ds2H = R2

X e−
c
2ϕ
[1 + (λ+ λ2)r2

1 + λr2
dr2 +(1+λr2)dΩ2

p−1 +r2dΩ2
q−1

]
+

8∑

u=p+q+1

(dzA)2 . (4.45)

7 The flux parameter R also corresponds to the inverse of the gauge coupling constant.
8 In terms of the SO(p)×SO(q) invariant scalars s and t defined in [54, 109, 83], our solutions have constant

s and running t.
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The warp factor is:

∆ = X(1 + (λ+ λ2)r2) e
c
2 ϕ (4.46)

and the 11-dimensional metric is then given by (4.39).

Note that the uplifted solutions violate the aforementioned no-go theorem in two respects.

First of all, they correspond to non-compactifications. One can also not compactify these

spaces by modding out by an appropriate discrete set of isometries as was for instance
done in [105]. Secondly, the internal metric (4.45) and the warp factor (4.46) both depend

explicitly on the running scalar ϕ. The internal spaces are thus time-dependent.

4.5 Scaling solutions and de Sitter vacua

In section 4.3, we have found accelerating scaling solutions, that are however unstable. A

natural question is then whether stable scaling solutions with eternal acceleration are possi-
ble at all in supergravity? If one lowers the amount of supersymmetry, then stable solutions

are possible. In N = 4 gauged supergravity, a (non-accelerating) stable scaling solution was

found in reference [87] and, as we shortly outline below, stable eternal accelerating scaling
solutions can be present in N = 2 theories. These stability properties are similar for de

Sitter vacua in supergravity, where stable vacua are only found for N ≤ 2.

The existence of stable scaling solutions in N = 2 gauged supergravity follows from the

fact that there exist stable de Sitter vacua in d = 5 [53]. Suppose one has a de Sitter critical
point in 5-dimensional supergravity. One can then truncate the system to pure gravity and

a positive cosmological constant, Λ. If we reduce this theory on a circle and truncate the

Kaluza-Klein vector, using the following usual metric ansatz:

ds2 = e

r
1
3ϕ

ds24 + e
−2

r
1
3 ϕ

dz2 , (4.47)

we find:

S4 =

∫
dx4√−g4[R− 1

2 (∂ϕ)2 − Λ e
√

1
3 ϕ] . (4.48)

This theory has an accelerating scaling solution:

ds24 = −dt2 + t6dx2
3 ,

√
1

3
ϕ = −2 ln t+ C , (4.49)

where C is a constant. Plugging this in the metric ansatz (4.47) and redefining time via
τ ∼ ln t, we find that the uplift of the 4-dimensional scaling solution is:

ds25 = −dτ2 + eC′ τ dx2
4 , (4.50)

where C′ is also constant. This is indeed a 5-dimensional de Sitter universe in flat FLRW-
coordinates. When the de Sitter solution is stable, so is the scaling solution obtained via

reduction.
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4.6 Conclusion

In this chapter, we investigated scaling solutions in N = 8 gauged supergravity. When

restricted to the dilatons, the potential becomes a sum of exponentials. We showed that
for the CSO(p, q, r)-gaugings, the exponentials exhibit a special form, namely they have so-

called affine couplings. This special form is necessary for the existence of scaling solutions.

We find eternal accelerating solutions for which the barotropic fluid vanishes. From the
point of view of 11-dimensional supergravity, the solutions correspond to geometries with

non-compact and time-dependent internal spaces. If we assume the presence of a barotropic

fluid, we also find matter scaling solutions. The solutions we obtained have one running
scalar and all other scalars are trapped in a saddle point or maximum of the potential, and

are therefore unstable.
It would be interesting to study scaling solutions in non-maximal supergravities. This

would entail a detailed study of the possible gaugings and the structure of the potentials

that appear in these theories. In this context, we remarked that knowledge of de Sitter
vacua in 5 dimensions, leads to knowledge of scaling cosmologies in 4 dimensions.

Scaling solutions correspond to critical points of the cosmological dynamical system and
therefore describe the early- or late-time behavior of general cosmological solutions. From

this point of view, one can note a similarity with the generic behavior of cosmological

solutions in ungauged supergravity. Apart from the intermediate billiard behavior that
was mentioned in section 3.5.2, it was found in [55, 56] that the asymptotic behavior of

cosmological solutions in maximal ungauged supergravity corresponds to metrics with power-
law scale factors and constant axionic fields. Our scaling solutions are thus very similar to

the asymptotic behavior of cosmological billiard dynamics in ungauged supergravity. A more

complete analysis would involve solutions that interpolate between scaling vacua in order to
understand how the cosmic billiard behavior is realized in gauged extended supergravity.





Chapter 5

Dirac actions for D-branes in

flux backgrounds

5.1 Introduction

5.1.1 D-branes

One of the great discoveries in string theory concerns the role played by Dp-branes in the

theory [110]. These can be introduced by considering so-called Dirichlet boundary conditions
for open strings. This means that the endpoints of the string are confined to a (p + 1)-

dimensional hypersurface. The string can move freely along the hypersurface, but is not
allowed to move in the transverse directions. Dp-branes are thus introduced as (p + 1)-

dimensional hypersurfaces on which open strings end.

Quantization of open strings with Dirichlet boundary conditions leads to states that
correspond to fields that only depend on the coordinates along the brane, i.e., to fields that

live on the world-volume of the brane. The open string spectrum then usually contains
massless states and a tower of highly massive states. Often, one also finds a mode with

negative mass squared, i.e., a tachyon. This tachyonic mode represents an instability of

the D-brane. For certain values of p, stable D-branes can occur in superstring theories. In
these cases, the spectrum of open strings that start and end on the brane is tachyon-free. It

turns out that in type IIA string theory, stable D-branes occur for even values of p, while
in type IIB string theory stable branes have odd values of p. In these cases, the D-branes

carry a conserved electric or magnetic Ramond-Ramond charge that ensures their stability.

These stable D-branes then also preserve half of the 32 supersymmetries of the type II string
theory.

The massless states in the open string spectrum correspond to 9 − p real scalars φ,
one vector Aα, α = 0, · · · , p, as well as some fermions. The scalars can be interpreted as

describing transverse fluctuations of the brane. They thus describe the shape of the brane.

Although D-branes were introduced as rigid hyperplanes, the excitations of open strings
ending on them imply that they can be seen as dynamical objects in string theory. Together,

these massless states comprise the vector multiplet of a (p + 1)-dimensional U(1) gauge
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theory with 16 supercharges, indicating that the brane indeed preserves 16 supersymmetries.

The low energy dynamics of the massless open string states on a Dp-brane describes a

supersymmetric gauge theory in a (p+1)-dimensional space-time. This low energy dynamics
is described by an effective action. The bosonic parts of the effective actions describing the

world-volume dynamics of D-branes are well known. The fermionic part of these actions is

however less well known. It is on this fermionic part that this chapter will mainly focus.

Finally, let us mention what happens to D-branes when applying T-duality. We have

already mentioned in section 2.4.2 that T-duality exchanges the type IIA and type IIB

supergravity theories. Under T-duality, a Dp-brane is mapped to either a D(p + 1)- or a
D(p−1)-brane. In the presence of a space-like compact Killing direction x9, the background

fields transform under T-duality as in (2.133). If the 9-direction in which T-duality is
performed lies along the world-volume of the Dp-brane, one ends up with a D(p− 1)-brane.

The 9-component of the world-volume gauge field A then becomes a new physical scalar

field that describes the fluctuation of the D(p − 1)-brane in the new transverse direction.
If one performs a T-duality along a direction transverse to the Dp-brane, one ends up with

a D(p + 1)-brane. In this case, the world-volume scalar that describes fluctuations in the
T-duality direction, becomes a component of the gauge vector. The action of T-duality on

the fermionic world-volume fields has been worked out in [111].

5.1.2 Fluxes

As superstring theories naturally live in 10 space-time dimensions, one usually assumes that
6 spatial dimensions are compact, in order to make contact with our four-dimensional reality.

Moreover, if string theory is really a unified theory of nature, it should definitely contain the
Standard Model of particle physics, which has been tested to great accuracy. Originally, the

string theory that was found to be most promising for phenomenological purposes was the

heterotic theory with E8 ×E8 gauge group, as this is large enough to contain the Standard
Model gauge group. As was shown in [112], this theory allows for a space-time solution of the

form M4×CY3, where M4 is four-dimensional Minkowski space-time and CY3 is a Calabi-
Yau threefold. These vacua moreover preserve only 1/4 of the original 16 supersymmetries.

Compactification of heterotic string theory on Calabi-Yau manifolds therefore leads to N =

1 theories in 4 dimensions that might be phenomenologically viable. One of the largest
drawbacks of these compactifications is the fact that they lead to a large number of moduli

in the lower-dimensional effective theory. These moduli describe changes in size (so-called

Kähler moduli) or shape (complex structure moduli) of the internal Calabi-Yau manifold
and correspond to massless scalar fields that interact at least gravitationally. As such, they

usually lead to disagreement with observations. Generically, coupling constants in the four-
dimensional effective theory depend on these moduli. As their vacuum expectation values

are undetermined in conventional Calabi-Yau compactifications, this also leads to a problem

of predictivity.

This so-called moduli problem can be solved by considering more general compactifi-

cations, including fluxes (see refs. [113, 114, 115] for some reviews). This means that one

allows for non-trivial fluxes associated to certain n-form fields in the theory, through some
non-trivial cycles of the compactification manifold. In other words, if A denotes an n-form

potential, with (n+ 1)-form field strength F = dA, and γn+1 denotes a non-trivial cycle in
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the internal manifold, one allows for non-zero values of

∫

γn+1

F . (5.1)

In the four-dimensional effective theory, these fluxes induce a potential for some of the

moduli, thereby fixing some of them at minima of the potential. By taking also various
nonperturbative corrections into account, one can generically fix all moduli. Fluxes thus

play an important role in searching for realistic vacua of string theory. Moreover, they are

also very important in the construction of de Sitter vacua in string theory as was shown in
[107].

5.1.3 D-branes in flux backgrounds

In the previous section, we emphasized that compactifications with fluxes play a crucial

role in obtaining phenomenologically interesting lower-dimensional effective theories from
string theory. Due to the fact that interesting gauge theories live on their world-volume,

also D-branes are important in the construction of phenomenological string models. There

is thus a natural need to study D-branes that are put in general supergravity backgrounds
where fluxes are switched on. The aim of this chapter is to study the world-volume actions

that describe D-brane dynamics in such generic supergravity backgrounds.

The bosonic part of the D-brane action in a generic background is well understood (at

least in the case of a single D-brane). The fermionic part is however less well understood.

In principle, a complete D-brane action is known in a superspace formalism [116, 117]. Al-
though such a superspace action is complete and elegant, the precise manner in which the

background fields enter the fermionic terms of the action is hidden. Any explicit calculation

or consideration involving the world-volume fermions cannot be done only using such an im-
plicit superspace formalism. The explicit form of these terms is indeed necessary in several

interesting situations where the contribution of the world-volume fermionic dynamics be-
comes relevant. For example, they are necessary to write down the effect of background fluxes

in the effective action governing some phenomenologically interesting brane configurations

[118, 119, 120]. Also, Euclidean brane configurations are sources of nonperturbative cor-
rections in lower-dimensional effective theories obtained by compactification [121, 122, 123].

Finally, the knowledge of the explicit form of the fermionic terms is indeed necessary for any
kind of quantum world-volume computation (see for example [124]).

An important step towards the understanding of the fermionic terms in the Dp-brane

actions in backgrounds with fluxes was obtained in [8, 9]. In these papers, the fermionic
action was given for any Dp-brane on any (bosonic) supergravity background to quadratic

order in the fermions. However, the final results of [8, 9] are rather complicated. For instance,

new kinetic terms appear that apparently destroy the Dirac-like form of the actions. It is
the aim of this chapter to study these results further. In this chapter, we will show how the

seemingly complicated actions of [8, 9] can be rewritten into a more geometrical form that
naturally generalizes the Dirac-like operator. Our final result contains a kinetic term of the

schematic form

(M−1)αβΓβ∇α , (5.2)
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where the precise form of Mαβ will be given later on. This kinetic term (5.2) is still not in

canonical form. We will, however, see how a redefinition of the world-volume metric leads

to a fermionic action in canonical form.

The organization of this chapter is as follows. In section 5.2.1, we recall some results

concerning the world-volume actions describing D-brane dynamics. We recall the structure
of the bosonic part of the action and focus on the results of the papers [8, 9] giving the

explicit form for the fermionic bilinear action for any Dp-brane on any (bosonic) supergravity
background. We then show how it is possible to rewrite this fermionic action in a new, more

geometrical form. In section 5.3, we comment on some important symmetries of the D-brane

action and how to fix some of them in order to obtain a description in terms of physical
degrees of freedom. As an explicit check on our result for the fermionic action, we consider

its invariance under T-duality in section 5.4. In section 5.5, we then explain how one can
obtain a canonical action. For some notational aspects concerning this chapter, we refer to

appendix C.

5.2 The quadratic fermionic action on a general back-

ground

D-brane actions on general backgrounds have been formulated using the superspace formal-
ism in [116, 117]. Unfortunately, although superspace actions are in principle complete, the

explicit couplings between the physical fields as well as the fermionic sector of the theory

are quite obscure in this formalism. In order to be able to make any calculations involving
the world-volume fermions, one has to expand these superactions in components. If one

starts from the superactions of [116, 117], such a calculation can be really cumbersome and
requires a case by case study (see for example [125] and the recent [126]). The fermionic

action for any D-brane on any background was obtained in [8, 9] to quadratic order in the

fermions by following a somehow different route. The starting point was the normal co-
ordinate expansion of the M2-brane superaction presented in [127]. Then, by dimensional

reduction and T-duality all the Dp-brane actions quadratic in the fermions were derived in

a unified and compact form dictated by the consistency with T-duality. We will then start
from the results of [8, 9] and show how these results can be recast in a more geometrical

form.

5.2.1 The quadratic fermionic action on a general background

The dynamics of the world-volume of the brane is usually described in the following way.

The world-volume of the brane is parametrized by the coordinates ξα, α = 0, . . . , p. The
embedding of the brane in the full 10-dimensional space-time is then given by specifying the

10-dimensional space-time coordinates xm, m = 0, . . . , 9 as functions of these world-volume
coordinates : xm = xm(ξα). Note that from the point of view of the world-volume, the

xm(ξα) correspond to scalar fields living on the world-volume. There is furthermore also a

U(1)-vector field Aα living on the world-volume, as well as a pair of Majorana-Weyl fermions
θ1 and θ2. In the type IIA case, θ1 and θ2 have opposite chirality and they can be combined

in one 32-component Majorana spinor θ = θ1+θ2. In type IIB, both spinors in this pair have
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the same positive chirality. Our conventions regarding spinors are summarized in appendix

C.

