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Abstract

We construct quasilocal conserved charges in the gapless (JA| < 1) regime of the Heisenberg XXZ
spin-1/2 chain, using semicyclic irreducible representations of Uy (sly). These representations are char-
acterized by a periodic action of ladder operators, which act as generators of the aforementioned algebra.
Unlike previously constructed conserved charges, the new ones do not preserve magnetization, i.e. they do
not possess the U (1) symmetry of the Hamiltonian. The possibility of application in relaxation dynamics
resulting from U (1)-breaking quantum quenches is discussed.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In this paper we shall consider the anisotropic Heisenberg XXZ spin-1/2 chain with peri-
odic boundary conditions, from the point of view of theory of integrability. Heisenberg spin
chains, providing successful theoretical description of magnetism-related phenomena in spin-
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chain materials [ 1], can be studied analytically using the so called algebraic Bethe ansatz method
[2,3], resulting in an infinite family of conservation laws. These can then be applied in numerous
ways to treat various aspects of equilibrium and nonequilibrium statistical physics of the model
in consideration. An example of application of these results out-of-equilibrium is a rigorous
derivation and evaluation [4-7] of Mazur—Suzuki lower bound [8,9] for spin transport [10].
The result of this evaluation in linear response theory implies strict ballistic property of high
temperature spin transport in the thermodynamic limit in the |A| < 1 regime of the anisotropic
Heisenberg spin-1/2 Hamiltonian. This issue has been controversial in view of the fact that the
thermodynamic Bethe ansatz approach to quantum spin transport allowed for different, mutu-
ally inconsistent results [11,12]. Another, closely related application of (quasi)local conserved
operators is in relaxation dynamics that follows quantum quenches of integrable systems, where
the precise formulation of the so-called generalized Gibbs ensemble is currently under intense
investigation [13—15].

The success of the algebraic Bethe ansatz method, in case of Heisenberg spin chains relies
heavily on the existence of quantum group U, (sl2) and its universal R-matrix, satisfying the so
called quantum Yang—Baxter equation [16]. Using the fundamental, two-dimensional represen-
tations of these objects, Faddeev and his Leningrad school [2] developed a general technique
which generates the Heisenberg Hamiltonian, together with the full family of local conserved
charges in involution, via the logarithmic derivatives of the quantum transfer matrix. However,
in a recent progress [6,7,17], other highest weight irreducible representations at the root-of-unity
values of g, which densely populate the entire critical interval —1 < A < 1, have been imple-
mented to construct quasi-local conserved quantities relevant for quantum spin transport and
quantum relaxation [18]. In the present paper, these constructions are generalized and extended,
using semicyclic irreducible representations [19,20]. Here the highest and the lowest weight vec-
tors are coupled by the periodic action of Uy (sl»)-generators.

In the second section we briefly review the model and the structure of cyclic and semicyclic ir-
reducible representations of U, (s[2), as given (up to module isomorphism) in Refs. [19] and [20].
Also, the problem of periodicity of the generator action is reviewed: the fundamental commuta-
tion relations described in [2], implying the conservation and involution of transfer-matrix related
quantities, fail to hold in case of irreducible even-dimensional and certain odd-dimensional
(semi)cyclic representations [21]. Since the anisotropy parameter is linked to the parameter g
— the parameter of deformation of the quantum group and thus to the dimension of a representa-
tion, this imposes a restriction on the values of anisotropy parameter, for which this construction
is valid.

In the third section we construct new quasilocal conserved quantities (31), from valid odd-
dimensional irreducible representations, using the formal procedure described in [6]. Quasilocal-
ity follows from the argument stated in the latter paper. As a direct consequence of periodicity of
generator actions, the total magnetization in z direction is not conserved by the newly constructed
conserved operators. This is compatible with abundant degeneracies found in the spectrum of the
XXZ model at the root of unity anisotropies as a consequence of the loop algebra symmetry
[22,23].

