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Abstract

We construct quasilocal conserved charges in the gapless (|�| ≤ 1) regime of the Heisenberg XXZ
spin-1/2 chain, using semicyclic irreducible representations of Uq(sl2). These representations are char-
acterized by a periodic action of ladder operators, which act as generators of the aforementioned algebra. 
Unlike previously constructed conserved charges, the new ones do not preserve magnetization, i.e. they do 
not possess the U(1) symmetry of the Hamiltonian. The possibility of application in relaxation dynamics 
resulting from U(1)-breaking quantum quenches is discussed.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In this paper we shall consider the anisotropic Heisenberg XXZ spin-1/2 chain with peri-
odic boundary conditions, from the point of view of theory of integrability. Heisenberg spin 
chains, providing successful theoretical description of magnetism-related phenomena in spin-
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chain materials [1], can be studied analytically using the so called algebraic Bethe ansatz method 
[2,3], resulting in an infinite family of conservation laws. These can then be applied in numerous
ways to treat various aspects of equilibrium and nonequilibrium statistical physics of the model 
in consideration. An example of application of these results out-of-equilibrium is a rigorous 
derivation and evaluation [4–7] of Mazur–Suzuki lower bound [8,9] for spin transport [10]. 
The result of this evaluation in linear response theory implies strict ballistic property of high 
temperature spin transport in the thermodynamic limit in the |�| < 1 regime of the anisotropic 
Heisenberg spin-1/2 Hamiltonian. This issue has been controversial in view of the fact that the 
thermodynamic Bethe ansatz approach to quantum spin transport allowed for different, mutu-
ally inconsistent results [11,12]. Another, closely related application of (quasi)local conserved 
operators is in relaxation dynamics that follows quantum quenches of integrable systems, where 
the precise formulation of the so-called generalized Gibbs ensemble is currently under intense 
investigation [13–15].

The success of the algebraic Bethe ansatz method, in case of Heisenberg spin chains relies 
heavily on the existence of quantum group Uq(sl2) and its universal R-matrix, satisfying the so 
called quantum Yang–Baxter equation [16]. Using the fundamental, two-dimensional represen-
tations of these objects, Faddeev and his Leningrad school [2] developed a general technique 
which generates the Heisenberg Hamiltonian, together with the full family of local conserved 
charges in involution, via the logarithmic derivatives of the quantum transfer matrix. However, 
in a recent progress [6,7,17], other highest weight irreducible representations at the root-of-unity 
values of q , which densely populate the entire critical interval −1 < � < 1, have been imple-
mented to construct quasi-local conserved quantities relevant for quantum spin transport and 
quantum relaxation [18]. In the present paper, these constructions are generalized and extended, 
using semicyclic irreducible representations [19,20]. Here the highest and the lowest weight vec-
tors are coupled by the periodic action of Uq(sl2)-generators.

In the second section we briefly review the model and the structure of cyclic and semicyclic ir-
reducible representations of Uq(sl2), as given (up to module isomorphism) in Refs. [19] and [20]. 
Also, the problem of periodicity of the generator action is reviewed: the fundamental commuta-
tion relations described in [2], implying the conservation and involution of transfer-matrix related 
quantities, fail to hold in case of irreducible even-dimensional and certain odd-dimensional 
(semi)cyclic representations [21]. Since the anisotropy parameter is linked to the parameter q
– the parameter of deformation of the quantum group and thus to the dimension of a representa-
tion, this imposes a restriction on the values of anisotropy parameter, for which this construction 
is valid.

In the third section we construct new quasilocal conserved quantities (31), from valid odd-
dimensional irreducible representations, using the formal procedure described in [6]. Quasilocal-
ity follows from the argument stated in the latter paper. As a direct consequence of periodicity of 
generator actions, the total magnetization in z direction is not conserved by the newly constructed 
conserved operators. This is compatible with abundant degeneracies found in the spectrum of the 
XXZ model at the root of unity anisotropies as a consequence of the loop algebra symmetry 
[22,23].

Finally, we propose in section 4 some potentially interesting applications of new quasilo-
cal conserved operators for computing generalized Drude weights and quantum relaxation 
dynamics resulting from U(1)-symmetry breaking quantum quenches in the regime of linear 
response.
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2. The model and representations of Uq(sl2)

2.1. Anisotropic Heisenberg model and quantum group Uq(sl2)

Denoting by H = C
2 the local physical spin-1/2 space, the Hamiltonian of the anisotropic 

Heisenberg spin-1/2 chain consisting of n particles can be thought of as an operator in 
End(H⊗n),