The bosonic part of the Dp-brane action is given by:

S
(B)
Dp = −τDp

∫
dp+1ξ e−Φ

√
− det(g + F) + τDp

∫ ∑

n

P [C(n)] e
F , (5.3)

where τDp is the brane tension1. The first term in this action is usually called the Dirac-

Born-Infeld (DBI) action, while the second term is known as the Chern-Simons (CS) action.

Denoting the background metric by Gmn, gαβ is its pull-back on the world-volume:

gαβ =
∂xm

∂ξα

∂xn

∂ξβ
Gmn . (5.4)

Pull-backs of background fields on the world-volume will also be indicated by the symbol

P [.]; thus gαβ could alternatively be written as P [G]αβ . The other field Fαβ appearing in
the DBI action is a combination of the field strength f = dA of the gauge field living on the

brane and the pull-back of the background NS-NS two-form Bmn:

Fαβ = P [B]αβ + fαβ . (5.5)

The CS action involves the same combination F as well as the pull-backs of the R-R forms
C(n) on the world-volume. The notation of the CS action employed in (5.3) is a formal one.

The exponential of F appearing in there should be interpreted via its series expansion:

eF =
∑

n=0

1

n!
Fn , (5.6)

where multiplication of forms should be understood as taking wedge products of forms. The

CS action then involves a formal sum of wedge products of this exponential with R-R forms.
It is then understood that the CS action consists of the forms in this formal sum that have

the correct degree for the integration to make sense, i.e., one only keeps the forms of degree
p+ 1.

The fermionic part of the world-volume action was calculated to quadratic order in the

fermions in [8, 9] and is given by:

S
(F )
Dp =

τDp

2

∫
dp+1ξ e−Φ

√
− det(g + F) θ̄(1 − ΓDp)(ΓαDα − ∆ + LDp)θ, (5.7)

where Γα are pull-backs of the gamma matrices Γm. This action is determined by operators
ΓDp and LDp. For type IIA D-branes, these are given by:

ΓD(2n) =
∑

q+r=n

(−)r+1(Γ(10))
r+1ǫα1...α2qβ1...β2r+1

q!(2r + 1)!2q
√
− det(g + F)

Fα1α2 · · · Fα2q−1α2q
Γβ1...β2r+1 , (5.8)

LD(2n) =
∑

q≥1,q+r=n

(−)r+1(Γ(10))
r+1ǫα1...α2qβ1...β2r+1

q!(2r + 1)!2q
√
− det(g + F)

Fα1α2 · · · Fα2q−1α2q
Γβ1...β2r+1

γDγ ,

(5.9)

1 In terms of the string coupling constant gs and the Regge slope α′, τ−1
Dp

is given by = (2π)p(α′)
p+1
2 gs.
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while for type IIB D-branes:

ΓD(2n+1) =
∑

q+r=n+1

(−)r+1(iσ2)(σ3)rǫα1...α2qβ1...β2r

q!(2r)!2q
√
− det(g + F)

Fα1α2 · · · Fα2q−1α2q
Γβ1...β2r

,(5.10)

LD(2n+1) =
∑

q≥1,q+r=n+1

(−)r+1(iσ2)(σ3)rǫα1...α2qβ1...β2r

q!(2r)!2q
√
− det(g + F)

Fα1α2 · · · Fα2q−1α2q
Γβ1...β2r

γDγ .

(5.11)

In the above expressions, Dm (which enters through its pull-back Dα) and ∆ are the opera-

tors appearing in the supersymmetry transformation laws of the background gravitino and

dilatino (2.130), (2.131) and (2.132).

Note that a naive counting of degrees of freedom leads to a paradoxical result. There

are 10 scalar fields xm and one gauge vector Aα with p − 1 physical degrees of freedom.

So, it seems that in total there are 9 + p bosonic degrees of freedom. On the other hand,
the fields θ1 and θ2 together have 32 real components. The Dirac equation however implies

that only half of these survive as independent propagating degrees of freedom. So, it seems
that the number of physical fermionic degrees of freedom is 16. The numbers of bosonic

and fermionic degrees of freedom therefore do not seem to match, in contradiction to what

supersymmetry tells us. The solution to this paradox is the observation that the world-
volume action enjoys a number of extra local symmetries. First of all, it is invariant under

world-volume diffeomorphisms, i.e., reparametrizations of the world-volume coordinates ξα.
Secondly, it is also invariant under a fermionic symmetry, called kappa-symmetry. It was

shown in [9] that the full action given by (5.3) plus (5.7), is symmetric under the following

kappa-symmetry transformations:

δκθ̄ = κ̄(1 + ΓDp) ,

δκx
m = −1

2
δκθ̄Γ

mθ ,

δκAα =
1

2
δκθ̄Γ̃(10)Γαθ −

1

2
Bαmδκθ̄Γ

mθ , (5.12)

where

for type IIA : Γ̃(10) = Γ(10) , for type IIB : Γ̃(10) = Γ(10) ⊗ σ3 , (5.13)

and κ is the fermionic parameter of the kappa-symmetry. It turns out that the number of

physical fermionic degrees of freedom is reduced by a factor of one half by fixing the kappa-
symmetry, thus leaving only 8 physical fermionic degrees of freedom. Reparametrization

invariance on the other hand allows one to fix p + 1 of the xm, leaving only 9 − p of the
xm as physical degrees of freedom. Together with the p− 1 degrees of freedom of the gauge

vector this then also gives 8 bosonic degrees of freedom, as required by supersymmetry.

Later on in this chapter, we will come back to the problem of how kappa-symmetry and
reparametrization invariance can be fixed in a suitable fashion.

In the restricted case when Fαβ = 0, the action for the fermions takes an explicit canon-

ical Dirac-like form as can be seen from (5.7). The background fluxes then contribute with
mass terms through the operators Dα and ∆. The effect of a non-zero Fαβ is twofold. First,

it is included in the ΓDp operators (5.8) and (5.10). Secondly, we have the new terms LDp,
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which not only add new non-derivative couplings between background and world-volume

fields, but also add new kinetic terms. The rest of this section will then be devoted to

showing how these new terms can be reorganized such that the fermionic Lagrangian (5.7)
is written in a more geometrical form where the effect of the field Fαβ can be reabsorbed

in a shift of the pulled-back world-volume metric gαβ. This simplifies the final form of the

action considerably and makes its structure more transparent.
First of all, let us introduce the operator

Γ
(0)
Dp =

ǫα1...αp+1

(p+ 1)!
√− det g

Γα1...αp+1 . (5.14)

Note that Γ
(0)
Dp squares to (−1)(p−1)(p−2)/2. By using the formula

ǫα1...αrβr+1...βp+1Γβr+1...βp+1 = (−)r(r−1)/2(p+ 1 − r)!
√

− det gΓα1...αr Γ
(0)
Dp , (5.15)

one can write the chiral operators (5.8) and (5.10) in the following form [117]:

ΓD(2n) =

√− det g√
− det(g + F)

Γ
(0)
D(2n)(Γ(10))

n+1
∑

q

(−)q(Γ(10))
q

q!2q
Γα1...α2qFα1α2 · · · Fα2q−1α2q

,

(5.16)

ΓD(2n+1) =

√− det g√
− det(g + F)

Γ
(0)
D(2n+1)(σ3)n+1(−iσ2)

∑

q

(σ3)q

q!2q
Γα1...α2qFα1α2 · · · Fα2q−1α2q

.

(5.17)

From (5.9), one analogously finds that in the type IIA case

LD(2n) =
−√− det g√
− det(g + F)

Γ
(0)
D(2n)

(
Γ(10)

)n ×

∑

q≥1

(
−Γ(10)

)q−1

(q − 1)!2q−1
Γα1...α2q−1Fα1α2 . . .Fα2q−3α2q−2Fα2q−1

γDγ , (5.18)

which can in turn be rewritten as

LD(2n) = −ΓD(2n)Γ(10)Γ
αFα

βDβ −
√− det g√
− det(g + F)

Γ
(0)
D(2n)

(
Γ(10)

)n+1 ×

∑

q≥2

(
−Γ(10)

)q−2

(q − 2)!2q−2
Γα1...α2q−3Fα1α2 . . .Fα2q−5α2q−4Fα2q−3

γ1Fγ1

γ2Dγ2 .(5.19)

By iterating this last step (and by doing an analogous calculation for the IIB case), the
following formulae can be found:

LD(2n) = −ΓD(2n)

∑

q≥1

(Γ(10))
q(Fq)αβΓαDβ ,

LD(2n+1) = −ΓD(2n+1)

∑

q≥1

(−σ3)q(Fq)αβΓαDβ , (5.20)
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where (Fq)αβ = Fα
γ1Fγ1

γ2 · · · Fγq−2
γq−1Fγq−1β .

By putting these results together, it is easy to see that we can write the fermionic action

(5.7) in the compact and elegant form:

S
(F )
Dp =

τDp

2

∫
dp+1ξ e−Φ

√
− det(g + F) θ̄(1 − ΓDp)

[
(M̃−1)αβΓβDα − ∆

]
θ . (5.21)

where the operator Mαβ is defined as

M̃αβ = gαβ + Γ̃(10)Fαβ . (5.22)

One can now see that the operators LDp that in the action (5.7) were disturbing, are the

source of the natural geometrical coupling to the matrix

Mαβ = gαβ + Fαβ . (5.23)

This matrix substitutes the metric already in the bosonic action or in the definition of the
natural volume element defined on the brane. In this way, we see how the effect of the Fαβ

field, given by the couplings contained in the operators LDp, can be schematically reabsorbed
in the following redefinition of the kinetic term:

gαβΓβ∇α → (M̃−1)αβΓβDα . (5.24)

We will discuss the effect of non-zero Fαβ on the world-volume geometry in more detail

in section 5.5. First however, we will discuss how one can fix the κ-symmetry (5.12) and

reparametrization invariance in order to obtain an action that is expressed in terms of
physical fields. We will also establish the supersymmetry transformations of the physical

fields under which the complete κ-fixed action is invariant. Finally, we will show how the
action we have obtained is consistent with T-duality, giving an important check on our

result.

5.3 κ-fixing and supersymmetry

In section 5.2.1, we already alluded to the fact that the action (5.21), once completed with
the bosonic action (5.3), is invariant under world-volume diffeomorphisms and κ-symmetry

(5.12). In particular, we have mentioned how these extra symmetries account for the correct

number of physical bosonic and fermionic degrees of freedom. In this section, we would like
to discuss some aspects regarding their gauge-fixing and the consequent effects on the way

the possible background supersymmetries are realized on the brane.
In order to consider the problem of κ-fixing more clearly, it is convenient to write (5.12)

in a double spinor convention for both type IIA and type IIB. Details about this convention

are given in appendix C. In this notation, the first two transformation rules of (5.12) can
be written in exactly the same form but with a ΓDp given by2 (for both type IIA and IIB):

ΓDp = (−)pΓ
(0)
Dp(σ3)

p(p+1)
2 (iσ2)

√− det g√
− det(g + F)

∑

q

(σ3)q Γα1...α2q

q!2q
Fα1α2 · · · Fα2q−1α2q

. (5.25)

2 Note that, for type IIA, the ΓDp in double spinor notation is not the same as (5.16) but is given by
Γdouble

Dp
= σ1ΓDpσ1 due to the chosen representation of the charge conjugation matrix. On the other

hand, the σ1 factors in (C.16) have already been extracted from Γ
(0)
Dp

, which is thus considered here as
the diagonal matrix in the extension index.
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On the other hand, the last transformation of (5.12) takes the form:

δκAα = −1

2
δκθ̄Γασ3θ −

1

2
Bαmδκθ̄Γ

mθ . (5.26)

As stressed in [128], it is important to note that the ΓDp operators entering the κ-

symmetry transformations (5.12) are off-diagonal:

ΓDp =

(
0 Γ̌−1

Dp

Γ̌Dp 0

)
, (5.27)

where

Γ̌Dp = (−)
(p−2)(p−3)

2 Γ
(0)
Dp

√− det g√
− det(g + F)

∑

q

Γα1...α2q

q!2q
Fα1α2 · · · Fα2q−1α2q

, (5.28)

and Γ̌−1
Dp(F) = (−)

(p−1)(p−2)
2 Γ̌Dp(−F). This property allows one to fix the κ-symmetry in a

simple manner. Using an irreducible 16-dimensional spinor κ for which Γ̃(10)κ = −κ, one

can rewrite the transformations (5.12) in the following way:

δκθ̄1 = κ̄Γ̌Dp , δκθ̄2 = κ̄ . (5.29)

It is then clear that one can fix κ-symmetry by adopting a covariant gauge-fixing Γ̃(10)θ = θ

(i.e., θ2 = 0), as was for instance discussed in [128, 129]. The resulting κ-fixed action can

be easily seen to be expressible in terms of only θ1 in the following way:

S
(F )
Dp =

τDp

2

∫
dp+1ξ e−Φ

√
− det(g + F)

{
θ̄1
[
(M−1)αβΓαD

(0)
β − ∆(1)

]
θ1

−θ̄1Γ̌−1
Dp

[
(M−1)αβΓβWα − ∆(2)

]
θ1

}
, (5.30)

Note that the explicit form of this action involves terms that vanish by means of the symme-

try properties of the gamma matrices. Extracting all couplings is however a straightforward

task.
Let us now discuss how possible background supersymmetries are realized on the world-

volume. When the supergravity background possesses a Killing spinor ε (so Dmε = ∆ε = 0),
then the gauge-unfixed D-brane action is symmetric under the following (leading order)

induced supersymmetry transformations [9] (in standard notation for IIA):

δεθ = ε ,

δεx
m = −1

2
θ̄Γmε ,

δεAα =
1

2
θ̄Γ̃(10)Γαε−

1

2
Bαmθ̄Γ

mε . (5.31)

These transformations have the same form in double spinor notation, up to the substitu-
tion Γ̃(10) → −σ3 in the last line. In order to write these transformations in their gauge-fixed

form, we have to be careful with the fact that the supersymmetry transformations do not

necessarily respect the chosen gauge for κ-symmetry. Indeed, after a supersymmetry trans-
formation (5.31), θ2 = ǫ2 and hence no longer zero. In order to compensate for this breaking

of the κ-fixing condition θ = Γ̃(10)θ, one has to add a compensating κ-transformation (5.29)
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with κ = −ε2. Then, the resulting supersymmetry transformation of the physical fermionic

field θ1 becomes:

δεθ̄1 = ε̄1 − ε̄2Γ̌Dp . (5.32)

Supersymmetry is thus preserved by a classical configuration, in which the fermions are

equal to zero, only if:

ε̄1 = ε̄2Γ̌
(cl)
Dp . (5.33)

The condition that has to be satisfied in order for the D-brane to preserve the background

supersymmetry ε is thus given by ε̄Γ
(cl)
Dp = ε̄. Then, using the relation (5.33), it is possible to

write the preserved supersymmetry transformations for the κ-fixed action in terms of only

ε1 as follows:

