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1 Introduction

The Standard Model of particle physics initially predicted three flavors of massless neutrinos.
However, experiments indicate that neutrinos oscillate between flavor eigenstates and thus
carry non-zero mass [1–6]. These neutrino-oscillation experiments have measured the mass
difference between at least two of the three neutrino mass eigenstates. One can rule out
models for the relative ordering of the mass differences, or the neutrino mass hierarchy, by
constraining the total neutrino mass,

∑
mν , to be less than the minimum allowed

∑
mν of a

given mass hierarchy. To date, the most stringent upper-bound of the total neutrino mass
through ground-based experiments was determined by the KATRIN beta-decay experiment
to be

∑
mν < 0.8eV at 90% confidence [7].

The tightest bounds on
∑

mν , though, are currently found through cosmological obser-
vations, since massive neutrinos impact the expansion history, energy density, and structure
growth of the universe (see [8] for a summary of recent cosmological constraints). Massive
neutrinos, being relativistic in the early universe, contribute to the radiation energy den-
sity. In turn, the amplitude and position of Cosmic Microwave Background (CMB) angular
temperature power spectrum peaks [9] as well as the Baryon-Acoustic Oscillation (BAO)
peak [10, 11] are influenced by the presence of massive neutrinos.

The expansion of the universe eventually cools massive neutrinos to be non-relativistic
when their temperature is less than their rest-mass energy.1 Non-relativistic neutrinos in
the late-time universe maintain a large thermal motion and free-stream at small physical
scales (for reviews, see [13, 14]). Neutrino free-streaming suppresses the small-scale matter
power spectrum, which is most directly observable through galaxy weak lensing. The small-
scale matter power suppression is indirectly observable through damped correlations in

1For example, a 0.2eV massive neutrino will become non-relativistic around a redshift of 400 given current
CMB temperature constraints [12].
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void clustering [15, 16] and galaxy clustering statistics [13, 17, 18]. At large physical scales,
massive neutrinos are coherent with Cold Dark Matter (CDM) and baryon density fluctuations
(hereafter denoted as cb) and induce an apparent enhancement of galaxy clustering statistics
relative to small scales [19–21].

Cosmological data analyses of the CMB by the Planck collaboration constrain
∑

mν <

0.241eV at 95% confidence, while omitting high-multipole CMB polarization data constrains∑
mν < 0.54eV at 95% confidence [12]. Analyzing spectroscopic galaxy clustering data from

eBOSS with Planck CMB data places
∑

mν < 0.129eV at 95% confidence [22]. Combining
eBOSS and Planck data with angular galaxy clustering and lensing from the Dark Energy
Survey Year 3 (DESY3) data finds

∑
mν < 0.13eV at 95% confidence [23], with the constrain-

ing power primarily coming from eBOSS [22] and Planck CMB [12] data. With the increased
statistical power of future photometric surveys, the next generation of angular clustering and
weak lensing measurements are expected to contribute significantly to cosmological constraints
on the sum of the neutrino masses, particularly in extended cosmological models (e.g. [24]). To
obtain unbiased constraints from these precise large-scale structure measurements, accurate
models of non-linear structure growth in the presence of massive neutrinos are required.

The non-linear evolution of the (dark) matter distribution in cosmologies with massive
neutrinos can be obtained through N-body simulations [21, 25–33]. For use in cosmological
inference, summary statistics, like power spectra, are then measured from simulations and
interpolated in (cosmological) parameter space using fitting functions or emulators (see [34, 35]
for recent comparisons of non-linear power spectrum models). The relation of the observed
distribution of galaxies to the underlying matter field is described by galaxy bias, which on
quasi-linear scales can be described by perturbative expansions with bias coefficients (see [36]
for a recent review). Perturbative bias models extend the range of model validity beyond
linear scales and increase the inference precision of the total neutrino mass [37–40].

However, the scale-dependent growth and corresponding reduction in clustering due
to massive neutrinos are not captured by perturbative bias models. At the linear galaxy
bias level, the scale-dependent growth induced by massive neutrinos introduces a scale-
dependence of linear galaxy bias. Predictions for this linear scale-dependent halo bias in the
peak-background split context are found by solving the multi-fluid spherical collapse as a
function of a given halo mass [41, 42], which can then be related to galaxy samples. Utilizing
improved modeling of the halo bias in the presence of massive neutrinos have been shown
to strengthen constraints on the total neutrino mass and aid in determining the neutrino
mass hierarchy [43–47]. However, such models introduce additional model parameters of the
non-linear galaxy-halo-connection (see [48] for a recent review).

Future surveys, like the Legacy Survey of Space and Time2 (LSST), will push deeper
in redshift, larger in sky area, and higher in galaxy density to considerably advance our
understanding of the cosmos and structure formation. The increasing precision of future
surveys then will require accurate models that describe non-linear effects, including those due
to massive neutrinos, that do not degrade cosmological parameter inference through additional
model complexities. To progress towards this goal, we present an analytic approximation
of the Neutrino-Induced Scale-Dependent Bias (NISDB) based on the foundational work

2https://lsstdesc.org/.
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of [41] (hereafter denoted L14). We show that this approximation models the shape of the
linear galaxy bias to good approximation and does not introduce additional galaxy-halo-
connection nuisance parameters to photometric redshift galaxy survey likelihood evaluations.
We investigate the impact of assumed linear galaxy bias and neutrino mass models on
cosmological parameter inference by contaminating DESY3 and LSST Year 1 (LSSTY1)
synthetic data with a substantial NISDB in the first full-likelihood 3x2pt analysis of its kind.
We additionally examine the robustness of systematic bias criteria of the aforementioned
galaxy clustering modeling choices on cosmological parameter inference and fits to the fiducial
data. We choose our fiducial total neutrino mass value to be 0.5eV split between 3 degenerate-
mass neutrinos to avoid prior-boundary effects and isolate the impact modeling choices have
on cosmological parameter inference, which may be relevant even at lower neutrino masses
for more stringent analyses combining LSST with next-generation CMB data.

