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Chapter 1

Introduction

FEverything in this book may be wronyg.

Richard Bach

This document presents a written part of an “Habilitation a diriger des recherches”

at Paris Sud university. Selected topics on the LHCb electromagnetic calorimeter

construction and physics analysis are discussed.

Two main topics are discussed with the first one focusing on design and construc-
tion of the LHCb electromagnetic calorimeter detector modules; and the second one
addressing measurements of charmonia production cross-section using charmonia decays
to hadronic final states, and measurement of branching fractions of B? meson decays to
¢ mesons. The choice of the subjects follows two major principles observed in many
previous Ph.D. thesis and HDR thesis topic selections, an archeological principle and a

principle of combining the least correlated subjects.

Despite the fact, that the two parts center around the LHCb experiment at CERN,
the principle of combining the least correlated subjects is obeyed since neither the
reconstruction of charmonia production via their decays to hadronic final states, nor
the reconstruction of B? meson decays to ¢ mesons, in LHCb, rely on performance or

operation of the LHCb electromagnetic calorimeter [1

!Minor effects, such as the use of information from the electromagnetic calorimeter in hadronic

trigger operation, or triggering by electromagnetic particles, can be neglected.

15



16 CHAPTER 1. INTRODUCTION

The archeological principle assumed going back in time by uncovering more and more
ancient layers of calorimeter construction. While within the previous LHCb-related
HDR works at LAL Frédéric Machefert and Patrick Robbe discussed the front-end
electronics and trigger development, as well as some operational aspects of the LHCb
calorimeters, an early period, mostly before 2005, of design, construction and quality
control of the electromagnetic calorimeter detector units, is addressed by the present

writing.

Working for the LHCb electromagnetic calorimeter project, I was a part of ITEP
Moscow and then CERN teams, closely working with LAL Orsay and LAPP Annecy
groups on the electromagnetic calorimeter construction. In view of the construction
of electromagnetic calorimeter detector part, discussed below, and in addition to the
pleasure of sharing the work with many colleagues and friends, a contribution of several
students from Moscow ITEP and MIPT, as well as CERN summer students should be
acknowledged in particular to some early test beam studies of calorimeter prototypes,
operation of the test setup that used cosmic rays, and mounting of the optical fibers of
the calorimeter monitoring system. Charmonia production measurements and studies of
BY meson decays to ¢ mesons were attacked together with other physicists at LAL and
became subject of several internships for students from Paris Sud and Kiev T.Shevchenko

universities.

The document is organised as follows. After the introduction, in chapter [2|the LHCb
experiment is described, addressing the experiment operation at the LHC (section ,
physics program (section , and detector issues (section describing reconstruction
of tracks and vertices, particle identification, trigger and plans for detector upgrade.
Then, in chapter [3| the LHCb calorimeters are adressed in section [3.1] Design, con-
struction, quality control and installation of of the LHCDb electromagnetic calorimeter
detector is discussed in greater detail in section [3.2] Chapter [ is devoted to charmo-
nium production studies (section using decays to hadronic final states in the LHCb
experiment. Both prompt production (section and inclusive charmonium yield from
b-hadron decays (section are addressed. Mass of the 7. state is measured using
low-background sample of charmonia from b-hadron decays in section [£.4] In chapter
measurements of branching fractions for B%-meson decays to ¢ mesons, B? — ¢¢
(section and BY — ¢p¢ (section [5.2)), are discussed. Finally, main results are
reminded in chapter [6]



Chapter 2

The LHCDb experiment

Vast perspective, discovering from the hill,

where Russian batteries defending the bridge were based,
suddenly became lost behind a muslin curtain of slanting rain,
then suddenly expanded, and by the rays of the sun, far

and clearly, objects became visible, as if varnished.

Lev Tolstoi

2.1 The LHCDb experiment at the LHC

ALICE, ATLAS, CMS and LHCb are the four big experiments hosted by Large Hadron
Collider (LHC) at CERN. Their positions are indicated on the schematic view of the
CERN accelerator complex on Fig. The LHC machine provides collisions of proton

beams for these four major experiments.

Protons are successively accelerated by LINAC, PS Booster, PS and SPS. The
proton bunches are injected in LHC from the SPS ring at the energy of 450 GeV.

LHC is a 27 km powerful circular accelerator, employing superconducting magnets.
The LHC machine beams operated first at the injection energy of 450 GeV in 2009, at
the beam energy of 3.5 TeV in 2010 and 2011, and with the beam energy of 4 TeV in
2012. The machine is being upgraded to provide a beam energy of 6.5 TeV, close to the

17



18 CHAPTER 2. THE LHCB EXPERIMENT

CERN's Accelerator Complex

LHC Norh Area
LY

ALICE - LHCh

Figure 2.1: Accelerator complex at CERN

design value of 7TeV.

Unlike ATLAS and CMS experiments, which are using clean pre-defined event signa-
tures and high trigger thresholds for their core physics program, the LHCb experiment
aims at collecting data at reduced luminosity having a limited number of pp interactions
per bunch crossing. The LHCb experiment operates at a reduced LHC luminosity of
2 — 5 x 1032 ecm 257!, tuneable by defocusing or displacing beams. The initial intention
was to maximize the number of beam crossings with a single pp interaction, however
reliable and robust experiment operation and efficient exploitation of the collected data
made it possible to increase the number of pp interactions per beam crossing. A natural
limit on the luminosity increase comes when an average minimum distance between
pp collision vertices in the same beam crossing becomes comparable to the average
b-hadron travel distance of about 10 mm. A levelling procedure, based on the beam
displacement, devoloped for the LHCb experiment, allowed to deliver to LHCb stable
optimal luminosity over almost all the LHC fill duration (Fig. [2.2]). Typical lifetime of
the fill in a stable LHC operation mode reaches approximately 10 hours. When the

luminosity delivered to ATLAS and CMS experiments becomes too low to continue
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Figure 2.2: Luminosity levelling at the LHCb beam interaction point

THE LHCB EXPERIMENT AT THE LHC

data taking, the beam is dumped.
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The LHCb experiment recorded the integrated luminosity of about 38 pb~! in 2010,
1.1 fb=! in 2011, 2.1 fb~! in 2012 (Fig. [2.3). LHCD efficiently recorded the luminosity

Integrated Luminosity (1/fb)

LHCb Integrated Luminosity pp collisions 2010-2012
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1.8 ......

i
01/04

Delivered in 2012 (4 TeV): 2.209 /fb
Recorded in 2012 (4 TeV): 2.082 /fb
Recorded in 2011 (3.5 TeV): 1.107 /fb
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2712

Figure 2.3: Integrated luminosity recorded by the LHCb experiment during the 2010, 2011
and 2012 data taking periods. For the 2012 data, the luminosity recorded by the LHCb

experiment is compared to the luminosity delivered by the LHC machine
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delivered by the LHC machine, less than 7% inefficiency are explained by the chart on

Fig. 2.4

LHCb Efficiency breakdown pp collisions 2010-2012

[ FULLY ON: 93.05 (%)
[ HV: 0.54 (%)

|:| VELO Safety: 0.85 (%)
I DAQ: 2.85 (%)
Il DeadTime: 2.88 (%)

Figure 2.4: The LHCD data taking efficiency breakdown for the period from 2010 to 2012

While the LHC machine operates at 40 MHz and the design separation between
the bunch crossings is 25 ns, until now a 50 ns minimum separation between the bunch
crossings was used. The tests have been accomplished and experiments prepare to take
data with 25ns bunch crossings separation. This requires to minimize dead time of the
individual detectors and reduce spill-over between the data samples corresponding to

close bunch crossings.

2.2 Physics with LHCDb

LHCDb is an experiment dedicated to precision studies of rare phenomena in b and
¢ decays in order to precisely constrain the Standard Model (SM) parameters and
search for phenomena non-explainable within SM. Through quantum loop processes,
potentially involving new particles or new couplings, bottom and charm quark systems
are sensitive to energy scales far beyond the centre-of-mass energy of the LHC. The
potential of the heavy flavour approach to discover signatures of physics beyond the
SM and to distinguish between different new physics scenarios, is thus complementary
to the direct searches performed by the ATLAS and CMS experiments.

The LHC is presently the richest source of ¢ and b hadrons, reconstructed by all
the LHC experiments, and LHCb is designed to fully exploit this potential. Assuming
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oy; = 1.04 mb and 0.z = 8.31 mb cross sections, about 5 x 10' bb pairs and 3 x 102 cc
pairs will be produced per 1 fb~! of integrated luminosity at a centre-of-mass energy
Vs = 14TeV. At lower LHC energies heavy flavour production rates are reduced, and
about 3 x 10! bb pairs and 2 x 102 ¢¢ pairs per 1 fb~! were produced at /s = 7TeV.
The LHC provides a powerful tool for testing quantum chromodynamics (QCD) at high

energies.

The LHCDb experiment performs systematic studies of heavy flavour production and
spectroscopy. Open heavy flavour production has been studied at a centre-of-mass
energy /s = 7TeV for B®, B* and B? mesons[] [1], promptly produced charm hadrons,
D° D%, D}, D** mesons and A} baryons [2]. Production cross-section has also been
measured for B meson [3]. These measurements are in general successfully described by
well-developed tools, such as fixed order with next-to-leading-log resummation (FONLL)
and next-to-leading order with parton showering (POWHEG or MCatNLO) with an

overview given in Ref. [4].

The theory is less predictive in describing quarkonia production, and none of the
available approaches can reproduce in a consistent way the experimental results on
both cross-section and polarisation [5]. The LHCb experiment studied production
of JP® = 17~ charmonium states, J/i) and ¥(2S) in pp collisions at a centre-of-
mass energy /s = 2.76 TeV [6], /s = 7TTeV [6], /s = 8 TeV [7], and in proton-lead
collisions at /sy = 5TeV [§]. The next-to-leading order (NLO) non-resonant QCD
calculations are in general able to provide a satisfactory agreement with the observed
values of the production cross-section. The production of x. states has been studied
using their radiative decays to J/i [9H11], using converted and non-converted photons.
Reconstruction of low-energy photons reduces the experimental precision. The NLO
NRQCD calculations [12] describe the experimental results in the region of large pr
values. Charmonium states production, prompt production in partonic interactions and
production in b-hadron decays, using charmonium decays to hadronic final states, are
addressed in chapter [} Similar studies of bottomonia production [7,[13H15] have been
performed, and the measurements are successfully described by the direct next-to-next-
to-leading-order NNLO* colour-singlet (CS) model [16].

Over two years of operation, LHCb has observed several new heavy flavour states,

and decay modes, measured masses and lifetimes with best-to-date or competitive

!'Throughout the document, charge-conjugate states are equally implied.
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precision, provided a decisive analysis of the angular distribution in Bt — X (3872)K*
decays to measure the quantum numbers of the X(3872) state to be JF¢ = 17+

supporting a DD* molecular interpretation.

One of the main task of the LHCb experiment is to systematically study CP-
violating effects in the b and c-hadrons. LHCb delivered the world most precise
measurements in the related effect of flavour mixing, in both B® and BY systems.
An important strategy to search for physics effects beyond SM is to compare tree-
mediated processes to those involving quantum loops. Measurement of the angle v of
the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle is a promising candidate
to search for physics beyond SM. LHCb has recently provided the most precise single
measurement of the angle v of the unitarity triangle, using tree-level B~ — Dh™ decays,
v =67+ 12° [17]. LHCDb provided new important measurements of the CP-violating
phase ¢,, which is very small in SM, ¢, = —0.0363 £ 0.0017 rad, via B — ¢¢ [18] and
BY — JiphTh™ [19] decays, and a constraint from the measurement of B? — KK~
effective lifetime [20]. Comparison between ¢, measurements using tree-level and
penguin processes is important to disentangle potential new physics effects entering
quantum loops. In addition LHCDb is performing searches for CP-violation in charm
sector, where interpretation of the observed CP-violating effects at the percent level
is more direct. A tension observed between the experimental measurements and the
SM value in the analysis using D° — K+*K~ and D° — 777~ decays, is no longer
present [21]. Increased statistical samples, and considering other modes, in particular
those that separate contributions from direct and indirect CP-violation, will provide a

new insight on potential presence of effects beyond SM.

LHCDb performs searches for very rare decays, where new physics models predict
observables, that are significantly different from the SM expectations. The B —
wp decay is a pure loop process, helicity and CKM suppressed, with well-predicted
branching fraction of B(B? — pTu~) = (3.56 £ 0.30) x 107 [22-24]. However large
enhancements can occur in supersymmetry and alternative new physics models. LHCb
has observed the B? — utpu~ decay for the first time and measured a branching fraction
B(BY — ptp~) = (2.9%]5) x 107 [25] to be consistent to the SM prediction, ruling
out the minimal sypersymmetric extention to the SM with a light pseudoscalar Higgs
at large tanf. An event with fully reconstructed B? — p*u~ candidate is shown on

Fig. 2.5 Clear separation between the pp interaction vertex and the vertex formed by
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two muon candidates is visible on the zoom to the vertex region in the bottom left

part of the plot. LHCb measured forward-backward asymmetry zero-crossing point

B? — ptp~ AT LHCB

} E{__

All reconstructed tracks

e

Only well reconstructed tracks with p, > 500 MeV

pp collision

Figure 2.5: LHCb event with fully reconstructed BY — p*pu~ candidate

@ = 4.9+0.9GeV?/c* of the rare decay mode B® — K*Ou*p~, consistent with the
SM predictions, sensitive to new physics contributions and allowing to distinguish
between them. Another example is the search for rare D° — u*pu~ decay, dominated by
long-distance contributions from the 7+ intermediate state, helicity and GIM suppressed,
with an expected SM branching fraction below 6 x 1071, LHCb set an upper limit
on B(D® — putp~) < 7.6 x 1072 at 95% confidence level [26], two orders of magnitude

lower than previous searches.

LHCb is well suited to study heavy flavour physics. It benefits from good track and
precise vertex recontruction, powerful particle identification, large rapidity coverage,
high statistical yields, and a robust trigger. However, analysis has to cope with high
event multiplicities at the LHC environment, forward detector geometry which prevents

full event reconstruction, and a trigger compromise between b and ¢ physics targets.



24 CHAPTER 2. THE LHCB EXPERIMENT

2.3 The LHCDb detector

2.3.1 Detector outline

The LHCD detector (Fig. is a single-arm forward spectrometer, installed in the
former DELPHI cavern, with the collision point of the proton beams displaced by about
a half-cavern length with respect to the ete™ collision point, in order to accomodate
forward geometry adopted to the high energy proton beams collisions. The size of the
existing DELPHI cavern limited the LHCb experiment to a single-arm solution, unlike
the double-arm BTEV project [27] at FNAL, terminated by the US government in 2005.

The evolution of the LHCDb detector concept can be seen by comparing the LOI
detector design [28], the LHCDb version of technical proposal [29], technical design
reports [30H39], the reoptimized LHCD design [40] and actual detector performance [41].
Major LHCb detector evolution occured, minimizing amount of material in front of
the electromagnetic calorimeter by reducing the number of tracking stations, and in
particular removing the stations inside the magnet; introducing fully silicon tracking
station upstream the magnet and leaking magnetic field upstream to provide momentum
measurement early at the trigger level using upstream tracking and following re-design,
a 90 degrees rotation, of the RICH1 detector; trigger reoptimization and introducing

the deferred high level trigger.

At LHC energies, production of b and b quarks is highly correlated with respect to the
boost (Fig. , so that if a b quark enters the detector acceptance, the corresponding b
quark products are also captured with high probability. With only about 4% solid angle
instrumented, LHCb captures about 40% of the heavy flavour production cross section.
This proves the high efficiency of a single arm spectrometer concept, where only a factor
2 is lost compared to a 47 geometry. Moreover owing to better acceptance in forward
direction, a factor 2 higher bb cross section is achieved at the LHCb compared to the
ATLAS or CMS experiments.

The LHCb acceptance is unique amongst the LHC experiments, provides comple-
mentary production studies to the ATLAS and CMS experiments (Fig. 2.8), and gives

access to valuable QCD studies in the forward region.

The LHCb detector (Fig. covers 10-300 (15-250) mrad acceptance in x(y)
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Figure 2.6: Side view of the LHCb detector (magnetic field lines are vertical) from inside of

the LHC machine loop
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Figure 2.7: Polar angle distribution of the b and b hadrons produced at the LHC

il
e CMS

Figure 2.8: Acceptance comparison for the CMS and LHCb experiments at the LHC

projections. A high precision tracking system comprises a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift-tubes placed downstream. The combined tracking system
has a momentum resolution Ap/p that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c,
and an impact parameter resolution of 20 um for tracks with high transverse momentum.
Charged hadrons are identified using two ring-imaging Cherenkov detectors. Photon,
electron and hadron candidates are identified by a calorimeter system consisting of

scintillating-pad and pre-shower detectors, an electromagnetic calorimeter and a hadronic
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calorimeter. Muons are identified by a muon system composed of alternating layers of
iron and multiwire proportional chambers. The LHCb trigger consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a
software stage which applies a full event reconstruction. In the following reconstruction
of tracks and vertices, particle identification, trigger and foreseen detector upgrade for

operation at higher luminosity, are discussed.

2.3.2 Reconstruction of tracks and vertices

The LHCb tracking system aims at efficient tracking providing high momentum and
impact parameter resolution for charged particles, precise reconstruction of the proton-
proton collission point (primary vertex), and vertices, corresponding to heavy flavour
hadrons decays via weak interaction, providing excellent decay time resolution capable
of resolving the fast oscillations of the B? meson [42]. The LHCb tracking system
comprises silicon stations of VErtex LOcator (VELO), Trigger Tracker (TT) station
upstream the magnet, and the three tracking stations T1-T3 downstream the magnet,

and warm dipole magnet with a bending power of 4 Tm.

Silicon micro-strip technology is employed in VELO, TT and inner regions of T1-T3
tracking stations (IT), while straw tubes are used for large area outer regions of the

T1-T3 stations. The total sensitive area of silicon amounts to approximately 12 m?.

The VELO system comprises 21 stations of two semicircular silicon sensors (Fig.
each yielding a polar coordinate, radius r or azimuthal angle ¢, measurement. VELO is
arranged in two retractable detector halves in order to provide safe conditions during
injection and until stable beams are achieved by the LHC machine. At closed position
during operation, the sensitive area is as close as 8 mm to the beam axis, while the
sensors are 30 mm away during injection. VELO is a silicon microstrip detector of
a 180k readout channels, installed inside the vacuum vessel (Fig. around the
interaction region [30]. The modules are built from 300 pm thick silicon sensors with
the pitch varying from 40 to 120 pm depending on radius (Fig. [2.11] left). The sensors

are mounted on a carbon fibre support.

Both detector halves are operated in a secondary vacuum, separated from the

primary vacuum of the LHC beam by a 300 pm thick Aluminium foil. The foil also
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Figure 2.10: Vacuum vessel for VELO

insulates the VELO sensors from the radio frequency pick-up of the proton beams. The

system is cooled maintaining the sensors at a temperature of -7°C.

The VELO detector allows to achieve spatial resolution down to about 4 um, and
excellent primary vertex reconstruction precision of o, = 0, = 13 um and o, = 69 pum
for a vertex defined by 25 tracks. Impact parameter resolution was obtained to be
orp = 11.6 + 23.4/pr pm (Fig. , and is dominated by the effect of material before
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Figure 2.11: Left: the VELO hybrid with silicon sensor and readout chips; right: sensor ladder

for TT and IT with electronics hybrid, low mass Kapton cable and silicon sensors
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Figure 2.12: Impact parameter dependence on the track transverse momentum

the first measured point. The data and simulation are well understood and agree
with each other. VELO provides excellent proper time resolution of about 40 fs, as
determined from numerous b-hadron lifetime measurements [43-49).

Being positioned close to the interaction region and to the beam axis, VELO is
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exposed to high particle fluence. Irradiation of the VELO sensors is non-uniform and
varies with radius and z-position. The innermost sensitive area of the station upstream
of the interaction region is exposed to the range of fluences of about 60 x 102 1 MeV
n.,/ cm?. Consequent effects of leakage current and change of effective depletion

voltage are well understood and allow efficient operation to an integrated luminosity of
9 fb~1 [50].

The LHCb VELO is small, having 0.2 x 10° channels, compared to the ATLAS Pixel
and SCT strips vertex detectors [51,52] with 82 x 10% and 6 x 10° channels, respectively,
and CMS Pixel and Strip vertex detectors [53,/54] with 66 x 10% and 10 x 10° channels,
respectively. However, the LHCb VELO is more precise, approching closer the beam
line, 0.8 cm against 5.1 cm and 4.4 cm for the ATLAS and CMS pixels, successfully

operating in challenging radiation environment, and plays important role in the trigger.

In addition to VELO, the LHCb tracking system comprises four planar tracking
stations, trigger tracker (TT) upstream of the dipole magnet and T1-T3 stations
downstream of the magnet. While TT and the region close to the beam pipe of T1-T3

employ silicon microstrips, the straw tubes are used for the outer region of T1-T3.

TT is a silicon strip detector covering full acceptance upstream the magnet, with
a total surface of 8 m? of 500 um thick silicon, 144k readout channels [32]. T1-T3
stations also exploit silicon strips for inner part (IT), covering regions around the beam
pipe with the highest particle fluence, and employ 129k readout channels |32]. These
detectors are pT-on-n micro-strip detectors with the sensors operating at a temperature
of 8°C. Within each detector station, four detector planes are arranged with a tilt of 0°,
+5°, -5°, 0° with respect to the vertical axis. The sensor thickness of 500 um for TT
and 320 pum and 410 pm for IT, together with a pitch of 183 um for TT and 198 pum for
IT, is used. The sensors are mounted on a carbon fibre support, hosting also electronics
hybrid and low mass Kapton cable (Fig. right).

More than 99% and 98% of channels are operational in the TT and IT, respectively,
with a hit efficiency of more than 99%. The hit resolution, including alignment effects,

was found to be about 61 ym for TT and 54 pm for IT.

Outer part of the T1-T3 tracking stations (OT), 5 x 6 m? is covered by 12 double
layers (four stereo layers per each station) of long straw tube chambers with 54k readout
channels [31]. The straw tubes are filled with Ar/CO,/0O, : 70/28.5/1.5 gas mixture,
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where a small percentage of oxygen was added to reduce aging effect caused by a
wrong plastifier used during the chamber manufacturing. A high single hit efficiency
averaged over the detector module was found to be 98.8%, together with high spatial
resolution of better than 200 pm . During the operation 0.4% channels were found
to be dead or noisy. Time calibration was performed four times a year with all the
channels stable to 0.5 ns. No OT damage caused by irradiation have been observed

so far.

The warm dipole magnet (Fig. [2.13)) provides an integrated field of 4 Tm. The

dipole was built in Saint-Petersburg and installed in 2005. Several measurements of

Figure 2.13: The LHCb magnet

the 3D mapping of magnetic field have been performed, and the results have been
introduced in the simulation. Effect of the limited knowledge of the magnetic field
together with a larger effect from remaining misalignment is evaluated by comparing
reconstructed mass value and resolution for particles of different masses to their known
values . The measure of the above effects is a required correction to decay product
momenta, o ~ 0.0003. A difference between the « coefficients for the J/i) meson mass
reconstructed via its decay J/ip — pp~ for the two different magnet polarities is below

0.0001. Additional momentum scale calibration allows to achieve a residual a values
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below a ~ 0.00003 in the range between kaon masses and the mass of 7°(35). The
magnetic field is regularly reversed to reduce systematic error in many CP asymmetry

studies.

The LHCb tracking system provides high tracking efficiency, above 95%, over wide
range of momentum and pseudo-rapidity. Tracking efficiency results are consistent for

both magnet polarities, for positively and negatively charged tracks.

Vertex reconstructed precision using the LHCb tracking system is illustrated by the

reconstruction of rapid BY Bl-oscillations [59]. Fig. [2.14]shows decay time distribution

2 i e Tagged mixed
— = o Tagged unmixed
o /
E 400}~ ¢ — Fit mixed
§ | | By, Fit unmixed
m e
200
O I . . . . . . . ] . . . . . . . .
0 1 2 3 4

Decay time ps

Figure 2.14: Decay time distribution for B? candidates tagged as mixed (different flavour at
decay and production; red, continuous line) or unmixed (same flavour at decay and production;
blue, dotted line). The data and the fit projections are plotted in a signal window around the
reconstructed BY mass of 5.32 — 5.55 GeV/c?

for BY candidates, reconstructed via B? — D7, with the D decaying via D; — ¢m~,
D; - KK, D; — KTK~7~ nonresonant, D; — K n"n~ and D; — 7 n'7n",

tagged as mixed or unmixed.

The tracking system provides a 0.4% momentum resolution with an efficiency of
94% for fast p > 10 GeV/c tracks and a ghost rate of a 3% for tracks with transverse
momenta pr > 0.5 GeV/c.

The LHCD tracking system was aligned [60] independently from VELO, which was

used as a constraint. The DY — K7t candidates with mass constraint and other
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tracks were used. However, after alignment a particle momentum calibration residual
of up to 0.03% was still present, while in order to obtain precise mass measurement a
residual below or about 0.01% was needed. This was achieved by applying a momentum
scale calibration [58]. In the decay BT — J/¢) K™, a mass constraint was applied to
the J/i candidate, and kaon momentum was corrected such that the B mass matches
the known [57] value. This procedure results in at most a few per mille correction.
Momentum scale calibration allowed the LHCb experiment to produce the most precise
mass measurements [58,61] to date for b-baryons, X, AY, Q, and Z). Momentum scale
calibration was also important to determine the mass difference between the J/b and

7. charmonium states, as discussed in section [4.4}

2.3.3 Particle identification

Charged hadron identification or separation between p, K+ and 7+, and in particular
rejection of pions - most abundant particles in the event - at a percent level, in the
range 2-100 GeV /c is essential to reconstruct b and c-hadron decays and perform flavour

tagging, in particular for CP asymmetries measurements.

A system of two ring imaging Cherenkov (RICH) detectors [34] is used for charged
hadron separation. Aiming at identification of lower momenta particles, the RICH1
detector is installed upstream of the magnet. It covers a momentum range from 1 to
about 70 GeV/c in the 25 to 250 (300) mrad vertical (horizontal) acceptance, and
uses silica aerogel and CyFjy as radiators. RICH2 employs C'F} radiator, provides
identification for particles of 15 to about 100 GeV/c momenta in the 15 to 100 (120)
mrad vertical (horizontal) acceptance, and is positioned downstream of the magnet.
Fig.|2.15|shows silica aerogel inside a gas tight box flushed with CO, to avoid performance

degradation from exposure to C4Fy, (right).

Cherenkov light, produced in radiators, is guided to the photodetectors, positioned
outside the LHCb acceptance in a tolerable radiation zone, using a system of large,
precise and radiation resistant mirrors, adding minimum possible material to the budget
in front the electromagnetic calorimeter. The precision of a few mrad resolution is
preserved. The RICH1 employs lightweight carbon fibre spherical mirrors (Fig. [2.16a)
adding about 1.5% X,. The RICH2 acceptance is significantly larger, and each spherical

mirror (Fig. [2.16b) combines 21 glass hexagonal segments, while flat mirrors, directing
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Figure 2.15: Silica aerogel inside a gas tight box flushed with CO2 to avoid performance

degradation from exposure to C4F1q

S
.
=

Figure 2.16: Carbon fibre mirrors of RICH1 (left) and segmented glass mirrors of RICH2
(right)

light to the photodetector planes combines 20 square glass segments.

Both RICH detectors use a dedicated photon detector, a hybrid photodiode (HPD), a
tube of 8 cm diameter, with over 1000 pixels sensitive to single photoelectrons (Fig. [2.17
left). The HPD is a dedicated development for the LHCb RICH detectors and CMS
HCAL. The idea of this new photon detector is to accelerate a photoelectron in a strong
field, voltage of 20 kV, creating then about 5000 electron-hole pairs in the silicon sensor.
Amplification in one step implies good energy resolution and a possibility to distinguish

single photoelectrons. However, under high applied voltage, ion feedback can become
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Figure 2.17: Left: hybrid photodiod; right: shielding for RICH1 photodetectors

an issue to maintain good quality vacuum. HPD detectors are enclosed in the shielding
housing to suppress remaining magnetic field (Fig. right). A 10 MHz readout
electronics is embedded in the LHCb HPD detectors. In order to be able to resolve two
consequtive bunch crossings, the HPD will be replaced by the MAPMT (multi-anode
photon multiplier tube) for the LHCb upgrade.

Design o(0¢) resolution is achieved by taking into account contributions from
radiators (radiator composition, pressure and temperature), mirror geometry (alignment
down to 0.1 mrad), spatial precision (corrections for magnetic distorsion and alignment
of HPDs) and tracking performance (also alignment relies on the tracking information).
Using track sample from data, the RICH angular resolution was found to be o(#) =
1.618 4+ 0.002 mrad for the C4Fo radiator, () = 5.0 & 0.2 mrad for the aerogel in
RICH1, and ¢(f) = 0.68 £ 0.02 mrad for the CF, radiator in RICH2, in agreement with

the simulated resolutions.