δεθ̄1 = ε̄1(1 − Γ̌
(cl)−1
Dp Γ̌Dp) ,

δεx
m =

1

2
ε̄1(1 + Γ̌

(cl)−1
Dp Γ̌Dp)Γmθ1 ,

δεAα =
1

2
ε̄1(1 + Γ̌

(cl)−1
Dp Γ̌Dp)Γαθ1 +

1

2
Bαmε̄1(1 + Γ̌

(cl)−1
Dp Γ̌Dp)Γmθ1 . (5.34)

It is important to remark that these expressions only give the supersymmetry transforma-

tions in the lowest order of fermions (without fermion fields for the transformations of the
fermions, and linear in fermions for the transformations of the bosons). The supersymme-

try of the full action needs higher order terms. However, the transformations in (5.34) are
sufficient for determining the variation of the action linear in fermions. Therefore, they are

exact supersymmetries for the completely truncated action quadratic in both bosons and

fermions around some particular classical configuration.
To see how the transformations (5.34) look like in this linearized approximation, it is

convenient to fix the residual gauge invariance under world-volume diffeomorphisms in order
to identify the physical world-volume scalar fields. Usually, this is done by adopting the so-

called static gauge condition. In this case, one uses reparametrization invariance to identify

p + 1 of the space-time coordinates xm with the world-volume coordinates ξα : xα = ξα.
Only the fluctuations δxbm, where m̂ = p + 1, . . . , 9 labels the directions transverse to the

brane, are considered as physical, and one has to impose the condition δxα = 0. However,

since we are working in a general curved space, this kind of gauge-fixing is not the most
geometrical one due to the arbitrariness of the coordinate choice. It is then natural to break

explicitly the local SO(1, 9) Lorentz invariance of the theory into SO(1, p)× SO(9− p) and
select a class of adapted co-vielbeine em = (eα, ebm), such that the pull-back on the brane

of the ebm is vanishing and the pulled-back eα form a world-volume vielbein. Now one can

consider the fluctuations of the brane as described by a section φbm of the normal bundle
(i.e., φbm = e

bm
mδxm). This means that the natural gauge-fixing condition is:

eα
mδx

m = 0 . (5.35)

In order to write the supersymmetry transformations for the completely gauge-fixed lin-

earized action, we now have to compensate the transformation (5.34) with a world-volume

diffeomorphism δξα(ǫ) defined by the condition:

δξα(ǫ)P [eα]α = −eα
mδǫx

m . (5.36)
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Taking into account this compensation and using the fact that φbm = 0 when evaluated on

the classical configuration, the linearized gauge-fixed supersymmetry transformations (5.34)

become:

δεθ1 = (M−1)βα(∇N
α φ

bm)ΓβΓbmε1 + (M−1)βαΓβ
γKγα

bmφbm
−1

2
(M−1)αγ(M−1)βδ(φbmHbmγδ + fγδ)Γαβε1 ,

δεφ
bm = ε̄1Γbmθ1 ,

δεAα = ε̄1Γαθ1 + f
(cl)
αβ ε̄1Γβθ1 +Bαmε̄1Γmθ1 , (5.37)

where ∇N
α = ∂α + 1

4Aα
bmbnΓbmbn indicates the normal bundle covariant derivative with con-

nection

Aα
m̂n̂ = Ωα

m̂n̂ , (5.38)

where Ωα
mn is the pull-back of the spin connection of the target space vielbein e

m
m and Kαβ

n̂

is the extrinsic curvature of the world-volume of the brane, defined by

Kαβ
n̂ = Kβα

n̂ = e
δ
βΩαδ

n̂ . (5.39)

The derivation of the first of (5.37) is straightforward but tedious, as it involves several
rearrangements using gamma matrix properties along the lines followed to derive (5.20) from

(5.9) and (5.11).

5.4 Consistency with T-duality

The original fermionic action (5.7) was constructed in [9] by using T-duality and assembling
the different terms in a rather indirect way, using the partial results obtained previously in

[8] and completing them by means of consistency conditions. Let us rederive the proof of the
T-duality consistency of the above actions given in [8, 9], starting from their new expression

given in (5.21). This is an important consistency check and it clarifies also the validity of

the arguments, given in [8, 9], to obtain the final form of the action (5.7). In order to do
this, let us first of all prove that the term

τDp

2

∫
dp+1ξ e−Φ

√
− det(g + F) θ̄

[
(M̃−1)αβΓβDα − ∆

]
θ , (5.40)

in the fermionic action (5.21) is left invariant in form by T-duality. One can check this
property directly by using the usual T-duality rules for the bosonic fields and Hassan’s T-

duality rules for the fermions [111]. It is, however, easier to derive this property in a less

direct way. Let us first introduce the following combination of bosonic and fermionic fields:

Φ = Φ − 1

2
θ̄∆θ ,

Gmn = Gmn − θ̄Γ(mDn)θ ,

Bmn = Bmn − θ̄Γ̃(10)Γ[mDn]θ . (5.41)

These can be seen as superfields expanded up to second order. One of the basic observations

of [9, 130] is that, using Hassan’s T-duality rules for fermions [111], these second-order
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superfields transform (up to second order) in the same way the corresponding bosonic fields

do. The next step is to note that the term (5.40) can be seen as the second-order term

arising in the expansion of a DBI action for the superfields (5.41):

SDp = −τDp

∫
dp+1ξ e−Φ

√
− det(P [G + B] + f) . (5.42)

Once we know that the superfields (5.41) transform as the corresponding bosonic fields under

T-duality, we can immediately conclude that the action (5.42) is left invariant in form by
T-duality and then also its second-order term (5.40) is.

It is now easy to see that also the second contribution in the second-order action (5.21):

−τDp

2

∫
dp+1ξ e−Φ

√
− det(g + F) θ̄ΓDp

[
(M̃−1)αβΓβDα − ∆

]
θ , (5.43)

is left invariant by T-duality. Since we already know that the term
[
(M̃−1)αβΓβDα −∆

]
is

invariant in form under T-duality, we only need that the ΓDp are transformed into themselves
under T-duality. But this is indeed the case by definition, since in [9] these operators were

obtained one from the other by using T-duality. Then the whole action (5.21) is clearly

invariant in form under T-duality.

5.5 The world-volume geometry and a canonical action

In section 5.2.1, we have found a simple form for the quadratic fermionic action for a D-brane

in which couplings to the background geometry are more transparent. The action (5.21) is

however not in a canonical form, as the kinetic term is given by:

(M̃−1)αβΓβDα . (5.44)

This feature is already visible in the bosonic action, as can be seen from the fact that the

natural integration measure is given by:

√
− det(g + F) . (5.45)

When one studies the world-volume physics around a particular background brane config-

uration with a nonzero Fαβ , a general fluctuation δMαβ of (5.23) then has a Lagrangian
containing terms of the schematic form

√
− detM(M−1 · · ·M−1δM · · · δM) . (5.46)

This means that not only the natural volume element is given by
√
− detM , but also that

the lower indices of the different (δM)αβ are raised not with a metric but with (M−1)αβ ,

analogously to what happens in the term (5.44) of the fermionic action. The effect is that
the kinetic terms arising from the expansion of the bosonic action are not in canonical form,

just like in the fermionic case.

In this section, we will explore the geometry characterizing the theory that lives on
the world-volume of the Dp-brane in more detail. We will from now on consider the dy-

namics of the brane around some classical configuration and use the condition (5.35) to fix
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the world-volume reparametrization invariance. Furthermore, we will always consider the

(bosonic) fields as evaluated at their classical value and write the contribution coming from

the dynamical fluctuations explicitly.

In the first subsection 5.5.1, we focus on the bosonic part of the full action. We show
how one can obtain an action in canonical form by deforming the world-volume geometry.

In the following subsection 5.5.2, we also obtain the fermionic action in canonical form by

writing it in terms of this deformed geometry.

5.5.1 The world-volume geometry

We will start our study of the world-volume geometry by first looking at the bosonic part
of the action. As we will eventually work with fermions, it is convenient to define the

deformed theory in terms of the vielbein instead of the metric. In particular, since we will

work around some fixed classical configuration, we can restrict to the class of adapted co-
vielbeine em = (eα, ebm) such that P [ebm] = 0, introduced previously. The presence of a

world-volume field F , naturally selects a subclass of world-volume vielbeine eα such that3:

F = tanhφ0 e
0 ∧ e1 +

[(p−1)/2]∑

r=1

tanφr e
2r ∧ e2r+1 . (5.47)

This form is no longer invariant under the full world-volume SO(1, p) symmetry but only

preserves a residual SO(1, 1)× [SO(2)][(p−1)/2] symmetry. This decomposition has been used
in [129] to write the world-volume chiral operators (5.16) and (5.17) (up to a sign) in a nice

form. We will then show that the effect of the field F can be reabsorbed in a non-isotropic

deformation of the world-volume metric.

Let us first make a preliminary observation. If we define:

Xα
β = Fα

β , (5.48)

then the action of the matrix (1+X) can be seen as the product of a rotation Λ ∈ SO(1, 1)×
[SO(2)][(p−1)/2] and an operator T defined as:

T =
√

1 −X2 , Λ = (1 +X)T−1 . (5.49)

These properties can be immediately understood by writing Λ and T in our preferred vielbein

satisfying (5.47):

Tα
β =




1
coshφ0

0 0 0 . . .

0 1
cosh φ0

0 0 . . .

0 0 1
cos φ1

0 . . .

0 0 0 1
cos φ1

. . .
...

...
...

...
. . .



, (5.50)

3 Here and in the following, we often do not write explicitly the pull-back symbol P [.] and our notation
does not distinguish between the world-volume vielbein and the eα belonging to the target space vielbein.
The resolution of these ambiguities should be clear from the context.
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and

Λα
β =




coshφ0 sinhφ0 0 0 . . .

sinhφ0 coshφ0 0 0 . . .
0 0 cosφ1 sinφ1 . . .

0 0 − sinφ1 cosφ1 . . .
...

...
...

...
. . .




. (5.51)

Using the matrix T , we can define a new non-isotropically deformed vielbein

êα = eβTβ
α , (5.52)

and consequently a deformed metric

ĝαβ = ηαβ ê
α
αê

β

β . (5.53)

The deformed metric is then related to the original one and Fαβ by

ĝαβ = gαβ −Fαγg
γδFδβ . (5.54)

Writing the natural volume element entering the action in the form:

√
− det(g + F) =

√
− det g det(1 +X) =

√− det ĝ√
det(1 + X)

, (5.55)

one is led to the interpretation that we now have a world-volume theory defined in a deformed

string frame with a standard volume element
√− det ĝ, and a coupling to a world-volume

rescaled dilaton Φ̂:

e
bΦ = eΦ

√
det(1 +X) . (5.56)

Let us now show that one can rewrite the bosonic action in a canonical form. Note that

the matrix (M−1)αβ entering the general expansion (5.46) takes the form:

(M−1)αβ = ĝαβ − F̂αβ , (5.57)

where ĝαβ is the inverse of ĝαβ and F̂αβ = êα
αê

β
βX

αβ. In the deformed theory, the inverse

metric ĝαβ thus separates from the contribution given by F̂αβ which can be directly iden-

tified as a “deformed” version of the background world-volume field strength. Then, when
formulated in terms of the new deformed geometry, the kinetic terms come in a canonical

form. The effect of a non-zero background Fαβ can not be completely reabsorbed in a de-

formation of the metric. Indeed, the F̂αβ appearing in (5.57) adds other couplings in the
expansion (5.46), involving also derivatives of the bosonic world-volume fields, but since F̂αβ

is antisymmetric, these are different in nature from kinetic terms and can be interpreted as
generalized electromagnetic couplings. In the following section, we will see how the defor-

mation of the world-volume geometry introduced here will allow us to isolate a kinetic term,

writing the fermionic action as a standard Dirac action plus mass terms coming from the
embedding in a curved background with fluxes and from the world-volume background field

strength Fαβ.
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5.5.2 A canonical fermionic action

We will now reconsider the fermionic action (5.21) and rewrite it in terms of the deformed
vielbein (5.52) defined in the previous section. Following [129], we write the chiral operators

(5.8) and (5.10) that enter the fermionic action in the form:

ΓDp = eRΓ̃(10)Γ
(0)′
Dp e

−RΓ̃(10) . (5.58)

We have defined the operators

Γ
(0)′
Dp =

{
Γ

(0)
Dp(Γ(10))

p+2
2 for type IIA ,

Γ
(0)
Dp(iσ2)(σ3)

p+1
2 for type IIB ,

(5.59)

and

R =
1

4
YαβΓαβ (5.60)

is a Lorentz generator expressed easily in our preferred vielbein in the following way:

Y(2) = φ0e
0 ∧ e1 +

[(p−1)/2]∑

r=1

φre
2r ∧ e2r+1 . (5.61)

Let us observe that RΓ̃(10) generates on each irreducible component of a type IIA or

IIB spinor a Lorentz transformation belonging to the unbroken SO(1, 1) × [SO(2)][(p−1)/2],
but also that it rotates the two irreducible components of a type IIA/IIB spinor in opposite

directions. We can then define, for both type IIA and IIB, a new “rotated” fermionic field

(recalling that the two irreducible components are rotated in opposite directions)4:

Θ = eRΓ̃(10)θ. (5.62)

This sort of generalized chiral rotation is naturally accompanied by the following redefinition
of the operators entering the fermionic action:

D̂(0)
α = eRΓ̃(10)D(0)

α e−RΓ̃(10) ,

Ŵα = e−RΓ̃(10)Wαe
−RΓ̃(10) ,

∆̂(1) = e−RΓ̃(10)∆(1)e−RΓ̃(10) ,

∆̂(2) = eRΓ̃(10)∆(2)e−RΓ̃(10) , (5.63)

where the operators involved are defined in (2.131,2.132).

