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Abstract

In this thesis we use lattice field theory to study different frontier problems in
strongly coupled non-Abelian gauge theories, focusing on large-N models and
walking technicolor theories.

Implementing lattice studies of technicolor theories, we consider the SU(2)
gauge theory with two fermions transforming under the adjoint representation,
which constitutes one of the candidate theories for technicolor. The early lattice
Monte Carlo studies of this model have used an unimproved Wilson fermion
formulation. However, large lattice cutoff effects can be expected with the
unimproved formulation, and so we present the calculation of the O(a) improved
lattice Wilson-clover action. In addition to the adjoint representation fermions,
we also determine the improvement coefficients for SU(2) gauge theory with two
fundamental representation fermions.

In another work, we study the deconfined phase of strongly interacting mat-
ter, investigating Casimir scaling and renormalization properties of Polyakov
loops in different irreducible representations, in SU(N) gauge theories at finite
temperature. We study the approach to the large-N limit by performing lat-
tice simulations of Yang-Mills theories with gauge groups from SU(2) to SU(6),
taking the twelve lowest irreducible representations for each gauge group into
consideration. We find clear evidence of Casimir scaling and identify the tem-
perature dependence of the renormalized Polyakov loops.

The third study I present is related to the long-standing idea of non-Abelian
gauge theories having a close relation to some kind of string theory. In the
confining regime of SU(N) gauge theories, the flux lines between well separated
color sources are expected to be squeezed in a thin, stringlike tube, and the
interaction between the sources can be described by an effective string theory.
One of the consequences of the effective string description at zero temperature
is the presence of the Lüscher term - a Casimir effect due to the finiteness of
the interquark distance - in the long distance interquark potential. To study
the validity of this effective model, we compute the static quark potential in
SU(3) and SU(4) Yang-Mills theories through lattice simulations, generalizing
an efficient ‘multilevel’ algorithm proposed by Lüscher and Weisz to an improved
lattice action.
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Chapter 1

Non-Abelian gauge field
theories

In gauge theories, transformations can depend on several variables, that do
not necessarily commute, i.e. the order in which consecutive transformations
are performed affects the result. Groups that contain these non-commuting
transformations are called non-Abelian. The Standard Model is non-Abelian; it
is based on the SU(3)color × (U(1)× SU(2)) gauge symmetries.

The efforts to extend the original concept of gauge theory from an Abelian
group, e.g. quantum electrodynamics, to a non-Abelian group were motivated
by the idea that weak and strong interactions could be derived from non-Abelian
gauge theories. In 1954 Yang and Mills developed a modern formulation based
on the SU(N) group [4], which however suffered from the inconvenience that the
quanta of the fields had to be massless in order to maintain gauge invariance,
thus imposing massless gauge bosons. The problem was settled in the 60’s
with the concept of particles aquiring mass through symmetry breaking, a work
initially put forward by Goldstone, Nambu, and Jona-Lasinio [5, 6]. When
applied to gauge theories, this mechanism is known as the Higgs mechanism
[7, 8, 9], which explains how the W and Z bosons are massive.

In the context of gauge theories, Lie groups and their algebra hold an essen-
tial importance. The generators of a Lie group ta form a basis for the vector
space of infinitesimal transformations, i.e. Lie algebra. For non-Abelian groups,
the following commutation relation holds:

[ta, tb] = Cabctc, (1.1)

where the structure constants Cabc are antisymmetric with respect to the first
two indices and independent of the representation; they define the multiplication
properties of the Lie group. For the fundamental representation we can choose
the generators to satisfy

Tr(tatb) =
1

2
δab. (1.2)

In gauge theories the Lagrangian of a system is invariant under local sym-
metries, i.e. gauge invariant. This is because in gauge theories, the conventional
derivatives ∂µ are replaced with covariant derivatives

Dµ = ∂µ + igAµ, (1.3)
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CHAPTER 1. NON-ABELIAN GAUGE FIELD THEORIES

where Aµ is the gauge field, and the Lagrangian is given a kinetic energy term
− 1

4F
a
µνF

aµν :

L(∂µψ(x), ψ(x))→ L(Dµψ(x), ψ(x))− 1

4
FµνF

µν . (1.4)

The field strength tensor Fµν = F aµνt
a is defined as

Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ], (1.5)

where g is the coupling constant. There are a number of constraints for the
kinetic term; it should be Lorentz- and gauge-invariant, independent of the
matter field, and also quadratic in the first derivatives of the gauge field.

The transformation rule for the gauge field Aµ reads:

Aµ → A′µ = ωAµω
−1 +

1

g
ω∂µω

−1, (1.6)

and for the strength tensor:

Fµν → F ′µν = ωFµνω
−1, (1.7)

where ω = exp(iθata) is an element of the group, with θa as the parameters of
the transformation. Now we can construct a kinetic term for Aµ, that satisfies
all the constraints listed above. Such a quantity is the trace of the product of
the strength tensor with itself Tr(FµνF

µν), and it is gauge invariant due to the
cyclicity of trace

Tr(FµνF
µν)→ Tr(ωFµνF

µνω−1) = Tr(FµνF
µν). (1.8)

Using this property, we are able to construct a gauge invariant action.
In Euclidean space-time, the partition function can be written

Z =

∫
DAµDψDψ̄e

−S , (1.9)

where S is defined as an action containing both gauge fields and the fermionic
fields:

S =

∫
d4x(

1

4
FµνF

µν − ψ̄Mψ). (1.10)

Here M is the Dirac operator, γµ∂µ [10]. The fermionic fields are expressed
with Grassmann variables ψ̄ and ψ, and can be integrated out exactly, resulting
in

Z =

∫
DAµdetMe

∫
d4x(− 1

4FµνF
µν). (1.11)

So, in the end, the fermionic contribution is contained in the term detM , and
we can write the action as a sum

S = Sgauge + Sfermionic (1.12)

=

∫
d4x(

1

4
FµνF

µν)−
∑
i

log(detMi), (1.13)

where i are the flavors. In lattice simulations, in some cases one can employ the
quenched approximation to simplify calculations, that is, one takes detM to be
constant.
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CHAPTER 1. NON-ABELIAN GAUGE FIELD THEORIES 1.1. ASYMPTOTIC FREEDOM

To obtain results for physical observables, we calculate expectation values:

〈O〉 =
1

Z

∫
DAµOe

−S , (1.14)

In pratice, all dependence on fermions as dynamical fields is removed here,
by expressing the fermionic fields in O in terms of fermion propagators, using
Wick’s theorem. Fermionic quantities are built with the Feynmann propagator

SF (y, j, b;x, i, a) = (M−1)y,j,bx,i,a (1.15)

A given element of the matrix (M−1)y,j,bx,i,a is the amplitude for the propagation
of a quark from site x with spin-color i, a to site-spin-color y, j, b [10].

1.1 Asymptotic freedom

A significant feature of gauge theories, is the asymptotic freedom. It was dis-
covered by Gross, Wilczek [11], Politzer [12], and independently by ’t Hooft
[13]. Roughly speaking, asymptotic freedom means that as we go to shorter and
shorter distances, the running coupling constant g decreases in such an extent,
that the theory eventually appears to be a free theory. This can be characterized
with the β-function, which in a perturbative expression reads

µ
∂g

∂µ
= β(g) = −(β0g

3 − β1g
5 + . . .) (1.16)

The function β(g) is negative for non-abelian gauge groups. Here the leading
terms β0 and β1 can be written

β0 =

(
11N − 2nf

3
/16π2

)
, (1.17)

β1 =

(
34N2

3
− 10Nnf

3
− nf (N2 − 1)

N

)
/(16π2)2, (1.18)

and they are gauge and regularization scheme invariant. In the formulae N
is the number of colors and nf the number of flavors. For nf <

11N
2 , we see

that β(x) is positive; a result that was essential when establishing QCD as
the theory of strong interactions. This detail explained existing experimental
data that implied that the strength of strong interactions decreases when the
momentum exchanged in a process is increased [10].

A simple calculation with the equation (1.16) implies, that the coupling con-
stant of non-abelian gauge theories depends logarithmically on the momentum
scale of the process. For QCD, further analysis leads us to introduce ΛQCD,
the scale of the theory with dimensions of mass. In other words, for QCD, a
theory with a dimensionless coupling constant and no intrinsic mass scale in the
absence of quark masses, a mass scale is thus dynamically generated [10]. This
is called the dimensional transmutation.

1.2 Confinement

Inversely to asymptotic freedom, when we go towards the other end of the
scale, at larger and larger distances, the coupling constant increases, so that
at one point perturbative calculations are no longer valid. When the coupling

3



1.3. CHIRAL SYMMETRY BREAKING CHAPTER 1. NON-ABELIAN GAUGE FIELD THEORIES

constant is large, it means that gluons and fermions are bound more tightly
together. This gives rise to another key feature of gauge theories, confinement
[14].

Confinement has not been rigorously proven, but there is very compelling ev-
idence that it exists. There are two possible ways to test if a theory is confining.
For instance, one can demonstrate that the free energy of an isolated charge
is infinite, or alternatively, one can show that the potential energy between
two charges grows linearly with distance [10]. According to results obtained
from lattice QCD computations, in general the potential between two quarks is
proportional to the distance between them

V (r) ∼ σr. (1.19)

where σ is the string tension. If we try to pull two quarks apart, at some point
enough work has been done to create a new quark-antiquark pair, in which case
the original ”string” has been broken, but two new ones have appeared. This
way, a single quark can never exist alone.

1.3 Chiral symmetry breaking

Chiral symmetry breaking is a key feature of quantum field theory with fermions.
In QCD with Nf light flavors the standard expectation is that the SU(Nf )L ×
SU(Nf )R chiral symmetry group breaks spontaneously to SU(Nf )L+R.

For a massless fermion the action reads

SF [ψ, ψ̄, A] =

∫
d4xL(ψ, ψ̄, A), (1.20)

L(ψ, ψ̄, A) = ψ̄γµ(∂µ + iAµ)ψ = ψ̄Dψ, (1.21)

where D is the massless Dirac operator. A chiral rotation of the fermion fields

ψ → ψ′ = eiαγ5ψ, ψ̄ → ψ̄′ = ψ̄eiαγ5 , (1.22)

where γ5 is the chirality matrix acting in Dirac space and α is a constant, real
parameter, leaves the Lagrangian density invariant

L(ψ′, ψ̄′, A) = L(ψ, ψ̄, A). (1.23)

A mass term, however, breaks this invariance

mψ̄′ψ′ = mψ̄ei2αγ5ψ. (1.24)

Furthermore, we introduce the right- and left-handed projectors

PR =
1 + γ5

2
, PL =

1− γ5

2
, (1.25)

with which we can define right- and left-handed fermion fields

ψR = PRψ, ψL = PLψ, ψ̄R = ψ̄PL, ψ̄L = ψ̄PR. (1.26)

Further algebra shows the decoupling of left- and right-handed components

L(ψ, ψ̄, A) = ψ̄LDψL + ψ̄RDψR (1.27)

4



CHAPTER 1. NON-ABELIAN GAUGE FIELD THEORIES 1.3. CHIRAL SYMMETRY BREAKING

i.e., the left- and right-handed components “do not talk to each other”. However,
a mass term mixes the terms

mψ̄ψ = m(ψ̄RψL + ψ̄LψR). (1.28)

The chiral symmetry of the action holds only for massless quarks, thus the limit
of vanishing quark mass is often referred to as the chiral limit [15].

To summarize the essence of chiral symmetry, we can write the simple equa-
tion

Dγ5 + γ5D = 0, (1.29)

i.e. the massless Dirac operator D = γµ(∂µ + iAµ) anticommutes with γ5.

5
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Chapter 2

The Lattice

In the 70’s Wilson formulated gauge fields on a discrete space-time grid [14].
The elegant lattice formulation was heavily motivated by the concept of a gauge
field as a path-dependent phase factor, and remarkable in the way that the
gauge freedom remained as an exact local symmetry. The lattice is a gauge
invariant, non-perturbative regularization, that harnesses the Feynman path
integral approach [16], converting the functional integral to a discrete collection
of ordinary group integrals.

As summarized in [10], Wilson’s approach to implement the path integral
scheme consists of transcripting the gauge and fermion degrees of freedom into
discretized space-time, constructing the action, defining the measure of integra-
tion in the path integral, and finally transcripting the operators that are to be
used to probe the physics.

The lattice is a four dimensional L3
s × Lt grid, consisting of sites (fermionic

fields) and the connecting links (gauge fields). It is defined in Euclidean space,
where time is set imaginary t → τ = it, hence the metric is gµν = (+ + ++).
Since we are in Euclidean space, we can define the volume as

V = (aLs)
3, (2.1)

and with small temporal extent, it turns out that we can express the temperature
as

T =
1

aLt
. (2.2)

x
1

τ

x
3

Figure 2.1: A lattice
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CHAPTER 2. THE LATTICE

Here a is the lattice spacing. The fermionic fields, which belong to the funda-
mental representation of SU(N), are transcripted to the lattice by anticommut-
ing Grassmann variables. In pratice however, it turns out that one does not
need to pass the Grassmann variables on the lattice, and implement the Pauli
exclusion principle; since the fermion action is linear in both ψ̄ and ψ, the rules
for Grassmann variables can be used to integrate over them [10].

The gauge fields Aµ(x) mediate the interactions between neighboring sites.
The link variables belong to the gauge group SU(N), and thus satisfy

U†µ = U−1
µ , detU = 1. (2.3)

With each link we can associate a discrete version of the path ordered product
[10]

U(x, x+ µ̂) = Uµ(x) = eiagAµ(x+ µ̂
2 a) (2.4)

where the average field Aµ is defined at the midpoint of the link.

Naturally, on the lattice the continuous rotation group is replaced by the
discrete hypercubic group. The allowed momenta are discrete and periodic

k =
2πn

aL
, n = 0, 1, ..., N, (2.5)

conserved modulo 2π/a.

Let us denote a local gauge transformation by V (x). The effect on the
variables ψ(x) and U can be written

ψ(x) → V (x)ψ(x) (2.6)

ψ̄(x) → ψ̄(x)V †(x) (2.7)

Uµ(x) → V (x)Uµ(x)V †(x+ µ̂) (2.8)

where V (x) is, like Uµ(x), an SU(N) matrix. These definitions come in handy
when we want to build gauge invariant quantities. There are two types, in fact.
First, a string formed by a path ordered product of links, with a fermion and
an antifermion at the ends of the string. Futhermore, if the lattice has periodic
boundaries, and the string is closed by the periodicity, the fermion-antifermion
pair is not needed. Such a quantity is called the Polyakov loop, or alternatively,
the Wilson line

L = Tr

Lt∏
t=1

U(t). (2.9)

Another gauge invariant object is the closed Wilson loop, the simplest one being
the plaquette

W 1×1
µν = ReTr(Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν (x)). (2.10)

Using gauge invariant strings and loops, one is able to construct a gauge
invariant action. The objects can be of arbitrary shape and size, and can also
lie in any representation of SU(N), providing that, in the end, we get the familiar
continuum theory in the a → 0 limit [10]. A simple action can be built using
plaquettes

SW =
2N

g2
0

∑
x

∑
µ<ν

(1− 1

N
ReTrW 1×1

µν (x)). (2.11)

8



CHAPTER 2. THE LATTICE 2.1. CONTINUUM LIMIT

This is known as the Wilson action, which in the naive continuum limit tends
to 1

4

∫
d4x(F aµν)2 [10]. The prefactor in (2.11) is often denoted with β

β =
2N

g2
0

. (2.12)

The partition function can now be written as

Z =

∫ ∑
x,µ

dUµ(x)e−SW , (2.13)

and the expectation values of physical observables as

〈O〉 =
1

Z

∫ ∏
x,µ

dUµ(x)Oe−SW . (2.14)

The finite-dimensional integration measure dUµ for the link variables is specified
as an invariant group measure, the Haar measure. It is defined such that for
any elements V and W of the group∫

dUf(U) =

∫
dUf(UV ) =

∫
dUf(WU), (2.15)

where f(U) is an arbitrary function over the group. Furthermore, we can nor-
malize the measure by defining ∫

dU = 1. (2.16)

2.1 Continuum limit

Naturally, we would eventually like to extract the continuum results from the
lattice, i.e. get rid of the lattice spacing a. However, just taking a to be zero
would bring all the dimensionful physical quantities to either zero or infinity.
In lattice theories, in general, we need to adjust the other free parameter, the
coupling g. In renormalizable theories fixing g enables the physical quantities
to have their real, finite physical values.

The Callan-Symanzik β-function [17, 18, 19] expresses the unique functional
dependence between g and a

β(g) = −a∂g(a)

∂a
. (2.17)

β(g) can be determined with perturbation theory. For example, for sufficiently
small bare coupling we can write

β(g) = − 11

16π2

(
11NC

3
− 2Nf

3

)
g3 +O(g5) = β0g

3 (2.18)

In the small coupling region β(g) is negative, and we can see from the Callan-
Symanzik equation that when the lattice spacing is decreased, g will approach
the fixed point g = 0, corresponding to a zero of the β-function. In the case
when g is small enough to validate (2.18), this approximation will improve along
decreasing a, and the continuum limit will be realized at vanishing bare coupling.
This is actually the property of asymptotic freedom, explained on the level of

9



2.2. PHASE STRUCTURE AND THE POLYAKOV LOOP CHAPTER 2. THE LATTICE

the bare coupling constant; As the lattice spacing a diminishes, the coupling
diminishes accordingly, to keep the physics the same. In other words, as the
lattice moves on to describe higher momentum physics, the interaction weakens,
approaching free theory.

A more practical way to describe how we approach the continuum limit is
to talk about the observables. On the lattice we run simulations at different
values of the lattice parameters and measure different observables. Suppose we
measure the correlation length between two Polyakov loops, for example, at a
certain value of β, and then repeat the simulation at larger values of β. We get
that the correlation length in terms of the lattice spacing will grow. Since we
want the correlation length to be physical, the lattice spacing a therefore has to
get shorter and shorter in the subsequent simulations with larger β.

This way, by running simulations where the correlation length in lattice units
becomes divergent, we get the continuum limit a→ 0. Note that the divergence
happens only when the lattice theory has a continuous phase transition. In
non-Abelian gauge theories, at zero temperature, such a transition occurs only
for

β =
2N

g2
0

→ +∞, (2.19)

namely for g0 → 0, giving rise yet again to the idea of asymptotic freedom.

How fast the continuum limit is actually reached, depends on the action. The
discretization procedure is not unique. Nonetheless, different lattice actions have
to give the same continuum limit. For an illustration, the expectation value of
an arbitrary operator φ on the lattice can be written as a sum of the expectation
value in the continuum theory and the deviation or “lattice artefact” caused by
the discretization

〈φ〉lat = 〈φ〉+O(ap), (2.20)

where the exponent p expresses how fast the discretized action converges to the
continuum action. For the Wilson action p = 2, but with improved actions
with larger p, it is possible to approach the continuum limit faster [20]. It is
still quite a delicate balance, since an action too complicated can slow down the
simulation significantly, and in the end, the optimal choice may depend on the
observable in question [20].

2.2 Phase structure and the Polyakov loop

At high temperatures, Yang-Mills theories are known to have a deconfined phase,
where confined hadronic matter has transformed into a plasma of non-color-
singlet constituents. One way to characterize the temperature region of de-
confinement in Yang-Mills theories, is through the gauge-invariant trace of a
temporal Wilson line, or Polyakov loop. The Polyakov loop is an order param-
eter [21, 22], that describes the dynamics of the system and signals the onset of
phase transition.

The Polyakov loop L is the trace of path ordered product of the link matrices
pointing in the time direction in a specific point in space, and winding around
the euclidean time direction. Beyond periodic gauge transformations, the lattice
action of the pure SU(N) gauge theory has also another symmetry, the center
Z(N) symmetry [21]. By studying the behavior of the Polyakov loop under
the center Z(N) symmetry, we can access some essential features of the physics
behind the deconfinement phase transition.

10



CHAPTER 2. THE LATTICE 2.2. PHASE STRUCTURE AND THE POLYAKOV LOOP

Figure 2.2: The QCD phase diagram.

The center Z(N) of the group SU(N) consists of all elements z for which

zgz−1 = g, g ∈ SU(N). (2.21)

The elements of SU(N) that belong to the center of the group are given by
exp(i2πn/N), n = 1 . . . N .

Multiplying all link matrices oriented in the lattice time direction, at time
x0 = 0, by an element z of the center

U(n̄, 0) → U ′(n̄, 0) = zU(n̄, 0), (2.22)

U(n̄, x0 6= 0) → U ′(n̄, x0 6= 0) = U(n̄, x0 6= 0), (2.23)

(2.24)

a time-space plaquette in x0 = 0 changes as

Ui0(n̄) = Ui(n̄, 0)U0(n̄+ êi, 0)U†i (n̄, 1)U†0 (n̄, 0) (2.25)

→ Ui(n̄, 0)zU0(n̄+ êi, 0)U†i (n̄, 1)U†0 (n̄, 0)z†. (2.26)

Demanding that z commutes with all link matrices, the plaquette - and therefore
the action - remain invariant. Thus the center Z(N) symmetry is indeed a
symmetry of the action.

The Polyakov loop, however, changes as

L(n̄)→
(
zU(n̄, 0)

) Lt−1∏
j=1

U(n̄, j) = zL(n̄), (2.27)

so, it is invariant only in the case, when it is zero.
The physical meaning of the Polyakov loop is in the free energy of a system

with a single heavy quark. To elaborate how this comes about, we can write
the partition function of a system of an infinitely heavy quark coupled to a
fluctuating gauge potential in the form

Z =
∑
s

〈s|e 1
T H |s〉. (2.28)

11
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Here 1
T = a× Lt. Furthermore, (2.28) can be written in the form

Z = Tr(e−
1
T H), (2.29)

and expressed in path integral formalism,

Z =

∫
DAe−S

(1/T )
Gauge[A]. (2.30)

Thus, considering the translational invariance of the vacuum, we conclude that

e−
1
T Fq = 〈L〉 =

1

V

∑
~x

〈L(~x)〉. (2.31)

Here V is the spatial volume of the lattice. (The left hand side of (2.31) is

replaced by e−
1
T F̂q on the lattice, F̂q being the free energy measured in lattice

units) [15].
The Polyakov loop can be interpreted as the world line of a static quark,

implying that the free energy of a static quark (located at, say, ~x = ~na) and
an antiquark (at ~y = ~ma) can be obtained from the correlation function of two
loops

Γ(~n, ~m) = 〈L(~n)L†(~m)〉. (2.32)

This equation is related to the free energy F̂qq̄(~n, ~m) of a static quark-antiquark
pair, measured relative to that in the absence of the qq̄ pair [15]:

Γ(~n, ~m) = e−
1
T F̂qq̄(~n,~m). (2.33)

Now, when |~n− ~m| → ∞,

〈L(~n)L†(~m)〉 → |〈L〉|2. (2.34)

Thus, we state
〈L〉 = 0 (confinement), (2.35)

and
〈L〉 6= 0 (deconfinement). (2.36)

Looking back at equation (2.27), we note that the center Z(N) symmetry
is realized in the low temperature confining phase, and correspondingly, in the
deconfined phase it is necessarily broken. The center Z(N) symmetry is thus a
symmetry of the Polyakov loop only in the confined phase, and a deconfinement
phase transition is accompanied by a breakdown of the center symmetry [21].
In this respect, the pure Yang-Mills theory provides a cleaner theoretical setup
than QCD, where the finite-temperature deconfinement at physical values of the
quark masses is actually a crossover. In QCD, because of fermionic contribution,
the Polyakov loop is actually an approximate order parameter with physical
values of the quark masses: It has a small, yet non-vanishing, value in the
confined phase, and a large value in the deconfined phase.

Of course the expectation value of the Polyakov loop extracted from lattice
simulations is a bare quantity, affected by ultraviolet divergences. An appropri-
ate renormalization, in a given scheme is thus required [23]. There is an additive
shift in the logarithm of the bare Polyakov loop expectation value, which can be
interpreted as the free energy of a static, infinitely heavy color source probing
the system. The Polyakov loop renormalization is studied in the second included
publication of this thesis, [2].

12
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2.3 Fermions on the lattice and the doubling
problem

In general, Nf light flavors can be presented in ‘left’ and ‘right’ components,
following a symmetry pattern

U(Nf )L ⊗U(Nf )R = SU(Nf )V ⊗ SU(Nf )A ⊗U(1)V ⊗U(1)A. (2.37)

SU(Nf )V is conserved, whereas SU(Nf )A is spontaneously broken, thus intro-
ducing pions, the Goldstone bosons of this symmetry breaking. U(1)V is con-
served, corresponding to baryon number conservation, and U(1)A is explicitly
broken by anomalies due to quantum fluctuations. In the classical continuum
theory (and for massless fermions), the chiral symmetry

{6D, γ5} = 6Dγ5 + γ5 6D = 0, (2.38)

would imply the conservation of an axial-vector current, that is if there wasn’t
the explicit breaking of U(1)A.

On the lattice, the attempt to discretize the Dirac action in the simplest
way, leads to the naive fermion action [10]:

SNaive
F = mq

∑
x

ψ̄(x)ψ(x) (2.39)

+
1

2a

∑
x

ψ̄(x)γµ[Uµ(x)ψ(x+ µ̂)− U†µ(x− µ̂)ψ(x− µ̂)]

=
∑
x

ψ̂(x)MN
xy[U ]ψ(y), (2.40)

with the interaction matrix MN

MN
i,j [U ] = mgδi,j +

1

2a

∑
µ

[γµUi,µδi,j−µ − γµU†i−µ,µδi,j+µ]. (2.41)

Translations by a, as well as C, P and T leave the fermion action invariant.
The naive action has a global symmetry U(1)V , i.e

ψ(x) = eiφψ(x) (2.42)

ψ̄(x) = ψ̄(x)e−iφ (2.43)

with a continuous parameter φ. On a lattice with finite lattice spacing, the axial-
vector current is conserved. The drawback is the existence of corresponding
extra excitations, ‘doublers’.

When naively trying to put fermionic fields on the lattice, the spurious states,
doublers, appear, such that one ends up having 2d fermionic particles for each
original fermion. Thus, the naive action does not converge to the continuum
action as a a→ 0. Nielsen and Ninomiya examined the problem further, which
resulted in the formulation of the so called no-go -theorem [24, 25]. The theorem
states, that it is not possible to remove the doublers from the action without
breaking chiral symmetry. More precisely, fermion doubling is inevitable with
a local, real, free fermion lattice action, that has chiral and translational invari-
ance.

Let us look at the problem of the naive fermion action closer. Using the
formulae above, we can define a propagator as the inverse of the interaction

13
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matrix M :

〈ψ̄xψy〉 =
1

Z

∫
[dψdψ̄e−S

Naive
F ]ψ̄xψy (2.44)

= M−1
x,y . (2.45)

In momentum space, the field variables are transformed as

ψ(x) =
1√
N

∑
p

e−ipµxµψ(p), (2.46)

where

pi =
2πni
aNs

, ni = 0, ..., Ns − 1 (2.47)

p0 =
2πn0

aNt
, n0 =

1

2
,

3

2
, ..., Nt −

1

2
. (2.48)

In this space,

SNaive
F =

∑
p

ψ̄p[a
4(m+ ia−1

∑
µ

γµ sin(pµa))]ψp (2.49)

= ψ̄pMpψp (2.50)

and the inverse propagator is thus

∆−1 = Mp = m+ ia−1
∑
µ

γµ sin(pµa). (2.51)

At small values of p we get

Mp ≈ m+ iγµpµ (2.52)

and up to this point all is well. However, now near the edge of the Brillouin
zone, pµ ∼ π

a
1

a
sin(pµa) ∼ (pµ −

π

a
) (2.53)

and again, we have a zero point. Since pµ = (p0, p1, p2, p3) and p ≈ 0, πa we
end up with 24 = 16 light modes. Thus it turns out, that instead of just one,
our action is a model for sixteen light fermions. This is the so called doubling
problem. There are various suggestions on how to circumvent the problem,
accepting the limitation stated by the no-go theorem. The most well established,
for example, the Kogut-Susskind staggered fermions [26] [27], Wilson fermions
[14, 28], the perfect action [29, 30], domain wall fermions [31, 32] and overlap
fermions. Wilson’s fix to the doubling problem was to assign a heavy mass to
the doublers, which would then decouple.

