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Abstract: The effective baryon–baryon potential can be derived in the framework of the quark

model. The configurations with different quark spatial distributions are mixed naturally when two

baryons get close. The effect of configuration mixing in the chiral quark model (ChQM) is studied by

calculating the effective potential between two non-strange baryons in the channels I J = 01, 10 and

03. For comparison, the results of the color screening model (CSM) are also presented. Generally,

configuration mixing will lower the potential when the separation between two baryons is small, and

its effect will be ignorable when the separation becomes large. Due to the screened color confinement,

the effect of configuration mixing is rather large, which leads to stronger intermediate-range attraction

in the CSM, while the effect of configuration mixing is small in the ChQM due to the quadratic

confinement and σ-meson exchange, which is responsible for the intermediate-range attraction.

Keywords: baryon–baryon interaction; quark model; configuration mixing

PACS: 13.75.Cs; 12.39.Pn; 12.39.Jh

1. Introduction

Great effort has been made in the study of dibaryon states by both theorists and
experimentalists since Jaffe’s prediction of the H particle [1]. The dibaryon is a color singlet
multi-quark system with a sufficiently smaller size and is believed to be a prospective
field for studying the strong interaction phenomenology because the dibaryon may pro-
vide more information on quantum chromodynamics (QCD), the fundamental theory of
strong interaction.

Baryons are well-founded objects. To bind two baryons together to form a dibaryon
state is not an easy task, because too few states have been discovered in experiments so
far. Deuterons with isospin–spin–parity I JP = 01+ are loosely bound states of protons and
neutrons, where the separation between two nucleons is rather large. d∗ with I JP = 03+

is believed to be a compact object of six quarks that was reported by the WASA@COSY
collaboration [2]. The primary results of STAR@RHIC favors the existence of dibaryon
state NΩ with I JP = 1

2 2+ [3]. With the advance of experiments, more dibaryon states may
be reported.

To bind two baryons, attraction between two baryons is necessary. Thus, the baryon–
baryon effective potential is needed. To obtain the baryon–baryon effective potentials from
QCD directly is too complicated to be possible. Lattice QCD is believed to the reliable
approach and has made some progress in the baryon–baryon effective potential [4,5].
However, the calculation needs huge computation resources and some approximations are
also applied. At the hadron level, several baryon–baryon effective potentials are proposed
based on the one-boson exchange model [6–11]. The “QCD inspired” quark model is an
effective approach to describe the properties of baryons, and it is also applied to derive the
baryon–baryon effective potentials [12–21]. In deriving the effective potential, generally, the
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quark cluster model is employed, in which the six quarks are grouped into two three-quark
clusters and the internal motions of the three-quark cluster are frozen. However, for the
compact hexaquark system or if the two baryons are too close, it is reasonable to assume
uark delocalization, which is similar to the electron percolation in molecules. In the 1990s,
F. Wang and his collaborators developed a model, the quark delocalization color screening
model (QDCSM) [22], based on the Glashow-Isuger model. In the QDCSM, two new
components were introduced. One is quark delocalization, and another is color screening,
taking into account the differences in confinement interaction inside a single baryon and
between two color singlet baryons. Quark delocalization in QDCSM is a convenient way to
realize specific configuration mixing. The model can give a good description of nucleon–
nucleon interactions and a natural explanation of the similarity between molecular force
and nuclear force [22]. The CSM is the QDCSM without quark delocalization, which is
replaced by configuration mixing in the present work.

By introducing the exchange of Goldstone bosons and their partner σ-meson between
quarks, the chiral quark model (ChQM) can also give a good description of nuclear force. So
far, configuration mixing is not considered in the ChQM in calculating the baryon–baryon
effective potential. In the present work, the effect of configuration mixing in the ChQM is
studied by calculating the baryon–baryon effective potentials. To simplify the calculation,
we limit our calculation in the two-flavor world, the non-strange system, and only the
central interactions are taken into account. The resonating group method (RGM) [21,23,24]
is used to perform the calculation. In molecular physics, the configuration interaction is a
post-Hartree–Fock linear variational method for solving the non-relativistic Schrödinger
equation within the Born–Oppenheimer approximation for a quantum chemical multi-
electron system.

This paper is organized as follows. In Section 2, the model Hamiltonian and the
symmetry bases are described. In Section 3, the calculation method is presented. The
results are given in Section 4 and a conclusion is given in Section 5.

