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Abstract. External conditions have a dramatic impact on the way dynamical symmetry
breaking occurs. In a curved background, the natural expectation is that curvature works
toward the restoration of the internal symmetry. We show instead that, for topological defects,
the competing action of the locally induced curvature and boundary conditions generated by
the non-trivial topology allows configurations where symmetries can be spontaneously broken
close to the core. Inspired by the effect of geometrical deformations on 2D lattices, we then
propose a novel mechanism to induce a superconducting phase by triggering condensation along
cosmic strings.

1. Introduction
Most of the revolutionary results of modern theoretical physics have been achieved using tools
and techniques provided by quantum-mechanical perturbation theory: if the strength of the
interaction among particles is weak (namely the coupling constant is small), then it is possible
to extract information about how the coupling-induced small corrections affect a system.

Nevertheless, contemporary theoretical physics is looking forward. Typically, as energy scales
become higher, non-perturbative effects get into the game, and the system is said to have entered
the strongly coupled regime. Remarkable examples of strongly coupled systems include QCD
and the theory of quarks, high-temperature superconductors and the very primordial plasma
filling the universe a few instants after the big bang, but also the theory of the propagation of
conducting electrons in graphene, the contemporary high-tech superstar material.

The study of the dynamics of such systems is a formidable task, and clear statements on
the physics at strong coupling scales are only possible at the cost of demanding numerical
simulations. On the other hand, general phenomenological guidelines for the study of
strongly coupled systems can be precisely drafted exploiting mathematical considerations on
the underlying symmetries. The physics of symmetry breaking, in fact, notably relies on exact
mathematical statements which are intimately non-perturbative, as in the case of the Goldstone
theorem.

A seminal paper by Coleman and Weinberg [1] showed how symmetries can be spontaneously
broken due to quantum fluctuations modifying the structure of the vacuum. This mechanism of
dynamical symmetry breaking, initially developed in the context of scalar field self-interactions,
can be naturally extended to fermions.
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To better understand the picture, let’s introduce some concepts for the unfamiliar reader.
In a field theory with massless fermions, the interactions between particles preserve helicity:
the polarised left- and right-handed sectors evolve separately. However, in D-dimensional four
fermion effective theories1,

S4fET =

∫
dDx
√
g

{
ψ̄iγµ∇µψ +

λ

2N
(ψ̄ψ)2 + ...

}
, (1)

(like the celebrated Nambu–Jona-Lasinio model [2, 3], and in its progeny of models for strong
interactions) such symmetry is spontaneously broken by a non-vanishing order parameter: when
the composite operator φ ∼ ψ̄ψ acquires a non-zero vacuum expectation value, then a dynamical
effective mass for the fermions, Meff ∼ 〈ψ̄ψ〉, is generated. This mechanism, analogous to the
spontaneous magnetisation, is responsible for most of the observed mass of hadrons.

Transitions between broken symmetry and restored symmetry phases are generally triggered
by changes in the external conditions. In particular, a nonzero temperature leads to temperature-
dependent mass generation and restoration of broken symmetries once a certain critical value
of the temperature is reached. Other factors modifying the phase diagram of self-interacting
theories span from finite density effects to the action of a non-vanishing chemical potential or
of an external gauge field. Here we instead concentrate on geometrical effects, and how these
challenge the vacuum stability of a theory with four fermions interactions [4].

Many are the configurations in which geometry affects the symmetry breaking of strongly
interacting systems: in flat spacetime with R3×S1 topology and periodic boundary conditions,
for example, the consequences of the non-trivial topology are very similar to those of nonzero
temperature [5]; on the other hand, in curved spacetime the effects of external gravitational
fields resemble those of an effective extra mass [6, 7, 8, 9]. The combination of these external
factors (in particular topology, nonzero temperature, and curvature) acting on self-interacting
theories is likely to have been of considerable importance in the early stages of the evolution of
the universe. During those eras a spontaneous breaking of an internal symmetry group results
in the production of topological defects – the well-known Kibble–Zurek mechanism [10, 11].

1 Here, λ is the coupling constant and N the total number of fermion degrees of freedom.

Extraction

Insertion

Figure 1. The flat space is modified through the insertion or the extraction of a piece of lattice.
Adding a section with a given angle, one finds a saddle; subtracting the same section, and then
sewing on the cut, a cone.
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2. Cosmic defects and crystal lattices
Suppose the dynamical symmetry breaking for some model to be at the origin of the formation
of a static straight cosmic string [12, 13, 14, 15] lying along the z-axis, namely an infinitely long
thin tube of false vacuum generated in the sudden temperature-driven transition from a phase
to another (here, the transverse size of the cosmic string is neglected while ‘sudden transition’
means a transition with a rate that is fast if compared with the size of the system). Away
from the defect, the spacetime associated with the gravitating string is accurately described
by the vacuum Einstein equations. It turns out that at large distance from the string, the
geometry is locally flat, ds2

con = dt2− dz2− dr2− r2dθ2, but with an important caveat: it is not
globally Euclidean, since the angular coordinate does not run on the entire 2π circle; instead,
0 ≤ θ < 2π−∆, with ∆ > 0 (∆ < 0) being the deficit (excess) angle: surfaces at constant t and
z are cones, not planes.