2.4 Wilson fermions

To get rid of the doublers in the fermionic part of the naive action, Wilson
proposed [28] adding a term to it, that contains a second derivative

−r
2

∑
n

ψ̄(n)∂µ∂µψ(n) (2.54)

14
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with r as an arbitrary constant. This extra term is proportional to a, therefore
it raises the masses of the unwanted doublers proportional to 1/a, and on the
other hand, vanishes in the continuum limit a → 0. The action with “Wilson
fermions” takes the form

SWilson
F =

∑
n

(ma+ 4r)ψ̄(n)ψ(n)

−1

2

∑
n,µ

ψ̄(n)(r − γµ)Uµ(n)ψ(n+ aµ̂)

+ψ̄(n+ aµ̂)(r + γµ)U†µ(n)ψ(n). (2.55)

As already noted, Wilson’s fix accepts the limitations set by the no-go theorem,
i.e. the chiral symmetry is broken explicitly [10]. This happens for r 6= 0, even
for zero quark masses on a lattice. In the continuum limit however, one expects
the chiral symmetry to be restored. Reaching the chiral limit requires some fine
tuning, since the Wilson term also leads to an additive renormalization of the
quark mass.

15
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Chapter 3

Technicolor

The Higgs field was postulated to resolve inconsistencies in the Standard Model,
primarily to provide a mechanism for the spontaneous electroweak symmetry
breaking. Although phenomenologically successful at the electroweak energy
scale, the Standard Model with the Higgs field has several well-known theoretical
problems at much higher energies, such as the hierarchy problem, the stability
of the electroweak vacuum, triviality bounds etc [33]. These difficulties arise
from the fact that the Higgs field is in fact the only scalar field of the theory.

The motivation for Technicolor [34, 35] comes from analogy with QCD. By
itself QCD already contributes to the electroweak symmetry breaking: even
without the Higgs field in the Standard model, the electroweak charge of the
chiral q̄q condensate would alone break the electroweak gauge symmetry and
give rise to W and Z boson masses [33]. However, these masses would be very
much smaller than the physical values of mW and mZ . As it is, Technicolor
theories address the electroweak symmetry breaking by substituting the funda-
mental Higgs scalar with a QCD-like chiral condensate. One introduces a new
non-Abelian gauge field, technigauge, and massless fermions, techniquarks Q.
Like quarks in the Standard model, the techniquarks are taken to have both
technicolor and electroweak charge. The chiral Q̄Q condensate breaks the elec-
troweak symmetry, and the magnitude of the chiral condensate takes the role
of the Higgs condensate. As in QCD, there are several bound states also in
technicolor models, which would be observable in experiments [33].

3.1 Extended Technicolor and Walking

Despite of all, the classic technicolor scenario described above fails to provide
for the Standard Model fermion mass terms. To fix this, extended technicolor
(ETC) theories [36, 37], where a Yukawa-like coupling is produced to the tech-
nifermion condensate, have been considered. As discussed in [33], ETC can be
modeled with a gauge boson, with mass METC, coupled to the SM fermions q
and techniquarks Q (figure 3.1, taken from [33]). Now, at energies smaller than
METC , the coupling

g2
ETC

M2
ETC

Q̄Qq̄q, (3.1)

gives fermion masses

mq ∝
〈Q̄Q〉
M2

ETC

, (3.2)

17
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Figure 3.1:

and the term
g2

ETC

M2
ETC

q̄qq̄q, (3.3)

contributes to unwanted flavour changing neutral currents.
Related to the latter, in ETC we have the generic constraint METC >

1000ΛEW. Together with the requirement of the electroweak symmetry break-
ing pattern, 〈Q̄Q〉TC ∝ Λ3

TC ≈ Λ3
EW, we are lead to having too small SM

fermion masses. The problem can be avoided by enhancing the condensate at
the extended technicolor scale, so that 〈Q̄Q〉ETC ∝ mqΛ

2
ETC [33].

Looking at the renormalization group evolution of the technifermion con-
densate

〈Q̄Q〉ETC = 〈Q̄Q〉TC exp
[ ∫ METC

ΛTC

γ(g2)

µ
dµ
]
, (3.4)

we can note that in a weakly coupled theory the anomalous exponent γ ∼ 0, and
the condensate 〈Q̄Q〉 remain approximately constant. This would imply that
satisfying the above constraints is not possible in a QCD-like theory, with a large
coupling only in a narrow energy range above the chiral symmetry breaking.
Thus, we introduce the walking coupling [38, 39, 40, 41]. Walking means, that
g2 remains almost constant ∼ g2

? over the whole energy range from TC to ETC.
Now we can write the condensate enhancement as

〈Q̄Q〉ETC ≈
(ΛETC

ΛTC

)γ(g2
?)

〈Q̄Q〉TC (3.5)

The β-function of the walking theory

β = µ
dg

dµ
(3.6)

comes very close to zero at some value of the coupling. At g2 = g2
?, it means

that the theory has an infrared fixed point (IRFP), with conformal and scale
invariant long distance behaviour. Both walking theory, and a theory with an
IRFP are suitable starting points for a technicolor model, since the latter can
be deformed to the walking case with the introduction of a scale [33].

The 2-loop scheme-invariant β-function of SU(N) gauge theory, with Nf
fermions of representation R, reads

β = µ
dg

dµ
= −β0

g3

16π2
− β1

g5

(16π2)2
+O(g7) (3.7)

where

β0 =
11

3
N − 4

3
T (R)Nf , (3.8)

β1 =
34

3
N2 − 20

3
NT (R)Nf − 4C2(R)T (R)Nf (3.9)
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Figure 3.2: The evolution of the walking coupling, versus the QCD-like coupling
and the coupling with an infrared fixed point [33].

Here C2(R) is the second Casimir invariant of the fermion representation R,
and T (R) is defined by the relation T (R)δab = TrT aT b. To ensure asymptotic
freedom, β0 must be positive. If β1 < 0, the theory is QCD-like, otherwise, if
β1 < 0, the theory has an IRFP at some coupling [33].

3.2 The Conformal Window

Asymptotically free (at high energies) theories, that have an IRFP in the renor-
malization group flow of their couplings, are said to be inside the conformal
window [42]. The conformal window in SU(N) gauge field theory with Nf
fermion flavours in different fermion representations is presented in figure 3.3,
taken from [33]. In the figure, the upper edges are where β0 changes sign, and
below the lower lines the system is expected to have chiral symmetry breaking.
The lines below the shaded regions is where β1 changes sign. A potentially
walking technicolor theory is required to be close to the lower edge of the con-
formal window; it is just below the window where walking coupling behaviour
is exhibited. Just within the window the theory can be easily deformed into a
walking theory by adding a mass or momentum scale to it. At energy scales
less than the mass term, the physics is dominated by the gauge fields and the
theory is confining [33].

It has been noted that the conformal window can be reached with a smaller
number of fermions, if one uses higher than fundamental representations [43, 44,
45]. Of these, the adjoint representation and 2-index symmetric representation
have proven to be the most interesting; the two most compelling theories are
SU(2) gauge theory with two adjoint fermions, and SU(3) with two 2-index
symmetric representation fermions [33].

3.3 Minimal Walking Technicolor; lattice study

The above-mentioned SU(2) gauge field theory with two adjoint fermions is
know as “minimal walking technicolor (MWTC). The MWTC model has been
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Figure 3.3: The conformal window in SU(N) gauge field theory with Nf fermion
flavours in different fermion representations. From top to bottom: the funda-
mental, two-index antisymmetric, two-index symmetric and the adjoint repre-
senation. The upper edge of the bands correspond to the loss of the asymptotic
freedom, and the lower edge of the band has been calculated using the ladder
approximation [33, 43, 44, 45]

studied in a number of works, including, in particular, [46, 47, 48, 49, 50].
One of the ways to determine non-perturbatively the β-function of this the-

ory is the Schrödinger functional method [51], in which we have a constant back-
ground field with special boundary conditions and we measure the response of
the system when this background field is changed. In this method, the eigenval-
ues of the fermion Dirac matrix are governed by the fixed boundary conditions.
As a result, simulations with exactly massless fermions become possible [33].

Following an analysis in [33], let’s consider a lattice with volume V = L4 =
(Na)4, where a is the lattice spacing. We fix the spatial gauge links on the
x0 = 0 and x0 = L so that we obtain color diagonal boundary gauge fields

Ai(x0 = 0) = µσ3/(g0L) (3.10)

Ai(x0 = L) = (π − µ)σ3/(g0L), (3.11)

where σ is the third Pauli matrix and g0 the bare gauge coupling. These bound-
ary conditions generate a constant Abelian chromoelectric background field at
the classical level. Differentiating the action with respect to µ,

∂Sclass

∂µ
=
k(N,µ)

g2
0

, (3.12)

where k(N,h) is a known function. Generalizing to the quantum level,〈∂Sclass

∂µ

〉
=
k(N,µ)

g2
(3.13)

After taking the derivative, µ = π/4 is fixed. The obtained coupling is defined at
length scale L (i.e., lattice size). Thus, at fixed lattice spacing a, the evolution
of the coupling can be measured by varying the size of the lattice [33].
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When we look at the behavior of the β-function, MWTC differs greatly from
QCD, i.e. the coupling constant does not simply increase with the lattice size. In
MWTC, with small coupling, g2(L) increases very slowly with increasing lattice
size L/a. The rate of growth slows as the coupling increases, until finally, at
g2 > 3, g2 decreases with increasing L, provided that L is large enough [33]. A
decreasing coupling constant indicates a positive β-function.

The value of the lattice spacing is a priori unknown, but we do know it is
a function of the bare lattice gauge coupling bL ≡ 4/g2

0 . Thus, we can use the
measurements of g2(L) to match lattices of different sizes. However, artifacts
due to finite lattice spacing, such as the small L behaviour, make this more
complicated. To obtain reliable results, a proper continuum limit extrapolation
is required. One option would be to use step scaling, but since in MWTC the
evolution of g2(L) is very slow, compared to for example QCD, the method
becomes questionable due to finite lattice artifacts. To go around this problem,
improved actions could be the key.

To check the consistency of results obtained from a large volume data, one
can fit to the β-function ansatz [33]

β = −L dg
dL

= −b1g3 − b2g5 − b3gδ (3.14)

where b1, b2 are perturbative constants, and b3 and δ are fit parameters.
Nevertheless, there remains the question of validity of the different lattice

results that are obtained with the unimproved Wilson fermion action. Regarding
this, studies of SU(3) gauge with 2-index symmetric representation fermions
have shown a large dependence on the action used [52]. The unimproved action
has large O(a) errors, causing small lattice sizes (L/a < 10) to be ineligible. It
is thus an object of interest to define a non-perturbatively O(a) improved action
for MWTC, and repeat the analysis.

In the first included publication of this thesis, [1], an O(a) improvement is
carried out non-perturbatively for SU(2) gauge theory with adjoint and funda-
mental flavors. Details related to this will be discussed in the next chapter.
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Chapter 4

Improving the action

The case of SU(2) gauge fields with two fermions in the two-index symmetric
representation, also known as minimal walking technicolor (MWTC), has been
studied for its applications in Beyond Standard Model building. The lattice
studies of this theory with unimproved Wilson fermion action and are how-
ever subject to large O(a) lattice artifacts that increase errors and hinder the
convergence to the continuum limit. With O(a) improvement, one pursues con-
structing an action canceling lattice effects of order a in the effective continuum
theory. The idea is quite simply to add a suitable counterterm to the Wilson
fermion action. We write

Simpr(U, ψ̄, ψ) = S(U, ψ̄, ψ) + δS(U, ψ̄, ψ) (4.1)

where

δS(U, ψ̄, ψ) = a5
∑
x

cswψ̄(x)
i

4
σµν F̂µν(x)ψ(x) (4.2)

is an improvement that first appeared in a paper by Sheikholeslami and Wohlert
in 1985 [53]. csw is called the Sheikholeslami-Wohlert coefficient, and Fµν(x) is
the “clover term”. We can write the definition

F̂µν(x)ψ(x) =
1

8a2
(Qµν(x)−Qνµ(x)) (4.3)

where Qµν(x) is the sum of four plaquettes, depicted in figure (4.1). Due to
the shape of the graphical representation, the improved action goes also by the
name clover action.

Figure 4.1: Graphical representation of the clover term
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4.1 Schrödinger functional method and bound-
ary conditions

In the attempt to obtain a fully O(a) improved action, we can make use of the
Schrödinger functional method [54, 55, 56, 57]. The basic idea is to generate
chromoelectric background field, and define the running coupling constant as
the response of the system to this field. On the lattice, the values of the quan-
tum fields are prescribed by the boundaries of the Euclidean path integral, at
x0 = 0 and x0 = L. The classical path corresponds to a minimal action field
configuration which interpolates between the boundary values [58].

Consider the space-time as a cylinder with spatial size L and time-like extent
T . For the spatial directions, we take periodic boundaries, and for the tempo-
ral direction, fixed Dirichlet boundaries, chosen in such a way that a constant
background chromoelectric field is generated. The fixed boundaries bring a O(a)
contribution to the gauge part of the action. To account for it, we consider

SG,impr =
βL
4

∑
p

w(p)Tr(1− U(p)) (4.4)

where

w(p) =

 1 plaquettes in the bulk
cs/2 spatial plaquettes at x0 = 0 and T
ct time-like plaquettes attached to a boundary plane

The parameters cs and ct, which to leading order in perturbation theory are 1,
can be tuned to reduce the O(a) boundary contributions. Terms proportional
to cs do not contribute for the electric background field considered here [1].

At the boundaries only half of the Dirac components are defined and fixed
to some prescribed values ρ, ..., ρ̄′ [59], which are the source fields for correlation
functions. These are set to zero when generating configurations in simulations.
Introducing the projectors P± = 1

2 (1±γ0), the boundary conditions of the quark
and antiquark fields read

P+ψ(x)|x0=0 = ρ(x) P−ψ(x)|x0=T = ρ′(x) (4.5)

ψ̄(x)P−|x0=0 = ρ̄(x) ψ̄(x)P+|x0=T = ρ̄′(x) (4.6)

The complementary components are expected to vanish [59]. In the spatial
directions we introduce a “twist” for the phase of the fermion fields [55]

ψ(x+ Lk̂) = eiφkψ(x), ψ̂(x+ Lk̂) = ψ̂(x)e−iφk . (4.7)

which, together with the Dirichlet boundary conditions, regulates the fermion
matrix in such a way, that it becomes possible to do simulations at zero fermion
masses [1].

The improved lattice action can now be written

Simpr = SG,impr + SF + δSsw + δSF,b. (4.8)

where

δSF,b = a4
∑
x

(c̃t − 1)
1

a
¯ψ(x)ψ(x)(δ(x0 − a)− δ(x0 − (a− L))) (4.9)
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is a counterterm that captures the boundary effects. We only have to take
into account the contribution controlled by c̃t, since the one proportional by c̃s
vanishes if we set the fermionic fields to zero on the boundaries [1]. c̃t is known
to be 1 up to leading order.

In conclusion, obtaining full O(a) improvement boils down to determining
the parameters ct, c̃t and csw. Of these, ct and c̃t can be determined pertur-
batively, whereas the Sheikholeslami-Wohlert coefficient csw demands a non-
perturbative determination [1].

4.2 Non-perturbative tuning of csw

For fundamental representation fermions we fix the gauge field Dirichlet bound-
ary conditions as follows [55, 1]

U(x0 = 0) = exp(iC), C = −π
4

aσ3

L
(4.10)

U(x0 = T ) = exp(iC ′), C ′ = −3π

4

aσ3

L
. (4.11)

The Fourier components of the boundary quark fields can be interpreted as
operators that create quarks and anti-quarks [59]. We denote

ζ(x) =
δ

δρ̄(x)
, ζ̄ =

δ

δρ(x)
(4.12)

as the boundary quark field and anti-quark field, respectively. The product

O = a6
∑
y,z

ζ̄(y)γ5
1

2
τaζ(z) (4.13)

creates a quark and an anti-quark with zero momenta at time x0 = 0. Similarly
at x0 = T

O′ = a6
∑
y,z

ζ̄ ′(y)γ5
1

2
τaζ ′(z) (4.14)

Using this notation, we write the correlation functions

fA(x0) = −1

3
〈Aa0(x)O〉 (4.15)

fP (x0) = −1

3
〈P a(x)O〉 (4.16)

corresponding to axial current and the related axial density.
In the continuum limit, the partially conserved axial current relation, PCAC

relation, is expected to be satisfied

∂µA
a
µ = 2MP a. (4.17)

Here P a denotes the associated axial density and M the physical quark mass.
The equation can be written as

1

2
(∂µ + ∂∗µ)〈(AI)aµ(x)O〉 = 2M〈P a(x)O〉 (4.18)

The correlation functions, the position x and chosen boundary conditions all
affect the result of the obtained M . Differences in the results are of order a in
general and are reduced to O(a2) by improvement.
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So, defining the quark mass via the PCAC relation

M =
1

2

1
2 (∂∗0 + ∂0)fA(x0) + cAa∂

∗
0∂0fP (x0)

fP (x0)
. (4.19)

More compactly, this can be written as:

M(x0) = r(x0) + cAs(x0) (4.20)

where

r(x0) =
1

4
(∂∗0 + ∂0)fA(x0)/fP (x0) (4.21)

s(x0) =
1

2
a∂∗0∂0fP (x0)/fP (x0). (4.22)

The bare mass is tuned by making M(T/2) vanish. We define M ′ correspond-
ingly and note that the quantity

∆M(x0) = M(x0)−M ′(x0) (4.23)

can be used as the condition to fix csw and cA, since it vanishes up to corrections
of O(a2), if both csw and cA have their proper values [1].

To ensure correct tree level behaviour we fix M and ∆M to their tree level
values, and obtain a small correction to the relations [1]

∆M(x0) = M(x0)−M ′(x0)− δ = 0, M(x0) = δM. (4.24)

The above method is effective for fermions in the fundamental represen-
tation, however, if we want to study fermions in the adjoint representation,
changes have to be made to the boundary conditions. Due to a component
in the color vector, that does not see the background field, at long distances
the adjoint fermion correlation functions behave as if there was no background
field [1]. Therefore, we need to use boundary conditions which maximize the
difference between the two boundaries. Choosing

U(x0 = T, k) = I (4.25)

U(x0 = 0, k) = exp(aCk), Ck =
π

2

τk

iL
(4.26)

the boundaries create a strong enough chromomagnetic field at the x0 = 0
boundary, so that the PCAC relation can be used to tune csw [1].
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Chapter 5

Large-N

Studying Yang-Mills theories with a large number of colors N , i.e. in the large-N
limit, provides important fundamental insights on QCD [60, 61], as first pointed
out in the works by ’t Hooft [62]. The large-N limit also offers viewpoints
on Yang-Mills thermodynamics in general, and is crucial in the exploration
of gauge/string correspondances. The technical and conceptual simplifications
that come with taking the large-N limit in SU(N) gauge theories, make many
quantities easier to study, and in QCD, certain features get a more intuitive
explanation in terms of combinatorics. Migdal and Makeenko observed [63, 64]
that in SU(N) gauge theories, expectation values factorize at large-N , so that
disconnected diagrams, with the most traces, dominate. Works in which various
properties of large-N gauge theories were studied include [65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 49, 75, 76, 77, 78]. The second included publication of this thesis,
[2], discusses Casimir scaling and renormalization of Polyakov loops in large-N
gauge theories

5.1 ’t Hooft coupling and the double line nota-
tion

Generally, the physical coupling in QFT runs with the energy scale, and thus it
is not a ”natural” small expansion parameter. For instance, in D = 3+1 space-
time dimensions, Yang-Mills theories have a dimensionless coupling g2 and are
classically invariant under scale transformations; however, quantum fluctuations
make this scale invariance anomalous, so setting g2 to some particular value is
useful only close to the scale where the physical running coupling takes that
value. In the 70’s, from the considerations of QCD ’t Hooft came up with the
novel approach [62] to use 1/N as an expansion parameter - which is less obvious
but more general. Namely, one replaces the gauge group SU(3) by SU(N), take
the limit N → ∞, and performs an expansion in 1/N . All this is done taking
the coupling g → 0, such that the so called ’t Hooft coupling

λ = g2N (5.1)

is kept fixed. This way we obtain a generalized theory, with degrees of freedom
that are the gluon fields Aiµj and the quark fields qia. Here i, j = 1, . . . , N and
a = 1, . . . , Nf , with Nf the number of quark flavours. As we know, the number
of independent degrees of freedom in SU(N) Yang-Mills theories is proportional
to N2 − 1, however, working in the limit N → ∞, it is justified to consider it
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Figure 5.1: Two Feynman diagrams drawn in the double line notation. The one
on the left is a planar diagram with three internal gluon loops, and the one on
the right is a non-planar diagram, with only one internal loop. The number of
vertices, however, is the same.

Figure 5.2: As the complexity of diagrams increase, so does the complexity of
the surface on which they can be drawn on. The simplest, planar diagram can
be drawn on the surface of a sphere, the non-planar diagram on a torus, etc.
(pictures:[79]).

as N2 alone. The number of gauge degrees of freedom is much larger than that
of the quarks, NfN , hinting at gluon dominance in the large-N limit.

To portray what happens in the level of Feynman diagrams of physical pro-
cesses, we introduce the double line notation. This consists of simply replacing
the line associated to a gluon in the Feynman diagram with a pair of lines,
the fundamental line which is associated with a quark, and its conjugate which
is associated with an anti-quark. The simplest type of these diagrams can be
drawn on a surface of the sphere, but more complicated diagrams require more
complicated topologies. In this notation, each vertex gives a factor g, and each
closed loop carrying a fundamental or antifundamental index gives a factor N .
Now, if we contemplate the diagrams with different topologies, while keeping
λ = g2N fixed, we see that the non-planar diagrams are suppressed by factors
of 1/N2. For example, in the picture (5.1) the first diagram has g6 and N3,
thus giving

g6N3 = (g2N)3 = λ3, (5.2)

whereas the second one has g6, and N , giving

g6N =
1

N2
g6N3 =

1

N2
λ3. (5.3)

In addition, using this notation one can also see that quark loops are suppressed
with a factor 1/N , and are thus negligible, making large-N effectively a quenched
theory. Internal quark loops are represented by just one line, since fermions in
the fundamental representation are described by fields with only one colour
index.

The diagrams with internal quark loops, instead of gluon loops, have there-
fore fewer free color lines, and hence fewer powers of N . Also, since the flavour
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of the quark running in the loop must be summed over, we also get an additional
power of Nf , making internal quark loops suppressed by powers of Nf/N with
respect to gluon loops. So, like earlier speculated, in the ’t Hooft limit the dy-
namics of gluons indeed dominates and it is therefore legitimate to consider only
the gluodynamic sector of the theory on the lattice in this limit, thus avoiding
the complications arising from lattice fermions.

5.2 SU(∞), SU(3) and the lattice

Though the theory with SU(∞) gauge group is not simple enough to be solved
analytically, some things become very simple in a large-N confining theory. As
the number of colors increases, the probability of any quarks or gluons forming
a color singlet in a dynamical process decreases, since the singlet itself becomes
a large construction of increasing amount of components. Other simplifications
that follow from the coupling g2 ∝ 1/N going to zero, include mesons becoming
stable, supression of mixing, perfect OZI rule, and the absence of color singlet
scattering [80].

The important question is of course, if the difference between SU(3) and
SU(∞) is ‘small’ for typical physical quantities. This question has been ad-
dressed, for example, in the review [81] an references therein; one can calculate
the masses of the lightest glueballs, express them in units of the simultaneously
calculated string tension and extrapolate the ratios to the continuum limit to
obtain values of m/σ. Repeating this for various N , and plotting the resulting
ratios against 1/N2 (since the leading large-N correction should be O(1/N2)),
it can be observed that the O(1/N2) corrections are indeed small, thus SU(3)
appears to be close to SU(∞). Also, in the large-N limit, mathematical argu-
ments show that certain irreducible representations should become equivalent.
Observed in [82], this seems to be approximately the case also for SU(3), which
is thus “close” to SU(∞) in this respect.

It is important to study if the properties of the gauge theory at finite tem-
perature depend strongly on Nor not.A question we should ask, is whether the
SU(N → ∞) gauge theory is confining at low temperatures. To address this
question, we can refer to an example from [80, 83], where SU(6) was considered
in 3 + 1 dimensions. Suppose we calculate the mass of the lightest state, in
which one unit of fundamental flux closes upon itself by winding once around
a spatial torus of length l. If we have linear confinement, the flux will organise
itself into a flux tube and the mass will grow linearly with l for large l, m(l) = σl
[80]. Indeed, this is observed to happen, and furthermore, the largest values of
l are large compared to the flux tube width, reassuring us that what is seen is
the onset of an asymptotic linear behaviour.

5.3 QCD∞ and QCD3

Even though in the pure gauge theory we see SU(3) ∼ SU(∞), considering
glueballs alone does not fully establish a phenomenological relevance of the
large-N limit. We need to study, whether the mesonic spectrum of QCD3 is
close to QCD∞. Fields in the fundamental representation, like quarks, introduce
O(1/N) corrections in the lattice calculations, whereas in the pure gauge theory
the leading correction is O(1/N2). This implies, that it is not guaranteed that
the mesonic spectrum will be as well-behaved as the gluonic one [80].
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At the moment, questions of how close SU(∞) is to SU(3), and in which
respects, can only be addressed numerically, and the results are somewhat var-
ied. One way to proceed would be to perform the meson spectrum calculation
[84, 74] with the quenched approximation at various finite N , and extrapolate
the results to N =∞. Without quark loops, the leading correction should now
be O(1/N2), and the extrapolated values are the correct values for (the dynam-
ically quenched) QCD∞ theory [80]. The obtained spectrum can be compared
with experimental data or full lattice QCD calculations. Of course, quenched
QCD at finite N is not unitary, however problems due to this appear mainly
at small quark masses and can be avoided in the extrapolations in most part.
Also, current calculations are probably not precise enough to be sensitive to
such pathologies [80].

5.4 Large-N physics at high temperature

High temperature translates to a small coupling, so that hadronic states cannot
be formed. To study this region, perturbation theory has been, and still is the
method of choice, see for example [85] and references therein. However, close
to the critical temperature Tc, the coupling is usually not so small anymore
and therefore perturbation theory does not continue to produce such accurate
results. In this temperature region, lattice computations can be used.

As lattice studies have indicated, and experiments like RHIC and ALICE
confirmed, above the deconfining temperature Tc there is a large range of T
where the plasma is strongly interacting. The phase transition happens at a
value of T where the free energies of the confined and deconfined phases are
equal, Fc = Fd. The number of gluons being O(N2), we can expect Fd ∝ N2,
but one could naively also expect Fc ∝ N0, since there are only colour singlet
states in the confined phase. From this it follows, that as N → ∞, Tc → 0.
Numerical results however show that this is not the case [80]. Indeed, the
vacuum energy density brings an O(N2) contribution to Fc in the confined
phase, thus the large-N limit Tc is precisely determined by the balance between
this and the O(N2) part of Fd.

