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The thermal magnetic breakdown due to the magnetic field enhancement at a pit is the major
obstacle to achieving a high accelerating field using a superconducting radio-frequency cavity.
The well-type pit model has attracted attention as a model of the magnetic field enhancement at
a pit, whose enhancement factor depends only on an edge radius normalized by the pit width.
However, many of the pits found on cavity surfaces are not well type but have gentle slopes,
and the impacts of the slope angle on the enhancement factor have not yet been well under-
stood. In the present study, we introduce a model that can describe a pit with an arbitrary slope
angle and evaluate its enhancement factor. A two-dimensional model is enough to describe the
magnetic field enhancement at the pit. To evaluate the enhancement factor, an analytical method
based on the conformal mapping was developed. The results are compared with those obtained
by a simulation method, developed in this paper, that utilizes two-dimensional “electrostatics.”
A general formula to evaluate the enhancement factor was derived, which agreed well with the
simulation results. We found that not only the normalized edge radius but also the slope angle
had a substantial impact on the enhancement factor. A pit with a gentle slope angle yields a much
smaller enhancement factor than a well-type pit. The results can be applied to the calculation of
the enhancement factors of real pits with arbitrary slope angles.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The superconducting (SC) radio-frequency (RF) cavity has been developed as one of the core com-
ponents of modern particle accelerators [1]. Improvements in cavity fabrication technologies have
significantly pushed up the accelerating field, Eacc, over the last few decades [2]. Some TESLA-shape
nine-cell cavities made of pure niobium have achieved Eacc > 45 MV m−1 [3], which is close to the
fundamental limit of the niobium cavity in terms of the surface magnetic field [4]. Such a high field,
however, cannot regularly be achieved due to thermal magnetic breakdown, so-called quench, trig-
gered by normal-metal contaminants or geometrical defects. At present, the possibilities of involving
metallic contaminants during fabrication processes are thought to be significantly reduced by mod-
ern surface preparation processes, i.e., electropolishing [5,6], high-pressure rinsing [7–9], and clean
assembly [10]. On the other hand, a geometrical defect such as a pit accompanying electron-beam
welding remains as one of the major concerns even today [11]. An example of a quench-inducing pit
is shown in Fig. 1 (see also Refs. [11–15]).

The magnetic field enhancement (MFE) effect is the key to understanding the quench due to a pit.
The surface magnetic field in the vicinity of a pit is generally written as

H(r) = β(r)H0, 0 ≤ β(r) ≤ βM, (1)
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(a) (b)

Fig. 1. A quench-inducing pit found on an equator weld of a cavity [15]. The cavity performance was limited
by a quench at Eacc = 31 MV m−1. (a) An optical image taken by the Kyoto camera [11]. (b) A profile of the
replica extracted by laser microscopy.

where r is a position, H0 is the surface magnetic field far from the pit, and β(r) is a coefficient
introduced to reflect the effect of the pit geometry. β(r) reaches its maximum value, βM, at the
edge [16–20]. If the enhanced field, βM H0, is large enough, the edge becomes normal conducting
due to thermal and magnetic effects, which triggers a thermal runaway [21,22]. A difference of edge
shape affects the βM factor and thus the breakdown field. To reveal the relation between the βM factor
and the geometry of the pit is the first step to understanding the quench due to the pit.

An important contribution to understanding the MFE at a pit was made by Shemelin and
Padamsee [19]. They numerically studied the βM factor of the “well-type” pit and proposed a simple
relation, βM ∝ (re/R)−

1
3 , where re is the radius of the edge and R is half the well width. Their result

enabled quantitative discussions on the MFE at a pit and furthermore opened the way to evaluating
βM for pits with only the two measurable parameters, re and R, which was then used for evaluating
βM of well-type artificial pits in experimental studies [22]. However, many of the pits found on cavity
surfaces are not well type but have gentle slopes, as shown in Fig. 1, where the slope angle is 38◦.
It is not clear whether discussions based on the well-type pit model are applicable to such a pit with
gentle slopes. The impact of the slope angle on the βM factor have not been well understood.

The present study aims to qualitatively and quantitatively understand the MFE at a pit with any
slope angle. We introduce a model that can describe a pit with an arbitrary slope angle. To evaluate
its βM factor, an analytical method and a simulation method were developed. By using these methods,
the βM factor of the model was evaluated. An extremely useful formula for the evaluation of the βM

factor was derived, which agreed well with the simulation results. Based on the results, we discuss
the impact of the slope angle on the βM factor and an application of the model to real pits.

