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Chapter 1

Introduction

1.1 Introduction

This Thesis is devoted to the study of the most relevant aspects of the phe-
nomenology of a supersymmetric model proposed recently in the literature,
the µνSSM [1, 2].

The starting of the Large Hadron Collider (LHC) at CERN represents
one of the most historically interesting events in high energy physics, since
the laws of nature at the TeV scale will be explored. It is expected that
this huge accelerator will be able to verify the only sector of the Standard
Model (SM) [3] that has not been already experimentally proven, the Higgs
sector, that is reponsible of the generation of masses of the SM particles. In
addition, it is also expected that the LHC could find new physics beyond
the SM at the TeV scale. There are many reasons to believe that the SM
is not the ultimate theory of nature and that physics beyond the SM must
exist at some energy scale. One of the main reasons to believe that this new
physics should be present at the TeV scale is the so called gauge hierarchy
problem [4], a theoretical problem of the SM related to the large hierarchy
of energy scales between the electroweak (EW) scale and the Planck scale.
As the Higgs is a scalar field, its mass is not protected from quadratically
divergent radiative corrections.

Different theories compete for being the new physics that describes nature
at the TeV scale. The most popular theory among them is still Supersymme-
try [5] (SUSY). Supersymmetry is a symmetry between bosons and fermions
that has many interesting theoretical features and nice phenomenological im-
plications. In the phenomenological side, the main feature of SUSY is that
each of the SM particles has a supersymmetric partner (with the same quan-
tum numbers but different spin). The addition of these new particles to the
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spectrum produces a cancellation of the quadratic divergences of the Higgs
mass and solves the gauge hierarchy problem.

Supposing that SUSY would be the correct theory at the TeV scale and
that the LHC would detect supersymmetric particles, the next step would
be to determine which supersymmetric model is the correct one among the
different SUSY models that have been proposed. Thus, it is clear that,
from a theoretical/phenomenological point of view, it is very interesting the
following question. If Supersymmetry is the correct theory that describes
nature at the TeV scale, which is the correct supersymmetric model that is
realized in nature? For an interesting discussion about this question see for
example [6].

The simplest SUSY model is the Minimal Supersymmetric Standard Model
(MSSM) that consists of the direct supersymmetrization of the SM. For a
phenomenological SUSY review where the MSSM is extensively treated, see
for example [7]. The MSSM is the most studied SUSY model due to its
simplicity but this model also presents some theoretical or phenomenological
problems that other SUSY models try to solve.

In this Thesis we will study in detail the most relevant phenomenologi-
cal aspects of a supersymmetric model proposed recently in the literature,
the µνSSM [1], that tries to solve problems that are present in other SUSY
models, such as the well known µ-problem [8] or the non-implementation of
the experimental evidence of neutrino masses [9]. The µνSSM solves these
problems in an elegant and minimal way, without adding new particles to the
spectrum. The master key of the µνSSM consits of considering right-handed
neutrino superfields in the spectrum (that is justified by the experimental
fact of non-zero neutrino masses) with a superpotential coupling λiν̂c

i Ĥ1Ĥ2.
In the EW breaking, the right-handed sneutrinos take Vacuum Expectation
Values (VEVs) that generate an effective µ term naturally of the order of the
EW scale solving the µ-problem. This superpotential term is also responsible
of the mixing between right-handed neutrinos and neutral Higgsinos. In addi-
tion, a neutrino Yukawa coupling in the superpotential is added, Y ij

ν Ĥ2L̂iν̂
c
j ,

mixing left-handed neutrinos with neutralinos and giving rise to a 10 × 10
neutralino mass matrix with an EW scale seesaw structure that, as we will
show in this Thesis, is able to reproduce current experimental neutrino data.

The presence of both terms in the superpotential of the µνSSM implies an
explicit breaking of R-parity [10] and as a consequence, the phenomenology
of the model is very different from the one of the MSSM or other R-parity
conserving models. R-parity violation strongly affects the phenomenology
at colliders. For example, as the Lightest Supersymmetric Particle (LSP)
is not longer stable, in an accelerator experiment it could decay within the
detector and that implies that the typical missing-energy SUSY signals would
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not longer take place. In addition, since the LSP is not stable, it will be no
longer a Dark Matter (DM) candidate. Other DM candidates apart from
the lightest neutralino should be analysed in the context of this model, for
example the gravitino [11, 12].

In this Thesis we will try to cover an important part of the phenomeno-
logical issues of the µνSSM. We will analyse the vacuum structure of the
model and the electroweak breaking, focusing our attention on an important
and almost unique aspect of this model. The µνSSM opens the possibility
of Spontaneous CP Violation (SCPV) at the tree-level.

We will also explore in detail the neutrino sector of the model including
CP-violation, both theoretically and numerically in order to understand in-
tuitively how the seesaw mechanism is realized in this model and in order to
demonstrate that the µνSSM can accommodate perfectly current neutrino
experimental data.

Also, we will study some relevant aspects of the collider phenomenology of
the µνSSM in order to find characteristic signatures of the model that could
serve to distinguish between the µνSSM and other SUSY models at the LHC.
We will provide a general overview of the typical decays that take place in the
Higgs sector of the µνSSM and we will find numerically benchmark points
where decays that can be considered as genuine of the µνSSM take place.

Besides, we will study the possibility of using a U(1) extension of the
gauge group of the µνSSM in order to ensure the stability of the proton
without having to appeal to string theory arguments or discrete symmetries.
Moreover, this extension can also be used to forbid bilinear terms in the
superpotential and to solve a cosmological domain wall problem.

In particular, in Chapter 2 we will explain the motivations of the µνSSM
and the reasons to go from the accepted SM of particle physics to SUSY and,
once in Supersymmetry, the reasons to go from the simplest SUSY model,
the MSSM, to a more complicated one as the µνSSM. In this chapter we will
also present the µνSSM and we will briefly explain the main characteristics
of the model. We will also provide bibliography where other aspects of the
phenomenology of the µνSSM that are not covered in this Thesis have been
studied.

In Chapter 3 we will analyse the vacuum structure of the model in the
most general case, with complex VEVs. The µνSSM has the nice and very
rare feature that is able to break spontaneously CP at the tree-level. We will
compute the neutral scalar potential and we will provide the minimization
equations. We will find numerically global minima that break spontaneously
CP. A complete study of the neutrino sector of the model at the tree-level,
both numerically and analitically, is also performed in this chapter, including
CP violation in the PMNS matrix [13]. We will explain intuitively how the
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seesaw mechanism works in this model and we will show that current neutrino
data can be accommodated in the µνSSM, even with a diagonal neutrino
Yukawa coupling. This chapter is based on the results published in [14].

In Chapter 4 we will first describe the mixings in the Higgs sector of the
µνSSM. Then, we will provide a general overview of the novelties concerning
the decays of the Higgs sector of the model compared to other SUSY models.
After that, the couplings of Higgses with the Z boson and the sum rules will
be computed in order to explain LEP constraints in the context of this model.
We will also briefly review the production mechanisms of a Higgs boson at
colliders. Then, we will provide benchmark points that have been computed
where genuine signals of the µνSSM are expected. Finally, we will comment
on the role of the gravitino at colliders. This chapter is based on the results
published in [15].

In Chapter 5 we will study the extension of the gauge group of the µνSSM
with an extra U(1) symmetry. We will explain in detail the motivations to
such an extension. We will analyse the anomaly cancellation conditions in
order to find extensions of the µνSSM with the desired features. Once a vi-
able model will be found, we will study the parameter space where a correct
electroweak symmetry breaking takes place and where the experimental con-
straints on the existence of a new gauge boson Z ′ can be reproduced. This
chapter is based on [16].

In Chapter 6 we will present the general conclusions of this work and we
will explain the future work that has to be carried out in order to complete
the study of such a complex model as the µνSSM.

In Appendix A we will provide the mass matrices of the µνSSM and in
Appendix B some relevant Higgs sector couplings.

1.2 Introducción

En esta Tesis se van a estudiar los aspectos más relevantes de la fenomenoloǵıa
de un modelo supersimétrico propuesto recientemente en la literatura, el
µνSSM [1, 2].

La puesta en marcha del Large Hadron Collider (LHC) en el CERN se
puede considerar como uno de los momentos más importantes de la historia
de la F́ısica ya que se va a explorar por primera vez la escala de enerǵıas del
TeV. Se espera que este gran acelerador sea capaz de verificar el único sector
del Modelo Estándar (SM) [3] que todav́ıa no ha sido comprobado experi-
mentalmente, el sector de Higgs que es el responsable de la generación de las
masas de las part́ıculas del SM. También se espera que el LHC pueda encon-
trar nueva f́ısica más allá del SM a la escala del TeV. Hay muchos argumentos
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que indican que el SM no puede ser la teoŕıa última de la naturaleza y que
debe haber nueva f́ısica más allá del SM en alguna escala de enerǵıa. Uno de
los argumentos que indican que debe haber nueva f́ısica y que además debe
aparecer a la escala del TeV es el problema de las jerarqúıas [4], un problema
teórico que presenta el SM relacionado con la enorme distancia en enerǵıas
entre la escala electrodébil y la escala de Planck. Debido a que el Higgs es
un campo escalar, su masa no está protegida de las correcciones radiativas
cuadráticamente divergentes.

Existen diversas teoŕıas que compiten por ser la nueva f́ısica que de-
scriba la naturaleza a la escala del TeV. Probablemente la teoŕıa más es-
tudiada y prometedora sea Supersimetŕıa [5] (SUSY). Supersimetŕıa es una
simetŕıa entre bosones y fermiones que tiene muchas implicaciones intere-
santes tanto a nivel teórico como fenomenológico. Desde el punto de vista
de la fenomenoloǵıa, la principal implicación de SUSY consiste en que cada
part́ıcula del SM tiene una compañera supersimétrica (es decir, una part́ıcula
con los mismos números cuánticos pero con distinto esṕın). La inclusión de
esas nuevas part́ıculas en el espectro produce la cancelación de las divergen-
cias cuadráticas a la masa del Higgs resolviendo de esta manera el problema
de las jerarqúıas.

Suponiendo que SUSY fuera la teoŕıa correcta a la escala del TeV y que el
LHC descubriera part́ıculas supersimétricas, el siguiente paso seŕıa distinguir
cuál es, de entre todos los modelos supersimétricos propuestos, el modelo
supersimétrico correcto. Por tanto, es evidente que desde un punto de vista
teórico y fenomenológico, la cuestión de saber qué modelo supersimétrico
describe la realidad, si SUSY es la teoŕıa correcta de la naturaleza a la escala
del TeV, es muy importante. Para una interesante discusión sobre este tema
se puede consultar por ejemplo [6].

El modelo supersimétrico más sencillo es el Modelo Estándar Super-
simétrico Mı́nimo (MSSM) que consiste en una supersimetrización directa
del SM. Para un review fenomenológico de SUSY en el que se trata ex-
tensamente el MSSM se puede consultar por ejemplo [7]. El MSSM es el
modelo supersimétrico más estudiado debido a su simplicidad pero también
presenta algunos problemas fenomenológicos o teóricos que otros modelos
supersimétricos tratan de solucionar.