This is a remembrance of defects insertion in crystal lattices: starting from a (locally)
flat lattice (see Fig. 1), the subtraction (or addition) of atoms is equivalent to the
extraction (or insertion) of sections of the lattice with a given angle. The procedure
results in an ice-cream-shaped lattice (or a saddle) which is locally flat everywhere
apart for the apex. Note yet that the spacetime surgery does not come for free:
the price to pay is the implementation of some non-trivial new boundary conditions
along the cut, which will be a reminder of the deficit (excess) angle at the apex.

Figure 2. The hexagonal
honeycomb lattice with the two
triangular sublattices (blue and
red spheres)

What is the role of the background geometry in modifying
the vacuum structure? Surprisingly enough, we can now
show that curvature, localised close to a topological defect,
enhances, rather than inhibits, the condensation along the
defect itself. In order to do so, we will consider the lesson
coming from a (2 + 1)–dimensional system borrowed from
condensed matter [16], a honeycomb lattice characterised by
a bipartite symmetry, that is, whose hexagonal structure is
obtained by the superposition of two triangular sublattices
(see Fig. 2): the breakdown of this discrete symmetry is
behind the phenomenon of condensation we describe here.

The dynamics of the delocalized electrons on such a
lattice is often described in terms of a generalisation of the
Hubbard model, that in the continuum limit is mapped onto
a field theory with nine different couplings [17]; however,
considering the limit for a large number of fermion flavours
N and after bosonization, the Hubbard model for the
honeycomb lattice acquires the form of a bosonized (2+1)
Gross–Neveu model,

LGN = ψ̄σı/∂ψσ + σψ̄σφψσ +
φ2

2λ
, (2)

where σ = ± is a spin index on which one sums. The final
goal is to study the behaviour of the order parameter φ when
moving toward the apex of the cone.

Nature abhors (or discretely hides) singularities: the sympathetic reader will then not
complain about a regularization of the space generated by the topological ‘stringy’ defect with a
family of smoothed versions of the conical solution (in Euclidean time), ds2 = dτ2 + fε(r)dr

2 +
r2dθ2, where fε(r) is a regularising function: in the limit ε → 0 one might recover the singular
cone. Using standard technique (Schrödinger–Lichnerowicz–Weitzenböck formula) to square the
Dirac operator, the effective action reads
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Γ [φ] = −
∫
d3x
√
g
φ2

2λ
+

1

2

∑
p=±

log det

(
2 +

R

4
+ φ2

p

)
, φ2

± = φ2 ±
√
grrφ′ (3)

where the metric here employed is the smoothed one, ds2, rather than ds2
con. As previously

mentioned, the change in the topology has a prominent role in altering the boundary
conditions on the glued side of the lattice; the response to this change is captured by the
employment of a modified covariant derivative, Dµ = ∇µ + ıAµ, acting on spinors and
encompassing an effective non-dynamical gauge field, Aµ, that depends on the deficit angle[18].

φ

r

Figure 3. Profile of the conden-
sate φ as a function of the dis-
tance from the apex, r. Different
colours refer to different values of
the ε parameter regularising the
cone:

Expressing the functional determinant of the (squared) Dirac
operator in curved space in terms of its heat kernel expansion
[19, 20], and using zeta function regularization, it is possible
to calculate the effective action (3) [21] and find out the
effective equations of motion of the order parameter φ, whose
solutions can be reconstructed numerically. Although the
presence of curvature (which acts, as for the chiral gap effect
[22, 23], as an effective mass term) is supposed to enhance
a phase of symmetry restoration, the presence of the extra
effective gauge field, another reminder of the geometry of
the system, catalyse the formation of a bubble of condensed
particles close the vertex of the cone, (see Fig. 3, the saddle
case is similar). A well known duality between defective
crystal configurations and differential geometry [24, 25, 26]
raises the question about how generalised non-Riemannian
structures can contribute to the mechanism described so far.
Similar issues would enter the game in the case of presence
of inhomogeneities [27, 28].

3. Conclusions
For relativistic cosmic strings, the possibility of condensation in the region surrounding the string
core due only to configurational elements is a novel mechanism to provide a superconducting
phase around the defect, whose phenomenological potentiality is completely to explore. However,
it is worth mentioning that in a more realistic setup, phase transitions in the early universe did
not seed the formation of a single straight string, but of a network of cosmic strings, which
renders eventually even more striking and intriguing the connection with a crystal lattice, where
a distribution of defects is more natural to occur. Another interesting aspect is the following:
in order to simplify the discussion we have here considered the spontaneous symmetry breaking
for the Gross–Neveu model catalysed by an external string defect, namely originated by the
breakdown of some symmetry of a different field. Different would be the situation in which the
responsible for the defect formation is the very same field, in which case one might take into
account possible backreaction effects.
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