2. Model and formulations

2.1. Model

A typical wavelength of an SCRF cavity, O(10−1)m, is much larger than the size of pits,
O(10−5–10−4)m; the RF wavelength can be regarded as infinity. Thus, in the following, we study a
model in the framework of magnetostatics.

The magnetic field is enhanced at edges perpendicular to the direction of the surface magnetic
field [19–22], which correspond to A and C in Fig. 1. The detailed shapes of other parts of the
edges are not essential. Thus the MFE of a pit is well approximated by a groove perpendicular to
the direction of the surface magnetic field. In fact, the βM factor of a three-dimensional well-type pit
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Fig. 2. Model of pit. Gray and white regions represent the SC in the Meissner state and the vacuum, respectively.
re is the radius of the edge, R is half the width of the pit aperture, and πα (0 < α < 1/2) is the slope angle.
The arcs of the edges are smoothly connected to the slopes and the flat surfaces.

(a) (b)

Fig. 3. General two-dimensional irregularity, (a) on the z-plane, and (b) its map on the w-plane.

has the same functional form as the two-dimensional one, as shown in the previous studies [19,22].
Furthermore, since the magnetic field attenuates toward the bottom [19–22], the bottom shape is
not essential for describing the MFE. We developed the two-dimensional model shown in Fig. 2. Its
geometry is parametrized by re, R, and α, where re is the radius of the edge, R is half the width of
the pit aperture, and πα (0 < α < 1/2) is the slope angle. Note that a pit with α → 1/2 corresponds
to a well-type pit with an infinite depth.

2.2. Formulation for analytical evaluations

Let us formulate the MFE in the vicinity of a general two-dimensional irregularity [see Fig. 3(a)].
The Maxwell equations for two-dimensional magnetostatics in the vacuum are given by rot H = 0
and div B = 0, where H is a magnetic field, B = μ0H is a magnetic flux density, and μ0 is the mag-
netic permeability of the vacuum. By introducing a magnetic scalar potential φ(x, y), the problem is
reduced to a Laplace equation, �(2)φ(x, y) = 0, where �(2) ≡ ∂2/∂x2 + ∂2/∂y2. Then the magnetic
field is given by H = −gradφ = (−∂φ/∂x,−∂φ/∂y, 0). On the other hand, by introducing a vector
potential A = (0, 0,−μ0 ψ(x, y)), where ψ is a real function, the problem is reduced to the Laplace
equation �(2)ψ(x, y) = 0. The magnetic field is given by H = μ−1

0 rot A = (−∂ψ/∂y, ∂ψ/∂x, 0).
Since both approaches should lead to the same magnetic field, we find

Hx = −∂φ
∂x

= −∂ψ
∂y
, Hy = −∂φ

∂y
= ∂ψ

∂x
, (2)

which are the Cauchy–Riemann conditions. Thus a function defined by

�(z) ≡ φ(x, y)+ iψ(x, y) (3)
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is an holomorphic function of z = x + iy, called the complex potential. When �(z) is given, the
components of the magnetic field are derived from

Hx − i Hy = −∂φ
∂x

+ i
∂φ

∂y
= −∂φ

∂x
− i

∂ψ

∂x
= −d�(z)

dz
, (4)

where the property of the holomorphic function that d�(z)/dz = ∂φ/∂x + i∂ψ/∂x is used. Thus
the two-dimensional magnetostatics problem is reduced to the problem of finding �(z).

The complex potential �(z) can be derived from a complex potential �̃(w) on the w-plane with
a flat surface [see Fig. 3(b)] that is connected to the physical z-plane with a conformal mapping,
z = F(w). The map is given by the Schwarz–Christoffel transformation [23],

z = F(w) = P
∫ w

0
f (w)dw + Q, (5)

where f (w) is a function on the w-plane, and P and Q are constants. Here we introduce a complex
potential on thew-plane, �̃(w) = −H̃0w with H̃0 ≡ P H0, which reproduces the uniform magnetic-
field on the w-plane, Hu − i Hv = −�̃′(w) = H̃0. Then the complex potential on the z-plane is
given by

�(z) = �̃(F−1(z)) = −H̃0 F−1(z), (6)

where F−1 is the inverse function of F . By using Eqs. (4)–(6), we find

β(x, y) ≡ |H(x, y)|
H0

= |Hx − i Hy|
H0

= |�′(z)|
H0

= H̃0

H0

∣∣∣∣d F−1(z)

dz

∣∣∣∣ =
∣∣∣∣ 1

f (w)

∣∣∣∣
w=F−1(z)

, (7)

where d F−1/dz = dw/dz = (dz/dw)−1 = (d F/dw)−1 is used. The βM factor is calculated by the
maximum value of β(x, y). In principle, the βM factor of any two-dimensional irregularity can be
evaluated by using Eq. (7), if an explicit form of the Schwarz–Christoffel transformation and its
inverse are known.