The number of photoelentrons N, . per track was also obtained from data, using
tracks from D° — K~n" sample (from D** — D) with 3 &~ 1, as well as muons
from the pp — ppu®p~ events. The N, . ranges from 4 to 25 depending on the radiator,

and in agreement with the simulation results.

In order to quantify charged particle identification using RICH [62], a global log-
likelihood algorithm was constructed, considering the integrity of pixel hits and tracks,
and the three radiators. The final mass assignment is based on the differences in the

log-likelihood values ALL, which give for each track the change in the overall event log-
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likelihood when the hypothesis of that track is changed from the 7 hypothesis to each of
the e, i, K and p hypotheses. To determine efficiency of identification requirements and
mis-identification rates, pure samples of each particle type were selected using kinematics
selection criteria alone. Large samples of K3 — ntn~, A — pr—, Dt — D°(—
D7)t and ¢(1020) — K™K~ decays as well as photon conversion were exploited.
The example of efficiency and mis-identification rate depending on particle momentum is
shown on Fig. 2.18h, for the ALL(K —7) > 0 and ALL(K —7) > 5 requirements. These
performance curves are consistent with those from simulation, shown on Fig. [2.18p.

As expected, the RICH performance depends on particle multiplicity in the event.

a1_4 777 31_4..,...,...,...,..._
c O O ALLK-m)=0 ] c o O ALLK-n)=0 ]
§ 1o LHCD ] 5. o E
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Figure 2.18: Kaon-pion separation as a function of particle momentum in data (a) and Monte
Carlo simulation (b). Top curves show kaon identification efficiency, and bottom curves
describe pion rejection. The two sets of curves correspond to the ALL(K — w) > 0 and

ALL(K — 7) > 5 requirements

Fig. [2.19[ shows K /7 separation depending on particle multiplicity (a) and number of
reconstructed primary vertices (b) in the event. Excellent K /7 separation is achieved
averaging in the momentum range between 2 and 100 GeV /¢ with the average 7 — K
misidentification rate of 10 % for the K identification efficiency of 95 % corresponding
to the ALL(K — m) > 0 requirement, and the average m — K misidentification rate of
3 % for the K identification efficiency of 85 % corresponding to the ALL(K —7) > 5

requirement. Exact optimal requirement depends on a specific analysis performed.

For studies of charmonium production using decays to pp, discussed in chapter [4]

proton identification is also important. The corresponding performance curves for K /7
and K/p separation are shown on Fig. [2.20a and Fig. [2.20b respectively.

Performance of charged hadron identification with the LHCb RICH system can be
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Figure 2.19: Pion misidentification fraction depending on kaon identification efficiency as
measured in 7 TeV LHCD collisions as a function of track multiplicity (a) and as a function
of the number of reconstructed primary vertices (b). The efficiencies are averaged over all

particle momenta
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Figure 2.20: Proton-kaon (a) and proton-pion (b) separation as a function of particle momen-
tum from data. Top curves show proton identification efficiency, and bottom curves describe
kaon or pion rejection. The two sets of curves correspond to the ALL(p — K(x)) > 0 and
ALL(p — K(m)) > 5 requirements

illustrated by the analysis of 777~ pairs with invariant mass in the region, corresponding
to b-hadron masses, in Ref. [63]. Data sample, used for this analysis, was accumulated
at a center-of-mass energy of /s = 7TeV, and corresponds to the integrated luminosity
0.37 fb~!. The selection identified a good quality decay vertex of b-hadron candidates
well separated from the corresponding pp collision (primary) vertex, where b-hadron
candidates were produced. Combinatorial background from tracks compatible with
originating from primary vertex was suppressed. Further background reduction was

achieved using larger transverse momentum values corresponding to the pr spectrum in
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b-hadron decays. Fig. shows the invariant mass assuming the 77~ hypothesis for
selected b-hadron candidates, using kinematic selection criteria and without applying

any PID requirement. Using the information from RICH to identify charged hadrons,
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Figure 2.21: Invariant mass spectrum of the h™h™ combinations assuming 77~ hypothesis
for kinematic-based selection of b-hadron candidates [63]. No PID requirements are applied.

The main contributions to the fit model are also shown

signals from the decay modes representing core LHCb physics program are disentangled
on Fig. 2.22] Prominent signal peaks are observed already with about 10% of the
presently available data sample from the B — K7~ mode on Fig. , from the
BY — 77~ mode on Fig. 2.22p, from the B — K™K~ mode on Fig. 2.22¢, and from
the A) — pK~ and A) — pr~ decay modes on Fig.[2.22d and [2.22¢, respectively. Studies

of charmless two-body decays of b-hadrons [63] provide access to potential contribution
of new particles and/or couplings to the penguin loops, and constrain physics beyond
SM. An important time-dependent study of CP-asymmetry in B? — K+K~ decays
has already been performed by LHCb [64]. A signal from the B — K™n~ decay mode
is clearly visible on the right from the B° signal in Fig. , with larger statistics
provided a first observation of the CP-violation in BY-decays [65].
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Figure 2.22: Invariant mass spectra of the hTh™ combinations for kinematic-based selection

of b-hadron candidates, using the RICH information for PID [63]. Prominent signal peaks are

observed for mass hypotheses of kaon and pion with clear signal from the B — K+7~ mode

(a) (and (f) with more selective requirements), pion mass hypotheses with clear signal from

the B — 777~ mode (b), kaon mass hypotheses with clear signal from the BY — KTK~

mode (c), mass hypotheses of proton and kaon with clear signal from the Ag — pK ™ mode

(d), and mass hypotheses of proton and pion with clear signal from the Ag — pr~ mode (e).

The main contributions to the fit model are also shown
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Identification of electrons, photons and neutral pions as well as measurement of their
energy and position is provided by the calorimeter system. The LHCb calorimeters play
an essential role in the trigger, where, along with the muon detector, initiates a trigger
search. In addition the electromagnetic calorimeter provides offline measurements of

photons and neutral pions. The LHCDb calorimeters are discussed in more detail in

section B.1]

Identification of muons is performed by muon detector [36], which is implemented in
five stations, interleaved with the iron absorber. Muon detector initiates trigger search

for the muon based trigger alleys, and performs offline muon identification.

The detector is composed of five stations (M1-M5) of rectangular shape, placed
along the beam axis, as shown in Fig. 2.6 Station M1 is located in front of the
calorimeters and is used to improve transverse momentum measurement in the first level
hardware trigger. Stations M2 to M5 are placed downstream of the calorimeters and
are interleaved with iron absorbers 80 cm thick to select penetrating muons. The total
absorber thickness in front of station M2, including the calorimeters, is approximately
6.6 interaction lengths. More than 99% of the total area of the system is equipped with
multi-wire proportional chambers (MWPC) operating with the Ar/CO5/CFy (40:55:5)
gas mixture. Only the inner part of the first station is instrumented with triple-GEM
detectors filled with Ar/COy/CF, (45:15:40). The chambers are positioned to provide
with their sensitive area a hermetic geometric acceptance to high momentum particles
coming from the interaction point. In addition, the chambers of different stations form

projective towers pointing to the beam crossing region.

Each muon station is designed to operate with an efficiency above 99% in a 20 ns
time window with a noise rate below 1 kHz per physical channel, which was achieved
during operation, as described in Ref. [66-68|. The performance of muon identification

has been evaluated, using a dataset corresponding to 1 fb~! recorded in 2011.

A loose binary criterium to select muons is based on the matching of hits in
muon detector with the particle trajectory. For candidates satisfying this requirement,
likelihoods for muon and non-muon hypotheses are built with the pattern of hits around
the trajectories, which can be used to refine the selection. An additional way of rejecting
fake muon candidates is provided by a variable sensitive to hit sharing by nearby particles.

The muon identification efficiency was observed to be robust against the variation of
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detector occupancies (Fig. 2.23p) and presents a weak dependence on momentum and
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Figure 2.23: Muon efficiency (a) and kaon as muon (b) and proton as muon (c) misidentification
probabilities as a function of momentum, in ranges of number of reconstructed tracks in the

event

transverse momentum (Fig. [2.24h). Hadron misidentification probabilities exhibit a
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Figure 2.24: Muon efficiency (a) and kaon as muon (b) and proton as muon (c) misidentification

probabilities as a function of momentum, in ranges of transverse momentum

stronger dependence on track multiplicity, however noticeable performance degradation is
observed only for low momentum particles (Fig. and ), and limited dependence
on the transverse momentum (Fig. and [2.24c). Average muon identification
efficiencies at the 98% level are attainable for pion and kaon misidentification below
the 1% level at high transverse momentum, using the loosest identification criterium.
The performance of additional requirements based on likelihoods or on hits sharing
can be tuned according to the needs of each analysis and reduce the misidentification
probabilities dependence on track multiplicity. Adding a requirement on the difference
of the log-likelihoods that provides a total muon efficiency at the level of 93%, the
hadron misidentification probabilities are below 0.6% (Fig. [2.25]).



42 CHAPTER 2. THE LHCB EXPERIMENT
wE 1.05 T T ka) ,/.?: T T l(d) % 003 T T T l(h) ]
1 LHCb ] v 105 LHCb 3 & LHCb
v = 50.025F = E
g ko 0.02 E
-

09F  o© a) E e b) | 0.015F C) 3

AO —e— IsMuon 10 E 000%13;3#7 -

0.85

0.8

0.75

—— muDLL>1.74 ]
—©- muDLL>2.25

Il
20 40 60 80 100
Momentum [GeV/c]

—

0 20 40 60 80 100

Momentum [GeV/c]

0.01

0.005|-

f{A}—,,i'_‘_:'; —————
N e

0

20

40 60 8 100
Momentum [GeV/c]

Figure 2.25: Muon efficiency (a) and kaon as muon (b) and proton as muon (c) misidentification

probabilities as a function of momentum, with additinal muon DLL selection criteria

The muon identification at the trigger level is described in Ref. [69]. At the low
level trigger the information from all the five stations M1-M5 is used. Providing
additional point towards the magnet, the M1 station improves the muon detector based
estimate of transverse momentum with the resolution going from about 35% using
the information from M2-M5 stations only to about 25% where all the five stations
deliver the information. The M1 information is however not useful for momentum
determination at the higher level trigger or offline stage, since there direct muon track

segment to the tracking system based segment matching is performed.

The offline muon identification [70] uses only the information from the four stations

located downstream from the calorimeters.

2.3.4 Trigger

Heavy flavour particles are copiously produced at the LHC, with a rate of about 30 kHz
bb and about 600 kHz c¢ pairs in the LHCb acceptance. Charm and beauty hadrons
decaying via weak interactions fly on average 3 mm and 10 mm respectively in the LHCb
detector. Retaining interesting charm and beauty decays requires trigger selectivity
at the level of traditional physics analysis using powerful vertex reconstruction and

particle identification already at the trigger level.

The LHCD trigger uses all of the detector sub-systems of LHCDb. Its architecture
consists of two levels, the first level trigger (LO) and the High Level Trigger (HLT).
The LHCD trigger proved to be a powerful and flexible system, robust during the LHC
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operation in 2010-2012 [71], can quickly react on changes in running conditions, with a

recent deferred triggering that further boosts recorded physics samples.

L0 is implemented in hardware and uses the information from the calorimeter and
muon systems. L0 reduces the rate of crossings with at least one inelastic pp interaction
to below 1.1 MHz, at which the whole detector can be read out. This maximum rate is
imposed by the front-end (FE) electronics. L0 comprises three independent triggers: the
LO-Calorimeter trigger relevant to the analyses discussed in the chapter [4} the L0O-Muon
trigger that served majority of charmonium states studies so far; and the LO-PileUp
trigger, which is not used to select flavour physics events, but aids the determination
of the luminosity [72]. The LO system is fully synchronous with the 40 MHz bunch
crossing signal of the LHC. The latencies are fixed to a maximum of 4 pus and depend
neither on the occupancy nor on the bunch crossing history. The trigger decisions are
combined in a single L0 decision. Depending on the state of the FE buffers and the
buffers in the readout boards of all sub-detectors and the availability of the PCs in the

farm, a bunch crossing can be retained or throttled.

The L0O-Calorimeter system computes the transverse energy deposited in clusters of
2 x 2 cells, using only cells located in the same zone. The ECAL and HCAL signals are
read out and processed in the FE boards (FEB), each responsible for an area of 8 x 4
calorimeter cells with one row and column sharing information between neighbouring
FEB. Each FEB selects the highest Ep cluster among its 32 clusters. From these

clusters, three types of candidates are built combining information as follows:

e hadron candidate (LOHadron), the highest £ HCAL cluster, can be a sum of the
Er of the HCAL cluster and the matching ECAL cluster in front;

e photon candidate (LOPhoton), the highest Er ECAL cluster with PS cells hit in
front of the ECAL cluster and no hit in the SPD cells corresponding to the PS

cells;
e clectron candidate (LOElectron), having the same requirements as for a photon

candidate, with in addition at least one SPD cell hit in front of the PS cells.

The Er of the candidates is compared to a fixed threshold and events containing at

least one candidate above threshold are retained by LO.
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Each quadrant of the muon detector is connected to a L0 muon processor. Each of
the four LO muon processors tries to identify the two muon tracks with the largest and
second largest transverse momentum pz in their quadrant, the search being limited to
the candidates with pr > 0.5 GeV/c. The position of a track in the first two stations
allows the determination of its pr with a measured resolution of 25% relative to off-line
reconstructed muon tracks. The trigger sets a single threshold on either the largest pr
of the eight candidates (LOMuon), or a threshold on a product of the largest pr and
the second largest pr of the muon candidates (LODiMuon).

The total LO output rate amounts to about 1 MHz, with about 40% contribution
from L0 muon triggers, about 45% contribution from L0 hadron trigger, and about 15%

contribution from L0 electron and photon triggers.

An event which is accepted by L0 is transferred by the on-line system from the FEB
to the Event Filter Farm, where HLT software applications run. The HLT is based
on the same software as used for the LHCb data processing and simulation [39]. The
offline event reconstruction and selection requires about 2 s per event. During 2011
the LO rate was about 870 kHz. Given the available resources this limits the time per
event in the HLT to ~ 30 ms. The HLT is thus divided into two stages. The first
stage (HLT1) processes the full LO rate and uses partial event reconstruction to reduce
the rate to about 43 kHz and 80 kHz in 2011 and 2012, respectively. At this rate
the second stage (HLT2) performs a more complete event reconstruction. The LHCb
selectivity and trigger bandwidth constraints force essential physics analyses selection
to be implemented already at the trigger level under dedicated trigger lines. Trigger
lines are composed of a sequence of reconstruction algorithms and inclusive or exclusive
selections. An event is accepted by L0, HLT1 or HLT?2 if it is accepted by at least one
of its trigger lines at the relevant stage. During 2011 running, the HLT contained 38
HLT1 and 131 HLT?2 lines.

The HLT has evolved significantly compared to Ref. [41], in which it is assumed that
the LHC machine would operate with a 25 ns bunch separation [37], and that LHCb
would limit the number of visible pp interactions such that the average number of visible
interactions per bunch crossing p =~ 0.4. However, the smallest bunch separation of the
machine was 50 ns in the 2011 physics runs. To compensate for the loss in number
of bunches, and combined with the fact that the LHCb detector performance did not
degrade up to p ~ 2.5, LHCb decided to run at g ~ 1.4. Therefore the HLT had to
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adapt to running conditions rather different from those described in Ref. [41]. The
HLT reduces the rate of accepted events to ~ 3 kHz, and all such events are written to
storage. The events written to storage are then processed offline with a more accurate
alignment and calibration of the sub-detectors, and with reconstruction and selection
software that is more elaborate and allows for more redundancy than is possible in the
HLT.

Finally, deferred trigger was developed that allowed HLT an overcommitement by
20% to 30%. Using a 1 PB storage at the farm, the deferred trigger then runs during
the LHC breaks. Using deferred trigger made it possible to lower track reconstruction
thresholds.

The HLT writes about 5 kHz to storage, including about 2 kHz of inclusive B-
candidates, about 2 kHz of inclusive charm candidates and about 1 kHz decay signatures

with muons.

Specific selection of the pp combinations that are consistent with being charmonia

decay products is performed already at the trigger level with dedicated HLT lines

(sections 4.2.2 and |4.3.2). Reconstruction of charmonia or BY meson decays to ¢ mesons

consider events triggered by any signal trigger line (sections [4.3.3} [5.1.2] and |5.2.2]).

2.3.5 The LHCDb experiment upgrade

Further LHCb detector modifications are associated with the LHCb upgrade, launched
as a letter of intent 73] in 2011. During the LHC run I, the LHCb experiment achieved
results that go well beyond the expectations, which will be pursued with the LHC run
II. The 2010 - 2012 data taking demonstrated that the detector and the trigger system
are robust and well functioning, fully operational above nominal luminosity of 2 x 1032

~2s71. At the end of the run I data taking, the experiment was operating at the

2

cm

s~!, while the tests were performed at 5 x 1032 cm=2s~!

luminosity of 3 — 4 x 1032 cm™
and beyond. Beyond the run II, the LHCb physics reach can be extended to study
very rare phenomena and to search for new physics in the heavy flavor sector under
the condition that the collected data will be increased much beyond the 1 fb~! per
year. In order to achieve this goal detector design, data acquisition and trigger must

be improved, under the goal to keep the LHCb performance at least at the already
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achieved level.

At the nominal LHC energy and a luminosity up to 2 x 1033cm=2s™! with then
multiple interactions per beam crossing, the fake rates will drastically increase. In
order to stay within the reserved bandwidth in the present trigger configuration, the
requirements on the transverse energy must be increased, leading to inevitable reduction
of signal yields. The solution is to deliver to lowest level trigger the information from the
entire detector at 40 MHz, which transforms hardware based Level 0 trigger to the first
part of the software trigger. The LHCb upgrade strategy therefore consists of reading
out the entire detector at 40 MHz, with a fully software trigger keeping the luminosity
levelled at 1 x 10%3cm~2s71, but the experiment fully functional up to a luminosity of
2 x 10%3cm~2s7!. This solution will impose to all the sub-detectors not only to cope
with increased occupancies, but to have their FE electronics functional at 40 MHz
readout. Since the luminosity of 2 x 103* cm~2s! is below already demonstrated LHC

luminosity, the LHCb upgrade is in principle independent of the LHC machine upgrade.

In order to keep presently achieved performance of the track and vertex reconstruction
in the new challenging conditions, VELO granularity will be increased passing from the
r— ¢ geometry to 55 x 55 um? pixels [74]. With also increased granularity, silicon tracker
will undergo sensors replacement, and outer tracker will be re-designed from straw
tube technology to scintillating fibers read out by SiPM [75]. Particle identification
detector design will also be modified [76]. Hybrid photon detectors, having integrated
front-end electronics will be replaced by multi-anode photon multipliers in both RICH
detectors. Due to high occupancy in RICH1, the optics will be re-designed, and the
aerogel radiator in RICH1 will be replaced by the C'Fy radiator. The detectors only
dedicated to LO trigger, first station of muon chambers, scintillator pad detector and
preshower, will be removed. This will not affect the performance, because complete
detector information will be available already at the trigger level in the upgraded LHCb
trigger design. The reduced photomultiplier (PM) gains of the ECAL and HCAL will

be compensated by the increased electronics gain.

The physics case of the upgraded LHCb experiment implies an order of magnitude
increasing signal yields for key measurements, while keeping background level under
control. Among the examples of the upgraded LHCb physics reach, improving precision
of the branching fraction B(B? — u*pu~) measurement and search for B® — ptpu~
decay channel should be mentioned. The results of the LHCb [25] and CMS [77]
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experiments already allowed excluding several theoretical models [78,/79]. With the
upgraded detector B(B? — p*p~) measurement is expected to reach 5% precision,
while the error on the ratio B(B® — utp~)/B(B? — utp™) is expected to be about
35%, and will allow to exclude several other models, if no deviation is found. Data
taking after the LHCb upgrade can significantly increase sensitivity for another broad
class of rare decays, driven by b — s transitions, e.g. Bt — K*(K7)upu. This decay
mode has been already addressed by LHCb [80,[81], comparing several observables to
theoretical predictions. With the upgraded detector, the precision on all the observables
is expected to increase by at least one order of magnitude. Important measurements
of angle v to search for CP symmetry violation effects, other than introduced by the
Standard Model [82], is another key line in the program of the upgraded LHCb. The
angle v of the unitarity triangle is the least known to date, and is considered to be the
most promising to compare tree mediated processes to those involving loop diagrams,
in order to extract potential contribution of effects beyond the SM. The current best
determination of the angle ~ is obtained by LHCb [17], and with the upgraded detector
a precision below 1% is expected. Finally the upgraded LHCb detector should fully
exploit its capacity for precision measurements involving B? meson decays. Data from
Tevatron experiments indicated potential anomalous C'P violating effects [83-86], while
the LHCb measurements using 1 fb~! integrated luminosity are compatible with the
SM expectations within uncertainties [19,[87,88]. The upgraded LHCb experiment will
be able to probe these effects to a precision of the order 1072 in several decay modes,
thus (discovering or) providing strong constraints on possible sources of physics beyond

SM in these processes.

The upgraded version of the LHCb experiment is scheduled to enter the scene in
2019, for the LHC run 3.

In terms of detector development, the next chapter addresses more a retrospective

calorimeter discussion, rather than the upgrade-related issues.
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Chapter 3

Construction of the LHCDb

electromagnetic calorimeter

detector

We can forgive a man for making a useful
thing as long as he does not admire it.
The only excuse for making a useless thing

18 that one admires it intensely.

Oscar Wilde

3.1 The LHCDb calorimeter system

In this chapter the LHCb calorimeter detectors are addressed, noticing common princi-
ples and approaches to construct an integrated system of four calorimeter detectors.
The LHCb calorimeters are key ingredients of the LHCD trigger (section [2.3.4). In

addition, ECAL provides offline measurement of photons and neutral pions.

The LHCD calorimeter system [35,40] is located between 12.3 and 15.0 m from the pp
beam crossing area, and comprises three calorimeters, preshower (PS), electromagnetic
(ECAL) and hadronic (HCAL), and one threshold scintillator pad detector (SPD), all

arranged in a pseudo-projective geometry.

49



50 CHAPTER 3. LHCB ECAL DETECTOR CONSTRUCTION

The two halves of each calorimeter detector can be retracted separately and inde-
pendently of other detectors to the left and right side of the beam to ensure service and

maintenance.

The calorimeter outer dimensions match projectively those of the tracking system,
¢, < 300 mrad, ¢, < 250 mrad, the inner acceptance is restricted to 0,, > 20 mrad
around the beam pipeﬂ The sensitive area of each calorimeter detector thus covers a
surface of about 50 m?. The hit density is a steep function of the distance from the
beam pipe, and varies over the active calorimeter surface by two orders of magnitude.
Each detector is therefore subdivided into three sections with cell size of approximately
4 x4 cm?, 6 x 6 cm? and 12 x 12 em?. However, given the hadronic shower dimensions,
the HCAL is segmented only into two zones with cell sizes a factor two bigger with

respect to the values imposed by projectivity.

One of the main tasks of the calorimeter is to ensure the hardware implemented part
of the high-E7 e*, v, 7% and h* LHCb trigger alleys (section [2.3.4]). The pp collisions
occur every 25 ns, so that the detector response should be collected and readout within
this time. This timing constraint is met by use of fast scintillating materials, and
spill-over cancellation at the front-end electronics level with the signal clipping and
subtraction of delayed signal for ECAL and HCAL, and with two alternating integrators
for SPD and PS [89].

All four detectors follow the common principle of measuring shower energy from the
light in the scintillator tiles transported to the photomultipliers by wavelength shifting
(WLS) fibers.

For all detectors scintillator tiles are produced from polystyrene as a basic component
with primary and secondary WLS dopants, paraterphenyl (PTP) and POPOP. A 1.75%
t0 2.5% of PTP and 0.01% to 0.05% of POPOP is admixed, with the individual optimal
percentage for each detector. The Kuraray WLS fibers were used for all detectors, a
I mm diameter Y11(250)MS70 for SPD and PS, and a 1.2mm diameter Y11(250)MSJ
for ECAL and HCAL. These fibers deliver the light captured in the scintillator tiles to
their photodetectors.

!'The ECAL acceptance was in addition limited by @, > 25 mrad around the beam pipe due to the
substantial radiation dose level, as discussed in section The excluded region has been partly

instrumented using the available FEE channels.
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The ECAL and HCAL use R7899-20 phototubes, while SPD and PS employ the
64-channel R5900-M64 phototubes (MAPMT), both from Hamamatsu, with the high
voltage always provided by a Cockcroft-Walton base. The photodetectors are screened

with MuMetal shielding from the remaining magnetic field.

The SPD/PS detector consists of a 15mm (2.5 Xj) thick lead converter sandwiched
between two identical planes of 6016 high granularity scintillator pads each readout by
the WLS fibers that are coupled to the 64 channels MAPMT via clear plastic fibers.
Basic SPD/PS detector unit is a 15 mm thick scintillator tile, with a 3.5 loops of WLS
fiber coiled and glued in a milled ring groove of the tile. The number of fiber loops in
the groove is a compromize between the efficiency of light collection in the fiber and
attenuation of the light during the travel inside the fiber. Each tile is then wrapped
with a 0.15 mm TYVEK paper, and grouped into module units (Fig. [3.1)).

: - and  Outer Modules ‘

Figure 3.1: SPD/PS inner, middle and outer section modules (left to right) assembled from
individually readout scintillator tiles (right)

The PS based e/m and SPD based 7/e separation was studied with the test beam.
With a threshold of 4 MIPs pion rejection factors of 99.6%, 99.6% and 99.7% with
electron retentions of 91%, 92% and 97% are achieved for 10, 20 and 50 GeV/c particle
momenta, respectively. Fig. shows energy deposits from 50 GeV electrons and pions.
Three major processes can cause /e mis-identification. Dominant contribution comes
from photon conversions in the material before SPD, with e.g. about 30% of photons
converted before the calorimeter for photons from the B° — K*°vy decay. The other
two processes, producing charged particles in the SPD itself and charged back splash
particles generated in the lead absorber or in the ECAL, have been studied in tagged
photon beam and electron and pion beams of different energy [90L91]. For a threshold
of 0.7 MIP, mis-identification probability is (0.8 £ 0.3)% due to interactions in the SPD
scintillator, and (0.9 £ 0.6)% and (1.4 4+ 0.6)% due to back splash for 20 and 50 GeV

photons respectively. The above numbers are properly described by the simulation.
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Figure 3.2: Energy deposit of 50 GeV electrons (a) and pions (b) in the PS

The detector has been pre-calibrated in horizontal position using cosmic particles.
The average number of photoelectrons per MIP was measured to be 21 to 28 p.e./MIP
depending on the cell size. Each cell is illuminated by individual LED monitoring
light to follow detector stability and identify dead channels. A 5 Hz online event

reconstruction provides monitoring with particles.

In addition, SPD provides particle multiplicity counting in low-multiplicity events,

crucial for specific physics measurements [92,93].

ECAL and HCAL are sampling calorimeters and employ the Shashlik and Tilecal

technology, respectively.

The HCAL is an iron-scintillator tile calorimeter, 5.6A; deep, comprising 1488
readout cells. The scintillator tiles are positioned parallel to the beam axis (Fig. |3.3)).
Light from the tiles is then transferred by the WLS fibers passing along the tile edges,
to the PM at the rear side of the HCAL. The Al mirror on the fiber front edge serves to
increase the light yield and to partly compensate light attenuation in the fiber. Further
compensation of light attenuation is achieved by the adjusted fiber-tile contact length

depending on the distance to PM.

The lateral scan of the HCAL using 30 GeV electron beam provides a visual illustra-
tion of the signal propagation in the Tilecal (Fig. . Two effects have to be taken
into account to explain the observed shapes, distance that light travels; and signal

attenuation while the light is transported in the optical fiber and while the light is
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Figure 3.3: HCAL module scintillator tiles, TYVEK paper and iron profile (left), WLS
fibers reading out the light from scintillator tiles with adjusted tile-fiber contact (center) and

scintillator tile insertion in the module (right)
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Figure 3.4: Lateral scan of the HCAL module with the electron beam. Time dependence of

the signal shape is shown on the plot for different beam positions (numbers on the photo)

reflected from the mirror on the front side of the module. Each observed signal shape

is composed of the part corresponding to the light directly transported to the rear
(PM) side of HCAL, and of the part corresponding to the light transported to the front
(mirror) side of HCAL, then reflected and passed all the depth of the HCAL towards
the PM at the rear HCAL side. The first, direct, component arrives faster and is less

attenuated, while second, reflected, component arrives later and is more attenuated.