HXXZ =
n−1∑
j=0

hj,j+1, (1)

with local interaction terms acting nontrivially on a pair of adjacent sites. Periodic boundary 
conditions are imposed by taking indices modulo n. Operator term indices j , j + 1 denote local 
physical spaces in the chain, on which the term hj,j+1 acts nontrivially. Thus hj,j+1 is a trivial 
extension of the local interaction h ∈ End(H⊗H), which, in our case, takes the form

h = 2σ+ ⊗ σ− + 2σ− ⊗ σ+ + �σ z ⊗ σ z, (2)

onto End(H⊗n). Here, as in standard notation, σα , α ∈ {0, x, y, z} denote Pauli matrices, σ 0 = 1
the identity in End(H), and additionally we have σ± ≡ 1

2 (σ x ± iσ y). In the gapless regime, 
|�| ≤ 1, which will be the subject of our consideration, one can rewrite the parameter of 
anisotropy as � = cosη, introducing a new parameter η ∈ [0, 2π). Setting q = eiη, we obtain 
an intrinsic connection between Heisenberg spin model and the quantum group Uq(sl2) [2,6,
17,16]. The latter is a Hopf algebra, generated by elements S+, S−, q2 Sz

, satisfying a set of 
algebraic relations1

q2 Sz
q−2 Sz = q−2 Sz

q2 Sz = 1,

S+ q2 Sz = q−2 q2 Sz
S+,

S− q2 Sz = q2 q2 Sz
S−,

[S+,S−] = q2 Sz − q−2 Sz

q − q−1
= sin(2η Sz)

sinη
. (3)

Here we have used common notation, allowing to write the Lax operator2 as described in [6],

L(ϕ) =
(

sin(ϕ + η Sz) (sinη)S−
(sinη)S+ sin(ϕ − η Sz)

)
=

∑
μ∈J

σ μ ⊗ L μ(ϕ) ∈ End(H⊗ V), (4)

where J = {+, −, 0, z} is the index set and V the auxiliary space – the representation space 
(module) of the Hopf algebra. The Lax components L μ(ϕ) are given by

L0(ϕ) = sinϕ cos(ηSz),

Lz(ϕ) = cosϕ sin(ηSz),

L±(ϕ) = (sinη)S∓. (5)

1 See, for example, Ref. [19].
2 Note that in our matrix notation the roles of the auxiliary and the (quantum) physical spaces are interchanged with 

respect to the literature on quantum inverse scattering method [2,3].
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One can now construct continuously parametrized (ϕ ∈C) transfer operators (transfer matrices) 
Vn(ϕ) ∈ End(H⊗n),3

Vn(ϕ) = tra(L(ϕ)⊗pn). (6)

In general their conservation and involution follow from the quantum Yang–Baxter equation, 
evaluated in a representation over a triple tensor product H⊗H⊗V and H⊗V⊗V , respectively 
[2,6]. First let us describe the explicit form of the representations used.

2.2. Irreducible representations of Uq(sl2)

The theory of irreducible representations of Uq(sl2) allows for an especially rich family of 
representation structures at the roots of unity, where enlarged center of the algebra provides 
additional representation parameters [24]. Here, besides the highest-weight representations, more 
exotic structures, e.g. (semi)cyclic representations, are encountered. For q taking values from the 
set of roots of unity, the anisotropy parameter � densely populates the interval [−1, 1]. Let us 
denote by d the order of root of unity, the lowest nontrivial natural number such that qd = 1. 
Setting

m =
{

d, d odd
d
2 , d even , (7)

one finds that m is the highest possible dimension of irreducible representation of Uq(sl2) at 
q-root of unity [19]. We consider the following irreducible representations, preserving the form 
of the Lax operator (4) and up to isomorphism equivalent to the classified ones [19,20]:

V1(s, α1, β1), s, α1, β1 ∈ C

Sz
1 =

m−1∑
k=0

(s − k)|k〉〈k|,

S+
1 =

m−2∑
k=0

(
sin(k + 1)η

sinη
+ α1 β1 sinη

sin(2s − k)η

)
|k〉〈k + 1| + α1|m − 1〉〈0|,

S−
1 =

m−2∑
k=0

sin(2s − k)η

sinη
|k + 1〉〈k| + β1|0〉〈m − 1|, (8)

V2(s, α2, β2), s, α2, β2 ∈ C

Sz
2 =

m−1∑
k=0

(s − k)|k〉〈k|,

S+
2 =

m−2∑
k=0

(
sin(2s − k)η

sinη
+ α2 β2 sinη

sin(k + 1)η

)
|k〉〈k + 1| + α2|m − 1〉〈0|,

S−
2 =

m−2∑
k=0

sin(k + 1)η

sinη
|k + 1〉〈k| + β2|0〉〈m − 1|, (9)

3 Partial tensor product with respect to physical space, ⊗p is equivalent to trivial expansion of all operators onto 
H⊗n ⊗V and their subsequent multiplication.
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V3(p, γ ), γ ∈C, p ∈ Z, 0 ≤ p ≤ m − 2