2.3. Simulation method

A simulation code for the “electrostatic” problem is useful to evaluate the βM factor of our model,
because the βM factor of a two-dimensional irregularity on an SC is equivalent to the electric field
enhancement factor (βE factor) of the same irregularity on a conductor. Let us consider Fig. 3 again.
This time, we regard the gray and white regions as the conductor and the vacuum, respectively, and
replace the magnetic field far from the irregularity H = (H0, 0) by the electric field E = (0,−E0).
In much the same way as the magnetostatics problem, the electrostatics problem on the xy-plane is
also reduced to the problem of finding a holomorphic complex potential on the z-plane, �E (z) [24,
25]. The components of the electric field are given by

Ex − i Ey = −d�E (z)

dz
. (8)

The complex potential�E (z) can be derived from a complex potential �̃E (w) on thew-plane with a
flat surface that is connected to the physical z-plane with a conformal mapping given by Eq. (5). We
introduce a complex potential on thew-plane, �̃E (w) = −i Ẽ0w with Ẽ0 ≡ P E0, which reproduces
the uniform electric field on the w-plane; Eu − i Ev = −�̃′

E (w) = i Ẽ0 or (Eu, Ev) = (0,−Ẽ0).
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Fig. 4. Simulation domain on POISSON, which corresponds to the right half of Fig. 2. A pit is located at the
lower left. The left boundary corresponds to the plane of symmetry. The upper and lower boundaries correspond
to conductors with different electrostatic potentials, which generate an electric field distribution. Equipotential
lines and arrows representing electric field vectors are also shown. The electric field is uniform far from the
pit; E = (0,−E0). On the other hand, the electric field is enhanced and reaches its maximum near the edge;
E = Emax. The βE factor is given by |Emax|/E0.

Then the complex potential on the z-plane is given by

�E (z) = �̃E
(
F−1(z)

) = −i Ẽ0 F−1(z). (9)

By using Eqs. (8) and (9), we find

β(x, y) ≡ |E(x, y)|
E0

= |Ex − i Ey|
E0

=
∣∣∣∣ 1

f (w)

∣∣∣∣
w=F−1(z)

, (10)

which completely corresponds with that of the magnetic field. Then we find

βM = βE. (11)

Thus the βM factor can generally be evaluated by calculating the βE factor of the same irregularity.
We use POISSON, a two-dimensional electrostatic simulation code [26–28]. Figure 4 shows an

example simulation domain, which corresponds to the right half of Fig. 2. The left boundary corre-
sponds to the plane of symmetry. The lower conductor has a pit with a geometry parametrized by
α, re, and R. Another conductor plane is located at the upper boundary. The difference of electro-
static potentials between the upper and lower conductors yields an electric field, which is uniform,
E = (0,−E0), far from the pit. In the vicinity of the edge of pit, the electric field is enhanced and
reaches its maximum value, E = Emax. Then the βE factor is given by |Emax|/E0, and we find

βM = βE = |Emax|
E0

, (12)

where Eq. (11) is used. In an implementation of the simulation, we must pay attention to locating the
positions of the right and upper boundaries well away from the pit and adopting a fine-enough mesh
near the pit. Otherwise, the simulation results depend largely on these parameters. We placed the
right and upper boundaries at x = 10R and y = 8R, respectively, which are far enough away from
the pit. The mesh size was set at 0.003R (< 10−2R), which is small enough for the evaluation of
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the model with an edge radius re > O(10−1)R. For the evaluation of the model with re < 10−1R, a
simulation with smaller meshes is preferred.

3. Evaluation of the βM factor of the model

3.1. Sharp-edge model

Let us begin with a sharp-edge model as shown in Fig. 5, which can be regarded as the limit,
re/R → 0, of the original model. This simplified model is not only an instructive exercise of the
formulation developed in the last section, but also a rough sketch that provides us with a rudimentary
understanding of the MFE at the pit [29,30].