One can also ask how the gluon plasma behaves at large-N ; will it continue
to be strongly coupled close to Tc? This can be assessed with calculations of
the pressure and its deviation from the Stefan-Boltzmann value. The pressure
can be obtained by integrating the average plaquette over β, with the value of
the pressure at T = 0 subtracted to remove ultraviolet divergences

a4[p(T )− p(0)] = 6

∫ β

β0

dβ′(〈up〉T − 〈up〉0). (5.4)

Denoting p(T )− p(0)→ p(T ), T = (aLt)
−1 we rewrite

p(T )

T 4
= 6L4

t

∫ β

β0

dβ′(〈up〉T − 〈up〉0). (5.5)

For SU(3) the ratio of the pressure and the Stefan-Boltzmann value is far below
unity, even to quite high T , indicating strong coupling nature for the gluon
plasma.

Similar calculations have been made at larger N to test if the ratio continues
to reside far from unity. In [86] it was seen that there is essentially no change
in the normalised value of p/T 4 when going from N = 3 to N = 8. This was
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Figure 5.3: A Rieman surface associated to a planar diagram

Figure 5.4: A Rieman surface associated to a non-planar diagram

shown to hold in the range 1 ≤ T/Tc ≤ 2, but studies extending over a larger
range of T/Tc [87] have also indicated the same. Therefore, one can say that
the N =∞ plasma is as strongly coupled as N = 3 one [80].

The finite-T physics is also an interesting subject for gauge-gravity duality
calculations. These are typically applicable to N = 4 supersymmetric (SUSY)
theories, and only valid at large N and g2, thus they don’t really correspond to
QCD or SU(3) gauge theory in the low-T confining phase. However, at finite-T
N = 4 SUSY is broken as the adjoint fermions acquire O(T ) Matsubara masses
from the anti-periodic fermionic boundary conditions in the Euclidean time
direction. Because SUSY is broken, the adjoint scalars also become massive,
leaving only the gauge field as light fields. This way, we arrive at something
that looks like a gauge theory at T > Tc. Moreover, since N = ∞ plasma and
N = 3 seem to be strongly coupled at temperatures close to Tc, this raises the
interest of applying gauge-gravity duality in this area.

5.5 Connections to String theory

Beyond QCD, the large-N limit has also broader implications, entailing deep
connections with string theory. As previously presented, the Feynman diagrams
can be drawn using the double line notation, leading to a topological classifica-
tion of the diagrams. Now, we can associate a Riemann surface to each Feynman
diagram in the following way. First of all, each line in a diagram is a closed loop,
that is thought of as the boundary of a two dimensional surface. The loops are
then glued together along their boundaries, as depicted in (5.3) and (5.3), and
with the addition of ‘the point at infinity to the loop associated to the external
line in the diagram, we obtain a compact Riemann surface. Further analysis
shows, that the power of N associated to a given Feynman diagram is exactly
Nχ, where χ is the Euler number of the corresponding Riemann surface [88].
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Figure 5.5: A Rieman surface associated to a planar diagram with an internal
quark loop

This leads to the realization, that the expansion of any gauge theory amplitude
in Feynman diagrams can be written as

A =

∞∑
g=0

Nχ
∞∑
n=0

cg,nλ
n, (5.6)

where g is the genus of the compact orientable surface on which the diagram in
double line notation can be drawn, χ = 2− 2g, and cg,n are constants. Further-
more, the first sum, a topological series, is recognized as the loop expansion in
Riemann surfaces for a closed string theory with coupling constant gs ∼ 1/N ,
and the second sum, a perturbative series in the t’Hooft coupling, proves out to
be the so called α’ expansion in the string theory [88]. In turn, quark loops in
a given Feynman diagram, as illustrated in (5.5), corresponds in terms of the
Riemann surfaces to introducing a boundary. The power of N associated with
the Feynman diagram remains Nχ, but the Euler number is χ = 2 − 2g − b,
where b is the number of boundaries. In the large-N expansion we therefore
have to also sum over the boundaries, which implies that the expansion is for
a theory with both closed and open strings. The coupling constant of the open

strings is gopen ∼ Nfg1/2
s = Nf/N [88].

Because of the conjunctions above, it was hoped that string theory would be
a “reformulation” of all the topological classes of diagrams in the large-N limit.

5.6 Flux tubes as strings

It has been long speculated, that the SU(N) gauge theory could be closely
related to some kind of string theory [89, 90, 91]. Indeed, one type of connection
derives from the following observation: When separating two static quarks far
apart from each other, a connecting gauge field, that appears to be squeezed
into a flux tube, is generated. This “flux tube” exhibits string-like behavior with
fixed ends, and thus the interaction between the static quark-antiquark pair
can be described by an effective string theory. It has been suggested that the
expectation values of large Wilson loops have a correspondance with amplitudes
of an effective bosonic string theory [92, 89]. The string-like features of the
flux tube have been studied with calculations using various gauge groups: Z2

[93, 94, 95, 96], Z4 [97], U(1) [98, 99, 100], SU(2) [101, 102, 96, 103], SU(3)
[92, 104, 105], as well as with SU(N > 3) [106, 107, 108, 109], and even in a
random percolation model [110, 111]. The third included publication of this
thesis, [3], concentrates on studying the string effects with SU(3) and SU(4).
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5.6.1 Static quark potential and the Lüscher term

In the confining regime of SU(N) gauge theories, the asymptotic behavior of
V (r) at large distances is a linear rise, and the flux lines between the well
separated color sources are expected to be squeezed in a thin, string-like tube
[112, 113, 114]. This “confining string” can be considered as a basic object,
in particular when it is stable, i.e. when there is no matter in representations
of non-zero N -ality. By studying the low-energy effective action on the string
we want to understand the low-energy fluctuations and the light excitations of
long strings. In large-N gauge theories the confining string can be thought of
as a weakly coupled fundamental string subject to some effective action which,
if known, can be used to study the low-energy dynamics of the model. Unfor-
tunately, in general the effective string action is not known. However, lattice
simulations may offer a way to study the low energy effective action of a confining
string and give insights on its properties. Furthermore, the general properties
of the effective string can be derived based on the symmetries it should have
[115, 116, 117, 118, 119].

In a confining theory, the static quark potential has the large distance asymp-
totic expansion [92]

V (r) = σr + µ+ γ/r +O(1/r2), (5.7)

where σ is the string tension, µ a constant (a regularization-dependent mass),
and γ is the Lüscher term, a Casimir effect, which is due to the finiteness of the
interquark distance r

γ = − π

24
(D − 2). (5.8)

Here D as the dimension of the space-time [112, 113]. The presence of the
Lüscher term in the long distance inter-quark potential is one of the conse-
quences of the effective string description at zero temperature; it can be seen as
an indication of the effective string behavior of the flux tube. The term includes
a coefficient that depends only on the dimension of the space-time and is not
influenced by higher order corrections of the effective string action.

5.6.2 Nambu-Goto string

The simplest effective action for a bosonic string is simply the string tension σ
times the area of the string worldsheet, i.e. the Nambu-Goto action [120, 121,
122]

Seff = σ

∫
d2ξ
√

detgαβ . (5.9)

In the so called “physical gauge” the integrand reads√
1 + (∂0h)2 + (∂1h)2 + (∂0h× ∂1h)2 (5.10)

where h is the displacement of the world sheet surface in the transverse direc-
tions. Expanding this in a perturbative series in 1/(σr2), at leading order we
get the following expression for the Polyakov loop correlation function (see, e.g.
[98] for a discussion)

〈P ?(r)P (0)〉 =
e−σrL−µL(
η
(
i L2r

))D−2
, (5.11)
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where we have used Dedekind’s η function

η(τ) = q
1
24

∞∏
n=1

(1− qn), q = e2πiτ . (5.12)

When L
2r � 1, eq. (5.11) gives the Lüscher term in the quark-antiquark poten-

tial.
The spectrum of the Nambu-Goto string can be obtained by canonical quan-

tization [123, 124]: the energy levels for a string with fixed ends are

En(r) = σr

√
1 +

2π

σr2

(
n− D − 2

24

)
, n ∈ N, (5.13)

= σr − (D − 2− 24n)π

24r
+O(1/r3). (5.14)

As a consequence, the partition function describing the string with fixed ends
reads

Z =

∞∑
n=0

ωne
−En(r)L (5.15)

where ωn are the number of states.
Finally, the effective string model also gives a prediction for the form of the

inter-quark potential in finite temperature gauge theories [103, 101, 125].

5.6.3 QCD string

In a pure gauge theory the ground state inter-quark potential V (r) of a heavy
QQ̄ pair can be expressed in terms of the two-point correlation function G(r)
of Polyakov lines

V (r) = − 1

L
logG(r) = − 1

L
log〈P ?(r)P (0)〉, (5.16)

where r is the interquark distance and L the system size in the time-like direction
[98]. Assuming that the low energy dynamics of the pure gauge model is de-
scribed by the effective string, and neglecting excited state decays, we can write
the Polyakov loop two-point correlation function as a string partition function

〈P ?(r)P (0)〉 =

∫
Dhe−Seff , (5.17)

where Seff is the effective action for the world sheet spanned by the string.
The dynamics of the confining string is not known, but it should respect

the expected rotational symmetries. This implies that only the terms that are
rotationally symmetric can be part of the effective string action. In fact these
constraints are more general and they restrict the form of the effective action
(at least at the lowest orders in 1/σr2) to be the Nambu-Goto one. Lattice
simulations for pure Yang-Mills theories in D = 3 and D = 4 show the effective
action being very well approximated by this form. However, deviations from
Nambu-Goto can be derived at higher orders [126].

There are two main approaches that have been studied in the past to con-
strain the effective action of a confining string. In the Polchinski-Strominger
approach [127, 128, 129] the degrees of freedom in the effective action are the D
embedding coordinates of the string in a conformal gauge worldsheet. Requiring
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the effective action to have the correct critical central charge, one is left with
constraints that have been shown to imply the four-derivative effective action
to agree with the Nambu-Goto form. This approach seems to be difficult to
extend to higher orders, however.

Another approach [112, 113, 130] is to write the effective action in static
gauge, such that the degrees of freedom are only the (D− 2) transverse fluctua-
tions of the string worldsheet. The string action is constrained by the fact that
the Lorentz symmetry is non-linearly realized on the Nambu-Goldstone bosons.
This is to say, that the action should non-linearly realize the Lorentz symme-
try rotating the direction in which the string propagates, and the transverse
directions. Following the suggestion of Lüscher and Weisz in [130], the effec-
tive action is constrained by computing the partition function of long winding
strings, and expressing it as a sum over string states. From [130], an active
line of research followed, in particular the method was further generalized in
[131] to any D and to the closed strings. In [117] it was apprehended, that the
the Lorentz symmetry of the underlying Yang-Mills theory had a crucial role
in the Lüscher-Weisz argument, and in fact, the whole Nambu-Goto action was
necessary to respect the Lorentz symmetry.

Even though the interquark potential V (r) and related quantities have been
studied extensively on the lattice since the eighties (see, for example, [105, 132,
133] for references), the question whether the picture given by effective string
models is satisfactory, is still under debate. Previous results [105, 132] have
shown prominent support for the bosonic string prediction, in particular, the
Lüscher term has been shown to be a universal feature of the IR regime of
confined gauge theories. However, results from recent, high precision Monte
Carlo simulations [100, 134, 92, 95, 135, 102, 136, 101, 137, 138] suggest that
higher order corrections to V (r) might not be universal, and do not trivially fit
the Nambu-Goto string predictions. In fact, there are also theoretical arguments
suggesting that the effective string action is different from the Nambu-Goto one
at higher orders.

Another aspect of interest is the excitation spectrum description. According
to the bosonic string picture, the excitations are expected to be described by a
tower of harmonic oscillator modes with energies

E = E0 +
π

r
n, n ∈ N. (5.18)

In the ground state potential the Lüscher term is supported by numerical evi-
dence down to very short distances, but for the excited states the lattice results
seem to be much more difficult to fit into this simple harmonic oscillator pat-
tern [98]. The mismatch between effective string predictions [139] and numerical
results have been shown in [140, 104, 141, 96].

5.7 AdS/CFT

The conjectured equivalence between gauge and string models, from yet another
perspective, manifests in the AdS/CFT correspondance. It has been noted [142]
that maximally supersymmetric Yang-Mills theory with N = 4 supercharges in
four dimensions is equivalent to supersymmetric type IIB string theory in a 10-
dimensional space, AdS5 × S5, where AdS stands for anti-de Sitter space and S5

is a five-dimensional sphere. The dual string model reduces to its weakly-coupled
gravity limit when the rank of the group of the gauge theory and the ’t Hooft
coupling are large. Thus large-N plays an important role in this correspondence,
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Figure 5.6: The AdS5 space with a five dimensional sphere makes up AdS5 ×
S5 space. (picture: [79])

Figure 5.7: A stack of D3 branes, with closed string (red) and an open string
(blue)

which can provide powerful analytical tools to study strongly coupled theories,
possibly including QCD with three colors, if the dependence on N is not strong
(In fact, there is already convincing evidence from lattice calculations of many
different observables that this is indeed the case [81]; [74, 84]).

The concept of gauge-string duality goes with understanding D3-branes. D-
branes in general are are a class of extended objects in ten-dimensional spacetime
where open strings can end, and a D3-brane is a D-brane that extends in three
spatial dimensions and in the time direction. If we look at a single D3-brane,
the low energy excitations are described by a N = 4 supersymmetric U(1) gauge
theory, whereas, if we stack N D3-branes on top of each other, the excitations
are described by a N = 4 supersymmetric U(N) Yang-Mills gauge theory [143].
The latter splits into a free U(1) part, relating to the center of mass motions of
the stack of D3-branes, and to an interacting SU(N) part, relating to the relative
motions of the branes [144]. A string running from one brane to another in the
stack represents a gluon of these gauge theories. For example (from [144]),
considering the case with three colors, N = 3, we can label the branes as R,
G, and B. Now, a string running from R to B has the color quantum numbers
R̄B, as expected for a gluon of SU(3) gauge theory.

D3 branes are sources for a tensor field with four indices, C4. The exterior

36



CHAPTER 5. LARGE-N 5.7. ADS/CFT

derivative of C4 is a field strength with five indices, F5, for which∫
S5

F5 = N, (5.19)

where N is the number of branes. This field strength is self-dual in 10 dimen-
sions. The D3-branes are able to deform the spacetime into a solution of the
ten-dimensional Einstein equations coupled to the 5-form, because they have a
definite mass per unit volume and a charge under a 5-form field strength. It
turns out that this solution takes the form AdS5 × S5 close to the D3-branes,
and that the low-energy excitations of this system can be described in terms of
N = 4 supersymmetric Yang-Mills theory. This exposes a connection between
gauge theories with SU(N) and string theory. The so called AdS/CFT corre-
spondence was first formulated by Maldacena [142], and formally, it states that
the maximally supersymmetric N = 4 Yang-Mills theory in four dimensions is
dual to type IIB string theory in an AdS5 × S5 space.

When it comes to performing calculations affiliated to gauge-string duality,
the large-N limit has proven a crucial aid. As the number of colors in the gauge
theory is increased, the corresponding parameters in the string theory are driven
towards the limit of the theory of classical gravitation in AdS space. In other
words, the large-N limit allows one to study non-perturbatively the strongly-
coupled regime of a field theory, by mapping it to the weak-coupling limit of a
gravity model.

Let us take a closer look at D3-branes that are at zero temperature, where
they can be described by a vacuum state of N = 4 super-Yang-Mills theory.
The metric of these objects is [144]

ds2
10 = H−1/2(dt2 + dx̄2) +H1/2(dr2 + r2dΩ2

5), (5.20)

with

H = 1 +
L4

r4
. (5.21)

L is related to the number of the ‘stacked’ D3-branes as

L4 =
κ

2π2/5
N = g2

YMNα
′2, (5.22)

introducing

κ =
√

8πG10 (5.23)

gYM =
√

4πgstring, (5.24)

i.e. the gravitational coupling in ten-dimensional supergravity, and the gauge
coupling of N = 4 super-Yang-Mills, respectively. N is the number of D3-
branes, and α′ is the Regge slope parameter of fundamental strings, inversely
proportional to their tension.

Now, we shall focus on the region r � L, i.e. we are close to the D3-branes.
Zooming in to the D3-brane means dropping the 1 from equation (5.21). By
doing this, we lose track of the asymptotically flat region, and the resulting
geometry is a direct product of AdS5 and S5 [144]

ds2
10 =

r2

L2
(−dt2 + dx̄2) +

L2

r2
dr2 + L2dΩ2

5 (5.25)

This way, the branes are replaced by a curved geometry. Concluding, the gauge
theory dynamics built from strings on the branes is indeed equivalently captured
by the geometry.

37



5.7. ADS/CFT CHAPTER 5. LARGE-N

It is common to denote the radial variables

z =
L2

r
, u =

r

L2
, (5.26)

where z has dimensions of length, while u has dimensions of energy. Using z we
write

ds2
5 =

L2

z2
(−dt2 + dx̄2 + dz2), (5.27)

i.e., the AdS5 space is conformal to flat space. Loosely speaking the gauge
theory is said to be defined at the boundary z = 0. The string theory, in turn,
lives in the bulk of AdS5. The region of AdS5 where u is large corresponds to
ultraviolet (UV) physics, whereas the region where u is small corresponds to
infrared (IR) physics. Moreover, u can be regarded as a typical energy scale
concerning processes that take place in AdS5 at a depth u [144].
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Chapter 6

Simulation methods

6.1 Updating gauge fields

The standard approach in simulating gauge field theories is to apply Monte
Carlo (MC) simulation methods. A MC program begins with some initial con-
figuration of the fields, and proceeds in sequences of (pseudo)random changes
on these variables. The changes should be such, that the ultimate probability
density of a configuration is proportional to the Boltzmann factor. The goal is
to provide a set of configurations, that are typical of the thermal equilibrium in
the statistical analogue [21, 145, 146].

The initial configuration of a lattice simulation can be either cold or hot. In
a cold start the link variables are set to unit matrices, whereas in the hot start
we kick off the simulation with random group elements. The link matrices are
then updated to create new configurations in a Markovian chain [147]. Due to
autocorrelations in a Markov chain, a configuration is strongly correlated with
the previous one generated. Thus, if we begin with a configuration far from the
equilibrium Boltzmann distribution, the consequent configurations will also be
such. It is only after several iterations that the configurations produced by the
algorithm reach the equilibrium, i.e. thermalize, and can be accepted as the
calculation data.

There are some criteria a good update algorithm should fulfill. First, it
should preserve the equilibrium Boltzmann distribution, which is the so called
detailed balance condition [147, 146]. Furthermore, it should be ergodic, mean-
ing that if we start from any configuration, repeating the algorithm would bring
us arbitrarily close to any other configuration [146].

It is common to use algorithms, that make a small local change in the field
configuration at each step. This way it is not needed to calculate the action of
the whole lattice at each step. Instead we use a local action on the lattice

Sloc
µ (Uµ(x), Pµ(x)) = β

[
1− 1

NC
ReTrP †µUµ(x)

]
. (6.1)

In the case of the Wilson action, the sum of staples P †µ can be written

P †µ =

d∑
ν 6=µ

[Uν(x+ aêµ)U†µ(x+ aêν)U†ν (x)

+Uν(x− aêν)U†µ(x+ aêµ)U†ν (x+ aêµ − aêν)], (6.2)
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where a is the lattice spacing. The original action can be written using the local
action

S =
1

4

∑
x,µ

Sloc
µ (Uµ(x), Pµ(x)). (6.3)

The factor 1/4 is due to every link contributing to four plaquettes.

Heat bath is a commonly used algorithm for updating the link variables.
Usually applied to SU(2) gauge theory, this algorithm is a very effective way
of thermalizing the lattice, using only local updates. For SU(2) the heat bath
method is quite simple, but for other groups with higher N , different methods
have to be pursued, such as the Cabibbo-Marinari method [148], which can be
used for any N . This method works by decomposing the members of the SU(N)
group into subgroups of SU(2), which can be then treated with the SU(2) heat
bath algorithm. The overrelaxation algorithm [149] provides faster decorrelation
compared to many other methods. The basic idea of overrelaxation is to use
a transformation, under which the action is invariant, and apply it to a link
matrix. Combined with heat bath, overrelaxation satisfies the ergodicity and
detailed balance conditions, and again for SU(2) it is simple. Like with heat
bath, larger groups should be divided into SU(2) subgroups.

6.2 Hybrid Monte Carlo

To simulate the computationally complex, full QCD with dynamical Wilson
fermions, Hybrid Monte Carlo (HMC) [150] algorithms are used. In the stan-
dard HMC, one introduces pseudo-fermion fields that take into account the con-
tribution of the fermion determinant. The evolution of the gluon fields through
phase space is carried out for all degrees of freedom simultaneously, using for
example the leap-frog algorithm. The HMC algorithm is a general global Monte
Carlo procedure, and it is ergodic, fully parallelizable, and shows surprisingly
short autocorrelation times [151]. Nevertheless, simulations of full QCD are
computationally very demanding, especially when approaching the chiral limit
of small quark mass. HMC is discussed in detail in reference [151], and in the
subsections 6.2.1 and 6.2.2 we will follow the notation of this reference.

6.2.1 Quenched case

Let us start by looking at the quenched case, where detM is considered as
constant. HMC consists two steps; First the gauge field is evolved through
phase space, and an artificial guidance Hamiltonian H is introduced. Second,
the equations of motion are chosen, in such a way that H is conserved.

We write

H = Sg(U) +
1

2

∑
x,µ,color

TrH2
µ(x), (6.4)

Z =

∫
(dH)(dU)e−H, (6.5)

and we wish to find a suitable H. Since U ∈ SU(3) under the evolution, and
Taylor expanding U(τ + δτ) leads to U(τ)U̇†(τ) + U̇(τ)U†(τ) = 0, we find the
first equation of motion

U̇ = iHU. (6.6)

40



CHAPTER 6. SIMULATION METHODS 6.2. HYBRID MONTE CARLO

H is represented by the generators of SU(3), thus it is hermitian and traceless.

Hµ(x) =
∑8
a=1 λ

ahaµ(x), where each haµ is a Gaussian distributed random num-

ber. The second equation of motion comes from requiring Ḣ = 0 and Ḣ to stay
explicitly traceless under the evolution. This boils down to

iḢ(x) = −β
6

(Uµ(x)Pµ(x)− h.c.), (6.7)

[151], where Pµ(x) are the staples, corresponding to a gluonic force term. Nu-
merical integration can not ensure for the Hamiltonian H to be exactly con-
served, therefore we add an accept/reject step

Pacc = min(1, e−∆H) (6.8)

to obtain a canonical distribution for U . Furthermore, the integration scheme
must lead to a time reversible trajectory and preserve the phase-space volume
to ensure detailed balance. Symplectic integration is thus employed [151].

6.2.2 Including dynamical fermions

Consider the fermionic determinant in

Z =

∫ ∑
x,µ

dUµ(x)det(M(U))e−βSg . (6.9)

In HMC, dynamical fermions are included in form of a stochastic Gaussian
representation for the determinant [151]. We need the interaction matrix to be
hermitean, so that the Gauss integral converges. The Wilson fermion matrix,
being a complex matrix, can not be represented directly, so we consider the two
light quarks u and d as mass degenerate. With the identity det2M = detM†M ,
the representation can be written

det(M†M) =

∫ (∑
x

(dφ̄x)(dφx)
)
e−φ

∗
x(M†M)−1

x,yφy , (6.10)

with the bosonic field φ, which can be related to a vector R of Gaussian random
numbers. With φ = M†R, we get the starting distribution R†R, equivalent to
φ∗(M†M)−1φ = φ∗X [151]. As discussed in [151], we add the fermionic action
to H, and the time derivate reads

dSf
dτ

= κ
∑
x,µ

Tr[U̇µ(x)Fµ(x) + h.c], (6.11)

Fµ(x) = [MX]x+eµX
†
x(1 + γµ) +Xx+eµ [MX]†x(1− γµ). (6.12)

Due to the fermionic force F the second equation of motion becomes

iḢ(x) = −β
6

(Uµ(x)Vµ(x) + κTrFµ(x)− h.c.). (6.13)

To perform the finite time-step integration of the equation of motion, we
can use the leap-frog scheme. This method provides an integration process that
is reversible, conserves the phase-space volume, and shows only small deviation
from the surface H = const [151]. Leap-frog consists of a sequence of triades:

Hµ(x, τ +
∆τ

2
) = Hµ(x, τ) +

∆τ

2
Ḣµ(x, τ) (6.14)

Uµ(x, τ + ∆τ) = ei∆τHµ(x,τ+ ∆τ
2 )Uµ(x, τ) (6.15)

Hµ(x, τ + ∆τ) = Hµ(x, τ +
∆τ

2
) +

∆τ

2
Ḣµ(x, τ + ∆τ). (6.16)
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It can be shown that for each triade H is approximated correctly up to O(∆t2)
[151].

6.3 Multilevel algorithm

The multilevel algorithm was introduced by Lüscher and Weisz in [152], and
it has been shown to be usefull in many contexts where one has to cope with
an exponentially decaying signal-to-noise ratio. In lattice calculations of the
Polyakov loop correlation function, the algorithm has been shown to provide
an exponential reduction of the statistical errors. In this algorithm the lattice
is split into sublattices that do not communicate with one another, and the
final observables are built combining the independent measurements of each
sublattice. Of course, from time to time the boundaries between the sublattices
are updated, so that the final results are the same as in the usual theory.

Following the discussion in [101], suppose we measure an observable O by
combining the results of averages Osub computed in N different sublattices.
With N sublattice measurements, the combination of the sublattice averages
Osub corresponds to (N)N measurements of O, i.e. we get an estimate of O as
if (N)N measurements would have been performed. However, due to the links
that have been kept frozen at the boundaries of the sublattices, this estimate
is biased by a background field, but this bias is removed by averaging over the
boundary configurations.

Using the notation of [101], consider the correlation function of two Polyakov
loops

〈P (~0)P (~x)∗〉 =
1

Z

∫ ∏
y,µ

dUy,µTr
[
U(~0,0),t . . . U(~0,L−1),t

]
× Tr

[
U∗(~x,0),t . . . U

∗
(~x,L−1),t

]
e−S[U ]. (6.17)

Next, we slice the lattice along the temporal direction into N = Nt/nt sublat-
tices, i.e. nt is the temporal thickness of each sublattice in units of the lattice
spacing a. Now, to obtain sublattices isolated from each other, we fix the set
V sk of all spatial links with time coordinates knt, k = 0, . . . , (N − 1). This way,
the dynamics of every sublattice depends only on the background field of the
two frozen time slices, and hence are totally independent from one another.

As in [101], we rewrite (6.17) as

〈P (~0)P (~x)∗〉 =

∫ ∏
k

dU
(s)
k Tαγβδ~0,(~x)

[V
(s)
0 , V

(s)
1 ] (6.18)

. . . T εαρβ~0,(~x)
[V

(s)
N−1, V

(s)
0 ]P[V

(s)
k ] (6.19)

where

Tαγβδ
~0,~(x)

[V
(s)
i , V

(s)
j ] ≡

∫ ∏
y,µ

dUy,µ

[
U(~0,0),t . . . U(~0,nt−1),t

]
αγ

(6.20)

×
[
U∗(~x,0),t . . . U

∗
(~x,nt−1),t

]
βδ

e−S[U ;V
(s)
i ,V

(s)
j ]

Z[V
(s)
i , V

(s)
j ]

. (6.21)

The partition function of the sublattice with fixed temporal boundaries reads

Z[V
(s)
i , V

(s)
j ] ≡

∫ ∏
y,µ

dUy,µe
−S[U ;V

(s)
i ,V

(s)
j ] (6.22)
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in which S[U ;V
(s)
i , V

(s)
j ] is the action in the sublattice with fixed temporal

boundaries V
(s)
i and V

(s)
j . Here we denote the color indices as α, β, γ and δ, and

Tαγβδ are gauge-invariant quantities under sublattice gauge transformations.