Finally, we propose in section 4 some potentially interesting applications of new quasilo-
cal conserved operators for computing generalized Drude weights and quantum relaxation
dynamics resulting from U (1)-symmetry breaking quantum quenches in the regime of linear
response.
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2. The model and representations of Uy (sl;)
2.1. Anisotropic Heisenberg model and quantum group Uy (sl2)

Denoting by # = C? the local physical spin-1/2 space, the Hamiltonian of the anisotropic
Heisenberg spin-1/2 chain consisting of n particles can be thought of as an operator in
End(H®"),

n—1

Hxxz =Y hjj+1, (1
j=0

with local interaction terms acting nontrivially on a pair of adjacent sites. Periodic boundary
conditions are imposed by taking indices modulo n. Operator term indices j, j + 1 denote local
physical spaces in the chain, on which the term %} ;1 acts nontrivially. Thus /; ;4 is a trivial
extension of the local interaction & € End( ® ), which, in our case, takes the form

h=20TQ0c +20" ®c T+ Ac*Q0c?, (2)

onto End(#®"). Here, as in standard notation, 0%, o € {0, x, y, z} denote Pauli matrices, o%=1
the identity in End(?), and additionally we have o* = %(ox +i0Y). In the gapless regime,
|A| < 1, which will be the subject of our consideration, one can rewrite the parameter of
anisotropy as A = cos, introducing a new parameter n € [0, 2). Setting g = €', we obtain
an intrinsic connection between Heisenberg spin model and the quantum group U, (sly) [2.6,
17,16]. The latter is a Hopf algebra, generated by elements S*, S™, qzsz’ satisfying a set of
algebraic relations'
2572 =g
St —¢2425 st
S qzsz —g? qstS—
q25Z - q’zsZ _ sin(2n S%)

—ZquZSZ =1

’

[S*.871= 1 : 3)
q—q~ sinn
Here we have used common notation, allowing to write the Lax operator2 as described in [6],
_ (sin(@ +n8*)  (sinp ST | _ " u
€

where J = {+, —, 0, z} is the index set and )V the auxiliary space — the representation space
(module) of the Hopf algebra. The Lax components L #(¢) are given by

L%(p) = sing cos(nS?),

L*(g) = cos ¢ sin(nS*),

L¥(p) = (sinn) ST. 5)

1 See, for example, Ref. [19].
2 Note that in our matrix notation the roles of the auxiliary and the (quantum) physical spaces are interchanged with
respect to the literature on quantum inverse scattering method [2,3].
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One can now construct continuously parametrized (¢ € C) transfer operators (transfer matrices)
Vi (9) € End(H®"),’

Vi (@) = tra(L()®*"). (6)

In general their conservation and involution follow from the quantum Yang-Baxter equation,
evaluated in a representation over a triple tensor product H@ H® V and H® V ® V), respectively
[2,6]. First let us describe the explicit form of the representations used.

2.2. Irreducible representations of Uy (sl2)

The theory of irreducible representations of Uy (sl2) allows for an especially rich family of
representation structures at the roots of unity, where enlarged center of the algebra provides
additional representation parameters [24]. Here, besides the highest-weight representations, more
exotic structures, e.g. (semi)cyclic representations, are encountered. For ¢ taking values from the
set of roots of unity, the anisotropy parameter A densely populates the interval [—1, 1]. Let us
denote by d the order of root of unity, the lowest nontrivial natural number such that ¢g¢ = 1.
Setting

_ d, dodd
m= %,deven’

(7

one finds that m is the highest possible dimension of irreducible representation of U, (sly) at
g-root of unity [19]. We consider the following irreducible representations, preserving the form
of the Lax operator (4) and up to isomorphism equivalent to the classified ones [19,20]:

Vi(s, a1, 1), s,a1,p1€C

m—1
St=_ (s =kl (kl,
k=0

m—2 . .
sin(k + 1 sin
ST=Z< Cton, Al >|k><k+1|+a1|m—1><0|,
=0 sinn sin(2s — k)n
m—2 .
_ sin(2s — k)
s =3 S =01k 4 paioy om - 11, ®)
k=0 simn