In the above redefinition, it can be useful to write the operator Wm entering the action,
in terms of a new operator W defined by the relation Wm = WΓm and then

Ŵ = e−RΓ̃(10)WeRΓ̃(10) . (5.64)

Then, it is possible to write the fermionic action (5.21) in a canonical form. Indeed, using

the fact that

e−RΓαe
R = Λα

βΓβ , (5.65)

4 A similar rotation of the fermions accompanied by a vielbein redefinition of the kind given in (5.52) was
discussed in [131, 132].
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and that, for example,

Λα
βem

β = (1 +X)α
β êm

β , (5.66)

it is possible to show that the action (5.21) can be written in the form:

S
(F )
Dp =

τDp

2

∫
dp+1ξ e−

bΦ√− det ĝ
{

Θ̄
(
1 − Γ

(0)′
Dp

)(
Γ̂αD̂(0)

α − ∆̂(1)
)
Θ

+Θ̄
(
1 − Γ

(0)′
Dp

)
e−2RΓ̃(10)

(
ĝαγ [(1 + Γ̃(10)X)−1]γ

βΓ̂βŴ Γ̂α − ∆̂(2)
)
Θ
}
, (5.67)

where

Γ̂α = ê
β
αΓβ , Γ̂α = ĝαβΓ̂β . (5.68)

Using the equations (5.65) and (5.66), it is possible to write the explicit form of the new

operators defined in (5.63) and (5.64). To do this, let us first of all extend the operator Xα
β

to an operator acting on all the indices, by simply putting all the remaining components
equal to zero. This redefinition can then be extended in an obvious way to all the other

operators constructed from Xα
β . Then, for example, we can define the complete deformed

vielbein ê
m
m, by simply generalizing the definition (5.52) into the definition ê

n
mTn

m. Of

course, these extended redefinitions only make sense when restricted to the world-volume of

the brane. The operators ∆(1) and ∆(2) are defined in terms of operators T of the form:

T ∼ Tm1m2...Γ
m1m2... . (5.69)

Then, it is possible to see that the corresponding “hatted” operators have the form5:

T̂ ∼ Tk1k2...Γ̂
m1m2...(1 + Γ̃(10)X)m1

k1(1 + Γ̃(10)X)m2

k2 · · · . (5.70)

One can do a completely analogous computation for Ŵ , where however in this case Γ̃(10) in

(5.70) is replaced by −Γ̃(10). Note further that:

e−2RΓ̃(10) =
1√

1 +X

∑

q

(−)q(Γ̃(10))
q

q!2q
Xα1α2 · · ·Xα2q−1α2q

Γα1...α2q , (5.71)

and that the operator Γ
(0)
Dp entering the definition of Γ

(0)′
Dp in (5.59) can be written in terms

of the deformed quantities by simply adding “hats” everywhere in the definition (5.14).

It remains to rewrite Γ̂αD̂
(0)
α in terms of the deformed variables. The contribution by the

B field deforms analogous to (5.70). The pull-back of the target space covariant derivative
can be rewritten as:

Γ̂α∇̂α = Γ̂αD̂α +
1

4
Γ̂αB̂α

αβΓαβ − 1

2
Xη

βKαβ
n̂ Γ̃(10)Γ̂

αη
n̂

+
1

2
ĝαβKαβ

n̂ Γn̂ +
1

4
Γ̂αAα

n̂m̂Γn̂m̂ . (5.72)

5 Since X̂α
β = êα

αêβ
βXα

β = eα
αeβ

βXα
β = Xα

β , the objects in (5.67) and (5.70) are unambiguously
defined.



5.5. The world-volume geometry and a canonical action 123

In this expression, we have made use of the splitting of the pull-backed target space connec-

tion into a world-volume connection plus a part related to the extrinsic curvature and the

normal bundle connection, introduced in (5.38) and (5.39). The normal bundle connection
and extrinsic curvature are given by the embedding in the target space, and as such they

do not depend on the world-volume geometry. As we want to find the kinetic term in a

canonical form, we needed to introduce in (5.72) a covariant derivative D with respect to
the deformed frame, since this is the frame in which the world-volume geometry is naturally

described. This new derivative is defined using the connection ω̂ of the deformed vielbein,
which is related to the original world-volume connection (ωα

αβ = Ωα
αβ) by:

ωα
αβ = ω̂α

αβ + B̂α
αβ , (5.73)

with,

Bα
αβ = (1 + Γ̃(10)X)[α|ρ

[
(1 + Γ̃(10)X)−1D̂ρX(1 + Γ̃(10)X)−1

−(1 −X2)D̂ρX
]

γ

|β] ê
γ
α Γ̃(10) −

[
D̂αX(1 + Γ̃(10)X)−1

][αβ]

Γ̃(10) , (5.74)

where we have raised and lowered the flat indices by using ηαβ and its inverse as usual. This

discussion makes explicit that the operator Γ̂αD̂
(0)
α contains the covariant derivative with

respect to the deformed metric together with some covariant couplings of the world-volume

fields to the background. If one takes the world-volume geometry as given by the deformed
metric (5.53), it can be seen that (5.67) consists of a canonical Dirac operator together with

some additional interactions, given by the embedding and the fluxes.
Let us next consider the effect of gauge fixing kappa-symmetry. We impose the gauge

fixing condition:

Θ = Γ̃(10)Θ , (5.75)

which simply means that the second component of Θ is equal to zero. It can then easily be
seen that the action (5.67) written in terms of the first component of Θ (which we indicate

again with Θ) reduces to:

S
′(F )
Dp =

τDp

2

∫
dp+1ξ e−

bΦ√− det ĝ
{

Θ̄
(
Γ̂αD̂(0)

α − ∆̂(1)
)
Θ

−Θ̄Γ̌−1
Dp

(
ĝαγ [(1 +X)−1]γ

βΓ̂βŴ Γ̂α − ∆̂(2)
)
Θ
}
. (5.76)

We conclude this section by writing the linearized supersymmetry transformation rules
(5.37) in the new deformed variables:

δεΘ = Γ̂α∇N
α φ

bmΓbmχ−Xα
βKβγ

bmφbmΓ̂αγχ− 1

2
(φbmHbmαβ + fαβ)Γ̂αβχ ,

δχφ
m̂ = χ̄ΓbmΘ ,

δχAα = χ̄Γ̂αΘ +Bαme
mbmχ̄ΓbmΘ , (5.77)

where χ = eRε1 and the scalar fields φbm describe the brane fluctuations in the normal
directions and fαβ is the dynamical world-volume field strength. Note that the world-

volume part of these transformations takes the usual form valid when the world-volume

field strength Fαβ is vanishing, while the terms in (5.77) involving explicitly B(2) and its
field strength H(3), are non-zero only if some of the off-diagonal components Bαme

mbm of B(2)

are non-vanishing.
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5.6 Conclusion

The main results of this chapter are the transparent formulae for the quadratic fermionic

part of the Dp-brane actions on any supergravity background including possible fluxes. In
particular, (5.21) gives this parametrization and κ-symmetric action, and (5.76) gives a

convenient κ-fixed form.

We started by re-expressing the results of [8, 9] by re-organizing terms in a more compact
notation. We clarified the underlying geometric structure, using the tensor M̃αβ , see (5.22),

in both types IIA and IIB. The formulation makes the invariance under T-duality easy to

be verified. Using a similar doublet notation for IIA and IIB, the κ-gauge-fixing can be
discussed uniformly. The preserved supersymmetry transformations after gauge-fixing the

κ-symmetry and world-volume reparametrizations are obtained in a linearized form. In order
to clarify the world-volume geometry, we have identified a new natural world-volume vielbein

such that the measure of integration is its determinant and all kinetic terms for the fermions

are recollected in the standard Dirac operator. Also the supersymmetry transformations in
this new metric are obtained, and the explicit form of the terms entering the κ-fixed action

is discussed.
These new results can be useful for any kind of quantum calculation on the brane, in

particular for the understanding of nonperturbative effects in string theory. The results can

also be useful for constructing effective actions for string configurations where D-branes are
involved.



Appendix A

Simple Lie algebras

This appendix collects some facts on simple Lie algebras. We start by giving some basic

definitions on Lie algebras. We then discuss the structure of complex simple Lie algebras
and their classification. Finally, we discuss some aspects of real forms of Lie algebras, cosets,

symmetric spaces and Iwasawa decompositions. The goal of this appendix is to present a

short summary of material that is frequently used in this thesis. It is by no means meant to
offer a complete treatment. A very good reference concerning the material presented here

is given by [76, 133].

A.1 Basic definitions

A Lie algebra G is a (finite-dimensional) vector space over a field K, equipped with a bilinear

product [, ] (called commutator):

[, ] : G × G → G , (A.1)

satisfying

1. antisymmetry : [a, b] = −[b, a] , ∀a, b ∈ G ,

2. the Jacobi identity : [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 , ∀a, b, c ∈ G .

We will always consider cases in which K = R,C, i.e., we will restrict to real, respectively

complex Lie algebras. A Lie algebra G is called abelian when [G,G] = 0. Introducing a

basis {X1, . . . , Xn}, the commutator of two basis elements can be expanded in this basis:

[Xi, Xj] =
∑

k

fij
kXk . (A.2)

The Xi are called generators of the algebra, while the constants fij
k are denoted as structure

constants. They satisfy:

1. antisymmetry : fij
k = −fji

k ,

2. Jacobi identity : f[ij
kfm]k

l = 0 .

125



126 APPENDIX A. SIMPLE LIE ALGEBRAS

A representation of a Lie algebra is a homomorphism φ from G to M(V ), where M(V )

denotes the set of linear transformations of a vector space V , such that:

φ([X,Y ]) = φ(X)φ(Y ) − φ(Y )φ(X) , ∀X,Y ∈ G . (A.3)

The adjoint representation ad is defined by taking V = G:

ad : X ∈ G → adX ∈M(G) : adXY = [X,Y ] X,Y ∈ G . (A.4)

In terms of this adjoint representation, one can define a scalar product (, ) on the algebra

as follows:

(X,Y ) = Tr(adXadY ) ∀X,Y ∈ G , (A.5)

i.e., (X,Y ) is given by the trace of the product of the matrices representing X and Y in
the adjoint representation. This inner product is called the Killing form; taking the inner

product of the generators leads to a metric gij , the so-called Cartan metric1:

gij = (Xi, Xj) = fik
lfjl

k . (A.6)

As one can always choose the structure constants to be real, gij is real and symmetric.

A (Lie) subalgebra H of G is a vector subspace of G that is itself a Lie algebra, namely
[H,H] ⊂ H. . An ideal I of G is a subalgebra of G satisfying [I,G] ⊂ I.

A Lie algebra G is called simple if it is nonabelian and the only ideals are G and the

trivial subalgebra containing only the null vector. A Lie algebra is called semi-simple if it
has no abelian ideals. An important theorem due to Cartan states that a Lie algebra is

semi-simple if and only if the Cartan metric is non-singular, det(gij) 6= 0. This is equivalent
to saying that the Killing form is non-degenerate, i.e., (X,Y ) = 0 ∀Y ∈ G ⇒ X = 0. A

solvable algebra is a Lie algebra such that the series:

G(0) = G , G(1) = [G(0),G(0)] , . . . , G(k) = [G(k−1),G(k−1)] , (A.7)

stops for some value of k. The importance of these definitions lies in the fact that they
provide building blocks for Lie algebras. One can show that every semi-simple Lie algebra

can be decomposed into the direct sum of its simple ideals. A theorem due to Levi states
that every Lie algebra can be decomposed into the direct sum of simple Lie algebras and

solvable algebras.

A.2 Structure of simple Lie algebras

In the previous section, we have mentioned the Levi theorem that implies that simple Lie

algebras play a prominent role in Lie algebra theory, as they are building blocks for more
general Lie algebras. In this section, we will elaborate more on the structure of simple Lie

algebras.

1 In principle, we are considering non-abelian Lie algebras here.
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A.2.1 The Cartan-Weyl basis and roots

In this section, we will only treat simple complex Lie algebras. In the so-called Cartan-Weyl
basis, the generators of the algebra are constructed as follows. First, one finds a maximal

set of commuting generators Hi, i = 1, . . . , r, such that adHi
is semi-simple for all i 2. This

set of generators is called the Cartan subalgebra of G (CSAG). The rank of G is then defined
as the dimension r of this Cartan subalgebra.

Suppose we have a representation R of the algebra that associates to every element X an
n× n-matrix R(X). Since the matrices R(Hi) commute, we can simultaneously diagonalize

them. Denoting the eigenvectors by |µ >, the eigenvalues are given by µi:

Hi|µ >= µi|µ > . (A.8)

The r-component vector (µ1, · · · , µr) is called a weight vector (or weight) of the represen-

tation R.

The weight vectors of the adjoint representation are called the roots (or root vectors) of
the algebra G. The eigenvectors that correspond to non-zero roots α are denoted by Eα

and are often called step operators (often also denoted as roots). One thus has:

adHi
Eα = [Hi, E

α] = αiEα , (A.9)

where αi are the components of the root α. The set of all roots of G is then called the

root system of G. The root system is denoted as ∆G. One can then make the following
root-decomposition of the algebra:

G = CSAG

⊕

α∈∆G

Gα , Gα = {X ∈ G | [Hi, X ] = αiX ∀Hi ∈ CSAG} , (A.10)

where the direct sums denote direct sums of vector spaces. The root system ∆G has the

following properties:

1. If α ∈ ∆G, then −α ∈ ∆G.

2. If α ∈ ∆G, then the only multiples of α in the root system are 0 and ±α.

3. α = 0 ⇔ Gα = CSAG.

4. If α, β and α + β are roots, then [Gα,Gβ] ⊂ Gα+β . If α, β are roots but α + β is no

root, then [Gα,Gβ] = 0.

5. The eigenspaces Gα for α 6= 0 are one-dimensional.

6. If α, β ∈ ∆G and α+ β 6= 0, then the Killing form vanishes on Gα × Gβ .

The upshot of all this is that the commutators of the generators in the Cartan-Weyl basis
can be summarized as:

[Hi, Hj ] = 0 ,

[Hi, E
α] = αiEα ,

[
Eα, E−α

]
= αiHi ,[

Eα, Eβ
]

= NαβE
α+β , α+ β 6= 0, α+ β ∈ ∆G , (A.11)

2 An endomorphism is called semi-simple if in a suitable basis it can be expressed by means of a diagonal
matrix.
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while the scalar products of these generators are given by:

(Hi, Hj) = δij ,

(Hi, E
α) = 0 ,

(Eα, E−α) = 1 ,

(Eα, Eβ) = 0 , α+ β 6= 0 . (A.12)

A.2.2 Simple roots, the Cartan matrix and Dynkin diagrams

Using a fixed basis {H1, . . . , Hr} of CSAG, one can introduce an ordering in ∆G. A root

α is called positive if its first non-zero component is greater than zero. The set of positive

roots is then denoted as ∆+
G

. A root is then called negative when it is not positive.
A root is called simple if it is positive and if it can not be written as the sum of two

other positive roots. The number of simple roots is given by the rank of the Lie algebra.
We will denote the simple roots by αi, i = 1, . . . , r 3. The simple roots obey the following

properties:

1. The simple roots αi are linearly independent and span the dual of CSAG.

2. For αi, αj simple roots : αi · αj ≤ 0 .

3. If αi and αj are simple roots, then αi − αj is not a root.

4. Every positive root is a sum of simple roots with nonnegative integer coefficients :

∀α ∈ ∆+
G

: α =
∑

i niαi with ni nonnegative integers.

The scalar product used in property 2 is simply defined as αi ·αj =
∑

k α
k
i ·αk

j . In terms of
the simple roots, one can define an r× r-matrix Aij , the so-called Cartan matrix as follows:

Aij = 2
αi · αj

αj · αj
. (A.13)

The following properties of this Cartan matrix are worth noting:

1. Aii = 2 and if i 6= j then Aij ≤ 0.

2. Aij is an integer and if i 6= j then Aij = 0,−1,−2 or −3.

3. The determinant of Aij is positive4.

The Cartan matrix can alternatively be represented in a graphical way. To every Cartan

matrix, one can associate a diagram consisting of nodes connected by lines in the following
way. To every simple root αi, one associates a node in the diagram. The number of lines

between the nodes corresponding to αi and αj then equals AijAji. From the properties
of the roots, it then follows that the number of lines is minimally 0, if αi · αj = 0, and

maximally 3. If AijAji > 1, the simple roots αi and αj have different lengths, in which case

one draws an arrow on the lines connecting the nodes of αi and αj , pointing in the direction

3 Note that the simple roots are denoted with a lower index. This should not be confused with the
components of the roots, which carry an upper index.