Sz
3 =

m−2∑
k=0

(
k − p

2

)
|k〉〈k| − (

p

2
+ 1)|m − 1〉〈m − 1|,

S−
3 =

m−2∑
k=0

sin(p − k)η

sinη
|k〉〈k + 1|,

S+
3 =

m−2∑
k=0

sin(k + 1)η

sinη
|k + 1〉〈k| + γ |0〉〈m − 1|. (10)

The first two of these structures are isomorphic if we set

β2 =
(

m−1∏
l=1

sin(2s − l + 1)η

sin lη

)
β1,

α1 =
(

m−1∏
l=1

sin(2s − l + 1)η

sin lη

)
α2. (11)

The Uq(sl2)-module isomorphism is given by the adjoint action of U : V2 → V1,

U = |0〉〈0| +
m−1∑
k=1

k∏
l=1

sin(2s − l + 1)η

sin lη
|k〉〈k|. (12)

Indeed, one can easily check that for all α ∈ {+, −, z}, relation

Sα
1 = U Sα

2 U−1 (13)

holds. Note, however, that U does not define an isomorphism for all possible values of s. A coun-
terexample, which will be relevant in our case, is s = 0. The highest-weight representation 
V1(s, 0, 0) was used in Ref. [6]. In what follows, we will leave out the representation indices 
in operator definitions (Sα

j = Sα). Parameters α, β, γ , couple the highest-weight vector with the 
lowest-weight one. Therefore, they shall henceforth be referred to as coupling parameters. If one 
of α, β is non-zero, the representation is called semicyclic. If both are nonzero, the representa-
tion is referred to as cyclic. The representation V3(p, γ �= 0) is a priori semicyclic. Coupling of 
the highest and the lowest-weight vectors leads to a problem with the fundamental commutation 
relation used for a proof of conservation of transfer operators (6). We discuss this problem and 
its consequences in the next subsection.

2.3. The problem of the fundamental commutation relation

Conservation of transfer operators (6) follows from the train argument [2] used on the funda-
mental commutation relation (FCR), i.e. the Yang–Baxter equation evaluated on the triple tensor 
product H⊗H⊗ V ,

R12(x/y)L13(x)L23(y) = L23(y)L13(x)R12(x/y). (14)

Here x, y ∈ C \ {0} are the spectral parameters, in our case taking an explicit form x = eiϕ , 
y = eiϕ′

and operator indices4 refer to vector spaces in the triple tensor product, on which the 

4 For example R12 = R ⊗ 1, where R ∈ End(H⊗H) is given by (15).



344 L. Zadnik et al. / Nuclear Physics B 902 (2016) 339–353
operators act nontrivially [2].5 The form of Lax operators L is given by (4) and the trigonometric 
R-matrix by

R(x) =
⎛
⎜⎝

qx − q−1x−1 0 0 0
0 x − x−1 q − q−1 0
0 q − q−1 x − x−1 0
0 0 0 qx − q−1x−1

⎞
⎟⎠ ∈ End(H⊗H). (15)

One can prove that FCR (14) holds for R-matrix (15) and Lax operator (4) iff the following 
set of relations is satisfied [2]:

S+ qSz = q−1 qSz
S+,

S− qSz = q qSz
S−,

[S+,S−] = q2 Sz − q−2 Sz

q − q−1
= sin(2η Sz)

sinη
. (16)

Notice the essential difference between Uq(sl2)-defining relations (3) and the Eqs. (16). A ques-
tion that now arises is, in which case are the latter relations satisfied if the former hold. This 
question has been discussed in relation to the existence of intertwiner for representations H and 
Vj , j ∈ {1, 2, 3}, in Ref. [21]. In general we can summarize the action of Uq(sl2)-generators 
as

qSz |k〉 = f z(k) |k〉, k = 0,1,2,3, . . . ,m − 1,

S+|k + 1〉 = f +(k) |k〉, k = 0,1,2,3, . . . ,m − 2,

S−|k〉 = f −(k) |k + 1〉, k = 0,1,2,3, . . . ,m − 2,

S+|0〉 = α |m − 1〉,
S−|m − 1〉 = β |0〉, (17)

for some discrete maps f +, f −, f z : I → C, with f +(m − 1) = α, f −(m − 1) = β , defined on 
the index set I = {0, 1, 2, . . . , m − 1}. The relations (16) and (17) result in the following set of 
equations:

(S+qSz − q−1qSz
S+) |k〉 = (f z(k) − q−1f z(k − 1)) S+|k〉 = 0, k = 1,2, . . . ,m − 1,

(S+qSz − q−1qSz
S+) |0〉 = (f z(0) − q−1f z(m − 1)) S+|0〉 = 0,

(S−qSz − q qSz
S−) |k〉 = (f z(k) − q f z(k + 1))S− |k〉 = 0, k = 0,1, . . . ,m − 2,

(S−qSz − q qSz
S−) |m − 1〉 = (f z(m − 1) − q f z(0)) S−|m − 1〉 = 0. (18)

A recursion relation then follows for the index map f z,

f z(k + 1) = q−1f z(k),

f z(m − 1) = q f z(0), (19)

implying qm = 1, since f z is nonzero. Note that in case of a representation with both the high-
est and the lowest-weight vector, there is no such constraint on the module dimension. Using 

5 We note that all representation modules discussed here are to be understood in the sense of so-called evaluation map 
representation of the infinite-dimensional loop algebra Uq(Lsl2).