This paper is structured as follows: in section 2, we briefly review the theoretical
background of neutrino-induced scale-dependent clustering, deriving a simple approximation
of the scale-dependent linear galaxy bias induced by neutrinos. In section 3, we detail our
synthetic likelihood analysis pipeline, fiducial cosmology, and systematic parameters for
DESY3- and LSSTY1-like analyses. We then investigate parameter constraints, degeneracies,
and biases when changing the linear galaxy bias model and/or the neutrino mass model used
to fit the fiducial synthetic data in section 4. We present our conclusions in section 5.

2 Theory and implementation

In this section, we motivate approximations to the NISDB derived in L14 at the linear
galaxy bias level for efficient evaluation in cosmological inference. We find our form to be a
good approximation of the NISDB and validate our approximate form against RelicFAST3

calculations [42].
A linear (Eulerian) galaxy bias relation, b(z), relates the density contrast of galaxies,

δg, to the underlying total matter field fluctuations, δm,

δg(x, z) ≈ b(z)δm(x, z), (2.1)

where x is a real-space coordinate and z denotes redshift.
The Peak-Background Split (PBS) formalism [49–51] shows that the presence of a long-

wavelength mode in the dark matter + baryon distribution, δcb,L, affects the effective critical
density threshold of halo collapse, δcrit, and provides an expression for the linear Lagrangian
bias, bL. Given a halo mass function, n(M), we can relate the observed halo density contrast
to δcb,L through the linear halo bias, written as

b(M, k, z) = 1 + bL(M, k, z) = 1 + ∂ ln n(M, z)
∂δcrit(k, z)

dδcrit(k, z)
dδcb,L(k, z) , (2.2)

where k is a Fourier mode, and b = 1 + bL is the relation between linear Eulerian and
Lagrangian bias.

3https://github.com/JulianBMunoz/RelicFAST.
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Figure 1. The scale-dependent contribution of the linear galaxy bias as in eq. (2.8). 1 massive (1ν)
and 3 degenerate-mass (3ν) neutrino mass models are indicated by solid and dashed lines, respectively,
and models evaluated at the same total neutrino mass are color-coordinated. The dotted vertical lines
correspond to the free-streaming scale of a single massive neutrino in implicit units of eV. Models with
the same total neutrino mass result in an identical increase to the linear galaxy bias at sufficiently
small scales. However, models with a greater number of massive species increase the amplitude of the
linear galaxy bias at larger physical scales.

L14’s examination of the Lagrangian bias evaluated at a halo’s redshift of collapse
shows dδcrit

dδcb,L
is nearly independent of scale and halo mass; this feature allows us to write the

Lagrangian bias only as a function of redshift and to describe the large-scale amplitude of
the halo bias as the galaxy bias of a given sample of galaxies. We then approximate the term
derived in L14 to define b̄(z) ≡ 1 + ∂ ln n(z)

∂δcrit(z)
dδcrit(z)
dδcb,L(z) and express the linear bias relation as

δg(k, z) = b̄(z)δcb,L(k, z). (2.3)

In this form, the halo mass dependence is approximated as an averaged galaxy bias for a given
galaxy sample. Further, the expected scale-independent behavior of this form is retrieved
in the large-scale limit and for massless-neutrino cosmological models.

To relate δg to δm, we adopt L14’s definition of an apparent linear galaxy bias

b(k, z) ≡
P lin

g,m(k, z)
P lin

m (k, z) = b̄(z)
P lin

cb,m(k, z)
P lin

m (k, z) , (2.4)

with P lin
X,Y (k, z) the linear power spectrum of fields δX and δY at a given scale, k, and redshift,

z. We denote auto-power spectra as P lin
X ≡ P lin

X,X for compactness.

– 4 –
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To simplify this expression further, we decompose δm into neutrino and cb components,

δm(k, z) = fνδν(k, z) + fcbδcb(k, z), (2.5)

where fX is the fractional contribution of component X in the total matter energy density
(i.e. fX = ΩX/Ωm) and the subscript ν corresponds to the contribution of massive neutrinos.
We recast the form of eq. (2.4) using the decomposition in eq. (2.5) to further illustrate the
neutrino auto- and cross-power spectra dependencies over all scales as

b(k, z) = b̄(z)
[1 + fcb

P lin
cb (k,z)

P lin
m (k,z)

1 + fcb
+ f2

ν

1 + fcb

(
P lin

cb,ν(k, z) − P lin
ν (k, z)

P lin
m (k, z)

)]
. (2.6)

Massive neutrino density fluctuations are coherent with those of cb below the free-
streaming scale, kfs, which allows us to simplify this expression. The free-streaming scale
of a single massive neutrino depends on the neutrino’s mass and temperature at a given
redshift and cosmology and can be written (e.g. as in [13]) as

kfs(z) = 0.8
√

ΩΛ + Ωm(1 + z)3

(1 + z)2

(
mν

1eV

)
h Mpc−1. (2.7)

kfs(z) decreases as z → 0 in accordance with an expanding universe with wave numbers
k ⪆ kfs(z) denoting the region where neutrinos propagate freely without interaction.