4 This is true for finite-dimensional algebras.
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of the shorter root. A diagram obtained from the Cartan matrix in this way is called a

Dynkin diagram. Given a Dynkin diagram, it is possible to reconstruct the Cartan matrix.

The importance of the simple roots and the Cartan matrix lies in the fact that from the
simple roots the full set of roots can be reconstructed. The simple roots on the other hand

can be reconstructed from the Cartan matrix. The Cartan matrix thus specifies the complete

commutation relations of the algebra. This point can be made more manifest by going to
the so-called Chevalley basis. To each simple root αi, one associates three generators:

ei = Eαi , f i = E−αi , hi = 2
αi ·H
αi · αi

. (A.14)

The commutation relations of these generators are then given by5:

[hi, hj ] = 0 ,
[
hi, e

j
]

= Ajie
j ,

[
hi, f

j
]

= −Ajif
j ,

[
ei, f j

]
= δijhj . (A.15)

The remaining step operators can then be obtained by repeatedly taking commutators of

these basic generators, subject to the so-called Serre relations:

[adei ]
1−Aji ej = 0 ,

[
adfi

]1−Aji
f j = 0 . (A.16)

In the above equations, the power of (1−Aji) indicates the number of nestings in the commu-

tator, for instance [adei ]
2
ej =

[
ei,
[
ei, ej

]]
. That the Serre relations and the commutators

(A.15) can be written in terms of the Cartan matrix shows that the Cartan matrix indeed

contains all information on the structure of G.

Classifying complex simple Lie algebras thus boils down to classifying simple root systems
or equivalently classifying Cartan matrices.

A.2.3 Classification

The possible Cartan matrices and corresponding Dynkin diagrams turn out to be highly

restricted.
It turns out that there are four infinite series of Lie algebras:

1. the An series containing the S ℓ(n+ 1,C) algebras.

2. the Bn series containing the SO(2n+ 1,C) algebras.

3. the Cn series containing the Sp(n,C) algebras.

4. the Dn series containing the SO(2n,C) algebras.

Besides these so-called classical algebras, it turns out that 5 extra Dynkin diagrams are

allowed, corresponding to the so-called exceptional algebras. These five exceptional algebras
are denoted as E6, E7, E8, F4 and G2.

5 We have used a different normalization for the Eαi generators, with respect to (A.11).



130 APPENDIX A. SIMPLE LIE ALGEBRAS

A.3 Real forms

In the previous section, we have discussed the classification of complex simple Lie algebras.
The procedure of determining the structure of Lie algebras in terms of eigenvalue subspaces

of the Cartan subalgebra in fact requires the field of the algebra to be C. A natural question
is whether one can also classify real simple algebras. The answer to this is contained in the

theory of real forms. We will first define the notion of a real form of a complex algebra and

illustrate this with some examples. Next, we will introduce some important decompositions
of real semi-simple algebras, that are used in this thesis.

A.3.1 Definitions and examples

Let us start by recalling some definitions. Let V be a vector space over R. V C := V ⊗R C
is called the complexification of V . Note that dimRV = dimCV

C. In other words, the

complexification of a real vector space is obtained by multiplying vectors with complex
numbers instead of real numbers. Let W be a vector space over C. Restricting the definition

of scalar multiplication to R leads to a vector space WR over R and dimCW = 1/2 dimRW
R.

If {w1, . . . , wn} is a basis of W , a basis of WR is obtained as {w1, . . . , wn, iw1, . . . , iwn}.

Let G be a complex Lie algebra. A real form of G is a subalgebra G◦ of the real Lie

algebra GR such that:

GR = G◦ ⊕ iG◦ , (A.17)

where the direct sum should be interpreted as a direct sum of vector spaces. The real
forms of a complex algebra are thus such that their complexification is equal to the original

complex algebra. A given complex algebra in general admits more then one real form. The
importance of the notion of a real form lies in the fact that classifying all real forms of simple

complex Lie algebras gives a classification of all simple real Lie algebras.

Two special real forms can always be distinguished, namely the split real form and the
compact real form. The split real form (also called normal real form) of the complex algebra

r∑

i=1

ciHi +
∑

α∈∆G

cαE
α , ci, cα ∈ C (A.18)

is obtained by restricting the complex coefficients to real coefficients. As all structure con-

stants are real numbers, this normal real form is closed under commutation. In terms of the
basis {Hi, E

α}, the Cartan metric has the following form:

g =




1
. . .

1
1

1

1
1




H1

...

Hr

Eα

E−α

Eβ

E−β

. (A.19)
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By going to the new basis {Hi,
1√
2
(Eα +E−α), 1√

2
(Eα −E−α)}, this metric is diagonalized:

g =




1
. . .

1
1

−1

1
−1




H1

...
Hr

(Eα + E−α)/
√

2

(Eα − E−α)/
√

2

(Eβ + E−β)/
√

2

(Eβ − E−β)/
√

2

. (A.20)

The compact real form can be obtained from the split real form by performing the so-called
Weyl unitary trick. This means that one multiplies the generators of the split form with

factors of i such that the Cartan metric becomes minus the identity. In other words, the

compact real form is given by linear combinations with real coefficients of the following
generators:

{
iHj ,

i√
2

(Eα + E−α),
1√
2

(Eα − E−α)
}
. (A.21)

By explicit computation, one can check that these generators close under commutation.
The complexification of both the normal and the compact real form is then indeed given by

(A.18). Note that for simple Lie groups, it holds that the group is compact if and only if
the Cartan metric on its Lie algebra is negative definite.

A.3.2 Cartan decomposition

The examples of the normal and compact real forms have shown that real forms are related

via the Weyl unitary trick, i.e., by multiplying certain generators with the imaginary unit.

One can also restate this example as follows. On the compact real form, one can consider
a notion of complex conjugation, such that generators of type (1/

√
2)(Eα − E−α) are real

and have eigenvalue +1 under this complex conjugation, while generators of type iHj and
(i/

√
2)(Eα +E−α) are purely imaginary and have eigenvalue −1 under complex conjugation.

The normal real form can then be obtained from the compact form by applying the Weyl

unitary trick on the subspace of purely imaginary generators.
The lesson from this is that new real forms can be obtained from the compact real form by

defining a suitable notion of complex conjugation. Such a complex conjugation corresponds
to an involutive automorphism σ of the Lie algebra, namely an automorphism σ satisfying:

σ2 = . (A.22)

An involutive automorphism then has eigenvalues ±1. Let G be a compact simple Lie
algebra. Given such an involution σ, one can decompose G into its eigenspaces of σ:

G = H ⊕ K , (A.23)

where H corresponds to the eigenspace with eigenvalue +1, while K is the eigenspace corre-
sponding to eigenvalue −1. The subspaces H and K are then orthogonal:

(H,K) = 0 . (A.24)
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One can furthermore also show that H is closed under commutation and hence forms a

subalgebra. In fact, the following commutation relations can be seen to hold:

[H,H] = H ,

[H,K] = K ,

[K,K] = H . (A.25)

Performing the Weyl unitary trick on the subspace K leads to another algebra G∗:

G∗ = H ⊕ iK . (A.26)

This new algebra is closed under commutation with real structure constants. Unless H = G,

this new algebra is not compact.
The decomposition (A.26) is called the Cartan decomposition. The subspace H is then

the maximal compact subalgebra of G∗. For instance, for the normal real form, the maximal
compact subalgebra is spanned by the generators of type (1/

√
2)(Eα − E−α).

By this construction, it is possible to associate a non-compact real form G∗ with the

compact real form through the involution σ. One can also show that as σ runs through all
possible involutive automorphisms of the compact real form G, the corresponding G∗ runs

through all real forms associated with the complex semi-simple algebra of which G is the
compact form. In this way, one can classify all possible real forms of complex semi-simple

algebras. The full classification is shown in table (A.1)6.

A.3.3 Cosets and symmetric spaces

Given a semi-simple Lie group G 7 and its maximal compact subgroup H , one can define
an equivalence relation in G. Two elements g and g′ in G are equivalent when they can be

connected by right multiplication with an element of H :

g ∼ g′ if g = g′h , h ∈ H . (A.27)

The corresponding equivalence class is called a left coset. The set of all left cosets then
constitutes the coset space G/H .

Each coset can be characterized by a coset representative L(φ), labelled by as many
coordinates φi as needed. One supposes that each coset contains exactly one of the L(φ),

such that the coset representatives give a decent parametrization of the coset space. Once

a representative L(φ) is chosen, every group element g can be decomposed as:

g = L(φ)h , h ∈ H . (A.28)

Multiplying a coset representative from the left with an arbitrary group element g of G

brings one to another coset:

gL(φ) = L(φ′)h , (A.29)

6 USp(2N), SU∗(2N), SO∗(2N) can be defined as groups of matrices over the quaternions H. One has
that USp(2N) = U(N, H), SO∗(2N) = O(N, H). SU∗(2N) = S ℓ(N, H), where S ℓ(N, H) consists of linear
transformations that have a determinant with modulus 1.

7 Note that we will often apply the same terminology to the Lie algebra G and the group G that is generated
by it via the exponential mapping.
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Compact form Real form Maximal compact subalgebra

SU(n) SU(p, n− p) SU(p) × SU(n− p) × U(1), 1 ≤ p < n

S ℓ(n) SO(n)
SU(2n) SU∗(2n) USp(2n)

SO(n) SO(p, n− p) SO(p) × SO(n− p)

SO(2n) SO∗(2n) U(n)

USp(2n) Sp(2n) U(n)

USp(2p, 2n− 2p) USp(2p) × USp(2n− 2p)

G2,−14 G2,−14 G2,−14

G2,2 SU(2) × SU(2)

F4,−52 F4,−52 F4,−52

F4,−20 SO(9)
F4,4 USp(6) × SU(2)

E6,−78 E6,−78 E6,−78

E6,−26 F4,−52

E6,−14 SO(10) × SO(2)

E6,2 SU(6) × SU(2)

E6,6 USp(8)

E7,−133 E7,−133 E7,−133

E7,−25 E6,−78 × SO(2)

E7,−5 SO(12) × SU(2)
E7,7 SU(8)

E8,−248 E8,−248 E8,−248

E8,−24 E7,−133 × SU(2)

E8,8 SO(16)

Table A.1 Classification of real forms of complex simple algebras. The first column indi-
cates the compact real form. The second column denotes the several real forms that can be

constructed from this compact form. The third column then contains the maximal compact

subalgebra. The second number in subscript in the notation for the real forms of the excep-
tional algebras denotes the number of non-compact minus the number of compact generators.

where in general φ′ and h depend on φ and g. The decomposition of the (real) Lie algebra

G of G in the algebra H of H and the orthogonal complement K:

G = H ⊕ K , (A.30)

leads to a useful coset representative:

L = exp(K) . (A.31)

These coset manifolds are homogeneous spaces, i.e., any two points can be connected via
an isometry transformation. The isometry group of the space is then given by G, while H

corresponds to the group that leaves a point fixed, the so-called isotropy group.
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Given a Lie algebra G, a subalgebra H such that an orthogonal decomposition (A.23)

holds, together with the commutation relations (A.25), is called a symmetric subalgebra.

The associated Lie group H is similarly called a symmetric subgroup. The coset space G/H
that one can associate to this is then also called a symmetric space8. The cosets found

by dividing a real form of a semi-simple algebra by its maximal compact subgroup thus

correspond to symmetric spaces.
The metric on a symmetric space can be found as follows. Using the coset representative

L(φ), one can define the one-form L−1dL. This one-form is Lie algebra valued and can
according to (A.30) be decomposed as follows:

L−1dL = E + Ω , (A.32)

where E is a one-form taking values in K, while Ω takes values in H. Note that L−1dL is
invariant under left multiplication of L with a φ-independent element g ∈ G. Under right

multiplication of L with local elements h ∈ H , one has:

E → h−1Eh ,

Ω → h−1Ωh+ h−1dh . (A.33)

Denoting the generators of K as KA, E can be written as:

E = EA
i dφiKA . (A.34)

Working in a specific matrix representation of the algebra, the metric on G/H is then
constructed as follows:

ds2 = Tr[E2] = EA
i ηABE

B
j dφidφj , ηAB ∼ Tr(KAKB) . (A.35)

Note that for the algebras that we consider, ηAB is proportional to the Cartan-Killing metric
restricted to K. One can thus interpret E as a vielbein one-form on the manifold, where the

flat metric is proportional to the Cartan-Killing metric restricted to K.
Note that sometimes one can give an alternative formula for the metric. Let us for

instance consider the cosets S ℓ(n,R)/ SO(n). If we work in the fundamental representation,

the Lie algebra of H = SO(n) is spanned by the anti-symmetric matrices. We thus have:

E =
L−1dL + (L−1dL)T

2
, Ω =

L−1dL− (L−1dL)T

2
. (A.36)

One then has

Tr[E2] =
1

2
Tr
[
L−1dLL−1dL+ L−1dL(L−1dL)T

]
. (A.37)

Defining M = LLT , one can see that this expression is also given by

Tr[E2] = −1

4

[
dMdM−1

]
. (A.38)

This form of the metric is for instance used in (4.9) to write down the kinetic terms of the

scalar fields in N = 8 supergravity in a suitable form.

8 Strictly speaking, symmetric spaces are spaces for which the covariant derivative of the Riemann curvature
tensor is zero. One can however show that this leads to coset spaces obtained by dividing a Lie group by
a symmetric subgroup.
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A.3.4 The Iwasawa decomposition

In the previous subsection, we saw how the Cartan decomposition leads to a specific para-
metrization of cosets G/H . There exists a different parametrization of cosets which is often

very useful. This is based on the fact that one can alternatively decompose an element of

a semi-simple Lie group G in a unique way as the product of an element of the maximal
compact subgroup H and an element of a solvable group S:

G = HS . (A.39)

This decomposition is known as the Iwasawa decomposition. At the level of the Lie algebra

G of G, this decomposition is given by

G = H ⊕ S , (A.40)

where H is the maximal compact subalgebra and S is a solvable Lie algebra. Note that S
is a subalgebra of G, in contrast to the subspace K appearing in the Cartan decomposition.
The solvable algebra S then determines the coset G/H as follows:

G

H
= exp(S) . (A.41)

Let us now outline how one can construct the solvable algebra S explicitly. Considering the

Cartan decomposition of a non-compact algebra G, one starts by choosing a maximal set

HK of commuting elements of K. Choosing a basis {H1, . . . , Hr} for HK, one can then define
the following subspaces of G:

Gλ :=
{
X ∈ G | [Hi, X ] = λiX , λi ∈ R , ∀Hi ∈ HK

}
. (A.42)

In this way, λ = (λ1, . . . , λr) form r-component vectors that, when non-zero, are called

restricted roots. Note that now the dimension of Gλ can be bigger than 1. Denoting the set

of restricted roots by Σ, one can split it in a set of positive restricted roots Σ+ and negative
restricted roots Σ− in the same way as was done for ordinary roots. The solvable algebra S
is then given by:

S = HK

⊕

λ∈Σ+

Gλ . (A.43)

The parametrization (A.41) is often called the solvable parametrization of the coset.