The difference in the arrival time and in the amplitudes between the two components
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is smaller towards the front side of the HCAL. Therefore, the signal is observed as a
single component with large amplitude when the first layer of the module is exposed to
the beam, and as two components with most separated arrival time of the signal and
different amplitudes when exposing to the beam the sixth layer of the module. In all
the cases, and taking into account that HCAL primary function is the trigger search,
signal is comfortably contained in the 25ns time slot between the subsequent LHC

beam crossing.

Measured energy resolution of op/E = (69 4+ 5)%/VE @ (9 £ 2)% with E measured
in GeV, fully meets the essentially trigger requirements to the HCAL performance. The
light yield of 105 p.e./GeV requires compared to ECAL higher gain settings for the
PM. About 3% angular dependence of the response at higher energies is explained by

not fully shower containment in the instrumented depth of 5.6;.

The in-situ calibration is achieved using the dedicated '37Cs source. The ¥7Cs source
can be precisely positioned inside the steel tube penetrating the center of each tile using
the remotely controlled water pumping system. All cells have been measured this way
before the HCAL installation in the LHCb experiment. In addition selected cells have
been cross-calibrated at the test beam. The !37Cs source scan showed the tiles belonging
to the same HCAL readout cells to have light yield r.m.s. below 5%. This measurement
also yielded a by-product verification of the light attenuation correction technique
described above. The 3"Cs source measurements of the tile amplitude variations
showed the minimum-to-maximum difference of less than 4% of the average over the
two months time for 99% of the cells, proving the system to be very stable. For the
remaining 1% of the cells corrections using the LED system are required. Several annual

re-calibration sessions with 37Cs source are performed to follow the gain evolution in
HCAL cells.

The requirement to have the same physics scale over the calorimeter surface assumes
the PM gain to follow the E,,,, = 15 GeV /sin(f) distribution. PM high voltage
settings adjusted to ensure this so-called physics gain distribution cause PM transit
time spread. The resulting gain dependence over the calorimeter surface is illustrated
by the HCAL current distribution from the 37Cs source scan of each scintillator tile
(Fig. [3.5)). Channel-to-channel time spread of minimum-to-maximum difference of 4 ns

and r.m.s. of 0.7 ns, is however dominated by time of flight variations.
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Figure 3.5: Scan of the HCAL scintillator tiles with the ¥7Cs source. Current from PM
matching the HCAL scintillator tile with the 37Cs source is shown over the whole HCAL

surface. The PM high voltage settings are adjusted to ensure physics gain distribution

The LHCb ECAL provides the reconstruction of electrons and photons, discrimina-
tion between electrons, and charged hadrons with overlapping photons, efficient 7° and

n reconstruction in a wide range of momentum. Fig. [3.6] shows pion misidentification
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Figure 3.6: Electron identification. Pion misidentification rate is shown as a function of

electron efficiency

curve depending on electron efficiency. Fig. shows 7° signal on the invariant mass
spectrum of photon pairs. It allowed reconstruction of penguin B-decays B — K*0~

and BY — ¢y with a high-Er photon , reconstruction of y. states for numerous
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Figure 3.7: Reconstruction of neutral pions. Invariant mass spectrum of photon pairs

production analyses [9-11,95] and x,(1P) states from 7°(15) decays [11], and study of
radiative transitions B*¥ — K7 Fr* [96] and X (3872) — ¢(2S5)y [97], with photons

having lower Er.

The ECAL detector is discussed in the next section. After presenting general concept,
more details on the design, key performance issues, tests and detector construction are
addressed.

3.2 Design and construction of electromagnetic

calorimeter detector

3.2.1 Design of the calorimeter module

Engineering design of the electromagnetic calorimeter cells was performed together
with Alexander Soldatov, Vladimir Rusinov, Evgueny Tarkovsky and others. Stanislav
Malyshev provided an impressive technical support to prototypes construction. Test
beam studies were performed with Vladimir Rusinov, Evgueny Tarkovsky, Ivan Korolko,
Oleg Gushchin, Boris Bobchenko and others, and relied on a kind help from Lau
Gatignon, Yens Spangaart and their colleagues from SPS team. Test beam studies were

a subject of internship of Alexey Morozov.
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The LHCb ECAL employs a sampling Shashlik technology. Shashlik technology
implies a sampling scintillator-lead sandwich read out by plastic WLS fibers. This
approach has been previously addressed by the RD36 project ,, the PHENIX
experiment , at BNL, the HERA-B experiment at DESY, and has
therefore been chosen for LHCb ECAL and ALICE EMCAL [106}[107]. This choice
was motivated by a good energy resolution, fast response time, acceptable radiation
resistance and reliability of Shashlik technology, as well as the accumulated construction
and operation experience. This technique offers a combination of an easy assembly, good

hermeticity and a cheap solution compared to crystals or cryogenic liquid calorimeters.

The ECAL detector comprises 6016 readout cells, repartitioned between 3312
modules, comprising one, four or nine separately readout cells, depending on the
distance to the beam pipe. In depth, ECAL cells (Fig. and are built from

Figure 3.8: Outer, middle and inner type modules

alternating layers of 2 mm thick lead, white reflecting 120 pm thick TYVEK paper and
4 mm thick scintillator tiles (Fig. left). The 66 lead and 67 scintillator layers form
a 42 cm deep stack corresponding to 25 X or 1.1 A;. In each layer of module stack,
the cells share the same lead plate abut posess individual scintillator tiles, with light
isolation at the edges to prevent tile-to-tile cross talk. The Moliere radius of the stack
is 3.5 cm. The stack is wrapped with black paper to ensure light tightness, pressed and
fixed from the sides by welding of 100 pm steel foil.



CHAPTER 3. LHCB ECAL DETECTOR CONSTRUCTION

“ W eptel =72 ww 0ZeCl EN.w

sC8

orr ~

-

R0 AR WIS

AR RA RN RN RN RRRRRRRRRRARD

' TNAON d41LN0O

AR n R n e nnannnnnnnnEnnni
05T ' SIS oo

e o

o8

Figure 3.9: Electromagnetic calorimeter modules for inner, middle and outer sections. At the
monitoring side shown are transport fibers, connectors, fiber loops and plastic covers. At the

read-out side shown are fiber bundles, PMs and their bases
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Module stack structure is illustrated by Fig. [3.§ and [3.9] for assembled detector, and

Figure 3.10: Components of the ECAL module stack, scintillator tiles, lead plates, TYVEK

paper, fiber loop and fiber bundle plastic housings (left), WLS fiber loops (right)

by Fig. |3.35| and in section for open stack during module assembly.

Main parameters of the LHCb ECAL are shown in Table 3.1} Colour code on

Inner section | Middle section | Outer section
Inner size, z X y, cm? 65 x 48 194 x 145 388 x 242
Outer size, x X y, cm? | 194 x 145 388 x 242 776 x 630
Cell size, cm? 4.04 x 4.04 6.06 x 6.06 12.12 x 12.12
# of modules 176 448 2688
# of channels 1536 1792 2688
# of cells per module 9 4 1
# of fibers per module 144 144 64
Fiber density, cm =2 0.98 0.98 0.44

Table 3.1: Main parameters of the LHCD electromagnetic calorimeter

Fig. |3.5]1] in section |3.2.

cell size as well as the gap around the beam pipe.

visualizes an area covered by ECAL sections with different

Tiles were produced using the injection molding technique. Tile edges were chemically
treated (section thus providing diffusive reflection in order to improve light collection
efficiency, lateral uniformity and prevent tile-to-tile light cross-talk. This way not only

the tile edge inefficiency but also the effect of dead material between the modules has
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been corrected, so that lateral non-uniformity does not dominate the constant term of
energy resolution. Alternatively tile edges could have been aluminized (HERA-B-like
solution) with the technique of Al evaporation in vacuum by HV-induced explosion.
This latter method yields about 10% worse reflection efficiency, compared to the mat

coating.

The light from scintillator tiles is re-emitted and transported by WLS Y-11(250)MSJ
fibers penetrating the entire module. In addition, a clear fiber penetrates the center
of each ECAL cell to deliver the LED light from the distribution system on the front
side of ECAL to the PM for monitoring of the readout chain. The fibers belonging to
each calorimeter cell are bundled at the end of the module and polished. Fiber density
in the ECAL cell varies from 1.0 cm~2 for inner and middle type cells to 0.4 cm ™2 for
the outer type cell, where fiber density was reduced in order to obtain smaller fiber
bundle size and thus impose reasonable requirements to the photocathode uniformity,
and better lateral uniformity of response (section .

Kuraray Y11(200)MSJ fibers have been selected due to their high light yield; small
attenuation length, matching of the absorption and emission spectra to the light coming
from the scintillator tiles and registered by the photomultipliers, respectively; and
tolerable radiation resistance (section [3.2.3). Y11(200)MS denotes multi-cladding (M)
S-type (S) Y11 Kuraray fibers with the concentration of WLS dye of 200 ppm.

The fiber core is conventionally a polystyrene (PS, refraction index 1.59) based one,
with the first cladding produced of Polymethylmethacrylate (PMMA, refraction index
1.49) and the second cladding (for multicladding fibers) of Fluorinated polymer (FP,
refraction index 1.42) (Fig. [3.11). Using the subsequent claddings with lower refraction
index, the light trapping angle is increased (Fig. . The amount of trapped light,
that can be transmitted along the fiber, is thus also increased, from about 3.1% to 5.4%

when adding a second cladding layer.

In order to improve light collection efficiency and lateral uniformity of response, the

fibers form loops (Fig. [3.10} right) at the front side of the module.

The S-type fibers are produced with a molecular orientation along the fiber axis
direction. They have better mechanical properties, are more resistant against cracks
and can be bent to smaller angles without mechanical damage. Fig. [3.13a shows a

principle of Kuraray measurements of the bending loss at the example of 1 mm diameter
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Figure 3.11: Parameters of single (a) and multi-cladding (b) optical fibers. Illustrations from

booklet of Kuraray 1999
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Figure 3.12: Geometrical optics scheme to explain the light trapping for single and multi-

cladding optical fibers. Illustrations from booklet of Kuraray 1999

fiber, and Fig. demonstrates a clear difference in the bending loss between S-type
and non-S type fibers at small values of bending diameter. For a 1 mm diameter fiber,
Kuraray recommends a minimum bending diameter of 200 mm for non-S type fibers,
and of 100 mm for the fibers of S-type. However the ECAL cell design, motivated by
considerations of lateral uniformity of response and aimed at reducing requirements
to the PM photocathode uniformity (section , assumes fiber bending down to
diameter values of 20 mm, which is significantly below the diameter values quoted by

Kuraray. A method of fiber bending in the uniformly heated volume was developed at
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Figure 3.13: Principle of measurements of the bending loss (a) and bending loss for S-type

and non-S type optical fibers (b). Ilustrations from booklet of Kuraray 1999

ITEP and allowed to achieve required bending values, while the light loss is still driven

mainly by the geometrical optics reflection down the loop. It is discussed in more detail

in section [3.2.41
In total, about 180 km of WLS fibers are routed inside the ECAL modules.

The light is read out with Hamamatsu R7899-20 phototubes with the high voltage
provided by a Cockcroft-Walton base (Figure [3.14)).

Figure 3.14: Hamamatsu R7899-20 phototube together with the light mixer, mixer housing
and permalloy magnetic screen (left) and the Cockeroft-Walton multiplier soldered to the PM
(right)

To further reduce the contribution from the PM cathode non-uniformity to the
constant term, a quadrangular prism light mizer made from polystyrene, is inserted
between the fiber bundle and the window of PM. The response to MIP was simulated
with the light produced in scintillator, and then absorbed, re-emitted and transported

by WLS fibers. Fig. [3.15] shows the distribution of the response non-uniformity versus
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the length of light mixer. The non-uniformity of response is the non-uniformity at the

I
°,
[

I

Non-uniformity
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1 1
o 1 2 3 4 5

Mixer length, cm

Figure 3.15: Simulation results for quadrangular light mixer. Shown is the non-uniformity
of response versus the length of light mixer. The photocathode non-uniformity of 20% is

assumed

mixer end, convoluted with PM cathode non-uniformity E| The resulting non-uniformity

is small with respect to the constant term of the energy resolution.

The average light yield was measured to be between 2600 and 3500 photoelectrons
per GeV, depending on the cell size [108]. The energy resolution of the ECAL cells was

first measured in 2002 with an electron beam using a 3 X 3 matrix of outer type cells

(Fig. [3.16]) to be

9.4+ 0.2
o _ O4X0D% 551 000% e

E VE

well within the design value of o5/F = 10%/vE @ 1%, where E is always measured in
GeV.

(0.15 + 0.02) GeV
E )

All ECAL cells have been pre-calibrated with cosmic particles before the installation
in the LHCD detector (section . For further, in-situ, calibration, fluctuations of
the signal from LED were used to preliminarily adjust the gain of the readout part
(PM, amplifier and ADC) to better than 10%. The energy flow method, using smooth

2 For the case illustrated in Figure photocathode non-uniformity was taken to be 20%. The
light produced in the scintillator tile by MIP, produces a green light distributed over all the WLS fibers.
Typically contribution of the closest fiber is only about 15% of total light. Therefore the response

non-uniformity to MIP signal is as small as ~ 2% already without the use of light mixer.
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Figure 3.16: Energy resolution of the outer ECAL cell measured with electrons with the
energy between 5 and 100 GeV using a 3 x 3 matrix of outer cells. Note the suppressed zero

on the plot

distribution of energy deposition over calorimeter surface and symmetry considerations,
was developed providing improvement to about 5% with possible 1-2% remaining bias.
Calibration methods relying on the 7° signal reconstruction have been proved to achieve
calibration level of 1%. Finally the LED system was supposed to be used to follow
eventual gain variations, while stability of LED light pulses is monitored with a system

of pin diodes.

Two major effects were considered crucial for the ECAL performance, lateral
uniformity of response, affecting constant term of energy resolution; and radiation
resistance of scintillator materials, tiles and WLS fibers, that given sufficient amount of
light produces larger effects on longitudinal uniformity of response, impacts linearity,

and also affects the constant term of energy resolution.

3.2.2 Uniformity of lateral response

Exceptional expertise and a nice attitute of Vladimir Rusinov and Evgeny Tarkovsky
guaranteed not just an optimisation of the calorimeter design, but a comprehension of

different effects producing the observed lateral uniformity picture.

For a given cell size and sampling fraction, energy resolution, and to a lesser extent,
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spatial resolution of Shashlik cell is determined by the uniformity of response.

Longitudinal uniformity can be achieved by using, over the depth of calorimeter
cell, scintillator tiles with identical lateral uniformity of response, and WLS fibers with
identical absorption and emission properties over their length and negligible attenuation.
Alternatively, similar shower shapes for all incoming particles would make it possible to
consider calorimeter as longitudinally uniform, after calibration. In any case, radiation
induced degradation of plastic materials will differently damage calorimeter cell over its
depth, causing different longitudinal non-uniformity effects for different energies, and

requiring calorimeter re-calibration.

Lateral uniformity of the ECAL response, cell design optimisation in order to
improve the ECAL uniformity, analysis of light collection and related test beam results
are addressed in Ref. [108]/109]. The response was considered for particles incoming
along the ECAL cell axis. For particles, inclined with respect to this direction, the
effects causing non-uniformity are smeared as the shower traverses geometrical points

having different response.

Lateral non-uniformity in a Shashlik detector, where WLS fibers collect light pro-
duced in the scintillator tiles, comes predominantly from two sources, the effect of
non-perfect light reflection from tile edges (global non-uniformity), and the effect of

shower position with respect to the fibers (local or inter-fiber non-uniformity).

Global non-uniformity shows that, because of the efficiency loss when light is reflected
from the tile edges, the light originating at the tile center has higher probability to
get collected by fibers than the light originating at the periphery of the tile. Thus the
effect depends on the mean light path, which is a function of tile transparency, edge
reflection quality and fiber density, and the efficiency exhibits a parabola-like behaviour

over the tile surface.

Improving the efficiency of light reflection from tile edges serves also to prevent the

tile-to-tile light cross-talk.

Local non-uniformity indicates the solid angle from which the fibers are seen from a
particular point, and introduces a cosine-like term into the efficiency position dependence.

Distance between fibers and fiber diameter affect local non-uniformity effect.
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Following Ref. [98] the non-uniformity effect is parameterized with
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where x( is a cell center position, [y — cell size, d — distance between the fibers, a —

f@) = ax

normalization factor, and Agpa and Ajpeq values determine the size of global and local

non-uniformity effect, respectively.

Two major approaches can be followed to reduce lateral non-uniformity effect. Using
complete detector information, on-line or off-line corrections can be applied on the
candidate-by-candidate basis. For electrons shower center position is then refined using
parameters of matching track, with direction and momentum measured by the tracking
detectors. For ~ showers an iterative procedure, relying on the known uniformity
distribution, improves the precision, using the expression and cell response and
shower center position as parameters. Overlapping showers, which belong to photons

from 7°

or n decay, limit the improvement potential, while contribution from pile-up
obscures the picture of showers from neutral particles. Global uniformity corrections do

not require precise coordinate knowledge, and are easiest to apply.

Alternatively or complementarily, lateral uniformity can be improved at the stage
of calorimeter cell design. Improving the reflection efficiency from the tile edges and

the choice of fiber density are discussed below.

Response to a °Sr source at the tile center and close to the tile edge was compared
using a test setup for 55.5 x 55.5 mm? tiles with blackened, aluminized and white
painted edges. Light was read out via fibers penetrating the tile similar to ordinary
module read-out. PM current at different °Sr source positions over the tile surface was
measured. Table shows response at the tile center and the difference in response
between the center and the edge for tiles with different edge coating, thus comparing
global non-uniformity effect and corresponding degradation of the mean light path,
induced by tile edge reflection inefficiency. These results agree well with the simulation,
which also predicts 2, 5 and 7 cm mean light path for blackened, aluminized and white

tile edge respectively.

Another impact on the uniformity comes from the fiber density of the cell. Reducing

fiber density in the outer section CQHEI improves global uniformity (tile edges are better

3Inner section cells suffer from substantial radiation dose. The annual dose reaches 0.25 Mrad for
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Table 3.2: Non-uniformity global effect, induced by tile edge reflection inefficiency. The
response at the tile center and the difference in response between the center and the edge of
tile are shown for blackened, aluminized and white painted edges. Directly measured was the

PM current depending on the ?°Sr source position over the tile surface

edge response at tile | center-edge
coverage type center, [nA] | difference, [%]
blackened 48 19
aluminized 112

white diffused ( BC-622A ) 134

seen from the tile center for reduced fiber density, and are effectively screened from the
tile center for high fiber densities) and reduces the module cost. However, at the same
time local uniformity degrades (the distance between fibers increases) and light yield

reduces.

Three identical modules of 124.2 x 124.2 mm? size, similar to the size of LHCb
ECAL outer cell, were assembled with 64, 100 and 144 fibers per module. Tile edges
were chemically coated (section to provide a diffusive reflection, relying on the test
results shown above. The fiber front ends were coated with Aluminum mirrors. Nonet
of modules was tested with MIP and 50 GeV electron beam at SPS. Table [3.3] shows the
light yield and response uniformity parameters. Figure shows the response, after
global type uniformity correction, versus the coordinate. The response follows the fiber
pattern. According to expectations, non-uniformity effect increases with the inter-fiber
distance, the fit gives 0.3%, 0.5% and 0.7% for 144, 100 and 64 fiber cells, respectively.
This non-uniformity, and in particular local non-uniformity, effect is further smeared
when particles come at non-zero angle ¢ to the normal to calorimeter surface. This

angle exceeds 0y = 80 mrad for photons entering outer region of calorimeter.

Simulation of light propagation in the scintillator tile with WLS fibers, illustrate

the interplay between the tile transparency and the fiber density impacts on the local

the innermost region (section [3.2.3). To minimize module degradation the geometry absorption length,
Ageom, should be as small as possible, thus prohibiting to reduce fiber density. On the contrary, dose
accumulated by the outer section modules does not exceed 0.02 Mrad per year of LHCb operation,

and the fiber density optimization is allowed.
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Table 3.3: Response non-uniformity of modules with 144, 100 and 64 fibers per module, as
measured with MIP and electron beams. Global and local non-uniformity effects are expressed
in terms of Agiopar and Ajpeq coefficients from parameterization (1) correspondingly. Implied

is the integration over the effect along y-direction

144 fibers | 100 fibers | 64 fibers

MIP beam
light yield, [a.u.] 1.20 1.00 0.74

global non-uniformity, Agepa 0.06(1) 0.03(1) 0.01(1)
local non-uniformity, Ajoca 0.004(1) | 0.009(1) | 0.012(1)

e~ beam
light yield, [a.u.] 1.27 1.00 0.70

global non-uniformity, Ay || 0.03(1) 0.02(1) 0.02(1)
local non-uniformity, Ajocal 0.003(1) | 0.005(1) | 0.007(1)

uniformity of response. Table [3.4] shows A;,..; coefficients from parameterization

Table 3.4: Scintillator transparency and fiber density impact on the local uniformity of the
response to MIPs, as studied with Monte Carlo. Shown is the value of Aj,.q coefficient from

parameterization (1). Options with 144, 100 and 64, and As.; = 15 em, 25 em and 50 ¢cm are

considered
Fibers per tile
Mean light path, Ag; 144 100 64
15 em 0.0035(5) | 0.0091(4) | 0.0132(3)
25 cm 0.0005(5) | 0.0051(4) | 0.0089(3)
50 cm 0.0004(4) | 0.0022(3) | 0.0063(3)

for the cells with 144, 100 and 64 fibers per tile, and mean light path of Ag.,; = 15cm,
25cm and 50 cm. As expected, both increasing fiber density and increasing of mean
light path effects improve local uniformity of response. Indeed, if photons travel long
enough in the tile (due to good scintillator transparency and efficient edge reflection),
they meet a fiber with high probability, and the local non-uniformity becomes small.

The picture obtained is in good agreement with the local uniformity as measured with
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Figure 3.17: Local response uniformity measured for three modules with 64, 100 and 144
fibers per module, with 50 GeV electrons at X7 beam at CERN. Global type uniformity

corrections are taken into account on the plot. The curves are the results of the fit

MIPs (Table , if assuming Ag.; ~ 15 cm.

The measurements shown, that about 30% of light is reflected from TYVEK paper
prior to being collected by WLS fibers. Given sufficient light yield, uniformity of
response can be complementarily improved by using masks — paper placed between tile
and TYVEK, governing the reflection from tile sides. Such a mask suppresses the light
at positions corresponding to maxima of cell response, thus improving the uniformity

of both types.

LHCbh ECAL employed the solution with 64 fibers per outer section module and
with 144 fibers per module for inner or middle sections. Mat coating of tile edges
allowed to achieve record lateral uniformity of response for Shashlik type calorimeters.

Response variation over the cell position for outer type cell was measured with the
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electron beam after corrections for energy-position dependence of the beam. Variations

within £1.3% over the cell surface were observed (Fig. [3.18]). For realistic incident
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Figure 3.18: Lateral scan of outer ECAL cell with 50 GeV electrons. Dashed lines indicate

borders with neighbour cells. Note the suppressed zero on the plot

angles, bigger than 200 mrad, the response varies by less than +0.6% over the module
surface. Variations seen around £60 mm from the cell center, correspond to transition
between the modules. For the inner and middle type cells fiber type non-uniformity is
smaller due to higher fiber density. Results on the lateral variation of response are well

described by the simulation for both e~ and p~ lateral scans [110].

Contribution from lateral non-uniformity of response can be directly observed by
comparing the energy resolution obtained in three different geometries [111]: a rectangle
(full non-uniformity effect included), a strip (non-uniformity along one coordinate is
eliminated) and a spot by averaging the energy resolution curves for four symmetrical
+1mm x £1mm areas across the module surface (Fig. [3.19). The measured constant
term differs for the three geometries, and its variation is consistent with corresponding

lateral non-uniformities measured in terms of the A;,.,; parameter (eq.|3.1)).

3.2.3 Radiation resistance of scintillating materials

Choice of materials and understanding of the expected ECAL radiation resistance was
possible due to a substantial number of experiments organised by Vladimir Rusinov

and Evgeny Tarkovsky.
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Figure 3.19: Energy resolution curves over different area on the cell surface: rectangle
(Az, Ay) = (£15mm, £30mm)), strip (Ax, Ay) = (£1mm,+£30mm)) and spot (Az, Ay) =
(£1mm, £1mm))

Calorimeter detectors experience significant radiation dose during LHCb operation.
Expected radiation-induced degradation of the calorimeter resolution due to deteriora-
tion of optical components is discussed in Ref. [112,/113]. The performance degradation
of the ECAL has to be compared to the performance required by physics considerations.
The annual radiation dose, corresponding to 107 s operation and integrated luminosity
J Ldt =2 fb™!, reaches its maximum of 250 krad at the shower maximum position of
the innermost ECAL cell, with about equal contributions from electromagnetic and
hadronic components (Fig. [3.20)). The dose exponentially decreases with the distance
from the beam axis (Fig. , and therefore the optical components for the ECAL
inner type cells are most subjected to the high dose values. Availability of spare readout
channels motivated extension of instrumented ECAL volume as close to the beam as
the vertical bar in horizontal direction (Fig. [3.21a) and as close to the beam as the
left histogram bound in vertical direction (Fig.|3.21b). The modules of middle and
outer regions do not suffer from such a dose, the maximum dose achieves there about
0.02 Mrad per year of LHCb operation. Thus the reference maximum dose rate for
the LHCb ECAL is taken as about 0.03 rad/s. The radiation resistance of the LHCb
ECAL cells is discussed below.

As long as the photostatistics remains sufficient, ECAL energy resolution is deter-
mined by the constant term, that can be influenced by radiation induced degradation of
active detector components, scintillator tiles and WLS fibers. Their radiation-induced
degradation is discussed below. Radiation induced transverse and longitudinal non-

uniformity makes the constant term rising. Light mixer and PM window transparency
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Figure 3.20: Longitudinal profile of the reference dose for the innermost module. The
contributions from electromagnetic (light) and hadronic (dark) components of the shower are

shown separately
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Figure 3.21: Lateral distribution of the reference annual radiation dose along z-axis in y = 0

slice (a) and along y-axis in « = 0 slice (b). Vertical line indicates the innermost position of

active calorimeter volume

deterioration is not addressed. As far as plastic scintillator components are concerned,
integral effect of brightness, transparency, possible tile edge coating degradation and

fiber loop quality can degrade due to radiation induced structure distortion, active



3.2. DESIGN AND CONSTRUCTION OF THE LHCB ECAL DETECTOR 73

radicals, radiolysis gaseous products and other effects.

At present many radiation test results are available. However, measurement condi-

tions of each test are adapted to a specific experiment. They differ by

e dose parameters: dose value, rate and profile;
e annealing time: time intervals between irradiations and measurements;
e particles used for irradiation: photons, electrons, charged hadrons or neutrons;

e scintillator material: wide-spread are PSM-115, SCSN-81, BASF-165, and exacti-

tude of raw material, tracked up to producer and production batch;

e fiber type: Kuraray Y11, Bicron BCF91, BCF92 and BCF99, Pol.Hi.Tech. S048
and 5248, single or multi-cladding;

e geometrical features: fiber and tile size, fiber density, module geometry, etc.

This makes general comparisons difficult, and often requires dedicated tests for a given

experiment.

Radiation induced damage reduces both brightness — ability to emit light for
scintillator, and to re-emit light for fiber — and transparency of scintillator tiles and
WLS fibers.

Brightness deterioration is first of all the property of materials themselves, and is
considered to substantially depend on the irradiation method, in particular, on the dose
accumulation rate and particle type. Since an annealing process proceeds in parallel
with the radiation-induced degradation, one expects competing annealing process to
noticeably compensate the degradation under small dose rates. Most often radiation
tests are carried out with the dose rates, that are considerably higher compared to

those expected in the experiment.

Similar to brightness deterioration, the change in mean path of photons depends on
material and irradiation method, but also is a strong function of the pattern geometry.
For scintillator this means, that the radiation induced changes increase with the mean

light path. Thus, in order of Shashlik type calorimeter to operate in the highly irradiated
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area, small size tiles and high fiber density (and even, probably, low reflection efficiency

from tile edges) are profitable to diminish the initial mean light path.

For fiber damage studies the dose irradiation profile is important, uniform or
approximated according to the expected distribution, and a presence, or not, of the
reflected light, that can travel twice through the damaged area. Longer fibers effectively
shift the spectrum transmitted light to bigger wavelength values. For LHCh ECAL
typical fiber length is approximately 0.5 m or bigger for the light passing through fiber
loop. Under irradiation transmission of small wavelength light degrades first, so that

longer fibers become effectively more radiation resistance.