Auto- and cross-power spectra with neutrinos are approximately equal where k ≪ kfs(z)
(where neutrino density fluctuations are coherent with those of cb) and where k ≫ kfs(z)
(where the random motion of neutrinos is uncorrelated with both cb and neutrino density
fluctuations). In these limits, the second term in the square parenthesis of eq. (2.6) provides a
vanishingly small contribution to the galaxy bias. Outside of these limits, this term is reduced
by a factor of f2

ν /(1 + fcb). Including this term at the adopted fiducial cosmology (table 1)
impacts the magnitude of the galaxy bias by less than 0.1%. Our next approximation ignores
neutrino clustering contributions to arrive at our final simplified linear galaxy bias model:

b(k, z) ≈ b̄(z)
1 + fcb

P lin
cb (k,z)

P lin
m (k,z)

1 + fcb

= b̄(z)T (k, z).

(2.8)

In the following analysis, we consider two neutrino mass models: 1 massive neutrino
and 3 degenerate-mass neutrinos.4 We denote the number of modeled massive neutrinos
and the total neutrino mass of the model as

[# of massive neutrinos]ν
∑

mν = [total mass in eV].

Figure 1 shows the approximation of the NISDB at z = 0 in a flat ΛCDM cosmology
with massive neutrinos, where we maintain a constant Ωm when varying the neutrino mass
model. We also plot the associated free-streaming scales of massive neutrinos as in eq. (2.7).

4Additional massless neutrinos are modeled to maintain 3 standard model neutrino species where relevant
in our cosmological calculations (i.e. the 1 massive neutrino scenario).
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Figure 2. Ratio of noiseless synthetic datavectors in a DESY3 analysis at the adopted fiducial
cosmology when utilizing our NISDB model compared to a constant linear galaxy bias in each lens
tomographic bin. Excess clustering in the constant linear galaxy bias model corresponds to a positive
value of the residual. Scales cut from the analysis due to uncertainties in modeling non-linear galaxy
biasing are depicted in black. The color of the points indicates the ∆χ2 of each angular bin with values
indicated in the color bar below. The total ∆χ2 for GGL (γt) and galaxy clustering (w) statistics are
2.48 and 11.87, respectively.

We show the galaxy bias begins to increase at scales smaller than the free-streaming scale
of the individual neutrino masses, but the total mass dictates the amplitude of the galaxy
bias at small physical scales. The notable impact of the neutrino mass model (1 massive
vs. 3 degenerate-mass neutrinos) on the galaxy bias needs to be included in LSS analyses
aiming to constrain the neutrino mass hierarchy.

Figure 2 illustrates the impact of neutrino modeling on 2pt measurements in configuration
space. Specifically, we show the galaxy-galaxy lensing (GGL) and galaxy clustering residuals
between synthetic DESY3 datavectors modeled with/without the T term of eq. (2.8) at the
same cosmology. As T (k, z) increases with k, we expect the largest deviations from the fiducial
data to be primarily in galaxy clustering with modifications to GGL statistics. Deviations
between the two galaxy clustering datavectors increase towards smaller angular separation,
meeting or surpassing the DESY3 error bars. Deviations increase in higher-redshift bins as
massive neutrinos free-stream at larger physical scales relative to lower-redshift bins.

We validate the accuracy of our approximation by comparing it to the halo bias calculated
by the spherical-collapse code, RelicFAST, at the adopted fiducial cosmology. RelicFAST
includes neutrino self-clustering and Lagrangian bias contributions to calculate the full shape
of the halo bias in the presence of massive neutrinos at a given cosmology, halo mass, and HMF.
We compare the galaxy bias as in eq. (2.8) to RelicFAST calculations of the halo bias at the
approximate median halo mass for the DESY3 MAGLIM galaxy sample [52]. We use an upper-
bound redshift of the collapse of z = 0.5, found through the Press-Schechter formalism [49] at
the fiducial DESY3 cosmology with massless neutrinos, as input to the RelicFAST calculation.

As shown in figure 3, the difference between the RelicFAST computation and our
approximation is less than 2% when assuming a minimal-mass normal hierarchy. Our

– 6 –
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Figure 3. Comparison of the approximate form of the NISDB, eq. (2.8), to the linear Eulerian bias
using the RelicFAST code for two neutrino mass models, normalized by its large-scale amplitude. The
Eulerian bias calculated through RelicFAST utilizes the Sheth-Tormen HMF [50] at zcol = 0.5 with a
halo mass of 1012M⊙. The dotted vertical lines correspond to the free-streaming scale of a single massive
neutrino in implicit units of eV. Calculations of the galaxy bias using eq. (2.8) (circle points) and the lin-
ear Eulerian bias from RelicFAST (diamond points) are color-coordinated for like neutrino mass models.

approximation agrees less with RelicFAST at larger
∑

mν . For the 3ν
∑

mν = 0.5 case, the
halo bias begins to increase at the typical scales of halo collapse and is ∼ 20% larger than our
approximation at small physical scales. When analyzing deviations between our approximation
and the full expression through RelicFAST, it is important to note that non-linear evolution
and astrophysical effects (baryonic feedback, non-linear galaxy clustering, etc.) dominate at
these small physical scales. Such scales with high model uncertainty are not well-described
by linear perturbation theory and are typically excluded from analyses through scale-cuts.
We find eq. (2.8) accurately captures the dominant terms of the full NISDB for the most
commonly observed halo mass of the MAGLIM sample across the relevant scales used in DESY3
cosmological analyses. The median halo mass is expected to be lower for LSST-like sensitivity,
reducing discrepancies between the approximate and RelicFAST calculations of the NISDB.