P[V
(s)
k ] is the probability for the spatial links with time coordinates knt, k =

0, . . . , (N − 1), to be V
(s)
k , and can be written

P[V
(s)
k ] =

1

Z

∫ ∏
y,µ

dUy,µ
∏
k

δ(U
(s)
k − V (s)

k )e−S[U ] (6.23)

Iterating this procedure and averaging the background field according to the
probability distribution of eq. (6.23) gives a numerical estimate for the integral
(6.18) [101]. This technique is the so-called “single level algorithm”. A more
general “multilevel algorithm” by Lüscher and Weisz involves a feature, that the

updating frequency of the background field V
(s)
k is not the same for the various

time slices k. However, for many purposes the single level algorithm seems to
be more efficient [92, 101].

In numerical simulations with the single level algorithm, three parameters
have to be fixed: the temporal sublattice thickness nt, the number N of sub-
lattice measurements and the number M of background field configurations to
integrate over V (s). These parameters are dependent on each other as well as
on the temporal extension Nt of the whole lattice and on the distance between
the two Polyakov loops. Finding the optimal choice for them is thus not trivial.
Some results on the optimization step can be found in [135, 153].

When measuring the Polyakov loop correlation function 〈P (~0)P (~x)∗〉 the
final error bar is the combination of the uncertainties of the sublattice averages
and their fluctuations, due to different background fields. With nt fixed, a
large distance between two loops requires both N and M to be large. N is
typically order of several thousands and M of few hundreds [101]. It should be
noted that N does not depend on Nt whereas M does. With the Lüscher and
Weisz algorithm, exponential gain in the accuracy of the numerical estimation
of 〈P (~0)P (~x)∗〉 is possible only in the temporal direction. Every sublattice
estimate decreases exponentially with the distance, but it is still estimated with
an error reduction proportional to 1/

√
N [101].
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[55] M. Lüscher, R. Sommer, U. Wolff, and P. Weisz. Computation Of The
Running Coupling In The SU(2) Yang-Mills Theory. Nucl. Phys. B,
389:247, 1993. arXiv:hep-lat/9207010.

47



BIBLIOGRAPHY BIBLIOGRAPHY
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1. Introduction

Quantum field theories with nontrivial infrared fixed points of the β- function have re-

cently been studied due to their applications in beyond Standard Model model building.

In these theories the coupling runs when probed at very short distances, but becomes a

constant over some energy range in the infrared and the theory appears conformal. One of

the phenomenological connections is the unparticle [1, 2, 3], i.e. the possibility of a fully

conformal sector coupled only weakly to the Standard Model through effective operators at

low energies. Another phenomenological motivation to study theories which either feature

an infrared fixed point or are, in theory space, close to one which does, originates from tech-

nicolor (TC) and the associated extended technicolor (ETC) models. These models were

devised to explain the mass patterns of the Standard Model gauge bosons and fundamental

fermions without the need to introduce a fundamental scalar particle [4, 5, 6, 7].

Early TC models, based on a technicolor sector straightforwardly extrapolated from a

QCD-like strongly interacting theory, lead to too large flavor changing neutral currents due

to the extended technicolor interactions.The problems of these simple TC models are solved

in so called walking technicolor theories [8, 9, 10, 11]. These theories are quasi-conformal,

i.e. the evolution of the coupling constant is, over a wide range of energy, governed by an

attractive quasi-stable infrared fixed point at strong coupling.
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To build walking TC models one needs to tune the gauge and matter degrees of freedom

so that the desired quasi-conformality arises. To achieve this in SU(N) gauge theory with

fermions in the fundamental representation several O(10) Dirac flavors are required. These

contribute to the precision parameter S, which becomes too large to be compatible with

the current observations. To obtain enough screening, as required for quasi-conformality,

but with smaller number of flavors, one considers fermions in higher representations. It has

been suggested [12] that an ideal candidate for minimal walking technicolor theory would

be the one with just two (techni)quark flavors in the two-index symmetric representation

of SU(2) or SU(3).

Reliable quantitative studies of the models, especially evaluating the β-functions, re-

quire lattice Monte Carlo simulations. There are several recent studies of both SU(2)

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and SU(3) [23, 24, 25, 26, 27] gauge theories with two-

index symmetric representation fermions. For related studies in QCD-like theories with

fundamental representation fermions see [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

In this paper we consider the case of SU(2) gauge fields with two fermions in the

two-index symmetric representation, which, for SU(2), is equivalent to the adjoint repre-

sentation. So far the lattice studies of this theory have been performed using unimproved

Wilson fermion action and are hence subject to large O(a) lattice artifacts. In this paper

we present the computation of O(a)-improvement. This is a generalisation of the program

used earlier to compute the improved action for two fundamental representation fermions

in SU(3) gauge theory [41, 42, 43, 44, 45, 46]. The early results of this calculation have

been presented in refs. [47, 48].

The Wilson fermion action can be improved for on-shell quantities by adding the well-

known clover term. We tune the coefficient of the clover term (Sheikholeslami-Wohlert

coefficient [49]) non-perturbatively, using the Schrödinger functional method. For the

measurement of the coupling constant we also need the improvement coefficients of certain

boundary terms. This computation is done using perturbative analysis. For comparison,

we also calculate the improvement for SU(2) gauge theory with two flavors of fundamental

representation fermions.1

The paper is structured so that in section 2 we first recall the basics of the model as

well as of the lattice formulation we use. In section 3 we present our perturbative results

for the boundary terms and nonperturbative results for the improvement coefficients are

presented in section 4. In section 5 we conclude and outline the directions of our future

work.

2. Lattice formulation: the model and O(a) improvement

We study SU(2) gauge theory with two different matter contents: two mass-degenerate

flavors of Dirac fermions either in the adjoint or in the fundamental representation. The

1Non-perturbative improvement of the clover term has been recently published for SU(3) gauge field

theory with 2-index symmetric (sextet) fermions, using the HYP-smeared link clover action [50].
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continuum theory in Euclidean spacetime is defined by

L =
1

2
TrFµνFµν +

∑

α

ψ̄α(i/D +m)ψα (2.1)

where Fµν is the usual SU(2) field strength, and the gauge covariant derivative is

Dµψ =
(
∂µ − igAa

µT
a
)
ψ (2.2)

where a = 1, 2, 3 and the generators T a are taken either in the fundamental (T a = σa/2)

or in the adjoint representation ([T a]bc = −iǫabc). The summation in Eq. (2.1) is over

α = u,d.

Our main goal in this work is to establish nonperturbative O(a) improved lattice

implementation of these theories. While the improvement has been discussed in detail in

existing literature for SU(3) gauge field with fundamental fermions, the studies of adjoint

flavors require some alterations. Hence we find it necessary and useful to repeat essential

parts of the analysis in detail here.

First recall the usual O(a) improvement obtained by Sheikholeslami and Wohlert [49].

The lattice action, split to the gauge and fermionic parts SG and SF , is

S0 = SG + SF . (2.3)

Here we use the standard Wilson plaquette gauge action

SG = βL
∑

x;µ<ν

(
1−

1

2
TrPx;µν

)
(2.4)

where βL = 4/g20 and the plaquette is written in terms of the SU(2) fundamental rep-

resentation link matrices Uµ(x), which act as parallel transporters between sites x and

x+ aµ̂:

Px;µν = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x). (2.5)

The Wilson fermion action, SF , for Nf (degenerate) Dirac fermions in the fundamental or

adjoint representation of the gauge group is

SF = a4
∑

α

∑

x

ψ̄α(x)(iD +mq,01)ψα(x), (2.6)

where the usual Wilson-Dirac operator is

D =
1

2
(γµ(∇

∗
µ +∇µ)− a∇∗

µ∇µ), (2.7)

involving the gauge covariant lattice derivatives ∇µ and ∇∗
µ defined as

∇µψ(x) =
1

a
[Ũµ(x)ψ(x+ aµ̂)− ψ(x)], (2.8)

∇∗
µψ(x) =

1

a
[ψ(x)− Ũ−1

µ (x− aµ̂)ψ(x− aµ̂)]. (2.9)
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Here, the link variables are the usual ones, Ũµ(x) = Uµ(x), for fermions in the fundamental

representation while for the adjoint representation they are

Ũab
µ (x) = 2Tr (T aUµ(x)T

bU †
µ(x)), (2.10)

where T a, a = 1, 2, 3, are the generators of the fundamental representation, normalised as

TrT aT b = 1
2δ

ab. We note that in the adjoint representation the elements of Ũ -matrices are

real and Ũ−1 = ŨT .

The lattice action (2.3) is parametrised with two dimensionless parameters, βL =

4/g2bare and κ = 1/[8 + 2amq,0]. The parameter κ is related to the fermion mass. In

the continuum limit a4
∑

x →
∫
d4x as a → 0, and the leading order contribution from

(2.3) yields the continuum action while the terms of higher order in a will be suppressed;

these terms are generically termed “lattice artifacts”. Since gauge invariance forbids any

contribution from dimension five operators to the gauge action, only the fermion action

here is subject to lattice artifacts at O(a). These are removed (for on-shell quantities) by

considering the improved action

Simpr = S0 + δSsw, (2.11)

δSsw = a5
∑

x

cswψ̄(x)
i

4
σµνFµν(x)ψ(x) (2.12)

and tuning the Sheikholeslami-Wohlert coefficient csw at each βL so that the O(a) effects

in on-shell quantities cancel; to lowest order in perturbation theory csw = 1 [49]. Here

σµν = i[γµ, γν ]/2 and Fµν(x) is the “clover term”, lattice field strength tensor in the

appropriate representation symmetrized over the four µ, ν-plane plaquettes which include

the point x.

Because our aim in future work is to measure the evolution of the gauge coupling

constant using the Schrödinger functional method, we also need to consider the improve-

ment of the action at the special Schrödinger functional boundary conditions. Schrödinger

functional method is also used in this work for measuring csw, but for this the boundary

improvement is not necessary.

We consider a system of size L3 × T , with periodic boundary conditions to the spatial

directions and with Dirichlet boundary conditions for the gauge fields to the time direction:

Uk(x0 = 0) =W (k), Uk(x0 = T ) =W ′(k), (2.13)

where k = 1, 2, 3; the explicit form of the boundary fields will be discussed later. For the

measurement of the coupling constant the boundary gauge fields are chosen so that they

lead to a constant background chromoelectric field. Due to the frozen boundaries there

now exists O(a) contribution to the gauge part of the action, and to account for these we

consider

SG,impr =
βL
4

∑

p

w(p)tr(1− U(p)), (2.14)

where the weights w(p) are equal to 1 for plaquettes in the bulk, w(p) = cs/2 for spatial

plaquettes at x0 = 0 and T and w(p) = ct for time-like plaquettes attached to a boundary

– 4 –



plane. The parameters cs and ct are tuned to reduce the O(a) boundary contributions.2

To leading order in perturbation theory ct = cs = 1. For the electric background field

which we consider the terms proportional to cs do not contribute.

The boundary values of the fermion fields are set as

P+ψ(x0 = 0,x) = ρ(x), P−ψ(x0 = T,x) + ρ′(x),

P−ψ(x0 = 0,x) = P+ψ(x0 = T,x) = 0,
(2.15)

with similar definitions on the conjugate fields. The projection operators are P± = 1
2(1±γ0).

The boundary fields ρ, ρ′ are source fields for correlation functions, and they are set to zero

when generating configurations in simulations. In the spatial directions it is customary to

introduce a “twist” for the phase of the fermion fields [42]:

ψ(x+ Lk̂) = eiθkψ(x), ψ̄(x+ Lk̂) = ψ̄(x)e−iθk . (2.16)

In this work we use θk = π/5 throughout. The twist, together with the Dirichlet boundary

conditions, regulates the fermion matrix so that simulations at zero fermion masses become

possible.

The improved lattice action is now given by

Simpr = SG,impr + SF + δSsw + δSF,b. (2.17)

Now the Sheikholeslami-Wohlert term only accounts for the bulk,

δScw = a5
T−a∑

x0=a

∑

x

cswψ̄(x)
i

4
σµνFµν(x)ψ(x), (2.18)

while the boundary effects are captured by δSF,b. This counterterm has two contributions,

controlled by parameters denoted by c̃s and c̃t. The term proportional to c̃s is

δSc̃s = a4(c̃s − 1)
∑

x

[
1

2
ψ̄(0,x)P−γk(∇

∗
k +∇k)P+ψ(0,x)

+
1

2
ψ̄(L,x)P+γk(∇

∗
k +∇k)P−ψ(L,x)

]
(2.19)

and it clearly vanishes if we set fermionic fields to zero on the boundaries.

So, similarly to the gauge action, only the term proportional to c̃t contributes, and

this contribution is given by

δSF,b = a4
∑

x

(c̃t − 1)
1

a
ψ̄(x)ψ(x)(δ(x0 − a) + δ(x0 − (L− a)). (2.20)

This can be seen as a correction to the bare mass term at x0 = a and x0 = L− a, hence

accounted for by the modification

mq,0 7→ mq,0 + (c̃t − 1)(δt,a + δt,L−a). (2.21)

2Recall that gauge invariance guarantees that there are no O(a) contributions to the gauge action in the

bulk, and hence the boundary terms controlled by cs and ct are the only ones which arise to O(a) in the

gauge action.
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It is known that c̃t = 1 to leading order.3

Hence, to obtain O(a) improvement we need to determine the parameters ct, c̃t and

csw in the action (2.17). The parameters ct and c̃t are determined perturbatively as will

be described in the following section. The parameter csw is determined nonperturbatively,

and this will be determined in section 4.

3. Perturbative analysis of the boundary improvement

As explained in the previous section, due to the Dirichlet boundary conditions associated

with the Schrödinger functional formalism, we are led to counteract O(a) lattice artifacts

on the boundaries both in the gauge and fermion parts of the action. In this section

we describe in detail the analysis of the rquired counterterms. Although we are mostly

interested in matter fields in fundamental or adjoint representation of SU(2) gauge group,

we will present the results applicable also for higher representations of SU(3) since these

are relevant for the current developments in the studies of these theories on the lattice.

In principle there exists four counterterms associated with the spatial links in the

boundary and with temporal links connected to the boundary. Due to the specific form of

the background field we have chosen, only two of these are needed and these are denoted

by ct and c̃t. These boundary coefficients have a perturbative expansion of the form

cx = 1 + c(1)x g20 +O(g40). (3.1)

Our goal is to determine c̃t and ct to one-loop order in perturbation theory.

3.1 Coefficient c̃
(1)
t

We follow the analysis performed in [44] for the fundamental representation. The result of

[44] is

c̃
(1)
t = −0.0135(1)CF , (3.2)

and this generalizes to other fermion representations simply by replacing the fundamental

representation Casimir operator CF with Casimir operator CR of the representation R

under consideration. This is so because the relevant correlations functions are proportional

to the diagrams presented in figure 1, which all include the color factor
∑

a(T
a)2 = CR.

Thus it can be shown that also c̃
(1)
t ∝ CR.

In the case of fundamental fermions the original result of [44] is directly applicable with

CF = (N2
c − 1)/(2Nc) = 3/4 for Nc = 2. For the other case we have fermions transforming

in the adjoint representation of SU(2), for which the Casimir invariant is CA = 2. The

results for different gauge groups and fermion representations are shown in table 1.

3.2 Coefficient c
(1)
t

The coefficient c
(1)
t can be split into gauge and fermionic parts

c
(1)
t = c

(1,0)
t + c

(1,1)
t Nf . (3.3)

3This is so because free Wilson fermions are not subject to O(a) artifacts.
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y z y z

y z y z y z

Figure 1: Diagrams contributing to the calculation of c̃
(1)
t . The shaded blob on each diagram

indicates the insertion of the operator Γx = {1, γ5}.
The contribution c

(1,0)
t is entirely due to gauge fields and has been evaluated in [51] for

SU(2) and in [52] for SU(3). The fermionic contribution c
(1,1)
t to ct has been evaluated

for fundamental fermions in [43] both for SU(2) and SU(3). We have extended these

computations for SU(2) and SU(3) gauge theory with higher representation fermions and

for SU(4) gauge theory with fundamental representation fermions.

The method we have used is the same as the one presented in [43], with two exceptions.

First, the boundary fields have to be transformed to the desired fermion representation.

Generally the boundary fields are of the form

U(x, k)|(x0=0) = exp(aCk), U(x, k)|(x0=L) = exp(aC ′
k), (3.4)

where

Ck =
i

L
diag(φ1, . . . , φn), C ′

k =
i

L
diag(φ′1, . . . , φ

′
n), (3.5)

and n is the dimension of the representation. The transformed boundary fields are obtained

from the fundamental representation counterparts for adjoint representation via (2.10).

After the transformation one simply diagonalizes the resulting matrices and ends up with

a matrix of the form

diag
(
exp[iφA1 ], . . . , exp[iφ

A
n ]
)
, (3.6)

where φAi give the adjoint representation boundary fields

CA
k =

i

L
diag(φA1 , . . . , φ

A
n ), C ′

k =
i

L
diag(φ′A1 , . . . , φ

′A
n ). (3.7)

For the symmetric representation the components of the boundary fields CS
k and C ′S

k

can be obtained by taking all the symmetric combinations of φi. For SU(3) sextet repre-
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sentation this is
φS1 = φ1 + φ1,

φS2 = φ1 + φ2,

φS3 = φ1 + φ3,

φS4 = φ2 + φ2,

φS5 = φ2 + φ3,

φS6 = φ3 + φ3.

(3.8)

The other crucial note comes from the normalization in the calculation of c
(1,1)
t . Using

the Schrödinger functional scheme and taking the lattice action with constant background

field as an effective action Γ0, the running coupling is defined via

ḡ2 =
∂ηΓ0

∂ηΓ
. (3.9)

The boundary fields Ck and C ′
k are functions of the parameter η so the running coupling is

given by the change of the system as the boundary fields are altered. The effective action

Γ is to one loop order in perturbation theory

Γ = g−2
0 Γ0 + Γ1 +O(g20), (3.10)

so the running coupling can be written, as a function of the bare coupling g0, in the form

ḡ2 = g20

(
1− g20

∂ηΓ1

∂ηΓ0

)
+O(g60). (3.11)

On small lattice spacings a, the one loop correction Γ1 diverges. This leads to renormal-

ization of the lattice coupling, which is given in terms of the bare coupling as

g2lat = g20 + z1g
4
0 +O(g60), (3.12)

where z1 = 2b0 ln(aµ) and

b0 =
1

(4π)2

(
11

3
CA −

4

3
T (R)NF

)
(3.13)

is the coefficient in one loop beta function. Now we can write the running coupling as a

function of the renormalized coupling

ḡ2 = g2lat

[
1− g2lat

(
∂ηΓ1

∂ηΓ0
+ z1

)]
+O(g6lat). (3.14)

The one loop correction to the effective action Γ1 can also be written as

Γ1 =
1

2
ln det∆1 − ln det∆0 −

1

2
ln det∆2, (3.15)

where the operators ∆0 and ∆1 are related to the gauge fixing and pure gauge part of

the action and the operator ∆2 = [(Dsw +m0)γ5]
2 is related to the fermionic part of the

action. The operator Dsw is the lattice Dirac operator that includes the Sheikholeslami-

Wohlert term. Now for the calculation of ∆2 one needs to transform the boundary fields
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to the appropriate representation. However in the calculation of Γ0 one needs to keep the

boundary fields in the fundamental representation. This is so becouse the pure gauge part

of c
(1)
t should be independent of the representation of the fermions and this can only be

achived if the boundary fields in Γ0 are kept in the fundamental representation. Also this

produces the expected behavior for the series expansion of

(
∂ηΓ1

∂ηΓ0
+ z1

)
. (3.16)

With these remarks, the numerical calculation is straightforward. The results for

the nonzero improvement coefficients are tabulated in table 1. The numbers beyond the

fundamental representation are new, while those for the fundamental representation provide

a good check on our computations. For the application to minimal walking technicolor,

the relevant numbers are the ones on the second line of table 1.

Our results are consistent with the generic formula

c
(1,1)
t ≈ 0.019141(2T (R)), (3.17)

where T (R) is the normalization of the representation R, defined as Tr(T a
RT

b
R) = T (R)δab.

For the details of the numerical method used to determine coefficient c
(1,1)
t , we refer to the

original literature where the method was developed and applied first for the pure gauge

theory case in [51], and later for fundamental representation fermions in [51, 43].

Nc rep. c
(1,0)
t c

(1,1)
t c̃

(1)
t

2 2 −0.0543(5) 0.0192(2) −0.0101(3)

2 3 −0.0543(5) 0.075(1) −0.0270(2)

3 3 −0.08900(5) 0.0192(4) −0.0180(1)

3 8 −0.08900(5) 0.113(1) −0.0405(3)

3 6 −0.08900(5) 0.0946(9) −0.0450(3)

4 4 0.0192(5) −0.0253(2)

Table 1: The nonzero improvement coefficients for Schrödinger functional boundary conditions

with electric background field for various gauge groups and fermion representations.

We have also plotted our results of c
(1,1)
t scaled with 1/(2T (R)) against (3.17) in

figure 2. Although we did not achieve the accuracy of the original work [43], our results are

fully compatible for fundamental representation fermions. The figure also clearly indicates

that c
(1,1)
t scales with 2T (R).

4. Non-perturbative tuning

The continuum physics we are interested in corresponds to massless fermions, so we need to

simulate at zero physical quark mass. With Wilson fermions the bare quark mass is addi-

tively renormalized, and the zero of the physical quark mass corresponds to tuning the bare

quark mass to a critical value, m0 = mcr. This tuning is done nonperturbatively and al-

lows for determination of the improvement coefficient csw simultaneously. Here we describe
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SU(2) F SU(2) A SU(3) F SU(3) A SU(3) S SU(4) F
0.0184

0.0186

0.0188

0.019

0.0192

0.0194

0.0196

0.0198

Group & Representation

c t(1
,1

) /(
2T

(R
))

 

 

Our results
Conjecture

Figure 2: Our results of c
(1,1)
t scaled with 2T (R) compared with conjectured value of

c
(1,1)
t /(2T (R)).

the calculation of csw for Nf = 2 flavors of SU(2) fundamental and adjoint representation

fermions.

In these simulations the fermion fields have the boundary conditions given in Eqs. (2.15,2.16).

For the fundamental representation fermons we fix the gauge field Dirichlet boundary con-

ditions at x0 = 0 and x0 = T [41]:

Uk(x0 = T ) = exp(iC ′), C ′ = −
π

4

aσ3

L
(4.1)

Uk(x0 = 0) = exp(iC), C = −
3π

4

aσ3

L
, (4.2)

for k = 1, 2, 3. Because the boundary link matrices commute, we call these boundary

conditions Abelian, in contrast to the non-Abelian (non-commuting) ones defined below.

The physical quark mass is defined via the partial conservation of the axial current

(PCAC) relation,

M(x0) =
1

2

1
2 (∂

∗
0 + ∂0)fA(x0) + cAa∂

∗
0∂0fP (x0)

fP (x0)
≡ r(x0) + cAs(x0), (4.3)

where

Aa
µ = ψ̄(x)γ5γµ

1

2
σaψ(x), (4.4)

P a = ψ̄(x)γ5
1

2
σaψ(x), (4.5)

fA(x0) = −a6
∑

y,z

〈Aa
0(x)ζ̄(y)γ5

1

2
σaζ(z)〉, (4.6)

fP (x0) = −a6
∑

y,z

〈P a(x)ζ̄(y)γ5
1

2
σaζ(z)〉. (4.7)

– 10 –



Another set of correlation functions, f ′A and f ′P is defined via

f ′A(T − x0) = −a6
∑

y,z

〈Aa
0(x)ζ̄(y)γ5

1

2
σaζ(z)〉, (4.8)

f ′P (T − x0) = −a6
∑

y,z

〈P a(x)ζ̄(y)γ5
1

2
σaζ(z)〉. (4.9)

The bare mass is tuned so thatM(T/2) vanishes. The csw term is tuned simultaneously

using mass measurements at a different point in the bulk looking for variations of the order

of the lattice spacing. DefiningM ′ with obvious replacements of primes, it follows that the

quantity

∆M(x0) =M(x0)−M ′(x0) (4.10)

vanishes up to corrections of O(a2) if both csw and cA have their proper values. In order

to recover the correct tree level behaviour we fix these quantities M and ∆M two their

tree level values, measured by from a cold gauge configuration with κc = 0.125. This gives

a small correction to the relations:

∆M(x0) =M(x0)−M ′(x0)− δ = 0,M(x0) = δM (4.11)

However, for the adjoint representation fermions there are complications which sig-

nificantly reduce the effectiveness of the above method. Using Eq. (2.10) we immediately

notice that the Abelian boundary matrices (4.1,4.2) are transformed into form

Ũk =



. . . . . . 0

. . . . . . 0

0 0 1


 (4.12)

Thus, there is a component of the adjoint representation color vector which simply does

not see the background field. This feature is independent of the color structure chosen

for the boundary conditions. It turns out that regardless of how the fermion sources or

the constant boundary conditions are chosen, at long distances the correlation functions

behave as if there is no background field. In other words, the adjoint fermion correlation

functions “see” the background electric field only at short distances. This significantly

reduces the effectiviness of the background field method for tuning csw.

This effect can be improved by using boundary conditions which maximize the dif-

ference between the two boundaries. We use the following asymmetric ”non-Abelian”

boundary conditions: links at the upper x0 = T boundary are chosen to be trivial

U(x0 = T, k) = I (4.13)

and at the lower boundary x0 = 0 we use

U(x0 = 0, k) = exp(aCk), Ck =
π

2

τk

iL
. (4.14)

This creates a strong chromomagnetic field at x0 = 0 boundary. These boundary conditions

do not fully cure the problem, but nevertheless provide enough leverage so that the PCAC

mass relation can be used to tune csw.
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Figure 3: Left: Fundamental representation fermion mass aM(x0) measured from the classical

gauge field configuration satisfying the Abelian boundary conditions (4.1, 4.2) on a 83 × 16-lattice.

Bare mass is am0 = 0.01, which is also aM in the continuum limit. Inclusion of the clover term

(csw = 1) significantly reduces the cutoff effects. Right: aM(x0) for adjoint representation fermions

and for the Abelian boundary conditions (4.1), (4.2), and for the non-Abelian boundary conditions

(4.13,4.14). Here the correlation functions between csw = 0 and csw = 1 differ significantly at long

distances only for the non-Abelian boundary conditions.

This behaviour can be demonstrated already at the classical level: in figure 3 we show

the PCAC fermion mass (4.3), measured using the classical minimum action gauge field

configuration which satisfies the appropriate boundary conditions. The bare fermion mass

has been set to am0 = 0.01, and, in the absence of the background field or lattice cutoff

effects, the PCAC measurement would yield precisely this value. However, with finite

lattice spacing the non-trivial classical background field gives rise to cutoff effects, which

moves the PCAC mass away from aM = 0.01. For the fundamental representation fermions

and the Abelian boundary conditions (4.1), (4.2). (left panel in figure 3), we can observe

that setting csw = 0 (non-improved standard Wilson fermions) the measured mass values

are far from the continuum limit, whereas using csw = 1 (the correct value at the classical

level) these effects are strongly reduced.