The mapping that connects the physical z-plane [Fig. 5(a)] to the w-plane [Fig. 5(b)] is given by
Eq. (5) with f (w) = f0(w) [23], where

f0(w) = (
w2 − 1

)α
w−2α. (13)

Constants P = p0 R and Q = q0 R are obtained by imposing the conditions that A′ and B′ on the
w-plane are mapped into A and B on the z-plane, respectively (see Appendix A):

p0 =
√
π

α cosπα 	(α)	
(1

2 − α
) , (14)

q0 = −i tanπα. (15)

Then β(x, y) can be evaluated by using the general formula, Eq. (7):

β(x, y) =
∣∣∣∣ 1

f0(w)

∣∣∣∣
w=F−1(z)

=
∣∣∣∣∣ w2α(
w2 − 1

)α
∣∣∣∣∣
w=F−1(z)

. (16)

Note that β(∞) = β|w→∞ = 1, which is consistent with the fact that the magnetic field is not
enhanced far away from the pit. By using Eq. (16), β at A and B are immediately obtained:

β(A) = β|w=1 = ∞, (17)

β(B) = β|w=0 = 0. (18)

The magnetic field is enhanced at the edge and vanishes at the bottom. These behaviors qualitatively
correspond with the observations so far [19–22].

In order to evaluate β at an arbitrary z = x + iy, an explicit form of f0(F−1(z)) is required
[see Eq. (16)]. This task is approximately achieved by focusing on a small region around an
edge [24,25]. Let us look at the vicinity of the edge A, which corresponds to the vicinity of A′ on
the w-plane, w = 1 + ε (|ε| � 1). Then f0(w) can be approximated by f0(w) 
 2αεα , and Eq. (5)
is calculated as z = R + 2α p0 Rεα+1/(α + 1). Thus we find εα+1 = (α + 1)(z − R)/

(
2α p0 R

)
and

f0(w) 
 2αεα = [2(α + 1)(z − R)/(p0 R)]α/(1+α). Then Eq. (16) becomes

β(x, y) =
[

p0

2(1 + α)

R

r

] α
1+α

, (19)

where r ≡ |z − R| =
√
(x − R)2 + y2 is the distance from the edge A. By using Eq. (19), we can

evaluate β for arbitrary (x, y) near the edge, in the range given by |ε| � 1 or r � 2α p0 R/(1 + α).
The round-edge model shown in Fig. 2, which we call the original model, can also be described

by the sharp-edge model at some level. The original model has the same geometry as the sharp-edge
model except for the arcs: the geometry of the outside of the arcs of the original model corresponds
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(a) (b)

Fig. 5. Sharp-edge model for a rough evaluation. (a) Pit with sharp edges on the z-plane; (b) its map on the
w-plane. Gray and white regions represent the SC in the Meissner state and the vacuum, respectively.

with that of the sharp-edge model at r > r� ≡ re(1 − cosπα)/ sinπα [29]. Thus the surface mag-
netic field and β at the outside of the arcs of the original model should be approximated by those
of the sharp-edge model at r > r�. Then β at the boundary of the arc and the flat surface can be
evaluated by substituting r = r� into Eq. (19), which is expected to be a rough estimate of the βM

factor when re/R is small:

βM ∼
(re

R

)− α
1+α

. (20)

In the following, we evaluate the original model with a finite re/R, where we found the relation
Eq. (20) is reproduced at the sharp-edge limit, re/R → 0.

3.2. Round-edge model

For a quantitative evaluation of the βM factor of the original model, the edge radius must be explicitly
taken into account. An infinite number of triangles can express the arc of the round edge, as shown
in Fig. 6. This approach can be regarded as the generalized version of the chamfered-edge model
studied by the author [30]. The mapping that connects the physical z-plane [Fig. 6(a)] to thew-plane
[Fig. 6(b)] is given by Eq. (5) with f (w) = limn→∞ fn(w) [23], where

fn(w) = (
w2 − w2

n

) α
2n

(
w2 − 1

) α
2nw−2α

n−1∏
k=1

(
w2 − w2

k

) α
n , (21)

and

wk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 + 2

�

n − 2
(k = 1),

1 + (k + 1)
�

n − 2
(2 ≤ k ≤ n − 1),

1 + (n + 2)
�

n − 2
(k = n).

(22)

The constants Q = q R, P = pR, and� are determined by the conditions that B′, A′
1, and A′

0 on the
w-plane are mapped onto B, A1, and A0 on the z-plane (see Appendix B). The first condition yields

q = −i tanπα. (23)

The second and the third conditions are somewhat complicated, but, under the assumption � � 1
(see Appendix B), they are reduced to

�1+α p = παeα

2α
re

R
, (24)

(1 + α�)p = 1 − 2α

2 F1(a, b; c; ζ )
(

1

cosπα
− re

R

1 − cosπα

sinπα

)
, (25)
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(a) (b)

Fig. 6. (a) The model on the z-plane, and (b) its map on the w-plane. The arcs of the edges are expressed
by an infinite number of triangles. The gray and white regions represent the SC in the Meissner state and the
vacuum, respectively.