2. Quark Model and Wave Functions

2.1. The Chiral Quark Model

The Salamanca version of the ChQM is chosen as a representative of chiral quark
models [25,26]. It has been successfully applied to describe both hadron spectroscopy and
nucleon–nucleon interactions. The model details can be found in Refs. [25,26]. Here, only
the Hamiltonian in the baryon–baryon sector is given below. Four pieces of potentials are
used. The phenomenological color confinement potential is invoked to represent the color
confinement of QCD (VC

ij ). The one-gluon exchange mimics the asymptotic freedom of

QCD (VG
ij ). In the low-energy region, the chiral symmetry of QCD is spontaneously broken,

the current quarks acquire masses and turn into constituent quarks, and Goldstone bosons
appear and can be exchanged between the constituent quarks (Vπ). The chiral partner of
the pion is also included (Vσ). The aim of this work is to study the effects of configuration
mixing on the baryon–baryon interaction; the non-central interactions are expected to play
a minor role in the effects, so they are omitted in the calculation here.
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= 0.556, Λ is a cutoff parameter, and Y(x) is

the Yukawa function, defined as Y(x) = e−x

x . Tc is the kinetic energy of the center of mass.
All other symbols have their usual meanings.

2.2. The Color Screening Model

The Hamiltonian of the CSM is the same as that of the ChQM with two modifications.
First, there is no π and σ meson exchange; second, the screened color confinement is used
between quark pairs resident in different baryons. In the calculation of lattice QCD, the
long-range confinement interaction between the interacting quark pair is screened once
when the separation between two quarks becomes large [27], so the screened confinement
is employed for interacting quark pairs that appear in different baryon orbits. That is,

Vc
ij = −acλi · λj







r2
ij if i, j occurs in the same baryon orbit;

1−e
−µr2

ij

µ if i, j occurs in different baryon orbits.
(2)

The fitted parameters are taken from Ref. [26] and given in Table 1. The absolute
nucleon mass is controlled by a constant term, V0, in the confinement potential that does
not affect the baryon–baryon interaction. The model parameters of the CSM are fixed by the
spectrum of baryons, and the screening parameter µ is fixed by fitting the NN scattering
phase shifts.

Table 1. Model parameters.

Model ChQM CSM

Quarks b (fm) 0.518 0.603
mu (MeV) 313 313
md (MeV) 313 313

Confinements ac (MeV·fm−2) 46.938 25.13

µ (fm−2) − 0 or 1.0

V0 (fm2) −1.297 −
OGE αs 0.485 1.54

Goldstone bosons mσ (MeV) 675 −
mπ (MeV) 138 −
Λ (fm−1) 4.2 −
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2.3. Wave Functions

The symmetry bases of the wave functions for non-strange six-quark system (Y = 2)
can be constructed through the group chain [28] such as

[1n] [ν] [ν̃] [c] [µ] I J

SU24 ⊃ SUx
2 × [SU12 ⊃ SUc

3 × (SU4 ⊃ SUτ
2 × SUσ

2 )], (3)

The partition of particle numbers (Young diagram) [λ1λ2 · · · λ f ] with λ1 ≥ λ2 ≥ . . . ≥
λ f , λ1 + λ2 + . . . + λ f = f and all λs is an integer, and is used to label the irreducible rep-
resentation of the permutation group, S f , and the unitary groups, SUn, in the configuration
space, which is formed by f particles occupying n states. The symmetry basis for six quarks
systems has the form

Φα
Kmn(q

6) =

∣

∣

∣

∣

[ν]LmRn

[c]W[µ]βI JMI MJ

〉

. (4)

where α = (I J) are the strong-interaction conserved quantum numbers: the isospin and
spin. K denotes the intermediate quantum numbers, [ν], [µ], which represent the symmetry
of the orbital, spin–isospin SU4. W represents Weyl tableaux, the component index of color
symmetry, [c], and β is the inner multiplicity index in the reduction of [µ] to [τI ]× [σJ ],
where [τI ] and [σJ ] are the partitions corresponding to the isospin I and spin J. The
relationship between J and [σJ ] is as follows: J = 0, 1, 2, 3, [σJ ] = [33], [42], [51], [6]. I
is the isospin and MI is the third component of the isospin. J is the spin and MJ is the
third component of the spin. [c] is fixed to [222] and the one-dimensional representation of
color SU3 due to the color singlet requirement. L and R are left and right Gaussians, the
single-particle orbital wave functions in the ordinary quark cluster model:

|L⟩ =

(

1

πb2

)3/4

e
− 1

2b2 (ri−S/2)2

,

|R⟩ =

(

1

πb2

)3/4

e
− 1

2b2 (ri+S/2)2

. (5)

where S is a reference center and b is a baryon size parameter. m and n are the numbers of
quarks resident in left and right orbits, respectively. For some interesting sets of quantum
numbers, α, the allowed intermediate quantum numbers, K, are listed in Table 2. Where
MI , MJ take their maximum values, the eigenenergies are independent of MI , MJ . The
twenty-seven bases for channel α = (I J) = 01 are shown in Appendix A.