3 Analysis and modeling choices

By measuring both galaxy positions and galaxy shapes as a function of redshift, photometric
redshift galaxy surveys like DES and LSST combine galaxy clustering and cosmic shear 2pt
statistics with their GGL cross-correlations to place constraints on cosmological parameters,
known as the 3x2pt analysis. This section details our modeling pipeline, where we assume

– 7 –
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Parameter Fiducial
Cosmology

Ωm 0.3
10−9As 2.19
Ωb 0.048
ns 0.97
h 0.69
10−4Ωνh2 53.7
ν 3

Intrinsic Alignment
a1 0.7
η1 −1.7

MAGLIM Galaxy Bias
b̄1···4 1.7, 1.8, 1.8, 1.9

LSST Galaxy Bias
b̄1···5 1.7, 1.7, 1.7, 2.0, 2.0

Table 1. Fiducial cosmological and nuisance parameters utilized in this analysis. ν denotes the number
of massive neutrinos in the adopted fiducial model (i.e. 3 degenerate-mass neutrinos). Parameters
with unique fiducial values in each bin are listed from lowest to highest in redshift.

a flat ΛCDM universe with 3 degenerate-mass neutrinos as the adopted fiducial cosmology
(see table 1).

We denote quantities associated with the galaxy clustering statistics/galaxy lens sample
with a subscript g, while those concerning galaxy shear statistics/galaxy source sample have
the subscript κ. A capital letter (e.g. A or B) will correspond to either g or κ when eqs. are
written with generality. Superscript Latin indices (e.g. i and j) denote the tomographic bin
number of a galaxy sample. ni

A(z) is defined to be the observed number density of galaxies
in tomographic bin i for a given lens/source galaxy sample, A. z-averaged quantities of
tomographic bin i are barred, where we make particular use of the average redshift, z̄i, and
average number density of galaxies, n̄i

A, of a galaxy sample. To shorten notation, we take
the redshift, z, to be an implicit function of comoving distance, χ, as z ≡ z(χ). For our
DESY3 analysis, we utilize the DESY3 source sample [53] and MAGLIM lens sample [52], each
containing four tomographic bins as in the fiducial DESY3 analysis [23]. Our LSSTY1 analysis
follows the n(z) assumptions of [54] to generate source and lens samples each divided into five
tomographic bins, as expected for LSSTY1 [55]. In addition to binned auto-correlations of
galaxy clustering, 7 GGL bins are analyzed in the LSSTY1 analysis in accordance with [54]
and all 16 lens-source combinations are considered in the DESY3 analysis [56].

– 8 –
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3.1 Computing 2pt correlation functions (2PCFs)

We focus on statistics involving galaxy clustering in this section and refer the reader to
sections 2–4 of the DESY3 modeling paper [56] for further details on the weak-lensing model
of the 3x2pt datavector.

The angular 2D correlation function of two tracer fields for a Fourier mode, l, is calculated
as a line-of-sight projection of the 3D galaxy/matter density contrast weighted by tracer
projection kernels, qA(k, χ). Using the Limber approximation, this is written as

Cij
AB(l) =

∫
dχ

qi
A

(
l+1/2

χ , χ
)

qj
B

(
l+1/2

χ , χ
)

χ2 P nl
m

(
l + 1/2

χ
, z

)
, (3.1)

where P nl
m is the total matter non-linear power spectrum computed through HALOFIT [57].

The galaxy clustering projection kernel, qg(k, χ), is defined with the approximate NISDB
of eq. (2.8) in terms of comoving distance for a given redshift bin, i, as

qi
g(k, χ) = b̄iT (k, z)

ni
g(z)
n̄i

g

dz

dχ
+ Ci

MW i
g(χ) , (3.2)

with b̄i the large-scale linear galaxy bias of tomographic bin i, where b̄i is written as b̄(z) in
eq. (2.8). The second term is the magnification contribution to the projected density contrast,
with Ci

M the lens magnification bias and W i
A(χ) the lens efficiency of galaxy sample A,

W i
A(χ) = 3ΩmH2

0
2c2

∫ ∞

χ
dχ′ n

i
A(z′)
n̄Ai

χ

a(χ)
χ′ − χ

χ′ (3.3)

with the Hubble Constant H0, speed of light c, fractional energy density of matter Ωm,
and scale-factor a(χ).

We adopt the NLA model (detailed in section 3.2), which allows us to write the Intrinsic
Alignment (IA) contribution, qκ,I(χ), as an additive factor of the shear projection kernel,
qi

κ(χ). The shear projection kernel is then defined as

qi
κ(χ) = W i

κ(χ) + qκ,I(χ). (3.4)

At large physical scales, the Limber Approximation used in eq. (3.1) does not hold. We
then use the framework developed by [55] to efficiently compute the angular clustering power
spectrum without the Limber approximation. The speed and accuracy of the non-Limber
calculation rely on the integrals of correlation functions to be separable in χ and k at large
scales. The form of the NISDB in eq. (2.8) can be made separable in χ and k by evaluating
T (k, z) at the mean redshift of each tomographic bin, which is a good approximation for the
sufficiently narrow redshift bins of the LSSTY1 and DESY3 lens samples.5 We separate the
linear growth factor, G(z), from the total matter linear power spectrum to write

Cii
gg(l) = 2

2l + 1

∫
dχ

qi
g

(
l+1/2

χ , χ
)

qi
g

(
l+1/2

χ , χ
)

χ2

[
P nl

m

(
l + 1/2

χ
, z

)
− P lin

m

(
l + 1/2

χ
, z

)]
(3.5)

+ 2
π

∫
dχ1G(z1)

∫
dχ2G(z2)

∫ ∞

0

dk

k
k3P lin

m (k, 0)qi
g(k, χ1)qi

g(k, χ2)jl(kχ1)jl(kχ2),

5For instance, the maximum difference in T (k, z) evaluated at the bin edges of the MAGLIM sample is 0.08%.
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where jl(x) is the spherical Bessel function. In the small-scale limit where the linear power
spectrum is no longer valid, the terms of P lin

m in the first and second lines of eq. (3.6) cancel
and reduce the expression to the Limber approximation, eq. (3.1).