Va(s, a2, B2), s,02,B82€C

m—1
5= (s —k)Ik)(K],
k=0

m—2 . .
sin(2s — k) o sin
sg=z< n, w2p n)|k)(k+1|+a2|m—1)(0|,

= sinn sin(k + 1)n
m—2 .
_ sin(k + 1
sy =3 S D0y k4 pal0ym — 11, ©)
=0 s

3 Partial tensor product with respect to physical space, ®p is equivalent to trivial expansion of all operators onto
H®" @V and their subsequent multiplication.
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Vi(p,y), y€C, peZ, 0<p<m-—2

m—2
Si=3 (k= 2) Wkl = &+ Dim = 1y m -1,

k=0

k
S; = Z *sin(p = My e+ 11,

=0 Slnﬂ
m—2 .
k+1
st=3 2Dy w4 yl0pm — 1. (10)
=0 simn

The first two of these structures are isomorphic if we set

m—1 .
_ sin(2s — [+ 1)n
o= (T2

=1

m—1 .
sin2s — [+ 1)n

o =[] T2 g, (1n

I sinln

The U, (sl;)-module isomorphism is given by the adjoint action of U: V, — V),
sin2s — [+ 1)n

{0 k) (k|. 12
|+Z]‘[ sty K (12)

k=11=1
Indeed, one can easily check that for all « € {+, —, z}, relation
S =UssU™! (13)
holds. Note, however, that U does not define an isomorphism for all possible values of 5. A coun-
terexample, which will be relevant in our case, is s = 0. The highest-weight representation
V1(s,0,0) was used in Ref. [6]. In what follows, we will leave out the representation indices
in operator definitions (8% = S%). Parameters «, 8, y, couple the highest-weight vector with the
lowest-weight one. Therefore, they shall henceforth be referred to as coupling parameters. If one
of «, B is non-zero, the representation is called semicyclic. If both are nonzero, the representa-
tion is referred to as cyclic. The representation V3(p, y # 0) is a priori semicyclic. Coupling of
the highest and the lowest-weight vectors leads to a problem with the fundamental commutation
relation used for a proof of conservation of transfer operators (6). We discuss this problem and
its consequences in the next subsection.

2.3. The problem of the fundamental commutation relation

Conservation of transfer operators (6) follows from the train argument [2] used on the funda-
mental commutation relation (FCR), i.e. the Yang—Baxter equation evaluated on the triple tensor
product HH® V,

Ri2(x/y)L13(x)L23(y) = Loz (y)L13(x)R12(x/y). (14)

Here x, y € C \ {0} are the spectral parameters, in our case taking an explicit form x = e’¢,
y = €' and operator indices” refer to vector spaces in the triple tensor product, on which the

4 For example R, =R ® 1, where R € End(H ® H) is given by (15).
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operators act nontrivially [2].° The form of Lax operators L is given by (4) and the trigonometric
R-matrix by

qx —q_lx_l 0 0 0
0 x—x1 g—q7! 0
R(x) = 0 d—g x—x-! 0 €eEndH®H).  (15)
0 0 0 gx —g 'x7!

One can prove that FCR (14) holds for R-matrix (15) and Lax operator (4) iff the following
set of relations is satisfied [2]:

S+qSZ Zq—quZ S+,

S ¢% =q4%S,
[S+ S_] _ qZSZ _q—ZSZ _ Sin(ZﬂSZ) (16)
’ qg—q~! sinp

Notice the essential difference between Uy (sl)-defining relations (3) and the Egs. (16). A ques-
tion that now arises is, in which case are the latter relations satisfied if the former hold. This
question has been discussed in relation to the existence of intertwiner for representations H and
Vi, j €{1,2,3}, in Ref. [21]. In general we can summarize the action of U, (sl;)-generators
as