En esta Tesis se van a estudiar en detalle muchos de los aspectos más
relevantes de la fenomenoloǵıa de un modelo supersimétrico que ha sido
propuesto recientemente, el µνSSM [1]. Este modelo resuelve dos proble-
mas importantes que presentan otros modelos supersimétricos: el problema
µ [8] y la no implementación de la evidencia experimental de la masa de los
neutrinos [9]. El µνSSM resuelve estos dos problemas de una forma elegante
y mı́nima, sin tener que añadir part́ıculas adicionales al espectro aparte de los
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supercampos de neutrinos dextrógiros. La clave del µνSSM consiste en añadir
neutrinos dextrógiros al espectro (lo que está justificado por la evidencia ex-
perimental de la masa de los neutrinos) y un término en el superpotencial
λiν̂c

i Ĥ1Ĥ2. En la rotura de la simetŕıa electrodébil, los sneutrinos dextrógiros
toman Valores Esperados en el Vaćıo (VEVs) que generan un término µ efec-
tivo del orden de la escala electrodébil, resolviendo aśı el problema µ del
MSSM. Este término del superpotencial también produce la mezcla de los
neutrinos dextrógiros con los Higgsinos neutros. Como además, en el µνSSM
también se añade al superpotencial el acoplo de Yukawa de los neutrinos,
Y ij

ν Ĥ2L̂iν̂
c
j , también los neutrinos levógiros se mezclan con los neutralinos

de modo que en el µνSSM la matriz de masa de neutralinos es una matriz
10 × 10 con la que se puede generar un mecanismo del seesaw a escala EW
que, como demostraremos en esta Tesis, puede reproducir todas las medidas
experimentales del sector de neutrinos.

La presencia conjunta de ambos términos en el superpotencial del µνSSM
viola la simetŕıa R-parity [10] expĺıcitamente por lo que la fenomenoloǵıa del
modelo va a ser muy diferente de la del MSSM u otros modelos con R-parity
conservada. La rotura de R-parity puede modificar mucho las señales que
se pueden esperar en aceleradores. Por ejemplo, como la LSP no es estable,
en experimentos de aceleradores puede decaer dentro del detector por lo que
las señales t́ıpicas de supersimetŕıa consistentes en enerǵıa perdida no se
produciŕıan. Además, como la LSP no es estable en este modelo, no puede
ser candidata a formar la materia oscura del universo. Por lo tanto, otras
part́ıculas que puedan ser candidatas a materia oscura deben ser estudiadas
en el µνSSM como por ejemplo, el gravitino [11, 12].

En esta Tesis se tratará de cubrir una parte importante de las cuestiones
fenomenológicas del µνSSM. Se analizará el vaćıo del modelo y la rotura
electrodébil. Se estudiará una cuestión importante que distingue al µνSSM
de otros modelos supersimétricos, la posibilidad de tener rotura espontánea
de CP (SCPV) a nivel árbol.

También se explorará en detalle el sector de neutrinos, incluyendo vio-
lación de CP de forma anaĺıtica y numérica para entender intuitivamente
cómo se realiza el mecanismo del seesaw y para demostrar que el µνSSM
puede explicar todas las medidas experimentales del sector de neutrinos.

También se estudiarán algunos aspectos relevantes de la fenomenoloǵıa del
µνSSM en aceleradores para encontrar las señales caracteŕısticas que dejaŕıa
el modelo en un acelerador de part́ıculas como el LHC y poderlo distinguir de
otros modelos supersimétricos. Se presentará una panorámica general de los
decaimientos t́ıpicos que pueden producirse en el sector de Higgs del µνSSM
y se encontrarán numéricamente puntos benchmark en los que se producen
decaimientos genuinos del µνSSM.
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Asimismo, sin olvidar que en este modelo R-parity está rota, se estudiará
la posibilidad de extender el grupo gauge del µνSSM con un factor U(1)
para garantizar la estabilidad del protón sin tener que recurrir a argumentos
de teoŕıa de cuerdas o simetŕıas discretas. Además, esta extensión puede
usarse para prohibir términos bilineales en el superpotencial y para resolver
un problema cosmológico de paredes de dominio.

En concreto, en el Caṕıtulo 2 se explicarán las motivaciones del µνSSM
y las razones de pasar del SM a SUSY y una vez en SUSY, el por qué pasar
del MSSM a un modelo más complicado como el µνSSM. En este caṕıtulo
también se presentará el µνSSM y se explicarán brevemente sus principales
caracteŕısticas. También se proporcionará bibliograf́ıa en la que se estudian
aspectos fenomenológicos del µνSSM que no se cubren en esta Tesis.

En el Caṕıtulo 3 se estudiará la estructura del vaćıo del modelo, en el caso
más general, con VEVs complejos. El µνSSM tiene la peculiar caracteŕıstica
consistente en que se puede romper espontáneamente CP en el vaćıo a nivel
árbol. Se computará el potencial escalar neutro y las ecuaciones de mini-
mización. Se encontrarán numéricamente soluciones de mı́nimo que rompan
espontáneamente CP. También se realizará un estudio completo del sector
de neutrinos a nivel árbol, numérica y anaĺıticamente, incluyendo violación
de CP en la matriz PMNS [13]. Se explicará intuitivamente cómo funciona
el mecanismo del seesaw en este modelo y se demostrará que el µνSSM es
capaz de reproducir los datos experimentales del sector de neutrinos, incluso
con un acoplo de Yukawa de neutrinos diagonal mediante un extenso análisis
numérico. Este caṕıtulo está basado en los resultados publicados en [14].

En el Caṕıtulo 4 primero se describirán las mezclas en el sector de Higgs
del µνSSM. Se dará una visión general de las novedades de los decaimientos
que se producen en el sector de Higgs con respecto a otros modelos super-
simétricos. Se calcularán los acoplos de los Higgses con el bosón Z y las reglas
de sumación para explicar las restricciones que impone LEP en el contexto
de este modelo. Se repasarán brevemente los mecanismos de producción de
Higgses en colisionadores. Después, se proporcionarán puntos en el espacio
de parámetros que han sido calculados, donde se pueden esperar señales gen-
uinas del µνSSM. Finalmente, se comentará el papel que juega el gravitino
en aceleradores. Este caṕıtulo está basado en los resultados publicados en
[15].

En el Caṕıtulo 5 se estudiará la extensión del grupo gauge del µνSSM con
un factor U(1) extra. Se explicarán las razones para extender el grupo gauge
y se estudiarán las ecuaciones de cancelación de anomaĺıas para encontrar
algún modelo que extienda el µνSSM con las caracteŕısticas requeridas. Una
vez encontrado un modelo interesante se estudiará el espacio de parámetros
de la extensión U(1)extra del µνSSM para demostrar que hay regiones en las
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que se produce una rotura electrodébil correcta y en las que se cumplen las
cotas experimentales sobre la existencia de un nuevo bosón gauge Z ′. Este
caṕıtulo está basado en [16].

En el Caṕıtulo 6 se presentarán las conclusiones generales de esta Tesis
y se explicarán las ĺıneas de investigación que quedan abiertas y el trabajo
futuro para completar el estudio de un modelo tan complejo como el µνSSM.

Finalmente, en el Apéndice A se proporcionarán las matrices de masa del
µνSSM y en el Apéndice B algunos acoplos del sector de Higgs relevantes.



Chapter 2

Motivations and basics of the

µνSSM

In this chapter we will explain the motivations of the µνSSM and the basics
of the model. We will also provide bibliography where the µνSSM is studied.

2.1 Motivations

In this section we will review the motivations of the µνSSM and the reasons
to go from the SM of particle physics to SUSY and from the simplest SUSY
model, the MSSM, to the µνSSM.

The SM of particle physics is one of the major successes in the history
of physics since it can explain all the phenomena up to the highest en-
ergies reached by current accelerators with a huge precision. The SM is
a renormalizable quantum field theory based on a gauge symmetry group
SU(3)C × SU(2)L × U(1)Y that describes with a very high accuracy all the
phenomena in an energy range between fractions of eV to about 100 GeV.
In spite of the enormous success of the SM describing the sub-TeV physics,
there are several arguments that suggest that the SM can not be the ul-
timate theory of nature. It seems to be an effective theory of other more
fundamental theory.

In the simplest version of the SM, neutrinos are massless. However, there
are experimental evidences of non-zero neutrino masses [9]. The simplest
way to generate neutrino masses is to extend the SM with the addition of
right-handed neutrinos to the spectrum with a neutrino Yukawa coupling,
Yν , of the order 10−13. However, the magnitude of this coupling seems very
unnatural. The seesaw mechanism [17] is then the best motivated way to
give masses to neutrinos in the SM. For example in Type I seesaw, right-

17
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handed neutrinos are also added to the SM but not only with Dirac masses,
also with Majorana masses. Note that neutrino physics is one of the main
motivations for the µνSSM. On the other hand, the observations that lead to
the existence of dark matter [18] can not be accounted for in the SM. There
is not any particle that could be a candidate for constituing the DM of the
universe in the SM and for this reason, it has to be extended.

There are also aesthetic reasons that suggest that the SM is an effective
theory of other more fundamental theory. For example, the flavour problem,
that means, the non-explanation in the SM of the very different orders of
magnitude of the masses of the SM particles and their complicate pattern
of mixings. Also, the SM can not explain by itself why the gauge group is
SU(3)C × SU(2)L × U(1)Y or why the space-time is a 4-dimensional space.

In what concerns the theoretical reasons, the SM can not account for
the gravitational force. At least at the Planck scale, where the gravitational
effects become relevant, there should be a more fundamental theory to quan-
tize the gravitational field. Moreover, the EW breaking is only explained
in the SM through the Higgs mechanism with a potential introduced ”by
hand”. Finally, the gauge hierarchy problem [4] does not only suggest that
there should be new physics beyond the SM, but it also implies that new
physics should exist at the TeV scale. Therefore, the perspectives of finding
this new physics with the LHC are robust.

Different theories are candidates to extend the SM at the TeV scale (each
one solves the gauge hierarchy problem in a different way) and could be
found at the LHC such as technicolor [19], low energy extra dimensions [20],
Little Higgs [21], SUSY... Since this Thesis is devoted to the study of the
phenomenology of a SUSY model, we will introduce very briefly the theory
of Supersymmetry. To study SUSY in depth, we refer the interested reader
to [5].

Supersymmetry is a symmetry that relates bosons and fermions. It was
discovered at the very end of the sixties [22] as an interesting mathematical
construction but without expectations of applicability to particle physics.
When it was proven to solve the gauge hierarchy problem [23], an explosion
of interest on SUSY phenomenology begun.