DESY3 analyzes configuration-space correlation functions for a given angular separation
in the sky, θ, in galaxy clustering, wi(θ), and GGL, γij

t (θ). For these analyses, Cij
AB(l)’s are

converted into configuration-space angular correlation functions as

wi(θ) =
∑

l

2l + 1
4π

Pl (cos(θ)) Cii
gg(l)

γij
t (θ) =

∑
l

2l + 1
4πl(l + 1)P2

l (cos(θ)) Cij
gκ(l)

(3.6)

with Pl(x) the Legendre polynomial and P2
l (x) the associated Legendre polynomial of order l.

3.2 Galaxy clustering and lensing systematics

Several systematic effects need to be included to connect the theoretical model derived in
the previous subsection to observations. The implementation of these systematic parameters
is summarized in this subsection. Prior ranges and fiducial values of sampled parameters
are listed in table 2.

Galaxy bias. We parameterize the per-bin large-scale galaxy bias amplitude as b̄i. Our
analysis also considers a linear galaxy bias model where galaxies trace δcb. Modulating the
galaxy bias by eq. (2.8) only traces the δcb field in the linear regime. Using galaxies as
tracers of the underlying non-linear δm field with the T (k, z) correction differs at small scales
compared to tracing the non-linear δcb field. To properly model the linear galaxy bias to
cb density fluctuations, we take T (k, z) = 1 and qi

g,D(χ) → qi
g,D(χ)

√
P nl

cb(k, z)/P nl
m (k, z) or

qi
g,D(χ) → qi

g,D(χ)
√

P lin
cb (k, z)/P lin

m (k, z) where appropriate in eqs. (3.1) and (3.5).

Galaxy redshift distribution. Uncertainties in the shape of the redshift distribution of
galaxies are parameterized by an additive shift to the mean redshift of the distribution and
a multiplicative stretch that modulates the width of the redshift distribution. We follow
the DESY3 parameterization [58] where a given redshift distribution of tomographic bin i,
ni

A(z), may be shifted by ∆i and stretched by si as

ni
A(z) → 1

si
ni

A

(
z − z̄i − ∆i

si
+ z̄i

)
. (3.7)

Shifts in the mean redshift distributions are implemented for both the source and lens
galaxy samples in each tomographic bin as ∆i

s and ∆i
l, respectively. We sample the redshift

distribution stretch only for lens sample bins and fix si = 1 for source sample bins following
the results of the DESY3 redshift distribution estimation analyses [58, 59].

Lens magnification and shear calibration. To account for the magnification of lens
sample galaxies, a lens magnification bias parameter, Ci

M, is modeled for each lens tomographic
bin and is kept fixed in the analysis (as validated in [60]). We also fix this value for the
LSSTY1 analysis for computational simplicity.
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Parameter Prior
Cosmology

Ωm U [0.1, 0.9]
10−9As U [0.5, 5.0]
Ωb U [0.03, 0.07]
ns U [0.87, 1.06]
h U [0.55, 0.91]
10−4Ωνh2 U [6.0, 107.4]

Intrinsic Alignment
a1 U [−5.0, 5.0]
η1 U [−5.0, 5.0]

MAGLIM Galaxy Bias
b̄1···4 U [0.8, 3.0]

MAGLIM Lens Magnification Bias
C1···4

M 0.43, 0.30, 1.75, 1.94
MAGLIM Lens Mean Redshift Uncertainty

∆1···4
l G[−0.009, 0.007], G[−0.035, 0.011], G[−0.005, 0.006], G[−0.007, 0.006]

DESY3 Source Mean Redshift Uncertainty
∆1···4

s G[0.0, 0.018], G[0.0, 0.013], G[0.0, 0.006], G[0.0, 0.013]
DESY3 Shear Calibration Bias

m1···4 G[−0.006, 0.008], G[−0.01, 0.013], G[−0.026, 0.009], G[−0.032, 0.012]
MAGLIM Lens Redshift Width Uncertainty

s1···4 G[0.975, 0.06], G[1.306, 0.09], G[0.870, 0.05], G[0.918, 0.05]
LSST Galaxy Bias

b̄1···5 U [0.8, 3.0]
LSST Lens Magnification Bias

C1···5
M −0.19, −0.63, −0.69, 1.18, 1.88

LSST Lens Mean Redshift Uncertainty
∆1···5

l G[0.0, 0.005]
LSST Source Mean Redshift Uncertainty

∆1···5
s G[0.0, 0.002]

LSST Shear Calibration Bias
m1···5 G[0.0, 0.013]

LSST Lens Redshift Width Uncertainty
s1···5 G[1.0, 0.1]

Table 2. Table of parameter priors utilized in this analysis. Gaussian priors are denoted as G[mean,
uncertainty] and uniform priors as U [lower-bound, upper-bound], while lists of values denote fixed
parameters. Parameters with distinct priors for each redshift bin are listed from lowest to highest in red-
shift, while parameters with identical priors in each bin are written once for conciseness. We additionally
marginalize over a point-mass for each lens bin in DESY3 GGL statistics that is not listed in the table
below, where the fiducial value and prior for each bin is taken to be 0 and U [−100, 100], respectively.
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We parameterize a multiplicative shear calibration for the source galaxy sample, where
the shear projection kernel of eq. (3.4) transforms as

qi
κ(χ) → (1 + mi)qi

κ(χ). (3.8)

The magnitude of the shear calibration bias parameter, mi, is varied for each redshift bin
of the source sample.