¥ 1ky = 2k k), k=0,1,2,3,....m —1,

STlk+1)= fk) k), k=0,1,2,3,...,m—2,

STlky=f"(k)|k+1), k=0,1,2,3,...,m —2,

ST10) =a|m — 1),

S7Im —1)=p810), (17)
for some discrete maps f+, f~, f2:1 — C, with f*(m —1)=a, f~(m — 1) = 8, defined on
the index set I = {0, 1,2,...,m — 1}. The relations (16) and (17) result in the following set of
equations:

"¢ —q7 ¢ SH I =R =g U= 1) ST =0, k=1,2,...,m— 1,

ST — 4745 SH10) = (f40) — g~ f(m — 1) $*10) =0,

S7¢% —qq¥ SO =(f"(k) —q fAUk+1)S™ k) =0, k=0,1,...,m =2,

S q% —qq¥ ) Im—1)=(f"m—1)—q f(0)) S Im —1)=0. (18)
A recursion relation then follows for the index map f7,

frhk+1)=q7" f* k),

fem —1)=q f*(0), (19)

implying ¢ =1, since f” is nonzero. Note that in case of a representation with both the high-
est and the lowest-weight vector, there is no such constraint on the module dimension. Using

5 We note that all representation modules discussed here are to be understood in the sense of so-called evaluation map
representation of the infinite-dimensional loop algebra Ug (Lsl).
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Eq. (7), one can conclude, that the dimension of semicyclic or cyclic irreducible representations
of Uy (sl), for which FCR (14) holds, is always odd.

If one considers FCR as the sole source of conservation of transfer operators (6), then the
construction of conservation laws from the semicyclic irreducible representations is invalid for
q being a root of unity of even order. This restricts the values of the anisotropy parameter
A € [—1, 1] one can discuss using these representations, onto the following dense countable

set
21
S= {cos ( n)} . (20)
2k—1 k,leN, I<k

Indeed, explicit symbolic evaluation of commutators [V, (¢), Hxxz] for small systems in case of
A ¢S, A =cosn, where g = ¢! is a root of unity, yields non-zero results. Note that although
this set densely covers the interval [—1, 1], it does not so in a symmetric fashion with respect to
A = 0. For example, parameter A = —1/2 (n =2m/3) is included, while A =1/2 (n =m/3) is
not. This can be amended in the thermodynamic limit by noting, that the adjoint action of unitary
operator U € End(H®"), n € 2N given by

U=(1®c*»)®"?, (1)

is equivalent to flipping the sign of the anisotropy parameter A, ie. UHxxz(A)U =
— Hyxxz(—A). Hence we have an equivalence

[Hxxz(A),Y]1=0 & [Hxxz(—A),UYU]=0, (22)

i.e.if ¥ is a conserved charge in case of anisotropy A, then ¥ = UY U is a conserved charge for
anisotropy —A.

2.4. About involution

For g equal to a root of unity there is, in general, no solution to the Yang—Baxter equation in
the algebraic sense [20]. From Arnaudon’s discussion of validity of Yang—Baxter equation [20]
and the existence of intertwiner at s’ = s = 0 [21], we can conclude that

Va@)] o Va(@)],_g] =0 (23)

holds in case ¢ = 1, m = odd, where m is the dimension of irreducible representation. In case
g™ = —1 the symbolic computation for small system sizes yields non-vanishing commutators
among transfer matrices.

3. Quasilocal conserved quantities
3.1. Construction

In this section we explicitly describe the construction of new conservation laws, exhibiting an
additional property called quasilocality. For completeness, let us revisit the definition of quasilo-
cality, as stated in Ref. [6].