Appendix B

Properties of real Clifford

algebras

In this appendix, we will recall some properties of real Clifford algebras. Some reviews

are in [134, 135]. We will restrict to Clifford algebras with positive signature. The (q + 1)-
dimensional real Clifford algebra C(q+1, 0) is generated by real matrices γµ (µ = 1, · · · , q+1)

satisfying:

γµγν + γνγµ = 2δµν . (B.1)

The main properties are given in table B.1, which we will now further explain.

Table B.1 Real Clifford algebras C(q + 1, 0), the dimension Dq+1 of their irreducible repre-
sentations, and the metric preserving group in the centralizer of the Clifford algebra in the

(P + Ṗ )Dq+1-dimensional representation. Here F(n) stands for n× n matrices with entries

in the field F.

q q + 1 C(q + 1, 0) Dq+1 Sq(P, Ṗ )

−1 0 R 1 SO(P )

0 1 R ⊕ R 1 SO(P ) × SO(Ṗ )

1 2 R(2) 2 SO(P )
2 3 C(2) 4 U(P )

3 4 H(2) 8 U(P,H) ≡ USp(2P )

4 5 H(2) ⊕ H(2) 8 USp(2P ) × USp(2Ṗ )

5 6 H(4) 16 U(P,H) ≡ USp(2P )

6 7 C(8) 16 U(P )
7 8 R(16) 16 SO(P )

n+ 7 n+ 8 R(16) × C(n, 0) 16 Dn as for q + 1 = n

When q+1 = 0, 1, 2 (mod 8), the matrices of the complex Clifford algebra can be chosen

to be real. So in these cases, the dimension of an irreducible representation is given by

137



138 APPENDIX B. PROPERTIES OF REAL CLIFFORD ALGEBRAS

the dimension of the corresponding complex representation. If this occurs, the real Clifford

algebra is said to be of the normal type. In the other cases, it is possible to obtain a

real representation of dimension twice that of the complex representation. Indeed, many
representations contain only purely real or purely imaginary matrices. Real matrices of

double dimension are then obtained by considering the following matrices:

Γa = γa ⊗ 2 if γa is real, Γa = γa ⊗ σ2 if γa is imaginary . (B.2)

Consider now a real irreducible representation of the Clifford algebra C(q + 1, 0), given by

Dq+1 ×Dq+1-matrices γµ, where Dq+1 is given in table B.1. Consider a real Dq+1 × Dq+1-
matrix S satisfying:

[S, γµ] = 0 . (B.3)

According to Schur’s lemma, matrices that commute with an irreducible representation of

the Clifford algebra must form a division algebra. This leads to distinction in a normal,

almost complex and quaternionic case.

B.0.5 The normal case

As already mentioned, this occurs when

q + 1 = 0, 1, 2 mod 8 . (B.4)

In this case the general form of the matrices S, commuting with all γ-matrices, is

S = a , (B.5)

where a is a real constant. The dimension of the irreducible representation is given by

Dq+1 = 2l, where q+1 = 2l or 2l+1. For q+1 even this irreducible representation is unique

(up to similarity transformations), while for q + 1 odd, the representations γµ and −γµ are
inequivalent and constitute the 2 possible irreducible representations one can have. In this

case the product of all γ-matrices is moreover given by plus or minus the identity.

B.0.6 The almost complex case

This occurs when

q + 1 = 3, 7 mod 8 . (B.6)

The irreducible representation is unique and has dimension Dq+1 = 2l+1. The general form
of the matrices S is given by:

S = a + bJ , (B.7)

where a, b are real constants and where the real Dq+1 × Dq+1-matrix J commutes with all

γ-matrices and squares to − . J is given by:

J = ±γ1 · · · γq+1. (B.8)
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B.0.7 The quaternionic case

This occurs when

q + 1 = 4, 5, 6 mod 8 . (B.9)

The dimension of the irreducible representations is given by Dq+1 = 2l+1. It is unique for

q+ 1 even, while there exist two inequivalent irreducible representations when q + 1 is odd.
The two irreducible representations are again related to each other by a minus-sign. The

general form of the matrices S is now given by:

S = a0 +

3∑

j=1

ajEj , (B.10)

where the constants a0, ai are all real. The three matrices Ei commute with the γ-matrices

and they satisfy a quaternion relation:

EjEk = −δjk +

3∑

l=1

ǫjklEl . (B.11)

B.0.8 The structure of Sq(P, Ṗ )

The representations of the real Clifford algebras we are working with, need not be irreducible.
If one has a reducible representation, one can choose it to be of the form

γµ = P ⊗ γirr
µ for q 6= 0 mod 4 , (B.12)

γµ = η ⊗ γirr
µ for q = 0 mod 4 . (B.13)

where γirr
µ is an irreducible representation of the Clifford algebra, and η = diag( P ,− Ṗ ).

The group Sq(P, Ṗ ), appearing in the isometry groups of homogeneous very special spaces

is generated by all antisymmetric matrices that commute with all γ-matrices. In the normal

case and when q 6= 0 mod 4, the generators of Sq(P, Ṗ ) are given by:

S = A⊗ . (B.14)

where A is an antisymmetric P × P -matrix. When q = 0 mod 4, the matrix A has to be
replaced by a matrix consisting of 2 blocks : one P ×P and one Ṗ × Ṗ antisymmetric block.

In the almost complex case, the generators of Sq(P, Ṗ ) are of the following form:

S = A⊗ , or S = B ⊗ J , (B.15)

where A,B are antisymmetric, respectively symmetric P × P -matrices. In the quaternionic

case, when q 6= 0 mod 4, the generators of Sq(P, Ṗ ) are:

S = A⊗ , or S = B ⊗




3∑

j=1

ajEj



 , (B.16)

where A,B are antisymmetric, respectively symmetric, P × P -matrices. Again, when
q = 0 mod 4, one should look upon A and B as (anti)symmetric matrices consisting of

(anti)symmetric P × P and Ṗ × Ṗ blocks.
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Conventions

Throughout this work, we use the mostly plus convention for the space-time metric, i.e., the

metric has signature (−,+, · · · ,+). The Levi-Civita connection is defined by:

Γµ
νρ ≡ 1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ) . (C.1)

The space-time curvature tensor is then defined by:

Rµ
νρσ ≡ ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

ρτ Γτ
νσ − Γµ

στ Γτ
νρ . (C.2)

The Ricci tensor and the scalar curvature are given by:

Rµν ≡ Rρ
µρν , R ≡ gµνRµν . (C.3)

The Einstein equation reads:

Rµν − 1

2
gµνR = κ2Tµν , (C.4)

where κ is the gravitational coupling constant. In four space-time dimensions, it is given by

κ2 = 8πGN/c
4, where GN is Newton’s constant. These equations can be derived from the

following action:

S =

∫
dDx

(√−g R

2κ2
+ Lm

)
. (C.5)

The energy-momentum tensor Tµν is then defined in terms of the Lagrangian of the matter

fields Lm as:

Tµν = − 2√−g
δLm

δgµν
. (C.6)

Unless explicitly stated otherwise, we use units in which ~ = c = κ2 = 1.

We use the following terminology for (irreducible) spinors. In even dimensions, we can
project a spinor λ on its left- or right-handed part:

λL,R =
1

2
(1 ± γ∗)λ , (C.7)
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where γ∗ denotes the product of all gamma matrices. Note that in four dimensions γ∗ is also

denoted as γ5. The projection (C.7) is compatible with Lorentz transformations, i.e., Lorentz

transformations preserve the handedness of the spinor. A spinor of definite handedness (or
chirality) is called a Weyl spinor. It can also be possible to impose a reality condition on

the spinor:

λ∗ = B̃λ , (C.8)

where ∗ denotes complex conjugation. This reality condition must be compatible with
Lorentz transformations, B̃ must be unitary and λ∗∗ is supposed to be equal to λ. Whenever

this is possible, a spinor obeying (C.8) is called a Majorana spinor. When the condition
(C.8) respects the chiral projection (C.7), one speaks of Majorana-Weyl spinors. Whenever

the Majorana condition is not possible, it might still be possible to impose a twisted reality

condition:

(λi)∗ = B̃Ωijλ
j . (C.9)

This should satisfy the same consistency conditions as for Majorana spinors and Ω is an

antisymmetric matrix that satisfies ΩΩ∗ = . Note that this condition involves multiple

spinors, as denoted by the index i. The condition (C.9) is called the symplectic Majorana
condition. We refer to [136] for more information, such as which conditions can be imposed

in specific dimensions and signatures.
We use Latin indices m,n, . . . = 0, . . . , 9 for 10-dimensional curved coordinates, whereas

for Dp-brane world-volume coordinates we use Greek indices α, β, . . . = 0, . . . , p. The cor-

responding flat indices are underlined, e.g., the vielbein is given by em = e
m
n dxn. The ten

dimensional (flat) gamma matrices are Γm; they obey:

{Γm,Γn} = 2ηmn . (C.10)

Note that Clifford algebras in other dimensions obey a similar algebra. The 10-dimensional
chiral operator is Γ(10) = Γ01···9. Pulled back gamma matrices are then Γα = Γme

m
m∂αx

m.

The Levi-Civita symbol ǫα1...αp+1 is a density, i.e., it takes values ±1.

We use the standard convention for the expansion of the forms in components, i.e., a
p-form χ(p) is expanded as:

χ(p) =
1

p!
χm1...mp

dxm1 ∧ . . . ∧ dxmp . (C.11)

Note that this differs from the conventions adopted in [8, 9], where a convention is adopted
in which the dxm in the above expression are multiplied in the opposite order. The R-R

gauge fields C(n) are related to those used in [8, 9] by the substitution:

Cm1...mn
→ (−)

n(n−1)
2 Cm1...mn

, (C.12)

in such a way that the associated differential forms in the two conventions are the same.

Another difference with these papers is that we have changed the definition of the charge con-

jugation matrix such that we avoid a factor i for any barred spinor. I.e., we take θ̄ = iθT Γ0.
Complex conjugation reverses the order of spinors. The spinors we use in 10 dimensions are

real and chiral.
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Finally, we end this appendix with some comments on the double spinor notation used

from section 5.3 onwards. From the start, the spinors in type IIB are doublets. This means

that θ stands for the 64-component spinor

(
θ1
θ2

)
, (C.13)

whose 32-component parts are both left-handed, i.e., θi = Γ(10)θi with i = 1, 2. The Γ

matrices do not mix with the extension index, i.e., Γmθ stands for:

(
Γmθ1
Γmθ2

)
, (C.14)

of which both components are now right-handed. In other words, the Clifford matrices in
the large space act as Γm ⊗ 2. The conjugate spinor θ̄ is represented by:

(
θ̄1 θ̄2

)
, (C.15)

and is from the right projected onto itself by 1
2 (1 − Γ(10)) ⊗ 2.

For type IIA, in sections 5.2.1 and 5.4 and in the heavily-used references [8, 9] as in

many other papers, the two spinors are combined in a 32-component Majorana spinor θ =
θ1 + θ2, where θ1 = Γ(10)θ1 (left-handed) and θ2 = −Γ(10)θ2 (right-handed). We now define

here also the doublet spinor (C.13), where now both 32-component parts have opposite

chiralities. To obtain formulae that are similar to the IIB formulae, we use in the 64-
component representation different Clifford representations. The Clifford matrices in the

large space are represented by:

Γdouble
m =

(
0 Γm

Γm 0

)
= Γm ⊗ σ1 . (C.16)

The charge conjugation matrix in the large space is taken to be C⊗σ1, where C is the 32×32

charge conjugation matrix. This implies that the conjugate spinor is:

(
θ̄2 θ̄1

)
. (C.17)

These two choices imply, e.g., that the expression δκθ̄Γ
mθ maintains its form when we go

from the 32-component notation to the 64-component notation. The matrix Γ(10) is still

represented by Γ(10) ⊗ 2, but on the doublet (C.13) it acts as 32 ⊗ σ3. Therefore Γ̃(10),

see (5.13), is represented on θ in both IIA and IIB as 32 ⊗σ3. In any case it anticommutes
with the representations of the Γ-matrices.





Appendix D

Nederlandse samenvatting

D.1 Snaartheorie

De natuur rondom ons is samengesteld uit een aantal elementaire deeltjes die met elkaar
interageren via vier fundamentele natuurkrachten. Twee van deze krachten zijn welbekend

uit het dagelijkse leven, met name de elektromagnetische kracht en gravitatie. De sterke en
zwakke wisselwerking, die de andere twee krachten uitmaken, zijn voornamelijk werkzaam

op subatomaire schaal. Onze beschrijving van de wereld van elementaire deeltjes en funda-

mentele wisselwerkingen is voornamelijk gebaseerd op relativistische quantumveldentheorie,
de combinatie van quantummechanica met speciale relativiteit. Met name de elektromag-

netische, sterke en zwakke wisselwerkingen blijken accuraat te kunnen worden beschreven
door quantumveldentheorieën. Dit heeft in de jaren ’70 geleid tot de ontwikkeling van het

Standaard Model van de deeltjesfysica. Het Standaard Model is een voorbeeld van een ijk-

theorie, wat betekent dat er invariantie is onder een lokale symmetriegroep. In het geval van
het Standaard Model is die ijkgroep gegeven door SU(3) × SU(2) × U(1). Verder bevat het

Standaard Model velden die geassocieerd zijn met spin-1/2 deeltjes, zoals quarks en lepto-
nen, een spin-0 Higgs boson en spin-1 ijkbosonen, die verantwoordelijk zijn voor de diverse

wisselwerkingen tussen de deeltjes.

De gravitatiekracht wordt niet beschreven in het Standaard Model. Hoewel gravita-

tie alomtegenwoordig is op grote afstandsschalen, waar Einstein’s algemene relativiteit een

bijzonder goede beschrijving geeft, hoeft men er niet echt rekening mee te houden bij het
beschrijven van deeltjesfysica-experimenten. Voor de energieën die op dit moment in deel-

tjesversnellers bereikt kunnen worden, is het zo dat de gravitatiekracht bijzonder zwak is
in vergelijking met de drie andere krachten. Het effect van gravitatie kan dus verwaarloosd

worden en men heeft dus niet echt nood aan een quantumtheorie voor de gravitatiekracht

om huidige experimentele resultaten te beschrijven. Bij zeer hoge energieën wordt er wel
verwacht dat gravitatie een belangrijke rol zal spelen. Bovendien kan men gemakkelijk situ-

aties bedenken waarin een theorie van quantumgravitatie nodig is, zoals bijvoorbeeld in het
begin van het universum of in het inwendige van zwarte gaten.

