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ABSTRACT

Generalizations of the well-known Bassetti and Erskine formula to in-
clude tilt angle and non-Gaussian particle distributions, as well as centroid
deflections, are derived.

1. Introduction

The electric field of a relativistic upright Gaussian beam was first
calculated in closed form by Bassetti and Erskine in Ref. 1. In this note
we first generalize their formula to include tilt angle, thereby putting it in a
covariant form. We follow the strategy Talman outlines in Ref. 2. Second,
we comment on issues arising in the numerical evaluation of this formula.
Third, we average the single particle deflection angle that is proportional to
the transverse electric field over an offset distribution to derive the centroid’s
beam-beam deflection angle. Both Gaussian and non-Gaussian beams are
considered. A section about possible applications concludes this paper.

2. The Covariant Form

Following Ref. 2, we see that the deflection angle (z; = horizontal,
zo = vertical) a single particle experiences, can be written using a complex
Green function

Azl + Az, = N K /RZ E% G(x — %) Po(, o) (1)
where we define ' = —2r./vy with v being the normalized energy of the

deflected particle and r. the classical electron radius. N; is the number of
particles in the field producing bunch described by the distribution function
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that generates the electric field. The Green function is given by
Glx —%) = - . (3)

(xy — &) + t(zg — &)

In this report we denote vector valued quantities in bold typeface. It is well
known that Eq. 1 can be rewritten in terms of a potential

Ny 0 0
Azy +1Az] = _(8x2 +1 &vl) (x4, x2)
(4)
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where we have to deal with a matrix rather than individual sigmas as in
Refs. 1,2. The appearing symmetric sigma matrix is explicitely given by

{9t 201 20m2
(g+20)s; = ( 2000 g+ 202 ) ' (5)

In the next step we diagonalize (¢ + 20) and reduce the required integrals to
those appearing in the original derivation. The diagonalization can be done
by a simple coordinate rotation given by

Ty + 1%, = e (2 + 1x5) . (6)
The sigma matrix then transforms according to
o111 019 cosa —sina o 0 cosa sina
(am 022):(sina cosa)( 0 05)(——sina cosa) (7)
which reduces the potential ¢ to
MK
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which leads to the well known Bassetti and Erskine result
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Finally, we have to relate all quantities back to those of the original coordinate
system. Note that we can write with the help of Eqgs. 6 and 7

—2ia(
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Yy

(10)
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We have to remember that Eq. 9 was derived from the potential given by
Eq. 8 by differentiation with respect to the variables X. Therefore we have to
write

AT +iAT, = € (Azh 4+ iAx)) . (11)

Inserting Eqgs. 10 and 11 in Eq. 9 leads to the final covariant form of Bassetti
and Erskine’s formula, which reads

Azy + 1Az = MK Fy(z1,2,0) (12)

where Fyp is defined by

FO(.’El,IBz,O') = \/ \/7_‘: ) {w [ Ty + 1o ]

2(011 — 022 + 2i012 \/2(011 — 09 + 21073)

(13)
—exp [—% E?,j(a_l)ijximj] w| A2 wlé)xl +i(on + w”)f"cz :
\/011022 - 012\/2(011 — 093 + 210712)

The kick angle given by Eq. 12 and 13 is now valid in any coordinate system
and for any tilt angle the beam might have.

3. Numerical Issues

In the evaluation of Fy various numerical problems can arise. Here a
few are mentioned and methods described to circumvent them.

First, for round beams that are characterized by o;; = 09, and
012 = 0 there seems to be a singularity, because the root

\/2(011 — 022 + 20712)

vanishes. However, this singularity is compensated by a similar one in the
arguments of the complex error functions w(z). Considering that w(z) has
an asymptotic expansion w(z) ~ i/1/7z, we see that the singularities cancel
and we are led to the result for round beams

1l —exp[—(z2 + 22)/20
Fo(z1, 22,011 = 022,012 =0) =1 pl=(=i - 2)/200] .
1+ 12

(14)



Second, for large negative imaginary arguments, the complex error
functions grow exponentially. This leads to the evaluation of differences of
very large numbers, which can become numerically unstable. The problem
can be circumnavigated by rewriting the expression in the curly brackets as

w(z1) — efw(zy) = —[w(z1) — &9 w(z2)] . (15)

The arguments z; and z; are those of the complex error functions in Eq. 13
and g is the expression in the exponential. In this way, we flip the sign of
the imaginary part in arguments of the complex error functions and make
the expression numerically well behaved.

Third, the evaluation of the complex error function is computationally
expensive. We adapt Talman’s approach and calculate a Pade approximation
for w(z) which consists of a tenth order polynomial in the numerator and a
eleventh order polynomial in the denominator [3]. Checks show that such
a routine is accurate to about five significant digits in the first quadrant of
the complex plane. Values in other quadrants can be calculated using well
known relations for the complex error functions for negative and complex
conjugate arguments {4].