Major part of experiments aimed at radiation hardness studies of plastic materials
used radioactive sources for irradiation. Complete module irradiation with an electron
beam [114}/115] qualitatively showed the picture similar to that after irradiation with
the source. Along with that, the irradiation with the proton beam [116] demonstrated

possible dependence of the damage on particle type used for irradiation.

The above considerations allowed preliminary material selection as candidates for
LHCb ECAL. Authors of Ref. [117] concluded that in view of brightness and radiation
hardness, the combination of PSM-115 plastic and Y11 fibers is about equivalent to
that of SCSN-81 plastic and the same Y11 fibers, so that the two major scintillator
types, PSM-115 and SCSN-81, show similar performance. The emission spectrum of
irradiated PSM-115 plastic and the degradation of scintillator transparency depending

on the wavelength have been studied.

The initial choice of Y11(200)MS and BCF-91A(DC) double cladding Bicron fibers
for detailed testing relies on the previous convincing measurements. The BCF99 fibers
degradation dynamics relative to the degradation of BCF91 fibers under irradiation []
up to 0.5 Mrad with a dose rate of about 0.6 rad/s at the 1.8 GeV energy ITEP proton
accelerator, is shown in Fig. [3.22] The light yield from the beam induced signal was
monitored for BCF-91A(DC), BCF-99 and Y11(200)MS fiber samples. Relative light

ield LY (BCF99)
Yield Ty (BoFan)
beam. Relative annealing is visible and matches the beam current evolution. Unlike

evident BCF-99 fiber degradation, BCF-91A(DC) and Y11(200)MS fiber samples show

follows beam current curve, and annealing effect is clearly seen without

4Particles from interactions of 2.5 GeV/c momentum proton beam with the target were used for

irradiation.
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Figure 3.22: Degradation dynamics of BCF99 fibers relative to the degradation of BCF91

fibers under irradiation up to 0.5 Mrad at ITEP accelerator. Time dependence of relative

light yield % (a) and the corresponding beam current (b) are shown

similar behaviour under these irradiation conditions.

Ref. |118] shows radiation resistance of Pol.Hi.Tech. fibers to be clearly worse than
that of Kuraray products. Faster Bicron BCF-92A fibers also show worse radiation
resistance [118|119]. The Y11(250)MSJ and BCF-92A fiber samples were irradiated
using °Co source up to 400 krad in four series of 100 krad each. The dose rate was
about 0.4 rad/s. Brightness and transparency coefficients were measured before and
after each irradiation period and 700 h after full irradiation dose is achieved. No visible
degradation of Y11(250)MSJ fibers was observed, while BCF-92A fibers lost about 30%

for each coefficient value.

Loops of BCF92 fibers with a loop diameter of 29 mm, corresponding to outer type
ECAL cells, together with same type straight fibers, were irradiated with a %°Co source



76 CHAPTER 3. LHCB ECAL DETECTOR CONSTRUCTION

up to 150 krad with a dose rate of about 1 rad/s. When the effect of degradation
corresponding to straight fibers is subtracted from the observed degradation for fibers
forming loops, the remaining effect can be attributed to the deterioration of fiber loop
quality. No significant deterioration of fiber loops was observed. Measurement error

was estimated to be 5%.

Irradiation 40.2 x 40.2mm? BASF-165 scintillator tiles with the %Co source up
to doses of 100 krad and 200 krad with a dose accumulation rate of about 0.4 rad/s
demonstrated similar annealing curves for the two dose values. The light yield depen-
dence on the annealing time was measured using the hedgehog setup (section

starting from only about 3 h after irradiation was terminated.

The 40.2 x 40.2mm? BASF-165 scintillator tiles and Y11(250)MSJ WLS fibers were
irradiated at the ITEP proton beam, with the dose rate of 28 rad/s and a total of 1
Mrad accumulated dose. After irradiation, light yield of the tiles was measured with
the %°Sr source at 20 positions over the tile surface and then averaged. Reference tile
measurements were used for normalization. After about 60 h of annealing process,
the light yield reached a plateau at 80% of the initial light yield of the tile. Effect
of brightness and transparency degradation of the fibers was studied separately and
distinguished via LY = B - e */T fit, where LY is the light yield, z is the distance
from the PM to the tile moved along the fiber and excited with the °Sr source, and B
and T are the extracted brightness and transparency coefficients. The reference fiber
was used for normalization. After the 1 Mrad dose irradiation, annealing time about
100 h was observed with plateau values of 88% and 75% of the initial B and T values

correspondingly.

In order to safely predict radiation damage of the designed experiment, perfectly
reproduced beam energy, beam composition, expected dose rate and a full-scale detector
prototype are required. Unfortunately such an experiment run into many difficulties, e.g.
it takes exactly the designed project operation time. Still natural source of information
mostly satisfying the above requirements could be a detector of similar design, operating
in a similar accelerator environment. The HERA-B calorimeter provided some useful

information that was possible to perform well-educated irradiation tests for LHCb
ECAL.

An important radiation test has been performed using electron beam of LIL, LEP
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Injector Linac. Three identical towers of 40 x 40 mm? size were assembled using
PSM-115 plastic tiles and two species of fibers, Y11-200(MS) and BCF-91A(DC). Fibers
had no treatment at their front end, so that only negligible fraction of reflected light
from fiber front end, was achieving PM. Artificial sandwich of 20 layers each consistent
of one 1.5 mm thick lead plate and five 4 mm thick scintillator tiles, was assembled in
order to approximate combined electromagnetic and hadron dose profile E] with 500 MeV
energy electrons. Two modules were irradiated with electrons of 500 MeV energy up to
5 Mrad dose at shower maximum. The irradiation rate was approximately 10 rad/s,
that is about 200 higher rate than the LHCD one.

Comparison was made between the irradiated modules with Y11-200(MS) and
BCF-91A(DC) fibers, with respect to the reference non-irradiated module. Combin-
ing conventional irradiated lead/scintillator stack with reference fibers, and reference
lead /scintillator stack with irradiated fibers, the damage effects of scintillator tiles and
WLS fibers were separated. Each combination was longitudinally scanned with 2Sr
radioactive source, and the light yield was measured. The main results obtained are

discussed below.

Scintillator degradation and annealing effect was studied after irradiation up to
5 Mrad dose at shower maximum. Fig. shows light yield depending on distance
to PM in 7, 55, 175 and 2000 hours after irradiation. Annealing effect is clearly seen
up to ~ 50 hours after irradiation. In Ref. [119] PSM-115 scintillator was irradiated
with 137C's radioactive source with rate of 6 rad/s, and the observed annealing effect
shows similar behaviour. However, the authors of Ref. [119] observed no remaining
degradation after annealing for doses below 1 Mrad. Studying dependence of PSM-115
scintillator damage on the dose rate, authors of Ref. [120] performed irradiation ¥7C's
source with the dose rates of 0.32 rad/s and 6 rad/s. They observed degradation to
clearly increase with the dose rate. However they measured annealing effect to the same

level independently on the dose rate.

Fig. describes total signal reduction because of brightness degradation from
one hand, and of light collection degradation, caused by scintillator blur, from the

other. Light collection efficiency and its radiation induced degradation depend onﬁ

5A price to pay for such a tricky sandwich is the impossibility to directly measure overall module

effect from irradiation.
SFor below discussion, scintillator material and fiber density are assumed to be predefined on the
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Figure 3.23: Scintillator degradation and annealing effect after irradiation at LIL up to 5 Mrad
dose at shower maximum (shower maximum position corresponds to distance to PM of 42 cm).

Shown is the light yield vs. distance to PM after 7, 55, 175 and 2000 hours after irradiation

the attenuation length Ay, which reflects a property of material to be transparent to
the light of a given wavelength, and on the light absorption length Ay, driven by the
geometry (effective fiber surface, as seen by the light, and efficiencies of reflection from
the tile edges, from the fiber holes and from TYVEK, enter Ajeom,). While Ay worsens

with the dose accumulated, the Ay, is determined by the design.

The Ageom reduction is profitable in a sense, that Ay fall-off is less felt by the total
scintillator tile light yield degradation. In order to decrease Ageom one could shorten
the mean light path of photon in non-irradiated tile. For illustration, considered is
the shortening of mean light path achieved by worsening the quality of light reflection

from tile edges. This would lead to lower radiation induced degradation effects from

basis of other considerations.
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one hand, and to decreasing of the light yield from the other. Thus, having enough
photostatistics, one would naively prefer the very poor light reflection efficiency from

tile edges, if it were not for important transverse uniformity considerations [109].

To prove Ageorm, significant impact on the performance, and to get quantitative picture,
three PSM-115 tiles of 4 x 4 cm? size with clear polished edges, with aluminized edges
and with mat edges respectively, were irradiated with %Co source up to 2 Mrad dose
with a dose rate of about 10 rad/s. Initial light yield after irradiation was measured. Loss
of the light yield depending on the accumulated dose is shown in Fig. [3.24 According to
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Figure 3.24: Radiation induced degradation of tiles of 4 x 4 cm? size with open (diamond),
aluminized (stars) and mat (circles) edges. Light yield loss (in %) depending on accumulated
dose is shown. Tiles were irradiated with %°Co source up to 2 Mrad dose, and read out by

WLS fibers. Typical error of each measurement is ~ 2%

the expectations, the tile with clear polished edges showed the least degradation, and the
tile with mat edges, and consequently the largest Ageom, degraded to the highest extent.
Results for different Ageo, values obtained in Ref. [121] also support this interpretation
of transparency impact on scintillator degradation. Thus small geometrical attenuation
length, i.e. high fiber density and poor edge reflection, is advantegeous to limit radiation

induced degradation effects.

Fig. and describe fiber degradation and annealing effect for Bicron BCF-
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Figure 3.25: Bicron BCF-91A fiber degradation and annealing effect after irradiation at LIL
up to 5 Mrad dose at shower maximum. Shown is the PM current vs. distance to PM for
non-irradiated fiber sample, and for irradiated fiber sample after 7, 55, 175 and 2000 hours

after irradiation

91A and Kuraray Y11(200)MS fiber samples after irradiation up to 5 Mrad dose
at shower maximum. The PM current depending on the distance to PM for non-
irradiated fiber sample, and for irradiated fiber sample is measured in 7, 55, 175 and
2000 hours after irradiation. Attenuation of signal from the largest distance for BCF-
91A fiber was reduced to 20% from the initial value. Subsequent annealing improves
the attenuation up to 50% in the first ~ 50 hours with no further improvement visible.
For Y11(200)MS fibers the attenuation was reduced to less than 10% value compared
to the initial measurement. Annealing effect improves attenuation up to 40% in the
first ~ 50 hours after irradiation, and up to 70% after ~ 175 hours with no further
improvement. Kuraray Y11(200)MS fibers behaviour appears more advantegeous, given
limited realistic dose rate. For smaller fiber length, I ~ 25cm, Y11(200)MS fibers

were shown to have much better radiation resistance compared to that of BCF-91A
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Figure 3.26: Kuraray Y11(200)MS fiber degradation and annealing effect after irradiation
at LIL up to 5 Mrad dose at shower maximum. Shown is the PM current depending on the

distance to PM for non-irradiated fiber sample, and for irradiated fiber sample after 7, 55,

175 and 2000 hours after irradiation

fibers [102].

Translation of the collected dose to the actual module degradation and to the
corresponding change in the energy resolution is done using Monte Carlo simulation.
The dose distribution along the module length was taken from Fig. [3.20] In addition,
all observed radiation damage was assumed to have electromagnetic origine. Using the
relation between the distance to PM from Fig. and and the accumulated dose,
the dose dependence on the attenuation length was estimated for Bicron BCF-91A(DC)
and Kuraray Y11(200)MS fiber samples. Scintillator degradation was estimated using
the information from Fig. [3.23] Data distributions of scintillator brightness and fiber

attenuation length depending on the dose were fit with an exponential function, assuming
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Bs.; and Ap;, dependences to be
0 _D 0 _D
Bgs.i = Bg., e Ps and Apip = Apy - e PF

where Bgci and )\%ib are the values of Bg. and Ap; before irradiation, and D is the
accumulated dose. The fit yielded (dose parameter estimates correspond to LHCb ECAL
scintillator tile geometry and fiber length) dose parameter for scintillator Dg = 7.3 Mrad,
and fiber dose parameters Dp = 4.4 Mrad for BCF-91A(DC) fibers and Dp = 7.1 Mrad
for Y11(200)MS fibers [}, which became the input to the simulation model.

Projected calorimeter performance degradation for the Y11(200)MS®PSM-115 and
BCF-91A(DC)®PSM-115 combinations was obtained using simulation studies (Fig.[3.27
and , respectively). Peak damage depending on the energy for accumulated dose of
0;1;2;3;4;5 Mrad, energy resolution degradation for energies of 5; 10; 20; 50; 100 GeV,

and radiation-induced degradation of the energy resolution constant term,

Odamage \/{@}2 _ {(@) }2
E E EJo)
where subscript index “0” denotes non-irradiated value, are shown. For considered
energies and dose values the BCF-91A(DC) and PSM-115 combination exhibits stronger

degradation than the combination of Y11(200)MS and PSM-115. Horizontal lines

indicate constant term of energy resolution reaching 1.5% value, considered as a limit,

still accepted by physics performance criteria. This limit is reached at 1.9 Mrad
accumulated dose for the BCF-91A(DC)®PSM-115 combination and at 2.2 Mrad for
the Y11(200)MS@®PSM-115 combination, respectively.

The Y11(200)MS and PSM-115 combination has been chosen for the LHCbh ECAL.
Fig. [3.21] predicts for the ECAL innermost cells to accumulate a dose of 2.5 Mrad
in 10 years of LHCb operation, corresponding to about 30% reduction in light yield.
However, the ECAL energy resolution is not limited by photostatistics, and the expected
induced constant term degradation of 1.5% is caused by longitudinal fluctuations, and
achieved at a dose of 2.2 Mrad. Taking also into account the uncertainties, due to
determination of dose values in the irradiation tests and due to predicting the dose
values corresponding to LHC operation, a possibility to replace 48 innermost modules
is foreseen in the calorimeter design (section [3.2.7)).

"The A}, parameters for BCF-91A(DC) and Y11(200)MS fibers have almost equal values of 105 cm

and 100 cm, respectively.
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Figure 3.27: Simulation studies of radiation induced module performance degradation. The
Y11(200)MS and PSM-115 combination and dose profile from Fig. are considered.
Shown are peak damage versus energy for accumulated dose of 0;1;2;3;4;5 Mrad (a);
energy resolution degradation for 5;10;20;50; 100 GeV energy (b); constant term degradation
or radiation induced constant term for 5;10;20;50;100 GeV energy (c). Horizontal line

corresponds to the 1.5% value of the constant term

In addition sets of comprehensive dose monitors have been distributed over calorime-
ter surface, in the regions close to the beam pipe, periphery and close to position of
FEE. This provides not only a dose map reference, but also yields the information of
scintillator materials aging for irradiating particles, corresponding to realistic environ-
ment of hadron collider, and at realistic dose accumulation rate. Only passive dose

monitors, accessible for reading during long LHC stops, are used. A combination of
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Figure 3.28: Simulation studies of radiation induced module performance degradation. The
BCF-91A(DC) and PSM-115 combination and dose profile from Fig. are considered.
Shown are peak damage versus energy for accumulated dose of 0;1;2;3;4;5 Mrad (a); energy
resolution degradation for 5;10;20;50; 100 GeV energy (b); constant term degradation for
5;10;20; 50; 100 GeV energy (c). Horizontal line corresponds to the 1.5% value of the constant

term

polymer alanine, thermo-luminescent dosimeter and pin diode has been chosen. Having
different response to different radiation types, the monitors will provide a separate dose

map for electromagnetic component, charged hadrons and neutrons.
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3.2.4 Module construction

Module assembly took place in Vladimir town, at Uniplast facility developed by Viktor
Mayatsky, based on the experience from the ECAL construction for PHENIX and
HERA-B experiments. Many nice engineering solutions were developed by Stanislav
Malyshev.

Main part of the ECAL modules production took place in Vladimir site, having
the experience of Shashlik module construction for PHENIX and HERA-B calorimeters.
Production of the scintillator and lead tiles, treatment of tile edges, preparation of
WLS fiber loops, and module assembly are the important steps of LHCb ECAL module
construction. Every production stage, in particular for active materials, requires quality

control of produced sample.

Scintillator tiles were produced from polystyrene with 2.5% p-terphenyl and 0.01%
POPOP admixtures. The concentration of scintillating dopants is tuned for the scintilla-
tor emission spectrum to match the absorption spectrum of WLS fiber. The scintillator
tile production employed the high pressure injection molding technique. Tile edges were
chemically treated (Fig. thus providing diffusive reflection in order to improve

Figure 3.29: Scintillator tiles with treated edges

light collection efficiency, lateral uniformity and prevent tile-to-tile light cross-talk
(section . A stack of tiles separated with thin spacers was put in a chemical
solution that produced micro-bubbles of air in a thin layer at the tile edges. Not only
the tile edges were treated, but also about 200 um distance from the edges on the
tile sides, which partially compensated the effects of global non-uniformity and dead

material at the module borders. Scintillator tiles have been molded at a rate of up to



86 CHAPTER 3. LHCB ECAL DETECTOR CONSTRUCTION

800 per day, and DMA edge treatment rate was up to 700 tiles per day. At this rate the
effect from previous admixtures in the molding machine became negligible after about

20 days, and the average light yield of the produced tiles reached a plateau (Fig. [3.30)).

a.u.

300

200

Light yield

100 -

-50 0 50 100 150
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Figure 3.30: Evolution of average light yield of tile bunches

The lead plates are produced using sheet-metal stamping by the JL. Goslar company;,
specializing on producing lead for roofs. This was the first and successful application
of their equipment to HEP instrumentation. The lead plates have 2mm thickness
produced with a 10 pm tolerance, and were covered by a thin, about 5 um, layer of tin.
A matrix of the holes, corresponding to passage of the optical fibers, was produced in

each lead plate, with each hole having a double-conical shape to avoid scratches on the
fiber cladding.

The light from the scintillator tiles, is re-emitted and transported by 1.2 mm diameter
WLS Y-11(250)MSJ fibers from Kuraray, penetrating the entire stack. In order to
improve light collection efficiency and lateral uniformity of response, the WLS fibers
form loops (Fig. [3.10] right) at the front side of the module. Fiber loops with radii
as small as 10 mm, where the light loss is driven mainly by the geometrical optics
reflection down the loop, were required. To achieve these small radius values, far below
conventionally tolerated values, fibers were fixed in the frame and placed in an oven

under uniformly distributed dry heat and under constant uniform mechanical load

(Fig. and [3.32)).
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Figure 3.31: Preparation of fiber loops. Attaching fibers to the frame (left) and bending fibers
to the loop shape before placing them in the oven (right)

Figure 3.32: Preparation of fiber loops. Placing the frame in the oven, delivering uniformly

distributed heat (left), and extraction of bent fibers from the frame (right)

Bending of the fiber at small curvature radii leads to light losses both due to
mechanical degradation because of fiber cracking, and due to the change of light
reflection angles, governed by the geometrical optics. The latter effect dependence on
the bending radius, has been simulated for 1.2 mm diameter fibers. Simulation results
are plotted in Fig. [3.33]

A production rate of fiber loops of up to 1.5k per day was achieved.

The module assembly is discussed below for the most complicated case of inner
module, comprising nine cells. It started from the lead-scintillator stack assembly in
the vertical position using well-like tooling (Fig. [3.35a). Then the assembled stack was

pressed with 500 kg force. This procedure was repeated 5 times, which made possible
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Figure 3.33: Simulation results of light yield efficiency dependence on the fiber bending radius,

I and I, are the light intensities measured at the straight and looped ends, respectively

Figure 3.34: Assembly of the outer section module, first stage. Lead-scintillator stack during

assembly (left) and pressing the stack and preparing steel tapes for welding (right) are shown

structure deformations stable, and after that the stainless steel side tapes of 100 u
thickness were welded to the steel matrix plate. For the outer type modules, stack

assembly is shown on Fig. [3.34]

Next WLS and calibration fibers were inserted into the stack structure (Fig.|3.35p).
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steel stretching tape

maounting spokes

steel pressing matric

plastic matric

Figure 3.35: Assembly of the inner section module, first stage. Lead-scintillator stack during

assembly (a) and the assembled stack with welded tape and inserted fibers (b) are shown
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PM housing

Al plate

tong

plastic cover
flanch of tong

PM shielding tabe

Figure 3.36: Assembly of the inner section module, second stage. Assembled stack with 6

from 9 formed fiber bundles (a), and the read-out part assembly (b) are shown
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Fibers belonging to each calorimeter cell were bundled at the end of the module and
polished. In order to form a fiber bundle, a fiber housing was mounted, and fibers were
fixed with the tongs (Fig. [3.36R). Flay-cut of fiber ends ensured fibers to be collinear

and perpendicular to the cut.
Then mounting of the read-out system followed (Fig. [3.36Db).

PM is placed in the housing with insertion of 2.5 mm thick steel screen and three
layers of 0.05 mm thick permalloy protection Fj Finally mounted is the module end-cup

cover, which guarantees the light isolation.

Assembly rate of up to 10 outer section modules per day has been achieved. Though
the production rate was 2-3 times lower for small cell size inner modules, their amount

of 176 is small, compared to the total number of 3312 modules.

Quality control was ensured at all stages of module production, starting from tile

raw materials control and until assembled modules tests.

3.2.5 Quality control

Quality control was performed at the production facility in Vladimir and ITEP, and

was efficient due to major contribution of Vladimir Rusinov and Evgueny Tarkovsky.

Quality control comprised on-site measurements, starting from the input control
of raw material and up to characteristics studies of the assembled module, full-scale
prototype studies with the test beam facilities, and pre-calibration of all the ECAL

cells using cosmic rays upon arrival at CERN [122].

The idea of the on-site control measurements is to compare the result of measurement
to that obtained for the working standard, which performance has been proved by the

extensive studies from spectroscopy analysis and up to the beam tests.

The most important at the stage of raw material treatment was the polystyrene and
p-terphenyl quality control. For tile production polystyrene-based PSM-115 plastic,

which shows similar radiation hardness |123], was used instead of pure polystyrene.

8The length of this screening is determined by the longitudinal component of the magnetic field.
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Two tests were used to control the polystyrene quality.

First test relied on infrared spectroscopy technique, which was developed to analyze
composition of organic substances. Different chemical bonds correspond to different
resonance frequencies, and the frequency spectrum was compared to the standard one.
Fig. [3.37 shows the infrared spectra for two samples of PSM-115 plastic, where only

minor differences are seen. The pure polystyrene spectrum shows no peak in the region
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Figure 3.37: Infrared spectra for two samples of PSM-115 plastic. The pure polystyrene

spectrum shows no peak in the region indicated by arrow

indicated by arrow. Another application of the technique consists in identification of
the extraneous admixture present in polystyrene sample. The specimen is taken out
mechanically and dissolved in the e.g. chloroform. The spectrum of this solution is

compared to the standard spectrum of polystyrene, and to other standard spectra.

The other test was the control of transparency, i.e. the response from polystyrene,
measured with a spectrophotometer, depending on the wavelength of incoming light.
The MPS-500 spectrophotometer was used for the measurements with the two-beams
method. High apparatus sensitivity allowed the measurements with either a single tile

or rouleau of tiles.

Each tile was measured in 10 points distributed along its surface. Special attention
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has been paid to the transparency for the light with A = 420 nm, corresponding to the
light emitted by the scintillator. To account for losses due to the partial reflection, the

reference value measured at A\ = 590 nm was subtracted Pl

Quality control of p-terphenyl sample began from the infrared spectroscopy test,
similar to the polystyrene control. It was followed by gas and liquid chromatography
quantative tests, probing chemical composition and concentration of the components
using the measurements of time delay and amplitude of separated chemical compounds.
Finally, p-terphenyl sample was subjected to transparency studies with the spectropho-
tometer, as for polystyrene control, to search for any difference between the spectra of

test and reference samples.

A technique to determine the dye dopant concentration in the produced scintillator
tile, with spectrophotometer, has also been elaborated. However, it appeared to be time-
and work-consuming, and was used only to cross-check performance of other control
methods. Routinely scintillator tiles were controlled in three steps. Fluctuations of the
tile-to-tile light yield had an R.M.S. smaller than 2.5%.

Spectrophotometer control ensured the transparency for the blue ( 420 nm ) light.
Fig. shows the tile-to-tile transparency variations. The individual value i is the

I Mean 0.5759E-01
[ 0.003 0.4867E-02
100 -
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Figure 3.38: Tile transparency measurements accomplished with spectrophotometer. The [
variable is an average over the values %, as measured at 5 points distributed over the

tile surface

average over the values %, as measured at 5 different points laterally distributed

over the tile, where I459 and I5q is the transparency of a tile for 420 and 590 nm light,

9At this wavelength the absorption is considered to be negligible.
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respectively. About 5.8% of the 420 nm light is lost with respect to 590 nm. The r.m.s. of
this distribution is 0.5%. Transparency variations over a tile surface could be estimated

by the v62/ji value (Fig. [3.39)), where 62 is the variance of one tile measurements.
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Figure 3.39: Tile transparency measurements accomplished with spectrophotometer. The
i and &2 variables are the average and variance over the values %, as measured at 5

points distributed over the tile surface

The setup of the next test resembled a hedgehog, represented by a scintillator tile
and fibers coming through its holes. The tile was irradiated with °Sr radioactive

source, and the response from fibers (via PM) was measured.

An individual measurement comprised the measurement of dark current, i.e. noise
plus fiber response to the irradiation, and the measurement of current from complete
hedgehog (scintillator tile and fibers). The result of the test was the difference between
the two measured values, compared then to the reference tile. Tiles with the difference
of less than 5% from the standard value, were accepted for further control. Tile-to-tile
spread with the RMS of 1.5% was observed.

Scintillator tiles were subjected to the same hedgehog test after DMA treatment of
tile edges. This test provided a quality control of the tile edge coating, and verified the
light yield of the tiles before stack assembly. Fig. |3.40| shows the light yield relative
to that of a reference tile, measured with the hedgehog test, and averaged for groups
of three tiles. The tiles with LY > 0.93 - LY,.; (region to the right from the arrow)
were then used for module assembly. The r.m.s. for the retained sample was ~ 0.09.
Since the photostatistics of the LHCb ECAL is sufficient, control of tile light yield is

only important to limit tile-to-tile spread inside a cell, thus improving longitudinal
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Figure 3.40: Results of the hedgehog test for groups of three tiles. Shown is the light

yield relative to that of a reference tile. The r.m.s. for the tiles used for module assembly

(LY >0.93 - LY;.f, corresponding region is to the right from arrow) is ~ 0.09

uniformity of response. After the edge treatment tile-to-tile spread with the RMS of
2.5% was observed. When convoluted with the longitudinal shower development, this

spread produces negligible impact on the constant term of energy resolution.

The analysis showed that tile quality crucially depends on tile edge coating quality,

and there is only a minor dependence on the transparency properties.

Principle of bent WLS fibers control was similar to the one shown on Fig. [3.33]
where the light initiated in the scintillator tile using *°Sr source, was readout via the
tested fiber loop. When measured after the fiber loop, the light yield loop-to-loop
variations due to fiber bending were measured to have an R.M.S. of the spread of 1.6%,
and the spread of 2.0% including straight fiber-to-fiber variations. These values produce
negligible impact to the constant term of energy resolution, when considering realistic

shower size and light collection mechanism, discussed in section [3.2.2]

Clear fibers penetrating cell centers have been tested using LED light inside the
assembled modules to account for possible mechanical damage during module assembly.
They have found to be identical to better than 3%. This value does not enter the
performance of the calorimeter as long as clear fibers deliver sufficient amount of LED

light to measure PM gain.

The control of the assembled module with cosmic particles along with the lead-

scintillator stack control, covers the test of fibers and bundle quality. On-site test
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with cosmic rays of horizontally positioned modules with the same calibrated PM has
been performed. The precision of this test was limited, since all the crossing particles,
independently of their exact trajectories, have been used, and spectrum qualitative
agreement was required. When subtracting measurement reproducibility, cell-to-cell
spread were estimated to be better than about 6%. Significantly better precision was
achieved with the test of modules in vertical position with cosmic rays, upon their
arrival at CERN.

3.2.6 Cosmic ray test

Cosmic ray measurements at CERN have been accomplished during the summer 2004,
with Oleg Gushchin, Boris Bobchenko, Leslie Camilleri and others, and were subject of
the internships of K. A. Koopmans and K. Voronchev.

As a final stage of module quality control and as a tool of pre-calibration, response
of ECAL cells to the cosmic particles has been measured before the installation in the
LHCDb detector. After the arrival of the detector at CERN and without unpacking the
ECAL modules, all the ECAL cells, including spare modules, have been measured.

The ECAL modules were delivered in wooden boxes in vertical position, with each

box comprising 30 modules (Fig. [3.41] left). The transportation box was positioned

Figure 3.41: Delivery of the modules to CERN in matrices 6 x 5 (left) and triggering of cosmic

muons (right)
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between the two planes of scintillator trigger counters in order to select muons traversing
longitudinally the 6 x 5 matrix of the ECAL modules.