A supersymmetric operator Q is an anticonmuting spinor that converts
a bosonic state into a fermionic state and viceversa. Each of the SM par-
ticles would have a supersymmetric partner [24] with the same properties
(the same quantum numbers, the same mass etc...) but with a spin differ-
ing in 1/2. These new degrees of freedom are the responsible of cancelling
the quadratic divergences of the Higgs mass and then, the gauge hierarchy
problem is solved. Since no supersymmetric particle has been detected yet,
supersymmetry has to be broken and SUSY particles should be heavier than
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the SM particles. There is not a completed accepted theory of how SUSY
is broken, but it has to be broken ”softly” for solving the gauge hierarchy
problem. Then, at the TeV scale the unknown mechanism that breaks SUSY
can be parametrized with soft terms in the Lagrangian.

Supersymmetry has many nice features. First of all, it has been demon-
strated that the most general symmetry of the S matrix is the direct product
of the SUSY algebra times the internal symmetry group [25]. SUSY solves
the gauge hierarchy problem. In contrast with other theories of physics be-
yond the SM at the TeV scale, SUSY can be extended to the Grand Unified
Theory (GUT) scale or to the Planck scale without new physics at interme-
diate scales. SUSY can also have connections with gravity since promoting
SUSY to be a local symmetry instead of a global one, one obtains a theory
of gravity called supergravity (SUGRA) [26]. In a spacetime with four di-
mensions the supergravity theory is not renormalizable but the connection
between SUSY and gravity is certainly very interesting. SUSY is also a fun-
damental ingredient of superstring theory. In addition, the unification of
the gauge couplings is much more precise in the MSSM than in the SM. In
supersymmetric models with conserved R-parity, the LSP is stable and it is
usually the neutralino in most part of the parameter space. Since the neu-
tralino is electrically neutral and colourless, it is an excellent DM candidate
and the dark matter relic density can be reproduced [27]. Finally, SUSY
provides a much better explanation of the EW breaking than the SM. In the
SM, the Higgs potential V = m2H+H + λ(H+H)2 (with the free parameter
m2 < 0) is introduced by hand. In SUSY, the parameters appearing in the
Higgs potential are not free, they depend on the gauge couplings and in many
SUSY models, the radiative corrections drive the mass squared parameter to
be negative producing the correct EW breaking.

In spite of all these hints that suggest that SUSY could be the correct the-
ory at the TeV scale, supersymmetric models are not free from drawbacks.
Obviously, the first argument against SUSY is that no SUSY particle has
been detected for the moment. Nevertheless, we hope that the LHC will find
them in the near future. Then, if supersymmetry exists at all, it has to be
a broken symmetry with SUSY particles heavier than the SM particles. The
unknowledge of how SUSY is broken is parametrized at low energy as soft
terms that are free parameters in the Lagrangian at the EW scale and repre-
sents an explicit breaking of SUSY: mass terms for gauginos and scalars and
soft trilinear and bilinear terms. Roughly speaking, these soft terms have to
be large enough for not having detected any SUSY particle but small enough
to keep the solution of the gauge hierarchy problem. Then, the simplest
SUSY model, the MSSM, has 124 free parameters. For reducing the number
of free parameters of SUSY models, one can build a theory where SUSY is
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broken spontaneously in a hidden sector, being communicated to the visible
sector in different ways (gravity mediated SUSY breaking, gauge mediated
SUSY breaking etc...) and generating the soft terms that are no longer free
parameters. SUSY models suffer other problems such as the µ problem [8],
the possible existence of both baryon and lepton number violating operators
that lead to fast proton decay incompatible with the experimental bounds1,
the possible existence of colour or electric charge breaking minima [28], the
little hierarchy problem that is other fine-tuning problem related to the LEP
bound on the Higgs mass...

Actually, there are not so many supersymmetric standard models in the
literature. On the one hand, there are models where R-parity is conserved,
the most relevant ones being the MSSM , the NMSSM 2 [29] or the U(1)SSM
[30, 31]. On the other hand, R-parity breaking models have been also pro-
posed in the literature such as the Bilinear R-parity Violating model (BRpV)
[32] or more recently, the µνSSM. If SUSY is discovered in future accelera-
tors, it would be a crucial task to determine which of all the SUSY models
is realized in nature.

Let us describe very briefly the simplest SUSY model, the MSSM and
the reasons to go to the µνSSM. See for example [7] where the MSSM is
extensively described . The MSSM consists of the direct supersymmetrization
of the SM, each of the SM particles has a supersymmetric partner, the only
exception is that there are two Higgs doublet superfields needed for cancelling
the anomalies and for giving masses to all fermions. The superpotential of
the MSSM is given by 3:

W = ǫab(Y
ij
u Ĥ

b
2Q̂

a
i û

c
j + Y ij

d Ĥ
a
1 Q̂

b
i d̂

c
j + Y ij

e Ĥ
a
1 L̂

b
i ê

c
j) − ǫabµĤ

a
1 Ĥ

b
2 (2.1)

The Higgs sector of the MSSM after the EW symmetry breaking is composed
of five physical degrees of freedom, two CP-even neutral Higgses h0 and H0,
one neutral CP-odd Higgs A0 and two charged Higgses. The other three
degrees of freedom are Goldstone bosons that are ”eaten” to provide the lon-
gitudinal components of the W and Z bosons. In the neutral fermion sector,
there are four neutralino states that are the physical linear combinations (the
mass eigenstates) of the electroweak neutral gauginos and the neutral Hig-
gsinos. As R-parity is conserved, the LSP is stable. In most of the parameter
space of the MSSM the LSP is the lightest neutralino and it is a good DM

1In Chapter 5 we present a complete discussion about proton decay in SUSY models
since it will be one of the motivations to extend the gauge group of the µνSSM in that
chapter.

2See Chapter 5 where the key features of the NMSSM are commented.
3See [5] for a description of the superfields formulation of SUSY.
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candidate since it is electrically neutral and colourless. In addition, the relic
density can be fitted in wide regions of the parameter space.

In spite of being the simplest SUSY model, the MSSM suffers from some
phenomenological problems such as the µ problem [8], possible fast proton
decay by B and L violating non-renormalizable operators that are not prohib-
ited by R-parity, non-implementation of neutrino masses, the little hierarchy
problem... Other SUSY models try to solve some of these problems. For
example, the µνSSM solves the µ problem and accounts for neutrino masses
in an elegant way. In addition, the tension with LEP data on Higgs searches
is aliviated. In Chapter 5 the proton decay problem will be addressed in the
context of the µνSSM introducing an extra U(1) gauge symmetry.

We will also explain in detail the µ problem in Chapter 5. Very briefly, the
last term in Eq. (2.1) is a bilinear term and the µ parameter has dimension
of mass. On one hand this parameter is required by phenomenology to be
of the order of the EW scale for the correct EW breaking. On the other
hand, since it is a superpotential parameter, it should be of the order of the
energy scale up to the theory is valid, for example, the GUT scale or the
Planck scale. The µνSSM introduces an effective µ term with a trilinear
superpotential operator λiν̂c

i Ĥ1Ĥ2. In this way, there are not dimensional
parameters in the superpotential and an effective µ term naturally of the
order of the electroweak scale is generated when the sneutrinos get VEVs.
Note that the µνSSM does not introduce extra singlets for this purpose as
the NMSSM does. It uses the right-handed neutrino superfields that also
serve to generate light neutrino masses.

As mentioned, other problem that suffers the MSSM and that the µνSSM
solves is that the MSSM does not account for non-zero neutrino masses. Neu-
trino experiments [9] have confirmed that neutrinos are massive and for this
reason, all models should account for this experimental fact. The trivial ex-
tension of the MSSM that accounts for neutrino masses consists of simply
adding right-handed neutrinos to the spectrum and a superpotential coupling
Y ij

ν Ĥ2L̂iν̂
c
j . The problem is that the neutrino Yukawa coupling should be of

the order of 10−13 to generate light neutrino masses, many orders of magni-
tude smaller than the electron Yukawa of order 10−6 or the top Yukawa of
order 1. That would complicate more the flavour puzzle. Apart from the
trivial extension of the MSSM to give masses to neutrinos, there are at least
two more ways in SUSY to generate neutrino masses.

There are models with violation of lepton number in two units δL = 2.
This corresponds to the supersymmetrization [35] of the seesaw mechanism.
Right-handed neutrino superfields and two superpotential terms Eq. (2.2)
are added. One is a Dirac mass term and the other, a Majorana mass term
that is a bilinear operator that conserves R-parity but breaks lepton number
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in two units.

Wneutrinos = Y ij
ν Ĥ2L̂iν̂

c
j +mij

M ν̂
c
i ν̂

c
j (2.2)

The Yukawa coupling determines the Dirac mass mD = Yνv2. Then,
in the interaction basis the neutrino mass matrix has the following block
structure:

m(νL,νR) =

(
0 mD

mD mM

)

If mD << mM , both contributions, Dirac and Majorana, induce light
neutrino masses of the order mν ∼ m2

D/mM . For example, with a neutrino
Yukawa coupling of the order of the top Yukawa coupling O(1) and a Majo-
rana mass of the order of the GUT scale, that gives rise to neutrino masses
of order 10−2 eV, compatible with the experimental bounds. With a TeV
scale seesaw, taking a Majorana mass of order 1 TeV and a neutrino Yukawa
coupling of the order of the one of the electron, O(10−6), one can also obtain
light neutrino masses compatible with the experimental bounds.

The second way of generating neutrino masses in SUSY consits of allowing
lepton number violation by one unit δL = 1. This way of generating neutrino
masses is intrinsically supersymmetric and it is based on the breaking of R-
parity. In this case, the relevant energy scale is the electroweak one and
it is not necessary to add right-handed neutrinos to the spectrum in order
to generate light neutrino masses. One example of this type of models is
the BRpV model [32]. This interesting model is based in the addition to
the superpotential of the MSSM, Eq. (2.1), a bilinear term µ′iL̂iĤ2. This
term violates R-parity and lepton number by one unit. Neutrino masses are
generated through the mixing of neutrinos with neutralinos. One mass is
generated at the tree-level and the other two masses at the one-loop level
[33, 34]. One potential problem of the BRpV model is that the µ problem is
increased since there are three more bilinear terms in the superpotential and
three new dimensional parameters µ′i. For phenomenological reasons they
have to be of the order of the EW scale but, since they are superpotential
couplings, they are expected to be of the order of the GUT or Planck scale.

As we will explain in detail in Chapter 3, the µνSSM generates neutrino
masses in a hybrid way. On the one hand, the superpotential term of the
µνSSM κijkν̂c

i ν̂
c
j ν̂

c
k is an effective Majorana mass term when the right-handed

sneutrinos take VEVs. On the other hand the violation of R-parity induces
the mixing of the left- and right-handed neutrinos with neutralinos and this
also contributes to the neutrino masses.

