20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022036 doi:10.1088/1742-6596/513/2/022036

The abstract geometry modeling language (AgML):
experience and road map toward eRHIC

Jason Webb, Jerome Lauret and Victor Perevoztchikov

Brookhaven National Laboratory

E-mail: jwebb@bnl.gov

Abstract. The STAR experiment has adopted an Abstract Geometry Modeling Language
(AgML) as the primary description of our geometry model. AgML establishes a level of
abstraction, decoupling the definition of the detector from the software libraries used to create
the concrete geometry model. Thus, AgML allows us to support both our legacy GEANT
3 simulation application and our ROOT/TGeo based reconstruction software from a single
source, which is demonstrably self- consistent. While AgML was developed primarily as a
tool to migrate away from our legacy FORTRAN-era geometry codes, it also provides a rich
syntax geared towards the rapid development of detector models. AgML has been successfully
employed by users to quickly develop and integrate the descriptions of several new detectors
in the RHIC/STAR experiment including the Forward GEM Tracker (FGT) and Heavy Flavor
Tracker (HFT) upgrades installed in STAR for the 2012 and 2013 runs. AgML has furthermore
been heavily utilized to study future upgrades to the STAR detector as it prepares for the
eRHIC era.

With its track record of practical use in a live experiment in mind, we present the status,
lessons learned and future of the AgML language as well as our experience in bringing the code
into our production and development environments. We will discuss the path toward eRHIC
and pushing the current model to accommodate for detector miss-alignment and high precision
physics.

1. Introduction

The STAR experiment has migrated its geometry model away from its legacy framework,
adopting an Abstract Geometry Modeling Language (AgML)[1] which allows us to support
both our GEANT 3[2] based simulation codes and our reconstruction chains which utilize
the ROOT/TGeo[3] geometry framework. The primary motivation of AgML was to enable
a consistent single-source description of our detector geometry shared by our simulation
and reconstruction packages, while enabling us to better leverage modern virtual Monte
Carlo toolkits. AgML furthermore retains and extends functionality from the original
AgSTAR framework[4], which promotes ease-of-use, rapid development and code maintainability.
Following extensive regression tests to validate the new geometry model[l], STAR integrated
AgML into its simulation and reconstruction chains in 2012. The new geometry model currently
supports our simulation and event reconstruction needs, providing consistent and stable reference
geometries for the majority of STAR’s run configurations. We have integrated two major new
subsystems into our software stack using the AgML framework: the Forward GEM Tracker
(FGT), and the silicon pixel detector (PXL) of the new Heavy Flavor Tracker (HFT). AgML
is additionally being used to evaluate upgrade paths for eSTAR, a planned experiment at an

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022036 doi:10.1088/1742-6596/513/2/022036

electron-ion collider at RHIC. In this report we will highlight those features of the language
we feel are useful for both production and development environments, discuss the capabilities
and plans for the AgML language framework, and summarize our experience in integrating new
subsystems into the STAR geometry model.

2. Language

AgML is an XML-based language geared towards the problem domain of generating geometry
models for nuclear and high-energy experiments. The language implements syntax for declaring
the properties, content and placement of volumes within the geometry tree, as well as markup
elements for data structures, iteration and flow control. This enables the complete specification
of detector geometries within single XML files, called modules. Listing 1 shows the overall
structure of a detector module. Data structures are declared and filled, materials defined and
the top-level volume of the module is created and placed in the geometry tree. Volumes are
declared as complete code blocks in XML. The properties of the volume are specified within
this code block, as well as the creation and placement of daughter volumes. This enforces a
uniform organization of modules which we have found to be particularly useful in developing
and maintaining the code. The complete behavior of a volume can be determined by referencing
a fairly compact block.

<Module name="BBCM" comment="The Beam Beam Counter Module" >
Data-Structures
Material -Definitions [optionall

Create-and-Place-Top-Volume

<Volume name="THXM" comment="is one Triple HeXagonal Module" >

<Material name="Air" />
<Medium name="standard" />

<Attribute for="THXM" seen="0" />

<Shape type="tube" dz="HEXG.thick/2"
rmax="HEXG.irad*2.0/sin(pi/3.0)" />

<For var="j" from="0" to="2" >
rsing=HEXG.irad/sin(pi/3.0)
thesing= j * pi * 2.0/3.0
<Create block="SHXT" />
<Placement block="SHXT" in="THXM"
x="rsing*cos (thesing)"
y="rsing*sin(thesing)" />
</For>

</Volume>

</Module>

Listing 1. AgML syntax describing the triple hexagonal module of the STAR Beam-Beam
counters.