Table 2. The allowed K = [ν][µ] for interesting sets of α. The irreducible representation of S6 is

denoted by the partitions.

α K

01 [6][44] [51][321] [42][51] [42][33] [42][2211] [42][321] [42][411]

10 [6][33] [51][321] [42][51] [42][33] [42][2211] [42][321] [42][411]

03 [6][33] [42][33]

The spatial configurations of quarks are denoted by (mn). Configuration mixing means
that different quark spatial distributions will be mixed up. The eigen wave function Ψα is
the linear combination of symmetry bases Φα

Kmn(q
6) under the cluster approximation,

Ψα(q6) = ∑
Kmn

cα
KmnΦα

Kmn(q
6). (6)

The numbers of the coupling channels for α = (01), (10) and (03) are 27, 27 and 10,
respectively. In Appendix A, the 27 symmetry bases for α = (01) are shown explicitly.
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For different configurations, different orbital symmetries [ν] are allowed. Because
there are only two orbits, the Young diagram at most has two rows, which correspond to
partitions [6], [51], [42] and [33]. The results are listed in Table 3.

Table 3. The allowed orbital symmetry [ν] for a given configuration (mn).

[ν] L6 L5R L4R2 L3R3 L2R4 LR5 R6

[6] 1 1 1 1 1 1 1

[51] 0 1 1 1 1 1 0

[42] 0 0 1 1 1 0 0

[33] 0 0 0 1 0 0 0

3. Calculation Method

To study the baryon–baryon interaction, the Schrödinger equation for the 6-quark
system has to be solved:

H(6)Ψα(q6) = EαΨα(q6), (7)

where the eigen wave function Ψα is the linear combination of the symmetry bases Φα
Kmn(q

6)
under the cluster approximation, which was given in the second section. By using Equa-
tions (6) and (7), it becomes

∑
k′
[⟨Φα

k′ |H(6)|Φα
k ⟩ − Eα⟨Φα

k′ |Φα
k ⟩]cα

k (q
6) = 0, (8)

where k stands for (Kmn). The eigen energy of the system can be obtained by solving the
generalized eigen equation. The calculation of the 6-body Hamiltonian matrix elements
on the symmetry basis is performed by the well-known fractional parentage expansion
technique [28]. First, the 6-body Hamiltonian with pairwise terms is reduced to a 2-body
Hamiltonian, for example the Hamiltonian for the fifth and sixth particles, by making use
the properties of identical particles. Second, the symmetry basis is separated into two parts,
a 4-body part (the 1st to the 4th particles) and 2-body part (the 5th and 6th particles), using
the coefficients of fractional parentage. Then, the matrix element of the 6-body Hamiltonian
can be reduced to the product of coefficients of fractional parentage, 4-body overlaps and
2-body matrix elements.

⟨Φα
k |H|Φα

k′⟩ = ∑
(

6
2

)

⟨Φα
k |α1k1, α2k2⟩⟨α′1k′1, α′2k′2|Φα

k′⟩⟨α1k1|α′1k′1⟩⟨α2k2|H56|α′2k′2⟩. (9)

where ⟨α1k1|α′1k′1⟩ is the 4-body overlap. ⟨α2k2|H56|α′2k′2⟩ is the two-body matrix ele-
ment and H56 represents the two-body operator for the last pair. ⟨Φα

k |α1k1, α2k2⟩ and
⟨α′1k′1, α′2k′2|Φα

k′⟩ are the total coefficients of fractional parentage. All the needed coefficients
can be obtained from Chen’s book [29,30]. For details, one can refer Ref. [28]. As an example,
an expression of the matrix element in the configuration of L3R3 is given in Appendix B.

4. Results and Discussion

The effective potentials between two baryons in the u, d two-flavor world are calculated
in the framework of the ChQM and CSM with configuration mixing. The effective potential
is defined as

Ve f f (S) = E6(S)− E6(S = ∞) (10)

where E6(S) is the eigen energy of the six-quark system with separation, S, between the
left and right Gaussians. Here, we only give some results of a non-strange six-quark
system with quantum numbers I J = 01, 10 and 03. In order to check the contribution
of the configuration mixing to the effective potentials of the baryon–baryon system, we
give the results of configuration L3R3 only and those of all-configuration mixing (denoted
by LmRn) in Figures 1–3. One can see that the effects of configuration mixing on the
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effective potentials are different for the two models, and the effects vary with the separation.
Generally, configuration mixing will reduce the energy of the system compared with that
of the L3R3 configuration only, and the effects decrease with the increase in the separation.