L. Zadnik et al. / Nuclear Physics B 902 (2016) 339–353 345
Eq. (7), one can conclude, that the dimension of semicyclic or cyclic irreducible representations 
of Uq(sl2), for which FCR (14) holds, is always odd.

If one considers FCR as the sole source of conservation of transfer operators (6), then the 
construction of conservation laws from the semicyclic irreducible representations is invalid for 
q being a root of unity of even order. This restricts the values of the anisotropy parameter 
� ∈ [−1, 1] one can discuss using these representations, onto the following dense countable 
set

S =
{

cos

(
2 l

2 k − 1
π

)}
k,l∈N, l<k

. (20)

Indeed, explicit symbolic evaluation of commutators [Vn(ϕ), HXXZ] for small systems in case of 
� /∈ S, � = cosη, where q = eiη is a root of unity, yields non-zero results. Note that although 
this set densely covers the interval [−1, 1], it does not so in a symmetric fashion with respect to 
� = 0. For example, parameter � = −1/2 (η = 2π/3) is included, while � = 1/2 (η = π/3) is 
not. This can be amended in the thermodynamic limit by noting, that the adjoint action of unitary 
operator U ∈ End(H⊗n), n ∈ 2N given by

U = (1 ⊗ σ z)⊗ n/2, (21)

is equivalent to flipping the sign of the anisotropy parameter �, i.e. UHXXZ(�)U =
−HXXZ(−�). Hence we have an equivalence

[HXXZ(�),Y ] = 0 ⇔ [HXXZ(−�),UYU ] = 0, (22)

i.e. if Y is a conserved charge in case of anisotropy �, then Ỹ = UYU is a conserved charge for 
anisotropy −�.

2.4. About involution

For q equal to a root of unity there is, in general, no solution to the Yang–Baxter equation in 
the algebraic sense [20]. From Arnaudon’s discussion of validity of Yang–Baxter equation [20]
and the existence of intertwiner at s′ = s = 0 [21], we can conclude that

[Vn(ϕ)
∣∣
s=0,Vn(ϕ

′)
∣∣
s′=0] = 0 (23)

holds in case qm = 1, m = odd, where m is the dimension of irreducible representation. In case 
qm = −1 the symbolic computation for small system sizes yields non-vanishing commutators 
among transfer matrices.

3. Quasilocal conserved quantities

3.1. Construction

In this section we explicitly describe the construction of new conservation laws, exhibiting an 
additional property called quasilocality. For completeness, let us revisit the definition of quasilo-
cality, as stated in Ref. [6].

Definition 1. An operator sequence {Yn}n∈N, Yn ∈ End(H⊗n) which can be written as

Yn =
∑ n−1∑

Sx(qr ⊗ 1⊗(n−r)), (24)

r≤n x=0
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with operator terms qr ∈ End(H⊗r ) satisfying

||qr ||HS ≤ γ e−ζ r , (25)

for some positive constants γ, ζ > 0, is called quasilocal.6

As has been seen in the preceding section, for � ∈ S, the conservation and commutation 
of transfer operators (6) is guaranteed. Transfer operators inherit a dependence on parame-
ters of the representation from the Lax operators they consist of. As was implicitly hinted 
above, the representation parameters of our interest are the ones, coupling the highest and the 
lowest-weight vectors, thus making the representation (semi)cyclic. The task is now to make 
transfer operators quasilocal. In order to achieve this, we will differentiate the transfer op-
erator with respect to the complex coupling parameter β (or α or γ ) and then set all the 
representation parameters, i.e. all parameters except ϕ: the coupling parameter β (or α or γ ) 
and the spin parameter s (or p), to zero. The representations V1 and V2 are related by the 
map given by (12). Since for our choice of representation parameters (s = 0), this map is 
no longer an isomorphism, we do not expect exact equivalence of the resulting conservation 
laws.