(a)

(b)

Fig. 7. (a)� and (b) p as functions of re/R, as given by solutions of Eqs. (24) and (25). p0 given by Eq. (14)
is also shown for comparison.

where 2 F1(a, b; c; ζ ) is the Gaussian hypergeometric function with a ≡ −α, b ≡ 1/2 − α,
c ≡ 1 + b, and ζ ≡ 1 −�. Then � and p are obtained by solving Eqs. (24) and (25) in a
self-consistent manner. Figure 7 shows � and p as functions of re/R.

Here we check that the mapping defined by Eqs. (21)–(25) reproduces that of the sharp-
edge model in the limit re/R → 0. Equation (23) shows that q equals q0 independently of
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Fig. 8. βM factors evaluated by using the formula Eq. (26), and those obtained by the simulation code POIS-
SON, are shown as functions of re/R for slope angles 15◦, 30◦, 45◦, 60◦, and 75◦. In view of the self-consistency
condition,� � 1, only re/R corresponding to� < 0.5 are shown as results of the formula [see also Fig. 7(a)].
The symbols at (re/R)−1 = 0.3, 0.5, 1, 2, 4, 6, 8, 10 correspond to simulation results.

re/R. Since p �= 0, Eq. (24) yields � → 0 at re/R → 0, which is shown in Fig. 7(a). Then
Eq. (22) is reduced to wk → 1 (k = 1, . . . , n), and Eq. (21) is reduced to fn(w) → f0(w). Since
c = 1 + b and ζ = (1 −�) → 1, we obtain 2 F1(a, b; c; ζ ) → 	(1 − a)	(1 + b)/	(1 − a + b) =
(1 − 2α)	(1 + α)	(1/2 − α)/

√
2. Then Eq. (25) yields p → p0, which is shown in Fig. 7(b). Thus,

when re/R → 0, fn(w) → f0(w), p → p0, and q = q0, which shows that the mapping is reduced
to the sharp-edge model.

The MFE is expected to reach its maximum near the tip of the edge, which corre-
sponds to w 
 wM ≡ (1 + wn)/2 on the w-plane. Then the βM factor is approximated by
βM 
 limn→∞ |1/ fn(wM)|. After some calculations (see Appendix C), we find

βM 
 eα�−α =
(

e

π

2α

α
p

) α
1+α (re

R

)− α
1+α

, (26)

where Eq. (24) is used. Figure 8 shows βM calculated by Eq. (26) as functions of re/R. At the sharp-
edge limit, re/R → 0, as is obvious from Eq. (26), log10 βM is a linear function of log10(re/R) with
a negative slope −α/(1 + α); the result of the sharp-edge model, Eq. (20), is reproduced. As re/R
increases, βM continues decreasing, but the linearity of log10 βM is gradually lost due to the re/R
dependence of p [see Fig. 7(b)]. As re/R further increases, the formula ceases to be applicable. Not
only the assumption � � 1, but also the postulate that βM reaches its maximum in the vicinity of
wM are not valid in these regions, where the analytical approach is not applicable.

3.3. Simulation of round-edge geometry

Simulation results are shown in Fig. 8. Models with slope angles 15◦, 30◦, 45◦, 60◦, and 75◦ and
edge radii (re/R)−1 = 0.3, 0.5, 1, 2, 4, 6, 8, and 10 were simulated, which cross the inside and
the outside of the range of application of the formula, Eq. (26). In the region of re/R ∼ O(10−1),
the simulation result agrees very well with the analytical calculation. On the other hand, the
analytical formula is not applicable in the range re/R ∼ O(1), and the βM factor can only be
calculated by simulation, where it remains decreasing as re/R increases and reaches βM � 1.2
at re/R 
 3.
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4. Discussion

As α → 1/2, our model approaches the well-type pit with an infinite depth. By using the formula
Eq. (26), we find βM = 1.16 × (re/R)−

1
3 for re/R � 1, which agrees well with the simulation result

of the three-dimensional well-type pit model, βM = 1.17 × (re/R)−
1
3 , by Xie and Liepe [22]. The

two-dimensional and three-dimensional models have a good agreement not only in the functional
form ∝ (re/R)−

1
3 but also in the coefficient. This agreement supports the validity of modeling the

pit with the two-dimensional model and shows how effective the formula is. It should be emphasized
that the agreement is not surprising; the magnetic field is enhanced at edges perpendicular to the
direction of the surface magnetic field, and thus, modeling a cross-section parallel to the direction of
the surface magnetic field is enough to describe the MFE, as mentioned in Sect. 2.