The same PM gain, the gain value chosen at 10, is required for calibration purposes.
In order to determine the gain, each PM was illuminated by the LED light, and the
LED peak position and Gaussian width were measured. The LED light was delivered
by clear transport fiber arriving from the readout side of the module, and reflected from
the fiber bundle tong to the PM window. The same set of PM, readout chain and LED
and PIN diode system were used for measurements of each module box. In order to be

sensitive for MIPs higher PM gains were set.

In order to obtain peaking distribution and thus a good estimate of the ECAL cell
response, muon trajectories entirely comprised in one cell were selected. Since the
scintillator trigger counters did not posess any granularity and thus did not provide
a position information for the entering or exiting cosmic muon candidate, this was
achieved offline by vetoing any energy deposit in the neighboring cells. This procedure
works well for all the cells having neightbours on each side, where veto procedure
transformed a typical ADC spectrum shown on Fig. to the spectrum shown on
Fig. 3.42b, where MIP peak position can be properly determined. For the border cells
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Figure 3.42: Typical ADC spectra from cosmic rays in the matrix of ECAL modules. Spectra
in the cell having neighbors without (a) and with (b) veto on the signal presence in the

neighbour cells, and in the corner cell in the matrix (c) are shown

and in particular for the corner cells (Fig. 3.42c) in the matrix, signals from the muons
with only part of the trajectory inside the cell were also collected. In this latter case,
peak position was essentially defined by the high energy shoulder, and more statistics,

that is more exposition time, was needed to achieve similar accuracy in the peak position
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determination. Time needed to determine peak position to a precision of about 1%,

varied from about 1 hour for outer type cells to about 30 hours for cells of inner type.

The cell response values are shown on Fig. for the inner, middle and outer
ECAL cells. Number of measured cells and number of cells, that did not pass quality
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Figure 3.43: Cell response measurements using cosmic rays for (a) inner, (b) middle and (c)
outer ECAL cells

control requirements, the spread of cell-to-cell response, and the spread of cell-to-cell
response with quadratically subtracted measurement error, are shown in Table [3.5

Reproducibility of the measurements was found to be about 3%. This value was

Inner section | Middle section | Outer section
Number of cells 1935 1798 2790
Number of disqualified cells 12 2 4
Spread of MIP signal position 8.0% 5.3% 6.7%
Spread of MIP signal position
with measurement error subtracted 7.4% 4.4% 6.0%

Table 3.5: Number of measured cells and number of cells, that did not pass quality control
requirements, the spread of cell-to-cell response, and the spread of cell-to-cell response with

quadratically subtracted measurement error

quadratically subtracted from the measured cell-to-cell spread value for each type of
the ECAL modules, in order to determine actual cell-to-cell response spread. The
cell-to-cell variations were found to be 8% for the inner, 5% for the middle and 7% for

the outer type modules. Note, that the calibration of the complete readout chain had
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to be added to the detector cell calibration, as well as the effect of the spread in the

LED signal attenuation in the clear transport fibers.

Cosmic particles have also been reconstructed with the assembled LHCb detector.
Horizontally oriented LHCb detector positioned a 100 m underground is not ideal
for cosmic particles reconstruction. However, while waiting for the pp collisions in
2009, the LHCDb detector exploited cosmic particles to better understand the detector.
More than one million calorimeter triggered tracks was collected. In order to obtain
measurable signal from MIP, calorimeter detectors gain was increased similar to the
pre-calibration measurements. The transverse projection of the typical cosmic particle
track reconstructed in the calorimeter is shown on Fig. [3.44] left, and a very rare
track fully contained in the thin SPD is shown on Fig. center. The sample of

Muon
detector

Tracker
‘ |

,j ‘\—_—.

Calorimeter

Figure 3.44: Projection of the cosmic particle track reconstructed in the calorimeter detectors
(left), a rare cosmic particle track fully contained in SPD (center) and the example of the
track triggered with calorimeter and reconstructed in the tracking system and muon detector

stations (right)

the reconstructed MIP tracks was used to commission the calorimeter detectors, and
also large surface tracking detectors (Fig. [3.44l right), to verify efficiencies and time

alignment.

Time alignment between different channels of a given calorimeter and between
the calorimeter detectors, and minimizing the spill-over effect with cosmic rays, were
achieved by reading out consecutive 25 ns samplings. Due to different signal and LED
paths a time adjustment between different calorimeter detectors is required. Most
sensitive for a channel-to-channel alignment and for the spill-over optimization was
proven to be a comparison between amplitudes from the two subsequent samplings
when the timing is shifted by 12.5 ns with respect to the best guess initial setting in
order to probe the region with highest possible signal derivative. For the time alignment

between the two different detectors time difference was plot versus the estimated flight
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path between the detectors. For the perfect alignment the distribution line, smeared by
the detector cell sizes and estimate of the MIP signal collection, points to zero. With

the collected cosmic rays sample, time alignment of £2 ns was achieved between the

ECAL and HCAL.

3.2.7 Assembly of the ECAL modules in LHCb

The initial engineering design of the ECAL modules and the calorimeter wall was
performed by Alexander Soldatov. The design of all the calorimeter structures in
the LHCDb cavern was then taken over by the Annecy team, Claude Girard, Bruno
Lieunard, Marie-Noelle Minard and others, including detailed design of the calorimeter
platforms, beam plugs and simulation of potential earthquake effects. This design

corresponds to present calorimeter assembly in LHCb and is shown in Fig. Many
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Figure 3.45: Design of half ECAL wall

nice engineering solutions, including stretching system design and technical solution for
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replacing modules in the region around the beam pipe, came from Alexander Arefiev.
Principal characteristics of photomultipliers, including linearity and stability, were
checked at three test benches by Bernard Jean-Marie, Anatoliy Konopliannikov, Oleg
Gushchin, Evgueni Tarkovski and Tengiz Kvaratskheliia. Cockcroft-Walton bases were
designed by Yuri Gilitskiy, produced in THEP Protvino, tested by Oleg Gushchin,
Tatiana Zakoryuchkina and Olga Zhiryakova, and soldered to photomultipliers by
Nikolai Filimonov, Maria Filimonova and Tatiana Zakoryuchkina. Signal cables were
prepared by Jacques Lefrancois together with the engineers at LAL, while power and
control cables prepared by Valery Dolgoshein, Yuri Kuznetsov and Olga Zhiryakova,
who also mounted them on the cable-holding bands. Monitoring system was developed
by Ivan Korolko, Evgeny Melnikov and Oleg Gushchin. Preparation and bundling of
clear transport fibers was done by Stanislav Malyshev, Elena Mayatskaya and Olga
Zhiryakova. Monitoring fibers distribution and tests were done together with Kirill
Voronchev and K. A. Koopmans. The modules have been assembled in a wall, with
their position controlled, in about 6 weeks, togeher with Alexander Arefiev, Tengiz
Kvaratskheliia and Alexander Lukyanov, and with efficient help of Robert Kristic and
engineers of the LHC point 8, Bernard Chadaj, Gerard Decreuse, Bernard Corajod,
Patrick Vallet, Frank Lamour, Cedric Fournier and others. The front-end and trigger
electronics, readout and control was the responsibility of the LAL team, Christophe
Beigbeder, Dominique Breton, Olivier Callot, Daniel Charlet, Olivier Duarte, Jacques
Lefrancois, Frederic Machefert, Patrick Robbe, Vanessa Tocut, Ioanna Videau and

others.

Electromagnetic calorimeter wall is mounted on two main platforms, on each side
of the beam. Platforms are placed on rails, and can be moved out, in order to allow
calorimeter maintenance, and access the beam pipe. Beam plugs (Fig. replace
the ECAL modules around the beam pipe, where the radiation level exceeds tolerable

values (section |3.2.3)).

Modules of each platform are grouped in two-row module structures, by being
constricted with horizontal stainless steel tapes of 0.1 mm thickness and 400 mm width
(Fig. . The same size steel tape is put inbetween the two rows inside the double
row structure, to ensure the uniform load distribution. Each group is stretched with a
dedicated mechanical tooling to ensure a dense (adjusted) packing, and positioned in

x-coordinate as a unit structure, in order to precisely align the edge at = = 0.
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Figure 3.46: Beam plugs replacing ECAL modules around the beam pipe

Figure 3.47: Principal design of stainless steel tape used to group the double row of modules

in the dense structure

The innermost modules (up to 48 modules) exposed to the highest radiation dose,
can be replaced during a long LHC shutdown, if the radiation induced degradation
significantly affects the detector performance. To allow the replacement the design of
the four vertical columns is different. The modules belonging to this area as well as
the modules on top of them, are grouped in two double columns, and each is stretched
vertically similar to the treating of horizontal double rows. The grouping of modules
into double rows and double columns for the central part of the half calorimeter wall

is illustrated on Fig. |[3.48. The disassembly of double columns is done module by
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Figure 3.48: Grouping of modules into double rows and double columns for the central part

of the half calorimeter wall

module, starting from the top, in the sequence opposite to the assembly procedure.

Implementation of the stretching system is shown on Fig. for double rows and

Figure 3.49: Stretching system to position double rows (a) and double columes (b) of modules

double columns of modules.

Electronics platforms are positioned at the top of calorimeter wall. Each electronic
platform hosts 4 racks with the ECAL and PS/SPD FEE. The weight of individual
module amounts to 30 kg, from which the Pb/Sc stack weights of about 27.5 kg, and
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the read-out part and housing mechanics contribute another 2 kg. In addition, module
structure of each half a platform is pressed from the top with 1.4 ¢ load distributed
over the surface with the pressing plate. Electronics platform load is carried by the
calorimeter wall and partially by the side columns. The integrated load on each main

platform amounts to about 51 ¢.

Monitoring signals from light emission diodes (LED) are distributed during the
empty beam crossing, at the front side of the calorimeter wall (Fig. [3.50]). Signals are

Figure 3.50: Distribution of monitoring signals from LED to the ECAL cells

delivered to the clear fiber penetrating each cell, which is bundled together with the
WLS fibers in front of the light mixer and PM. LED light is split to 16 or 25 clear
transport fibers, with an additional clear fiber to deliver the light to a pin diode and
monitor stability of each LED.

The monitoring side of the ECAL is mechanically protected as shown on Fig. [3.51

At the downstream side of ECAL, cables are distributed over the detector via
dedicated steel cabling tapes of 210 mm width, which drive signal cables from the
detector to the electronics platform, and power supply and voltage control cables from
the control electronics positioned under the supporting platform to the CW bases on
the detector. Cable routing and connections are shown on Fig. [3.52] Cabling tapes are
mechanically attached to both the electronics and the supporting platforms. Signal
cables of C-50-2-1 type and 2.85 mm external diameter have been attached to the cabling
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Figure 3.51: Protection of the ECAL monitoring side. The three sections with different cell

size are distinguishable by colour

Figure 3.52: Cable routing (left) and connections to ECAL modules (right)

tape in two layers before installing in the detector. From the cabling tape, they are
routed in bunches to the FEE cards located on the electronics platform through
the holes on the bar under the electronics platform. Each signal cable bunch serves the
corresponding neighboring columns of modules. Its cross section is maximal for the
central region columns and is estimated to be ~ 20 cm?. Since all the signal cables have

the same length of 12 m, the total extra cable length of about ~ 24km or ~ 0.17m? has
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been stored inside the electronics platform. Power supply and voltage control employ
flat cables, which go from the control electronics under the main platform through the
slots. In order to route the cabling, that serve four module columns from each side of
the beam axis, a dedicated groove of at least 20 cm (width) x 2.2cm (depth) in the

external surface around the beam plug was produced.

Both supporting and electronics platform design implements the slots from the
readout side for cabling tape and cables attached to it, signal cables go to racks on the
electronics platform from underneath, and power supply and voltage control cables and

monitoring fibers go through the supporting platform to the distribution boards.

Nominal transverse dimension of the assembled stack, 121.7mm x 121.7 mm, is
important since it drives the total size of calorimeter module wall and the overall
projectivity. Measurements of ten modules at various cross sections gave the value of
(121.78 £ 0.06) mm, which is translated into extra-size of (2.6 + 0.3) mm for each half
calorimeter wall in horizointal and (4.2 + 0.4) mm for the calorimeter wall in vertical
direction. Vertical pile of 13 modules, corresponding to a 1/4 of the ECAL wall height,
was directly measured, and translated to a single module dimension of (121.8 £0.1) mm,
which is in a good agreement with the first result. Taking into account the thickness of
steel tape, used to make the structure dense, and also to properly position double rows
of modules, this gave the dimension of x = 3898 mm and y = 6344 mm for each half

calorimeter wall.

From the upstream side 60 mm was allocated for the monitoring system and its
protection. The module stack together with the pressing plates and the front and rear
fiber housings was measured to be 515 mm long for selected outer and middle section
modules. For the inner section modules this length is a 5 mm shorter because it requires
less space to collect fibers together to form a bundle. The R/O part of the module is
250 mm long, where the last 35 mm space is taken by the connectors and the turned
signal cable. For the inner section modules the R/O part takes a 5mm less space by
accommodating a shorter light mixer. The choice of a Cockcroft-Walton base with
small, typically less than 0.1 W per base, power consumption, made it possible to avoid
supplementary cooling of the base. The whole static z-envelope of ECAL adds up to
825 mm.

The calorimeter module wall was assembled on each platform separately. First, the
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supporting platform and the side frame were installed and surveyed. The assembly of
the module wall began with positioning the pre-shaped steel stretching tape, followed
by the two module rows, interspaced with the 200 um thick steel tape. Then loop of
stretching tape closed, and appropriate tension tooling ensure the double row to be
dense, and moved to the precise x position. Positioning of the structure and individual
modules were controled with theodolite. Adding up the double rows, the half wall is
being assembled. Then the electronics platform was mounted on the top, aligned and

fixed, double-module columns were installed.

The second survey took place after installation of the beam plug. The fully loaded

supporting structure undergoes the third survey, as well as the module half wall.

Mounting of the monitoring system comprised routing of fibers over the wall surface,
installation of LEDs, pin-diods and light splitters, checking of the connections. Visual
check of the fibers connectivity was performed from the readout side, using a light

injected at the splitter level.

At the module readout side, light mixers and mixer housings, PM housings, steel
covers and permalloy screenings, PM and PM bases, and the external covers, have
been mounted. Steel tapes with the pre-mounted cables have been installed, adjusted,
and the cables were connected to the cells. At the FEE side extra cabling length was
stored, and connectors were plugged into FEE. Also connected is the control electronics

underneath the main platform.

After the ECAL wall assembly, a survey performed over all the module positions
showed their actual positions to be identical to their calculated positions to better than

0.5 mm.

3.2.8 Discussion

LHCb ECAL detector was designed, constructed, tested, pre-calibrated and installed in
the experiment. The Shashlik cell design inherited essential experience from the previous
constructions, and in particular PHENIX and HERA-B calorimeters. In addition,
LHCb ECAL triggered several new successful developments. Effects influencing lateral

uniformity of response were better understood, while record lateral uniformity for
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Shashyk type calorimeters was demonstrated. Among other developments, a new
technique of S-type fiber bending allowed to achieve bending radii of 10 mm for a fiber
diameter of 1.2 mm, more than five times lower with respect to fiber specifications,
without any mechanical damage. Important studies of radiation resistance of plastic
scintillators have been performed. Scintillator tile and WLS fiber combination was
selected for the LHCb ECAL. Taking into account a substantial radiation dose close
to the beam pipe, the ECAL design provides the possibility to replace 48 modules,
which are most exposed to radiation. In addition sets of comprehensive dose monitors
have been distributed over calorimeter surface, that will allow not only a dose map
reference, but will also provide information of scintillator materials aging for irradiating
particles, corresponding to realistic environment of hadron collider, and at realistic dose
accumulation rate. Having different response to different radiation types, the monitors
will provide a separate dose map for electromagnetic component, charged hadrons and
neutrons. During the LHCb data taking, the calorimeter demonstrated reliable operation
with less than 0.2% dead channels. However, long clear transport fibers, distributing
LED monitoring pulses, appeared to be sensitive to radiation. Online degradation
and annealing effects following the beam crossing pattern have been observed. This

increases the importance of the online monitoring using reconstructed 7° signal.

Upgrade-related calorimeter challenges comprise the front-end electronics modifi-
cation, potential performance degradation of the 7° containing decay modes due to
increased pileup, and radiation resistance of the inner ECAL detector under a 10 times
increased annual dose. The solution of this latter problem could be to compromise the
physics case with inner ECAL, or to consider a different technology for inner region
ECAL, e.g. PbW Oy crystals using the CMS and PANDA developments, or preserv-
ing the existing Shashlik technology but searching for new, more radiation resistant

materials.

Comparison with other Shashlik calorimeters, and in particular attemps to ultimatly

reduce the effect of sampling, are discussed below.

It is interesting to mention an old development of the sampling calorimeter using spi-
ral arrangement of the wavelength shifting (WLS) fibers, aimed at improving uniformity
of ECAL response [125]. A 2% lateral uniformity has been demonstrated.

Shashlik calorimeter with longitudinal segmentation has been proposed [126] for
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barrel ECAL at Linear Collider. Longitudinal segmentation was proposed in two different
ways, either using thin vacuum photodiodes inserted between the adjacent towers in
the front part of the calorimeter, or using two scintillator types with different decay
times inserted in the first and second longitudinal part of the calorimeter, respectively.

Both solutions have been implemented in the prototypes and studied with a test beam.

The ALICE EMCAL [107] is a later addition to the ALICE detector, aiming at
triggering on high energy gamma-rays and jets. The detector implemented a design
similar to that of LHCb ECAL, however barrel implementation assumes dead zones
between the neighbour modules, increasing in the direction of shower development. The
EMCAL energy resolution was measured to be o /E = (11.14£0.4)%/vVE®(1.740.3)%,

where F is measured in GeV.

Looking at later developments, several technological improvements have been de-
veloped, which allowed to demonstrate what is the almost ultimate performance of
Shashlik technology. The sampling fraction — relation between thickness of lead and
scintillator tiles — dominates energy resolution of Shashlik calorimeter at intermediate
energies. Decreasing the thickness of the lead will increase the length of the module,
while proportional decreasing thickness of both lead and scintillator tiles will reduce
light collection efficiency. The number of projects considering Shashlik approach for
ECAL shows it to be among the best choice for wide range of physics goals where

sampling calorimeters can be considered.

Among later developments, an interesting example of ECAL for KOPIO experi-
ment [127] at BNL should be mentioned. Electromagnetic calorimeter is important

Oyw, which is on

to precisely measure photons from 7% decays to reconstruct K? — 7
of the key processes for CP-violation studies [128]. The energy of the photons ranges
between 50 and 1000 MeV. A proposed Shashlik calorimeter [129}|130] is built out of
300 sampling layers comprising 1.5 mm scintillator tiles and 0.275 mm lead plates
to develop a shower. The detector is a 15.9X, deep. Its density of about 0.9 cm™2
is similar to the fiber density of the LHCD cells in middle and outer regions. Design
of this detector is very similar to the LHCb Shashlik, employing for example similar
fiber routing with loops at the front calorimeter. Scintillator tiles posess lego-type
locks which simplify stack assembly and precise tile positioning. Wrapping the module
with TYVEK paper, a difference of 2.3% in the light collection efficiency between

the center and the edge of the tile was achieved. The achieved energy resolution of
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op/E = (2.74 4 0.05)%/VE @ (1.96 £ 0.10)% is within the KOPIO requirements.

Shashlik technology has also been proposed for the forward ECAL of PANDA
experiment, where the energy measurements are required in the range between 1 and
19 GeV. The same design and sampling as for KOPIO experiment, but deeper, 20X,
Shashlik prototype was tested with the electron beam [131]. Measured energy resolution
of og/E = (2.8 £ 0.2)%/VE @ (1.3 + 0.1)% was found to be consistent with the
simulation and previous results [129,/130]. In addition position resolution was measured
to be 0, = 13.1/v/E & 4.0( mm), where E is in GeV, in agreement with the simulation.
Reconstruction of 7° will be studied at different energies to make a decision on lateral

segmentation.

Another Shashlik ECAL with micropixel avalanche photodiodes readout has been
proposed for COMPASS 11 [132]. Each Shashlik stack comprises 109 sampling layers,
each layer consisting of a 0.8 mm thick lead plate and nine 1.5 mm thick scintillator
tiles with dimensions close to those of LHCb inner region ECAL. Total depth of the
calorimeter amounts to about 15X,. 1.2mm diameter thick BCF 91A WLS fibers
readout the light from the scintillator tiles. The fiber density of about 0.9 cm™2 is
similar to the fiber density of the LHCb cells in middle and outer regions. Energy
resolution with a stochastic term of 7.8% /v/E was obtained with the electron test beam.

LHCDb-like Shashlik has been proposed for the development of the SHIP experiment
at CERN.

Finally, along with Si/W sandwich, Shashlik is one of the two candidates for the
upgrade of the CMS forward region electromagnetic calorimeter. Being cheaper solution,
a Shashlik technology, employing radiation resistant scintillating materials, and being
able to operate in the forward region of high luminosity CMS experiment, is still to be

demonstrated.



Chapter 4

Charmonium states production at
LHCDb using decays to pp and ¢¢

Imagination is the only weapon

in the war against reality.

Lewis Carroll

Precision studies of J/i and 1(25) states production have been performed using
decays of these charmonium states to the pu*u~ final state, which is efficiently triggered
and reconstructed by experiments. Production of the y,. family can be studied using x.
radiative decays to J/ib meson. However low-energy photons have to be reconstructed.
The analysis of charmonia production in using hadronic decays finds its place as a
possibility to access production of other charmonia, and to complement x. production
studies by alternative method, which does not require reconstruction of low-energy
photons and thus improves reconstruction efficiency and simplifies separation of y.
states. Studies of charmonia production are addressed in section Reconstruction of
Ne (1S) meson via its decay to the pp final state is used to measure the 7. (1S) prompt
production in section Charmonia production in b-hadron decays using charmonia
decays to the pp and ¢¢ final states, is studied in section [4.3] Section addresses
determination of mass and natural width of the 7. (1S) meson. The results presented

in this chapter are preliminary LHCDb results.
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4.1 Production of charmonium states

Experimental results on the properties of charmonium states come from both e*e™ and
hadron colliders. Charmonia properties, including precise determination of their mass
and width, verification of their quantum numbers and study of their decay modes, are
coming from all experiments, where charmonia are copiously produced. The charm
factories, CLEO-c and now BES, operating at DD threshold, collected large data
samples at energies around the charmonium production region. Clean data samples
are available, for example up to few x107 ¢(3770) at CLEO-c, and more than 2 x 10°
D-mesons in the 2010-2011 data sample accumulated by the BES experiment [133].
Charmonium production in b-hadron decays is only accessible at B-factories and higher
energy machines. The B-factories, BaBar and Belle, provide a clean environment,
with often only two B mesons produced in the event in a 7(4S) — BB process,
and a possibility to fully reconstruct the event. They accumulated large samples of

charmonium states from B meson decays with more than 10° BB pairs produced.

The pp or pp colliders operate in a more challenging environment, however they
deliver larger statistical samples of reconstructed charmonia states, and provide a unique
instrument to study charmonium hadroproduction. The results are delivered by the
CDF and DO experiments at Tevatron, and ATLAS, CMS and LHCb experiments at
LHC. High production cross-section at small rapidities at CDF, and at forward LHCb
rapidities, e.g. U(CE)LHCbJTeV ~ 1400 ub [2], provides large samples of reconstructed

charmonia.

At the LHC centre-of-mass energy /s = 7TeV and LHCb luminosity of 4 x
103 em™2s71, the experiment exploits the high c¢¢ production cross section o(pp —
ccX) ~ 6 mb, which is however an order of magnitude lower than the inelastic
cross section. The bb production cross section is suppressed by another factor 20,
o(pp — bbX) ~ 0.3 mb. However, tolerable storage rate of about 5 kHz does not allow
accumulating all the ¢ or bb candidates and requires futher selectivity. This is achieved
by the trigger system, hardware at the LO stage, reducing a 10 MHz input rate to about
1 MHz entering HLT, and HLT implemented at the farm, further reducing the rate
to about 5 kHz, stored and subject to further treatment by data stripping procedure

(section [2.3.4]).

The LHCb experiment performed a wide range of charmonium production studies,
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and in particular production studies of charmonia with J¢ = 17~ quantum numbers,
where decays to dimuon final state, having high trigger and reconstruction efficiency, as
well as powerful background rejection due to excellent muon identification capabilities,
can be used. In addition to the J/b and ¢(2S) production [11,|134}135], the x. states
production has been studied [136], using radiative decays of the x. states to J/b. In
order to explore other states than those having 17~ quantum numbers, and avoiding
reconstruction of radiative decays with low energy photons, hadronic final states should
be investigated [137]. Reconstruction of charmonia decays to hadrons rely on hadronic
trigger alleys (section , and hadron identification capabilities (section. In the
remaining sections of this chapter the decays to the pp final state [138] as well as decays
to ¢ mesons are employed for the studies of charmonium production, prompt production
and inclusive charmonium production in b-hadron decays. All known charmonium
states decay to pp, though with different probabilities, while decays of J¢ = 17~
states to two vector mesons (¢¢) are forbidden. Table shows masses of known
charmonium states, and the branching fractions of charmonia decays to pp and ¢¢

pairs [57]. The branching fraction of k. meson decay to pp final state is estimated as

Mass, MeV/c? | B(ct — pp), x107° | B(ct — ¢¢), x107
ne (1S) 2980.5 £ 1.47 1.51 +£0.16 1.76 + 0.20
Jhp (18) | 3096.916 £ 0.011 | 2.120 = 0.029 forbidden
Xeo (1P) | 3414.75+0.31 0.213 £0.012 0.79 £0.08
Xea (1P) | 3510.66 4 0.07 0.073 + 0.004 0.44 £ 0.06
he(1P) | 3525.67 £+ 0.32 not seen not seen
Xe2 (1P) | 3556.20 + 0.09 0.071 £ 0.004 1.16 £ 0.10
Ne (25) 3638.9+ 1.3 < 0.29 at 90% CL not seen
¥(28) | 3686.09 £ 0.04 0.275 £ 0.012 forbidden
»(3770) | 3773.15 4+ 0.33 not seen forbidden

Table 4.1: Masses of charmonium states and branching fractions of their decays to the pp and

¢¢ final states [57]

B(h. — pp) =

is shown.

(3.24:0.5) x 1073 [137], where only uncertainty of the experimental input

In the clean environment of the e™e™ machine, decays to pp, ¢¢ and final states with

kaons and pions have been used to reconstruct 7. state in the J/b — ~n. decay mode by
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the BES experiment |139]. The LHCb experiment reconstructed 7. via decays to the pp
final state to study the 7. (1S) prompt production and inclusive production in b-hadron
decays. In addition the 7, family, . (1S) and 7. (2S), and the x. family, x.0, xc1 and
X2, are reconstructed using decays to ¢¢ in the inclusive decays of b-hadrons. The
inclusive analysis using decays to hadronic final states is performed for the first time
at a hadron machine environment. Owing to powerful charged-hadron identification
and high luminosity, the LHCb experiment is well-positioned for these studies. The
7. production measurements, using decays to pp final state, are performed using the
topologically and kinematically similar J/i) — pp normalization channel, which allows

systematic uncertainties to partially cancel in the ratio.

In the following quarkonium states are defined as being promptly produced when
they are directly produced in parton interactions or originate from the decays of
heavier quarkonium states, which are in turn produced in parton interactions. We
distinguish promptly produced quarkonia from those originating from b-hadron decays.
Experimentally, discrimination between prompt quarkonia and quarkonia produced
in the b-hadron decays is achieved by reconstructing a (b-hadron and) charmonium
decay vertex that is well distinguished from the corresponding pp collision vertex where
b-hadron is born (primary vertex). On average b-hadron travels about 1cm in the
LHCDb detector before its decay. This is illustrated by the LHCb event display of the
BY — uFp~ candidate on Fig. 2.5

4.2 Prompt production of charmonium states

The idea to study prompt charmonium production using charmonia decays to hadronic
final states with LHCD originated from the brainstorming discussion with Emi Kou, and
further interesting discussions with Jibo He, Emi Kou and Benoit Viaud. Trigger lines
and stripping of corresponding LHCb data was performed by Jibo He. This analysis
became a subject of the Ph.D. thesis of Maksym Teklishyn. The results discussed in

this section are preliminary LHCD results.
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4.2.1 Landscape for charmonia prompt production studies

Heavy quarkonium states are particularly interesting systems to test our understanding
of strong interactions, both at perturbative and non-perturbative regimes. This explains
why theoretical and experimental groups are attracted by studying production and
decays of charmonium states. Majority of the current theoretical activity is inspired by
establishing of the original effective field theory, non-relativistic QCD (NRQCD) [140,
141], providing the ground for further developments. NRQCD factorises the production
of heavy quarkonium in two stages, first, a heavy quark-antiquark pair is created at short

distances and then it evolves non-perturbatively into quarkonium at long distances.