Summarizing, in this section we have presented an overview for going
from the SM of particle physics to SUSY. Many arguments suggest that the
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SM can not be the ultimate theory of nature. Among these arguments, the
hierarchy problem points out that new physics should exist at the TeV scale.
Different theories compit to be this new physics accesible at LHC. Supersym-
metry is probably the most promising among them. There are many different
supersymmetric models and the question of which model is realized in nature
if SUSY is the correct theory is highly relevant. The simplest SUSY model
is the MSSM but this model presents some phenomenological problems that
other models try to solve. The µ problem and neutrino physics are the main
motivations for the µνSSM. Simply adding right-handed neutrinos to the
spectrum and allowing the violation of R-parity, non-zero neutrino masses
are generated and the µ problem is solved at the same time. Then, as it is a
very well motivated and attractive model, the study of the phenomenology
of the µνSSM is highly relevant.

In the rest of this chapter we will describe briefly the main features of
the µνSSM before presenting a complete study of different phenomenological
issues in the next chapters.

2.2 The µνSSM , an overview

In this section we will explain the basics of the SUSY model that we are
going to study in detail in this Thesis, the µνSSM [1]. The most relevant
bibliography concerning this model will also be provided. In the following
chapters we will treat in detail several phenomenological issues but before
that, let us review the main features of the model.

Let us recall that the main motivation of this model is to solve the µ
problem of the MSSM connecting it with neutrino physics. The fact that
neutrinos are massive has been confirmed by neutrino experiments [9]. Then,
all theoretical models should be extended to reproduce this experimental
result.

It is then natural in the context of SUSY to add to the spectrum of the
theoretical models, right-handed neutrino superfields ν̂c

i , i = 1, 2, 3. Given
the fact that sneutrinos are allowed to get VEVs, the µνSSM model is based
on adding the superpotential term λiν̂c

i Ĥ1Ĥ2 in order to produce an effective
µ term given by µeff ≡ λi〈ν̃c

i 〉 naturally of the order of the EW scale once the
electroweak symmetry is broken, solving the µ problem of SUSY [8] without
adding an extra singlet superfield as in the case of the NMSSM [29]. Thus
the ”µ from ν” Supersymmetric Standard Model solves the µ problem with
natural particle content generating at the same time ν masses in a natural
way as we will discuss below.
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The superpotential is given by:

W = ǫab ( Y ij
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where ĤT
1 = (Ĥ0

1 , Ĥ
−
1 ), ĤT

2 = (Ĥ+
2 , Ĥ

0
2 ), Q̂T

i = (ûi, d̂i), L̂
T
i = (ν̂i, êi), a, b

and i, j, k are respectively SU(2) and family indices and ǫ12 = 1. Note that
in other chapters we will also use the notation ĤT

1 ≡ ĤT
d and ĤT

2 ≡ ĤT
u .

Only trilinear dimensionless terms are allowed in the superpotential. This
could be explained with a Z3 symmetry that forbids the bilinear µ term as is
usually done in the NMSSM. Another explanation in favour of the absence
of the explicit µ term arises from the low energy limit of string constructions
where only trilinear terms are present in the superpotential. An effective µ
term is generated in the EW breaking and the µ problem is solved.

The last type of terms in Eq. (2.3), allowed by all symmetries, avoids
the presence of an unacceptable axion associated to a global U(1) symme-
try. This term also generates effective Majorana masses for neutrinos at the
EW scale. In addition, the neutrino Yukawa term generates Dirac masses
for neutrinos. Then, an EW-scale seesaw is present in the model and light
neutrino masses arise as we will show in Chapter 3. The two last terms in
Eq. (2.3) break explicitly lepton number and therefore, after spontaneous
symmetry breaking, a massless Goldstone boson (Majoron) does not appear.

R-parity is also explicitly broken by these two terms. The size of the
breaking can be easily understood realizing that in the limit where Yν are
vanishing, the ν̂c are ordinary singlet superfields like the Ŝ of the NMSSM,
without any connection with neutrinos, and R-parity is therefore conserved.
Once Yν are switched on, the ν̂c become right-handed neutrinos, and, as a
consequence, R-parity is broken. Thus the breaking is small because the
EW-scale seesaw implies small values for Yν .

Needless to say, the breaking of R-parity implies that the phenomenology
of the model will be very different from the one of the MSSM. The super-
symmetric particles have not to be produced in pairs and the LSP is not
stable. This fact would produce very different signals of the µνSSM with
respect to models that conserve R-parity in accelerator experiments, avoid-
ing typical missing energy signals of R-parity conserving models if the LSP
has sufficiently small lifetime to decay within the detector. The extended
Higgs sector of the µνSSM could also lead to different signals in accelerators
respect to other SUSY models. These issues will be discussed in Chapter 4.

The lightest neutralino in the µνSSM is no longer a DM candidate but
other candidates can be found in the literature such as the gravitino [36, 11],
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the axion or other exotic particles [27]. It is also interesting to note that the
Yukawa term producing Dirac masses for neutrinos, the fourth term in (2.3),
generates three effective bilinear terms Ĥ2L̂i after the electroweak breaking
through the VEVs of right-handed sneutrinos and that is what characterizes
the BRpV model. In a sense, the BRpV model is contained in the µνSSM.
Note that the only scale present in this model is the soft supersymmetric
breaking scale. Then, all the known particle physics phenomenology could
be reproduced with the presence of only this scale in the Lagrangian.

As we have explained, the superpotential (2.3) has a Z3 symmetry, just
like in the NMSSM. We will see in Chapter 5 that one expects to have also a
cosmological domain wall problem in this model [37]. Nevertheless, the usual
solutions based on non-renormalizable operators [38] will also work. More-
over, we will see in Chapter 5 that other solution to this problem is possible
extending the gauge group of the µνSSM with an extra U(1) symmetry.

Working in the framework of gravity-mediated supersymmetry breaking
we will discuss briefly the most relevant aspects of the phenomenology of the
µνSSM concerning the EW breaking and the neutralino sector of the model.
The soft Lagrangian Lsoft is given by:
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Apart the terms coming from Lsoft, the tree-level neutral scalar potential
receives the usual D and F term contributions. Once the EW symmetry is
spontaneously broken, the neutral scalars develop the following VEVs that
we take here for simplicity as real:

〈H0
1 〉 = v1 , 〈H0

2 〉 = v2 , 〈ν̃i〉 = νi , 〈ν̃c
i 〉 = νc

i . (2.5)

For the moment we only want to demonstrate that the µνSSM can present
a correct EW symmetry breaking. As a consequence, for our purposes it
is enough to neglect mixing between generations in (2.3) and (2.4), and to
assume that only one generation of sneutrinos gets VEVs, ν and νc. The
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extension of the analysis to all generations is straightforward and the con-
clusions are similar. In Chapter 3 we will study in detail the EW breaking
of the model in the general case of complex VEVs with all generations.

With this approach, the neutral scalar potential is given by:
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In the following, we also assume for simplicity that all the parameters ap-
pearing in the scalar potential are real. The four minimization conditions
with respect to the VEVs v1, v2, ν

c and ν can be written as:
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+ Y 2
ν ν
(
v2
2 + νc2

)
+ Yν

(
−λνc2v1 − λv2

2v1 + κv2ν
c2 + Aνν

cv2

)
= 0 .

(2.7)

As we will see in Chapter 3 where we study in detail the neutrino sector
of this model, the VEV of the left-handed sneutrino ν is in general small
to reproduce the small neutrino masses. This fact has also been discussed
in the context of R-parity breaking models with extra singlets [39]. Notice
that in the last equation in (2.7) when Yν → 0 it happens that ν → 0, and
since the Yukawa coupling Yν determines the Dirac mass for the neutrinos
(mD ≡ Yνv2), it has to be very small and as a consequence, also ν has to
be very small. This also implies that we can approximate the other three
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minimization equations as follows:

1

2
M2

Z cos 2β + λ2
(
νc2 + v2 sin2 β

)
+m2

H1
− λνc tan β (κνc + Aλ) = 0 ,

−1

2
M2

Z cos 2β + λ2
(
νc2 + v2 cos2 β

)
+m2

H2
− λνc cot β (κνc + Aλ) = 0 ,

λ2v2 + 2κ2νc2 +m2
ν̃c − λκv2 sin 2β − λAλv

2

2νc
sin 2β + κAκν

c = 0 ,

(2.8)

where tan β ≡ v2/v1, 2M2
W/g

2
2 = v2

1 + v2
2 + ν2 ≈ v2

1 + v2
2 ≡ v2, and we have

neglected terms proportional to Yν. The equations in (2.8) are identical to
the minimization conditions of the NMSSM with the substitution νc ↔ s.
As it is well known, the NMSSM presents a correct EW breaking and many
solutions of the minimization equations can be found in the parameter space.
Then, we can conclude that the µνSSM also presents a correct EW symmetry
breaking in a significant region of the parameter space

Once we know that solutions of the minimization equations are available,
we turn our attention to the neutralino sector. This sector is highly relevant
in the µνSSM since neutrino physics arises from it as we will show in detail
in Chapter 3. The breaking of R-parity produces new mixings between par-
ticles. In particular, concerning the neutral fermion sector, neutral gauginos
and Higgsinos are mixed with left- 4 and right-handed neutrinos 5. Then, the
four neutralino states of the MSSM are augmented with the six new states
of left- and right-handed neutrinos giving rise to a 10 × 10 neutralino mass
matrix. As we will explain in detail in Chapter 3, three of the ten eigenstates
of the neutralino mass matrix can be very light and the masses can be com-
patible with current neutrino experimental data. The other seven eigenstates
are heavy and mainly composed of the four neutralinos of the MSSM and
the three right-handed neutrinos. In order to explain intuitively this fact, we
come back to the approximation of only one generation of sneutrinos taking
VEVs and no mixing between generations. In this approximation, the neu-
tralino mass matrix would be a 6×6 mass matrix and one has to ensure that
one eigenvalue has to be very light. In the weak interaction basis defined

by Ψ0T ≡
(
B̃0 = −iλ̃′, W̃ 0

3 = −iλ̃3, H̃
0
1 , H̃

0
2 , ν

c, ν
)
, the neutral fermion mass

terms in the Lagrangian are Lmass
neutral = −1

2
(Ψ0)TMnΨ

0 +H.c., with Mn given

4From the superpotential term Y ij
ν Ĥb

2L̂
a
i ν̂c

j , when the right-handed sneutrinos take
VEVs, effective bilinear terms as the ones of the BRpV are generated and produce the
mixing of left-handed neutrinos with Higgsinos.