Not only the edge radius re/R, but also the slope angle πα has a substantial impact on βM. This
behavior cannot be derived in the framework of the well-type pit model with the fixed slope angle
πα = π/2. As shown in Fig. 8, the dependence on the slope angle becomes large at re/R � 1. Let
us consider the worst case. As discussed in previous studies [16,19], the effective radius of the edge
is limited below by the order of the normal conducting skin depth ∼1 µm for RF frequencies of
O(1)GHz. Thus we can set re = 1 µm as the worst case. For a typical pit size, R ∼102 µm, the
formula, Eq. (26), is available because re/R � 1. Figure 9 shows βM factors in the worst case as
functions of slope angle. The larger the slope angle, the larger the βM. A pit with a slope angle of

90◦ and R = 50 µm can reach βM > 4. Pits with the smaller slope angles, however, cannot yield
such a large value. For example, when the slope angle is 10◦, even in the worst case, βM = 1.4–1.5
for R = 50–200 µm. The previous study on the well-type pit model by Shemelin and Padamsee [19],
which concludes that βM > 4 is the worst case for R = 50 µm, is valid only when the slope angle
is 
90◦. Real pits, which have more gentle slopes in general, yield much smaller βM than the
well-type pit.

The present model and the results for the βM factor are directly applied for the evaluation of the real
pits found on the surface of the cavity. This can be done by extracting the model parameters re, R,
and πα and substituting them into the formula, Eq. (26), or reading from Fig. 8. The parameters can
be extracted from a cross-section of the pit parallel to the surface magnetic field obtained by using,
for example, laser microscopy combined with the replica technique [14,18,31]. Taking Fig. 1(b) as
an example, R 
 1.0 × 102 µm and πα 
 0.21π (38◦) are extracted. re is given by the minimum
value of the curvature radius along the edges. Figure 10 shows the profile and the curvature radius

near the edge C, where the curvature radius is calculated by rcur = −(
1 + h′2) 3

2 /h′′ and h(x), the
polynomial corresponding to the fitting curve. Then re = min[rcur] 
 3.0 × 101 µm is obtained. By
using the formula, Eq. (26), we obtain βM 
 1.5. We should comment on the study by Xie et al. [22],
where βM factors of artificially formed pits on the surface of an SCRF cavity were evaluated based
on the well-type geometry, and substitute re and R extracted from the laser microscopy into their
simulation result, βM = 1.17 × (re/R)−

1
3 . As shown in the figures of Ref. [22], however, the profile

of the artificial pits is not well type. Actually, it has a slope angle 
80◦. Thus an application of
the well-type pit model might overestimate the βM factor of the artificial pit. Since the dependence
on the slope angle becomes significantly large at re/R � 1, the overestimation becomes worse as
re/R decreases. For example, when re/R = 0.01, we obtain βM(80◦) = 4.8 and βM(89.9◦) = 5.3;
the well-type pit model overestimates by 10% in this example.

The viewpoint based on the model formulated in this paper might reduce considerably the time
needed for local mechanical grinding [15,31–33]; the grinding removes pits one by one and thus
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Fig. 9. βM factors in the worst case (re = 1 µm) as functions of slope angle. The three curves correspond to
R = 200 µm, 100 µm, and 50 µm, respectively, where the formula, Eq. (26), is available when re/R � 1.

Fig. 10. Profile and curvature radius near the edge C of Fig. 1(b). The solid curve represents the fitting curve of
the profile data extracted from laser microscopy. The red dashed curve represents the curvature radius calculated
from the fitting curve.

takes a long time if there are many pits. Adopting our model, we can evaluate the βM factors of pits
by using experimentally observed model parameters. Then it becomes possible to select only those
with large βM. The time required for the curing of the SCRF cavity should be reduced, in particular
for the case when a lot of pits with shallow slope angles exist.

It is important to note that the present model and results are applicable not only to pits on current
SCRF cavities based on the niobium technology, but also to pits on future SCRF cavities based on new
technologies such as a multilayer SC [34,35] or an alternative bulk SC material [36,37]. Furthermore,
the present model and results can also be applied to pits on normal conducting cavities, although the
motivation of this study originated from one of the challenges that SCRF technology has been facing.

In this paper, the relation between the βM factor and the geometry of a pit is analyzed. This is,
however, merely the first step to understanding quenching due to a pit. Thermal calculations taking
the magnetic field distribution on the surface into account are the next step.
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5. Summary

The magnetic field enhancement effect is the key to understanding the thermal magnetic breakdown
triggered by a pit. As a model of the magnetic field enhancement at a pit, the well-type pit model had
been studied strenuously so far. Real pits found on cavities, however, generally have gentle slopes,
as shown in Fig. 1. The magnetic field enhancement at a pit with a realistic slope angle had not been
well understood.