4. Centroid Deflection Angle

In the second section of this paper we were concerned about the deflec-
tion angle a single particle experiences. Here we average that over a second
Gaussian particle distribution which may be offset with respect to the field

generating distribution. We can write this centroid deflection angle in the
form

., +10,, = N\ K /R2 &y oy —Y) /R2 % Gy —x) ¥1(x — X) (16)

where X is the centroid position of the first beam and Y of the second,
deflected beam. We can now change the variables, exchange the order of
integration, and arrive at

0., +i0,, = N\ K /R2 &y G(Y =X —y) /RZ 4% 1 (x) a(x —y) . (17)

Note that this expression has the same structure as Eq. 1, which was used
to calculate the single particle kick, except that here the distance between
the two bunch centers, Y — X, appears. The convolution of both the field-
producing and deflected distribution functions shows up as the source distri-
bution. This observation, which is valid for arbitrary distribution functions
11 and 1, indicates that it is impossible to obtain information about in-
dividual beam-beam centroid deflection data. Only information about the
convolution is accessible.



We now evaluate Eq. 17 for two Gaussian distributions, given by

1 1 &,
X,0) = ——== €exp|—= O 7 )xx;
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_ (18)
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The convolution is easily performed with the result

1 1 &
d*x X,0 X—y,0) = ——— exp |—— E_li-,-' 19
/RZ P1(x, o) a( Y,0) 27!‘\/(@ pl: > g( )Jny:I (19)
where we introduce ¥ = o + &. Clearly the new “effective” distribution
function depends on the sum of the correlation matrices of the individual
beams. We can now utilize the discussion in Section 2 to deduce the centroid
deflection angle and get

91‘2 + Z@xl - Nll{Fo(Yi - X],ifz — X2, E) . (20)
which again depends only on X.

Note that Eq. 20 also depends on the relative distance between the
centroids of both bunches Y — X. Furthermore, the kick angle for the other
bunch is given by Eq. 20 with X and Y exchanged and K N, substituted for
K N,. Writing the centroid angles for beams 1 and 2 as X’ and Y’, respec-
tively, we can write for their variation during one collision

Y — X,|after =Y — Xllbefore + (I(Nl + I{N2) FO(Y - X’ 2) . (21)

Assuming a storage ring with equal tunes for the counter-rotating beams ,
we can infer that the centroid difference variables Y — X, Y’ — X’ trans-
form among themselves, and that the dynamics described by such a system
is equivalent to that of a single particle in the field of a fixed Gaussian beam
with ¥ = 046 and (NK)g = K N;+ K N,. We have thus proven that the dy-
namics of “strong-strong” rigid-bunch models with equal tunes is equivalent
to “weak-strong” models with appropriately modified parameters [5].

Next, we generalize this discussion to non-Gaussian beams, which we
parametrize by a Gaussian 1y and an arbitrary polynomial P,

1/)1(X,0'1) = Pl(x) 1/)0()(70-1) . (22)

An example is the Stratonovich expansion in terms of generalized Hermite
polynomials, as used by Hirata in Ref. 6. In order to simplify the algebra,
we rewrite Eq. 22 in the form

hi(x,01) = P (%)m exp [~ T¥ (07 )ymiz; + 2 Bic]

B=0 ’
(23)



The required convolution with the deflected distribution, parametrized in a
similar fashion, yields

0
/R2 d*x Y1(x,01) Yo(x —y,02) = Py (8_B> P, (8%)

24
X exp [7‘12 ;BB + % UZCC] Yoy — 1B + 0,C, 07 + ‘72)|B=C=0 ( )
The centroid deflection angle of beam 2 is then trivially calculated by plug-
ging Eq. 24 into Eq. 17, and following the derivation for the covariant version
of the Bassetti and Erskine formula. We obtain

0,, +i0,, = MKP, (%) P, (3%)
1 1 (25)
X exp [7 BB + 5 @CC] Fo(Y =X = 1B + 0,C, 01 + 02)lp_c_o -

Now only parametric differentiations of Gaussians and complex error func-
tions (in Fp) are required, which are easily done. Note in particular that
multiple derivatives of w(z) can be generated recursively according to [4]

W (z) = ~2[wH(2) + (n + 1) w()] (26)

which makes the evaluation of Eq. 25 computationally inexpensive, because
only w®(2) needs to be evaluated directly by a Pade approximation or oth-
erwise.

5. Applications

First, Eq. 25 can be used in tracking codes for the beam-beam in-
teraction to either calculate the coherent centroid deflection angle or the
incoherent single particle deflection angle, by setting o, = 0, C = 0 and
P, = 1. This may serve to make beam-beam codes more self consistent.

Second, it is possible to expand Eq. 25 around the “round beam case”
[7]. By this we mean to expand ©,, +:0,, around oy; = 0y and oy, = 0
in small parameters such as €; = 2¥;,/(X1; + Xy;) for the tilt signature,
€2 = (Z11 — X22)/(811 + E22), for the ellipticity signature or coefficients
of the polynomials to assess non-Gaussian characteristics. By plotting the
resulting “signature curves” along a path (z1(¢),z2(t)), it is then possible to
discern systematic deviations from the normally used round beam deflection
curve given by Eq. 14.



6. Conclusion

In this paper the Bassetti and Erskine formula for the deflection
angle from elliptic Gaussian beams was generalized to incorporate tilt angles.
Thereby, the formula was transformed into a covariant form. Furthermore,
we used this formula to calculate the centroid deflection angles of Gaussian
and non-Gaussian beams.

In the analysis it turned out that the centroid deflection angle depends
only on the convolution of the field-producing and deflected distribution func-
tions. It is therefore not possible to determine properties of the individual
beams from deflection data alone.

As a direct consequence, it was shown that the “strong-strong”
rigid-bunch models are equivalent to “weak-strong” models with modified
parameters.
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