5From the superpotential term λiν̂
c
i Ĥ

a
1 Ĥb

2 , right-handed neutrinos mix with the MSSM
neutralinos in the same way as the singlino of the NMSSM mix with the MSSM neutralinos.
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by:

Mn =

(
M m

mT 0

)
, (2.9)

where

M =

0
BBB@

M1 0 −MZ sin θW cos β MZ sin θW sin β 0
0 M2 MZ cos θW cos β −MZ cos θW sin β 0

−MZ sin θW cos β MZ cos θW cos β 0 −λνc −λv2

MZ sin θW sinβ −MZ cos θW sin β −λνc 0 −λv1 + Yνν
0 0 −λv2 −λv1 + Yνν 2κνc

1
CCCA .

(2.10)

Note that M is very similar to the neutralino mass matrix of the NMSSM
(substituting νc ↔ s and neglecting the small contributions Yνν), and m is
given by:

mT =

(
−g1ν√

2

g2ν√
2

0 Yνν
c Yνv2

)
. (2.11)

Matrix (2.9) is a matrix of the seesaw type that gives rise to a very light
eigenvalue if the entries of the matrix M are much larger than the entries
of the matrix m. This is the case since the entries of the matrix M are
of the order of the EW scale, but the entries of m are much smaller since
they are proportional either to ν or to Yν . It can be checked numerically
that using typical EW scale values for the entries of M and a Dirac mass
Yνv2 ≃ 10−4 GeV one obtains that the lightest eigenvalue of (2.9) is of order
10−2 eV. Thus, it is clear with these intuitive and rough arguments that the
µνSSM is able to generate light neutrino masses. The complete discussion
where we analyse numerically the full 10×10 neutralino mass matrix (taking
into account all three generations of neutrinos) is placed in Chapter 3 where
we show that current experimental neutrino data can be accommodated in
a wide portion of the parameter space of the µνSSM, even with a diagonal
neutrino Yukawa coupling. Also in this chapter we will provide a complete
explanation of how the seesaw mechanism works in this model, including also
phases coming from complex VEVs and studying CP-violation in the lepton
sector.

The breaking of R-parity in this model does not affect only to the neu-
tralino sector but also to the chargino sector or to the scalar sector.

As it can be checked in [40], the MSSM charginos mix with the charged
leptons giving rise to a 5× 5 chargino mass matrix. In a basis where Ψ+T

=
(−iλ̃+, H̃+

u , e
+
R, µ

+
R, τ

+
R ) and Ψ−T

= (−iλ̃−, H̃−
d , e

−
L , µ

−
L , τ

−
L ), one obtains the

matrix

−1

2
(ψ+T

, ψ−T
)

(
0 MT

C

MC 0

)(
ψ+T

ψ−T

)
, (2.12)
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where

MC =




M2 g2vu 0 0 0
g2vd λiν

c
i −Yei1

νi −Yei2
νi −Yei3

νi

g2ν1 −Yν1i
νc

i Ye11
vd Ye12

vd Ye13
vd

g2ν2 −Yν2i
νc

i Ye21
vd Ye22

vd Ye23
vd

g2ν3 −Yν3i
νc

i Ye31
vd Ye32

vd Ye33
vd




. (2.13)

Anyway, the mixing between the 2×2 block relative to the MSSM charginos
and the 3×3 block of the SM leptons is small since the off-diagonal blocks are
proportional to either ν or to Yν that are much smaller than the electroweak
entries of the diagonal blocks. For this reason, this mixing can be safely
neglected for practical purposes.

The Higgs sector is also extended in the µνSSM because of the breaking of
R-parity that gives rise to the mixing of the neutral Higgses with the sneutri-
nos and to the mixing of the charged Higgses with the charged sleptons. The
complete full mass matrices of the CP-even neutral scalars, CP-odd neutral
scalars, charged scalars and squarks can be checked in [40] or in Appendix
A of this Thesis. The Higgs sector will be studied in detail in Chapter 4 .
Here, let us only mention that in the µνSSM, there are eight CP-even neutral
scalar states, seven (once the Goldstone boson is rotated away) CP-odd neu-
tral scalar states and seven charged scalar states. As we will see in Chapter
4, such an extended Higgs sector could lead to characteristic signals of the
µνSSM [15], different from other SUSY model signals in Higgs searches at
colliders.

We refer to the interested reader to [40] for checking the Renormalization
Group Equations (RGEs) of the superpotential couplings and VEVs. Other
relevant phenomenological issues about the µνSSM can be found in [40], such
as the relevant couplings involved in the computation of the one-loop radia-
tive corrections to the scalar potential tadpoles and to the CP-even scalar
masses. The parameter space of the µνSSM is also studied there in order to
find regions avoiding the existence of false minima and tachyons as well as
imposing the perturbativity (Landau pole condition) on the couplings of the
model. This study of the correct electroweak symmetry breaking with real
VEVs as well as the Landau pole conditions allows to put constraints in the
parameter space of the model. For example, assuming a GUT in a typical
scale of 1016 GeV, the perturbativity of the couplings imposes that λi ≤ 0.4
and if the tensor κijk is taken diagonal and universal with κiii ≃ κ, there is a
bound κ ≤ 0.6. These bounds based on the Landau pole constraints do not
differ significantly from the NMSSM ones. The upper bound on the lightest
Higgs mass is also discussed in [40]. Taking into account the one-loop correc-
tions to the lightest Higgs mass, the upper bound in the µνSSM, similarly
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to the NMSSM [41, 42], is around 140 GeV for tanβ = 2. We will treat with
more detail this subject of the bound on the lightest Higgs mass in Chapter 5.

In the following, relevant bibliography concerning the µνSSM will be pro-
vided.

The original paper that proposes the µνSSM in the literature as a solution
of the µ problem, taking into account neutrino masses at the same time, can
be found in [1]. From then on, several phenomenological studies of this model
have been performed.

In [40] the parameter space of the µνSSM is extensively analysed putting
special attention on constraints arising from the correct electroweak symme-
try breaking, avoiding false minima, tachyonic states and Landau poles in the
parameters. The structure of the mass matrices and the associated particle
spectrum were also computed mainly focusing on the mass of the lightest
Higgs boson. Other interesting issues as the RGEs of the superpotential
couplings and of the VEVs are also discussed.

In [43] the neutrino sector of the model is explored at the tree-level.
Neutrino masses and mixing angles are discussed and it is shown that the
µνSSM can reproduce the experimental neutrino data even with diagonal
neutrino Yukawa couplings in a significant region of the parameter space.
Also, the decays of the lightest neutralino to two body (W-lepton) final
states are studied. The correlations of the decay branching ratios of the LSP
with the neutrino mixing angles were studied as another possible test of the
µνSSM at the LHC.

The phenomenology of the neutrino sector of the µνSSM and the decays
of the lightest neutralino were also studied in [44, 45], particularized for the
case of only one and two generations of right-handed neutrino superfields
and taking into account all possible final states when studying the decays of
the lightest neutralino. Possible signatures that might allow to distinguish
experimentally this model from other R-parity breaking models were briefly
discussed in [43, 44].

In [14] the analysis of the vacua of the µνSSM presented in [40] is com-
pleted, studying Spontaneous CP Violation (SCPV) of the tree-level neutral
scalar potential and demonstrating that in general, the minimum of the scalar
potential with real parameters has complex VEV solutions. In particular, CP
violation in the leptonic sector is explored and it is shown how phases for
the tree-level PMNS matrix [13] may arise due to the phases of the complex
VEVs. The neutrino sector is also analysed at the tree-level both analitically
and numerically and the seesaw mechanism in the µνSSM is discussed in an
intuitive way, including also phases. In Chapter 3 we will present the results
of this paper in order to study in detail the neutrino sector of the µνSSM
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and its vacua.
The full effect of one-loop contributions to the neutrino mass matrix in the

µνSSM has been analysed in [46], showing that current three flavour global
neutrino data for both the tree-level and the one-loop corrected analysis can
be accommodated in the µνSSM.

In [15] the Higgs sector of the µνSSM has been analysed in detail, with
special emphasis in possible signals at colliders. The mixings of the Higgs
sector and mechanisms to suppress them have been described. After a general
overview of the production and decays of the Higgses, decays that are genuine
of the µνSSM and could serve to distinguish this model from other SUSY
models have been studied. Viable benchmark points for LHC searches have
been provided. In Chapter 4 we will present the results of this paper in
order to study in detail the Higgs sector of the model and possible signals at
colliders. Also in [47] the collider phenomenology of the Higgs sector of the
µνSSM has been studied predicting an unusual signal.

In [16] the extension of the gauge group of the µνSSM with an extra U(1)
factor is studied. In Chapter 5 we will present the results.

Let us also mention that superpotential terms of the µνSSM such as
ν̂cĤdĤu and ν̂cν̂cν̂c were also analysed as sources of the observed Baryon
Asymmetry of the Universe (BAU) [48] and of neutrino masses and tribi-
maximal mixing [49] respectively.

In [11, 12] the implications of gravitino dark matter in the µνSSM have
been studied. Since the lifetime of the gravitino in this model becomes much
longer than the age of the universe, it is a natural candidate for DM. In these
works the prospects for detecting gamma rays from decaying gravitinos in the
galactic halo and extragalactic objects such as the Virgo cluster are analysed.
In particular, the Fermi-LAT telescope could detect monochromatic gamma-
ray lines produced in a two-body decay of gravitinos. It is found that a
gravitino with a mass range of 0.6 − 2 GeV, and with a lifetime range of
about 3 × 1027 − 2 × 1028 s would be detectable by the Fermi-LAT with a
signal-to-noise ratio larger than 3σ. It is also obtained that gravitino masses
larger than about 4 GeV are already excluded in the µνSSM by Fermi-LAT
data of the galactic halo.

In [50] it is pointed out that the µνSSM does not allow a conventional
thermal leptogenesis mechanism due to the low-energy scale seesaw present
in the model. Then, it is shown that electroweak baryogenesis may be a
promising way to create the observed BAU. A region of the parameter space
of the µνSSM where the electroweak phase transition is sufficiently strongly
first order to realize electroweak baryogenesis is identified. Given the fact
that the µνSSM is one of the few supersymmetric models with a TeV scale
seesaw mechanism accesible at present and future colliders, it is encouraging
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that the model has a good chance at being consistent with the observed BAU.
Finally, for a recent general review of the µνSSM, the interested reader

can see [51].
Summarizing, in this Chapter we have explained the motivations for going

from the SM of particle physics to the µνSSM. We have also introduced the
µνSSM and we have reviewed the basics of the model. From now on we will
begin to study in detail the most relevant aspects of the phenomenology.



Chapter 3

Neutrino physics and SCPV in

the µνSSM

In this chapter we will study the vacuum of the µνSSM in the general case,
with complex VEVs, and the neutrino sector. It is based on the results
published in [14]. We want to prove that in this model it is possible to
break CP spontaneously (SCPV) at the tree-level and that the vacuum of
this model is in general complex. We also want to discuss the neutrino sector
of the model in the general case of CP-violation in the lepton sector. We
will show how complex vacua can generate CP violating phases in the PMNS
matrix.