A two-dimensional model is enough to describe the magnetic field enhancement at pits, because
only the edges perpendicular to the direction of the surface magnetic field are essential for the
enhancement. In this paper, we studied a two-dimensional model, shown in Fig. 2, that can describe
a pit with an arbitrary slope angle. The pit geometry is parametrized by re, R, and πα, where re is
the radius of the edge, R is half the width of the pit aperture, and πα (0 < α < 1/2) is the slope
angle. To evaluate the βM factor based on this model, an analytical method was developed based on
the conformal mapping. A simulation method that utilizes a simulation code of the “electrostatics”
problem was also developed. By using these analytical and simulation methods, the βM factor of a pit
with a slope angle was evaluated. An extremely useful formula, Eq. (26), was analytically derived,
and it agreed well with the simulation result. The results are summarized in Fig. 8.

We confirmed, at α → 1/2, that the formula reproduces the three-dimensional simulation results
for the three-dimensional well-type pit model. This reflects the validity of modeling the pit with a
two-dimensional model. Then the impact of the slope angle on the βM factor were discussed, which
could not be considered in the framework of the well-type pit model. We found that a pit with a gentle
slope angle yielded much smaller βM than that of the well-type pit; a pit with a slope angle = 10◦

and R = 50–200 µm yields βM = 1.4–1.5, even at the worst case. The previous study [19], which
concluded that a pit with R = 50 µm can reach βM > 4 at the worst case, is valid only when the pit
has a slope angle 
90◦. For the application of the present model, βM factors of real pits found on
cavities can be evaluated by extracting the model parameters from pit profiles and substituting them
into the formula or Fig. 8. The above application allows us to selectively remove pits with large βM

factors and might reduce time to cure cavities by local mechanical grinding. The present model is
applicable not only to the currently developed niobium cavities, but also to those made of a multilayer
superconductor or an alternative material, and even to normal-conducting RF cavities.
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Appendix A. Derivation of p0 and q0

The map z = F(w) that connects Fig. 5(a) and (b) is given by Eqs. (5) and (13):

z = P
∫ w

0
dw

(
w2 − 1

)α
w−2α + Q. (A1)

B′ on the w-plane is mapped into B on the z-plane. Substituting z = −i R tanπα and w = 0 into
Eq. (A1), we find −i R tanπα = q0 R, or

q0 = −i tanπα. (A2)

Similarly, A′ on the w-plane is mapped into A on the z-plane. Thus, substituting z = R and w = 1
into Eq. (A1), we find

R = p0 R
∫ 1

0
dw

(
w2 − 1

)α
w−2α − i R tanπα,
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or

1

cosπα
= p0

∫ 1

0
dw

(
1 − w2)αw−2α,

where 1 + i tanπα = eiπα/ cosπα and (w2 − 1)α = eiπα(1 − w2)α are used. The integral on the
right-hand side can be evaluated by replacing w with t ≡ w2:

1

cosπα
= p0

2

∫ 1

0
dt (1 − t)1+α−1t

1
2 −α−1

= p0

2

	(1 + α)	
(1

2 − α
)

	
(
1 + 1

2

)
= p0

α	(α)	
(1

2 − α
)

√
π

.

Then we obtain

p0 =
√
π

α cosπα 	(α)	
(1

2 − α
) . (A3)

Appendix B. Derivation of p, q, and �

The map z = F(w) that connects Fig. 6(a) and (b) is given by Eqs. (5), (21), and (22):

z(w) = pR
∫ w

0
dw

(
w2 − w2

n

) α
2n

(
w2 − 1

) α
2nw−2α

n−1∏
k=1

(
w2 − w2

k

) α
n + q R. (B1)

B′ on the w-plane is mapped into B on the z-plane. Thus, substituting z = −i R tanπα and w = 0
into Eq. (B1), we find −i R tanπα = q R, or

q = −i tanπα. (B2)

A′
1 on the w-plane is mapped into A1 on the z-plane. Substituting w = w1 into Eq. (B1), we find

z(w1) = pR
∫ w1

0
dw fn(w)+ q R = z(1)+ pR

∫ w1

1
dw fn(w).