At the LHC, c¢¢ pairs are expected to be produced at leading order (LO) through
gluon-gluon interactions, followed by the formation of bound charmonium states [141].
The production of the c¢ pair is described by perturbative QCD, while non-perturbative
QCD is used for the description of the evolution of the ¢¢ pair to the bound state. Several
models have been developed for the non-perturbative part, such as the Colour Singlet
(CS) model [142-145] and important developments in the framework of NRQCD [12,
141],]146149]. The CS model assumes the ¢¢ pair to be created in a hard scattering
reaction as a colour singlet with the same quantum numbers as the final charmonium
state. The NRQCD model includes, in addition to the colour singlet mechanism, the
production of ¢¢ pairs as colour octets (CO), and in this case the CO state evolves
to the final charmonium state via soft gluon emission. In the NRQCD calculations,
CS and CO amplitudes account for the probability of a heavy quark-antiquark pair
in a particular colour state to evolve into a heavy quarkonium state. Initially, the CS
model was proposed to describe experimental data. However, it underestimates the
observed cross-section for single J/ib production at high transverse momentum (pr). To
resolve this discrepancy, the CO mechanism was introduced. More recent higher-order
calculations to the CS predictions raise substantially the cross-sections at large pr
bringing them closer to the experimental data. However, none of these approaches can
reproduce in a consistent way the available experimental results on both production

cross-section and polarisation [5].

Following the Tevatron era, LHC energies provide additional powerful tests for models
describing charmonium production. The measurements of the J/ib and ¢(2S) production
rate at the LHC [7,/134,/135,/150-152], are in general successfully described by NLO
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calculations . Results of the LHC experiments, measuring quarkonia production
rate are consistent, and complementary in rapidity region. This is illustrated by rapidity
dependence of the J/, ¥(2S), T(15), T(2S) and 7(3S) quarkonia production rate
is shown on Fig. prepared by H. Woehri for LHCP conference in 2013, based
on the results from Refs. [6[134,[136][150{152[154]. The plot also demonstrates how
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Figure 4.1: Rapidity dependence of the J/i, ¥(2S5), T(15), 1 (2S) and 1 (3S) quarkonia
production rate measured by the LHC experiments. Plot of H. Woehri shown at the LHCP

conference in 2013

LHCDb rapidity coverage complements the rapidity range covered by ATLAS and CMS.
However the observation of small or no polarization for the J/i) production [135] remains

unexplained within the available theoretical framework.

In the high-pt region, where the quarkonium transverse momentum is much larger
than its mass (in natural units), the CS model underestimates significantly the measured

prompt J/i and (25) production cross-sections [134136l[155], while the NRQCD model
provides a good description of the pr-dependent J/i) and ¢ (2S) cross-sections measured

by LHCb , and CMS . The CS model predicts large longitudinal polarisation
for J/ib and ¥(2S) mesons. On the other hand, in the NRQCD model, where quarkonium
production is dominated by the gluon fragmentation process in the high-pr region, the
gluon is almost on-shell, leading to predictions of large transverse polarisations .
Precise measurements of the J/i) polarisation at both the Tevatron and the
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LHC [135}|157},/158], show no significant longitudinal or transverse polarisations, while
at HERA, polarization at small pr values has been reported [159]. The measurements
do not support neither the CSM nor NRQCD predictions. Studies of polarisation for
promptly produced ¢(25) mesons have been performed by the CDF [156], CMS [158]
and LHCb [160] experiments. No significant polarisation was observed. Although a
direct comparison between the results of different experiments is not possible due to
the different kinematic ranges, all results disfavour large polarisation in the high-pr
region. The prompt 1(2S) polarisation measured at LHCb disagrees with the CSM
predictions |161] both in the size of the polarisation parameters and the pr dependence.
While the NRQCD models at NLO [161-163] provide a good description of the LHCh
data in the low-pr region, the predicted transverse polarisation at high-pr is not

observed.

The production of y.; states at the LHC energies has been studied using their
radiative decays to J/i) meson x.; — J/i)~y, using converted or non-converted photons [9-
11]. Reconstruction of low-energy photons reduces the experimental precision. The study
of x.s prompt production provides another test of the CS and CO models. In addition,
the measurement of the x.; prompt production is important since these resonances
give a substantial feed-down contribution to prompt J/b production through their
radiative decay x. — J/iy and can have a significant impact on the J/i) polarization
measurements. Measurements of x.; and x.o production cross-section for various particle
beams and energies have been reported in Refs. [9,/11,/164-167]. In addition, LHCb
reported the first evidence of the x. production [11] at high-energy hadron colliders.
The pr dependence of ratio of the x. and x. productions [11] was found to be generally
consistent with both LO [168] and NLO NRQCD [12] predictions.

Another potentially powerful approach to better understand prompt charmonium
production mechanism is provided by studies of the central exclusive production. LHCb
recently measured [6] the differential cross-section of the J/ip and ¥ (2S) exclusive
production as a function of rapidity, with a precision better than 10% for the J/
exclusive production. In addition y.; exclusive production was observed. The LHCb
result is an update of the Ref. |169] and a continuation of the J/i) exclusive production
measurements performed at HERA [170-172] and Tevatron [173], and (25) mea-
surements performed at HERA [174] and Tevatron [173]. Exclusive J/i) and ¢(25)

meson production in hadron collisions are diffractive processes that can be calculated in
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perturbative quantum chromodynamics (QCD) [175]. At leading order (LO) they are
thought to proceed via the exchange of a photon and a pomeron, which at sufficiently
hard scales can be described by two gluons. Measurements of this class of processes
thus provide a test of QCD and shed light on the pomeron, which plays a critical role
in the description of diffraction and soft processes. In the exclusive processes, the J/i
and 1 (2S) mesons cannot be produced as colour octets, thus providing a useful tool to
distinguish between the CS and CO contributions.

The investigation of the lowest-state, the 7. meson, can provide important additional
information to the global fit of the long-distance matrix elements [161163]. In particular,
heavy quark spin-symmetry relation between the 7. and J/i) matrix elements can be
tested for the first time. Furthermore, the NLO computations lead to a different pr
dependence of the production rates for spin singlet (7.) and triplet (J/1), x.;) states [176].
Thus, a measurement of the pr dependence of the 7. production rate, in particular
in the low pr region, can have important implications. Recent LHCb results on y.
states production |11] allow extracting information on the production of the P-wave
states x. and Y. at low pr using the well understood y.; production as a reference.
A measurement of the cross-section of the 7. production, direct in parton interactions
or in the decays of heavier resonance states, which are in turn produced in parton
interactions, may allow an important comparison with the y. production results and
yield indirect information on the properties of heavier states production, in particular
access to the 7. (2S) production cross section multiplied by the branching fraction of 7,
(25) decays to 1. (15) 025 X B(1.(25) — 7.(15)X).

Finally, measured quarkonia production associated to the pp collision vertex, i.e.
the vertex of prompt quarkonia production, comprises direct production in the hard
scattering, and the production through feed-down from higher-mass quarkonia states.
In the case of 1(2S5) mesons, the contribution from feed-down is negligible, allowing
a straightforward comparison between measurements of prompt production and pre-
dictions for direct contributions. For other charmonia, production of heavier states,
that potentilly decay to the charmonium state under study, should be performed to

determine the feed-down contribution.

The LHCb experiment reported a first measurement of the prompt 7. production
cross-section in pp collisions at /s = 7TeV and /s = 8 TeV centre-of-mass energy [138],
that is addressed in section 4.2.2)
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4.2.2 Measurement of the 7. prompt production cross-section

using decays to the pp final state

The analysis of the 1. prompt production using decays to the pp final state used the pp
collision data recorded by the LHCb experiment at /s = 7TeV, corresponding to an
integrated luminosity of 0.7 fb~! E], and at /s = 8 TeV, corresponding to an integrated
luminosity of 2.0 fb~1.

Events enriched in signal decays, 7., Jib — pp, are selected by the hardware trigger
based on the presence of a single high-energy deposition in the calorimeter. The
subsequent software trigger specifically rejects high-multiplicity events and selects p
and P candidates that exhibit good track-fit quality, x?/ndf < 4, and have transverse
momentum larger than 1.9 GeV/c. Proton candidates are positively identified using
the information from RICH and other relevant detectors in LHCb combined into
differences between the logarithms of the particle identification likelihoods under different
mass hypotheses (DLL). Selected proton candidates are required to have DLL,x =
Inf, —InLxg > 15 and DLL,, = In£, —InL; > 20. Selected p and p candidates
are required to form a good quality common vertex fit, x> < 9. In order to further
suppress the dominant background from accidental combinations of random tracks
(combinatorial background), charmonium candidates are also required to have high

transverse momentum, pr > 6.5 GeV/c.

Offline analysis in addition requires the transverse momentum of p and p to be
pr > 2.0 GeV/e, and restricts charmonium candidates to the rapidity range 2 < y < 4.5,
corresponding to the rapidity of the J/i) production analysis.

We see from above that signal selection criteria for the analysis of charmonium de-
cays to pp are largely implemented already at the level of trigger. This is a consequence
of the fact, that in order to achieve tolerable trigger rate, substantial combinatorial
background can only be suppressed using limited number of handles, kinematical vari-
ables - transverse momentum, and particle identification. In order to select charmonium
produced in the inclusive b-hadron decays, reconstructed charmonium decay vertex,

well-distinguished from the vertex of pp interaction, yields additional tool to suppress

!The dataset corresponding to /s = 7TeV is reduced with respect to the overall integrated
luminosity collected at this centre-of-mass energy due to the fact, that corresponding trigger alleys

were not operational at the beginning of the data taking.
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combinatorial background.

In order to distinguish between promptly produced charmonium candidates and
charmonium candidates from b-hadron decays, the pseudo-proper lifetime 7, = Az-M/p,,
where Az is the distance along the beam between charmonium candidate production
and decay vertices, M is the reconstructed mass of charmonium candidate and p,
is the longitudinal component of its momentum, is required to be below and above
80 fs, respectively. In addition for charmonium candidates from b-hadron decays the
large impact parameter of the proton tracks with respect to charmonium candidate
production vertex is required, y% /ndf > 16. Fig. shows the ¢, distribution from the
simulation of J/ib — pp signal, with all selection criteria applied, including separation

requirements. The results are stable under variation of the discriminating ¢, requirement
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Figure 4.2: Distribution of ¢, variable from the simulation of the J/iy — pp signal with
all selection criteria applied. Empty and hatched histograms correspond to prompt J/i
production and J/i) production from b-hadron decays, selected by prompt production and
production from b-hadron decays analyses, respectively. Blue and yellow filled histograms
correspond to the cross-talk between the samples, that is J/) from prompt production and
production from b-hadron decays, selected by production from b-hadron decays and prompt

production analyses, respectively

value.

Thus selected samples of promptly produced charmonium candidates and charmo-
nium candidates from b-hadron decays, have some events in common (cross-talk), i.e.

small contribution of prompty produced charmonium enters selected sample containing
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charmonium candidates from b-hadron decays, and vice versa. The cross-talk probability
was estimated using Monte-Carlo (MC) simulation, scaled using the observed event
yields, and was subtracted to obtain the ratio of produced 7. and J/i), decaying to pp.
Corrections range from 2% to 3% for the ratio of promptly produced charmonia, and

from 8% to 10% for the ratio of charmonia produced in b-hadron decays.

The ratios of obtained signal event yields are translated to the ratios of production

cross-sections multiplied by the relevant decay branching fractions as

N?i _ a(ne) X Byo—pp
NJ];w O'(J/l/}) X Bj/w_mp ’

S
N77c . Bb_"]cX X B’]cqpﬁ

S - 9
Ny Bomapx X Bipy—pp

where N* and N® are the numbers of produced charmonium for prompt production
and for charmonia from b-hadron decays, respectively. Similar efficiencies are assumed
for the 7. and J/i» meson reconstruction and selection criteria. The MC simulation
reasonably describes the kinematics-related differences between the 7. and J/i decay
modes and predicts the efficiencies for selecting and reconstructing 7. and J/i) mesons
to differ by less than 0.5%. Prompt J/ib production efficiency is also corrected for

polarisation effects, as a function of rapidity and pr, according to Ref. [135].

The number of reconstructed 7. and J/i) candidates is extracted from an extended

maximum likelihood fit of the unbinned pp invariant mass distribution.

The J/ip peak position M, and the mass difference AM jy, ,,. are fitted in the sample
of charmonia from b-hadron decays, where the signal is more prominent owing to the
reduced background level due to charmonium decay-vertex displacement requirements.
The results are then used to apply Gaussian constraints in the fit to the pp invariant
mass spectrum in the prompt production analysis, where the signal-to-background ratio

is worse, due to large combinatorial backgrounds.

The signal shape is defined by the detector response, and the natural width in
the case of the 7. resonance. The detector response is described using two Gaussian
functions with a common mean value. Identical shape to account for the detector
resolution is essential for description of both 7. and J/i) signal peaks reconstructed
in both prompt charmonia production and charmonia produced in b-hadron decays.

Choice of this shape is motivated by MC studies and large candidate samples in signal
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peaks. In the description of each resonance, the ratio of the two Gaussian widths,
T / UE’W =oa;/ agc, and the fraction of the “narrow” Gaussian component, as well as
the ratio of Gaussian widths corresponding to the . and J/i) decay kinematic properties,
o/ OG> are fixed in the fit to the values observed in simulation. The only resolution
parameter left free in the fit in the analysis of charmonium production from b-hadron
decays, TG is then fixed to its central value in the fit to the prompt sample. The
natural width I',, of the n, resonance is also extracted from the fit of the b-hadron

decays sample, and is then fixed to that value in the prompt production analysis.

The combinatorial background is parametrized by a sum of Chebychev polynomials

up to the third order in the fit to the prompt sample.

Combinations pp from the decay J/i) — ppr® potentially affect the region close to
the 7. peak position; hence this reflection is specifically included in the background
description. The reflection produces a non-peaking contribution, and is described by
a square-root shape to account for the phase space available to the pp system from
the Jip — ppr® decay, convoluted with the two Gaussian functions to account for the
detector resolution. In the fit to the pp invariant mass spectrum, the normalization of
this reflection is fixed using the number of events found in J/i) signal peak, the ratios

of branching fractions and efficiencies for the J/i) — ppr® and J/ip — pp decay modes.

In the fit to the proton-antiproton invariant mass spectrum for prompt production
candidates, the 7. natural width in the prompt production analysis fit is fixed to the
average value of 25.8 MeV from the analysis of charmonium production in b-hadron
decays, signal resolutions are extracted from the fit of the low-background sample from
b-hadron decays, and Gaussian constraints on the J/i) meson mass and the AM ., ;.
mass difference, from that fit are applied. The fit with free mass values gives consistent

results.

The result of the unbinned maximum likelihood fit of the pp invariant mass spectrum
for the prompt charmonium production analysis is shown on Fig. and Fig. [4.4] for
the data samples corresponding to a centre-of-mass energy /s = 7TeV and /s = 8 TeV,
respectively. The fit yields 13370 + 2260 7, and 11052 £+ 1004 J/i) candidates, and
224164072 7. and 2021741403 J/ip candidates, in the signal peaks, for the data samples
corresponding to a centre-of-mass energy /s = 7TeV and /s = 8 TeV, respectively.

These numbers have then been corrected for the cross-talk effect.
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Figure 4.3: Proton-antiproton invariant mass spectrum for candidates coming from a primary
vertex (top), and residual plot with respect to the fitted background curve (bottom) in
the data sample, corresponding to a centre-of-mass energy /s = 7TeV. The J/i) signal is
described by a double-Gaussian function, the 7. signal is described by a double-Gaussian
function convoluted with a Breit-Wigner function, the contribution from J/) — ppr® decay
with non-reconstructed pion is taken into account. Gaussian constraints on the J/i) mass
and the difference AM j, ,. = My, — My, from the fit of the sample corresponding to

charmonium candidates from b-hadron decays, are applied

Systematic uncertainties due to detector resolution, background description, feed-
down from J/ip — ppr® decays, possible differences of the prompt charmonium produc-
tion spectra in data and simulation, and cross-talk between the prompt charmonium
sample and the charmonium sample from b-hadron decays, are considered. Uncertainties
due to detector resolution are estimated by assigning the same o value to the 7. and
J/ signal description for charmonium production from b-hadron decays, and by varying
the 0% parameters within uncertainties from the b-hadron decays production fit in the
prompt production analysis. Uncertainties associated with the background description
are estimated by using an alternative parametrisation and varying the fit range. The
uncertainty due to the contribution from the Jj) — ppn® decay is dominated by the
modelling of the pp invariant mass shape, and is estimated by using an alternative
parametrisation, linear with the energy release. Possible differences of the prompt
charmonium production spectra in data and simulation are estimated by correcting
the efficiency derived from simulation according to the observed pr distribution. The

uncertainty related to the cross-talk is estimated by varying the event yields according
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Figure 4.4: Proton-antiproton invariant mass spectrum for candidates coming from a primary
vertex (top), and residual plot with respect to the fitted background curve (bottom) in
the data sample, corresponding to a centre-of-mass energy /s = 8 TeV. The J/i) signal is
described by a double-Gaussian function, the 7, signal is described by a double-Gaussian
function convoluted with a Breit-Wigner function, the contribution from J/) — ppr® decay
with non-reconstructed pion is taken into account. Gaussian constraints on the J/i) mass
and the difference AMj, ,. = My, — My, from the fit of the sample corresponding to

charmonium candidates from b-hadron decays, are applied

to their statistical and systematic uncertainties in the samples that causes the cross-talk.
In order to estimate the systematic uncertainty associated with the 7. natural width,
which enters the results for prompt production analysis, the alternative I',, value of
32.0MeV from Ref. [57] is used. The total systematic uncertainty is dominated by
the uncertainty associated with the natural 7. width I',, for the prompt production

measurement.

The prompt production yield ratios at the different centre-of-mass energies are

obtained as

P /aTP _
(N /N3y ) ey = 124 £0.21£0.20

P P
(N /N3 ) g oy = 114 £0.21£0.18 .

By correcting them with the ratio of branching fractions [57], B —pp/Bp.—pp = 1.40 £
0.15, the relative . to J/i) prompt production rate in the kinematic regime 2.0 < y < 4.5
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and pr(J/p,n.) > 6.5GeV/c is found to be

(On/oap) foorpy = L.T5£0.30£0.28£0.195,, =
for the data sample, collected at /s = 7TeV, and

(O /o) fogpay = 160 £0.20£0.25£0.175,, =

for the data sample, collected at /s = 8 TeV. The third contribution to the uncertainty
in the above results is due to the uncertainty in the J/) — pp and 7. — pp branching

fractions.

The absolute 7. prompt production cross section is calculated using the J/i) prompt
production cross section, measured in Refs. [135] and |7], and integrated in the kinematic
range of the present analysis, 2.0 < y < 4.5 and pr(J/p,n.) > 6.5GeV/c. The

corresponding J/i) prompt production cross section is determined to be

(O-J/¢>\/§:7Tev, 2.0<y<4.5, PT>6.5GNV/c 2969+ 1.8£5.5 nb

for a centre-of-mass energy /s = 7TeV, and

(00 Jims tev, 2.0y<t5, provsceye = 3714+ 1.4+ 2.7 nb

for a centre-of-mass energy /s = 8 TeV. The J/i) meson is assumed to be produced
unpolarized. The prompt 7. production cross-section for this kinematic regime is

determined to be

= 0.52 £ 0.09 £ 0.08 £ 0.06

(O-Wc)\/E:7TeV, 2.0<y<4.5, P7>6.5GeV/c T30 Bapp —ppme—pp W

for \/s = 7TeV, and

=0.59=£0.11 £ 0.09 £ 0.06

(Unc)\/gzs TeV, 2.0<y<4.5, P7>6.5 GeV/c 5310+ Bipp —ppne—pp H

for \/s = 8 TeV. Uncertainties associated with the J/i» — pp and 1, — pp branching
fractions, and with the J/i) cross-section measurement, are combined into the last
uncertainty component, dominated by the knowledge of the branching fractions. This
is the first measurement of prompt 7. production in pp collisions. The obtained cross-
section of the 7. prompt production is in agreement with the colour-singlet leading order
(LO) calculations, while taking into account colour-octet LO contribution predicted
cross-section exceeds the observed one by two orders of magnitude [177]. However the

NLO contribution is expected to significantly modify the LO result [176].
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4.2.3 The pr dependence of the 7. state production

The 7. production as a function of pr, is obtained by fitting the pp invariant mass
spectrum in three of four bins of pr. The J/i) pr spectrum [7,/134,/135] is used to
access the 7. pr spectrum for both prompt production and inclusive 7. production
in b-hadron decays. Figs. and show the obtained differential cross-sections
for n. and J/iy meson production as a function of transverse momentum for the
Vs = 7TTeV and /s = 8TeV data samples, respectively. The J/ip cross section pr

= =
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Figure 4.5: Differential cross-section for 7, meson production (empty circles) from the present
analysis and J/i) meson production (filled circles) from Refs. [7,[134,|135] as a function of
transverse momentum pp. Prompt production spectra are shown on a) and b) for the data,
corresponding to the centre-of-mass energy /s = 7TeV and /s = 8 TeV, respectively. The
spectra, corresponding to inclusive charmonium production in b-hadron decays, are shown on ¢)
and d) for the data, corresponding to the centre-of-mass energy /s = 7TeV and /s = 8 TeV,

respectively

dependence [7,/134,[135] is also shown for reference. The pr dependence of the 7.



4.2. PROMPT PRODUCTION OF CHARMONIUM STATES 127

and J/ip production exhibits a similar behaviour in the studied kinematical regime,
though with significantly larger n. production uncertainties. Calculations of the NLO
contribution to the cross-section are important to compare the observed pr dependence

to the theoretical predictions [178}/179).

4.2.4 Discussion and outlook

The prompt 7. production at /s = 7TeV and at /s = 8 TeV centre-of-mass energy
is measured for the first time. The relative 7. to J/i prompt production rate in the

kinematic range 2.0 < y < 4.5 and pr(J/i,n.) > 6.5GeV/c is found to be

00/ Tp0) foogpey = 175 £0.30 £ 028 £0.195,, .~
(On/oa) fograr = 160 £0.20£0.25£0.175,, =

for the data collected at /s = 7TeV and /s = 8 TeV, respectively. The absolute 7.
prompt production cross section is determined using the J/i) prompt production cross

section in the same kinematic range to be

=0.52 £ 0.09 £ 0.08 £ 0.06

(0776> s=T7TeV, 2.0<y<4.5, P7>6.5GeV/c O3 B —pp.ne—pp }/Lb ’

=0.59+£0.11 £0.09 £ 0.06

(0-770>\/§:8 TeV, 2.0<y<4.5, P7>6.5GeV/c O3 B —pp.ne—pp B

for /s = 7TeV and /s = 8 TeV, respectively. The obtained cross-section of the 7,
prompt production is in agreement with the colour-singlet leading order (LO) calcula-
tions, while taking into account colour-octet LO contribution predicted cross-section
exceeds the observed one by two orders of magnitude [177]. However the NLO contri-
bution is expected to significantly modify the LO result [176]. The theory-experiment
comparison requires major efforts from both parts. The 7. prompt production cross
section is shown on Fig. with the statistical and systematic uncertainties, and the
uncertainty associated to the J/ip — pp and 7. — pp branching fractions and the J/i)
cross-section measurement, shown separately. Measurements at higher centre-of-mass
energies, /s = 13TeV in 2015 and eventually full LHC energy of /s = 14 TeV, will

allow to study energy dependence of the 7. prompt production.

The pr dependence of the 7. and J/i) production are found to exhibit a similar be-
haviour in the studied kinematical regime, though with significantly larger 7. production

uncertainties. Calculations of the NLO contribution to the cross-section are important
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Figure 4.6: Prompt 7. production cross section as a function of collision energy. The cross
section corresponds to the kinematic range 2.0 < y < 4.5 and pr(n.) > 6.5 GeV/c. Statistical
and systematic uncertainties, and the uncertainty associated to the J/iy — pp and n. — pp

branching fractions and the J/i) cross-section measurement, are shown separately

to compare the observed pr dependence to the theoretical predictions [178,179]. The
NLO calculations of the 7. production rate in the same pr intervals are being performed
by K.T. Chao et al. from Beijing university. Their calculations will allow the first direct
comparison between the theoretical calculations and the LHCb experimental results for
pr dependence of the 7. production. A possible future improvement of the efficiency
of the LHCDb trigger line selecting pp combinations consistent with being produced in
charmonium decays, should make it possible to extend 7, production studies to lower

pr-values, and to explore heavier charmonium and charmonium-like states.

Considering other decays of the 7. meson, e.g. decays to ¢¢ exploited to study
charmonia production in inclusive b-decays in section [£.3.3] and possible future ad-
justment of the LHCb trigger lines can provide improved precision for the studies of
the n. production with the next LHCb data taking period at a centre-of-mass energy
Vs =13TeV.

Jacques Lefrancois proposed to study charmonium production via decays to baryon-
antibaryon pairs, A4 — (pr~)(prt) or EZ — (Ax)(Ar™) — ((prH)nt)((pr~)77).

The measured branching ratios for charmonia decays to AA and 5= are similar to the
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ones for the pp final state. Experimentally, reconstruction efficiency reduces because
of the 4 (6) tracks in the final state, and trigger efficiencies reduce because of lower
particle momenta. On the other hand, 2 or 4 secondary vertices in the event provide a
clean signature that allows to strongly suppress combinatorial background. Developing
challenging dedicated trigger line, optimized to efficiently capture charmonium decays
to baryon-antibaryon pairs, could provide clean samples of prompt charmonia, other

than having JP¢ = 17~ quantum numbers.

Finally, decays to hadronic final states open a possibility of studies of central
exclusive production (CEP) of other charmonia than those having JF¢ = 17~ quantum
numbers, or those decaying to them. This study has been started as an extension of the
CEP measurements of the J/ip and 1(2S) production, and requires a dedicated trigger

to select low multiplicity events [6,[169].
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4.3 Charmonium state inclusive production in b-

hadron decays

The idea to study charmonium production from b-hadron decays using charmonia
decays to hadronic final states with LHCb originated from the brainstorming discussion
with Emi Kou, and further interesting discussions with Jibo He, Emi Kou and Benoit
Viaud. Trigger lines and stripping of corresponding LHCb data were performed by
Jibo He. This analysis became a subject of the internships of Nazar Stefanyuk, Andrii
Usachov and Ph.D. thesis of Maksym Teklishyn. The results discussed in this section

are preliminary LHCb results.

4.3.1 Landscape for charmonia inclusive production in b-

hadron decays

Charmonium states are also produced in b-hadron decays. Experimentally, charmonium
candidates from b-hadron decays are distinguished from prompt charmonia by exploiting
the b-hadron finite decay time and reconstructing a b-hadron (and charmonium) decay
vertex well-distinguished from the primary vertex where the b-hadron candidate was

produced.

Numerous measurements of the branching fractions of exclusive B-meson decays to
charmonium states, in particular J/) and 1 (25), have been performed. Such decays
probe charmonium properties and have important implications in the CP-asymmetry
studies and studies of mixing in neutral B-systems [180]. Using decays of J/i) and
¥(2S) to di-muon final state, ratios of B® meson exclusive decay branching fractions
have been studied for B® — 1(25)K*? and B® — Ji) K*°, and B® — 4(2S)n* 7~ and
B — Jhp ™, decay modes [181H183], ratios of BY exclusive decay branching fractions
have been studied for BY — (25)¢ and BY — Jip ¢, BY — (2S)n and B? — Jhyn,
and BY — ¢(28)nt7~ and B? — Jip7ta~ decay modes [182,[184,[185], and ratios
of the exclusive decay branching fractions for charged B*-meson have been studied
for Bt — ¢(2S)K* and B* — Jjip K* channels [181},/182,|185]. These decay modes
are used or are promising to be used for systematic study of CP-asymmetry effects.

Exclusive analysis of 7. and J/i) production in b-hadron decays using the Bt — K pp
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and BT — 77 pp decay modes has been performed by the Belle experiment [186,/187],
by the BaBar experiment |188] and recently by the LHCb experiment [189]. Ratio of
the branching fractions of charmonium yield using charmonium states decaying to pp
have been measured for B exclusive decays BT — ppK™ [190]. The measurements
have been performed for 7., J/ii) and 1(2S) states, while upper limits obtained for 7.
(2S) and charmonium-like X(3872) and X(3915) states.