The developer’s geometry modules are responsible for steering the creation of the detector
geometry through making calls to functions defined in a support library. The support library
interfaces with the concrete geometry packages, such as ROOT/TGeo[3] or AgSTAR/GEANT
3[4, 2], which then instantiates the concrete geometry model. While the language syntax enforces
a useful organization of the user’s modules, the support library adds additional functionality

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022036 doi:10.1088/1742-6596/513/2/022036

which streamlines the development cycle, promotes ease-of-use and improves maintainability of
the code. Some of the most important features in this regard are:

Inheritance

The rules enforced by the support library requires only that the type of shape is specified
in a volume. All other parameters, e.g. the material, medium and even the dimensions of
the shape, may be omitted in the definition of the volume block. The resulting behavior
is that the volume being created will inherit its properties from its mother volume. This
arrangement provides a mechanism by which developers can quickly create branches of
the geometry tree with dimensions tied to each other in a way which is automated by the
support library. Changes to one volume will be reflected in all branches beneath than volume
which inherit parameters from it. This is particularly useful for optimizing detector designs,
simplifying the process of trying out different detector configurations and minimizing overlap
and extrusion errors when making modifications to the geometry.

Volume Parameterization

Volume parameterization is another useful feature which is supported by the AgML libraries.
An individual volume block in an AgML module may be used to create multiple versions of
a concrete volume. When a volume is referenced by the create operator, the support library
examines the previous states of that volume block. If it finds a volume with identical
parameters (i.e. shape, material and medium), then the existing volume will be used along
with all of the daughter volumes. If one or more of the volume’s parameters have been
changed, a new volume (with a unique name) will be created, and the geometry tree will
be traversed again to create and place new daughter volumes. This feature allows a single
compact code block to generate several similar detector elements.

Data Versioning

AgML data structures enable a single module to easily support multiple configurations of
a detector. Different versions of the data structure may be filled, selected at run time, and
used to steer the creation of the geometry model. STAR has typically staged the installation
of major subsystems over several runs. Data versioning allows us to support the changing
state of a detector using a single file. This feature greatly simplifies supporting earlier
versions of the STAR detector: as the experiment progresses, and the geometry model is
refined, those improvements are immediately available. The task of optimizing detector
designs is also streamlined by this feature, as many concepts can be defined in a single file,
selected and run time, and tested.

Steering
Since each geometry module supports multiple versions of a subdetector in STAR, a
mechanism is needed to steer the creation of a specific run’s geometry. AgML provides
facilities to manipulate a module’s data structures from a main steering routine. Thus,
we pass configuration information from the main geometry module to the modules which
create each subdetector through data structures.

3. Existing Framework and Planned Extensions

AgML provides an adaptable framework for creating concrete geometry models. Figure 1
illustrates the generation of the concrete geometry. AgML source files are parsed and converted
into code (e.g. C++, FORTRAN) through one of two extensible backends to the AgML parser[1].
This code is compiled and linked in with a dedicated support library, through which it steers
the creation of the concrete geometry model. We currently support two such models: GEANT
3 and ROOT/TGeo. New functionality can be added to the AgML language by adding to the
backends, and implementing the corresponding code with the support libraries. For example, in
the next release of AgML we plan to provide support for the full set of features available in ROOT

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing

Journal of Physics: Conference Series 513 (2014) 022036 doi:10.1088/1742-6596/513/2/022036
C++/ROOT _| Compilable _|ROOT/TGeo
backend CXX "1 model

AgML Lib
[AgSTAR Lib]

AgML
Parser

G3/AgSTAR

backend + Compilable | GEANT3 STAR Geometry
AgSTAR FORtran "1 model

compiler

Figure 1. Geometry workflow. AgML files are parsed and passed through one of two
backends, producing compilable code. These codes are linked with the support library for the
concrete geometry and an additional steering routine, capable of instantiating one the various
configurations of the STAR detector using either GEANT 3 or ROOT.

geometry model. At present, only those features in common with GEANT 3 are supported. We
also intend to add support for Geant 4[5] geometries!, and are considering providing a GDML][6]
backend as well.