Definition 1. An operator sequence {Y;},en, Yy € End(H®") which can be written as

n—1

Y=Y 8% ®1°""), (24)

r=n x=0
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with operator terms ¢, € End(H®") satisfying

llgrllms < ye™*", (25)

for some positive constants y, ¢ > 0, is called quasilocal.®

As has been seen in the preceding section, for A € §, the conservation and commutation
of transfer operators (6) is guaranteed. Transfer operators inherit a dependence on parame-
ters of the representation from the Lax operators they consist of. As was implicitly hinted
above, the representation parameters of our interest are the ones, coupling the highest and the
lowest-weight vectors, thus making the representation (semi)cyclic. The task is now to make
transfer operators quasilocal. In order to achieve this, we will differentiate the transfer op-
erator with respect to the complex coupling parameter 8 (or o or y) and then set all the
representation parameters, i.e. all parameters except ¢: the coupling parameter S (or « or y)
and the spin parameter s (or p), to zero. The representations V; and ), are related by the
map given by (12). Since for our choice of representation parameters (s = 0), this map is
no longer an isomorphism, we do not expect exact equivalence of the resulting conservation
laws.

Let us define rescaled Lax components as I:éL (p) =csco L*(p) |S=0, where L #(p) are given
by Egs. (5) and denote s; = sin(kn), cx = cos(kn). Note that L#(¢) possesses an implicit de-
pendence on both the spin and the coupling parameter and I:é‘ (¢), on the other hand retains only
implicit dependence on the coupling parameter. As will soon become clear, this procedure gives
nontrivial results only in the following cases:

- Vi(s, «, 0), differentiation with respect to «:

m—1
LOW@)] g = D cxlk)(Kl,
k=0

Im-1)

Im-2)

m—1
6@)|yg=—cote > silk) (K,
k=0

: _ m—2 (26)
L{(@)],_g=—csco Y sclk+ 1) (K|,
1) k=0

m—2

) Ly (@)],_g=csco > serilk)(k+ 1],
k=0

3oLy @),y = sinn Im — 1)(0),

- Wa(s, 0, B), differentiation with respect to 8:

6 By || — |lgs, we have here denoted a vector norm of an operator, naturally defined by the Hilbert—Schmidt scalar
product, (—, —) : End(H®*) — C, (A, B) = tr(AT B) /2%,
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m—1

Lo@)| =Y cxlk)(Kl,
k=0

Im-1) m—1
Li(@)|y_g = —cotg D selk)(kl,
k=0

. = 27)
L{ ()] g_g=csco Y sertlk+ 1)K,
i k=0
\ B m—2
" L5 @)]_g=—csco Y selkpik + 11,

k=0

OpLg (@) 5_o =sinn[0)(m — 1],

Im-2)
. Sh

Q2

- V3(p, y), differentiation with respect to y:

m—1
Lo@), o= Y cxlk)(kl,
k=0

M
i [m-1) . m—1
] 6@)],_g =cote Y silk)(kl,
S5 e k=0
| - = (28)
Ly @), _g=—csco ) selk) ik +11,
\ i k=0
. m—2
" Ly @)],_g=csco Y sirilk+ Dk,
k=0

8y1~46(€0)|]/:0 =sinn |0)(m — 1].

For the sake of simplicity let us denote
L' (#) =Ly @), 0c Ly (9) = 0c L' ()], (29)
where ¢ stands for «, B or y. Lé‘ (¢) now depends only on the explicit complex (spectral) pa-
rameter ¢.
Example 1. As an example of construction of quasilocal operators, we take a look at the repre-
sentation V> (s, 0, B). Using the periodic left-shift operator
3(0060 RN @ 0" 2Qc¥ 1) =" Q0N Q% @Y, (30)

we can introduce quasilocal conserved charges X, (¢)