0 1 2 3
-50

0

50

100

150

200

250

300

V e
(M

eV
)

s(fm)

 ChQM    L3R3

 ChQM    LmRn

 CSM      L 3R3  m=0.0 fm -2

 CSM      L mRn m=0.0 fm -2

 CSM      L 3R3  m=1.0 fm -2

 CSM      L mRn m=1.0 fm -2

Figure 1. Effective potential (in MeV) vs. baryon-baryon separation (in fm) for N-N (I J = 01) channels.
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 CSM     LmRn  m=0.0 fm-2

 CSM     L3R3   m=1.0 fm-2

 CSM     LmRn  m=1.0 fm-2

Figure 2. Effective potential (in MeV) vs. baryon-baryon separation (in fm) for N-N (I J = 10) channels.

Figure 1 shows the effective N-N potential for channels (I J) = (01) with the L3R3,
configuration comparing it with that under configuration mixing. It is clear that the
L3R3 configuration only has an effective intermediate-range attraction, but it is a little
weaker, ∼5 MeV, than that under configuration mixing in the ChQM. However, in the CSM,
configuration mixing has a stronger effective attraction, about 25 MeV, than that under the
L3R3 configuration only. One can also see that there is no intermediate-range attraction
in the CSM if the color screening effect is not taken into account (µ = 0.0 fm−2). The
configuration mixing lowers the energy of the system a little, but there is still no attraction.
This implies that the quadratic confinement prevents configuration mixing. Only when the
confinement is screened can the configuration mixing be developed. The reason can be used
to explain the small effects of configuration mixing in the ChQM, where the confinement
is not screened and the intermediate-range attraction is mainly provided by the σ-meson
exchange. Thus, it is sufficient to use the baryonic structure (L3R3) only when studying
NN interaction in the ChQM. To see the contribution of different configurations to the
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energy of the system at each separation, the percentages of different configurations at a
given separation are calculated and are shown in Table 4. From the table, one can see
that the baryonic structure (L3R3 configuration) is always the main configuration, and it
dominates when the separation becomes large in both models. In the ChQM, the L3R3

configuration dominates even when the separation is small. The color confinement expels
other configurations. It is a good approximation approach to consider only the L3R3

configuration in the ChQM. For the CSM, configuration mixing results in an important
contribution to the effective potential, and there are considerable non-L3R3 configurations
in the state when the separation is small, S ≤ 1 fm. Thus, it is necessary to consider
configuration mixing in the CSM.

0 1 2 3
-500

-400

-300

-200

-100

0

100

V e
(M

eV
)

s(fm)

  ChQM  L 3R3

  ChQM  L mRn

  CSM     L 3R3   m=0.0 fm -2

  CSM     L mRn  m=0.0 fm -2

  CSM     L 3R3   m=1.0 fm -2

  CSM     L mRn  m=1.0 fm -2

  CSM     L mRn  m=0.4 fm -2

  CSM     L mRn  m=0.2 fm -2

Figure 3. Effective potential (in MeV) vs. baryon-baryon separation (in fm) for ∆-∆ (I J = 03) channels.

Figure 2 shows the effective N-N potential for channels (I J) = (10). The results are
similar to that of (I J) = (01) (Figure 1). The percentages of different configurations at a
given separation are shown in Table 5. The similarity to Table 4 is also apparent.

Figure 3 illustrates the effective ∆-∆ potential for channels (I J) = (03). ∆-∆ is a
decuplet–decuplet channel; many theoretical calculations and some experiments state the
existence of the ∆-∆ dibaryon, named d∗ [2,24,31,32]. In the ChQM, it is clear that ∆-∆ with
the L3R3 configuration only has a similar intermediate-range attraction, about 150 MeV, to
that of configuration mixing. At a small separation, stronger attraction is obtained with
configuration mixing. In the CSM, when color screening is not considered (µ = 0.0 fm−2),
modest attractions are obtained in the L3R3 configuration only and in configuration mixing
calculations. When color screening is considered, µ = 1.0 fm−2, a very strong attraction,
∼400 MeV, appears. The percentages of different configurations at given separations are
shown in Table 6. In this case, the L3R3 configuration is no longer the main component
when the separation is small, and a compact state is expected.