Intrinsic alignments. The intrinsic alignment of galaxies is modeled as an additive
systematic contaminating the observed weak lensing signal of source galaxies. We use the
NLA model [61–63], parameterizing an amplitude (a1) with a power-law scaling in redshift
(η1), to characterize preferential alignment of galaxies to their local environment. First
introduced in eq. (3.4), we now write the form of qi

κ,I(χ) as

qi
κ,I(χ) = −a1

( 1 + z

1 + z0

)η1 C̄1ρcritΩm
G(z)

ni
κ(z)
n̄i

κ

. (3.9)

This IA model differs from the DESY3 fiducial analysis which included higher-order tidal
effects through the TATT model [64, 65]. Analysis of the Y3 data, however, showed little
IA model preference, so we use the NLA model for simplicity [66].

Non-local shear. For γij
t (θ) statistics, the projected mass around lens galaxies shears

source galaxy shapes on scales smaller than θ. We parameterize this contribution using the
point-mass marginalization model [67] with uninformative flat priors of [−100, 100] to account
for non-local mass contributions in the projected mass and take the fiducial point-mass value
to be 0 for configuration-space DESY3 simulated analyses.

3.3 Likelihood analysis

We generate theory datavectors of a given model to sample all free parameters in a model
and assume a Gaussian likelihood

L ∝ exp
(

−1
2
[
(D − M)T C−1 (D − M)

])
. (3.10)

The likelihood function, L, depends on the observed simulated datavector, D, the model
datavector, M, and the pre-computed covariance matrix, C. The term in brackets is the
commonly-defined ∆χ2. The DESY3/LSSTY1 covariance matrices are computed at the
fiducial cosmology with one massive neutrino at minimal mass following [68] in configura-
tion6/Fourier7 space, respectfully. When computing the LSSTY1 Fourier-space covariance
matrix, we marginalize over nuisance parameters with well-constrained Gaussian priors (i.e.
shear calibration, lens/source photo-z uncertainty, and lens stretch) analytically and incor-
porate their contributions at the covariance level. Table 1 provides the fiducial cosmology
and table 2 the priors of sampled parameters. We take the fiducial value of parameters with
Gaussian priors to be the prior’s expectation value.

6https://github.com/CosmoLike/CosmoCov.
7https://github.com/CosmoLike/CosmoCov_Fourier.
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Analysis
Model

Fiducial
Model

3ν,
∑

mν = 0.5
b̄iT (k, z)δm(k, z)

3ν

b̄iT (k, z)δm(k, z)
baseline

3ν

b̄iδm(k, z)
(1) bias model

1ν

b̄iδm(k, z)
(2) bias model & mν

mass model
1ν

b̄iT (k, z)δm(k, z)
(3) mν mass model

3ν

b̄iδcb(k, z)
(4) underlying field
galaxies trace

1ν

b̄iδcb(k, z)
(5) underlying field
galaxies trace & mν

mass model

Table 3. Models used to generate the input datavector, D, and model datavector, M, in our likelihood
analysis. The input datavector is generated at the fiducial cosmology in table 1 with the approximate
NISDB of eq. (2.8). Cosmological parameters are inferred assuming the neutrino mass and linear galaxy
bias models of the top row. Differences between the fiducial model and analysis model are written in the
bottom row where bold numbers are used to reference inferences of the analysis model in our discussion.

Datavectors and likelihood evaluations are computed using CosmoLike [69] with CLASS [70]
and we sample parameter space with MULTINEST8 nested sampling. We follow the guidelines
for setting MULTINEST hyperparameters as examined in [71, 72] to provide sufficient sampling
of all parameters.

The fiducial DESY3 scale-cuts for galaxy clustering were designed to exclude scales
affected by unmodeled systematic effects, including non-linear galaxy biasing, from the
cosmological analysis. We follow the same procedures as DESY3 [56] to test the validity of
the fiducial scale-cuts when using the approximate NISDB. We verify that at these scale
cuts the ∆χ2 < 1 without refitting for two data vectors with and without non-linear galaxy
biasing terms (fixed to their co-evolution values, as in [73]) and with approximate NISDB at
3ν
∑

mν = 1.0 (corresponding to the upper-limit of the Ωνh2 prior range). This indicates
that the fiducial scale-cuts omit non-linear galaxy biasing sufficiently well for our DESY3
synthetic likelihood analysis. For LSSTY1 analyses, we adopt the scale-cuts from [54, 55].

8https://github.com/JohannesBuchner/MultiNest.
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Model
1D Parameter Shifts DESY3

Ωm h0 σ8,cb σ8 S8
∑

mν

3ν

b̄iT (k, z)δm(k, z) +0.03 +0.03 −0.05 −0.05 −0.07 +0.08
b̄iδm(k, z) +0.37 −0.01 −0.34 −0.32 −0.10 +0.11
b̄iδcb(k, z) +0.24 +0.01 −0.23 −0.23 −0.14 +0.22

1ν

b̄iT (k, z)δm(k, z) −0.04 +0.14 −0.08 +0.13 +0.22 −0.43
b̄iδm(k, z) −0.09 +0.13 −0.04 +0.22 +0.37 −1.07
b̄iδcb(k, z) −0.05 +0.11 −0.11 +0.13 +0.22 −0.82

Model
1D Parameter Shifts LSSTY1

Ωm h0 σ8,cb σ8 S8
∑

mν

3ν

b̄iT (k, z)δm(k, z) −0.02 +0.05 +0.01 +0.01 −0.03 +0.03
b̄iδm(k, z) +0.61 +0.54 −0.98 −0.55 −0.07 +0.15
b̄iδcb(k, z) +0.62 +0.64 −0.77 −0.70 −0.30 +0.50

1ν

b̄iT (k, z)δm(k, z) −0.21 +1.00 −1.10 +1.35 +2.27 −0.41
b̄iδm(k, z) +0.24 +1.50 −1.88 +0.70 +2.09 −0.43
b̄iδcb(k, z) +0.11 +1.58 −1.72 +0.80 +1.87 −0.09

Table 4. Projected 1D parameter shifts between the fiducial cosmology and MAP cosmology of
a given model in DESY3 and LSSTY1 synthetic analyses, presented in terms of the marginalized
1D parameter uncertainty, σ. Positive and negative values denote shifts above and below the input
cosmology, respectively. Parameter shifts above 0.5σ are presented in bold.