I8V ()] ,_o g sing \ 2
s=0, B=0 (2 M1 12%) Mn
Xn(p) = = tr(95L, L L
n (@) (sin )2 (sin )" —2 (sinn) Z r( 8L (®) 0 (®) 0 ((ﬂ)) X
Wiseeesin €T
n
XZSX(UMI(X)O'Mz@"'O'M”), (31)

x=1
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using Egs. (27), (29). Defining local operator terms

aP@= Y (m-lL@ L @)t ®c e o ®at, (32)
H2ser—1 €T
for r > 2, we can rewrite equation (31) as

n n—l1

Xa(@) =) ) 8@ (@) @17 (33)
r=2x=0

The superscript index (2) labels the representation Vs (s, 0, 8). Note from (27) and (32), that
operator terms qr(z) (¢) do not conserve z-component of magnetization, since the sequence of
Lax operators in each coefficient needs to couple the ket vector |1) with the bra vector (m — 1|
and thus requires a surplus of m — 2 operators Lg (9). Consequentially, only the terms with
r > m remain in (33). Taking into account the two boundary ¢+ matrices, each term of g, )((p)
thus consists of a surplus of m matrices o .

Quasilocality of operator sequence {X,(¢)}, follows from the argument given in section 5
of Ref. [6], for spectral parameter ¢ satisfying the constraint |[Re¢ — 7| < 5. The argu-
ment is based on the estimation of the spectral radius of an auxiliary transfer matrix T(g, ¢’) €
Isp{lk); k=1,...,m — 1}, given by

m—1

ISkSk+1]
T = tocote's?) k) (k — (k) (k+ 1]+ |k + 1) (k]),
(¢.¢) = I;<ck+co<pcocpsk>| |+225iwsimp/(| Yk + 1] + [k + 1)(kl)
(34)
satisfying
2 (19201742 6h) = Jm ~ TG, gY 1), rzm (35)

Here we should point out the difference in the bra vector in (35) and equation (53) of the Ref. [6]. 7
Since the local operator terms g, )((p) are Hilbert—Schmidt orthogonal with respect to r, the
following estimation can be produced:

(X2 (@): Xa(¢)) <1 Z (142 @7 4P @) =nK (g, ), (36)
with

1 1
K(p,¢/)=im— 1|<11—T<¢,¢’))—1|1>=Zwm71, (37)

where |) solves the equation (1 — T(¢, ¢"))|v) = |1). Explicit calculation of all components
Y¥i, j €{l,---,m — 1} has been done in Ref. [6]. The final result for the so-called Hilbert—
Schmidt kernel in our case reads:

sing sing’ sin(p + ¢’)
2 (sinn)? sin(m(gp + ¢'))

K(p,¢") = lim H(X0(@), Xu(¢)) = (38)

7 One needs to slightly alter the proof for each particular choice of representation. When evaluating the LHS of Eq. (35),
the correct correspondence between Isp{|k) ® |k);k=1,..., m — 1} and Isp{lk); k=1, ..., m — 1} must be chosen, in
order to arrive at the transfer matrix of the form (34). See Ref. [6] for comparison.
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As an explicit example let us write down full symbolic expressions of the first few local
operator terms qéz) (9), qf) (¢) and q§2) (¢) forn =2m/3 (A=-1/2):

V3
q§2)((p) = 5 csc (a+ Qo™ ®0+),
3 3
qf)((p) = %cscgo (o+®]l®o+®0+) + %cscga (o+®a+®]l®a+) +
3 3
+cotg escy (c"®ot®c"®0™) - 7 Cotw escy (cT®o"®@ct®0™),

V3
415(2)(§0)=—?CSC<P (c"®1®1l®ct®c™) -

3
—%cscw (c"®1®cT®1Qc™T) -

3
—%cscgo (o+®0+®]l®]l®a+)—

343

- T\/_(csmp)3 (c"®oct®o @0t ®0™) -
3

—gcotgo cscp (6P ®1Q0T®o* @) +
3

+§cot<p csco (U+®1®UZ®0+®G+)—
3

— gcotw escy (c7T®0ct®1®0c"®0™) —
3

— g cotw escy (c"®oct®c"®1®0™) +
3

+ g coty escy (c"®0"®1Qc T ®o™) +
3

—l—gcot(p cscp (0t ®o"®oT@1I®o™) —

343
- T\/_(cotgo)2 cscp (6T ®oT®o'®@0" Qo) +

343
+ Tf(cot¢)2 csco (o+ Qoo™ ®0Z®o+) -
343
- T\/_(cot(p)2 csco (a+®oz®oz®o+®a+). (39)