Einstein’s algemene relativiteitstheorie verzoenen met quantummechanica is echter geen
eenvoudige taak. Berekeningen in quantumveldentheorieën leveren vaak oneindig als ant-

woord op. Voor zogenaamde renormalizeerbare veldentheorieën bestaat er evenwel een pro-
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cedure, renormalizatie genaamd, die toelaat eindige resultaten te bekomen en zinvolle voor-

spellingen te doen. Het Standaard Model is een voorbeeld van zo’n renormalizeerbare theo-

rie. Indien men echter Einstein’s gravitatietheorie als veldentheorie probeert te quantiseren,
vindt men dat deze theorie niet renormalizeerbaar is. Niet-renormalizeerbaarheid is vaak

het signaal dat op een bepaalde energieschaal nieuwe fysica nodig is om fenomenen correct

te beschrijven. Voor quantumgravitatie is die energieschaal gegeven door de Planck massa:

mPl = G
−1/2
N , (D.1)

waarbijGN de constante van Newton is en we in eenheden hebben gewerkt waarin ~ = c = 1.

In dit opzicht dient Einstein’s gravitatietheorie beschouwd te worden als een lage-energie-

limiet van een meer algemene theorie die ook geldig is op en boven de Planckschaal.
De meest beloftevolle kandidaat voor een dergelijke consistente theorie van quantumgra-

vitatie is supersnaartheorie. In snaartheorie veronderstelt men dat de elementaire deeltjes
overeenstemmen met kleine, trillende snaren. Snaren kunnen open of gesloten zijn en ver-

schillende trillingswijzen van een snaar geven aanleiding tot verschillende deeltjes. Indien

men de gesloten snaar quantiseert vindt men dat het spectrum een massaloos spin-2 deeltje
bevat, dat gëıdentificeerd wordt als het graviton, het deeltje dat zorgt voor gravitationele

wisselwerkingen. Men kan bovendien ook massaloze spin-1 deeltjes vinden in het spectrum
van open en gesloten snaren, die verantwoordelijk kunnen zijn voor Standaard-Model-achtige

wisselwerkingen. Naast massaloze deeltjes bevat snaartheorie ook massieve deeltjes. Hun

massa’s M worden bepaald door de spanning van de snaar T :

M2 ∼ T , T =
1

2πα′ , (D.2)

waarbij we de zogenaamde Regge-parameter α′ hebben ingevoerd. De karakteristieke lengte

ls van een snaar is van de orde
√
α′. De massieve toestanden van een trillende snaar hebben

dus massa’s van de orde 1/ls. Vaak neemt men aan dat die massa’s van de orde van 1018

GeV zijn. Snaren interageren met elkaar door op te splitsen of samen te smelten. De sterkte
van deze snaarinteracties wordt bepaald door de snaarkoppelingsconstante gs. Open snaren

kunnen niet voorkomen zonder gesloten snaren, daar de eindpunten van een open snaar zich

altijd kunnen samenvoegen om een gesloten snaar te vormen. Elke consistente snaartheorie
bevat dus gesloten snaren en heeft dus een graviton in zijn deeltjesspectrum.

Een groot voordeel van snaartheorie is dat ze eindig is orde per orde in perturbatietheo-

rie. Bovendien bevat snaartheorie geen onbepaalde dimensieloze parameters. De snaarkop-
pelingsconstante bijvoorbeeld wordt bepaald door de theorie zelf en kan niet zomaar gekozen

worden. Dit is een groot verschil met het Standaard Model, dat 29 parameters bevat die
experimenteel dienen te worden bepaald. Supersnaartheorie wordt ook gekenmerkt door een

symmetrie die bosonen en fermionen uitwisselt en die supersymmetrie wordt genoemd.

Eigenlijk zijn er vijf consistente supersnaartheorieën. Dit zijn de zogenaamde IIA, IIB,
type I, heterotische SO(32) en heterotische E8 × E8 theorieën. Type I heeft SO(32) als

ijkgroep, terwijl de twee heterotische theorieën respectievelijk SO(32) en E8 × E8 ijk-
groepen hebben. Alle supersnaartheorieën zijn het gemakkelijkst te formuleren in een

10-dimensionale vlakke Minkowskiruimte. De type II theorieën zijn bovendien invariant

onder 32 supersymmetrieën, terwijl de andere 16 supersymmetrieën hebben. Aangezien de
massieve toestanden zeer grote massa’s hebben, is men meestal gëınteresseerd in het beschrij-

ven van de lichte (massaloze) snaarexcitaties. Hun dynamica kan worden beschreven door
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middel van lage-energie effectieve acties. Deze acties reproduceren verstrooiingsamplitudes

voor de massaloze snaardeeltjes bij lage energie. Deze effectieve acties zijn gegeven door

10-dimensionale supergravitatietheorieën, die invariant zijn onder 16 of 32 superladingen.
Deze supergravitatietheorieën vormen een supersymmetrische extensie van Einstein gravi-

tatie, zodat men bij lage energieën inderdaad een extensie van algemene relativiteitstheorie

bekomt.

Aanvankelijk dacht men dat alleen de type I theorie open en gesloten snaren bevat,
terwijl de andere theorieën geacht werden enkel gesloten snaren te beschrijven. In de jaren

’90 werd echter gevonden dat type II theorieën ook open snaren kunnen bevatten. Deze
kunnen zich echter niet vrij doorheen de ruimte-tijd bewegen, maar zitten met hun uiteinden

vast aan (p + 1)-dimensionale hyperoppervlakken, die Dp-branen worden genoemd. Deze

Dp-branen blijken eveneens dynamische objecten te zijn die vrij kunnen bewegen en van
vorm kunnen veranderen. De spanning van een dergelijk Dp-braan is omgekeerd evenredig

met de snaarkoppelingsconstante : TDp ∼ 1/gs. Bij zwakke koppeling zijn D-branen dus
bijzonder zwaar. Snaartheorie is dus niet alleen een theorie van snaren maar bevat ook

niet-perturbatieve objecten als D-branen.

Hoewel aanvankelijk werd gedacht dat de vijf supersnaartheorieën allen verschillend zijn,

werd in de jaren ’90 vastgesteld dat ze in feite allemaal verbonden zijn door dualiteiten.
Verschillende theorieën blijken dus equivalent te zijn. Vaak is het zo dat berekeningen die

in een theorie moeilijk zijn, gemakkelijk blijken te zijn in de duale theorie, doordat bijvoor-

beeld gedrag bij sterke koppeling afgebeeld wordt op gedrag bij zwakke koppeling onder de
dualiteit. Een voorbeeld van zo’n snaardualiteit is gegeven door T-dualiteit. Dit betekent

dat een theorie waarin snaren bewegen in een vlakke ruimte waarin een richting gecompac-
tificeerd is als een cirkel met straal R, equivalent is aan een (mogelijk andere) theorie die

gecompactificeerd is op een cirkel met straal α′/R. Op die manier kan men bijvoorbeeld

de type IIA supersnaar linken aan de IIB snaar. Een andere dualiteit is de zogenaamde
S-dualiteit, die de sterke koppelingslimiet van een snaartheorie linkt aan de zwakke koppe-

lingslimiet van een andere. De SO(32) heterotische snaar is via S-dualiteit verbonden met de

type I snaar, terwijl IIB snaartheorie zelf-duaal is onder S-dualiteit. Men heeft ook gevon-
den dat de type IIA en heterotische E8 × E8 snaartheorieën bij sterke koppeling equivalent

worden met een 11-dimensionale theorie waarover nog weinig geweten is. D-branen spelen
ook een specifieke rol in de dualiteiten. Zo kan het bijvoorbeeld gebeuren dat D-branen in

een perturbatieve beschrijving van snaartheorie overeenstemmen met fundamentele snaren

in een andere theorie. De fundamentele snaar van de heterotische SO(32) theorie wordt
onder S-dualiteit bijvoorbeeld afgebeeld op de D1-snaar van de type I theorie. Bij zwakke

koppeling is de fundamentele snaar van type II veel lichter dan de D1-braan, terwijl het
bij sterke koppeling juist andersom is. Dit toont nogmaals aan dat snaartheorie niet enkel

snaren bevat, maar dat D-branen even fundamenteel zijn als snaren. Het bestaan van de

verschillende dualiteiten heeft geleid tot het beeld dat de diverse snaartheorieën slechts ver-
schillende beschrijvingen zijn van een enkele fundamentele theorie, de zogenaamde M-theorie.

Wat M-theorie precies is, is echter nog steeds een groot mysterie.
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D.2 Realistische snaren

Hoewel supersnaren leiden tot een consistente quantumgravitatietheorie, die geldig is bij

zeer hoge energieën, stellen er zich toch nog veel problemen, die zowel van conceptuele als

meer praktische aard zijn. Een belangrijk conceptueel probleem is dat een goeie formulering
van M-theorie nog niet gekend is. Vanuit praktisch oogpunt, is het belangrijk om na te gaan

hoe de snaartheorie, die het best te formuleren is in 10 dimensies, kan gelinkt worden aan
onze vier-dimensionale realiteit. Met de komst van nieuwe deeltjesversnellers is van belang

om te zien of en hoe men uit snaartheorie voorspellingen kan bekomen over hoe de natuur

zich gedraagt bij hogere energieën dan momenteel bereikbaar zijn.
Om contact te maken met vier-dimensionele fysica veronderstelt men meestal dat 6 van

de 10 dimensies gecompactificeerd zijn. Deze vormen dan een compacte interne variëteit,

waarvan het volume voldoende klein wordt verondersteld, zodat bij lage energieën de ruimte-
tijd er effectief vier-dimensionaal uitziet. Vaak neemt men aan dat die interne variëteiten

specifiek gekozen zijn, zodat een gedeelte van de supersymmetrie gebroken is. Indien men
bijvoorbeeld een Calabi-Yau-variëteit kiest, blijkt dat slechts een vierde van de oorspronke-

lijke 32 of 16 supersymmetrieën behouden blijft. Compactificatie van snaartheorieën leidt

tot massaloze toestanden en toestanden die zeer massief zijn. De dynamica van de massaloze
toestanden bij lage energie wordt dan beschreven door een vier-dimensionale supergravita-

tietheorie. In het geval van Calabi-Yau-compactificaties bijvoorbeeld zijn die invariant onder
vier of acht superladingen. Aanvankelijk werd veel gewerkt aan Calabi-Yau-compactificaties

van de E8×E8 heterotische snaartheorie, aangezien die leiden tot vier-dimensionale theorieën

die het Standaard Model kunnen bevatten. Dankzij de ontdekking van D-branen, realiseerde
men zich dat ook type II theorieën kunnen leiden tot interessante vier-dimensionale fysica.

De dynamica van open snaren die eindigen op een Dp-braan wordt beschreven door een U(1)

ijktheorie, die leeft op het (p+ 1)-dimensionale wereldvolume van de braan. In geval men N
opeengepakte D-branen beschouwt, wordt deze ijkgroep zelfs U(N). Bovendien kan men ook

verschillende opeenliggende D-branen beschouwen die elkaar onder bepaalde hoeken snijden.
Dit kan eventueel leiden tot interessante spectra van deeltjes, die gelocaliseerd zijn op vier-

dimensionale intersecties van de branen. Op die manier kan men met behulp van D-branen

het Standaard Model op een meetkundige wijze realiseren in snaartheorie.
Een groot nadeel van die vier-dimensionale effectieve theorieën is dat ze vaak een groot

aantal scalaire velden bevatten, waarvan de vacuum-verwachtingswaarde onbepaald is. Deze

zogenaamde moduli stemmen overeen met continue vervormingen van de vorm en grootte van
de interne variëteiten. Dergelijke scalaire velden zijn nog niet waargenomen en hun vacuum-

verwachtingswaarde bepaalt allerlei grootheden (zoals diverse koppelingsconstanten) in de
lage-energie effectieve acties. Zolang die scalaire velden niet vastliggen, is het moeilijk om

voorspellingen te halen uit snaartheorie. Recent werden echter mechanismes ontwikkeld om

die moduli vast te leggen. Onder de massaloze velden in het snaarspectrum bevinden zich
verschillende anti-symmetrische tensorvelden. Indien men hun veldsterktes een niet-triviale

verwachtingswaarde geeft langs de compacte richtingen (men spreekt van het aanzetten van
fluxen), bekomt men een potentiaal voor deze moduli in de lager-dimensionale effectieve the-

orieën. Indien men deze zogenaamde fluxcompactificaties combineert met niet-perturbatieve

effecten, afkomstig van bijvoorbeeld Euclidische D-branen die gewikkeld zijn rond bepaalde
cykels van de interne variëteit, kan men modellen bekomen waarbij alle moduli vastgelegd

kunnen worden in een minimum van de potentiaal.
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D-branen en compactificaties met fluxen vormen een eerste stap in het verkrijgen van

realistische modellen voor vier-dimensionale fysica uit snaartheorie. Op dit moment denkt

men dat een groot aantal consistente compactificaties van snaartheorie kan worden bekomen,
gekenmerkt door verschillende keuzes voor de interne variëteit, fluxen en minima van de

moduli-potentiaal. Elk van deze scenario’s leidt tot andere lage-energie-fysica. Hoewel

het stilaan duidelijk wordt dat het mogelijk is om Standaard-Model-achtige theorieën in
snaartheorie in te bedden, dient er echter nog heel wat werk verzet te worden. Compacti-

ficaties met fluxen zijn bijvoorbeeld veel minder goed begrepen dan standaard Calabi-Yau-
compactificaties.

D.3 Kosmologie

Eén van de problemen waar snaartheorie mee te kampen heeft, is het gebrek aan experi-

mentele input. Het zou echter wel eens kunnen dat kosmologie data aanbrengt waaraan
kosmologische scenario’s, die gëınspireerd zijn door snaartheorie, kunnen worden getoetst.

Kosmologie is de laatste jaren immers uitgegroeid tot een preciese wetenschap, waar speci-

fieke en accurate data kunnen worden bekomen. Uit dergelijke data zijn enkele merkwaardige
feiten omtrent het heelal naar boven gekomen.

Uit kosmologische waarnemingen is gebleken dat de huidige fysische theorieën slechts 5%

van de inhoud van het universum behandelen. Ongeveer 25% van het heelal blijkt te bestaan
uit wat men donkere materie noemt. Deze naam doelt op een vorm van materie die geen

elektromagnetische straling uitzendt, maar waarvan de aanwezigheid kan worden nagegaan
dankzij de gravitationele aantrekkingskracht op gewone, zichtbare materie zoals sterren en

melkwegstelsels. Over donkere materie is niet echt veel geweten. Supersymmetrische exten-

sies van het Standaard Model, zoals die eventueel uit snaartheorie kunnen worden bekomen,
bevatten echter vaak zwak interagerende deeltjes die goede kandidaten vormen voor donkere

materie.