Comparing Figure 3 with the Figures 1 and 2, one can see that there is a deeper
intermediate-range attraction between two ∆s than that between two nucleons. This can
be explained by the structure difference in N compared to ∆. In ∆ resonance, the spins of
quarks are all parallel, and the color–spin interaction in one-gluon exchange potential gives
a positive contribution to the energy of the state, while the spins of quarks in the nucleon
are parallel or anti-parallel, half to half, and the color–spin contribution to the energy is
negative, so the mass of ∆ is larger than that of the nucleon. In the two-baryon system,
the contribution of color–spin interaction has more chances to be negative. In addition,
configuration mixing lets quarks have more space to move, which lowers the kinetic energy
of the system. In this way, ∆∆ systems generally have deeper attraction. From Table 6, one
can see that the non-L3R3 configurations are still considerable even when the separation is
large, s ∼ 1.5 fm.
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Table 4. The percentages of configurations in the states with I J = 01 and µ = 1.0 fm−2 (the CSM).

s = 0.1 fm s = 0.5 fm s = 1.0 fm

ChQM CSM ChQM CSM ChQM CSM

R6 0.15 0.15 0.00 0.00 0.00 0.00

R5L1 0.00 0.01 0.00 0.08 0.00 0.01

R4L2 0.13 0.19 0.17 0.03 0.01 0.12

R3L3 0.44 0.30 0.66 0.78 0.78 0.74

R2L4 0.13 0.19 0.17 0.03 0.01 0.12

R1L5 0.00 0.01 0.00 0.08 0.00 0.01

L6 0.15 0.15 0.00 0.00 0.00 0.00

s = 1.5 fm s = 2.0 fm s = 3.0 fm

ChQM CSM ChQM CSM ChQM CSM

R6 0.00 0.00 0.00 0.00 0.00 0.00

R5L1 0.00 0.00 0.00 0.00 0.00 0.00

R4L2 0.00 0.09 0.00 0.00 0.00 0.00

R3L3 1.00 0.82 1.00 1.00 1.00 1.00

R2L4 0.00 0.09 0.00 0.00 0.00 0.00

R1L5 0.00 0.00 0.00 0.00 0.00 0.00

L6 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. The percentages of configurations in the states with I J = 10 and µ = 1.0 fm−2 (the CSM).

s = 0.1 fm s = 0.5 fm s = 1.0 fm

ChQM CSM ChQM CSM ChQM CSM

R6 0.13 0.07 0.00 0.00 0.00 0.00

R5L1 0.00 0.00 0.01 0.01 0.00 0.00

R4L2 0.14 0.15 0.18 0.22 0.00 0.04

R3L3 0.46 0.56 0.63 0.54 1.00 0.92

R2L4 0.14 0.15 0.18 0.22 0.00 0.04

R1L5 0.00 0.00 0.01 0.01 0.00 0.00

L6 0.13 0.07 0.00 0.00 0.00 0.00

s = 1.5 fm s = 2.0 fm s = 3.0 fm

ChQM CSM ChQM CSM ChQM CSM

R6 0.00 0.00 0.00 0.00 0.00 0.00

R5L1 0.00 0.00 0.00 0.00 0.00 0.00

R4L2 0.00 0.04 0.00 0.00 0.00 0.00

R3L3 1.00 1.00 1.00 1.00 1.00 1.00

R2L4 0.00 0.04 0.00 0.00 0.00 0.00

R1L5 0.00 0.00 0.00 0.00 0.00 0.00

L6 0.00 0.00 0.00 0.00 0.00 0.00

Table 6. The percentages of configurations in the states with I J = 03 and µ = 1.0 fm−2 (the CSM).

s = 0.1 fm s = 0.5 fm s = 1.0 fm

ChQM CSM ChQM CSM ChQM CSM

R6 0.29 0.15 0.00 0.00 0.00 0.00

R5L1 0.00 0.01 0.02 0.03 0.00 0.01

R4L2 0.11 0.19 0.05 0.08 0.05 0.11

R3L3 0.20 0.30 0.86 0.78 0.90 0.76

R2L4 0.11 0.19 0.05 0.08 0.05 0.11

R1L5 0.00 0.01 0.02 0.03 0.00 0.01

L6 0.29 0.15 0.00 0.00 0.00 0.00
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Table 6. Cont.