Example 2. Since in case of representation V(s, 0, 8) the Lax component I:(‘)" (¢) destroys the
ket vector |0), one cannot get nontrivial result by differentiation with respect to . However one

can take Vi (s, o, 0) and differentiate with respect to «. In this case the operator terms qr(l)(go)
take the form

aP@= > (L)L @m— 1o @0 @ o ®@oT, (40)
w2y ptr—1€J
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where Lax components are given by (26). Here, each coefficient contains a surplus of m — 2 op-
erators L, (¢). Defining the spin flip or parity operator® P € End(H#®") as P = (¢*)®", P2 =1,
we can see, after some rumination, that

T
iV @) =PeP@)P= (4P ~9) . (1)
Therefore the Hilbert—Schmidt norm of such conserved quantities remains the same as in

Eq. (38).

Example 3. Taking the third representation with Lax components given by (28) and differentiat-
ing the corresponding transfer operator with respect to y, we get

aP@= Y (m-lL@ L @) @ @0 @07, (42)
w2setr—1€J

for operator terms. It is straightforward to see that again

T
@) =P (@P = (4P =) =4 () 3)

holds. For an example of explicit form of operator terms, see Egs. (39).
Therefore, we have — up to a trivial spin flip — a single additional family of semi-cyclic quasilo-
cal charges which, remarkably, do not conserve the z-magnetization,

[X.(p), MJ1#£0, Mi=) o (44)
j=1

4. Applications

Let us briefly discuss the possibility of applications. Conserved quantities are especially
important for estimation of dynamical susceptibilities of extensive observables, by means of
the Mazur—Suzuki inequality [6,7,5,9]. Let A be such an observable with a fixed parity v, i.e.
PAP = (—1)"A. As was done in Ref. [6] for the case of magnetization (or spin) current, the
dynamical susceptibility can be bounded from below in accordance with the inequality

: I 4o 1 2
Dy = lim —(A)" > —/d pa() f(p). (45

n—o00 2n -2

Here A denotes a formal time average,

1
ap) = lim (A, Xa(¢)) (46)

is a projection of an observable onto the conserved quantity, and f is a complex-valued holomor-
phic function, defined on D, = {p € C; |Rep — 5| < 5.}, satisfying the Fredholm equation of
the first kind,

1 -
—/dzfﬂ’K(fp,w’)f(w’)=a(¢). (47)

2
D

8 Here, the spin flip will always be denoted by P, regardless of the physical space it acts on. Its action will be clear
from the context.
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Since z-magnetization M7 is not conserved by our conservation laws, the observables eligible
for such a consideration must not conserve it as well in order for a(¢) to be possibly nonvanish-
ing. An example of such an observable is a sum of translated, local spin-flip operators, acting on
an odd number of adjacent sites,

n
Ap = st (0" Q...Q X @18 k), (48)
x=1 k

k odd, which is obviously an observable of positive (or even) parity v = +1. We can now, for
example, calculate the projection of A; onto the conserved quantities from m-dimensional ir-
reducible semicyclic representations. Note that, since our observable has positive parity, the
choice of particular semicyclic representation (V1, V2, or V3) is irrelevant, since (Ag, X, (¢)) =
(Ak, PX,(¢)P). The projections (Ax, gn(¢)) can be left out of calculation of scalar products,
since we are working in the thermodynamic limit and hence, using Cauchy—Schwarz inequality
and quasilocality (25) of local operator terms, we can estimate

|(Aks gn(@)| < |1Akllas llgn(@)llas < ¢ne V", (49)
The corresponding term in (46) thus vanishes in the thermodynamic limit. Computation gives

lim l(Ak, X (@) = (— 1)(k—m)/2w
n—oon 2k
where, again, s; = sin(jn) and g denotes some function of variables s1, ..., $,,—1, accounting for
the action of (k — m)/2 pairs of Lax operators Lg’ (¢), Ly (¢) that are, in addition to m — 2 op-
erators L(J)r(<p), present in the coefficients of X, (¢).” As an example, let us calculate the explicit
form of function g in a particular case.