4 Galaxy bias model comparison and discussion

We design a number of numerical experiments to quantify the impact of galaxy bias and
neutrino mass models on cosmological parameter estimation when data contains an appreciable
neutrino-induced scale-dependent bias. The input fiducial synthetic datavector is calculated
with the scale-dependent bias following eq. (2.8) and neutrino mass model 3ν

∑
mν = 0.5.

We maintain the fiducial synthetic datavector, D, for each model comparison.
Each model comparison uses one linear galaxy bias model and one neutrino mass model to

generate model data, M. We consider two neutrino mass models (1 massive or 3 degenerate-
mass neutrinos) and three linear galaxy bias models (δg = b̄iδcb, δg = b̄iδm, and the NISDB
approximation), totaling six analysis models (five with model misspecification variations),
and infer cosmological parameters through a nested sampling analysis. Table 3 summarizes
the conducted model misspecification analyses.

We conduct cosmological inferences for each model listed in table 3 and find the Maximum
A-Posteriori (MAP) cosmology for each chain using the Nelder-Mead algorithm [74] in scipy.9

We compare MAP points to the fiducial cosmology and to derived parameters σ8 (the amplitude
of P lin

m (k, 0) fluctuations at scales of 8 Mpc/h) and S8 ≡ σ8
√

Ωm. We also report marginalized

9https://scipy.org/.
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Model
S8-Ωm σ8-σ8,cb

DESY3 LSSTY1 DESY3 LSSTY1

3ν

b̄iT (k, z)δm(k, z) 0.02 0.01 0.07 0.01
b̄iδm(k, z) 0.1 0.31 0.23 0.89
b̄iδcb(k, z) 0.03 0.31 0.13 0.49

1ν

b̄iT (k, z)δm(k, z) 0.02 2.34 2.51 10.08
b̄iδm(k, z) 0.03 1.54 2.85 10.08
b̄iδcb(k, z) 0.03 1.48 2.73 8.28

Table 5. Projected 2D parameter shifts between the fiducial cosmology and the MAP cosmology of a
given model in DESY3 and LSSTY1 synthetic analyses, presented in terms of the marginalized 2D
parameter uncertainty, σ. Parameter shifts above 0.5σ are presented in bold.

Model
∆χ2 DESY3 ∆χ2 LSSTY1

3x2pt γt + w w 3x2pt γt + w w

3ν

b̄iT (k, z)δm(k, z) 0.03 0.03 0.01 0.00 0.00 0.00
b̄iδm(k, z) 0.15 0.11 0.05 0.19 2.40 1.43
b̄iδcb(k, z) 0.25 0.24 0.18 0.05 2.33 1.65

1ν

b̄iT (k, z)δm(k, z) 0.29 0.29 0.24 1.84 0.62 0.48
b̄iδm(k, z) 0.34 0.31 0.24 2.70 4.60 3.57
b̄iδcb(k, z) 0.32 0.30 0.25 2.74 3.83 3.19

Table 6. ∆χ2 statistics as compared to the fiducial data vector, where ∆χ2 greater than 1 are
presented in bold. Anti-correlations between shear and clustering statistics in the LSSTY1 analysis
can result in 2x2pt ∆χ2 values to be larger than the 3x2pt case. MAP datavectors in the DESY3
analysis are difficult to find precisely due to the number of free parameters in the model and the
length of the datavector. These complexities result in a small ∆χ2 between the fiducial datavector and
the MAP datavector using the fiducial model, where similar effects propagate to other DESY3 MAP
comparisons. These model complexities do not impact the finding of LSSTY1 MAP datavectors.

parameter shifts in σ8,cb, defined in the same manner as σ8 but utilizes P lin
cb (k, 0) to compute

the amplitude of density fluctuations at 8 Mpc/h scales.
We choose our systematic bias criteria such that MAP datavectors with a ∆χ2 > 1 and

2D parameter shifts in the S8 - Ωm plane greater than 0.3σ are considered to be systematically
biased. We provide best-fit projected 1D and 2D cosmological parameter shifts in tables 4
and 5 with datavector ∆χ2’s in table 6 for each model and survey considered.

4.1 DESY3 simulated results

Figure 4 presents the inferred 0.3σ cosmological parameter constraints of simulated DESY3
analyses. Analyses using the 3ν mass model are depicted in blue and the 1ν mass model
in red, corresponding to the comparisons in table 3.
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Figure 4. DESY3 simulated 0.3σ constraints of the marginalized 2D parameter contours for the
neutrino mass and galaxy bias models listed in the given legend. Best-fit MAP values are depicted as
cross, plus, and circle points for the NISDB, the constant linear galaxy bias model tracing δm, and
the constant linear galaxy bias model tracing δcb, respectively, and are color-coordinated to reflect
best-fits of the 1ν model (red) and 3ν model (blue).

Relative to the scale-independent linear galaxy bias models, parameter contours are 10%
tighter when fitting the fiducial model to the fiducial datavector. Projected parameter shifts of
analyses with 3ν are greatest for model (1) (see table 3) yet pass our systematic bias criteria.