s = 1.5 fm s = 2.0 fm s = 3.0 fm

ChQM CSM ChQM CSM ChQM CSM

R6 0.00 0.07 0.00 0.03 0.00 0.00

R5L1 0.00 0.01 0.00 0.00 0.00 0.00

R4L2 0.00 0.04 0.00 0.00 0.00 0.00

R3L3 1.00 0.76 1.00 0.94 1.00 1.00

R2L4 0.00 0.04 0.00 0.00 0.00 0.00

R1L5 0.00 0.01 0.00 0.00 0.00 0.00

L6 0.00 0.07 0.00 0.03 0.00 0.00

5. Summary

By taking into account configuration mixing in the framework of the ChQM and
CSM, we calculate the effective potentials of the system such as NN I J = 01, 10, as well
as the ∆∆ I J = 03. It can be seen that configuration mixing will reduce the energy of the
system, which leads to stronger intermediate-range attraction in both models. Although
the effect of configuration mixing is not important in the ChQM, it is indispensable in
the CSM. If the compact six-quark state exists, configuration mixing must be considered
in the calculation of the binding energy of the system, even in the ChQM, because the
effect of configuration mixing is not small when the separation between two clusters is
small. The QDCSM is a simple version of the CSM with configuration mixing; only the
l3r3 configuration is considered, but the left and right single-particle wave functions are
delocalized ones, l = L + ϵR and r = R + ϵL. In this way, all the configurations are taken
into account but with only one variational parameter, ϵ. This approach is an economic
one, greatly reducing the computational burden. The calculations of deuteron properties
and nucleon–nucleon scattering phase shifts in the ChQM [24], where no configuration
mixing is considered, and in the QDCSM, where configuration mixing is taken into account
in a specific way [32], show that the experimental data can be well described; this fact
supports the results of the present work. Compared with the more reliable approach, lattice
QCD, one can find that the results obtained by lattice QCD are very similar to the ones
obtained by quark models [4,5]; for NN with I J = 01, 10, there are repulsive cores and
intermediate attractions and for ∆∆ with I J = 03, the potential is attractive at all distances.
Thus, phenomenological approaches that are easy to implement and that can also give us
deep insights into underlying theory are still needed in the near future.

From the results of the present work, one can see that the three-quark cluster baryon is
a good approximation in multi-quark systems, for instance sin-quark systems, in the chiral
quark model approach. The results also justify the treatment of two baryon systems at the
hadron level, where the baryons are taken as point particles. However, if Goldstone boson
exchange is not used, then configuration mixing will play an important role. It seems that
configuration mixing plays a similar role to meson exchange, and further study is needed.
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Appendix A. The 27 Symmetry Bases, Φ
(I J)
[ν][µ] mn

for the State with α = (I J) = (01)

For a given α = (I J) value, the bases are determined by couplings of [c]× [µ] → [ν̃]
and [τI ]× [σJ ] → [µ].

Φ
(01)
[6][33] 60

=

∣

∣

∣

∣

[6]L6

[222]1[33]10101

〉

, Φ
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∣

∣

∣

[6]L5R1
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∣

∣

∣
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∣
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Φ
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∣

∣

∣

∣
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, Φ
(01)
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∣

∣

∣

∣
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,

Φ
(01)
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∣

∣

∣

[6]R6
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Φ
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∣

∣

∣

∣
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∣

∣

∣
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Appendix B. The Matrix Element in the Configuration of L3R3

⟨Φ(01)
[6][33] 33

|H|Φ(01)
[6][33] 33

⟩ = X
[6][6]
[4][2]

[

2

5
Cs

(

5

12
fsαA +

2

12
fAαs +

5

12
fAαs

)

+
3

5
CA

(

4

54
fsαs +
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54
fsαs +

5

54
fsαs +

15

54
fAαA

)]

(A8)

⟨Φ(01)
[6][33] 33

|H|Φ(01)
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⟩ =
1

3
X
[6][42]
[4][2]

[
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√

3

5
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(√
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√
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54
fsαs

−
√
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√
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, (A9)
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1
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X
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(
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3
X
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[

3

5
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2

5
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(
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12

54
fsαs

+
8

54
fsαs +

24

54
fAαA
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+
2

9
X
[42][42]
[22][2]

[

3

5
Cs

(

1

3
fsαA +

2
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fAαs

)

+
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5
CA

(
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54
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12

54
fsαs +

8

54
fsαs +

24

54
fAαA

)]

+
1

3
X
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[22][2]

[

1

5
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(

1

3
fsαs +

2

3
fAαs

)
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4

5
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(

10
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fsαs +

12
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8
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fsαs +

24
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(A10)

where X
[ν][ν′ ]
[ν1][ν2]

is the orbital matrix element, and Ck, fk, αk, k = A, s are color, isospin and

spin matrix elements, respectively. For the operators, λ5 · λ6, τ5 · τ6, σ5 · σ6, we have the
following results:

CA = −8

3
, Cs =

4

3
; fA = −3, fs = 1; αA = −3, αs = 1 (A11)

References

1. Jaffe, R.L. Perhaps a Stable Dihyperon. Phys. Rev. Lett. 1977, 38, 195. [CrossRef]

2. Bashkanov, M. et al. [CELSIUS-WASA Collab] Double-Pionic Fusion of Nuclear Systems and the “ABC” Effect: Approaching a

Puzzle by Exclusive and Kinematically Complete Measurements. Phys. Rev. Lett. 2009, 102, 052301. [CrossRef] [PubMed]