[5253 - - Sm—1] (csc @) 2, (50)

Example 4. Let us take k =9 and m = 5, n = 2x/5. Non-zero terms in the projection
(Ak, X, (p)) are supplied by terms of operators gi(¢) in X, (¢), consisting of three operators
Lar(gp) and two pairs of operators Lg (¢), Ly (¢). Using just relevant indices of these operators,
we can write down nontrivial terms as
d++-——+++]1
4+ —+++—-+]1
d+++—-+—-+11

( ) $2535354,
( )
( )
d++-++-—+I0) 51525253,
( )
( )
( )
( )

§1525354,

§1828152,

H+++—-—++]1
++-—+—-++I1
d+—++—-++]1
44+ —+—-+++11

Lax components (27) have been used. The common prefactor s,s3s4, provided by the triple
of La’ (¢) components, coupling |1) to (4|, has been left out. The sum of these terms corresponds
to a function g, used in Eq. (50),

§15252583,
$2535253,
$2535354,

§3545354. (51)

g(s1,82,583,84) = slzs% + s%s% + s%sf + 251525253 + 252535354 + 51525354. (52)

S m—2 operators La' (¢), coupling vectors |1) and (m — 1], contribute the additional factor s, ...s,,_1.



352 L. Zadnik et al. / Nuclear Physics B 902 (2016) 339-353

From the form of Lax components, it can be deduced, that the function g, contributed by the
action of (k — m)/2 pairs of operators Lg (¢) and L, (¢), must always be a homogeneous poly-
nomial of order (k — m)/2, in variables s152, ..., Sm—28m—1.

Using Egs. (38), (46), (47), (50) we see that, in order to calculate the Mazur—Suzuki lower
bound, the solution of Fredholm equation

f(@)=C(cscp)?, (53)

/ 2o’ sing sing’ sin(p + ¢’)
sin(m(¢ + ¢"))
D
for some constant C, is needed. At the moment we are not able to provide general analytic
solutions f(¢) to this equation, which however can easily be solved numerically.

As a possible physical realization, one may consider a quantum quench protocol from the
Hamiltonian H) = Hxxz — AAj to Hxxz at t =0, restoring U (1)-symmetry of the XXZ Hamil-
tonian (which is broken by k-spin operator Ay), starting with a thermal state p(t < 0) = pg =
Z~Vexp(—BH,). For weak quenches (small 1), one can use linear response theory [18], to pre-
dict the after-quench steady state

pss = pp (1 + BAAk). (54)

Our generalized Drude weight D4, thus yields a high-temperature Hilbert—Schmidt norm of all
the magnetization non-conserving terms in the steady state, and can be bounded from below (45)
using the newly constructed quasi-local operators. This is an indication that the latter have to be
included in a complete generalized Gibbs ensemble of the XXZ model at roots of unity.

5. Conclusion

The present paper extends the construction of quasilocal conservation laws for the anisotropic
Heisenberg XXZ model with periodic boundary conditions, developed in Refs. [6,17], to the
case of exotic representation structures provided by the quantum group Uy (sl2) at roots of unity,
namely the semicyclic representations. The conservation law property and commutativity are
discussed in relation to the dimension of representation: only representations with dimension
equal to the order of root of unity generate conserved quantities in involution. Newly constructed
conserved quantities are quasilocal and do not conserve z-magnetization, i.e. they do not possess
the U (1) symmetry of the Hamiltonian. Interesting remaining problems and questions which
should be investigated in future include: (i) physical applications of newly constructed quasilocal
conserved charges, for example in relation to quench dynamics and generalized thermalizaiton,
and (ii) analytically solving the Fredholm equation (53).
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