For the adjoint representation fermions the behaviour is very different, as shown on the

right panel of fig. 3: using the Abelian boundary conditions the measured masses aM(x0)

rapidly approach 0.01/a as x0 increases, for both csw = 0 or 1. This indicates that the

correlation function lacks the sensitivity to csw and cannot be used for tuning it to the

correct value.

On the other hand, with the non-Abelian boundary conditions (4.13,4.14) the corre-

lation function remains sensitive to the value of csw to longer distances. The sensitivity

remains in the mass asymmetry ∆M(x0), (4.10), which can now be used to tune csw. We

note that these boundary conditions are useful only for determining csw, not for evaluating

the coupling constant.
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In order to remove the dependence on cA, for fundamental fermions, we consider

M(x0, y0) = r(x0)− s(x0)
r(y0)− r′(y0)

s(y0)− s′(y0)
, (4.15)

which coincides withM(x0) up to O(a2) corrections and is independent of cA. With adjoint

fermions this quantity suffers from large statistical fluctuations and is not useful. Instead

we simply consider the quantity M(x0) and fix cA to its perturbative value [44]

cA = −0.00567(1)CRg
2 +O(g4). (4.16)

We then measure cA separately to confirm the validity of our choice.

In order to evaluate csw we used the following routine: we choose lattice volume L3 ×

T = 83 × 16 for both fundamental and adjoint representation fermions, and a set of values

of the lattice coupling β. For fundamental fermions we measure M = M(T/2, T/4) and

∆M = ∆M(3T/4, T/4). For adjoint fermions we measure M = M(T/2) and ∆M =

∆M(3T/4) fixing cA to its perturbative value.

1. For a given β, we choose initial csw (typically extrapolating from results obtained

with previous values of β).

2. We choose a couple of values for κ, and determine by interpolation the critical value

κc(β, csw) where the fermion mass M is equal to the tree level value.

3. Once we have an estimate of the critical κ, we choose a new value for csw and repeat

the search of κc.

4. At the same time, we measure ∆M(csw). Now we can linearly interpolate/extrapolate

in csw so that ∆M vanishes, obtaining the desired value of csw. Using simulations at

this final csw we can relocate the critical κ, if desired, and verify the results of the

interpolation.

The above tuning is done at small L/a, and the results are applied for all lattice sizes

since the L/a dependence is expected to be weak. Furthermore, we only consider a range

of β and fit the critical values to an interpolating function to obtain mc(βL) and c
c
sw(βL).

4.1 Measurement of csw

In figures 4 and 5 we show our results for the clover coefficient csw for both fundamental

and adjoint representations. The values of β used are β = 2.5, 3, 4, 5, 6, 8, and also β =

2.25 and 10 for the adjoint representation. To clarify the tuning method we provide the

measurements of M and ∆M with adjoint fermions in table 2. In tables 3 and 4 we give

our results for csw for fundamental and adjoint fermions respectively.

Finally, the measured values for csw can be fitted with a rational interpolating expres-

sion, which can used in simulations for this range of β-values. For fundamental represen-

tation fermions we use the perturbative 1-loop result csw = 1+0.1551(1)g2 +O(g4) [44] to

constrain the fit:

csw =
1− 0.090254g2 − 0.038846g4 + 0.028054g6

1− (0.1551 + 0.090254)g2
. (4.17)
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Figure 4: csw for two flavors of fundamental representation fermions. The solid line is the inter-

polating fit, Eq. (4.17), and the dashed line is the 1-loop perturbative value
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C
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Figure 5: csw for two flavors of adjoint representation fermions, with the interpolating fit,

Eq. (4.18).

For the adjoint representation the perturbative result is not known, and we obtain the fit

result

csw =
1 + 0.032653g2 − 0.002844g4

1− 0.314153g2
. (4.18)

In both cases the interpolating fits are valid for β >∼ 2.5. For the adjoint fermions it is

difficult to reach smaller β-values because csw grows rapidly, and while we were able to

reach β = 2.25 the errors were too large to constrain the fit (4.18) further.
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β csw κ aM a∆M

10 1.16 0.1302552 0.00020(7) −0.0004(1)

10 1.17208 0.1301818 0.00114(7) −0.0002(1)

10 1.1774 0.1301818 0.00050(7) 0.0001(1)

10 1.17915 0.13017157 0.00037(10) 0.0002(2)

8 1.2 0.13171 −0.00156(8) −0.0004(2)

8 1.225 0.13154 0.00031(8) −0.0001(2)

8 1.227 0.1315265 0.00035(8) 0.0000(2)

8 1.23 0.1315265 −0.00018(9) 0.0000(2)

8 1.25 0.1315265 0.00003(8) 0.0003(2)

6 1.28 0.1340604 −0.00054(7) −0.0007(1)

6 1.3 0.133903 0.00034(8) −0.0003(1)

6 1.3135 0.1338131 0.00055(8) −0.0001(1)

6 1.3143 0.1338131 0.0002510) 0.0001(1)

6 1.33 0.1338131 −0.00280(8) 0.0005(1)

5 1.3 0.1363278 0.0006(1) −0.0015(3)

5 1.4 0.1356033 0.0007(1) −0.0003(3)

5 1.4058 0.136 −0.0130(2) 0.0000(3)

5 1.5 0.1348774 0.0007(1) 0.0014(3)

4 1.45 0.1391039 0.0012(2) −0.0008(3)

4 1.522 0.1385882 −0.0024(2) 0.0001(2)

4 1.6 0.1378078 0.0004(2) 0.0008(2)

3 1.6 0.145311 0.0002(2) −0.0022(4)

3 1.75 0.1435289 0.0038(2) −0.0005(3)

3 1.834 0.1426551 0.0018(2) −0.0006(4)

3 1.9 0.1419574 0.0009(3) 0.0002(4)

3 2.1 0.1400727 0.0082(2) 0.0016(3)

2.5 1.5 0.1540744 0.0021(4) −0.023(5)

2.5 2 0.147733 −0.0036(3) −0.0005(4)

2.5 2.5 0.141683 0.0015(2) 0.0005(4)

2.5 2.7 0.139561 −0.0025(2) 0.0027(9)

2.25 1.5 0.1590893 0.0306(3) −0.0019(6)

2.25 2.3 0.147733 −0.0004(3) −0.0004(5)

2.25 2.5 0.141683 0.0033(3) −0.0002(4)

Table 2: Results for the quark mass M and ∆M with two fermions in the adjoint representation

4.2 Non-Perturbative measurement of cA

When measuring csw for adjoint fermions we chose to keep the coefficient cA at the pertur-

bative value. In figure 6 we show how the choice of cA affect ∆M(3T/4) with certain choice

of parameters. Typically cA is between −0.005 and −0.01 at the range of β we explored.

We see that even differences of this order have small effect to ∆M .
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β csw β csw
8 1.082(2) 4 1.190(8)

6 1.109(3) 3 1.309(13)

5 1.145(8) 2.5 1.430(19)

Table 3: Results for csw with two flavors of fermions in the fundamental representation

β csw β csw
10 1.159(3) 4 1.476(17)

8 1.197(8) 3 1.805(23)

6 1.291(3) 2.5 2.059(74)

5 1.376(9) 2.25 2.593(215)

Table 4: Results for csw with two flavors of fermions in the adjoint representation
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Figure 6: The dependence of ∆M(3T/4) of cA. The measurement was done with β = 4 and

csw = 1.522.

To verify the accuracy of our choice we have also estimated a non-perturbative value

for cA. For this we have used the same improvement condition as in [45]. We do simulations

with two different values of the fermion phase θ in the boundary conditions 2.16, using the

measured values of csw and κc above. Without any discretisation errors the difference in

the measured masses should be equal to the tree level value. Requiring that this condition

is met, we can find an estimate of cA.

From two simulations with θ = 0 and θ = π/2 we calculated the discretisation effect

∆M(cA)
′ =M (x0 = 8; θ = 0, cA)−M (x0 = 8; θ = π/2, cA)− δ, (4.19)

where δ is the tree level value of the difference. It is similar to the tree level correction in

equation 4.11 and is relatively small. These simulations were done using a trivial boundary

condition, where all the boundary matrices were set to unity. Depending on the lattice

coupling between 2000 and 35000 trajectories were performed for each value of θ.
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Figure 7: cA for two flavors of adjoint fermions. The solid line is the interpolating fit, Eq. (4.17),

and the dashed line is the 1-loop perturbative value

As the quark mass, and therefore ∆M ′ is simply linearly dependent on cA, we can

measure ∆M ′ for two of values of cA to find the correct value where ∆M ′ = 0.

β cA β cA

10 −0.0043(5) 4 −0.0092(12)

8 −0.0056(4) 3 −0.0114(13)

6 −0.0053(6) 2.5 −0.0244(23)

5 −0.0087(5)

Table 5: Results for cA

The results for cA are given in table 5 and depicted in figure 7. We see that in the

region where we have measured csw and cA, it is justified to use the perturbative value for

cA.

5. Conclusions and outlook

We have calculated O-improvement of SU(2) gauge theory with two Wilson fermions in the

fundamental or adjoint representation. The main results are the non-perturbative evalua-

tion of the Sheikholeslami-Wohlert clover coefficient csw and the perturbative calculation

of the boundary improvement terms needed for full improvement in the Schrödinger func-

tional formalism. The result for csw is generally applicable to lattice simulations of these

theories. We also verified that the axial current improvement coefficient cA is well described

by the 1-loop perturbative formula in the range of lattice spacings studied. In addition to

the perturbative results on SU(2) gauge theory and adjoint fermions, we obtained results

also for SU(3) and adjoint or sextet fermions which will be useful also for other groups

studying these theories.
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The main application for the improved action is more accurate lattice Monte Carlo

analyses of the candidate theory for minimal walking technicolor, SU(2) gauge theory with

two adjoint representation fermions. The boundary improvement terms permit improved

measurement of the evolution of the coupling constant with the Schrödinger functional

scheme. Indeed, in earlier unimproved analyses [17, 19] significant cutoff effects were ob-

served at coarse lattices. The measurement of the coupling with the improved action is left

for future work.
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Abstract

We study Casimir scaling and renormalization properties of Polyakov loops in different ir-
reducible representations in SU(N) gauge theories; in particular, we investigate the approach
to the large-N limit, by performing lattice simulations of Yang-Mills theories with an increas-
ing number of colors, from 2 to 6. We consider the twelve lowest irreducible representations for
each gauge group, and find strong numerical evidence for nearly perfect Casimir scaling of the
bare Polyakov loops in the deconfined phase. Then we discuss the temperature dependence
of renormalized loops, which is found to be qualitatively and quantitatively very similar for
the various gauge groups. In particular, close to the deconfinement transition, the renormal-
ized Polyakov loop increases with the temperature, and its logarithm reveals a characteristic
dependence on the inverse of the square of the temperature. At higher temperatures, the
renormalized Polyakov loop overshoots one, reaches a maximum, and then starts decreasing,
in agreement with weak-coupling predictions. The implications of these findings are discussed.
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1 Introduction and motivation

The change of state to a deconfined phase at high temperatures or densities is a very important
phenomenon in quantum chromodynamics (QCD) and in other non-Abelian gauge theories. While
at zero and low temperatures the physical states are color-singlet hadronic states, in the high-
temperature limit the physical running coupling becomes small, due to asymptotic freedom, and
one expects that the physics should be described in terms of a gas of weakly interacting quarks
and gluons [1]: the quark-gluon plasma (QGP) [2]. These two qualitatively different phases
should be separated by a phase transition or a crossover, which has been searched for in an
extensive experimental heavy-ion collision programme since the 1980’s. The results obtained at
SPS, RHIC and LHC during the last decade show, indeed, convincing evidence for the creation of
a new state of matter at temperatures about 160 MeV, which behaves as an almost ideal fluid [3].
The experimental research on the QCD phase diagram will be continued and extended at FAIR
and NICA.

On the theoretical side, however, the quantitative understanding of the QCD plasma is still
an open problem. One of the reasons for this is that the deconfined plasma retains some non-
perturbative features even in the limit of high temperatures T . In particular, the presence of
severe infrared divergences in weak-coupling expansions for thermal gauge theories leads to non-
analytical properties of the perturbative series for various physical observables, and to a break-
down of the correspondence between loop expansions and expansions in powers of the coupling [4].
As a consequence, the long-wavelength modes of the QGP are strongly coupled at all tempera-
tures, and thus cannot be treated perturbatively—see ref. [5] for a review. Finally, at the typical
temperatures probed in experiments, the physical coupling of QCD turns out to be relatively
small, but not extremely so, and perturbative predictions fail close to the deconfinement temper-
ature [6].

For these reasons, the theoretical study of the QGP at temperatures close to the deconfining
transition is usually addressed with non-perturbative methods, including, in particular, numerical
simulations on the lattice [7]. During the last decade, lattice computations of the equation of
state in QCD with light dynamical quarks have reached high levels of precision, and showed that
the deconfinement at finite temperature and vanishing quark chemical potential (for physical
values of the quark masses) is a crossover, rather than a genuine phase transition. In fact, in
QCD with quarks of finite mass there is no exact symmetry-breaking pattern to characterize the
deconfinement.

By contrast, pure SU(N) Yang-Mills theories (which capture most of the qualitative features
of the physics of deconfinement) provide much a cleaner theoretical setup: in the Euclidean for-
mulation, it is easy to see that the Lagrangian of SU(N) Yang-Mills theories at finite temperature
is invariant under a global symmetry associated with the center of the gauge group ZN [8]. The
order parameter for this symmetry is the trace of the temporal Wilson line, or Polyakov loop [9]:

L = 〈TrL(~x)〉 =

〈
TrP exp

[
ig0

∫ 1/T

0
dτA0(τ, ~x)

]〉
. (1)

In the thermodynamic limit, the ground-state expectation value of L is exactly vanishing in the
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low-temperature phase, while it becomes non-zero above the critical deconfinement temperature
Tc, signaling the spontaneous breakdown of center symmetry. Although L, per se, is not a
physical observable, it can be interpreted as the trace of the propagator of an external, infinitely
massive probe color charge located at ~x: a vanishing L in the ZN -symmetric ground state at
low temperatures T < Tc means that the expectation value of a static color charge is zero, and
hence the system is confined. On the contrary, L is non-zero in the high-temperature phase
at T > Tc, corresponding to a finite free energy for the probe color charge in the deconfined
phase. Thus, L has the meaning of an order parameter for the finite-temperature deconfinement
transition in Yang-Mills theory. Another possible order parameter for the transition is given
by the two-point Polyakov loop correlation function: across the phase transition, it changes
from confining to exponentially screened. The Polyakov loop correlation function extracted from
lattice simulations at finite temperature is often used as an input for effective potential models
for quarkonia [10]; however, certain subtleties related to the connection between the real- and the
imaginary-time formalism, and to the spectral decomposition into singlet and octet contributions
to the corresponding free energies have recently been pointed out in the literature [11].

Note that the free energy associated with the bare Polyakov loop defined by eq. (1) is a
divergent quantity, and hence needs to be renormalized [12].

In general, in SU(N) Yang-Mills theory the Polyakov loop is an order parameter for a probe
charge in a generic irreducible representation of the gauge group with non-zero N -ality (i.e.,
a representation transforming non-trivially under the center of the group). The free energy
associated with charges in different irreducible representations is expected to be proportional to
the eigenvalue of the corresponding quadratic Casimir operator 〈C2〉 [13]. This property is called
“Casimir scaling”: it is not specific to Polyakov loops, and indeed it has been studied for various
other observables [14] (see also ref. [15] for a discussion). For the Polyakov loop, perturbative
calculations predict Casimir scaling to hold at the lowest orders [16] (deviations from Casimir
scaling are predicted to occur only at O(g6)).

In this work, we study the behavior of bare and renormalized Polyakov loops in non-Abelian
gauge theories with a different number of colors, from 2 to 6, discussing various renormalization
methods, and comparing our results to those of recent, similar studies for SU(3) [17–19] and
SU(2) [20–22] Yang-Mills theories. In particular, we investigate the features that emerge when
N is large. The motivations for looking at the limit of a large number of colors are manifold.
First of all, the large-N limit of QCD at fixed ’t Hooft coupling λ = g2N and fixed number of
flavors Nf is known to lead to dramatic mathematical simplifications [23]. For the phase diagram
of QCD-like theories, the large-N limit has also interesting implications for new phases at high
density [24]. Furthermore, it plays a technically crucial rôle in holographic computations, inspired
by the conjectured equivalence of maximally supersymmetric Yang-Mills theory with N = 4
supercharges in four dimensions and supersymmetric type IIB string theory in a 10-dimensional
AdS5 × S5 spacetime [25]. This conjecture relates the large-N limit of the strongly coupled
gauge theory to the classical gravity limit of string theory in a five-dimensional anti-de Sitter
spacetime, which can be studied analytically. While at zero temperature the N = 4 theory is
qualitatively very different from QCD, there are arguments suggesting that at finite temperature
the two theories should share at least some qualitative (or semi-quantitative) physical features [26].
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Calculations based on the gauge/string duality have also been extended to various other models,
which mimic the features of QCD either by breaking explicitly some of the symmetries of the
N = 4 theory using some additional ingredients (“top-down” approach), or by constructing some
ad hoc five-dimensional gravity model, which should reproduce the properties of QCD (“bottom-
up” approach). These models are often used to study analytically certain features of the strongly
coupled quark-gluon plasma [27].

One important technical aspect in all holographic computations is that they are based on
the approximation of an infinite number of colors in the gauge theory: this limit allows one to
neglect loop effects in the dual string theory, i.e. to reduce it to its classical limit. Recent lattice
studies have showed that the large-N limit is indeed a good approximation for the physical SU(3)
case, both as it concerns spectral and thermal observables [28]; remarkably, this also holds for
theories in 2+1 spacetime dimensions [29]. However, the validity of the infinite-N approximation
is, in general, a non-trivial issue, which can depend on the observable considered, and should be
studied on a case-by-case basis.

In the context of gauge/string duality, the behavior of the renormalized Polyakov loop as
a function of the temperature has been recently discussed in refs. [30–32]. In particular, in
ref. [30] it was argued that, in strongly coupled theories with a holographic dual, the renormalized
Polyakov loop should be monotonically increasing with T . This is in contrast with perturbative
computations [16], which predict that the leading-order correction to the free limit is positive, and
hence that the renormalized loop Lren should tend to unity from above in the high-temperature
limit. However, it should be noted that these two theoretical predictions are expected to hold
in the strong- and in the weak-coupling regime, respectively. A holographic prediction for the
renormalized Polyakov loop was worked out analytically in ref. [31], using a simple holographic
model with one deformation parameter [33]. This work found that, at the leading order in a
high-temperature expansion, the logarithm of the Polyakov loop in the strong coupling regime
should be given by the sum of a constant plus a term proportional to (Tc/T )2, an effect which
has also been observed and discussed in refs. [34–36].

The properties of renormalized Polyakov loops in theories based on different gauge groups
are also of interest for effective models of the quark-gluon plasma in the region near Tc, see
refs. [18,37,38] and references therein. In particular, the behavior in the large-N limit may reveal
analogies with the third-order transition that one finds in 1 + 1 dimensions [39]. Moreover, at
large N one expects that different irreducible representations become equivalent, up to O(1/N)
corrections: for example, the two-index symmetric and antisymmetric representations are ex-
pected to be equivalent for N →∞. Furthermore, using the group theoretical tools of composite
representations [40] (see the appendix A for details), it is possible to show that in the large-N
limit the eigenvalue of the quadratic Casimir remains O(N).

Finally, the finite-temperature properties of strongly coupled gauge theories based on different
gauge groups and with dynamical fermions in various representations are also interesting for
extended technicolor models [41].

With this motivation, in this work we address a first-principle lattice study of Polyakov loops
at finite temperature in SU(N) gauge theories with a different number of colors N , and for several
irreducible representations. In particular, we consider the twelve lowest non-trivial irreducible
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representations of each gauge group, and investigate the Casimir scaling at temperatures close to
the deconfinement transition. Then we define non-perturbatively renormalized Polyakov loops,
discussing various renormalization methods that have recently been proposed in the literature.
While all our computations are performed in the setup of the pure Yang-Mills theory, it is worth
remarking that, in the ’t Hooft limit, the dynamics of gluons dominates, with the contributions
from virtual quark loops suppressed by powers of 1/N : the large-N limit of QCD is a unitary
quenched theory, and by virtue of this, in this limit it is legitimate to consider only the glue
sector of the theory on the lattice. This allows one to avoid the complications arising from lattice
fermions, and to achieve a smoother approach to the planar limit (the leading-order finite-N
corrections in the glue sector are proportional to 1/N2).

In section 2 we define the setup of our lattice computations and the method to extract the
renormalized Polyakov loop free energies. Our results are presented in section 3, while in section 4
we discuss their implications, and summarize our findings. Some useful group-theoretical formulæ
are listed in the appendix A.

Preliminary results of this study were presented in ref. [42].

2 Lattice simulation setup

Our numerical simulations are based on the regularization of SU(N) Yang-Mills theories with N =
2, 3, 4, 5 and 6 colors on a four-dimensional Euclidean hypercubic, isotropic lattice Λ of spacing
a, with periodic boundary conditions in all directions. We use natural units (~ = c = kB = 1), so
that the temperature equals the inverse of the size of the system in the compactified Euclidean
time direction: T = 1/(aNt), and denote the spatial volume of the lattice as V = (aNs)

3.
For most of our simulations at finite temperature, we used lattices characterized by an aspect
ratio Ns/Nt ≥ 4, which provides a good approximation of the thermodynamic limit [43]. The
fundamental degrees of freedom in the lattice regularization of the theory are a discrete (and
finite, if one considers a finite hypervolume) set of Uµ(x) matrices in the N × N representation
of the group, which are defined on (and represent parallel transporters along) the oriented bonds
between nearest-neighbor sites on the lattice. The functional integral defining the continuum
partition function of the system is traded for a well-defined, finite, multi-dimensional ordinary
integral:

Z =

∫ ∏
x∈Λ

4∏
α=1

dUα(x)e−S
E
L , (2)

where dUα(x) is the Haar measure for each Uα(x) ∈ SU(N) link matrix, and SE
L denotes a gauge-

invariant lattice action. The simplest choice for SE
L is given by the Wilson gauge action [44]:

SW = β
∑
x∈Λ

∑
1≤µ<ν≤4

[
1− 1

N
Re TrU1,1

µ,ν(x)

]
, (3)

with β = 2N/g2
0 and:

U1,1
µ,ν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x). (4)
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However, in our study we used the tree-level improved gauge action [45,46]:

Simp = β
∑
x∈Λ

∑
1≤µ<ν≤4

{
3

2
− 1

N
Re Tr

[
5

3
U1,1
µ,ν(x)− 1

12
U1,2
µ,ν(x)− 1

12
U1,2
ν,µ(x)

]}
, (5)

where:
U1,2
µ,ν(x) = Uµ(x)Uν(x+ aµ̂)Uν(x+ aµ̂+ aν̂)U †µ(x+ 2aν̂)U †ν (x+ aν̂)U †ν (x). (6)

Assuming that the Uµ(x) group variables are related to the continuum gauge fields Aaµ(x)ta via:
Uµ(x) = exp[iag0A

a
µ(x + aµ̂/2)ta], it is straightforward to show that both SW and Simp tend to

the Yang-Mills action in the continuum limit a → 0, but the tree-level improved action defined
by eq. (5) is characterized by smaller discretization effects than those of the Wilson action.
Expectation values of gauge-invariant physical observables O on the lattice are defined by:

〈O〉 =
1

Z

∫ ∏
x∈Λ

4∏
µ=1

dUµ(x) O e−S
E
L (7)

and can be estimated numerically by Monte Carlo sampling over a finite set of {Uα(x)} configura-
tions; in the following, we denote the number of configurations used in our computations as nconf.
The algorithm we used to generate the configurations is based on a 3 + 1 combination of local
overrelaxation [47] and heat-bath [48] updates on N(N − 1)/2 SU(2) subgroups of SU(N) [49].
The parameters of our lattice simulations are shown in tab. 1.

N Ns Nt βmin βmax nβ nconf

2 20 5 1.5 16.5 46 2.5× 104

3 20 5 4 7.8 20 1.8× 104

4 20 5 7 7.45 4 2.5× 104

20 5 7.6 15.03 40 3× 104

24 5 7 9.85 20 2× 104

16 16 7.25 9.05 11 3× 103

5 20 5 12 16.6 30 2× 104

16 16 12.1 13.7 9 8× 103

6 20 5 17 25.6 40 2× 104

Table 1: Parameters of the lattice simulations used in this work. N denotes the number of colors,
Ns and Nt are the number of sites along the space-like and time-like sizes of the lattice, nβ is
the number of β-values that were simulated, in the βmin ≤ β ≤ βmax interval. For each set of
parameters, the number of thermalized configurations, that we used in our numerical estimates,
is shown in the last column.

Converting the simulation results to physical units requires a definition of the lattice scale.
In order to set the scale for our simulations with the improved action, we calculated the T = 0
static potential in lattice units from expectation values of Wilson loops 〈W (r, L)〉:

V (r) = a−1 lim
L→∞

ln
〈W (r, L− a)〉
〈W (r, L)〉

. (8)
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In particular, we extracted the potential from Wilson loops defined from smeared links, using five
levels of smearing for the spacelike links (leaving the timelike links unsmeared). The values of
V (r) thus obtained are then fitted to the Cornell potential:

V (r) = σr + V0 +
γ

r
, (9)

enabling one to extract σ (as well as V0 and γ) in lattice units; statistical errors are estimated
with a jackknife analysis. All fits give χ2

red values close to 1, and the γ parameter is always very
close to the bosonic string prediction: γ = −π/12 [50] (see fig. 1 in ref. [42]).

Note that this non-perturbative definition of the scale is not unique: in general, it would be
equally legitimate to define the value of a (for a given β), using the lattice results for a different
dimensionful physical observable—for example, the critical temperature Tc [51]. On a finite-
spacing lattice, different physical observables are generally affected by different discretization
artifacts, and hence lead to slightly different definitions of the scale. This ambiguity is a systematic
effect in the scale determination, but the associated relative uncertainty is numerically small, and
vanishes in the continuum limit a→ 0.

On the lattice, the trace of the bare Polyakov loop in the irreducible representation r can be
defined as:

Tr

Nt∏
nt=1

U
(r)
t (~x, ant) , (10)

where g(r) denotes the value of the group element g in the irreducible representation r. Note
that the matrix elements of a generic g(r) can be easily obtained from those of g in the defining
representation, by means of basic relations of representation theory. In particular, the characters
of group elements in different irreducible representations can be easily expressed using Young
calculus and the Weyl formula [52] (see the appendix A for details).