With the installation of the FGT and the HFT, STAR is entering a new era of high-
precision physic measurements. This places new demands on our geometry model, as well as our
simulation and event reconstruction environments. On the reconstruction side, we are prepared
to support detailed misalignments of the detector. AgML automatically inserts “alignment
groups” (volume assemblies) in the concrete ROOT geometry, which groups together co-moving
geometry volumes. These alignment groups can then be misaligned by the reconstruction chain,
based on parameters stored in our offline database. For simulations, additional work needs to be
done as GEANT 3 does not provide the same support for misalignments as is found in ROOT.
The AgSTAR/GEANT 3 support library will be extended with this missing functionality, adding
support for alignment groups and application of the corresponding alignment constants from,
for example, a database.

4. Experience

STAR is pursuing an upgrades program which will extend the physics reach of the experiment,
and is planning for its evolution to the eSTAR detector at an electron-ion collider at RHIC.
New detector models are being implemented by user groups in STAR, with assistance from the
simulations group, in order to support the new detectors and upgrade proposals. Typically the
work of developing geometries is assigned to a graduate student or postdoctoral researcher
working within the group which is responsible for the construction of the detector, under
the supervision of more senior personnel. Figure 2 illustrates two detectors which have been
integrated into the experiment and the geometry framework: the Forward GEM Tracker (FGT),
fully installed for the y2013 run; and the silicon pixel detector of the Heavy Flavor Tracker,
partially installed in y2013. These detectors are both designed to provide high resolution tracking
in high-multiplicity environments. Thus, their geometry models are quite detailed. In each case,
the time required for postdoctoral physicists with no prior experience to develop and validate
these production quality AgML geometry models was about 1-2 FTE months.

! This would require some reshape of the STAR geometry model to eliminate overlapping volumes.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022036 doi:10.1088/1742-6596/513/2/022036

Figure 2. Forward GEM Tracker (left) and the silicon pixel detector of the Heavy Flavor
Tracker (right). The line drawing is of a single FGT disk, and the arrangement of the six disks
of the FGT is illustrated. The pixel detector shows a line drawing of the organization of the
pixel ladders on the ten sectors for the y2013 run, while the overlay shows a single instrumented
sector.

5. Summary

The geometry model is an essential element of data processing applications in nuclear, particle
and high-energy physics experiments. STAR has successfully integrated the Abstract Geometry
Modeling Language into our production and development environments, providing a robust
single-source description of our detector, capable of supporting both our legacy GEANT 3
simulation application, and our ROOT-based reconstruction codes. The AgML framework
provides a feature-rich, compact description of the STAR geometry model. It is an extensible
framework, which will allow us to add missing functionality to our legacy GEANT 3 simulations,
and provide support for new concrete geometry models[7] if and when they become available in
the field. AgML is being employed successfully in our production environment, integrating new
detectors (FGT and HFT) for the 2012 and 2013 runs at RHIC. And it is serving well in our
development environment, supporting the simulations of the proposed upgrade path to eSTAR.

References

[1] J. Webb et al., Planning for Evolution in a Production Environment: Migration from a Legacy Geometry Code
to an Abstract Geometry Modeling Language in STAR, J. Phys. Conf. Ser. 396 022058 (2012).

[2] GEANT - Detector Description and Simulation Tool, CERN, Geneva 1993.

[3] R. Brun et al., The ROOT Geometry Package, Nucl. Instrum. Meth. A502:676-680,2003.

[4] A. Artamonov et al., DICE-95, internal note ATLAS-SOFT/95-14, CERN, 1995; P. Jacobs and D.
Irmscher, GSTAR: A Geant-based Detector Simulation Chain for STAR, STAR internal note 0235, see
also https://drupal.star.bnl.gov/STAR /starnotes/public/sn0235.

[5] S. Agostinelli et al., Geant4 - a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250-303.

[6] R. Chytracek, The Geometry Description Markup Language, Conf. Proc. C 0109031 (2001).

[7] GEANT project, http://geant.cern.ch