Let us define rescaled Lax components as L̃ μ
0 (ϕ) = cscϕ L μ(ϕ)

∣∣
s=0, where L μ(ϕ) are given 

by Eqs. (5) and denote sk = sin(kη), ck = cos(kη). Note that L μ(ϕ) possesses an implicit de-
pendence on both the spin and the coupling parameter and L̃ μ

0 (ϕ), on the other hand retains only 
implicit dependence on the coupling parameter. As will soon become clear, this procedure gives 
nontrivial results only in the following cases:

– V1(s, α, 0), differentiation with respect to α:

L̃0
0(ϕ)

∣∣
α=0 =

m−1∑
k=0

ck|k〉〈k|,

L̃z
0(ϕ)

∣∣
α=0 = − cotϕ

m−1∑
k=0

sk|k〉〈k|,

L̃+
0 (ϕ)

∣∣
α=0 = − cscϕ

m−2∑
k=0

sk|k + 1〉〈k|,

L̃−
0 (ϕ)

∣∣
α=0 = cscϕ

m−2∑
k=0

sk+1|k〉〈k + 1|,

∂αL̃−
0 (ϕ)

∣∣
α=0 = sinη |m − 1〉〈0|,

(26)

– V2(s, 0, β), differentiation with respect to β:

6 By || − ||HS , we have here denoted a vector norm of an operator, naturally defined by the Hilbert–Schmidt scalar 
product, (−,−) : End(H⊗k) → C, (A,B) = tr(A†B)/2k .
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L̃0
0(ϕ)

∣∣
β=0 =

m−1∑
k=0

ck|k〉〈k|,

L̃z
0(ϕ)

∣∣
β=0 = − cotϕ

m−1∑
k=0

sk|k〉〈k|,

L̃+
0 (ϕ)

∣∣
β=0 = cscϕ

m−2∑
k=0

sk+1|k + 1〉〈k|,

L̃−
0 (ϕ)

∣∣
β=0 = − cscϕ

m−2∑
k=0

sk|k〉〈k + 1|,

∂β L̃+
0 (ϕ)

∣∣
β=0 = sinη |0〉〈m − 1|,

(27)

– V3(p, γ ), differentiation with respect to γ :

L̃0
0(ϕ)

∣∣
γ=0 =

m−1∑
k=0

ck|k〉〈k|,

L̃z
0(ϕ)

∣∣
γ=0 = cotϕ

m−1∑
k=0

sk|k〉〈k|,

L̃+
0 (ϕ)

∣∣
γ=0 = − cscϕ

m−2∑
k=0

sk|k〉〈k + 1|,

L̃−
0 (ϕ)

∣∣
γ=0 = cscϕ

m−2∑
k=0

sk+1|k + 1〉〈k|,

∂γ L̃−
0 (ϕ)

∣∣
γ=0 = sinη |0〉〈m − 1|.

(28)

For the sake of simplicity let us denote

L μ
0 (ϕ) = L̃ μ

0 (ϕ)
∣∣
ζ=0, ∂ζ L μ

0 (ϕ) = ∂ζ L̃ μ
0 (ϕ)

∣∣
ζ=0, (29)

where ζ stands for α, β or γ . L μ
0 (ϕ) now depends only on the explicit complex (spectral) pa-

rameter ϕ.

Example 1. As an example of construction of quasilocal operators, we take a look at the repre-
sentation V2(s, 0, β). Using the periodic left-shift operator

Ŝ(σα0 ⊗ σα1 ⊗ · · ·σαn−2 ⊗ σαn−1) = σα1 ⊗ σα2 ⊗ · · ·σαn−1 ⊗ σα0, (30)

we can introduce quasilocal conserved charges Xn(ϕ)

Xn(ϕ) =
∂βVn(ϕ)

∣∣
s=0, β=0

(sinη)2 (sinϕ)n−2
=

(
sinϕ

sinη

)2 ∑
μ1,...,μn∈J

tr
(
∂βL μ1

0 (ϕ)L μ2
0 (ϕ) · · ·L μn

0 (ϕ)
) ×

×
n∑

Ŝx(σ μ1 ⊗ σ μ2 ⊗ · · ·σ μn), (31)

x=1
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using Eqs. (27), (29). Defining local operator terms

q(2)
r (ϕ) =

∑
μ2,...μr−1∈J

〈m − 1|L μ2
0 (ϕ) · · ·L μr−1

0 (ϕ)|1〉σ+ ⊗ σ μ2 ⊗ · · ·σ μr−1 ⊗ σ+, (32)

for r ≥ 2, we can rewrite equation (31) as

Xn(ϕ) =
n∑

r=2

n−1∑
x=0

Ŝx(q(2)
r (ϕ) ⊗ 1⊗(n−r)). (33)

The superscript index (2) labels the representation V2(s, 0, β). Note from (27) and (32), that 
operator terms q(2)

r (ϕ) do not conserve z-component of magnetization, since the sequence of 
Lax operators in each coefficient needs to couple the ket vector |1〉 with the bra vector 〈m − 1|
and thus requires a surplus of m − 2 operators L+

0 (ϕ). Consequentially, only the terms with 

r ≥ m remain in (33). Taking into account the two boundary σ+ matrices, each term of q(2)
r (ϕ)

thus consists of a surplus of m matrices σ+.
Quasilocality of operator sequence {Xn(ϕ)}n follows from the argument given in section 5 

of Ref. [6], for spectral parameter ϕ satisfying the constraint | Reϕ − π
2 | < π