The available results on inclusive charmonium production from b-hadron decays are

limited and are shown in Table 4.2l These measurements involve different admixtures

B~/B° admixture | B~/B°/B°/b-baryon admixture
n (15) | < 0.9Q90%CL -
T (1) | 1.094 + 0.032 1.16 + 0.10
Xeo (1P) - -
Yo (1P) | 0.386 +0.027 14404
he(1P) - -
xee (1P) | 0.13£0.04 -
e (25) - -
»(2S) 0.307 £+ 0.021 0.283 £ 0.029

Table 4.2: Branching fractions (in %) of the inclusive b-hadron decays into charmonium
states [57]. Admixture of light BT and B mesons is shown for the measurements of the ete™
experiments operating at a centre-of-mass energy around 1°(4.5)resonance, while admixtures
of B, B°, BY and b-baryons are considered for measurements from experiments at LEP,
Tevatron and LHC

of b-hadron species. At the time, where majority of b-physics results were coming from
the experiments operating around 1°(45) resonance energy, ARGUS, CLEO, Belle and
BaBar, the b-hadrons studied were B~ and B® mesons. The results from the CLEO
and Belle experiments operating around 7°(5S5) resonance energy, involved in addition
BY meson. At the energies of the LEP experiments, operating at Z resonance, and the
Tevatron and LHC TeV scale energies, all the b-hadron species are produced, including

weakly decaying B~, B°, BY, BS mesons and b-baryons.

The world average for charmonium branching fractions in the inclusive decays
of admixture of light B-mesons is dominated by CLEO [191}|192], Belle [193] and
BaBar [194] results from 2001-2003 years. While for J/), ¢(2S) and x. branching
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fractions these results are consistent, yielding the average of better than 10% precision,
the CLEO [192] result on the x.o branching fraction is significantly smaller with respect
to those by Belle [193] and BaBar [194], and PDG gives a 30 precise average [57].
A previous study of inclusive 1. meson production in b-hadron decays by the CLEO
experiment yielded the following upper limit on the combined inclusive branching fraction
of B~ and B meson decays into final states containing an 7. meson, B(B~, B —
neX) < 9 x 1073 at the 90% confidence level [195].

The world average for the branching fraction of the J/i) and ¥(2S) inclusive pro-
duction in b-hadron decays, where all the b-species are involved, are known at a 10%
level, with the results dominated by the measurements at LEP [196-198]. The ratio
of ¥(2S) and J/ip yields has been measured at the LHC, by the LHCb and CMS
experiments, to a 5% level [136,(150]. However, the only PDG result for the y. family,
X1 inclusive production in the b-hadron decays, is a 3.50 value, averaging DELPHI and
L3 measurements [196,[197]. This reflects a difficulty to reconstruct low-energy photons

in the high multiplicity events, and in particular in a hadron machine environment.

While experimentally the reconstruction of charmonium from inclusive b-hadron
decays allows to drastically reduce combinatorial background with respect to reconstruc-
tion of promptly produced charmonium candidates, theoretically inclusive b-hadron
decays to charmonium are less clean, and in particular require delicate NLO calculations
of the singlet contribution. The QCD predictions are based on the Fixed-Order-Next-
to-Leading-Log (FONLL) formalism [4,199], which combines a Fixed-Order calculation
with an all-order resummation of Leading and Next-to-Leading logarithms. In order to
explain experimental data, the authors of Ref. [200] included colour octet contribution
in the calculations of inclusive b-hadron decays into charmonium. The measurement of
the momentum dependence in the b — J/i) X decays by BaBar [194] showed clear octet
matrix elements contribution qualitatively consistent with the theoretical description in
Ref. [201]. The remaining difference of the observed J/i) spectrum with respect to that
from Ref. [201] can be attributed to contributions from intermediate charmonium-like
XYZ particles [202].

While the branching fraction of b-hadron inclusive decays into J/i [57] is in a
reasonable agreement with theoretical calculations, taking into account the large theo-
retical uncertainties, the experimental upper limit on the branching fraction of b-hadron

inclusive decays into 7. [57] is below numerous predictions [200}203-205].
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In the following, the inclusive b-hadron decays, studied by the LHCb experiment,
are addressed. First, using decays to pp, the ratio of branching fractions for inclusive
b-hadron decays to 7, and J/i) is measured in section . Thus, the branching fraction
of the inclusive b-hadron decays to 7. mesons is precisely determined and can be used
as a reference in the measurements exploiting charmonia decays to ¢¢. Then, using
charmonia decays to ¢¢, ratios of inclusive yields within 7. and y, families are obtained
in section m Decays of 17~ state to two vector mesons are forbidden, so that J/i),
¥(25) and ¥(3770) states cannot be accessed. Two narrow ¢ peaks and four charged
kaons in the final state provide a clean signature, so that branching fractions down to a
few x10~* can be probed for other charmonia. Finally, production dependence on the
transverse momentum is mentioned in section and mass and width of the 7.(15)

meson are determined in section 4.4

4.3.2 Production studies using charmonia decays to pp

Using an integrated luminosity of [ £dt ~ 0.7 b~ accumulated at a centre-of-mass
energy /s = 7'TeV in 2011 and an integrated luminosity of [ Ldt ~ 2.0 fb~! accumu-
lated at a centre-of-mass energy /s = 8 TeV in 2012, and powerful charged hadron
identification capabilities, the LHCb experiment measures inclusive branching fraction

of the 7. meson in b-hadron decays with respect to the J/i) meson inclusive production.

Selection of charmonium candidates from b-hadron decays is similar to that for
prompt production sample, described in section [4.2.2] and profits in addition from a

charmonium decay vertex well-distinguished from the corresponding primary vertex.

Signal parametrization is identical to that, described in section [4.2.2 and delivers
detector resolution, mass and width measurements to the prompt production fit. The
combinatorial background is parametrized by an exponential function in the fit of the

sample from b-decays.

The pp invariant mass spectrum for charmonium candidates from b-hadron decays
shows good agreement between the data accumulated at a center-of-mass energy of 7 TeV
and 8 TeV for the 7. and J/i) signal shapes, as well as for the background description.
The two data samples are therefore combined and the corresponding pp invariant mass

spectrum is shown in Fig. [4.7] with fit overlaid. The dashed red line corresponding
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Figure 4.7: Proton-antiproton invariant mass spectrum for candidates coming from a secondary
vertex. The solid blue line represents the best-fit curve, the dashed red line corresponds
to double-Gaussian function for the J/i) signal, the dashed green line corresponds to the
double-Gaussian function convoluted with a Breit-Wigner function for the 7. signal, the
dashed yellow line corresponds to the J/) — ppr® spectrum with non-reconstructed pion.

The data accumulated at a centre-of-mass energy of 7 TeV and 8 TeV are combined

to the J/i) signal is described using a double-Gaussian function. The dashed green
line corresponds to the 7. signal and is described using a double-Gaussian function,
convoluted with a relativistic Breit-Wigner function. The background component,
comprising the contribution from the J/) — ppr® decay with the pion not reconstructed
is described by the dashed yellow line. The unbinned likelihood fit yields 2020 + 230
and 6110 & 116 candidates in the 7. and J/ip peaks respectively. These numbers have

then been corrected for the cross-talk effect.

Systematic uncertainties are estimated in a similar way as in section 4.2.2] The total
systematic uncertainty is dominated by the fit range variation for the measurement of

inclusive charmonium production in b-hadron decays.
The yield ratio for charmonium production in b-hadron decays is obtained as
S /7S
N, /N3, = 0.302 £ 0.039 +0.015 .

By correcting it with the ratio of branching fractions [57], By —pp/Bp.—ps = 1.40%0.15,

the ratio of the 7. and J/i) inclusive branching fractions from b-hadron decays, for
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charmonium transverse momentum pr > 6.5 GeV/c is written as
Bynx /By x = 0.424 3 0.055 £ 0.021 £ 0.0455,,,_ -,

where the third uncertainty is due to the uncertainty on the J/) — pp and 7. — pp
branching fractions [57]. Assuming that the pr (7., J/ib) > 6.5 GeV/c requirement does
not bias the distribution of charmonium momentum in the b-hadron rest frame, and
using the branching fraction of b-hadron inclusive decays into J/1) mesons from Ref. [57]
B(b— JhX) = (1.16 £ 0.10)%, the inclusive branching fraction of 7. from b-hadron

decays is derived as
B(b — n.X) = (4.92 £ 0.64 £ 0.25 £ 067501/ —pp.ne—pp) Bl x)) X 107,

where the third uncertainty component includes also the uncertainty on the J/i
inclusive branching fraction from b-hadron decays. This is the first measurement
of the inclusive branching fraction of b-hadrons into a 7. meson. It is consistent
with a previous 90% confidence level upper limit restricted to B~ and B° decays,
B(B~,B® — n.X) < 9 x 1073 at the 90% confidence level [195]. A direct determination
of the ratio B(J/i — pp)/B(n. — pp), which may be accessible by the BES experiment,

can significantly reduce the systematic uncertainty of the result.

4.3.3 Production studies using charmonia decays to ¢¢

Studies of charmonia inclusive production in b-hadron decays using charmonia decays

to ¢¢ have been performed with the LHCb experiment.

Similar to production studies using charmonia decays to pp in section [4.3.2] relative
inclusive yields are determined. The precisely measured production of 7.(15) state in
inclusive b-hadron decays is often chosen as a reference, allowing partial cancellation of
systematic uncertainties. Also relative inclusive yield in the y. family is determined to

compare to theoretical predictions.

This analysis is based on the pp collision data recorded by the LHCb experiment at
Vs =T7TeV in 2011 and at /s = 8 TeV in 2012. The data correspond to an integrated
luminosity [ Ldt ~ 1.0 fb™! accumulated in 2011 and an integrated luminosity of
[ Ldt ~ 2.2 fb~! accumulated in 2012.
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Kaon candidates were required to have a good track fit quality x?/ndf < 4, be
positively identified against charged pion hypothesis DLLg, > 5, and have transverse
momentum larger than 0.5 GeV/c. The ¢ candidates are reconstructed from oppositely
charged particles identified as kaons by the LHCb detector. Two ¢ mesons system was
considered as a charmonium candidate if forming a good vertex quality x? < 16. In
order to suppress combinatorial background associated with primary vertex particles,
charmonium candidates from inclusive b-hadron decays are required to form a vertex
well distinguished from the corresponding primary vertex, with a significant distance

between the two vertices x? > 100.

A relative production of states A and B in the inclusive b-hadron decays is calculated
from the ratio of observed event yields, efficiency ratio and ratio of branching fractions
of A or B decays to ¢,

B(b%AX)XB(A%(ﬁ(Z)) o NA EB
Blb— BX)xB(B — ¢¢) Np  ea’

(4.1)

where €4 p are the corresponding efficiencies. For the states with similar kinematics,
for example for the ratio of the production of y. states, efficincies are similar, and their

ratio is close to 1.
In a similar way, the ratio between the 7. and J/i) inclusive production in b-hadron
decays, using their decays to pp,

B(bﬁncX) XB(nch]_)) _ Nnc X 5J/w
Bb— JWX)xB(Jh) —pp) Ny ey’

(4.2)

where ¢, and €, have similar values, and N, and Ny, are the 7. and J/i) event
yields, was discussed in section [4.3.2]

In order to extract a pure ¢¢ component, the two-dimensional unbinned maxi-
mum likelihood fit corresponding to the two KK~ combinations, in the bins of the
KTK~K*tK~ invariant mass, was performed. The two-dimensional fit accounts for
the ¢¢, pKTK~ and KTK~ K™K~ components, taking into account also the phase
space factor. In the 2D fit of the K™K~ invariant masses, ¢ signal is described by the
convolution of the Breit-Wigner function to describe natural width of the ¢ resonance,
and Gaussian function to describe the detector resolution. Combinatorial background
is described by the first order polynomial. A threshold factor to describe phase space

difference is introduced in both signal and combinatorial background shapes. The
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two-dimensional fit function as well as the projections on the two axes, for the complete

event sample is shown on Fig. [4.8] The obtained sample contains two-¢ combinations,
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Figure 4.8: A 2D fit to extract pure ¢¢ combinations (left) and fit projections on the two ¢

candidate planes (center and right)

that are either random combinations or originate from the decay of mother particles.

The invariant mass distribution of the ¢¢ candidates is fit to the sum of the signal
shapes for all the known charmonium and charmonium-like states with the mass in
the range of the histogram, and the background shape. The 7, family, 7. (1S) and
ne (2S), and x. family, x., X1 and xe, as well as charmonium-like X (3872) and
X (3915) states are taken into account in the fit. These states are parametrized by
the convolution of Breit-Wigner function to describe natural width of the ¢ resonance,
and Gaussian function to describe the effects of detector resolution. Masses of all the
described states, heavier than y., are related between them, so that a single mass

value, M, ,, was left free parameter in the fit. Natural width of the x. states were

Xc2)
fixed to their known values [57]. Gaussian constraints were applied on the mass and
natural width parameters of the 7. (2S) meson, using the average values from Ref. [57],
M, (25) = 3639.4 £ 1.3 MeV/c? and T, (25) = 11.3753 MeV. The detector resolution is a
free parameter of the fit in the n. (1S) signal shape description, and is scaled according
to energy release for higher mass states. The combinatorial background is described by
a first order polynomial, multiplied with an exponential function. Threshold factor to

describe phase space difference is also introduced.

Fig. shows the fit to the spectrum of invariant mass of the ¢¢ combinations, for
combined data sample, accumulated at /s = 7TeV and /s = 8 TeV, and corresponding
to an integrated luminosity 3 fb~'. Signals from 7. (1S), X0, Xe1, Xe2 and 7. (2S)
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Figure 4.9: Distribution of the ¢¢ invariant mass for combined data sample, accumulated at
/s =T7TeV and /s = 8 TeV. The number of candidates in each bin comes from the 2D fit, as

decribed in the text. Masses of the c¢¢ resonances decaying to ¢¢ are indicated on the plot.

The results of the fit are shown in Table

decays into ¢¢ are clearly visible. The results of the fit are summarized in Table [4.3]

Numbers of signal candidates are consistent between the data samples collected at a

Resonance

Event yield

ne (1S)
Xeo (1P)
Xe1 (1P)
Xe2 ( )
(2S)

e

—

1P
25

6810 £ 175
1059 =+ 66
560 =+ 50
696 + 48
343+ 73

Table 4.3: Results of the fit to the spectrum of the ¢¢ invariant mass

centre-of-mass energy of /s = 7TeV and /s = 8 TeV, and with the combined data

sample.



4.3. CHARMONIA INCLUSIVE PRODUCTION IN B-HADRON DECAYS 139

The observed decays of the 7, and x. family into ¢¢ common final states allowed to

obtain relative inclusive inclusive yield of these charmonia from b-hadron decays.

Assuming negligible difference in the trigger, reconstruction and selection efficiency
for decays of the . states into ¢¢, relative yields of the y. states in b-hadron inclusive

decays are derived as

= 0.53£0.06 £ 0.02

=0.66 £0.06 £ 0.05 .

The systematic uncertainty comprises contributions from background shape description
and uncertainty of the natural width values in Ref. [57]. The systematic uncertainty
is smaller than the statistical one, so that precision will improve with more data
accumulated by LHCb.

Using branching fractions of the x. decays to ¢¢ from Ref. |[57], relative branching

fractions of b-hadron decays to . states can be derived as

B(b — xaX)
B(b — xX)
B(b— xe2X)
B(b— xe0X)

=0.95+0.10+£0.17 ,
= 0.45 £ 0.04 & 0.07

where systematic uncertainty is dominated by the uncertainty of the branching fractions

B(x. — ¢9¢).

This is the first or most precise determination of the y. relative yields in b-hadron
decays. These results are in agreement with the PDG average values [57] for the B°/B*
branching fractions into x.; and x.o mesons measured by CLEO [191,192], Belle [193]
and BaBar [194] experiments. However, the average value for the branching fraction
B(B — xX) = (1.3+£0.4) x 1072 [57] has limited precision and is different from zero
by a three standard deviations. This is a result of a descrepancy between the results of
the Belle |193] and BaBar [194] experiments on one side and the CLEO result [192] on

the other side (Fig. [4.10)), which calls for another measurement.

To derive absolute values of the y. yields from b-hadron decays, the result of the
7N inclusive yield using decay to pp in section [4.3.2] was used. Taking into account

the difference in trigger, reconstruction and selection efficiencies for 7. and y. mesons,
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Figure 4.10: Measurements of the branching fraction of B®/B* decays into y.2 meson [57]

Ex./€n. = 1.03, the yield ratios relative to the 7, yield were constructed as

B(b = X0 X) X Blxeo = 99) _ 151 1 0,010 4 0.005

— ¢9)

B(b — 1.X) x B(ne
B(b — xaX) x B(xa — ¢9)
— 0.080 % 0.007 = 0.002
B(b — n.X) x B(n. — ¢¢) ’
Blb— XC2X; E: )) — 0.099 = 0.007 =+ 0.003 .

B(b — n.X
Using branching fractions of the 7. and x. decays to ¢¢ from Ref. [57], relative
branching fractions of b-hadron decays to x. states can be derived as

B(b - XCOX)

———= =0.336 &+ 0.023 £+ 0.052
B(b — 1.X) ’

B — xaX)

2V T A .319 + 0.030 = 0.057
B(b — n.X) ’
B(b — XCQX)

— == =0.151 £ 0.011 £ 0.022
B(b — 1.X) ’

where systematic uncertainty is dominated by the uncertainty of the branching fractions

B(ne, xe — ¢9).
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With the branching fraction of 7. production in b-hadron decays B(b — n.X) =
(4.92 £ 0.96) x 1073 (section 4.3.2)), the absolute branching fractions of x. production

in b-hadron decays are obtained as

B(b — xe0X) = (1.66 + 0.11 £ 0.41) x 1073
B(b — xaX) = (1.57£0.154+0.42) x 107* |
B(b — xe2X) = (0.7440.05 £ 0.18) x 107%

where systematic uncertainty is dominated by the uncertainty of the branching fraction

of the b-hadron decays to 7. meson B(b — 7.X).

The branching fraction of b-hadron decays into x. is measured for the first time,

and is above the values predicted in Ref. [200].

The result for b-decays into x.; is the most precise measurement for the admixture
of BY, BT, BY and b-baryons. Central value of the result for b-decays into y,; is lower
than the value measured by DELPHI [196] and L3 [197] experiments at LEP, however,
taking into account the LEP results limited precision, the LHCb result is consistent
with them. The obtained value is lower than the branching fraction of b-decays into .
measured by CLEO [191], Belle [193] and BaBar [194] using the admixture of B® and
B™. Finally, the LHCD result for b-decays into x,; is consistent with the prediction in
Ref. [200].

The branching fraction of b-hadron decays into x.o is measured for the first time
with the B®, BT, B? and b-baryons admixture. The result is consistent with the average,
corresponding to the B, BT admixture, from Ref. [57], given large PDG uncertainty.
The obtained value has higher precision than the results from CLEO [192], Belle |193]
and BaBar [194], is close to the CLEO result of (0.67 & 0.34 £ 0.03) x 1073 and is
different by more than 20 from the results of Belle, (1.807553 4-0.26) x 1073, and BaBar,
(2.104£0.45+0.31) x 107, The obtained value is below the range predicted in Ref. [200].

It should be mentioned, that the measured branching fractions of b-hadron decays
to charmonia comprise also decays via intermediate higher-mass charmonium resonance,
contrary to the theory calculations, which consider only direct b-hadron to the considered

charmonium state transitions.

Another goal was to quantify the observed signal of 343+73 7. (2S) meson candidates

in b-hadron inclusive decays. Taking into account the difference in trigger, reconstruction
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and selection efficiencies for 7, (1S) and 7, (2S) mesons, €, (25)/€y.(1s) ~ 1.03, the yield

ratio relative to the 7. (1S) yield was constructed as

B(b — n.(25)X) x B(n.(25) — ¢¢)
B(b — n.(15)X) x B(n:(15) — ¢¢)

= 0.049 £ 0.010 £ 0.007

where systematic uncertainty is dominated by the background description. Since the
decay of 7. (2S) meson to ¢¢ has not been observed neither, the product of the branching
fraction of b-hadron decays to 7. (2S) and the branching fraction of the 7.(25) — ¢¢
decay mode, can only be determined. Using B(b — n.(15)X) = (4.92 + 0.96) x 1073
obtained in section [t.3.2] and B(n.(15) — ¢¢) = (1.76 & 0.20) x 1073 from Ref. [57],

the result is derived as
B(b — 1.(25)X) x B(1:(25) — ¢¢p) = (4.2+£0.94+1.1) x 1077,

where systematic uncertainty is dominated by the uncertainty of the 7. production in
b-decays. This is the first indication of the 7.(2S) production in b-decays, as well as the
decay of 7.(25) meson to the ¢¢ pair.

4.3.4 The pr dependence of the 7. state production

The 7. production as a function of pr is obtained by fitting the pp invariant mass
spectrum in four bins of pr. The J/ip pr spectrum [7}/134}/135] is used to access the 7.
pr spectrum. Figs. and show the obtained cross section dependence on the
transverse momentum for the /s = 7TeV and /s = 8 TeV data samples, respectively.
The J/ip cross section pr dependence [7},/134.|135] is also shown for reference. The pr
dependence of the 7. and J/i) production cross section exhibits a similar behaviour in the

studied kinematical regime, though with significantly larger 7. production uncertainties.

4.3.5 Discussion and outlook

In this section charmonium decays to hadronic final states, pp and ¢¢, are used to study
charmonia inclusive production in b-hadron decays. These are the first charmonium
inclusive production measurements, using charmonia decays to hadronic final state, in

the high-multiplicity environment of a hadron machine.
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The pr dependence of the 7. and J/ip production cross section exhibits a similar
behaviour in the studied kinematical regime, though with significantly larger 7. pro-
duction uncertainties. The NLO calculations of the 7. production rate in the same
pr intervals are being performed by K.T. Chao et al. from Beijing university. Their
calculations will allow the first direct comparison between the theoretical calculations

and the LHCb experimental results for the 7. production.

The relation of the 7. production to that of J/i), using their decays to the pp
final states, was important to relate production of charmonia, other than having
JPY =17~ quantum numbers, and reconstructed using final states, that are forbidden
for JP¢ = 17~ charmonia, e.g. ¢¢ final state, to the now precisely determined 7,

production.

Reconstructing charmonium candidates via their decays to ¢¢ in b-hadron decays,
signals corresponding to the 7. family and x. states have been observed on a low level of
combinatorial background. Furthermore, using a 2D fit in bins of the ¢¢ combinations
invariant mass, the spectrum, containing only true ¢¢ pairs, originating from heavier
state decay, or random ¢¢ combinations, has been extracted. From the fit to this
spectrum, yield ratios of different charmonium states in b-hadron decays have been
derived. This is the first or most precise determination of the production ratios for 7.

and y. states in b-hadron decays.

It is interesting to compare the ratio of branching fractions of inclusive b-hadron

decays to 7. and J/i) measured as
Bynox/Bo—gpp x = 0424 0.055 £ 0.021 £ 0.0455,,

with the ratio of the branching fractions of the 7n, and J/ip yields using exclusive
charmonia decays to pp measured for BT exclusive decays Bt — ppK™ in Ref. [190].
The ratio obtained in the exclusive analysis,
B(B — n.(15)K" — ppK™)

B(B* — J/ K+ — ppK™)
is translated to the ratio B(BT — n.(1S)K™)/B(B*T — J/iy KT), which is almost twice

as large with respect to the ratio of the corresponding inclusive branching fractions.

= 0.578 £0.035 £ 0.025

Emi Kou proposed to compare data on the 7. and J/i) yields from inclusive b-hadron
decays to extract information on the octet matrix elements, and test matrix element

universality. This analysis requires more work to interpret the measured values.
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A possibility of translation of the 7. and J/) pr range to the estimated momentum
dependence in the b-hadron rest frame can allow better comparison with the BaBar
measurement [194] of the production of these states in b-hadron decays and following

theoretical speculations [200/-202].

A possible future improvement of the efficiency of the involved LHCD trigger lines,
should make it possible to extend 7. production studies to lower pp-values, and exploring
heavier charmonium and charmonium-like states, using charmonia decays to both pp
and ¢¢ final states.

As an extension of the charmonium production studies using decays to ¢¢, to other
two-body decays, leading to final states with four charged kaons, can be addressed
at LHCb. Decays to ¢f, final states, where f, is a resonance with defined quantum
numbers decaying to KK, are interesting not only because they can increase the
precision, if combined with the study using decays to ¢¢, but also they can provide direct

normalization to production of the states with J¢ = 17~ quantum numbers [137].

The proposal of Jacques Lefrangois to reconstruct charmonia via decays to baryon-
antibaryon pairs, discussed in view of prompt production measurements in section
is also applicable for charmonia from b-hadron decays. However b-hadron production
rates multiplied by the branching fractions of the involved decays do not allow by now

to observe corresponding signals.

Finally, Emi Kou proposed to compare angular dependences in the J/i) — pp to those
in the decay J/i» — p*p~ in order to extract further information on the spin-selection
rules breaking [206], as well as the J/t) — pp transition mechanism. A low-background
sample of J/i mesons from b-hadron decays, with well-known polarizarion, will be

exposed to this study.
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4.4 Mass and natural width of the 7. (1S) state

4.4.1 Landscape for studies of mass and natural width of the

7. states

By the time of issueing the printed version of the PDG 2012 [57], the measurements
of even the simplest parameters, mass and natural width, of the ground c¢ state, 7.
(1S), exhibited large consistency problems. Fig. shows the PDG fit of the 7. mass
measurements available by the time of issueing of the PDG 2012 book. The majority of
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Figure 4.11: Measurements of the 7, mass from the printed version of PDG 2012 [57].
Confidence level of the fit is 0.0006

the measurements, taken into account in the fit, come from the vy — 1. — hadrons,
radiative decays J/ (¢ (25)) — ney, pp — ne — 77, and exclusive B-decays at B-
factories, yielding the average of 2981.0 & 1.1 MeV/c?. The only measurement, involving
ne reconstruction via its decay to pp, was performed by Belle in 2006 [207]. The analysis

was based on 195 7. candidates, and yielded a measurement with moderate accuracy and
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the central value shifted with respect to the present PDG average, 2971 + 317 MeV/c2.
In 1990 MARKIII experiment performed another measurement [208] with the technique
close to the one employed in LHCb, reconstructing 7. candidates via the KT K~ KT K~
final state, in the radiative decays of J/i». The MARKIII analysis was based on 80
ne candidates, and yielded a measurement of 2969 4+ 4 4+ 4 MeV/c?. Finally, in 2009
CLEO observed a significant asymmetry in the lineshapes of radiative J/i) — vn. and
(2S) — n, transitions [209]. If ignored, this asymmetry could lead to significant bias
whenever the mass and width are measured in J/ip or ¥(2S) radiative decays. The new
precise BES results, M, = 2984.49+1.1640.52 [210] and M, = 2984.3+0.6+0.6 [211],
obtained using radiative decays of 1(25), positioned the actual PDG average [57] to
2983.7 4+ 0.7 MeV/c?. This change of more than 20 calls for an improving precision of

the 7. mass measurement using a different technique.

Similar situation occurs with the 7, natural width determination. Fig. [4.12] shows
the PDG fit of the 7. natural width measurements available by the time of issueing
of the PDG 2012 book. The new BES results M, = 36.4 4 3.2 £ 1.7 [210] and
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Figure 4.12: Measurements of the 7. natural width from the printed version of PDG 2012 [57].
Confidence level of the fit is less than 0.0001
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I, =32.0+£1.2+£1.0 [211], obtained using radiative decays of ¢)(25), shifted the actual
PDG average [57] from 29.7 £ 1.0 MeV to 32.0 £ 0.9 MeV.

The properties of the 7. (2S) state is by far less investigated. Measurements
of CLEO [212], BaBar [213,214], Belle [215,216] and BES [217,218] experiments,
using vy — hadrons, double charmonium production in e*e™, exclusive B-decays and
radiative transitions of ©(2S5), contribute to the PDG averages [57] of 3639.4+1.3 MeV/c?
for the 7, (2S) mass, and 11.3%32 MeV for its natural width. The recent results from
BES are consistent with the previous measurements and improved the uncertainty. The
comparison between the results for the 7. (2S) natural width should take into account
large uncertainty from first measurements. Uncertainty for the 7, (2S) measurements
are larger, and the number of delivered results is smaller, as compared to the 7. (1S)

studies.

A more than 20 difference between the recent BES results [210,211] and earlier
measurements [57] motivates the determination of the mass difference AM . =

My, — M, and the 7. natural width I';,, using a different technique or final state.

4.4.2 Measurements of the 7.(15) mass and natural width

The LHCb experiment measured the mass difference AM . = My, — M, and the
ne natural width I, , using 7. and J/i) decay to pp and ¢¢ final states.