3. Adam, J. et al. [STAR Collab] The Proton-Ω correlation function in Au + Au collisions at
√

sNN = 200 GeV. Phys. Lett. B 2019, 790,

490. [CrossRef]

4. Ishii, N.; Aoki, S.; Hatsuda, T. Nuclear Force from Lattice QCD. Phys. Rev. Lett. 2007, 99, 022001. [CrossRef] [PubMed]

5. Gongyo, S. et al. [HAL QCD Collab] d∗(2380) dibaryon from lattice QCD. Phys. Lett. B 2020, 811, 135935. [CrossRef]

6. Machleidt, R.; Holinde, K.; Elster, C. The Bonn Meson Exchange Model for the Nucleon Nucleon Interaction. Phys. Rep. 1987,

149, 1.

7. Nagels, M.M.; Rijken, T.A.; de Swart, J.J. A potential model for hyperon-nucleon scattering. Ann. Phys. 1973, 79, 338. [CrossRef]

8. Nagels, M.M.; Rijken, T.A.; de Swart, J.J. Baryon-baryon scattering in a one-boson-exchange-potential approach.I. Nucleon-nucleon

scattering. Phys. Rev. D 1975, 12, 744. [CrossRef]

9. Cottingham, W.N.; Lacombe, M.; Loiseau, B.; Richard, J.M.; Mau, R.V. Nucleon-Nucleon Interaction from Pion-Nucleon Phase-Shift

Analysis. Phys. Rev. D 1973, 8, 800. [CrossRef]

10. Maessen, P.M.M.; Rijken, T.A.; de Swart, J.J. Soft-core baryon-baryon one-boson-exchange models. II. Hyperon-nucleon potential.

Phys. Rev. C 1989, 40, 2226. [CrossRef]

http://doi.org/10.1103/PhysRevLett.38.195
http://dx.doi.org/10.1103/PhysRevLett.102.052301
http://www.ncbi.nlm.nih.gov/pubmed/19257507
http://dx.doi.org/10.1016/j.physletb.2019.01.055
http://dx.doi.org/10.1103/PhysRevLett.99.022001
http://www.ncbi.nlm.nih.gov/pubmed/17678213
http://dx.doi.org/10.1016/j.physletb.2020.135935
http://dx.doi.org/10.1016/0003-4916(73)90090-0
http://dx.doi.org/10.1103/PhysRevD.12.744
http://dx.doi.org/10.1103/PhysRevD.8.800
http://dx.doi.org/10.1103/PhysRevC.40.2226


Universe 2024, 10, 382 12 of 12

11. Holzenkamp, B.; Holinde, K.; Speth, J. A Meson Exchange Model for the Hyperon Nucleon Interaction. Nucl. Phys. A 1989, 500,

485. [CrossRef]

12. Oka, M.; Shimizu, K.; Yazaki, K. Hyperon-Nucleon and Hyperon-hyperon Interaction in a Quark Model. Nucl. Phys. A 1987, 464,

700. [CrossRef]

13. Koike, Y.; Shimizu, K. Yazaki, K. Study of Hyperon-Nucleon and Hyperon-hyperon Interaction in the Flipflop Model. Nucl. Phys.

A 1990, 513, 653. [CrossRef]

14. Shimizu, K. Study of Baryon Baryon Interactions and Nuclear Properties in the Quark Cluster Model. Rep. Prog. Phys. 1989, 52, 1.

[CrossRef]

15. Yazaki, K. Properties and Interactions of Hyperons; World Scientific: Singapore, 1994; p. 189.

16. Straub, U.; Zhang, Z.Y.; Bräuer, K.; Faessler, A.; Khadkikar, S.H.; Lübeck, G. Hyperon Nucleon Interaction in the Quark Cluster

Model. Nucl. Phys. A 1988, 483, 686. [CrossRef]

17. Straub, U.; Zhang, Z.Y.; Bräuer, K.; Faessler, A.; Khadkikar, S.B. Binding Energy of the Dihyperon in the Quark Cluster Model.

Phys. Lett. B 1988, 200, 241. [CrossRef]

18. Fujiwara, Y.; Nakamoto, C.; Suzuki, Y. Unified Description of NN and YN Interactions in a Quark Model with Effective Meson-

Exchange Potentials. Phys. Rev. Lett. 1996, 76, 2242. [CrossRef]

19. Fujiwara, Y.; Nakamoto, C.; Suzuki, Y. RGM study of the hyperon-nucleon interaction in the SU(6) quark model.1: Analysis of

NN and Σ+p systems. RGM study of the hyperon-nucleon interaction in the SU(6) quark model.2: Analysis of ΛN-ΣN (I = 1/2)

coupled channel system. Prog. Theor. Phys. 1995, 94, 353. [CrossRef]

20. Nakamoto, C.; Suzuki, Y.; Fujiwara, Y. Entral force of the hyperon-nucleon interaction in the SU(6) quark model. Prog. Theor. Phys.