Since z(w1)− z(1) = 2re sin(πα/2n)ei(πα− πα
2n ), we obtain

2
re

R
sin

πα

2n
= p

∫ w1

1
dw

(
w2

n − w2) α
2n

(
w2 − 1

) α
2nw−2α

n−1∏
k=1

(
w2

k − w2) αn . (B3)

When � � 1, the above integral can be performed. Substituting Eq. (22) and w = 1 + ξ (|ξ | � 1)
into Eq. (B3), we obtain

2
re

R
sin

πα

2n
= p 2α

∫ 2�
n−2

0
dξ

(
n + 2

n − 2
�− ξ

) α
2n

ξ
α
2n (1 + ξ)−2α

×
(

2�

n − 2
− ξ

) α
n

n−1∏
k=2

(
k + 1

n − 2
�− ξ

) α
n
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 p 2α
(

1

2

2�

n − 2

) [(
n + 2

n − 2
�− ξ

) α
2n

ξ
α
2n (1 + ξ)−2α

×
(

2�

n − 2
− ξ

) α
n

n−1∏
k=2

(
k + 1

n − 2
�− ξ

) α
n
]∣∣∣∣∣

1
2

2�
n−2

= p 2α
(

�

n − 2

)1+α
(n + 1)

α
2n

(
1 + �

n − 2

)−2α

	(n)
α
n ,

where
∏n−1

k=2 k = (n − 1)! = 	(n) is used. At n → ∞, this equation is reduced to

re

R
πα = p 2α�1+αe−α, (B4)

where 	(n)
1
n /n → e−1 is used.

A′
0 on the w-plane is mapped into A0 on the z-plane. Substituting z = [R tanπα − re(1 −

cosπα)]/ tanπα − ire(1 − cosπα) and w = 1 into Eq. (B1), we find

R tanπα − re(1 − cosπα)

tanπα
− ire(1 − cosπα) = pR

∫ 1

0
dw fn(w)− i R tanπα,

or

R tanπα − re(1 − cosπα)

R sinπα
= p

∫ 1

0
dw

(
w2

n − w2) α
2n

(
1 − w2) α

2nw−2α
n−1∏
k=1

(
w2

k − w2) αn . (B5)

When � � 1, wk (k = 1, . . . , n) can be approximated by 1 + wn/2 = 1 +�/2. Thus, Eq. (B5)
becomes

1

cosπα
− re

R

1 − cosπα

sinπα

 p

∫ 1

0
dw

[(
1 + �

2

)2

− w2

]α
w−2α

= p

2

(
1 + �

2

)2α ∫ 1

0
dt (1 − ζ t)αt−α+ 1

2 −1(1 − t)0

= p

2

(
1 + �

2

)2α
	(b)	(c − b)

	(c)
2 F1(a, b; c; ζ ),

where a = −α, b = −α + 1
2 , c = 1 + b, ζ = (1 +�/2)−2 
 (1 −�), and 2 F1(a, b; c; ζ ) is the

Gaussian hypergeometric function. By using the relations 	(c − b) = 	(1) = 1 and 	(c) =
	(1 + b) = b	(b), the condition is further simplified:

1

cosπα
− re

R

1 − cosπα

sinπα
= p

1 + α�

1 − 2α
2 F1(a, b; c; ζ ). (B6)

Appendix C. Derivation of Eq. (26)

Substituting w = wM ≡ (1 + wn)/2 into

fn(w) = (
w2 − w2

n

) α
2n

(
w2 − 1

) α
2nw−2α

n−1∏
k=1

(
w2 − w2

k

) α
n ,

with the assumption � � 1, we obtain

fn(wM) 
 2α(−1)
α
2n

(
�

n − 2

)α (
1 + n

2

) α
n

∏n
k=0

(n
2 − k

) α
n(n

2

) α
n

(−n
2

) α
n
.
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Then, at n → ∞, we obtain

lim
n→∞ | fn(wM)| = 2α lim

n→∞

(
�

n − 2

)α ∣∣∣∣∣
n∏

k=0

(n

2
− k

) α
n

∣∣∣∣∣ .
By using the relation∣∣∣∣∣

n∏
k=0

(n

2
− k

)∣∣∣∣∣ =
∣∣∣∣n

2
· n − 2

2
· · · 1

2
· −1

2
· −3

2
· · · −(n − 2)

2
· −n

2

∣∣∣∣ =
n−1

2∏
k=0

(
1

2
+ k

)2

,

and the definition of the Gamma function in the infinite-product form,

	(1/2) = lim
m→∞

m
1
2 m!∏m

k=0

(1
2 + k

) ,
we find limn→∞ | fn(wM)| = e−α�α and thus

βM 
 lim
n→∞

∣∣∣∣ 1

fn(wM)

∣∣∣∣ = eα�−α. (C1)
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