First of all, in Section 3.1 we will describe the motivations and the most
relevant features of breaking CP spontaneously. After this, in Section 3.2 we
will prove intuitively that the µνSSM can break CP spontaneously and we
will calculate the scalar potential and minimization equations with complex
VEVs of the µνSSM . In Section 3.3 we will examine the seesaw mechanism
as the origin of neutrino masses and mixing angles in the model. We will
prove that current experimental neutrino data can be fitted even with a
diagonal neutrino Yukawa matrix. We will provide an intuitive explanation of
how the seesaw mechanism works in this model and we will present analytical
approximate formulas of the effective neutrino mass matrix. In Section 3.4 we
will present our numerical results. Within the parameter space of the model,
we will search numerically for global minima of the µνSSM that break CP
spontaneously. Using these CP violating minima we will analyse numerically
the neutrino sector of the model ensuring that the experimental constraints
on the neutrino sector are accomplished. As a consequence of SCPV, we
will show that the PMNS matrix is in general complex with non-zero Dirac
and Majorana CP phases. Note that the analysis of the neutrino sector is
general, the case with real VEVs being a particular case of the general one

33
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with complex VEVs. Finally, in Section 3.5 we will present some relevant
comments and in Section 3.6 the conclusions of this chapter.

3.1 Motivations

We have already discussed that one of the main motivations of the µνSSM is
to account for the experimental evidence of non-zero neutrino masses. The
explicit breaking of R-parity in this model produces the mixing of neutrali-
nos with left- and right-handed neutrinos. As a consequence, a generalized
matrix of the seesaw type arises and gives rise at the tree-level to three light
eigenvalues corresponding to neutrino masses. We will show that in the neu-
trino sector, the experimental constraints can be reproduced even with a
diagonal neutrino Yukawa coupling. The neutrino sector of the µνSSM has
been analysed in several works [43, 44, 14, 46]. In this chapter we want to
analyse in detail the neutrino sector of the model following the guide of the
work performed in [14].

On the other hand, we want to prove that in general, the vacuum of the
µνSSM is complex, completing the analysis of the vacuum started in [40].
With these complex vacua we will analyse the neutrino sector of the model
and show how CP violation in the leptonic sector arises as a consequence of
SCPV. The analysis of the neutrino sector is general, the real vacuum case
being a particular case of the complex one.

Let us recall that, although there is evidence for CP violation in the quark
sector of the SM, there are not experimental traces of it in the leptonic part.
CP can be explicitly broken through complex parameters in the Lagrangian
or it can be broken spontaneously in a CP conserving Lagrangian (e.g. with
all the parameters being real) through complex VEVs in what is called SCPV.
Although the SM as well as the MSSM do not allow for SCPV, in more
complicated models both sources of CP violation, complex parameters and
complex VEVs, could be present.

Concerning the quark sector, a recent study argues that the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is likely complex [52]. This conclusion
is supported by the measurement of the unitarity triangle angle γ by BaBar
and Belle collaborations [53, 54]. This evidence of a complex CKM matrix
has ruled out NMSSM-like models with SCPV (see e.g. [55]) for being the
entire source of CP violation in the quark sector, since the CKM matrix in
such models is real. Thus complex parameters are necessary in the quark
sector. Given the structure of the µνSSM, this fact also holds for this model.
On the other hand, for the lepton sector, we will show that CP violating
phases for the PMNS matrix could arise through SCPV in the µνSSM.
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One argument in favor of the presence of SCPV at the Lagrangian level
is that, if the determinant of the quark mass matrix is real, it leads to a
solution to the strong CP problem [56]. Extensions of the MSSM having this
property, have been extensively studied in the literature (see e.g. [57]). In
those scenarios, the quark sector of the model is extended in such a way that
the effective 3 × 3 CKM matrix is complex whereas the determinant of the
quark mass matrix is real.

Other works have extended the Higgs sector of the models, leading to
SCPV with a complex CKM matrix [58]. Last but not least, in supersym-
metric models with both CP and Peccei-Quinn symmetries, SCPV can be
used as a solution to the SUSY phase problem [59].

Regarding extensions of the µνSSM, the SCPV scenario with a complex
CKM matrix can be accomplished by adding two more families of Higgs
doublets. In this case the model would contain three families of matter and
Higgs fields. This possibility is well motivated phenomenologically, since the
potential problem of flavour changing neutral currents can be avoided [60].
In addition, having three Higgs families is favored in some string scenarios
[61]. Indeed, extensions of the quark sector of the model can also be studied,
without altering the results here presented. In Chapter 5 we will present a
U(1)extra extension of the µνSSM with exotic quarks added to the spectrum
for cancelling the anomaly equations associated to the U(1)extra. These exotic
quarks couple with the SM quarks and could transmit the CP violating phases
of the VEVs to the CKM matrix. This model could serve as a starting point
to obtain a SUSY model with SCPV and with a complex CKM matrix. For
more details, see Subsection 5.2.1.

In this work we just want to point out that SCPV is possible at the tree-
level in the simplest version of the µνSSM, i.e. with only one family of Higgs
doublets, and therefore it is worth studying its consequences.

3.2 Complex VEVs in the µνSSM

Let us remember the superpotential of the µνSSM . The notation and the
description of the various terms has already been introduced in Chapter 2.

W =
∑

a,b

∑

i,j

[
ǫab

(
Yuij

Ĥb
u Q̂a

i ûc
j + Ydij

Ĥa
d Q̂b

i d̂c
j + Yeij

Ĥa
d L̂b

i êc
j + Yνij

Ĥb
u L̂a

i ν̂c
j

)]

−
∑

a,b

∑

i

ǫabλi ν̂c
i Ĥa

d Ĥb
u +

∑

i,j,k

1

3
κijk ν̂c

i ν̂
c
j ν̂

c
k , (3.1)
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It consists of Yukawa terms, including the one for neutrinos, an effective
µ term with the dimensionless vector coupling λ and an effective Majorana
mass term for neutrinos with the totally symmetric tensor κ. Working in
the framework of gravity mediated supersymmetry breaking, the soft terms
appearing in the Lagrangian Lsoft are given by:

−Lsoft =
∑

i,j

[
∑

a

m2
Q̃ij

Q̃a
i

∗
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j +m2
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ũc
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∑
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(
M3 λ̃3 λ̃3 +M2 λ̃2 λ̃2 +M1 λ̃1 λ̃1 + c.c.

)
. (3.2)

In the following we will suppose that CP is a good symmetry of the model,
taking all the parameters in the neutral scalar potential real and assuming
that CP is only violated by the complex VEVs of the scalar fields. Then,
once the electroweak symmetry is spontaneously broken, the neutral scalars
develop in general the following complex VEVs:

〈H0
d〉 = eiϕvd vd , 〈H0

u〉 = eiϕvu vu , 〈ν̃i〉 = eϕνi νi , 〈ν̃c
i 〉 = e

ϕνc
i νc

i . (3.3)

There are eight complex VEVs but only seven independent physical phases
since the phase of 〈H0

d〉 can always be rotated away. We define the seven
physical phases as:

ϕv = ϕvu + ϕvd
, χi = ϕνi

+ ϕvu , ϕνc
i
. (3.4)

First of all, we want to calculate the tree-level neutral scalar potential of the
µνSSM with complex VEVs.

Let us remind that the scalar potential is the sum of three contributions,
F-terms, D-terms and soft terms:

V 0 = VF + VD + Vsoft. (3.5)
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All these contributions have been computed in [14]. The part coming from
soft terms can be calculated from the expression of the soft Lagrangian (3.2)
replacing the fields by the VEVs, using tensor algebra and is given by:

Vsoft = m2
Hd
vdvd +m2

Hu
vuvu +

∑

i,j

m2
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+
∑
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+ 2
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c
j cos(χi + ϕνc

j
).

(3.6)

The D-term contribution to the scalar potential of a supersymmetric theory
is the following: VD = 1

2
DaDa where

Da = −g2
n∑

i=1

ρ∗iT
a
i ρi (3.7)

and the sum is over all the superfields of the model, ρi are the scalar compo-
nents of these superfields and T a

i are the generators of the gauge group.

If we proceed with the computation of VD in this model and with the
help of tensor algebra we find the following contribution to the neutral scalar
potential:

VD =
G2

8

(
∑

i

νiνi + vdvd − vuvu

)2

, (3.8)

with G2 ≡ g2
1 + g2

2.

Finally, the contribution of F-terms to the scalar potential of a supersym-
metric theory is given by the general formula VF =

∑n
i=1 | Fi |2 where Fi are

the auxiliary components of the superfields and the sum extends over all the
superfields of the model considered. Computing this for the µνSSM with
the help of tensor algebra, we find the following contribution to the neutral
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scalar potential:
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∑
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λiλjv
2
uν

c
i ν

c
j cos(ϕνc

i
− ϕνc

j
)

+
∑

i,j,k,l

∑

m

κimkκlmjν
c
i ν

c
jν

c
kν

c
l cos(ϕνc

i
+ ϕνc

j
− ϕνc

k
− ϕνc

l
)

+ 2[−
∑

i,j

∑

k

κikjλkvdvuν
c
i ν

c
j cos(ϕνc

i
+ ϕνc

j
− ϕv)

+
∑

i,j,k

∑

l

Yνjl
κilkvuνjν

c
i ν

c
k cos(ϕνc

i
+ ϕνc

k
− χj)

−
∑

i,j,k

Yνij
λkvdνiν

c
jν

c
k cos(χi + ϕνc

j
− ϕνc

k
− ϕv)

−
∑

i

∑

j

Yνij
λjvdv

2
uνi cos(ϕv − χi)]

+
∑

i,j,k,l

Yνij
Yνkl

νiν
c
jνkν

c
l cos(χi − χk + ϕνc

j
− ϕνc

l
)

+
∑

i,j

∑

k

Yνik
Yνjk

v2
uνiνj cos(χi − χj)

+
∑

i,j

∑

k

Yνki
Yνkj

v2
uν

c
i ν

c
j cos(ϕνc

i
− ϕνc

j
). (3.9)

The neutral scalar potential is a function of fifteen variables, the eight
modulus of the VEVs and the seven independent phases appearing in (3.3).
In addition, it also depends on a large number of parameters whose values are
unknown at the electroweak scale and hence, we take them as free parameters.