The excellent performance of the LHCb tracking system and the usage of the
same final state for both J/i) and 7. decays allows a precise measurement of the mass
difference between the two mesons. In order to measure the 7. mass relative to the
well-reconstructed and well-known J/i) mass, a momentum scale calibration [219)] is
performed on data, and validated with the J/) mass measurement. The M, and
AM jjp . values are extracted from the fit to the pp invariant mass in the low-background
sample of charmonium candidates produced in b-hadron decays (Fig. . The J/
mass measurement, M, = 3096.66 £0.19 £ 0.02 MeV/ c?, agrees well with the average
from Ref. [57]. The AMj, 5. measurement,

AMyy e = 1147+ 1.5 £0.1 MeV/c* |

is dominated by the statistical uncertainty. The systematic uncertainty is dominated

by the Jip — ppr® reflection description. The mass difference also agrees with the
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average from Ref. [57]. Its precision improves upon that of the measurements in e*e”
collisions at the 1°(4S) resonance and provides an independent check of the recent
BES results [210,211]. In addition, the n, natural width is obtained from the fit to
the pp invariant mass (Fig. to be I'y, = 25.8 £ 5.2+ 1.9MeV. The systematic
uncertainty is significantly smaller than the statistical one, and is dominated by the
detector resolution. The obtained I, value is in a good agreement with the average
from Ref. [57]. However it is less precise than previous measurements. Fig. shows
the ', AMjy; p. contour plot, obtained from the analysis of b-hadron decays into 7,
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Figure 4.13: Contour plot of I'y. and AM ;. using 1. — pp decay for the combined data
sample. The two curves indicate 68.3 C.L. (one-sigma) and 95.5 C.L. (two-sigma) contours.
Only statistical uncertainties are shown. The PDG [57] value is indicated as a point with

error bars

meson, where the 7. candidates are reconstructed in the 7. — pp decay. The /s = 7TeV
and /s = 8 TeV results are consistent with each other, so that contour plot for combined

data sample is shown. The results are consistent with the PDG values [57].

Similar measurements were performed using the 7. mesons reconstructed in the
ne — ¢¢ decay mode, using 5 x 103 7. candidates in the signal peak (section [4.3.3]).

Momentum scale calibration was also performed on the data sample. The 7, mass was
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measured to be
M,, =2984.0 £ 0.5 £ 0.2 MeV/c” .

The precision of the result is dominated by the statistical uncertainty, while background
shape parameterization uncertainty yields a dominant contribution to the systematic
uncertainty. This measurement is consistent with the LHCD result from the 7. production
analysis using 7. — pp decays, with the recent BES results [210,[211], with the average
value in Ref. [57], and has a precision comparable to that of the average in Ref. [57].
Fig. shows the I, M, contour plot, obtained from the analysis of 0-hadron decays
into 7. meson, where the 7. candidates are reconstructed via the n. — ¢¢ decay, for

the combined data sample. Measurements of the 7. mass using 7. meson decays to pp
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Figure 4.14: Contour plots of I';,, and M, using 1. — ¢¢ decay for the combined data sample.
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statistical uncertainties are shown. The PDG [57] value is indicated as a point with error bars

and decays to ¢¢, are consistent with each other and with the PDG average [57].
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4.4.3 Discussion and outlook

Using low-level background samples of charmonia candidates produced in inclusive
b-hadron decays, and a momentum scale calibration [219] performed on data, mass and
natural width of the 7. (1S) state have been measured using decays to pp and to ¢¢
final states. These measurements used another method, compared to the most precise
to date recent results of the BES experiment [210},211], and provided an important

consistency check.

Measurements of the 7. mass and natural width using 7. meson decays to pp and
decays to ¢¢, are consistent with each other and with the PDG average [57]. Precision of
the 7. mass measurement using 7. — pp decays improves upon that of the measurements
in ete” collisions at the 7°(4S5) resonance and is compatible to the BES results. The
7. Mass measurement using 7. — ¢¢ decays is the most precise 7. mass determination

with the precision exceeding that quoted in Ref. [57].

The difference between the masses in 7, family, 7.(25) and 7.(1S5), and in x. family,

will be studied using larger event samples expected from the operation in 2015.



Chapter 5
Decays of BY to ¢ mesons

Throwing pebbles into the water, look at the ripples
they form on the surface.

Otherwise this activity will be an empty amusement.

Kozma Prutkov

The analysis of B? decays to ¢ mesons historically appeared as an extention of the
analysis of charmonium production using charmonia decays to ¢¢ (section . Clean
B? signal is observed in the ¢¢ invariant mass spectrum, and corresponds to BY — ¢¢
decays. Simulteneous reconstruction of B? and 7. mesons in the same decay mode to
¢¢ (sections and allows determination of the BY — ¢¢ branching fraction
(section [5.1.3)). In addition, decays of B? meson to three ¢ mesons, BY — ¢pp, were
observed (section 7 and branching fraction of the B? — ¢¢¢ transition was derived
(section . This decay can proceed via intermediate resonances, e.g. BY — 1.0
followed by 1. — ¢¢ decay, or as a three-body decay (section . The latter one
corresponds to a rare quark diagram with gluonic penguin and additional creation of ss

pair. The results presented in this chapter are preliminary LHCb results.
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5.1 Decays of Bg to two ¢ mesons, BSO — QP

The idea to measure the branching fraction of the B — ¢¢ decay mode via normalization
to n. — ¢, n. — pp and J/i» — pp modes originated from the brainstorming discussion
with Emi Kou, and further interesting discussions with Emi Kou and Jibo He. Stripping
of corresponding LHCb data was performed by Jibo He. This analysis became a subject
of Master thesis of Nazar Stefanyuk, internships of Maksym Teklishyn and Andrii

Usachov. The results discussed in this section are preliminary LHCb results.

5.1.1 Landscape for the B! — ¢¢ decay mode

In the SM the decay B? — ¢¢ is forbidden at the tree level and proceeds via a gluonic
penguin process, b — sss, with four strange quarks in the final state. Its quark

diagram is shown on Fig. [5.1l Being induced by a purely loop quark diagram, this
W+

(ol
» Wl

w
w w
<-

Figure 5.1: Quark diagram describing BY — ¢¢ decay

rare decay provides an excellent probe of new heavy particles entering the penguin
quantum loop [220-222]. Measurements of the polarization amplitudes and triple product
asymmetries in the BY — ¢¢ decay mode were pointed out to provide important probes
of the non-factorizable penguin-annihilation effects [223], final state interactions [224],
and NP contributions to the penguin loops [225,226]. Recently, the LHCb experiment
performed a measurement of the time-dependent CP-violating asymmetry in B? — ¢¢
decays [18], and probed the CP-violating phase ¢, for the first time. The branching
fraction B(B? — ¢¢) has been calculated using pertubative QCD approach (Ref. [227]
and references therein) and QCD factorization (Ref. [221,[222] and references therein).

However, experimental knowledge of the branching fraction for this mode remains
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limited, with measurements from CDF [228,229] and upper limit set by the SLD
experiment [230]. In the recent CDF result [229], B(B? — ¢¢) = (17.7+£2.4757) x 1075,
the systematic uncertainty is dominated by the precision of the branching fraction for
the normalization channel B? — J/i) ¢. This measurement is limited by large systematic
uncertainties and calls for the B(BY — ¢¢) determination using alternative approach.
Reconstructing the BY meson via its decay to ¢¢, and comparing the 7. and BY event
yields, the branching fraction B(BY — ¢¢) can be obtained.

5.1.2 Reconstruction of the B? — ¢¢ decay mode

The B? — ¢¢ candidates were reconstructed using selection criteria similar to those
applied for charmonia reconstruction via decays to ¢¢ in the production analysis,
as discussed in section [4.3.3] Charged kaon separation against pions, DLLg, > 5,
and kaon transverse momentum pr > 0.5 GeV/c were required. Two ¢ candidates
were required to form good quality common vertex, y?/ndf < 16, well distinguished
from the corresponding primary vertex with a significant distance between the two
vertices, x? > 100. The two-dimensional fit selected true ¢¢ combinations, suppressing
a significant reflection from B — ¢K*°. Separate analysis of the data samples,
corresponding to /s = 7TeV and /s = 8 TeV, shown consistent results for signal and
background models and event yields, so that the combined data sample was considered.
A fit to the ¢¢ invariant mass spectrum in the region of the B? mass is shown in Fig.
Gaussian function was used to describe the B? signal shape, while an exponential
function modelled combinatorial background. The fit yielded 2564 + 59 candidates in
the B? signal peak, and the B? mass value Mpo = 5366.8 + 0.3 MeV/c?, in agreement
with the PDG average of 5366.77 £ 0.24 MeV/c? [57].

5.1.3 Branching fraction B(B? — ¢¢)

Having reconstructed the 7. and B? mesons in the 1. — ¢¢ and B? — ¢¢ decay modes,
comparing the 77, and B? event yields, and accounting for the efficiency difference, the
branching fraction B(BY — ¢¢) can be obtained.

In the ratio of the B? production, where B? is reconstructed via the BY — ¢¢

decay, to the 7. production in b-hadron inclusive decays, the B? fragmentation from
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Figure 5.2: Invariant mass spectrum of the ¢¢ combinations in the region of the B? mass for

combined data sample. The number of candidates in each bin comes from the 2D fit, decribed

in section @I

the b-quark has to be taken into account,

B(b — BY) x B(B? — ¢¢) _ Npy  Ene (5.1)
B(b—1.X) x B(n. — ¢) Ny, epo '

where N, and Npo are the event yields for 7. and B? signals, respectively, and the
efficiency ratio is estimated using MC simulation to be &, /ego = 0.56 4 0.02. The ratio

of B? production to the 7. inclusive production in b-hadron decays is thus obtained to

be B

B(b — 1cX) x B(1je — ¢¢)
Using the above ratio, together with the ratio B(b — 1.X)/B(b — J/i) X) in the same

pr region, allows to extract the branching fraction B(BY — ¢¢) as

= 0.211 £ 0.007 + 0.012 . (5.2)

NBO E
B(BY = x i
(B, — ¢0) N, " em

% B(b — n.X) x B(n. — pp)
B(b — Jip X) x B(Jy — pp)

B(nc_>¢¢) — 7 0
* Bl = pp) B(b— Jpp X) x B(Jjy — pp)/B(b — By) .

In the above expression, the ratio on the second line has been measured in Ref. [138] to

Bb—=n.X)xB(n.—pp) __ —
be g B s = 0.302+0.039%0.015 = 0.30240.042 for pr(ne, /1)) > 6.5 GeV,




5.1. DECAYS OF B% TO TWO ¢ MESONS, B% — ¢¢ 155

and can be used as an estimate for the present calculations; the ratio of the 7. branching
fractions to the ¢¢ and pp final states B(n. — ¢¢)/B(n. — pp) = 1.17 £ 0.18 [57], and
is dominated by the accuracy of BES measurements; the inclusive branching fraction of
b-hadrons into J/i final states B(b — J/i» X)) = (1.16 £ 0.10)%, where decays of the
admixture of B*, B®, B? and b baryons are considered [57]; and the branching fraction
of the J/ib meson decay to the pp final state B(J/) — pp) = (2.120 £ 0.029) x 1073 [57].

The fragmentation of the b to B? is driven by strong dynamics in the nonperturbative
regime, and no reliable theoretical prediction can be made. Thus the f, has also to be
determined experimentally. The LHCb experiment determined }C—d via semileptonic [231]
and hadronic [232] decays, and found it consistent with being independent on the
rapidity and transverse momentum. The two measurements agree to each other, and

yield the average of

% = 0.256 + 0.020 .

d

Though % is not a priori a "universal” number, the LHCb result is similar to those
obtained by the experiments at LEP and Tevatron. Assuming universality, the Ref. [57]
proposes a value of f, = B(b — B?) = 0.107 + 0.014.

From the above input, the branching fraction B(B? — ¢¢) is obtained to be
B(B? — ¢¢) = (1.71 4 0.06 = 0.45) x 107°

where the systematic uncertainty dominates the measurement precision. The largest
contribution to the systematic uncertainty comes from the uncertainty in the ratio of
B(

m—:g?, and the knowledge of the f, parameter.

the n. branching fractions Bl

5.1.4 Discussion and outlook

The branching ratio B(B? — ¢¢) = (1.71 £ 0.06 & 0.45) x 1075 was measured with
a different technique with respect to previous results [228-230]. The measurement is
consistent with the previous CDF results and has a precision similar to that of the PDG

value [57]. The result is also consistent with theoretical calculations [221}222}227].

Precision of the measured branching fraction B(BY — ¢¢) is fully dominated by the

systematic uncertainty, which is in turn dominated by the uncertainty in the ratio of the
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7. branching fractions %, and the knowledge of the f; parameter. Averages [57]
of the branching fractions B(n. — ¢¢) and B(n. — pp) rely on the so far most precise
measurements by DM2 [233], and BES [139,[211}234] experiments. Precision of all
the above measurements is dominated by the systematic uncertainty. And none of
the experiments directly performed measurement of the ratio of the two branching
fractions, which would allow partial cancellation of systematic uncertainty, and would
consequently reduce the systematic uncertainty of the branching fraction B(B? — ¢¢)
measured by LHCb. Contacts with the BES collaboration have started in order to
motivate them to revisit their analysis and yield the measurement of the ratio with

improved precision.

5.2 Decays of Bg to three ¢ mesons, BS — POP

The idea to search for the B? — ¢¢¢ decay mode originated from the LHCb working
group discussion with Mathew Needham and Vanya Belyaev, and further interesting
discussions with Jibo He. Stripping of corresponding LHCb data was performed by
Jibo He. This analysis became a subject of the internship of Andrii Usachov. The

results discussed in this section are preliminary LHCb results.

5.2.1 Landscape for the B! — ¢¢¢ decay mode

Adding another reconstructed ¢ candidate to the ¢¢ system, allows to search for the
BY — ¢¢¢ decay. The transition B? — ¢d¢ can proceed via two-body decay involving

intermediate resonances, or via three-body BY — ¢¢¢ decay.

The three-body B? — ¢¢¢ decay can be described by a quark diagram shown on
Fig. . This is a penguin diagram, similar to the diagram describing the B — ¢¢
decay mode (Fig. [p.1]), and involves a creation of an additional s5 pair. The transition

thus leads to the final state with six strange quarks.

The B? — n.¢ decay mode followed by the 7. — ¢¢ decay, is an example of the
decay via intermediate resonance, yielding three-¢ system. The BY — n.¢ decay is

described by the internal emission of W boson. This decay has not been observed
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Figure 5.3: Quark diagram describing three-body B? — ¢¢¢ decay

so far. However, the similar BY — J/i) ¢ decay occurs with a branching fraction of
B(B? — Jhp¢) = (1.097535) x 102 [57]. The difference between the branching fractions
for the BY — n.¢ and B? — J/ib ¢ decays can however be expected due the fact, that
the latter decay is a P — V'V transition. For example, branching fractions of light
B-meson decays to J/i K* exceed those of light B-meson decays to n.K* by a factor 2,
where only neutral B-decays are measured precisely enough to draw this conclusion at a
quantitative level [57]. In addition, in order to make a comparison between the BY — n.¢
and three-body contributions to the B? — ¢¢¢ decay, the 1. — ¢¢ branching fraction,
BR(n. — ¢¢) = (1.94 4 0.30) x 1073 [57] should be taken into account. Comparing the
considerations above for the branching fraction of the BY — n.¢ decay to the branching
fraction of the BY — ¢¢ decay mode, and neglecting any possible interference effects,
the B(B? — n.¢) can be expected to be below the branching fraction of the three-body
BY — ¢¢¢ transition.

5.2.2 Reconstruction of the B! — ¢¢¢ decay mode

Reconstruction of the B? — ¢¢¢ decay mode employs selection criteria, that are similar
to those used for the analysis of the B? — ¢¢ decay. In the B? — ¢¢¢ analysis, in
order to extract true ¢¢¢ combinations a maximum likelihood unbinned 3D fit is used,

similar to the 2D fit used to extract true ¢¢ combinations for selection of charmonia or

BY decays to ¢¢, as was discussed in sections 4.3.3|and |5.1.2] The fit shape accounts
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for ¢, p¢K K, pKTK - KTK~ and KTK~- K"K~ K*TK~ contributions and takes
into account the available phase space. Projections of the 3D fit for the entire sample of

candidates on each ¢ candidate are shown on Fig. 5.4, On the left of each ¢ projection,
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Figure 5.4: Projections of the entire sample of the ¢¢p¢ candidates 3D fit on each ¢ candidate

a possible contribution from f,(980) resonance is visible. Fig. shows invariant mass

distribution of the ¢¢¢ system. A fit to the invariant mass spectrum, using a Gaussian
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Figure 5.5: Distribution of the ¢¢¢ invariant mass for combined data sample accumulated at

Vs =TTeV and /s = 8 TeV

function to describe a clear B? signal corresponding to the transition B — ¢¢¢, and
an exponential to describe combinatorial background, yielded 42.3 +13.4 B? candidates

over a low level background.
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5.2.3 Branching fraction B(B? — ¢¢¢)

Reconstructing the decays of BY meson to two ¢ mesons, BY — ¢¢, and three ¢ mesons,
BY — ¢¢¢, with similar selection criteria, allows a determination of the ratio of their

branching fractions to be

B(B) — ¢¢¢)  Npopss  EBI o 1

B(B? — ¢¢) Npo_gs  €Bo—gps B¢ — KTK~™)

In the above expression, the event yields are measured in the present analysis, and the
efficiency ratio is estimated using MC simulation to be ego_.44/cp04ps = 1.10 £ 0.06,
assuming that the BY — ¢¢¢ transition proceeds as a three-body decay. The ratio of

the branching fraction is thus obtained as

B(B — ¢¢9)
B(BY — ¢9)
where the systematic uncertainty is dominated by the uncertainty due to background
description. Using the branching fraction of the B? — ¢¢ decay B(B? — ¢¢) =
(1.71 £ 0.06 + 0.45) x 10° from section the branching fraction for the B? meson

decay to three ¢ mesons is derived as

= 0.038 £ 0.012 £ 0.004 ,

B(B® — ¢¢¢) = (6.4 +£2.041.8) x 1077,

The systematic uncertainty is dominated by the uncertainty of the branching fraction

B(BY — ¢¢) measurement.

In order to search for possible contributions from intermediate resonances the
invariant mass of ¢¢ pairs is looked at. Fig. [5.6] shows the invariant mass distribution
of ¢¢ pairs from the B? — ¢¢p¢ candidates. Though the event sample is too small to
conclude, no indication of a dominating resonance contribution is visible for the 7.(15),
Xc0;s Xel, Xe2 OF 1:(2S5) contribution. In addition, there is no indication of the f»(2300)
or f(2340) presence.

5.2.4 Discussion and outlook

The branching fraction of the transition B? — ¢¢¢ is measured to be B(B? — ¢¢p¢p) =
(6.442.041.8) x 1077, This decay can proceed via two-body decay involving intermediate
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Figure 5.6: Invariant mass distribution of the ¢¢ pair from the BY — ¢¢¢ candidates for
combined data sample accumulated at /s = 7TeV and /s = 8 TeV

resonances, e.g. B? — n.¢ with 1. — ¢¢ yielding three-¢ system or via three-body
BY — ¢¢¢ decay.

No clear resonant structure is observed in the ¢¢ invariant mass distribution. This
suggests to use the measured branching fraction, B(B? — ¢¢¢) = (6.4+£2.0£1.8) x 1077,
as un upper limit for the branching fraction of the three-body transition. At the same
time, comparison between the 7.¢ and the three-body contributions (section
allows also to consider this value as an estimate of the upper limit on the branching

fraction of the B? — 7.¢ decay mode.

Despite the fact, that no dominant resonance contribution has been observed, a
Dalitz plot analysis should be performed to further study resonance structure of the
BY — ¢¢¢ transition. The technique developed in Ref. [235] for three-body decays to

identical particles will be used in the future analysis.



Chapter 6

Summary

What the caterpillar calls the end of the world,

the master calls a butterfly.

Richard Bach

In summary, present writing addresses two major subjects, design, construction
and tests of the LHCb electromagnetic calorimeter detector, and charmonia production
studies, using decays to hadronic final states, and measurement of branching fractions

of BY%-decays to ¢ mesons, in the LHCb experiment.

LHCb ECAL detector was designed, constructed, tested, pre-calibrated and in-
stalled in the experiment. The Shashlik cell design inherited essential experience from
the previous constructions, and in particular PHENIX and HERA-B calorimeters.
Complementary to existed experience, LHCb ECAL triggered several new successful
developments. Effects influencing lateral uniformity of response were better understood,
while record lateral uniformity for Shashyk type calorimeters was demonstrated. Among
other developments, a new technique of S-type fiber bending allowed to achieve bending
radii of 10 mm for fiber diameter of 1.2 mm, more than five times lower with respect to
fiber specifications, without a mechanical damage. Important studies of radiation resis-
tance of plastic scintillators have been performed. The optimal scintillator tile and WLS
fiber combination was selected for the LHCb ECAL. Taking into account a substantial
radiation dose close to the beam pipe, the ECAL design provides a possibility to replace

48 modules, that are most exposed to radiation. In addition sets of comprehensive dose
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monitors have been distributed over the calorimeter surface, that will allow not only a
dose map reference, but will also provide information of scintillator materials aging for
irradiating particles, corresponding to realistic environment of hadron collider, and at
realistic dose accumulation rate. Having different response to different radiation types,
the monitors will provide a separate dose map for electromagnetic component, charged
hadrons and neutrons. During the LHCb data taking, the calorimeter demonstrated
reliable operation with less than 0.2% dead channels. However, long clear transport
fibers, distributing LED monitoring pulses, appeared to be sensitive to radiation. On-
line degradation and annealing effects following the beam crossing pattern have been
observed. This increases the importance of the online monitoring using reconstructed

7V signal.
Charmonia production was studied, using charmonia decays to pp and ¢¢ pairs.

The 7. production is studied using pp collisions with an integrated luminosity of 0.7
fb~! and 2.0 fb~!, collected at a centre-of-mass energy /s = 7TeV and /s = 8 TeV,
respectively. The inclusive branching fraction of b-hadron decays into 7. mesons for
pr(ne, J/b) > 6.5 GeV/c, relative to the corresponding J/4b meson quantity, is measured
for the first time to be

B(b — 1.X)/B(b— Jhp X) = 0.424 4 0.055 = 0.015 % 0.0455 15 —ppon.

—pp) -

The first uncertainty is statistical, the second is systematic, and the third is due to
uncertainties in the branching fractions of the 7, and J/) meson decays to the pp final
state. The 7. prompt production cross-section in the kinematic regime 2.0 < y < 4.5
and pr(n., J/ib) > 6.5 GeV/c¢, relative to the corresponding J/i) meson cross-section, is

measured for the first time, yielding

(On/00) fs—gmay = 1.75 £ 0.30 & 0.28 £ 0.195(s0 —ppinc—p) -
(o0 /o0p) sog ey = 1-60 £ 0.29 £ 0.25 £ 0.17509 —ppe—pp) -

at a centre-of-mass energy /s = 7TeV and /s = 8 TeV, respectively. From these

measurements, absolute 7. meson prompt production cross sections are derived, yielding
(O—WC>\/§:7TeV =0.52+0.09 £ 0.08 £ 0.06,,,,, B(Jjp —ppne—pp) Hb
(0776>\/§:8Tev =0.59 £ 0.11 £ 0.09 £ 0.06,,,,, 81 —ppn.—wp) Hb

at a centre-of-mass energy /s = 7TeV and /s = 8TeV, respectively. The third

uncertainty comprises in addition the uncertainty in the J/i) meson production cross
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section. The above results assume that the J/i) is unpolarized. The obtained 7, cross-
section is in a qualitative agreement to colour-singlet LO calculations, while the NLO
contribution is expected to significantly modify the LO result. The pr dependence
of the 7. production rate exhibits similar behaviour to the J/i) meson rate in the
studied kinematic regime, though with significantly larger uncertainties. The NLO
calculations of the 7. production rate in the same pr intervals are being performed by
K.T. Chao et al. from Beijing university. Their calculations will allow the first direct
comparison between the theoretical calculations and the LHCb experimental results for

the n. production.

The relation of the 7. production to that of J/i), using their decays to pp final
states, was important to relate production of charmonia, other than having J©¢ = 17~
quantum numbers, and reconstructed using final states, that are forbidden for JF¢ = 17~

charmonia, e.g. ¢¢ final state, to the now precisely determined 7, production.

Charmonia production in b-hadron decays was also studied using charmonia decays
to ¢¢ with the full available LHCb data sample of 3 fb=!. Relative production of the
states from 7. and y. families was measured. Using a 2D fit in bins of the ¢¢ invariant
mass, the spectrum, containing only true ¢¢ pairs, originating from heavier state decay,
or random ¢¢ combinations, has been extracted. From the fit to this spectrum, yield
ratios of different charmonium states in b-hadron decays have been derived. These are
the first or most precise determination of the production ratios for 7. and . states in

b-hadron inclusive decays.

Among further developments, Emi Kou proposed a comparison of the 7. and J/i)
production in b-hadron decays to extract information on the octet matrix elements,
and test matrix element universality. A translation of the n. and J/i) pr spectra to the
p* dependence will allow better comparison with the BaBar measurement [194] of the
production of these states in b-hadron decays and following theoretical speculations [200-
202]. A possible future improvement of the efficiency of the involved LHCb trigger lines,
should make it possible to extend 7. production studies to lower pr-values, and exploring
heavier charmonium and charmonium-like states, using charmonia decays to both pp
and ¢¢ final states. Other promising decay modes to be considered comprise decays to
¢ f. final states, where f, is a resonance with defined quantum numbers decaying to
K*K~, that can also the states with J©¢ = 17~ quantum numbers [137]; and decays

to baryon-antibaryon pairs, proposed by Jacques Lefrancois. Emi Kou proposed to
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compare angular dependences in the J/iy — pp to those in the decay J/p — ptp~
in order to extract further information on the spin-selection rules breaking [206], as
well as the J/i) — pp transition mechanism. A low-background sample of J/i) mesons
from b-hadron decays, with well-known polarization, will be exposed to this study.
Finally, decays to hadronic final states open a possibility of studies of central exclusive
production of other charmonia than those having J©¢ = 17~ quantum numbers, or

those decaying to them.

Using low-level background samples of charmonia candidates produced in inclusive
b-hadron decays, and a momentum scale calibration performed on data, mass and
natural width of the 7. (1S) state have been measured. These measurements used
another method, compared to the most precise to date recent results of the BES
experiment [210,)211], and provided an important consistency check. Using decays to
pp final state, the difference between the J/i) and 7. meson masses was measured to
be AMyy , = 114.7 £ 1.5+ 0.1 MeV/c?. Using decays to ¢¢ pairs the 7, mass was
measured to be M, = 2984.0 £ 0.5+ 0.2MeV/c?. The results are consistent with each
other and with the average from Ref. [57]. Precision of the 7. mass measurement using
n. — pp decays improves upon that of the measurements in ete™ collisions at the
7' (45) resonance and is compatible to the BES results. The 7, mass measurement using
1. — ¢¢ decays is the most precise 7. mass determination with the precision exceeding
that quoted in Ref. [57]. The difference between the masses in 7. family, 1.(25) and
n.(1S5), and in x. family, will be studied using larger event samples expected from the

operation in 2015.

Finally, B%-decays to ¢ mesons, BY — ¢¢ and B? — ¢¢¢, have been studied.
Using 2D or 3D unbinned maximum likelihood fit, true ¢¢ and ¢¢¢ systems have been
obtained.

Relating the observed branching fraction of the B — ¢¢ decay to the branching
fraction of the 7. inclusive production in b-hadron decays, allowed to extract the value
of B(B? — ¢¢) with a precision, compatible to that of the average in Ref. [57], using

an however alternative technique, to be
B(BY — ¢¢) = (1.71 £0.06 + 0.45) x 107° .

This measurement is consistent with the previous CDF results. The result is also con-

sistent with theoretical calculations [221}222227]. Dominating systematic uncertainty
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B(n.—¢9)
B(ﬂc—»?ﬁ)

Contacts with the BES collaboration have started in order to motivate them to revisit

can be reduced if the ratio of the 7, branching fractions is determined directly.

their analysis and yield the measurement of the ratio with improved precision.

The BY — ¢¢¢ decay mode has been observed for the first time. No single
dominating intermediate resonance is found in the B? — ¢¢¢ transition. Using the
measured branching fraction of the B? — ¢¢ decay mode, the branching fraction for

the BY meson decay to three ¢ mesons was obtained to be
B(BY — ¢p¢) = (6.4+2.0+1.8) x 1077 .

If this transition proceeds via several different intermediate two-body decays, the above
value becomes an upper limit on the penguin transition and pickup of the s5 pair, with
six strange quarks in the final state. The above value is also an estimated upper limit on
the branching fraction for the B? — 7.¢ mode. A Dalitz plot analysis will be performed
to further study resonance structure of the B? — ¢@¢ transition, using the technique

developed in Ref. [235] for three-body decays to identical particles.
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