Note, however, that, due to the finiteness of the number of degrees of freedom on any finite
lattice, the expectation value of the operator defined in eq. (10) would always be vanishing,
both in the confining and in the deconfined phase. In the latter, in particular, the barriers
separating different center sectors in the phase space are always finite for a finite lattice, so that
any (sufficiently long, ergodic) simulation would probe all center sectors, leading to a vanishing
expectation value for the average Polyakov loop. Since all numerical simulations are necessarily
performed on finite lattices, it is more convenient to compute the expectation value of the modulus
of the average Polyakov loop on each gauge configuration:∣∣∣∣∣ 1

N3
s

∑
~x

Tr

Nt∏
nt=1

U
(r)
t (~x, ant)

∣∣∣∣∣ . (11)

Although this quantity is not an exact order parameter, it is an efficient probe of the deconfine-
ment transition (for any irreducible representation r of non-zero N -ality), since its expectation
value tends to zero in the confining phase, while it remains finite in the deconfined phase. Hence-
forth, we use eq. (11) to define the expectation values of bare Polyakov loops in our lattice
simulations.
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3 Results

3.1 Setting the scale

To determine the scale for our simulations with the tree-level improved lattice action, we fit our
results for a2σ (as extracted from Cornell fits of the T = 0 potential using smeared Wilson loops)
at the largest couplings to the functional form:

a2σ = exp{−[A0 +A1(β − β0) +A2(β − β0)2 +A3(β − β0)3]}, (12)

where β = 2N/g2
0, and β0 is an arbitrary reference value in the β-range of our simulations.

As an example, fitting the SU(3) data taken from ref. [46] to eq. (12) (choosing β0 = 4.3)
yields:

a2σ = exp
{
−2.660(12)− 3.145(66) · (β − 4.3) + 0.97(11) · (β − 4.3)2 − 0.33(26) · (β − 4.3)3

}
,

(13)
with χ2

red = 0.34. The corresponding data, together with the fitted curve, are shown in the top
panel of fig. 1.

Similarly, our data for the SU(4) gauge group yield:

a2σ =

{
exp

{
−3.894(38)− 1.21(14)(β − 9)− 0.41(16)(β − 9)2 − 0.320(55)(β − 9)3

}
for β < 8

exp{−1.165(29)β + 6.54(23)} for β ≥ 8
,

(14)
with χ2

red = 1.22, and are shown in the central panel of fig. 1, while for SU(5) we obtain:

a2σ =

{
exp

{
−3.021(15)− 0.682(17)(β − 13) + 0.214(30)(β − 13)2

}
for β < 12.7

exp{−0.636(35)β + 5.28(45)} for β ≥ 12.7
, (15)

with χ2
red = 3.41, see the bottom panel in fig. 1.

3.2 Casimir scaling

The first issue that we investigated is Casimir scaling of bare Polyakov loops, i.e., whether the free
energy associated to bare Polyakov loops in a given irreducible representation r is proportional
to the eigenvalue of the quadratic Casimir 〈C2〉 of that representation. To study this problem,
we rescaled the loop free energies by the ratio of the Casimir in the given representation over the
one in the fundamental representation f . This corresponds to raising the values of the loops to
the power 1/d, where:

d = 〈C2〉r/〈C2〉f (16)

(the values of d are reported in the appendix A).
Our results for the SU(4) gauge theory are displayed in fig. 2, which shows the values of L1/d

for the twelve different representations, as obtained from simulations with the tree-level improved
action on a lattice with Nt = 5 and Ns = 20 sites along the Euclidean time and spatial directions,
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Figure 1: The top panel shows a fit of the results for the string tension in lattice units in the
SU(3) gauge theory, taken from ref. [46], to the functional form in eq. (13). The central and
bottom panels display the fits of our results for the string tension in lattice units to eq. (14) in
SU(4) and SU(5) Yang-Mills theories, respectively.
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respectively. If Casimir scaling holds, then this rescaling should make the values corresponding to
higher representations collapse onto those of the fundamental representation (for which d = 1).
Note that, in this plot, the data are displayed as a function of β = 2N/g2

0: since the bare
loops do not depend only on the temperature T , but also on the bare coupling g0, it is natural to
display these values (from simulations at fixed Nt) as a function of β. This also allows one to avoid
introducing any potential ambiguity related to the definition of the temperature scale. In any case,
the mapping between β and T at fixed Nt is just a scale redefinition, which, for the parameters
of interest, can be directly obtained combining eq. (14) with the relation: T = 1/(aNt). In order
to give an idea of the temperatures involved, we also display tick marks corresponding to a few
reference temperatures along the upper horizontal axis.

Our results show an approximately perfect Casimir scaling in the deconfined phase, for all the
representations that we considered. Although the bare values of loops in different representations
vary by orders of magnitude, rescaling their free energies according to the corresponding quadratic
Casimir eigenvalues makes them fall onto the same, universal curve. Our data show that the only
significant deviations from this behavior (apart from the obvious ones in the confined phase, where
Casimir scaling is not expected to hold) are visible for strongly suppressed high representations,
which are most sensitive to finite-volume effects. For example, the rescaled bare loops in the
representations denoted as 20′′, 35, 50 and 56 show significant deviations from the curve of the
other data for temperatures T . 1.75 Tc, while they collapse on that curve at higher temperatures
(for L1/d & 0.2). This is simply due to the fact that, for these representations, for T . 1.75 Tc
the expectation value of the corresponding loops in the thermodynamic limit is smaller than the
(non-vanishing) average value of |L| computed on a lattice of finite volume. This is the same
effect that, on any finite lattice, is responsible for the non-vanishing values of |L| in the confining
phase.

Fig. 3 gives evidence of this: the left panel shows our results for bare Polyakov loops in the
fundamental representation of SU(4), obtained from lattices of two different spatial volumes, V =
(20a)3 and V = (24a)3. The results of the two sets of simulations are compatible with each other
in the deconfined phase (signaling that finite-volume corrections to the critical value of β are small
for both ensembles), whereas the data obtained from the larger lattice are strongly suppressed in
the confining phase, in agreement with the expectation that the average Polyakov loop is exactly
zero in the thermodynamic limit. The right panel shows the same comparison, for loops in the
representation of size 56: for high-dimensional representations like this, the thermodynamic limit
value of the Polyakov loop is very small, even in large regions of the deconfined phase, and thus
it is overwhelmed by finite-size artifacts on the lattices that we considered. As fig. 2 shows, for
such representations it is only at very large values of β (i.e., at very high temperatures) that the
contribution surviving the thermodynamic limit becomes dominant over finite-volume artifacts.

In principle, one could perform an extrapolation to the thermodynamic limit, by repeating
the simulations on a series of lattices of increasing volume. However, it should be pointed out
that this would require a non-trivial computational effort for higher representations, especially at
temperatures close to the deconfinement region. While this task is beyond the scope of the present
work, we emphasize that the results displayed in the right panel of fig. 3 give strong support to
the interpretation of the deviation from Casimir scaling for high representations close to the
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Figure 2: Temperature dependence of bare SU(4) Polyakov loops in different representations, after
dividing their free energies by (a quantity proportional to) the eigenvalue of the corresponding
quadratic Casimir 〈C2〉r. This plot displays the results we obtained from simulations with the
tree-level improved action, on lattices with Nt = 5 and Ns = 20 sites along the compactified
time and spatial directions, respectively. The deviations from Casimir scaling observed for high
representations close to the deconfinement transition are, likely, due to finite-volume effects (see
the text for a detailed discussion).

deconfinement region in our data as a phenomenon which is (at least partially) due finite-volume
artifacts. In particular, this plot (in which the scale on the vertical axis is logarithmic) shows
that, for this high representation, an increase of the lattice volume by a factor approximately
equal to 1.73leads to a nearly uniform shift of all data towards smaller values, and that this
happens both in the confined and in the deconfined phase. The comparison with the left panel,
which shows that in the same range of couplings (i.e., of temperatures) and for the same values
of V , our numerical results for the fundamental representation are sensitive to this shift only in
the confined phase, is strongly suggestive that, at temperatures close to Tc, the numerical data
for high representations are dominated by finite-volume effects, and, hence, that the deviations
from Casimir scaling observed in fig. 2 do not necessarily survive in the thermodynamic limit.

Our results for bare Polyakov loops in different representations (rescaled by dividing the
respective free energies by the factor d, proportional to the quadratic Casimir eigenvalue of the
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Figure 3: Left-hand side panel: Comparison of bare SU(4) Polyakov loops in the fundamental
representation, obtained from lattices of different volumes: in the confined phase, the results
tend to zero in the thermodynamic limit. Right-hand side panel: Loops in high-dimensional
representations (such as the 56, displayed in this plot), whose expectation values are strongly
suppressed, are particularly sensitive to finite-volume artifacts.

corresponding representation) for the SU(2), SU(3), SU(5) and SU(6) theories are displayed in
fig. 4: they reveal the same behavior observed for the SU(4) gauge group. Furthermore, comparing
the plots of the rescaled bare loops for different groups, one also observes that, when N grows, the
numerical study of higher representations simplifies, in the sense that they tend to be less sensitive
to finite-volume effects. This is related to the fact that, in general, for N → ∞ the quadratic
Casimir grows only linearly with N , and with the number of fundamental and anti-fundamental
indices out of which a generic representation is built (see the appendix A for a discussion). For
example, while the d factor for the highest SU(2) representation considered here (i.e., for the
twelfth lowest, non-trivial) is equal to 56, its value for the twelfth SU(6) representation is less
than 6. As a consequence, from this point of view, the study of higher representations at large
N actually becomes simpler than for smaller gauge groups.

Note that, deep in the weak-coupling region, one could compare the simulation results with
the predictions from lattice perturbation theory. In particular, for the Wilson action the latter
have been known for many years [53]. However, since our simulations are based on the tree-level
improved action, rather than the Wilson action, we did not perform such a comparison.

3.3 Renormalized Polyakov loops

Finally, we present our results for the renormalized Polyakov loops, restricting our attention
to loops in the fundamental representation. Our renormalization procedure is based on the
determination of the constant term V0 in the T = 0 interquark potential extracted from the
lattice, at each value of the bare coupling. More precisely, we define the renormalized Polyakov
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Figure 4: The top left panel shows results analogous to those in fig. 2, but for the SU(2) Yang-
Mills theory. The inset shows the convergence to a universal curve, in a parameter range where
finite-volume effects cease to dominate the results for higher representations. Similarly, the top
right panel shows the corresponding results for the SU(3) gauge group, whereas the bottom left
and bottom right plots display the results for the SU(5) and SU(6) theories, respectively.
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loop as:
〈Lren〉 = ZNt〈L〉, with: Z = eaV0/2, (17)

where aV0 is obtained from our fits of the interquark potential. Note that, in the expression
above, the renormalized loop Lren is expected to depend only on the physical temperature T ,
while the bare one L depends both on g2

0 and on Nt. On the other hand, Z depends only on g2
0.

Note that, since eq. (17) defines 〈Lren〉 in the fundamental representation through the charge
renormalization factor Z, it follows that the corresponding factors for any higher representation
can be defined as Zd, with d defined in eq. (16).1 As a consequence, with this renormalization
procedure, it follows that renormalized Polyakov loops in higher representations obey Casimir
scaling, if the corresponding bare ones do. This is no longer necessarily true, if a different renor-
malization prescription is used (see below for a discussion). However, previous studies of the
SU(3) gauge theory revealed that renormalized loops still obey Casimir scaling to very high accu-
racy, even when different renormalization methods (involving renormalization factors which are,
a priori, independent for each representation) are used—see, e.g., ref. [19]. Since these alternative
renormalization methods are, typically, quite noisy and not ideally suited for computationally de-
manding simulations of SU(N > 3) gauge theories, in the present work we restricted our analysis
to the renormalization prescription defined by eq. (17), focusing our attention on the fundamental
representation.

For SU(4), in the temperature region that we are most interested in (i.e., in the deconfined
phase, close to Tc), our fits show that an accurate parameterization of Z(g2

0) is of the form:

Z(g2
0) = exp[−0.166(21)g2

0 + 0.259(28)g4
0], (18)

for g2
0 ≤ 0.8; the quoted errors are conservative. Using eq. (18) to renormalize the bare loops

obtained from our simulations with Nt = 5, Ns = 20, we obtain the renormalized Polyakov loop
values displayed in the top panel of fig. 5, in which the displayed errorbars also include an estimate
of the systematic uncertainties related to scale setting and renormalization prescription choice
(which are discussed below). The inset shows a comparison of our data over a broader range (with
extrapolation in the scale setting and in the parameterization of the renormalization constant)
with the perturbative prediction for this gauge group, taken from ref. [16]. In particular, the
upper solid curve is obtained using one-loop estimates for the coupling and Debye mass, whereas
the lower dashed curve is obtained from two-loop estimates of these quantities [54]. The figure
shows that the renormalized loop takes a value close to 1/2 for T → T+

c , and increases with the

1One could also imagine to define the renormalization factor for a higher representation r, by extracting the
constant term of the potential between static sources in that representation. However, this procedure would be
very tricky, for several reasons. In particular, sources in representations of vanishing N -ality at T = 0 get com-
pletely screened at large distances, while for representations of non-zero N -ality it is well-known that the confining
behavior at asymptotically large distances is characterized by the string tension of the smallest representation
with the same N -ality (although, at intermediate distances, the slope of the confining potential can be different).
Moreover, extracting the confining potential from lattice calculations of Wilson loops in higher representations is
computationally very demanding, due to the strong suppression of the signal-to-noise ratio, which is exponentially
damped with the loop sizes and with the string tension. These features make a proper definition of aV0 for high
representations subtle, and its extraction from lattice simulations particularly challenging.
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temperature, overshooting 1 at T ' 3.4Tc. Extrapolating our parameterizations for the scale
and for Z to a range of small coupling values (in which we have not performed non-perturbative
computations of the T = 0 interquark potential), we find that the renormalized fundamental loop
in the SU(4) theory reaches a maximum (about 1.07) at temperatures around 30Tc, then starts
decreasing and approaching the next-to-next-to-leading order perturbative prediction, which, for
the SU(N) Yang-Mills theory, reads [16]:

Lren = 1 +
g2mE〈C2〉f

8πT
+
g4N〈C2〉f

(4π)2

(
ln
mE

T
+

1

4

)
+O(g5), (19)

where g denotes the physical coupling, and mE is the Debye mass. The behavior we observe in
our SU(4) data is consistent with the results obtained for SU(3) in previous studies [17–19].

Similarly, our results for the SU(5) gauge group are based on the following parameterization
of Z(g2

0):
Z(g2

0) = exp[0.4115(26)g2
0], (20)

for g2
0 ≤ 0.8, and are displayed in the bottom panel of fig. 5. Similarly to the case of four colors,

also in the SU(5) theory the renormalized loop has a value close to 1/2 for T → T+
c , and increases

up to values larger than 1.
Finally, in fig. 6, we show (minus twice) the logarithm of the renormalized fundamental

loops for the SU(4) and SU(5) gauge groups, as a function of the inverse of the square of the
temperature. As it was already observed in the case of the SU(3) theory [35], at temperatures
between Tc and a few times Tc, the logarithm of the renormalized Polyakov loop appears to be
of the form:

− 2 lnLren = m

(
Tc
T

)2

+ q. (21)

In fig. 6, the straight lines are fits (in the temperature ranges shown in the plot legends) to eq. (21),
which yield m = 1.1166(55), q = −0.0959(11), with χ2

red = 0.004 for SU(4) and m = 1.4283(62),
q = −0.3056(15), with χ2

red = 0.003 for SU(5). The small χ2
red values are due to the fact that

the errorbars affecting our numerical results are dominated by the systematic uncertainties, for
which we could only provide a crude, but conservative, estimate.

Note, however, that the statement, that the logarithm of the renormalized Polyakov loop is of
the form appearing on the right-hand side of eq. (21), is a scheme-dependent one. For example,
redefining the renormalized Polyakov loop free energy with the addition of a constant, would
introduce an additive contribution O(T−1) to the logarithm of the renormalized loop. We find
that the statement holds for the renormalization scheme that we discussed here (see also ref. [17]).

In view of this observation, one may wonder, whether there are arguments supporting our
scheme choice, rather than others. As discussed above, our renormalization scheme for the
Polyakov loop is based on the subtraction of the constant term appearing in the T = 0 po-
tential between two static sources. This reduces the form of the renormalized confining potential
to:

V (r) = σr +
γ

r
+O(r−2). (22)
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Figure 5: Top panel: Renormalized SU(4) Polyakov loop in the fundamental representation, as a
function of the temperature (in units of Tc), in comparison with one- and two-loop perturbative
predictions. Bottom panel: Renormalized fundamental loop, as a function of T/Tc, in the SU(5)
theory.
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The functional form appearing on the right-hand side of eq. (22) can be derived (at the leading
order in an expansion around the large-distance limit) from an effective bosonic string model
for confinement [50]. Various recent works (see, e.g., ref. [55] and references therein) show that
Lorentz-Poincaré symmetries constrain the first few terms in the expansion of the effective string
action to equal those that are obtained expanding the Nambu–Goto action [56], while corrections
only appear at high orders in 1/r. The fact that the Nambu–Goto string provides a good effective
model for the confining potential is also confirmed by extensive numerical evidence from lattice
simulations, both for SU(N) Yang-Mills theories [57] and for theories based on smaller gauge
groups [58]. Following ref. [59], it is then natural to define a renormalization scheme yielding
a T = 0 interquark potential with a vanishing constant term, eq. (22), and to apply it to the
renormalization of the Polyakov loop.

In ref. [31], a holographic prediction for the renormalized Polyakov loop was computed, using
a model with one deformation parameter [33]. The result reads:

Lren(T ) = b1 exp

{
−b2

[
√
π
Tc
T

Erfi

(
Tc
T

)
− exp

(
Tc
T

)2
]}

, (23)

where b1 and b2 are two coefficients that can be fitted, and Erfi denotes the imaginary error func-
tion. At the leading order in a high-temperature expansion, eq. (23) predicts that the logarithm
of the Polyakov loop would be given by the sum of a constant plus a (Tc/T )2 term, as observed
in the numerical data.

More recently, a holographic computation of the Polyakov loop was also performed in ref. [32],
finding good agreement with the SU(3) lattice data from ref. [19], and a numerical value of Lren(T )
very close to 1/2 for T → T+

c .
In the literature, it was suggested that the dependence of lnLren on T−2 could be due to

a non-perturbative contribution from a gluon condensate [35, 36]. Similar arguments have been
invoked to explain the behavior of the interaction measure ∆ at temperatures of the order of a few
times Tc [33,34,37,60]: in all SU(N) gauge theories, both in D = 3 + 1 [28] and in D = 2 + 1 [29]
spacetime dimensions, ∆ appears to be proportional to T 2.

3.4 Systematic uncertainties

Apart from the precision limits related to the finiteness of our statistical samples, the main
systematic uncertainties affecting our study include: ambiguities in the scale determination,
renormalization prescription dependence, effects due to the volume finiteness, and finite-cutoff
effects. Let us discuss each of them in turn.

In the temperature range of interest in this study, a reliable definition of the temperature scale
is necessarily non-perturbative, and—as discussed above—requires the choice of a dimensionful
physical observable of reference. As different observables are generally affected by different lattice
artifacts, this leads to slight ambiguities in the definition of the scale; however, this systematic
effect becomes negligible at small lattice spacings. A potentially more severe ambiguity is re-
lated to the functional form that one can choose to parameterize the data to be fitted. Rather
than interpolating our simulation results with arbitrary, arbitrarily complicated functions, in the
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Figure 6: Similarly to what was observed for the SU(3) theory [35], also the logarithm of the
SU(4) (left-hand side panel) and SU(5) (right-hand side panel) renormalized Polyakov loops
exhibits a characteristic T−2-dependence in the deconfined phase, up to temperatures of a few
times Tc. Note that the errorbars include conservative estimates of the systematic uncertainties
(see subsection 3.4).

present study we tried to use physically motivated functional forms, with a minimal number of
parameters, and estimated the systematic uncertainty related to scale setting by comparing the
results with different parameterizations, at various values of the lattice gauge coupling.

A potentially large systematic ambiguity in our computation is related to the choice of the
Polyakov loop renormalization method. In the present work, we followed the approach already
used in a similar study for the SU(2) gauge theory [21]. Other related studies discuss different
renormalization methods, which lead to roughly compatible results. In particular, the authors of
ref. [19] discussed a comparison of a renormalization method based on the QQ̄ potential (similar
to our prescription) with an iterative renormalization (based on simulations on lattices of different
spacing and at the same temperatures): these two methods appear to be compatible with each
other, although the latter has the drawback of leading to an accumulation of statistical errors,
particularly at temperatures close to Tc. A different renormalization method was suggested in
ref. [18]: there, the idea is to extract the free energy of the renormalized Polyakov loop at a
given temperature T , by identifying the Nt-independent contributions to the free energy F of
bare loops extracted from simulations on lattices of different spacing:

F = NtF
div + F ren + F lat/Nt + . . . , (24)

where F div and F lat respectively denote the coefficient of the contribution to the bare free energy
that diverges in the continuum limit, and the coefficient of the leading term due to lattice artifacts.
A problem with this method, however, is that, in order to keep the temperature T = 1/(aNt) fixed,
the lattice spacing a is obviously different for each simulation at a different Nt. Since a is tuned
by varying the bare coupling g0, this implies that F div, F ren and F lat, which generically depend
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on g0, are not held fixed when T is fixed. Yet another renormalization method was proposed in
ref. [22], following the fixed-scale approach [61]: the idea is to fix Z at only one value of the bare
coupling g0, and then to vary the temperature in the lattice simulations by varying Nt at fixed
spacing a (i.e., at fixed bare coupling). A potential drawback of this method, however, is that it
does not allow one to vary the temperature continuously. Aspects related to the renormalization
of Wilson lines have also been discussed in ref. [59]. To get a rough estimate of the systematic
uncertainty associated with the choice of a renormalization method, we compared the difference
between various methods, at different temperatures, both in our data and in the results available
in the literature.

Finally, finite-volume and finite-cutoff effects appear to be under control in our study. In
particular, the results of our simulations show that, for N ≥ 4, deviations from the thermody-
namic limit in the deconfined phase are clearly visible only for high representations, whereas they
appear to be negligible for the fundamental representation (see fig. 3). In fact, the lattices used
in the present study are characterized by an aspect ratio Ns/Nt ≥ 4, which is known to provide
a good approximation of the thermodynamic limit in the temperature range of interest [43]. As
for finite-cutoff effects, unfortunately we could not repeat all of our calculations on finer lattices,
hence we are unable to perform a continuum extrapolation of our results. The systematic error
due to cutoff effects on lattices with Nt = 5, however, is expected to be rather small for simu-
lations with the improved action that we used: previous studies for the SU(3) gauge group [19]
showed no significant discrepancies between Nt = 4 and Nt = 8.

Adding up the various sources of systematic uncertainties in quadrature, the total relative
errors on our renormalized Polyakov loops are in the range between 1% and 5% for SU(4), and
between 1.5% and 8% for SU(5).

4 Discussion and conclusions

Our main findings can be summarized as follows.

1. For all gauge groups, and for all the representations considered in this work, the bare
Polyakov loops show excellent Casimir scaling, for all values of the coupling (or, equivalently,
of the temperature), down to the deconfining transition. The only deviations, that our data
reveal, can be explained in terms of finite-volume artifacts: they especially affect the high
representations, particularly close to Tc (while they become negligible at sufficiently high
temperatures), and can be reduced by increasing the spatial volume of the system. As we
mentioned, in the literature, several works have reported evidence for Casimir scaling in
SU(N) Yang-Mills theories, including, in particular, for the T = 0 string tension associated
to the potential between two static sources in a given representation [14]. This observation
has an interesting implication related to the large-N limit. As it is well-known, for pure
SU(N) Yang-Mills theories, the expansion around the N → ∞ limit can be organized in
a series of powers of 1/N2, i.e. it does not contain odd powers of 1/N . As discussed
in ref. [62], this expectation seems to be at odds with the numerical evidence of Casimir
scaling of k-string tension from lattice simulations [14], since, in general, if Casimir scaling
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holds, then the leading finite-N corrections are O(1/N). The resolution of this apparent
paradox, however, was recently pointed out in ref. [63], and is based on a cancellation of
terms involving odd 1/N powers in the spectrum of open string states. Similar arguments
were also discussed in ref. [64].

2. In the thermodynamic limit the renormalized fundamental Polyakov loop is vanishing in
the confined phase, and jumps to a finite value at the critical temperature, compatibly
with the first-order nature of the deconfining transition. The limit of Lren for T → T+

c is
a number close to 1/2, which, interestingly, is the value that is obtained analytically for
N →∞ in 1 + 1 spacetime dimensions [39]. For T > Tc, the renormalized Polyakov loop is
at first growing with the temperature (in the regime in which the plasma is most strongly
coupled), it overshoots the value 1 at temperatures around 3Tc, reaches a maximum, and
then eventually starts decreasing, in agreement with the perturbative predictions [16].

3. In the deconfined phase, for temperatures up to approximately 3Tc or 4Tc, the logarithm of
the renormalized Polyakov loop (in the renormalization scheme that we considered here) is
described well by the sum of a term inversely proportional to the square of the temperature,
plus a constant.

4. The finite-temperature behavior of gauge theories based on different SU(N) gauge groups
appears to be qualitatively and quantitatively very similar (confirming previous studies
both in 3 + 1 [28] and in 2 + 1 dimensions [29]). The precision and accuracy limits in this
study do not allow us to extract a reliable estimate of the (small) differences between the
various groups.

In conclusion, our study shows that, in the deconfined phase, the Polyakov loop satisfies
Casimir scaling, and is only mildly dependent on the number of colors N . The independence on
the rank of the gauge group (which has also been observed for the equation of state per gluon
d.o.f. [28]) supports analytical approaches based on the large-N limit, including, in particular,
holographic computations. Our results for the renormalized Polyakov loop show that this quantity
interpolates between a regime (possibly dominated by contributions of non-perturbative nature)
in which it is increasing with T , and one in which it tends to the perturbative prediction, and
decreases with the temperature, approaching 1 from above in the weak-coupling limit for T →∞.

For the future, we plan to extend the present study of large-N gauge theories at finite temper-
ature, by looking at other observables, which could potentially reveal a stronger dependence on
the rank of the gauge group. Of particular phenomenological interest are transport and diffusion
coefficients—see, e.g., ref. [65] for a review.
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A Irreducible representations of the algebra of generators of
SU(N)

In the following, we discuss the classification of irreducible representations of the algebra of
generators of a generic special unitary group of degree N . Further details can be found, e.g., in
ref. [66].

A generic irreducible representation of the algebra of generators of SU(N) can be labelled by
N − 1 non-negative integers λ1, λ2, λ3, . . . , λN−1, with:

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λN−1 ≥ 0. (A.1)

The [λ1, λ2, λ3, . . . , λN−1] sequence can be uniquely associated to a Young diagram with rows of
lengths λ1, . . . , λN−1. An alternative way to identify an irreducible representation is in terms
of its canonical label (m1,m2, . . . ,mN−1), where the mi’s represent the differences in lengths
of subsequent rows in the corresponding Young diagram: mi = λi+1 − λi for i < N − 1, and
mN−1 = λN−1.

Particularly interesting irreducible representations of SU(N) include the fundamental one
[1, 0, 0, . . . , 0], of dimension N , the trivial one [0, 0, 0, . . . , 0] of dimension 1, and the adjoint one
[2, 1, 1, . . . , 1], of dimension N2 − 1.

More in general, the dimension of an irreducible representation is given by the formula:

N−1∏
i=1

N∏
j=i+1

li − lj
l0i − l0j

, li = λi +N − i, l0i = N − i, (A.2)

with λN = 0 or, equivalently:

1

NN

N−1∏
l=1

N−l∏
i=1

i+l−1∑
k=i

(mk + 1), with: NN =

N−1∏
t=1

(t!). (A.3)

A common way to denote irreducible representations is via their dimension; note, however, that
this may be ambiguous (except for SU(2)), since in general there can be inequivalent irreducible
representations of the same dimension. For example, SU(4) has three inequivalent irreducible
representations of dimension 20, which can be denoted as 20, 20′ and 20′′. In such cases, our
convention is to use the notation with the least primes for the representation with the smallest λi
for the minimum value of i (namely, for the representation described by a Young diagram with
the smallest number of boxes in the top row, or in the highest row which is different from the
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other representations of the same dimension). So, for instance, for SU(3) the [3, 1] irreducible
representation is denoted as 15, while the [4, 0] will be denoted as 15′; for SU(4), the [2, 1, 0] is
denoted as 20, the [2, 2, 0] is denoted as 20′, and the [3, 0] is denoted as 20′′.