1995, 94, 65. [CrossRef]

21. Ping, J.L.; Wang, F.; Goldman, T. Effective baryon baryon potentials in the quark delocalization and color screening model. Nucl.

Phys. A 1999, 657, 95. [CrossRef]

22. Wang, F.; Wu, G.H.; Teng, L.J.; Goldman, T. Quark delocalization, color screening, and nuclear intermediate range attraction. Phys.

Rev. Lett. 1992, 69, 2901. [CrossRef] [PubMed]

23. Buchmann, A.; Yamauchi, Y.; Faessler, A. The electromagnetic form factors of the deuteron in the quark cluster model. Nucl. Phys.

A 1989, 496, 621. [CrossRef]

24. Valcarce, A.; Garcilazo, H.; Fernandez, F.; Gonzalez, P. Quark-model study of few-baryon systems. Rep. Prog. Phys. 2005, 68, 965.

[CrossRef]

25. Valcarce, A.; Gonzalez, P.; Garcilazo, H.; Fernandez, F.; Vento, V. Chiral quark cluster model study of the low-energy baryon

spectrum. Phys. Lett. B 1996, 367, 35. [CrossRef]

26. Entem, D.R.; Fernández, F.; Valcarce, A. Chiral quark model of the NN system within a Lippmann-Schwinger resonating group

method. Phys. Rev. C 2000, 62, 034002. [CrossRef]

27. Born, K.D.; Laermann, E.; Pirch, N.; Walsh, T.F.; Zerwas, P.M. Hadron properties in lattice QCD with dynamical fermions. Phys.

Rev. D 1989, 40, 1653. [CrossRef]

28. Wang, F.; Ping, J.L.; Goldman, T. Extension of fractional parentage expansion to the nonrelativistic and relativistic SU f (3) dibaryon

calculations. Phys. Rev. C 1995, 51, 1648. [CrossRef] [PubMed]

29. Chen, J.Q.; Wang, P.N.; Lü, Z.M.; Wu, X.B. Tables of the Clebsh-Gordan, Racah and Subduction Coefficients of SU(n) Groups; World

Scientific: Singapore, 1987.

30. Chen, J.Q.; Wu, X.B.; Gao, M.J. Tables of the SU(mn) ⊃ SU(m) × SU(n) Coefficients of Fractional Parentage; World Scientific:

Singapore, 1991.

31. Bashkanova, M.; Brodsky, S. Novel Six-Quark Hidden-Color Dibaryon States in QCD. Phys. Lett. B 2013, 727, 438. [CrossRef]

32. Ping, J.L.; Huang, H.X.; Pang, H.R.; Wang, F.; Wong, C.W. Quark models of dibaryon resonances in nucleon-nucleon scattering.

Phys. Rev. C 2009, 79, 024001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0375-9474(89)90223-6
http://dx.doi.org/10.1016/0375-9474(87)90371-X
http://dx.doi.org/10.1016/0375-9474(90)90403-9
http://dx.doi.org/10.1088/0034-4885/52/1/001
http://dx.doi.org/10.1016/0375-9474(88)90092-9
http://dx.doi.org/10.1016/0370-2693(88)90763-0
http://dx.doi.org/10.1103/PhysRevLett.76.2242
http://dx.doi.org/10.1143/PTP.94.353
http://dx.doi.org/10.1143/ptp/94.1.65
http://dx.doi.org/10.1016/S0375-9474(99)00321-8
http://dx.doi.org/10.1103/PhysRevLett.69.2901
http://www.ncbi.nlm.nih.gov/pubmed/10046670
http://dx.doi.org/10.1016/0375-9474(89)90116-4
http://dx.doi.org/10.1088/0034-4885/68/5/R01
http://dx.doi.org/10.1016/0370-2693(95)01413-6
http://dx.doi.org/10.1103/PhysRevC.62.034002
http://dx.doi.org/10.1103/PhysRevD.40.1653
http://dx.doi.org/10.1103/PhysRevC.51.1648
http://www.ncbi.nlm.nih.gov/pubmed/9970233
http://dx.doi.org/10.1016/j.physletb.2013.10.059
http://dx.doi.org/10.1103/PhysRevC.79.024001

	Introduction
	Quark Model and Wave Functions
	The Chiral Quark Model
	The Color Screening Model
	Wave Functions

	Calculation Method
	Results and Discussion
	Summary
	Appendix A
	Appendix B
	References