2m
. The argu-

ment is based on the estimation of the spectral radius of an auxiliary transfer matrix T(ϕ,ϕ′) ∈
lsp{|k〉; k = 1, . . . , m − 1}, given by

T(ϕ,ϕ′) =
m−1∑
k=1

(c2
k + cotϕ cotϕ′s2

k )|k〉〈k| +
m−2∑
k=1

|sksk+1|
2 sinϕ sinϕ′ (|k〉〈k + 1| + |k + 1〉〈k|) ,

(34)

satisfying

1

2r
tr

(
[q(2)

r (ϕ)]T q(2)
r (ϕ′)

)
= 1

4
〈m − 1|T(ϕ,ϕ′)r−2|1〉, r ≥ m. (35)

Here we should point out the difference in the bra vector in (35) and equation (53) of the Ref. [6].7

Since the local operator terms q(2)
r (ϕ) are Hilbert–Schmidt orthogonal with respect to r , the 

following estimation can be produced:

(
Xn(ϕ̄),Xn(ϕ

′)
) ≤ n

∞∑
r=2

1

2r
tr

(
[q(2)

r (ϕ)]T q(2)
r (ϕ′)

)
= nK(ϕ,ϕ′), (36)

with

K(ϕ,ϕ′) = 1

4
〈m − 1|(1 − T(ϕ,ϕ′))−1|1〉 = 1

4
ψm−1, (37)

where |ψ〉 solves the equation (1 − T(ϕ, ϕ′))|ψ〉 = |1〉. Explicit calculation of all components 
ψj , j ∈ {1, · · · , m − 1} has been done in Ref. [6]. The final result for the so-called Hilbert–
Schmidt kernel in our case reads:

K(ϕ,ϕ′) = lim
n→∞

1
n

(
Xn(ϕ̄),Xn(ϕ

′)
) = sinϕ sinϕ′ sin(ϕ + ϕ′)

2 (sinη)2 sin(m(ϕ + ϕ′))
(38)

7 One needs to slightly alter the proof for each particular choice of representation. When evaluating the LHS of Eq. (35), 
the correct correspondence between lsp{|k〉 ⊗ |k〉; k = 1, . . . , m − 1} and lsp{|k〉; k = 1, . . . , m − 1} must be chosen, in 
order to arrive at the transfer matrix of the form (34). See Ref. [6] for comparison.
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As an explicit example let us write down full symbolic expressions of the first few local 
operator terms q(2)

3 (ϕ), q(2)
4 (ϕ) and q(2)

5 (ϕ) for η = 2π/3 (� = −1/2):

q
(2)
3 (ϕ) = −

√
3

2
cscϕ

(
σ+ ⊗ σ+ ⊗ σ+)

,

q
(2)
4 (ϕ) =

√
3

4
cscϕ

(
σ+ ⊗ 1 ⊗ σ+ ⊗ σ+) +

√
3

4
cscϕ

(
σ+ ⊗ σ+ ⊗ 1 ⊗ σ+) +

+ 3

4
cotϕ cscϕ

(
σ+ ⊗ σ+ ⊗ σ z ⊗ σ+) − 3

4
cotϕ cscϕ

(
σ+ ⊗ σ z ⊗ σ+ ⊗ σ+)

,

q
(2)
5 (ϕ) = −

√
3

8
cscϕ

(
σ+ ⊗ 1 ⊗ 1 ⊗ σ+ ⊗ σ+) −

−
√

3

8
cscϕ

(
σ+ ⊗ 1 ⊗ σ+ ⊗ 1 ⊗ σ+) −

−
√

3

8
cscϕ

(
σ+ ⊗ σ+ ⊗ 1 ⊗ 1 ⊗ σ+) −

− 3
√

3

8
(cscϕ)3 (

σ+ ⊗ σ+ ⊗ σ− ⊗ σ+ ⊗ σ+) −

− 3

8
cotϕ cscϕ

(
σ+ ⊗ 1 ⊗ σ+ ⊗ σ z ⊗ σ+) +

+ 3

8
cotϕ cscϕ

(
σ+ ⊗ 1 ⊗ σ z ⊗ σ+ ⊗ σ+) −

− 3

8
cotϕ cscϕ

(
σ+ ⊗ σ+ ⊗ 1 ⊗ σ z ⊗ σ+) −

− 3

8
cotϕ cscϕ

(
σ+ ⊗ σ+ ⊗ σ z ⊗ 1 ⊗ σ+) +

+ 3

8
cotϕ cscϕ

(
σ+ ⊗ σ z ⊗ 1 ⊗ σ+ ⊗ σ+) +

+ 3

8
cotϕ cscϕ

(
σ+ ⊗ σ z ⊗ σ+ ⊗ 1 ⊗ σ+) −

− 3
√

3

8
(cotϕ)2 cscϕ

(
σ+ ⊗ σ+ ⊗ σ z ⊗ σ z ⊗ σ+) +

+ 3
√

3

8
(cotϕ)2 cscϕ

(
σ+ ⊗ σ z ⊗ σ+ ⊗ σ z ⊗ σ+) −

− 3
√

3

8
(cotϕ)2 cscϕ

(
σ+ ⊗ σ z ⊗ σ z ⊗ σ+ ⊗ σ+)