The N -ality of an SU(N) representation defines its transformation properties under the center
of the group, ZN , and is given by the total number of boxes appearing in the Young diagram,
modulo N . Representations of vanishing N -ality (such as the trivial representation and the
adjoint one) are blind to the action of the transformations in the group center.

Given an irreducible representation r = [λ1, λ2, . . . , λN−1], its conjugate representation is:
r̄ = [λ1, λ1 − λN−1, λ1 − λN−2, . . . , λ1 − λ2], so that its Young diagram is obtained by fitting the
diagram of the representation r in a rectangle of N rows and λ1 columns, removing all the boxes
belonging to the Young diagram of r, and turning the diagram with the remaining boxes by an
angle π.

Obviously, two mutually conjugated representations have the same dimension, and, given
that their respective characters are obtained from each other by complex conjugation, we only
include one of them in our lists of irreducible representations. It is most natural to use the
“barred” notation for the representation with the Young diagram with more boxes, so that, for
example the [1, 0] representation of SU(3) is denoted as 3, while its conjugate representation [1, 1]
is denoted as 3̄.

Representations which are self-conjugate have real characters; in particular, this is always
the case for the trivial and for the adjoint representations. Also, note that, for a self-conjugate
irreducible representation, the canonical label is a palindrome.

In order to discuss the large-N scaling of the size and quadratic Casimir of an irreducible
representation r, it is convenient to introduce the non-negative integers l and m, which represent
the minimum number of fundamental and anti-fundamental factors from which the representation
r can be constructed (by tensor products). l andm can be easily obtained from the Young diagram
of r: l is given by the sum of the number of boxes in all columns of length not larger than N/2,
while m is given by the sum of the number of missing boxes in all columns of length larger
than N/2. The N -ality of a representation is given by (l −m) modulo N . In the large-N limit,
it is possible to show [40] that characters of different representations only depend on l and m,
and that, although the dimension of the representation r grows like N l+m, the eigenvalue of the
quadratic Casimir is linear in N :

〈C2〉r =
N

2
[l +m+O(1/N)] . (A.4)

For SU(2), all irreducible representations are self-conjugate. The Young diagram of a generic
irreducible representation of spin j = n/2 consists of one horizontal row of n boxes; bosonic
representations correspond to even values of n, and have vanishing N -ality, while fermionic rep-
resentations correspond to odd values of n, and their N -ality is 1. The associated canonical label
is (n) (with l = n, m = 0), the dimension is n+1, the eigenvalue of the quadratic Casimir (defined
according to our conventions) is 〈C2〉 = n(n+ 2)/4, and its ratio with respect to the fundamental
representation is d = n(n+ 2)/3.
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For larger SU(N) groups (up to N = 8), the lowest irreducible representations are listed in
tables 2–7.

Young diagram N -ality canonical label dimension notes 〈C2〉 d

1 (1, 0) 3 fundamental 4/3 1
2 (2, 0) 6 10/3 5/2
0 (1, 1) 8 adjoint 3 9/4
0 (3, 0) 10 6 9/2
1 (2, 1) 15 16/3 4
1 (4, 0) 15′ 28/3 7
2 (5, 0) 21 40/3 10

2 (3, 1) 24 25/3 25/4

0 (2, 2) 27 self-conjugate 8 6
0 (6, 0) 28 18 27/2
0 (4, 1) 35 12 9
1 (7, 0) 36 70/3 35/2

Table 2: The irreducible representations of the SU(3) gauge group studied in this work. For this
group, the integers l and m of each representation are respectively equal to the first and second
index in the canonical label.

Generically, the eigenvalues of a group element g in the fundamental representation of SU(N)
lie on the unit circle in the complex plane, and their product is 1:

gf = U · diag(eiα1 , eiα2 , eiα3 , . . . , eiαN ) · U †, with:
N∑
i=1

αi = 0 mod 2π. (A.5)

Knowing the eigenvalues of gf , it is possible to calculate explicitly the character of g in any
irreducible representation r = [λ1, λ2, . . . , λN−1] by means of the Weyl formula [52]:

Tr gr =
detF (~λ)

detF (~0)
, (A.6)

where F (~λ) is an N × N matrix with entries defined as: Fkl(~λ) = exp [i (N + λl − l)αk], with
λN = 0, and eiα1 , eiα2 , . . . eiαN are the eigenvalues of g in the fundamental representation.

In many cases, however, the characters in high-dimensional irreducible representations can
be more expediently calculated, using the laws of representation composition encoded in Young
calculus, and using the well-known fact that the character in a representation which can be
expressed as the tensor sum (product) of two representations is equal to the sum (product) of
the characters in the summand (factor) representations.
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0) 4 1 0 fundamental 15/8 1
2 (0, 1, 0) 6 2 0 self-conjugate 5/2 4/3

2 (2, 0, 0) 10 2 0 9/2 12/5

0 (1, 0, 1) 15 1 1 adjoint 4 32/15

3 (1, 1, 0) 20 3 0 39/8 13/5

0 (0, 2, 0) 20′ 4 0 self-conjugate 6 16/5
3 (3, 0, 0) 20′′ 3 0 63/8 21/5
0 (4, 0, 0) 35 4 0 12 32/5

1 (2, 0, 1) 36 2 1 55/8 11/3

0 (2, 1, 0) 45 4 0 8 64/15

2 (0, 3, 0) 50 6 0 self-conjugate 21/2 28/5
1 (5, 0, 0) 56 5 0 135/8 9

Table 3: Same as in table 2 (with the addition of the l and m indices), but for the SU(4) gauge
group.

A.1 Casimir operators

A Casimir operator of a Lie algebra g is a homogeneous polynomial of order p, lying in the
enveloping algebra of g, T (g), and commuting with all elements of g. Given a Casimir operator
Cp, any product of it by an arbitrary scalar factor aCp, as well as any integer power of it Cqp ,
are also Casimir operators; however, the number of independent Casimir operators of a given
algebra g is equal to the rank l of the algebra. In particular, the algebra of generators of the
special unitary group SU(N) has N − 1 independent Casimir operators C2, C3, . . .CN , whose
eigenvalues 〈Cp〉 can be used to classify the irreducible representations of the algebra.

Explicit expressions for the Cp’s can be obtained as follows. Starting from a basis {Ei,j}i,j=1...N
of generators of U(N):

[Ea,b, Ec,d] = δb,cEa,d − δa,dEc,b, (A.7)

introduce a basis for the algebra of generators, denoted as
{
Ẽi,j

}
(where both i and j run from

1 to N , but the element ẼN,N element is not defined), through:

Ẽi,j =

{
Ei,j if i 6= j,

Ei,i − 1
N

∑N
k=1Ek,k if i = j.

(A.8)

For the generators of SU(N), the Casimir operator of order p can then be defined as:

Cp =
1

p

N∑
i1,i2,...ip=1

Ẽi1i2Ẽi2i3 . . . Ẽip−1ipẼipi1 . (A.9)
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0) 5 1 0 fundamental 12/5 1
2 (0, 1, 0, 0) 10 2 0 18/5 3/2
2 (2, 0, 0, 0) 15 2 0 28/5 7/3

0 (1, 0, 0, 1) 24 1 1 adjoint 5 25/12

3 (3, 0, 0, 0) 35 3 0 48/5 4

3 (1, 1, 0, 0) 40 3 0 33/5 11/4

4 (1, 0, 1, 0) 45 1 2 32/5 8/3

4 (0, 2, 0, 0) 50 4 0 42/5 7/2

1 (2, 0, 0, 1) 70 2 1 42/5 7/2

4 (4, 0, 0, 0) 70′ 4 0 72/5 6

0 (0, 1, 1, 0) 75 2 2 self-conjugate 8 10/3

4 (2, 1, 0, 0) 105 4 0 52/5 13/3

Table 4: Same as in table 3, but for the SU(5) gauge group.

Note that, by construction, the linear Casimir operator C1 is identically vanishing on the algebra
of generators of SU(N), as they are all traceless.

The eigenvalue of Cp in the generic irreducible representation labelled by [λ1, λ2, . . . λN−1] can
be obtained in the following way (taking λN = 0) [67]:

1. define λ =
∑N

i=1 λi;

2. define mi = λi − λ/N for all i = 1, 2, . . .N ;

3. define ρi = N − i and li = mi + ρi for all i = 1, 2, . . .N ;

4. for all k ≥ 2, construct the quantities: Sk =
∑N

i=1

(
lki − ρki

)
;

5. for all k ≥ 2, define the coefficients: ak =
∑k−1

j=1
(k−1)!
j!(k−j)!Sj ;

6. construct the function: ϕ(z) =
∑∞

k=2 akz
k;

7. calculate the Bp coefficients from the following Taylor expansion around z = 0:

1− exp [−ϕ(z)]

z
=
∞∑
p=0

Bpz
p (A.10)
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0, 0) 6 1 0 fundamental 35/12 1

2 (0, 1, 0, 0, 0) 15 2 0 14/3 8/5

3 (0, 0, 1, 0, 0) 20 3 0 self-conjugate 21/4 9/5

2 (2, 0, 0, 0, 0) 21 2 0 20/3 16/7

0 (1, 0, 0, 0, 1) 35 1 1 adjoint 6 72/35

3 (3, 0, 0, 0, 0) 56 3 0 45/4 27/7
3 (1, 1, 0, 0, 0) 70 3 0 33/4 99/35

5 (1, 0, 0, 1, 0) 84 1 2 95/12 19/7

4 (1, 0, 1, 0, 0) 105 4 0 26/3 104/35

4 (0, 2, 0, 0, 0) 105′ 4 0 32/3 128/35

1 (2, 0, 0, 0, 1) 120 2 1 119/12 17/5

4 (4, 0, 0, 0, 0) 126 4 0 50/3 40/7

Table 5: Same as in table 3, but for the SU(6) gauge group.

(note that B0 = 0);

8. compute the eigenvalue of Cp from the formula:

〈Cp〉 =
Bp −NBp−1

p
. (A.11)

This gives, in particular, the following relations:

〈C2〉 =
S2

2
, (A.12)

〈C3〉 =
1

3

[
S3 +

(
3

2
−N

)
S2

]
, (A.13)

〈C4〉 =
1

4

[
S4 + (2−N)S3 +

(
2− 3

2
N

)
S2

]
, (A.14)

〈C5〉 =
1

5

[
S5 +

(
5

2
−N

)
S4 +

(
10

3
− 2N

)
S3 +

(
5

2
− 2N

)
S2 −

1

2
S2

2

]
, (A.15)
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0, 0, 0) 7 1 0 fundamental 24/7 1
2 (0, 1, 0, 0, 0, 0) 21 2 0 40/7 5/3
2 (2, 0, 0, 0, 0, 0) 28 2 0 54/7 9/4

3 (0, 0, 1, 0, 0, 0) 35 3 0 48/7 2

0 (1, 0, 0, 0, 0, 1) 48 1 1 adjoint 7 49/24

3 (3, 0, 0, 0, 0, 0) 84 3 0 90/7 15/4

3 (1, 1, 0, 0, 0, 0) 112 3 0 69/7 23/8

6 (1, 0, 0, 0, 1, 0) 140 1 2 66/7 11/4

1 (2, 0, 0, 0, 0, 1) 189 2 1 80/7 10/3

4 (0, 2, 0, 0, 0, 0) 196 4 0 90/7 15/4

4 (1, 0, 1, 0, 0, 0) 210 4 0 76/7 19/6

4 (4, 0, 0, 0, 0, 0) 210′ 4 0 132/7 11/2

Table 6: Same as in table 3, but for the SU(7) gauge group.

〈C6〉 =
1

6

[
S6 + (3−N)S5 +

(
5− 5

2
N

)
S4 +

(
5− 10

3
N

)
S3 +

(
3− 5

2
N

)
S2

−S2S3 +

(
N

2
− 3

2

)
S2

2

]
, (A.16)

〈C7〉 =
1

7

[
S7 +

(
7

2
−N

)
S6 + (7− 3N)S5 +

(
35

4
− 5N

)
S4 + (7− 5N)S3

+

(
7

2
− 3N

)
S2 − S4S2 −

1

2
S2

3 +

(
−7

2
+N

)
S3S2 +

(
−25

8
+

3

2
N

)
S2

2

]
, (A.17)

〈C8〉 =
1

8

[
S8 + (4−N)S7 +

(
28

3
− 7

2
N

)
S6 + (14− 7N)S5 +

(
14− 35

4
N

)
S4

+

(
28

3
− 7N

)
S3 +

(
4− 7

2
N

)
S2 − S5S2 − S4S3 + (−4 +N)S4S2

+

(
−2 +

N

2

)
S2

3 +

(
−25

3
+

7

2
N

)
S3S2 +

(
−11

2
+

25

8
N

)
S2

2 +
1

6
S3

2

]
. (A.18)
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0, 0, 0, 0) 8 1 0 fundamental 63/16 1

2 (0, 1, 0, 0, 0, 0, 0) 28 2 0 27/4 12/7

2 (2, 0, 0, 0, 0, 0, 0) 36 2 0 35/4 20/9

3 (0, 0, 1, 0, 0, 0, 0) 56 3 0 135/16 15/7

0 (1, 0, 0, 0, 0, 0, 1) 63 1 1 adjoint 8 128/63

4 (0, 0, 0, 1, 0, 0, 0) 70 4 0 self-conjugate 9 16/7

3 (3, 0, 0, 0, 0, 0, 0) 120 3 0 231/16 11/3

3 (1, 1, 0, 0, 0, 0, 0) 168 3 0 183/16 61/21

7 (1, 0, 0, 0, 0, 1, 0) 216 1 2 175/16 25/9

1 (2, 0, 0, 0, 0, 0, 1) 280 2 1 207/16 23/7

4 (4, 0, 0, 0, 0, 0, 0) 330 4 0 21 16/3

4 (0, 2, 0, 0, 0, 0, 0) 336 4 0 15 80/21

Table 7: Same as in table 3, but for the SU(8) gauge group.

In turn, the equations above lead to the following expressions for the quadratic Casimir
eigenvalues 〈C2〉:

〈C2〉 =
1

4
λ1 (λ1 + 2) for SU(2), (A.19)

〈C2〉 =
1

3

(
λ2

1 + 3λ1 − λ1λ2 + λ2
2

)
for SU(3), (A.20)

〈C2〉 =
1

8

[
3λ2

1 + λ2 (4 + 3λ2)− 2λ3 (λ2 + 2) + 3λ2
3 − 2λ1 (λ2 + λ3 − 6)

]
for SU(4), (A.21)

〈C2〉 =
1

5

[
2
(
λ2

1 + λ2
2 + λ2

3 + λ2
4

)
− (5 + λ3)λ4 + λ2 (5− λ3 − λ4)

+λ1 (10− λ2 − λ3 − λ4)] for SU(5), (A.22)
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〈C2〉 =
1

12

[
5
(
λ2

1 + λ2
2 + λ2

3 + λ2
4 + λ2

5

)
+ 6 (λ3 − λ4)− 2λ3λ4 − 2 (9 + λ3 + λ4)λ5

+2λ2 (9− λ3 − λ4 − λ5) + 2λ1 (15− λ2 − λ3 − λ4 − λ5)] for SU(6), (A.23)

〈C2〉 =
1

7

[
3
(
λ2

1 + λ2
2 + λ2

3 + λ2
4 + λ2

5 + λ2
6

)
+ 7 (3λ1 + 2λ2 + λ3 − λ5 − 2λ6)− λ4λ5

−λ3 (λ4 + λ5)− (λ3 + λ4 + λ5)λ6 − (λ3 + λ4 + λ5 + λ6)λ2

−λ1 (λ2 + λ3 + λ4 + λ5 + λ6)] for SU(7), (A.24)

〈C2〉 =
1

16

[
7
(
λ2

1 + λ2
2 + λ2

3 + λ2
4 + λ2

5 + λ2
6 + λ2

7

)
+ 24λ3 + 8λ4 − 2λ3λ4 − 8λ5 − 2λ3λ5

−2λ4λ5 − 24λ6 − 2λ3λ6 − 2λ4λ6 − 2λ5λ6 − 2 (20 + λ3 + λ4 + λ5 + λ6)λ7

−2λ2 (−20 + λ3 + λ4 + λ5 + λ6 + λ7)

−2λ1 (−28 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7)] for SU(8). (A.25)

Note that the Casimir operators are defined up to a multiplicative constant; with the conven-
tions fixed by the construction above, the eigenvalue of the SU(N) quadratic Casimir operator
in the fundamental representation is (N2 − 1)/(2N), while in the adjoint representation it is N .
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[21] K. Hübner and C. Pica, PoS LATTICE 2008 (2008) 197 [arXiv:0809.3933 [hep-lat]].

[22] R. V. Gavai, Phys. Lett. B 691 (2010) 146 [arXiv:1001.4977 [hep-lat]].

[23] G. ’t Hooft, Nucl. Phys. B72 (1974) 461. E. Witten, Nucl. Phys. B160 (1979) 57. L. G. Yaffe,
Rev. Mod. Phys. 54 (1982) 407. A. V. Manohar, arXiv:hep-ph/9802419. E. E. Jenkins, Ann.
Rev. Nucl. Part. Sci. 48 (1998) 81 [hep-ph/9803349]. Y. Makeenko, arXiv:hep-th/0001047.

[24] L. McLerran and R. D. Pisarski, Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191 [hep-ph]].
S. Lottini and G. Torrieri, Phys. Rev. Lett. 107 (2011) 152301 [arXiv:1103.4824 [nucl-th]].

[25] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113
(1999)] [arXiv:hep-th/9711200]. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett.
B 428, 105 (1998) [arXiv:hep-th/9802109]. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)
[arXiv:hep-th/9802150].

[26] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

[27] D. T. Son and A. O. Starinets, Ann. Rev. Nucl. Part. Sci. 57, 95 (2007) [arXiv:0704.0240
[hep-th]]. D. Mateos, Class. Quant. Grav. 24, S713 (2007) [arXiv:0709.1523 [hep-th]].
S. S. Gubser and A. Karch, Ann. Rev. Nucl. Part. Sci. 59, 145 (2009) [arXiv:0901.0935
[hep-th]]. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann,
arXiv:1101.0618 [hep-th]. U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and
F. Nitti, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461 [hep-th]].

[28] M. J. Teper, hep-th/9812187. B. Lucini and M. Teper, Phys. Rev. D 64 (2001) 105019 [hep-
lat/0107007]; JHEP 0106 (2001) 050 [hep-lat/0103027]. B. Lucini, M. Teper and U. Wenger,
Phys. Lett. B 545, 197 (2002) [arXiv:hep-lat/0206029]; JHEP 0401, 061 (2004) [arXiv:hep-
lat/0307017]; Nucl. Phys. B 715, 461 (2005) [arXiv:hep-lat/0401028]; JHEP 0502, 033 (2005)
[arXiv:hep-lat/0502003]; JHEP 0406 (2004) 012 [hep-lat/0404008]. H. Meyer and M. Teper,
JHEP 0412 (2004) 031 [hep-lat/0411039]. B. Bringoltz and M. Teper, Phys. Lett. B 628

30



(2005) 113 [arXiv:hep-lat/0506034]; Phys. Rev. D 73 (2006) 014517 [arXiv:hep-lat/0508021];
L. Del Debbio, B. Lucini, A. Patella and C. Pica, JHEP 0803 (2008) 062 [arXiv:0712.3036
[hep-th]]. G. S. Bali and F. Bursa, JHEP 0809 (2008) 110 [arXiv:0806.2278 [hep-lat]].
M. Panero, Phys. Rev. Lett. 103, 232001 (2009) [arXiv:0907.3719 [hep-lat]]; PoS LAT2009,
172 (2009) [arXiv:0912.2448 [hep-lat]]. S. Datta and S. Gupta, Phys. Rev. D 80 (2009) 114504
[arXiv:0909.5591 [hep-lat]]; Phys. Rev. D 82 (2010) 114505 [arXiv:1006.0938 [hep-lat]].

[29] M. J. Teper, Phys. Rev. D 59, 014512 (1999) [arXiv:hep-lat/9804008]. R. W. Johnson and
M. J. Teper, Phys. Rev. D 66 (2002) 036006 [arXiv:hep-ph/0012287]. H. B. Meyer and
M. J. Teper, Nucl. Phys. B668 , 111 (2003) [hep-lat/0306019]. A. Athenodorou, B. Bringoltz
and M. Teper, Phys. Lett. B 656 (2007) 132 [arXiv:0709.0693 [hep-lat]]. M. Caselle,
L. Castagnini, A. Feo, F. Gliozzi and M. Panero, JHEP 1106 (2011) 142 [arXiv:1105.0359
[hep-lat]]. M. Caselle, L. Castagnini, A. Feo, F. Gliozzi, U. Gürsoy, M. Panero and A. Schäfer,
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Abstract

We generalize the multilevel algorithm of Lüscher and Weisz to
study SU(N) Yang-Mills theories with the tree-level improved gauge
action. We test this algorithm, comparing its results with those ob-
tained using the Wilson action, in SU(3) and SU(4) Yang-Mills theories
in 2 + 1 and 3 + 1 dimensions. We measure the static quark potential
and extract the Lüscher term, predicted by the bosonic string theory.

1 Introduction

An efficient lattice gauge theory algorithm proposed by Lüscher and Weisz,
the multilevel algorithm, has been shown to provide an exponential reduc-
tion of the statistical errors in calculations of the Polyakov loop correlation
function [1]. Multilevel algorithms are useful in many contexts, in which one
has to cope with an exponentially decaying signal-to-noise ratio, for example
in the computation of the glueball spectrum [2] and in the computation of
the correlation functions, which are related to the transport coefficients of
the quark-gluon plasma [3, 4]. In [5], a multilevel algorithm was used to
study the localization properties of gauge fields on domain wall defects. In
this paper, we generalize the multilevel algorithm to study the static quark
potential.

In a confining theory, the static quark potential has the large distance
asymptotic expansion [6]

V (r) = σr + µ+ γ/r +O(1/r2), (1)

where σ is the string tension, µ a constant (a regularization-dependent
mass), and γ is the Lüscher term

γ = − π
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with D as the dimension of the space-time [7, 8]. The interaction between
the static quark-antiquark pair can be described by an effective string theory.
It has been suggested that the expectation values of large Wilson loops have
a correspondence with amplitudes of an effective bosonic string theory [6, 9].
The Polyakov loop correlator can be used similarly to the Wilson loop to
study string effects [10, 11, 12].

One of the consequences of the effective string description at zero temper-
ature is the presence of the term proportional to 1/r, i.e. the Lüscher term
(2), in the long distance inter-quark potential. The Lüscher term includes a
coefficient that depends only on the dimension of the space-time and is not
influenced by higher order corrections of the effective string action. The aim
of this paper is to study the potential, namely compute the Lüscher term,
in pure glue SU(N) Yang-Mills theory, using numerical simulations.

Although the validity of the asymptotic expansion (1) can be checked by
means of numerical simulations, the problem in these lattice computations,
is that the signal-to-noise ratio decays quickly at large distances. This makes
it difficult to clearly separate the γ/r correction from the other terms. Still,
lattice gauge theory can offer support for the string model. For example,
the data for the potential in a range of distances from 0.4 to 0.8 fm has been
noted to agree with (1) within small errors [13]. Also, using highly efficient
simulation techniques it was confirmed [14] that the expectation values of
large rectangular Wilson loops are matched by the string theory amplitudes
to a precision where the subleading string effects can be observed. However,
a more recent study [15] on string effects at large-N using Wilson loops
seemed to differ from the effective string prediction, contrary to previous
studies [16, 17].

In this paper, all simulations are performed utilizing the multilevel al-
gorithm, and besides the standard Wilson action, we will also conduct sim-
ulations with the tree level improved action [18, 19, 20, 21]. The improved
action can strongly reduce the lattice artifacts, and hence give better re-
sults also on relatively small lattices. Examples of “success stories” of the
improved action for the gauge action include computations of the SU(3)
equation of state [22, 23] and the studies of renormalized Polyakov loops
[24, 25]. Similarly, improved actions for the quarks are particularly useful
when it comes to computationally challenging problems, like, e.g. lattice
studies of walking technicolor models (see, for example, [26]).

The string-like features of the interquark ‘flux tube’ have already been
studied with calculations in Z2 [14, 27, 28], Z4 [29], U(1) [30, 31, 32], SU(2)
[33, 34, 28, 35], SU(3) [6, 36, 37], as well as with SU(N > 3) [16, 17, 38, 39],
and even in a random percolation model (with an appropriate definition of
the observables) [40, 41]. By extending the research also to bigger gauge
groups we pursue two main subjects of interest. First of all, since large-N
studies are largely motivated by the fact that they can provide a mathe-
matically simplified frame for studying QCD, we want to see whether the
numerical results for the flux tube obtained with a large-N theory agree
with SU(3) results. A second motivation comes from the conjectured con-

2



nection between large-N conformal gauge theories and string theory (see for
example the review [42] and [43]), affiliating with the Maldacena conjecture
and AdS/CFT. In this paper, the groups SU(3) and SU(4) are studied.

This paper is organized as follows: In section 2, as an extended introduc-
tion on the topic of this paper, we will discuss some basic issues on bosonic
string theory, namely the Nambu-Goto string and how it can model the
behavior of the flux tube in a confining gauge theory, and also some ear-
lier lattice results relevant to this topic. Then, in section 3 we discuss the
Polyakov loop correlation function on the lattice and the actions used in this
work, and in section 4 we describe the multilevel algorithm in more detail.
In sections 5 and 6 we present the results of this work and the conclusions.

2 Bosonic string theory

2.1 Nambu-Goto string

The simplest effective action for a bosonic string is simply the string tension
σ times the area of the string world sheet, i.e. the Nambu-Goto action
[44, 45, 46]

Seff = σ

∫
d2ξ
√

detgαβ. (3)

In the so called “physical gauge” the integrand reads√
1 + (∂0h)2 + (∂1h)2 + (∂0h× ∂1h)2 (4)

where h is the displacement of the world sheet surface in the transverse di-
rections. Expanding this in a perturbative series in 1/(σr2), at leading order
we get the following expression for the Polyakov loop correlation function
(see, e.g. [30] for a discussion)

〈P ?(r)P (0)〉 =
e−σrL−µL(
η
(
i L2r

))D−2
, (5)

where we have used Dedekind’s η function

η(τ) = q
1
24

∞∏
n=1

(1− qn), q = e2πiτ . (6)

When L
2r � 1, eq. (5) gives the Lüscher term in the quark-antiquark poten-

tial.
The spectrum of the Nambu-Goto string can be obtained by canonical

quantization [47, 48]: the energy levels for a string with fixed ends are

En(r) = σr

√
1 +

2π

σr2

(
n− D − 2

24

)
, n ∈ N, (7)

= σr − (D − 2− 24n)π

24r
+O(1/r3). (8)
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As a consequence, the partition function describing the string with fixed
ends reads

Z =
∞∑
n=0

ωne
−En(r)L (9)

where ωn are the number of states.
As mentioned, one of the outcomes of the effective string description at

zero temperature is the presence of the Lüscher term in the long distance
inter-quark potential. One should not confuse this with a Coulomb term
originating from the one-gluon exchange process. The Lüscher term is a
Casimir effect, which is due to the finiteness of the interquark distance r. As
a heuristic argument for the term, let us consider the string-like tube created
by two color sources separated by distance r. Due to quantum fluctuations,
the string can vibrate, and we can express its wavelength through

r = λ
(1 + n

2

)
(10)

where n = 0, 1, 2, 3, . . . . If we consider each of these modes as quantum
mechanical harmonic oscillators, then their energies are

Ekn = ~ωn
(
k +

1

2

)
(11)

and if we just consider the ground state, k = 0, we can write

En =
∞∑
n=0

1

2
~ωn =

1

2

∞∑
n=0

2π

λn
= π

∞∑
n=0

1

λn

=
π

r

(1

2
+ 1 +

3

2
+ 2 +

5

2
+ . . .