Now we can derive the fifteen minimization conditions of this potential
with respect to the moduli vd, vu, ν

c
i , νi and phases ϕv, χi, ϕνc

i
. In the

following, we present the eight minimization equations with respect to the
modulus of the VEVs.
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∂V

∂vd

=
1

4
G2

(
∑

i

νiνi + v2
d − v2

u

)
vd +m2

Hd
vd + vdv

2
u

∑

i

(λi)
2

−
∑

i

(Aλλ)iν
c
i vu cos(ϕv + ϕνc

i
) +

∑

i,j

vdλiλjν
c
i ν

c
j cos(ϕνc

i
− ϕνc

j
)

−
∑

i,j,k

κikjλkvuν
c
i ν

c
j cos(ϕνc

i
+ ϕνc

j
− ϕv)

−
∑

i,j,k

Yνij
λkνiν

c
jν

c
k cos(χi + ϕνc

j
− ϕνc

k
− ϕv)

−
∑

i

∑

j

Yνij
λjv

2
uνi cos(ϕv − χi) = 0, (3.10)

∂V

∂vu
= −1

4
G2

(
∑

i

νiνi + v2
d − v2

u

)
vu +m2

Hu
vu + vuv

2
d

∑

i

(λi)
2

+
∑

i,j

(AνYν)ijνiν
c
j cos(χi + ϕνc

j
) −

∑

i

(Aλλ)iν
c
i vd cos(ϕv + ϕνc

i
)

+
∑

i,j

λiλjvuν
c
i ν

c
j cos(ϕνc

i
− ϕνc

j
)

−
∑

i,j

∑

k

κijkλkvdν
c
i ν

c
j cos(ϕνc

i
+ ϕνc

j
− ϕv)

+
∑

i,j,k

∑

l

Yνjl
κilkνjν

c
i ν

c
k cos(ϕνc

i
+ ϕνc

k
− χj)

−
∑

i

∑

j

2Yνij
λjvdvuνi cos(ϕv − χi)

+
∑

i,j

∑

k

Yνik
Yνjk

vuνiνj cos(χi − χj)

+
∑

i,j

∑

k

Yνki
Yνkj

vuν
c
i ν

c
j cos(ϕνc

i
− ϕνc

j
) = 0, (3.11)
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∂V

∂νc
i

=
∑

j

m2
eνc
ij
νc

j cos(ϕνc
i
− ϕνc

j
) − (Aλλ)ivuvd cos(ϕv + ϕνc

i
)

+
∑

j

(AνYν)jiνjvu cos(χj + ϕνc
i
)

+
∑

j,k

(Aκκ)ijkν
c
jν

c
k cos(ϕνc

i
+ ϕνc

j
+ ϕνc

k
) +

∑

j

λiλjv
2
dν

c
j cos(ϕνc

i
− ϕνc

j
)

+
∑

j

λiλjν
c
jv

2
u cos(ϕνc

i
− ϕνc

j
)

+
∑

j,k,l

∑

m

2κimkκlmjν
c
jν

c
kν

c
l cos(ϕνc

i
+ ϕνc

j
− ϕνc

k
− ϕνc

l
)

−
∑

j

∑

k

2κijkλkvdvuν
c
j cos(ϕνc

i
+ ϕνc

j
− ϕv)

+
∑

j,k

∑

l

2Yνjl
κiklvuνjν

c
k cos(ϕνc

i
+ ϕνc

k
− χj)

−
∑

j,k

Yνji
λkvdνjν

c
k cos(χj + ϕνc

i
− ϕνc

k
− ϕv)

−
∑

j,k

Yνkj
λivdνkν

c
j cos(χk + ϕνc

j
− ϕνc

i
− ϕv)

+
∑

j,k,l

Yνji
Yνlk

νjνlν
c
k cos(χj − χk + ϕνc

i
− ϕνc

l
)

+
∑

j

∑

k

Yνki
Yνkj

v2
uν

c
j cos(ϕνc

i
− ϕνc

j
) = 0, (3.12)

∂V

∂νi
=

1

4
G2(
∑

j

νjνj + v2
d − v2

u)νi +
∑

j

m2
L̃ij
νj cos(χi − χj)

+
∑

j

(AνYν)ijν
c
jvu cos(χi + ϕνc

j
)

+
∑

j,k

∑

l

Yνil
κjlkvuν

c
jν

c
k cos(ϕνc

j
+ ϕνc

k
− χi)

−
∑

j,k

Yνij
λkvdν

c
jν

c
k cos(χi + ϕνc

j
− ϕνc

k
− ϕv) −

∑

j

Yνij
λjvdv

2
u cos(ϕv − χi)

+
∑

j,k,l

Yνij
Yνkl

νc
jνkν

c
l cos(χi − χk + ϕνc

j
− ϕνc

l
)

+
∑

j

∑

k

Yνik
Yνjk

v2
uνj cos(χi − χj) = 0. (3.13)
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Here we present the seven minimization equations with respect to the
independent phases of the VEVs:

∂V

∂ϕv
= −

∑

i,j

∑

k

2κijkλkvdvuν
c
i ν

c
j sin(ϕνc

i
+ ϕνc

j
− ϕv)

− 2[
∑

i,j,k

Yνij
λkvdνiν

c
jν

c
k sin(χi + ϕνc

j
− ϕνc

k
− ϕv)

−
∑

i

∑

j

Yνij
λjvdv

2
uνi sin(ϕv − χi)]

+ 2
∑

i

(Aλλ)iν
c
i vdvu sin(ϕv + ϕνc

i
) = 0, (3.14)

∂V

∂ϕνc
i

= −
∑

j

m2
ν̃c

ij
νc

i ν
c
j sin(ϕνc

i
− ϕνc

j
)

−
∑

j

λiλjv
2
dν

c
i ν

c
j sin(ϕνc

i
− ϕνc

j
) −

∑

j

λiλjv
2
uν

c
i ν

c
j sin(ϕνc

i
− ϕνc

j
)

− 2
∑

j,k,l

∑

m

κimkκlmjν
c
i ν

c
jν

c
kν

c
l sin(ϕνc

i
+ ϕνc

j
− ϕνc

k
− ϕνc

l
)

+ 2
∑

j,k

κikjλkvdvuν
c
i ν

c
j sin(ϕνc

i
+ ϕνc

j
− ϕv)

− 2
∑

j,k

∑

l

Yνjl
κilkvuνjν

c
i ν

c
k sin(ϕνc

i
+ ϕνc

k
− χj)

+
∑

j,k

Yνji
λkvdνjν

c
i ν

c
k sin(χj + ϕνc

i
− ϕνc

k
− ϕv)

−
∑

j,k

Yνkj
λivdνkν

c
jν

c
i sin(χk + ϕνc

j
− ϕνc

i
− ϕv)

−
∑

j,k,l

Yνji
Yνkl

νjν
c
i νkν

c
l sin(χj − χk + ϕνc

i
− ϕνc

l
)

−
∑

j

∑

k

Yνki
Yνkj

v2
uν

c
i ν

c
j sin(ϕνc

i
− ϕνc

j
)

+ (Aλλ)iν
c
i vdvu sin(ϕv + ϕνc

i
) −

∑

j,k

(Aκκ)ijkν
c
i ν

c
jν

c
k sin(ϕνc

i
+ ϕνc

j
+ ϕνc

k
)

−
∑

j

(AνYν)jivuνjν
c
i sin(χj + ϕνc

i
) = 0, (3.15)
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∂V

∂χi
= −

∑

j

m2
L̃ij
νi νj sin(χi − χj)

+
∑

j,k

∑

l

Yνil
κjlkvuνiν

c
jν

c
k sin(ϕνc

j
+ ϕνc

k
− χi)

+
∑

j,k

Yνij
λkvdνiν

c
jν

c
k sin(χi + ϕνc

j
− ϕνc

k
− ϕv)

−
∑

j

Yνij
λjvdv

2
uνi sin(ϕv − χi)

−
∑

j,k,l

Yνij
Yνkl

νiν
c
jνkν

c
l sin(χi − χk + ϕνc

j
− ϕνc

l
)

−
∑

j

∑

k

Yνik
Yνjk

v2
uνiνj sin(χi − χj)

−
∑

j

(AνYν)ijvuνiν
c
j sin(χi + ϕνc

j
) = 0. (3.16)

Finding minima requires the solution of equations (3.10-3.16). A standard
way to obtain this is to give the values of the cosines of the phases in terms
of the moduli, using the triangle method [62, 63, 64] for the equations of the
phases, and then substitute the expressions in the minimum equations for
the moduli, solving them numerically. This method allows to demonstrate
the existence of only real minima at tree-level in several models. This is for
example the case of the NMSSM [65], and the MSSM with extra doublets.
The latter result has been proved for the MSSM with an extra pair of Higgs
doublets [63] (the so called 4D model), the bilinear R-parity violating model
(analogous to a 5D model because of the VEVs of the left-handed sneutrinos),
and the MSSM with two extra pairs of Higgs doublets (6D model) [64].

Another way of finding minima consists of using as inputs the moduli and
phases and solve the fifteen equations to fix the parameters that are linear
in these equations, as it is the case of some of the soft terms. This is the
procedure that we will follow.

In Section 3.4 we will find numerically global minima that break spon-
taneously CP. Before doing it, we would like to present an intuitive proof
of the existence of SCPV minima in the µνSSM using the results of Ref.
[64], where the authors prove that SUSY scenarios for SCPV at the tree-
level require singlets. In particular, they found that, if the singlets do
not introduce dimensional parameters in the superpotential (i.e. no lin-
ear or bilinear terms), the MSSM extended with two gauge singlets (let
us call it (M+2)SSM) would be the minimal SUSY model where CP vio-
lation can be generated spontaneously at the tree-level. Since that model
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is a limiting case of the µνSSM with vanishing neutrino Yukawa couplings
Yνij

= 0, λ3 = 0, and κ333 = κ322 = κ332 = κ311 = κ331 = κ123 = 0,
this proves that the µνSSM can break CP spontaneously. Let us remark
that, since in the µνSSM one is using a seesaw at the electroweak scale,
the Yukawa coupling Yνij

has to be very small compared with the other
parameters [1, 14], and as a consequence, the neutral scalar potential can
be understood as a small deformation of the MSSM extended with three
gauge singlets (let us call it (M+3)SSM)). Although there is no literature
about general solutions that break CP spontaneously in the (M+3)SSM, it
is obvious that this model contains the (M+2)SSM as a limiting case when
κ333 = κ322 = κ332 = κ311 = κ331 = κ123 = 0, and λ3 = 0. As already
mentioned, SCPV solutions are well known in this case [64, 66]. Thus one
could argue that a subset of solutions with neutrino masses different from
zero could be obtained deforming the scalar potential of the MSSM extended
with three singlets1 through non-zero Yνij

.

In Section 3.4 we will do a thorough numerical analysis showing explicitly
how SCPV is realizable in the µνSSM and we will show how this CP violation
is translated to the leptonic sector. Nevertheless, it is worth pointing out here
that to find complex solutions is a highly non-trivial task compared to the
search of real ones. As we will show, the key of SCPV is on the (Aκκ)ijk

terms used as inputs. In order to fulfill the minimization equations, the
basic requirement is that entries different from (Aκκ)iii must be allowed.
In addition, these parameters have to be chosen carefully to obtain global
minima that break CP spontaneously.

In the next section the seesaw mechanism as the origin of neutrino masses
and mixing angles in this model will be studied.