. (39)

Example 2. Since in case of representation V1(s, 0, β) the Lax component L̃+
0 (ϕ) destroys the 

ket vector |0〉, one cannot get nontrivial result by differentiation with respect to β . However one 
can take V1(s, α, 0) and differentiate with respect to α. In this case the operator terms q(1)

r (ϕ)

take the form

q(1)
r (ϕ) =

∑
〈1|L μ2

0 (ϕ) · · ·L μr−1
0 (ϕ)|m − 1〉σ− ⊗ σ μ2 ⊗ · · ·σ μr−1 ⊗ σ−, (40)
μ2,...μr−1∈J
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where Lax components are given by (26). Here, each coefficient contains a surplus of m − 2 op-
erators L−

0 (ϕ). Defining the spin flip or parity operator8 P ∈ End(H⊗r ) as P = (σ x)⊗r , P 2 = 1, 
we can see, after some rumination, that

q(1)
r (ϕ) = Pq(2)

r (ϕ)P =
(
q(2)
r (π − ϕ)

)T

. (41)

Therefore the Hilbert–Schmidt norm of such conserved quantities remains the same as in 
Eq. (38).

Example 3. Taking the third representation with Lax components given by (28) and differentiat-
ing the corresponding transfer operator with respect to γ , we get

q(3)
r (ϕ) =

∑
μ2,...μr−1∈J

〈m − 1|L μ2
0 (ϕ) · · ·L μr−1

0 (ϕ)|1〉σ− ⊗ σ μ2 ⊗ · · ·σ μr−1 ⊗ σ−, (42)

for operator terms. It is straightforward to see that again

q(3)
r (ϕ) = Pq(2)

r (ϕ)P =
(
q(2)
r (π − ϕ)

)T ≡ q(1)
r (ϕ) (43)

holds. For an example of explicit form of operator terms, see Eqs. (39).
Therefore, we have – up to a trivial spin flip – a single additional family of semi-cyclic quasilo-

cal charges which, remarkably, do not conserve the z-magnetization,

[Xn(ϕ),Mz
n] �= 0, Mz

n =
n∑

j=1

σ z
j . (44)

4. Applications

Let us briefly discuss the possibility of applications. Conserved quantities are especially 
important for estimation of dynamical susceptibilities of extensive observables, by means of 
the Mazur–Suzuki inequality [6,7,5,9]. Let A be such an observable with a fixed parity ν, i.e. 
PAP = (−1)νA. As was done in Ref. [6] for the case of magnetization (or spin) current, the 
dynamical susceptibility can be bounded from below in accordance with the inequality

DA = lim
n→∞

1

2n
〈A〉2 ≥ 1

2

∫
d2ϕ a(ϕ)f (ϕ). (45)

Here A denotes a formal time average,

a(ϕ) = lim
n→∞

1

n
(A,Xn(ϕ)) (46)

is a projection of an observable onto the conserved quantity, and f is a complex-valued holomor-
phic function, defined on Dm = {ϕ ∈C ; | Reϕ − π

2 | < π
2m

}, satisfying the Fredholm equation of 
the first kind,

1

2

∫
Dm

d2ϕ′K(ϕ,ϕ′)f (ϕ′) = a(ϕ̄). (47)

8 Here, the spin flip will always be denoted by P , regardless of the physical space it acts on. Its action will be clear 
from the context.
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Since z-magnetization Mz
n is not conserved by our conservation laws, the observables eligible 

for such a consideration must not conserve it as well in order for a(ϕ) to be possibly nonvanish-
ing. An example of such an observable is a sum of translated, local spin-flip operators, acting on 
an odd number of adjacent sites,

Ak =
n∑

x=1

Sx(σ x ⊗ . . . ⊗ σ x︸ ︷︷ ︸
k

⊗1⊗(n−k)), (48)

k odd, which is obviously an observable of positive (or even) parity ν = +1. We can now, for 
example, calculate the projection of Ak onto the conserved quantities from m-dimensional ir-
reducible semicyclic representations. Note that, since our observable has positive parity, the 
choice of particular semicyclic representation (V1, V2, or V3) is irrelevant, since (Ak, Xn(ϕ)) =
(Ak, PXn(ϕ)P ). The projections (Ak, qn(ϕ)) can be left out of calculation of scalar products, 
since we are working in the thermodynamic limit and hence, using Cauchy–Schwarz inequality 
and quasilocality (25) of local operator terms, we can estimate

|(Ak, qn(ϕ))| ≤ ||Ak||HS ||qn(ϕ)||HS ≤ ζ ne−γ n. (49)