Analyses using the 1ν mass model provide slightly tighter constraints at the expense of
inducing parameter biases in cosmological inference. The 1ν model with the overall smallest
cosmological parameter biases is model (3) (see table 3), which incorporates the NISDB of
eq. (2.8). The MAP in the σ8,cb-σ8 projected 2D parameter space is shifted by 2.5–2.9 σ

while S8 and
∑

mν projected 1D parameters shift by 0.3–1.1 σ. The large discrepancy in the
σ8,cb-σ8 plane is induced by assuming a neutrino mass model which does not match that of
the fiducial datavector. For the masses and redshifts considered in our analyses, neutrinos
are free-streaming at 8 Mpc/h scales, which corresponds to the DESY3 scale-cut in galaxy
clustering and is above the scale-cut region in galaxy-galaxy lensing [56]. However, the 3ν

model neutrinos free stream at larger physical scales and suppress the total matter power
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Figure 5. LSSTY1 simulated 0.3σ constraints of the marginalized 2D parameter contours for the
neutrino mass and galaxy bias models listed in the given legend. Best-fit MAP values depicted as
cross, plus, and circle points for the NISDB, the constant linear galaxy bias model tracing δm, and
the constant linear galaxy bias model tracing δcb, respectively, and are color-coordinated to reflect
best-fits of the 1ν model (red) and 3ν model (blue).

spectrum at larger physical scales relative to the 1ν model. This fact leads to σ8 being
slightly larger in 1ν models than 3ν models with σ8,cb being relatively unaffected. Further,
the free-streaming scale of massive neutrinos changes more rapidly when varying the sum
of the neutrino masses in the 1ν model compared to the 3ν model, resulting in a tighter
correlation in the σ8,cb-σ8 plane. Discrepancies in this plane may be useful in determining
systematic biases in cosmological parameter impact tests.

4.2 LSSTY1 simulated results

Figure 5 shows the LSSTY1 simulated 0.3σ inferred parameter constraints of the 3ν and
1ν neutrino mass models with projected 1D and 2D parameter shifts in tables 4 and 5,
respectively. We generally observe that inferences made with the fiducial model are up to
20% more constraining relative to the scale-independent galaxy bias models in Ωm, h0, σ8,
and σ8,cb. For all models differing from the fiducial model, our adopted systematic bias
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criteria are exceeded. As shown in table 4, nearly all model parameters exhibit projected 1D
parameter shifts between 0.5–2.3σ. Projected 2D parameter shifts for 1ν models are at the
1.5–2.3σ level in the S8-Ωm plane and at the 8–10σ level in the σ8,cb-σ8 plane.

For the 3ν models, shifts in the S8-Ωm plane are barely within our systematic bias criteria
and the 3x2pt ∆χ2 is much less than 1 (see table 6). All non-fiducial models recover biased
1D σ8,cb constraints, whereas 1D constraints in S8 are insensitive to the choice of galaxy
bias for a given neutrino mass model; we find interpreting model consistency in quantities
directly related to matter clustering (e.g. σ8,cb) better reflect systematic biases due to galaxy
clustering modeling choices than S8.

5 Conclusions

In this work, we implemented an approximate description of the neutrino-induced scale-
dependent bias (NISDB) for use in LSS survey likelihood analyses. We design analyses to
determine the impact of linear galaxy bias and neutrino mass model choices on cosmological
parameter inference when the fiducial data contains a substantial NISDB. Our approximation,
built off the work of [41], does not increase the model complexity of linear galaxy bias models
and characterizes the small-scale damping of galaxy clustering statistics due to massive
neutrinos, providing improvements on constraining cosmological parameters for a flat ΛCDM
universe with massive neutrinos.

We model a DESY3 and LSSTY1 analysis using noiseless synthetic data that includes
a NISDB for a three degenerate-mass neutrino mass model (denoted 3ν) at

∑
mν = 0.5eV.

For these data vectors, we infer cosmological parameters and different choices of neutrino
mass and galaxy bias models as detailed in table 3. We determine whether an analysis is
systematically biased by requiring “unbiased fits” to yield a 3x2pt ∆χ2 < 1 and a shift in the
S8-Ωm plane that is less than 0.3σ (similar to [56]). We additionally investigate parameter
shifts in the inferred linear fluctuations of the CDM and baryon field (denoted as cb) at 8
Mpc/h scales as the parameter σ8,cb. As neutrinos are free-streaming at 8 Mpc/h scales for
the masses in our prior range, shifts in σ8,cb indicate how an assumed neutrino mass or linear
galaxy bias model affects matter which clusters at 8 Mpc/h scales.

We find DESY3 cosmological inferences are not significantly biased by the choice of
galaxy bias model, so long as the modeled neutrino mass model corresponds to the 3ν model
of the fiducial synthetic datavector. However, we find a gain in constraining power of up to
10% in Ωm, σ8, and σ8,cb when incorporating the NISDB correction. This is not the case for
DESY3 inferences utilizing the 1ν neutrino mass model, which infers a lower total neutrino
mass biased up to 1.1σ and induces 2.5–2.9σ shifts in the σ8-σ8,cb plane.

With LSSTY1 precision, implementing accurate neutrino mass and galaxy bias models
becomes more important: all non-fiducial models result in parameter biases from the fiducial
3ν

∑
mν = 0.5eV cosmology. Additionally, inferences using the fiducial NISDB model

provide up to 20% tighter cosmological parameter constraints. Despite modeling the fiducial
datavector with a relatively high total neutrino mass, the analyses show the importance of
accurate modeling of neutrino-induced effects on galaxy clustering for future 3x2pt analyses,
e.g. for LSSTY10. For LSSTY1 analyses which infer cosmological parameters assuming the
fiducial three degenerate-mass neutrino mass hierarchy, the systematic bias criteria indicate
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unbiased cosmological inference despite 0.5–1.0σ shifts in the 1D marginalized posterior
distributions of Ωm, h0, σ8, and σ8,cb. For future surveys, e.g. LSSTY10, additional model
consistency tests that are more sensitive to inaccuracies in galaxy clustering models should
be investigated to avoid biases in the cosmological inference.
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