In de late jaren negentig werden ook heel wat data bekomen die erop wijzen dat de

uitdijing van ons universum momenteel versnelt. Voordien werd steeds aangenomen dat de

gravitatiekracht de uitdijing van het universum zou vertragen. De ontdekking van versnelde
expansie was dan ook verrassend. Deze versnelling kan worden verklaard door aan te nemen

dat het heelal gevuld is met een vreemde vorm van energie, de zogenaamde donkere energie,
die het effect van gravitatie op grote afstanden tegenwerkt. De eenvoudigste vorm van

dergelijke donkere energie, die goed in overeenstemming is met de waarnemingen, is gegeven

door een positieve kosmologische constante. Het blijkt dat donkere energie ongeveer 70%
uitmaakt van de materie/energie inhoud van het heelal. Op basis van allerlei theoretische

problemen neemt men overigens ook vaak aan dat het heelal niet alleen nu een periode van

versnelde expansie ondergaat, maar dat dit ook kort na de Big Bang gebeurde. Men spreekt
dan over de periode van inflatie.

Voor inflatie en donkere energie zijn al verschillende scenario’s voorgesteld. Men wil deze
uiteindelijk echter inbedden in een meer fundamentele theorie, zoals bijvoorbeeld snaartheo-

rie. Het is dus een interessante uitdaging om na te gaan wat de gevolgen van snaartheorie op

kosmologisch vlak zijn en of deze kunnen worden getoetst aan de weelde van kosmologische
data die op dit moment worden verkregen of die nog zullen worden verkregen in de nabije

toekomst.
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D.4 Deze thesis

Snaartheorie in contact brengen met gekende lage-energie-fysica en kosmologie is nuttig,

aangezien dit kan toelaten de structuur van de theorie beter te begrijpen en in de toekomst

zou kunnen leiden tot voorspellingen die falsifieerbaar zijn. Het werk in deze thesis dient
dan ook in deze context gezien te worden.

Hoofdstukken 3 en 4 van deze thesis behandelen diverse aspecten omtrent het vinden

van tijdsafhankelijke (kosmologische) oplossingen in supergravitatietheorieën. In hoofdstuk
3 bestuderen we een methode die nuttig is bij het zoeken van kosmologische oplossin-

gen van supergravitatietheorieën. Deze methode staat bekend als de Tits-Satake projec-
tie. In hoofdstuk 4 zullen we een specifieke soort van kosmologische oplossingen, de zo-

genaamde schaalkosmologieën, zoeken in geijkte vier-dimensionale N = 8 supergravitatie.

Deze schaalkosmologieën kunnen overeenstemmen met het gedrag van meer algemene kos-
mologische oplossingen van geijkte supergravitaties bij vroege of late tijden. In hoofdstuk

5 zullen we branen beschouwen in achtergronden waar fluxen zijn aangezet. Zoals vermeld
zijn dergelijke achtergronden belangrijk bij het construeren van realistische deeltjesfysica

modellen uit snaartheorie en bij het linken van snaartheorie aan kosmologie. In hoofdstuk

5 zullen we ons meer specifiek concentreren op de structuur van het fermionische deel van
de effectieve actie, die de dynamica van D-branen beschrijft in algemene achtergronden met

fluxen.

De structuur van deze thesis is als volgt. In hoofdstuk 2 beginnen we met wat achtergrond
te geven over kosmologie, die bedoeld is om de hoofdstukken 3 en 4 in een bredere context te

plaatsen. We introduceren enkele basisconcepten, zoals de wet van Hubble en de Friedmann-
vergelijkingen. Vervolgens bespreken we enkele van de recente kosmologische waarnemingen.

We beëindigen dit gedeelte met een discussie over hoe scalaire velden aanleiding kunnen

geven tot versnellende kosmologieën. Hier voeren we ook de schaalkosmologieën in die in
hoofdstuk 4 een prominente rol spelen. In sectie 2.2 verstrekken we wat wiskundige achter-

grond die nodig zal zijn voor hoofdstuk 3. Na een korte introductie in Kähler-meetkunde,
bespreken we de verschillende meetkundige structuren die verschijnen in theorieën met 8

superladingen. Het betreft hier de zogenaamde speciale meetkundes, met name speciale

Kähler, zeer speciale reële en quaternionische-Kähler meetkunde. We beëindigen hoofdstuk
2 met een bespreking van supergravitatietheorieën. We belichten eerst wat algemene as-

pecten van supersymmetrie en supergravitatie, zoals het verband tussen supersymmetrie en

meetkunde. Supergravitatietheorieën bevatten vaak een groot aantal scalaire velden. Deze
kunnen gezien worden als coördinaten op een welbepaalde doelruimte. Supersymmetrie legt

restricties op op de doelruimtes beschreven door deze scalairen. Hoe dit gebeurt wordt
gëıllustreerd aan de hand van een voorbeeld. Vervolgens bespreken we kort de verschillende

supergravitatietheorieën die voorkomen in deze thesis. We beginnen met de theorieën in

3, 4 en 5 dimensies die invariant zijn onder 8 superladingen. We besteden hierbij speciale
aandacht aan hoe deze theorieën bepaald worden door de geometrieën die beschreven wer-

den in sectie 2.2. Vervolgens bespreken we kort enkele theorieën die invariant zijn onder
het maximale aantal supersymmetrieën, namelijk 32. Meer specifiek behandelen we de type

II supergravitaties in 10 dimensies en de geijkte maximale supergravitatie in 4 dimensies.

Die laatste theorie wordt gekenmerkt door het feit dat een globale symmetriegroep van de
Lagrangiaan lokaal wordt gemaakt met behulp van ijkvelden die in de theorie aanwezig zijn.

Deze ijkingsprocedure introduceert een potentiaal voor de scalaire velden in de theorie. Ge-
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ijkte supergravitatietheorieën bevatten dus een aantal scalaire velden met potentiaal, wat

ze interessant maakt voor het vinden van eventueel versnellende kosmologische oplossingen.

Type II supergravitaties in 10 dimensies en geijkte maximale supergravitatie in 4 dimensies
worden in de thesis respectievelijk gebruikt in hoofdstukken 5 en 4.

In hoofdstuk 3 beginnen we dan met de studie van de Tits-Satake projectie in de context

van supergravitatietheorieën met 8 superladingen. De Tits-Satake projectie is een nuttig
instrument bij de studie van tijdsafhankelijke oplossingen van supergravitatietheorieën, om-

dat ze toelaat een ingewikkelde theorie te trunceren naar een simpeler model waarvan men

oplossingen kan vinden met behulp van algoritmes. Meer specifiek gaat het hier om een
projectie van een ingewikkelde doelruimte van scalairen op een eenvoudiger doelruimte. De

truncatie is zo dat oplossingen van de getrunceerde theorie ook oplossingen zijn van de
oorspronkelijke theorie. De Tits-Satake projectie levert eveneens een manier om meer al-

gemene oplossingen van het oorspronkelijke model te bekomen vanuit de oplossingen van de

getrunceerde theorie. De Tits-Satake projectie is welgekend in geval de scalaire doelruimtes
symmetrische ruimtes zijn. Deze methode werd bijvoorbeeld in [5] toegepast om kosmologi-

sche oplossingen van vier-dimensionale N = 6 supergravitatie te construeren. In hoofdstuk
3 zullen we deze methode uitbreiden tot een grotere klasse van supergravitaties, waarbij de

doelruimtes niet noodzakelijk meer symmetrische ruimtes zijn. We zullen aantonen dat de

Tits-Satake projectie ook kan worden gedefinieerd voor speciale meetkundes die homogeen
zijn. Deze extensie werd uitgewerkt in samenwerking met P. Fré, F. Gargiulo, K. Rulik, M.

Trigiante en A. Van Proeyen in [6]. Dit hoofdstuk begint met een overzicht van de clas-

sificatie van de homogene quaternionische-Kähler variëteiten en hun relatie met homogene
speciale Kähler en zeer speciale reële ruimtes. We besteden hier ook aandacht aan de struc-

tuur van de isometrie algebra’s van deze ruimtes. In sectie 3.3 bespreken we vervolgens hoe
de Tits-Satake projectie van een symmetrische ruimte bekomen wordt. De bedoeling van dit

gedeelte is om enkele begrippen in te voeren die belangrijk zijn in de veralgemening van de

Tits-Satake projectie naar algemene homogene speciale meetkundes. Deze sectie start met
een theoretische discussie, die gevolgd wordt door een concreet voorbeeld. De veralgemening

van de projectie voor algemene homogene speciale doelruimtes wordt uitgewerkt in sectie
3.4. We geven hier opnieuw een algemene discussie, waarvan bepaalde punten vervolgens

meer expliciet worden uitgewerkt. Dit hoofdstuk wordt beëindigd met een samenvatting

van de resultaten. We belichten tevens enkele toepassingen. Als voornaamste toepassing
vermelden we dat de Tits-Satake projectie ons toelaat supergravitatietheorieën in een kleine

verzameling universaliteitsklassen onder te verdelen. Alle theorieën in zo’n klasse hebben
dezelfde Tits-Satake projectie en hun dynamica vertoont een gelijkaardig gedrag. Dit laat-

ste punt wordt gëıllustreerd aan de hand van het kosmisch-biljart-fenomeen. Dit fenomeen

toont duidelijk aan dat een aantal (maar niet alle) cruciale aspecten van de dynamica van
een bepaalde theorie al kunnen afgeleid worden door zich te beperken tot de Tits-Satake

projectie. We illustreren dit ook aan de hand van een voorbeeld waarin de Tits-Satake

projectie op een microscopische manier kan worden gëınterpreteerd in compactificaties van
snaartheorie met opeengepakte D-branen.

In hoofdstuk 4 beschouwen we dan de geijkte maximale supergravitietheorieën in 4 dimen-

sies. Zoals reeds vermeld is er nu een potentiaal voor de scalairen. Dit heeft vaak interessante
gevolgen voor kosmologie. Zo bijvoorbeeld is er veel werk verricht naar configuraties waarbij

de scalairen constant zijn en in een minimum van de potentiaal vastgelegd zijn. Indien de
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waarde van de potentiaal in dit minimum positief is, geeft dit aanleiding tot een vacuum met

positieve kosmologische constante, een zogenaamd de-Sitter-vacuum. In dit hoofdstuk leggen

we ons echter toe op een ander soort kosmologische oplossingen, die minder vaak beschouwd
werden in supergravitatie. We onderzoeken namelijk deze geijkte supergravitaties op de

aanwezigheid van schaalkosmologieën. Dit zijn kosmologische oplossingen waarbij de ver-

schillende energiecomponenten (kinetische energie van de scalairen, potentiële energie van de
scalairen, energiedichtheid van mogelijke andere materie) constante verhoudingen hebben.

Het belang van dergelijke oplossingen is dat ze kunnen overeenkomen met het gedrag van
meer algemene kosmologische oplossingen bij vroege of late tijden. We werken in dit hoofd-

stuk meer specifiek in een truncatie van de geijkte theorieën. Deze truncatie wordt uitgelegd

in sectie 4.2. De potentialen in deze getrunceerde theorie hebben een specifieke vorm; ze
zijn namelijk een som van exponentiële termen. Resultaten omtrent schaalkosmologieën in

theorieën met dergelijke zogenaamde multi-exponentiële potentialen zijn vrij goed gekend
en worden besproken in sectie 4.3. In deze sectie wordt eveneens duidelijk gemaakt dat

de potentialen voor bepaalde ijkingen de goede vorm hebben om schaalkosmologieën toe te

laten. We geven de gevallen waarin schaalkosmologieën optreden en bespreken enkele eigen-
schappen van deze oplossingen. In het bijzonder stemmen enkele van de oplossingen overeen

met versnellende kosmologieën. In sectie 4.3 bekijken we de hoger-dimensionale oorsprong
van de bekomen oplossingen. We beëindigen dit hoofdstuk met een interessant verband

tussen de-Sitter-vacua en schaalkosmologieën in supergravitatietheorieën. Het werk in dit

hoofdstuk gebeurde in samenwerking met T. Van Riet en D. B. Westra en verscheen in [7].
In hoofdstuk 5 tenslotte bestuderen we de fermionische acties voor D-branen in willekeu-

rige supergravitatie-achtergronden met fluxen. We beginnen met enkele elementaire feiten
omtrent D-branen en motiveren waarom kennis van het fermionische deel van de effectieve

D-braan-actie relevant is. Deze fermionische actie werd bekomen op kwadratische orde in

de fermionen in [8, 9]. De vorm van deze actie is echter vrij ingewikkeld. In dit hoofd-
stuk bouwen we verder op deze resultaten en bekomen we een compacte en elegante vorm

voor deze fermionische actie. Dit wordt gedaan in sectie 5.2. We bespreken hier tevens

enkele specifieke symmetrieën van deze actie, zoals invariantie onder reparametrizaties van
de coördinaten langsheen de braan, een fermionische symmetrie, kappa-symmetrie genaamd

en supersymmetrie. We tonen ook aan dat deze actie consistent is met T-dualiteit, wat een
belangrijke check geeft op dit resultaat. De actie die we bekomen is niet in canonische vorm.

In sectie 5.5 tonen we aan hoe, door geschikte veldherdefinities te doen, deze actie toch in

canonische vorm kan worden geschreven. De resultaten in dit hoofdstuk werden bekomen in
samenwerking met L. Martucci, D. Van den Bleeken en A. Van Proeyen in [10].

Samengevat zijn de belangrijkste resultaten van deze thesis:

• De uitbreiding van de Tits-Satake projectie, die gedefinieerd was voor symmetrische

ruimtes, naar willekeurige homogene speciale meetkundes.

• De groepering van supergravitatietheorieën met homogene speciale meetkunde in een
klein aantal universaliteitsklassen.

• Het geven van een voorbeeld waarin de Tits-Satake projectie microscopisch kan worden

gëınterpreteerd. Het betreft hier een compactificatie met meerdere D-branen opeen.
De Tits-Satake projectie correspondeert dan met het geval waarin slechts 1 D-braan

in beschouwing wordt gebracht.
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• Het geven van schaalkosmologieën in geijkte, vier-dimensionale maximale supergravi-

tatietheorieën. De identificatie van de ijkingen die dergelijke kosmologieën toelaten.

De identificatie van de gevallen waarin de schaalkosmologie versnellend is.

• Het geven van de hoger-dimensionale oorsprong van de gevonden schaalkosmologieën.

• Het geven van een verband tussen schaalkosmologieën en de Sitter vacua dat mogelij-
kerwijze toelaat eenvoudig stabiele schaalkosmologieën te vinden.

• De constructie van een eenvoudige en elegante vorm voor het fermionisch gedeelte van

de effectieve actie, die D-braan dynamica beschrijft. Het herschrijven van deze actie

in canonische vorm.
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