)
=

π

2r

(
1 + 2 + 3 + 4 + 5 + . . .

)
= −1

2

π

12r
(12)

where we have used the Riemann zeta regularization. This is just for one
transverse direction; in D dimensions there are D− 2 transverse directions,
so in four dimensions, we have

En = − π

12r
. (13)

Finally, the effective string model also gives a prediction for the form of the
inter-quark potential in finite temperature gauge theories [35, 33, 49].

2.2 QCD string

In a pure gauge theory the ground state interquark potential V (r) of a heavy
QQ̄ pair can be expressed in terms of the two-point correlation function G(r)
of Polyakov lines

V (r) = − 1

L
logG(r) = − 1

L
log〈P ?(r)P (0)〉, (14)
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where r is the interquark distance and L the system size in the time-like
direction [30].

In the confining regime of SU(N) gauge theories, the asymptotic behavior
of V (r) at large distances is a linear rise, and the flux lines between the
well separated color sources are expected to be squeezed in a thin, string-
like tube [7, 8, 50]. This “confining string” can be considered as a basic
object, in particular when it cannot break, i.e. when there is no matter in
representations of non-zero N -ality. By studying the low-energy effective
action on the string we pursue to understand the low-energy dynamics of
long strings. In large-N gauge theories the confining string can be thought
of as a weakly coupled fundamental string subject to some effective action
which, if known, can be used to study the low-energy properties of the
model. Unfortunately, in general the effective string action is not known,
but Monte Carlo computations on a lattice may offer a way to study the low
energy effective action of a confining string and give insights of its properties.
Furthermore, the general properties of the effective string can be derived
based on the symmetries it should have [51, 52, 53, 54, 55].

Even though the interquark potential V (r) and related quantities have
been studied extensively on the lattice for many years (see, for example,
[37, 56, 57] for references), the question whether the picture given by effec-
tive string models is quantitatively satisfactory, is still under investigation.
Previous results [37, 56] have shown prominent support for the bosonic string
prediction, in particular, the Lüscher term has been shown to be a universal
feature of the IR regime of confined gauge theories. However, results from
recent, high precision Monte Carlo simulations [32, 58, 6, 27, 59, 34, 60, 33,
61, 62] suggest that higher order corrections to V (r) might not be universal.
In fact, there are theoretical arguments suggesting that the effective string
action is different from the Nambu-Goto one at higher orders.

Another aspect of interest, is the excitation spectrum description. Ac-
cording to the bosonic string picture, the excitations are expected to be
described by the spectrum of harmonic oscillator energies

E = E0 +
π

r
n, n ∈ N. (15)

In the ground state potential the Lüscher term is supported by numerical
evidence down to very short distances, but for the excited states the lattice
results are not in such a good agreement with the theoretical expectations,
as discussed in [30]. Mismatches between effective string predictions [10]
and numerical results have been found in [63, 36, 64, 28].

In this paper however, we shall focus the attention onto the ground state
interquark potential. Assuming that the low energy dynamics of the pure
gauge model is described by the effective string, and assuming that decays
of excited states do not play a significant role, we can write the Polyakov
loop two-point correlation function as a string partition function

〈P ?(r)P (0)〉 =

∫
Dhe−Seff , (16)
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where Seff is the effective action for the world sheet spanned by the string.
The dynamics of the confining string is not known, but it should respect

the expected rotational symmetries. This implies that only the terms that
are rotationally symmetric can be part of the effective string action. In
fact these constraints are more general and they restrict the form of the
effective action (at least at the lowest orders) to be the Nambu-Goto one.
Lattice simulations for pure Yang-Mills theories in D = 3 and D = 4 show
the effective action being very well approximated by this form. However,
deviations from Nambu-Goto can be derived at higher orders (see [65] and
references therein).

Different approaches allow one to constrain the effective action of a con-
fining string. Polchinski and Strominger [66, 67, 68] proposed to consider
the degrees of freedom in the effective action as the embedding coordinates
of the string in a conformal gauge world sheet. Requiring the effective action
to have the correct critical central charge, one is left with constraints that
have been shown to imply the four-derivative effective action to agree with
the Nambu-Goto form. Unfortunately, generalizing this approach to higher
orders appears to be challenging.

Another approach [7, 8, 69] is to write the effective action in static
gauge, such that the degrees of freedom are only the (D − 2) transverse
fluctuations of the string world sheet. Essentially, the action should non-
linearly realize the Lorentz symmetry rotating the direction in which the
string propagates, and the transverse directions. Following the suggestion
of Lüscher and Weisz in [69], the effective action is constrained by computing
the partition function of long closed strings, winding around a periodic size
of the system, and writing it in terms of a sum over string states. In [69] it
was shown that in D = 3 the partition function on the annulus constrains
the four-derivative terms to be of Nambu-Goto form.

2.3 Some earlier lattice results

In recent years the effective action of confining strings has been studied on
the lattice with higher and higher precision (see [57] for a review of results).
Studies of the three dimensional pure Yang-Mills theory have produced very
accurate results of the spectrum of confining flux tubes in large-N SU(N)
gauge theories [38, 39]. Considering torelons of length L, it has been found
that the ground state energy agrees with the Nambu-Goto result at order
1/L, and is consistent with it at order 1/L3. Also, a possible deviation at
order 1/L5 comes with a very small coefficient. The excitation spectrum has
also been found to agree with Nambu-Goto at orders 1/L and 1/L3, however
at higher orders there are deviations. The lattice data are now reaching high
precision, so that it is becoming possible to determine at which order the
deviation occurs, which could be already at order 1/L5 [70, 51].

Similarly, in simulations of large-N gauge theories done in 3 + 1 dimen-
sions, there is agreement with Nambu-Goto for large L, but the order in
which the deviations arise is not clear. Such is the case also in simulations
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of interfaces in the 2 + 1-dimensional Ising model, in which one can also
see a good agreement with Nambu-Goto [71], but still more precision would
be needed in order to tell at what order deviations from Nambu-Goto arise
[70].

2 + 1 dimensional confining strings in higher representations, called “k-
strings”, have also been studied [72, 73] at large N . Comparison to Nambu-
Goto showed large deviations for all states, including the ground state, pos-
sibly starting already at order 1/L5. However, there are some technical
aspects to be taken into account. In the large-N limit, assuming k to be
fixed, the binding energy of k fundamental strings to form a k-string may
vanish as 1/N2 or as 1/N [74], implying that in the large-N limit there are
at least (k− 1)(D− 2) light modes on the worldvolume of a k-string, whose
mass goes to zero in the large-N limit as 1/N or as 1/N1/2, respectively.
The relevant length scales concerning the form of the effective action are
larger than N/

√
T (or N1/2/

√
T ).

Finally, we mention that the ground state potential of a confining string
in the continuum limit of a percolation model in 2+1 dimensions was studied
in [41], and again agreement was found with Nambu-Goto at orders 1/L and
1/L3, however deviations were seen at order 1/L5. As discussed in [70], this
model is interesting in itself, as it is not necessarily expected to correspond
to a weakly coupled string theory.

3 Polyakov loop correlation function on the lattice

We discretize the SU(N) Yang-Mills theory on an isotropic 4-dimensional,
or alternatively, 3-dimensional lattice with spacing a, time-like extent aNt

and spatial size aNs. Apart from providing precise results more quickly,
simulations in 3 dimensions are interesting because there the 1/r term is
certain to be the Lüscher term; in 4D it could get mixed with a Coulomb
interaction. In 3D the Coulomb interaction is of the form log(r), rather
than 1/r.

In all directions of the lattice we impose periodic boundary conditions.
For the gauge field action we take the usual Wilson plaquette action

S = β
∑
x,µ<ν

(
1− 1

N
Re TrUµν(x)

)
, (17)

where Uµν is the plaquette oriented along the µν-plane and located at the
lattice site x, and β = 2N/g2. We also carry out the simulations using the
tree-level improved action [18, 19, 20, 21]

S = β
∑
x,µ<ν

{
1− 1

N
Re Tr

[
5

3
U1,1
µν (x)− 1

12
U1,2
µν (x)− 1

12
U1,2
νµ (x)

]}
. (18)

For any given gauge field configuration U(x, µ), the (trace of the) Polyakov
loop is defined as

P (x) = TrU(x, µ)U(x+ âµ, µ) . . . U(x+ (T − a)µ̂, µ)µ=0 (19)
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and the correlation function

〈P (x)?P (y)〉 =
1

Z

∫ ∏
x,µ

dU(x, µ)P (x)?P (y)e−S[U ]. (20)

The ground state inter-quark potential V (r) of a heavy Q̄Q pair in a pure
gauge theory can be expressed with the two-point correlators of the Polyakov
loop [6]

V (r) = − 1

aNt
log〈P (x)?P (y)〉+ ε, (21)

where

ε =
1

aNt
(ω1e

−∆ET + . . . ), ∆E = E1 − E0. (22)

4 The Multilevel algorithm

Like mentioned in the introduction, the lattice data is obtained using the
multilevel algorithm of Lüscher and Weisz [1]. In this algorithm, using
the locality of the theory, the lattice is split into sublattices that do not
communicate with one another, and the final observables are built combining
the independent measurements of each sublattice. Of course, from time to
time the boundaries between the sublattices are updated, so that the final
results are the same as in the usual theory.

Following the discussion in [33], suppose we measure an observable O by
combining the results of averages Osub computed in N different sublattices.
WithN sublattice measurements, the combination of the sublattice averages
Osub corresponds to (N)N measurements of O, i.e. we get an estimate of
O as if (N)N measurements would have been performed. However, due to
the links that have been kept frozen at the boundaries of the sublattices,
this estimate is biased by a background field, but this bias is removed by
averaging over the boundary configurations.

Using the notation of [33], consider the correlation function of two Polyakov
loops

〈P (~0)P (~x)∗〉 =
1

Z

∫ ∏
y,µ

dUy,µ Tr
[
U(~0,0),4 . . . U(~0,L−1),4

]
× Tr

[
U∗(~x,0),4 . . . U

∗
(~x,L−1),4

]
e−S[U ]. (23)

Next, we slice the lattice along the temporal direction into N = Nt/nt
sublattices, i.e. nt is the temporal thickness of each sublattice in units of the
lattice spacing a. Now, to obtain sublattices isolated from each other, we fix
the set V s

k of all spatial links with time coordinates knt, k = 0, . . . , (N − 1).
This way, the dynamics of every sublattice depends only on the background
field of the two frozen time slices, and hence are totally independent from
one another.
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As in [33], we rewrite (23) as

〈P (~0)P (~x)∗〉 =

∫ ∏
k

dU
(s)
k Tαγβδ~0,(~x)

[V
(s)

0 , V
(s)

1 ]

. . . T εαρβ~0,(~x)
[V

(s)
N−1, V

(s)
0 ]P[V

(s)
k ] (24)

where

Tαγβδ
~0,~(x)

[V
(s)
i , V

(s)
j ] ≡

∫ ∏
y,µ

dUy,µ

[
U(~0,0),4 . . . U(~0,nt−1),4

]
αγ

×
[
U∗(~x,0),4 . . . U

∗
(~x,nt−1),4

]
βδ

e−S[U ;V
(s)
i ,V

(s)
j ]

Z[V
(s)
i , V

(s)
j ]

. (25)

The partition function of the sublattice with fixed temporal boundaries
reads

Z[V
(s)
i , V

(s)
j ] ≡

∫ ∏
y,µ

dUy,µe
−S[U ;V

(s)
i ,V

(s)
j ] (26)

in which S[U ;V
(s)
i , V

(s)
j ] is the action in the sublattice with fixed temporal

boundaries V
(s)
i and V

(s)
j . α, β, γ and δ are color indices and Tαγβδ are

gauge-invariant quantities under sublattice gauge transformations. P[V
(s)
k ]

is the probability for the spatial links with time coordinates knt, k =

0, . . . , (N − 1), to be V
(s)
k , and can be written

P[V
(s)
k ] =

1

Z

∫ ∏
y,µ

dUy,µ
∏
k

δ(U
(s)
k − V

(s)
k )e−S[U ] (27)

Iterating this procedure and averaging the background field according to
the probability distribution of eq. (27) gives a numerical estimate for the
integral (24) [33]. This technique is the so-called single level algorithm. A
more general “multilevel algorithm by Lüscher and Weisz involves a feature,

that the updating frequency of the background field V
(s)
k is not the same

for the various time slices k. However, for many purposes the single level
algorithm seems to be more efficient [6, 33].

In numerical simulations with the single level algorithm, three parame-
ters have to be fixed: the temporal sublattice thickness nt, the number N
of sublattice measurements and the number M of background field config-
urations to integrate over V (s). These parameters are dependent on each
other as well as on the temporal extension Nt of the whole lattice and on
the distance between the two Polyakov loops. Finding the optimal choice
for them is thus not trivial. Some results on the optimization step can be
found in [59, 2].

When measuring the Polyakov loop correlation function 〈P (~0)P (~x)∗〉
the final error bar is the combination of the uncertainties of the sublattice
averages and their fluctuations, due to different background fields. With nt
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fixed, a large distance between two loops requires both N and M to be large.
N is typically order of several thousands and M of few hundreds. It should
be noted that N does not depend on Nt whereas M does. With the Lüscher
and Weisz algorithm, exponential gain in the accuracy of the numerical
estimation of 〈P (~0)P (~x)∗〉 is possible only in the temporal direction. Every
sublattice estimate decreases exponentially with the distance, but it is still
estimated with an error reduction proportional to 1/

√
N [33].

Figure 1: For an example on how the multilevel algorithm works, i.e. which
links are updated during the sublattice updates, consider a lattice divided
into three sublattices. On the left, a presentation of the Wilson action,
and on the right, the improved action. On the borders of a sublattice, the
red links are the ones kept fixed, whereas the blue links are updated. The
improved action is slightly less local than the Wilson action, because it
involves not only plaquettes but also rectangles. However, like the Wilson
action, the improved action is still “ultralocal”, namely, in the action, each
link is coupled directly to other links only up to a finite distance.

5 Results

The simulations were performed with gauge groups SU(3) and SU(4), in
2 + 1 and 3 + 1 dimensions, with the general Wilson action (17) and with
the tree-level improved action (18). The totalling 8 different cases (up to 4
different values of β for each) were studied using the multilevel algorithm
with sublattice size of 4 lattice spacings. In 3D with SU(3) the lattice size
was Nt = 48, Ns = 24, in the other cases Nt = 24, Ns = 16. The first 1000
updates were used for thermalization, and the following 1000−5000 updates
were used for the actual measurements of the Polyakov correlation function.

In addition to considering the correlators measured with an “on-axis”
increasing distance between the sources, we also measure the correlators in
“off-axis” points, i.e. where the sources have “vertical” distance in addition.
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In general, the lattice breaks rotational symmetry, so off-axis correlators
of Polyakov loops are not expected to lie exactly aligned with the on-axis
ones. The full continuum rotational symmetry is however restored when the
lattice spacing tends to zero [75]. In the off-axis points one could expect
to see a difference between the results obtained using the general Wilson
action and the tree-level improved action; when calculating the potential,
the off-axis points are expected to fall further from the expected curve with
the non-improved action. This makes measuring the off-axis points a valid
test to assess the “goodness” of the improved action.

For each value of β, the static quark potential was calculated according
to (21), see figures 2-9. In 4D cases, a function of the form

V (r) = σr + V0 + γ/r (28)

was fitted to the data, thus giving estimates for σ, V0, and γ.
In 3D cases the fitted function could basically include also a logarithmic

term, i.e. the Coulomb term, which would play a role on small distances.
However, including this term makes the fit very unstable on larger distances,
as seen also in [76]. Instead, following the conclusions of [69], in 3D cases
we add a 1/r3 term in the fitting function,

V (r) = σr + V0 + γ/r + b/r3. (29)

Compared to (28), this form gives us better a fit and better estimates for
the Lüscher term γ.

In 3D the bosonic string prediction for the Lüscher term is γ ' 0.1309,
and in 4D γ ' 0.2618. As we can see from the tables 1, 2, in both 3D
and 4D, the Lüscher term extracted from our lattice data follows these
predictions.

All statistical uncertainties affecting the results were computed using
standard statistical analysis methods. In particular, the error bars on the
values of the average correlators were computed with the jackknife method,
while those on the potential were calculated by Gaussian propagation of the
latter.1

5.1 Systematic uncertainties

As always with results from lattice studies, there are some systematic un-
certainties that need to be taken in account. Finite volume effects, finite
cut-off effects and systematic effects in the choice of the fitting function are
all sources of such uncertainties in our calculations.

1This procedure turns out to be reliable for our data; computing the uncertainties on
the potential using the jackknife method leads to comparable results: the small differences
between the results obtained with the two methods do not have a really significant impact
on the findings of the study, and we include them among the possible sources of systematic
uncertainties that we discuss in subsection 5.1
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The finite volume effects are exponentially suppressed as e−mGL, where
mG is the mass of the lightest glueball, and L the shortest lattice size. e−mGL

is already very small when mGL & 4, so what we want is

L &
4

mG
. (30)

The lattice sizes chosen in this work meet this requirement.
As usual, the finite cut-off effects can be controlled by performing simu-

lations at several values of the lattice spacing. The calculations in this paper
involve a few different values of β in each studied case, and the results indi-
cate the impact from cut-off effects to be very small. As can be seen from
figure 10, the results are clearly already quite close to the continuum, be-
cause the points obtained from simulations at different lattice spacing fall on
the same curve and because there is no significant difference between points
obtained from on-axis versus off-axis correlators (hence the full rotational
symmetry is approximately restored).

The systematic effects in the choice of the fitting function can be studied
by extending it with an extra term, c/rα with α = 2 or 3, and seeing how
the fit parameters behave. With SU(3) in 3D and 4D, adding the extra
term with α = 2 changes σa2 and V0a only slightly (for example in 3D
with β = 18.0, σa2 changes from 0.04482(40) to 0.0470(59) and V0a from
0.2255(23) to 0.202(61)), but gives very poor estimates for γ. With SU(3)
in 4D adding the extra term with α = 3 gives poor estimates for all the
parameters; with β = 5.9, σa2 changes from 0.0904(70) to 0.08(13), V0a
from 0.670(21) to 0.72(69), and γ from −0.236(14) to −0.31(97).

The quality of the fit and, more precisely, the χ2 are heavily influenced by
the choice of points that are included in the fitting process. Small distance
off-axis points have a huge impact; for example with SU(3), β = 18.5 in 3D,
we get χ2 = 1.04 when the small distance off-axis points are neglected in the
fitting, but when included, the χ2 grows to a staggering 4445.21. Obviously,
this is due to systematic effects related to lattice artifacts at short distances.
Already removing just a couple of these points brings the χ2 down to 107.028.
In another example, with SU(4), β = 23.0 in 3D, we get χ2 = 0.91 with
the small distance off-axis points neglected, and χ2 = 3627.49 when they
are included. For reliable results, all fits in this paper are done excluding
the small distance off-axis points. The points are however included in the
figures 2-9.

6 Conclusions

In this work, we have generalized the Lüscher and Weisz multilevel algorithm
for the tree-level improved gauge action to study SU(N) Yang-Mills theo-
ries. Applying this efficient lattice gauge theory algorithm, we computed
the static quark potential in SU(3) and SU(4) Yang-Mills theories in 2 + 1
and 3 + 1 dimensions. The calculated Lüscher term was shown to satisfy
the predictions of bosonic string theory, more or less equally well with the
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NC D β σa2 V0a γ b

3 3 18.0 0.043927(57) 0.23041(32) −0.11434(47) 0.02313(23)
18.5 0.041339(58) 0.22689(33) −0.11276(48) 0.02306(21)
19.0 0.039042(62) 0.22313(36) −0.11069(53) 0.02276(23)

4 5.9 0.0904(70) 0.670(21) −0.236(14)
6.0 0.0649(21) 0.6788(63) −0.2412(42)

4 3 32.0 0.04716(15) 0.31280(90) −0.1230(13) 0.02528(60)
33.5 0.04244(25) 0.3070(15) −0.1210(23) 0.0255(10)
34.0 0.04106(27) 0.3050(16) −0.1202(25) 0.0254(11)
30.0 0.054518(76) 0.32240(44) −0.12795(64) 0.02581(28)

4 11.0 0.0680(14) 0.737(19) −0.255(12)

Table 1: fit results with Wilson action

NC D β σa2 V0a γ b

3 3 18.0 0.034971(85) 0.20028(48) −0.10488(68) 0.02115(29)
18.5 0.03320(14) 0.19695(76) −0.1025(11) 0.02061(48)
19.0 0.031427(70) 0.19493(40) −0.10222(58) 0.02106(25)

4 4.5 0.0536(22) 0.6686(66) −0.2478(44)

4 3 23.0 0.07118(38) 0.3191(21) −0.1333(31) 0.0244(13)
23.5 0.06852(47) 0.3145(26) −0.1292(38) 0.0232(17)
24.0 0.06599(24) 0.3102(13) −0.1250(19) 0.02187(85)

4 8.0 0.058(13) 0.771(41) −0.290(28)

Table 2: fit results with the improved action

Wilson action Improved action

NC D β reduced χ2 β reduced χ2

3 3 18.0 1.53 18.0 0.26
18.5 2.25 18.5 1.04
19.0 3.48 19.0 0.42

4 5.9 0.53 4.5 0.49
6.0 1.21

4 3 32.0 15.91 23.0 0.91
33.5 65.21 23.5 2.07
34.0 86.83 24.0 0.79
30.0 1.81

4 11.0 0.55 8.0 0.98

Table 3: The reduced χ2 for each of the fits.
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Figure 2: SU(3), in 3 dimensions, with the Wilson action. 4000 measure-
ments, lattice size 48× 242.

Figure 3: SU(3), in 3 dimensions, with the improved action. 4000 measure-
ments, lattice size 48× 242.

14



Figure 4: SU(3), in 4 dimensions, with the Wilson action. 4000 measure-
ments, lattice size 24× 163.

Figure 5: SU(3), in 4 dimensions, with the improved action. 3000 measure-
ments, lattice size 24× 163.
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Figure 6: SU(4), in 3 dimensions, with the Wilson action. 5000 measure-
ments, lattice size 24× 162.

Figure 7: SU(4), in 3 dimensions, with the improved action. 5000 measure-
ments, lattice size 24× 162.
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Figure 8: SU(4), in 4 dimensions, with the Wilson action. 3300 measure-
ments, lattice size 24× 163.

Figure 9: SU(4), in 4 dimensions, with the improved action. 1100 measure-
ments, lattice size 24× 163.

17



Figure 10: The physical values calculated from the results obtained with
SU(3) in 3 dimensions, with the improved action

Wilson action as with the improved action. Also, we can see that the results
obtained with SU(4) agree with the results of SU(3), and in fact, the bosonic
string prediction for the Lüscher term is met more accurately with SU(4).

Besides the calculations of the static quark potential, multilevel algo-
rithms can be used in many other contexts, such as in the computation of
glueball masses and the correlation functions related to the transport coef-
ficients of the quark-gluon plasma. For future endeavors, in principle the
multilevel algorithm for the improved gauge action could also be used in
graphics processing unit (GPU) implementations. As an example of this
type of application, very recently this has been done for the compact U(1)
lattice gauge theory with the standard Wilson action, in [77].

Another possible useful application for a high-precision multilevel algo-
rithm with the improvement in 3D could be in the context of dimensionally-
reduced effective theories for hot QCD, which, for example, very recently
have been used to compute certain non-perturbative contributions to the
jet-quenching parameter in [78, 79].
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[50] M. Lüscher, G. Münster, and P. Weisz. Nucl. Phys. B, 180:1, 1981.

[51] F. Gliozzi and M. Meineri. Lorentz completion of effective string (and
p-brane) action. arXiv:1207.2912v1 [hep-th].

[52] H. B. Meyer. Poincaré invariance in effective string theories. JHEP,
05:066, 2006. arXiv:hep-th/0602281.

[53] O. Aharony and M. Field. On the effective theory of long open strings.
JHEP, 1101:065, 2011. arXiv:1008.2636 [hep-th].

[54] O. Aharony and M. Dodelson. Effective String Theory and Nonlinear
Lorentz Invariance. JHEP, 12:008, 2012. arXiv:1111.5758 [hep-th].

[55] O. Aharony, M. Field, and N. Klinghoffer. The effective string spectrum
in the orthogonal gauge. JHEP, 04:048, 2012. arXiv:1111.5757 [hep-th].

[56] G. Bali and A.M. Green. Two Quark Potentials, Oct 2004. arXiv:nucl-
th/0410080v2.

[57] J. Kuti. Lattice QCD and String Theory, 2006. PoS JHW2005, 009
(2006), arXiv:hep-lat/0511023.

[58] M. Caselle, M. Panero, and P. Provero. String effects in Polyakov loop
correlators. JHEP, 0206:061, June 2002. arXiv:hep-lat/0205008.

[59] P. Majumdar. The string spectrum from large Wilson loops. Nucl.
Phys. B, 664:213, 2003. arXiv:hep-lat/0211038v3.

[60] M. Caselle, M. Hasenbusch, and M. Panero. Short distance behaviour of
the effective string. JHEP, 0405:032, May 2004. arXiv:hep-lat/0403004.

[61] P. Majumdar. Continuum limit of the spectrum of the hadronic string,
Jun 2004. arXiv:hep-lat/0406037.

[62] M. Caselle, M. Hasenbusch, and M. Panero. Comparing the Nambu-
Goto string with LGT results. JHEP, 0503:026, May 2005. arXiv:hep-
lat/0501027.

[63] K. J. Juge, J. Kuti, and C. J. Morningstar. Quark Confinement and
Surface Critical Phenomena. Nucl. Phys. Proc. Suppl., 83:503, 2000.
arXiv:hep-lat/9911007.

22



[64] K. J. Juge, J. Kuti, and C. Morningstar. The Casimir Energy Paradox
of the QCD String. Nucl. Phys. Proc. Suppl., 129:686, 2004. arXiv:hep-
lat/0310039.

[65] B. B. Brandt. Probing boundary-corrections to Nambu-Goto open
string energy levels in 3d SU(2) gauge theory. JHEP :,, 1102:040, 2011.
arXiv:1010.3625v2 [hep-lat].

[66] J. Polchinski and A. Strominger. Effective string theory. Phys. Rev.
Lett., 67:1681, 1991.

[67] J. M. Drummond. Universal subleading spectrum of effective string
theory. arXiv:hep-th/0411017; J. M. Drummond, Reply to hep-
th/0606265, arXiv:hep-th/0608109.

[68] N. D. Hari Dass and P. Matlock. Universality of correction to Luescher
term in Polchinski-Strominger effective string theories. arXiv:hep-
th/0606265; N. D. H. Dass and P. Matlock, Our response to the re-
sponse hep-th/0608109 by Drummond, arXiv:hep-th/0611215; N. D.
Hari Dass and P. Matlock, Covariant Calculus for Effective String The-
ories, arXiv:0709.1765 [hep-th].
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