The corresponding term in (46) thus vanishes in the thermodynamic limit. Computation gives

lim
n→∞

1

n
(Ak,Xn(ϕ)) = (−1)(k−m)/2 g(s1, . . . , sm−1)

2k
[s2s3 · · · sm−1] (cscϕ)k−2, (50)

where, again, sj = sin(jη) and g denotes some function of variables s1, . . . , sm−1, accounting for 
the action of (k − m)/2 pairs of Lax operators L+

0 (ϕ), L−
0 (ϕ) that are, in addition to m − 2 op-

erators L+
0 (ϕ), present in the coefficients of Xn(ϕ).9 As an example, let us calculate the explicit 

form of function g in a particular case.

Example 4. Let us take k = 9 and m = 5, η = 2π/5. Non-zero terms in the projection 
(Ak, Xn(ϕ)) are supplied by terms of operators qk(ϕ) in Xn(ϕ), consisting of three operators 
L+

0 (ϕ) and two pairs of operators L+
0 (ϕ), L−

0 (ϕ). Using just relevant indices of these operators, 
we can write down nontrivial terms as

〈4| + + − − + + + |1〉 s2s3s3s4,

〈4| + − + + + − + |1〉 s1s2s3s4,

〈4| + + + − + − + |1〉 s1s2s1s2,

〈4| + + − + + − + |1〉 s1s2s2s3,

〈4| + + + − − + + |1〉 s1s2s2s3,

〈4| + + − + − + + |1〉 s2s3s2s3,

〈4| + − + + − + + |1〉 s2s3s3s4,

〈4| + − + − + + + |1〉 s3s4s3s4. (51)

Lax components (27) have been used. The common prefactor s2s3s4, provided by the triple 
of L+

0 (ϕ) components, coupling |1〉 to 〈4|, has been left out. The sum of these terms corresponds 
to a function g, used in Eq. (50),

g(s1, s2, s3, s4) = s2
1s2

2 + s2
2s2

3 + s2
3s2

4 + 2s1s2s2s3 + 2s2s3s3s4 + s1s2s3s4. (52)

9 m − 2 operators L+(ϕ), coupling vectors |1〉 and 〈m − 1|, contribute the additional factor s2, . . . sm−1.
0



352 L. Zadnik et al. / Nuclear Physics B 902 (2016) 339–353
From the form of Lax components, it can be deduced, that the function g, contributed by the 
action of (k − m)/2 pairs of operators L+

0 (ϕ) and L−
0 (ϕ), must always be a homogeneous poly-

nomial of order (k − m)/2, in variables s1s2, . . . , sm−2sm−1.

Using Eqs. (38), (46), (47), (50) we see that, in order to calculate the Mazur–Suzuki lower 
bound, the solution of Fredholm equation∫

Dm

d2ϕ′ sinϕ sinϕ′ sin(ϕ + ϕ′)
sin(m(ϕ + ϕ′))

f (ϕ′) = C (cscϕ)k−2, (53)

for some constant C, is needed. At the moment we are not able to provide general analytic 
solutions f (ϕ) to this equation, which however can easily be solved numerically.

As a possible physical realization, one may consider a quantum quench protocol from the 
Hamiltonian Hλ = HXXZ − λAk to HXXZ at t = 0, restoring U(1)-symmetry of the XXZ Hamil-
tonian (which is broken by k-spin operator Ak), starting with a thermal state ρ(t < 0) = ρβ =
Z−1 exp(−βHλ). For weak quenches (small λ), one can use linear response theory [18], to pre-
dict the after-quench steady state

ρss = ρβ(1 + βλĀk). (54)

Our generalized Drude weight DAk
thus yields a high-temperature Hilbert–Schmidt norm of all 

the magnetization non-conserving terms in the steady state, and can be bounded from below (45)
using the newly constructed quasi-local operators. This is an indication that the latter have to be 
included in a complete generalized Gibbs ensemble of the XXZ model at roots of unity.

5. Conclusion

The present paper extends the construction of quasilocal conservation laws for the anisotropic 
Heisenberg XXZ model with periodic boundary conditions, developed in Refs. [6,17], to the 
case of exotic representation structures provided by the quantum group Uq(sl2) at roots of unity, 
namely the semicyclic representations. The conservation law property and commutativity are 
discussed in relation to the dimension of representation: only representations with dimension 
equal to the order of root of unity generate conserved quantities in involution. Newly constructed 
conserved quantities are quasilocal and do not conserve z-magnetization, i.e. they do not possess 
the U(1) symmetry of the Hamiltonian. Interesting remaining problems and questions which 
should be investigated in future include: (i) physical applications of newly constructed quasilocal 
conserved charges, for example in relation to quench dynamics and generalized thermalizaiton, 
and (ii) analytically solving the Fredholm equation (53).
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