3.3 The neutrino sector of the µνSSM

In this section we will study the neutrino sector of the µνSSM following
the guide of [14]. We will show how to extract the effective neutrino mass
matrix from the neutralino mass matrix. We will give approximate analytical
formulas for this effective neutrino mass matrix in the general case with
complex VEVs and we will explain how the seesaw mechanism works in this
model in an intuitive way. It is worth to mention that this analysis is general

1Since only mass differences for neutrino masses have been measured, in principle two
right-handed neutrino supermultiplets are enough to give two tree-level masses and also
break CP spontaneously. Thus a version of the µνSSM with only two right-handed neu-
trinos instead of three could be formulated. Nevertheless, we will follow the philosophy
that the existence of three generations of all kind of leptons is more natural.
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with the real VEVs case being a particular case of the complex VEVs one.
In the µνSSM the MSSM neutralinos mix with the left- and right-handed

neutrinos as a consequence of R-parity violation. Therefore the right-handed
neutrinos behave as singlino components of the neutralinos. In the basis
χ0T

= (B̃0, W̃ 0, H̃d, H̃u, νRi
, νLi

) the neutralino-neutrino mass matrix is given
in [14] and is written as:

Mn =

(
M m
mT 03×3

)
, (3.17)

where the neutralino mass matrix, M , is
0
BBBBBBBB@

M1 0 −A〈H0

d〉∗ A〈H0
u〉∗ 0 0 0

0 M2 B〈H0

d 〉∗ −B〈H0
u〉∗ 0 0 0

−A〈H0

d〉∗ B〈H0

d 〉∗ 0 −λi〈ν̃c
i 〉 −λ1〈H0

u〉 −λ2〈H0
u〉 −λ3〈H0

u〉
A〈H0

u〉∗ −B〈H0
u〉∗ −λi〈ν̃c

i 〉 0 −λ1〈H0

d〉 + Yνi1
〈ν̃i〉 −λ2〈H0

d〉 + Yνi2
〈ν̃i〉 −λ3〈H0

d〉 + Yνi3
〈ν̃i〉

0 0 −λ1〈H0
u〉 −λ1〈H0

d〉 + Yνi1
〈ν̃i〉 2κ11j〈ν̃c

j 〉 2κ12j〈ν̃c
j 〉 2κ13j〈ν̃c

j 〉
0 0 −λ2〈H0

u〉 −λ2〈H0

d〉 + Yνi2
〈ν̃i〉 2κ21j〈ν̃c

j 〉 2κ22j〈ν̃c
j 〉 2κ23j〈ν̃c

j 〉
0 0 −λ3〈H0

u〉 −λ3〈H0

d〉 + Yνi3
〈ν̃i〉 2κ31j〈ν̃c

j 〉 2κ32j〈ν̃c
j 〉 2κ33j〈ν̃c

j 〉

1
CCCCCCCCA

,

(3.18)

with A = G√
2
sin θW , B = G√

2
cos θW , and

mT =




− g1√
2
〈ν̃1〉∗ g2√

2
〈ν̃1〉∗ 0 Yν1i

〈ν̃c
i 〉 Yν11

〈H0
u〉 Yν12

〈H0
u〉 Yν13

〈H0
u〉

− g1√
2
〈ν̃2〉∗ g2√

2
〈ν̃2〉∗ 0 Yν2i

〈ν̃c
i 〉 Yν21

〈H0
u〉 Yν22

〈H0
u〉 Yν23

〈H0
u〉

− g1√
2
〈ν̃3〉∗ g2√

2
〈ν̃3〉∗ 0 Yν3i

〈ν̃c
i 〉 Yν31

〈H0
u〉 Yν32

〈H0
u〉 Yν33

〈H0
u〉


 .

(3.19)

The above matrix (3.17) is of the seesaw type giving rise to neutrino masses
which have to be very small for being in the experimental allowed range.
This is the case since the entries of the matrix M (3.18) are much larger
than the ones in the matrix m (3.19). Notice in this respect that the entries
of M are of the order of the electroweak scale while the ones in m are of the
order of the Dirac masses for the neutrinos [1, 40, 14]. Therefore in a first
approximation the effective neutrino mass matrix can be written as

meff = −mT ·M−1 ·m. (3.20)

Because meff is a complex symmetric matrix and m†
effmeff is Hermitian,

one can diagonalize them by a unitary transformation

UT
MNSmeffUMNS = diag(mν1

, mν2
, mν3

), (3.21)

U †
MNSm

†
effmeffUMNS = diag(m2

ν1
, m2

ν2
, m2

ν3
). (3.22)

Summarazing, we have explained how in the µνSSM, since R-parity is broken,
left- and right-handed neutrinos are mixed with the MSSM neutralinos giving



3.3. THE NEUTRINO SECTOR OF THE µνSSM 45

rise to a 10 × 10 mass matrix. In the seesaw approximation, we have seen
how to extract the effective light neutrino mass matrix. This matrix has
to be diagonalized to find the eigenvalues (the neutrino masses) and the
eigenvectors which will provide the mixing angles of the PMNS matrix. In
the following we will obtain approximate analytical formulas for the effective
neutrino mass matrix in order to discuss certain interesting limits that will
explain intuitively how the seesaw mechanism works in this model.

The formula presented here is obtained from Eq. (3.20) neglecting terms
proportional to Y 2

ν ν
2, Y 3

ν ν and Yνν
3 (that are negligibly small compared to

other terms). This formula has been deduced for the case of complex VEVs
but can be particularized to the real VEVs case setting the phases to zero.
In addition, this formula has been particularized to a simplified structure of
the phases and parameters of the Lagrangian. In Section 3.4 we will see that
for simplicity and for not having a very large number of input parameters
we have taken a common value of couplings λi ≡ λ, a tensor κ with terms
κiii ≡ κi ≡ κ and vanishing otherwise, diagonal Yukawa couplings Yνii

≡ Yνi
,

and a common value of the VEVs of the right-handed sneutrinos νc
i ≡ νc.

The phase structure of the global minimum that will be discussed in Section
3.4 for analysing the neutrino sector has also been used in the computation
ϕνc

1
= −ϕνc

2
= −ϕνc

3
≡ ϕνc and ϕν1

= −ϕν2
= −ϕν3

≡ ϕν .

The expression of the effective neutrino mass matrix obtained with the
help of Eq. (3.20) using the assumptions described before is given by:

(meff)ij ≃
Xij

∆
+
Tij

Z

aiaj

2κνc
, (3.23)

where the parameters appearing in (3.23) have been defined as

ai = Yνi
vu,

∆ = (eiϕνc + 2ei3ϕνc )λ2(v2
u + v2

d)
2 + (8eiϕνc + 4ei3ϕνc )λκνc2vdvue

−iϕv

− (16 + 16ei2ϕνc + 4ei4ϕνc )Mλ2κνc3

− (8 + 20ei2ϕνc + 8ei4ϕνc )Mλ3νcvdvue
iϕv ,

Z = eiϕνc [−4eiϕνc (2 + ei2ϕνc )κνc2vdvu + eiϕvλ(4M(2 + ei2ϕνc )2κνc3

− eiϕνc (1 + 2ei2ϕνc )(v2
d + v2

u)
2) + 4ei2(ϕνc +ϕv)λ2Mνcvdvu(5 + 4 cos 2ϕνc)],

(3.24)
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with 1
M

=
g2
1

M1
+

g2
2

M2
,

T11 = 2ei2ϕv [−4ei2(ϕνc +ϕv)(2 + ei2ϕνc )Mλ2νcvdvu

+ 4eiϕνcκνc2vdvu

+ eiϕvλ(−4(2 + ei6ϕνc )Mκνc3 + ei3ϕνc (v2
u + v2

d)
2)],

T22 = T33 = 2ei(ϕνc+2ϕv)[−4ei2(ϕνc+ϕv)(2 + ei2ϕνc )Mλ2νcvdvu

+ 4ei3ϕνcκνc2vdvu

+ eiϕvλ(−4(1 + ei2ϕνc + ei4ϕνc )Mκνc3 + ei3ϕνc (v2
u + v2

d)
2)],

T12 = T13 = −ei2ϕv [−4ei2(ϕνc +ϕv)(2 + ei2ϕνc )Mλ2νcvdvu

+ 4ei3ϕνcκνc2vdvu cos(2ϕνc)

+ ei(3ϕνc+ϕv)λ(4(−3 cos(3ϕνc)

+ i sin (3ϕνc))Mκνc3 + (v2
u + v2

d)
2)],

T23 = −ei2ϕv [−4ei2(2ϕνc +ϕv)(2 + ei2ϕνc )Mλ2νcvdvu

+ 4ei3ϕνcκνc2vdvu

+ eiϕvλ(−4(−1 + 4ei3ϕνc cos(ϕνc))Mκνc3

+ ei5ϕνc (v2
u + v2

d)
2)],

(3.25)

and

X11 = 2κνc3(b11)
2 + 2λνcvdvue

iϕv(b′11)
2 + ǫ11,

X22 = 2κνc3(b22)
2 + 2λνcvdvue

iϕv(b′22)
2 + ǫ22,

X33 = 2κνc3(b33)
2 + 2λνcvdvue

iϕv(b′33)
2 + ǫ33,

X12 = 2κνc3(b11)(b22) + 2λνcvdvue
iϕv(b′12)

2 + ǫ12,

X13 = 2κνc3(b11)(b33) + 2λνcvdvue
iϕv(b′13)

2 + ǫ13,

X23 = 2κνc3(b22)(b33) + 2λνcvdvue
iϕv(b′23)

2 + ǫ23, (3.26)
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with

(b11) = (2 + ei2ϕνc )λe−iϕνν1 + ei2ϕνc vdYν1
,

(b22) = (2 + ei2ϕνc )λeiϕνν2 + vdYν2
,

(b33) = (2 + ei2ϕνc )λeiϕνν3 + vdYν3
,

(b′11)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2e−i2ϕνν2

1

+ (2 + 2ei2ϕνc + 2ei4ϕνc )λvde
−iϕνν1Yν1

+ ei2ϕνcv2
dY

2
ν1
,

(b′22)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ei2ϕνν2

2

+ (1 + 4ei2ϕνc + ei4ϕνc )λvde
iϕνν2Yν2

+ ei2ϕνcv2
dY

2
ν2
,

(b′33)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ei2ϕνν2

3

+ (1 + 4ei2ϕνc + ei4ϕνc )λvde
iϕνν3Yν3

+ ei2ϕνcv2
dY

2
ν3
,

(b′12)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ν1ν2 + (1 + ei2ϕνc + ei4ϕνc )λvde

iϕνν2Yν1

+ ((1/2) + 2ei2ϕνc + (1/2)ei4ϕνc )λvde
−iϕνν1Yν2

+ (1/2)(1 + ei4ϕνc )v2
dYν1

Yν2
,

(b′13)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ν1ν3 + (1 + ei2ϕνc + ei4ϕνc )λvde

iϕνν3Yν1

+ ((1/2) + 2ei2ϕνc + (1/2)ei4ϕνc )λvde
−iϕνν1Yν3

+ (1/2)(1 + ei4ϕνc )v2
dYν1

Yν3
,

(b′23)
2 = (2 + 5ei2ϕνc + 2ei4ϕνc )λ2ei2ϕνν2ν3

+ ((1/2) + 2ei2ϕνc + (1/2)ei4ϕνc )λvde
iϕν (ν3Yν2

+ ν2Yν3
)

+ ei2ϕνcv2
dYν2

Yν3

(3.27)

and

ǫ11 = (4ei4ϕνc − 4)λ2νcv3
ue

iϕve−iϕνν1Yν1
,

ǫ22 = (2 − 2ei4ϕνc )λ2νcv3
ue

iϕveiϕνν2Yν2
,

ǫ33 = (2 − 2ei4ϕνc )λ2νcv3
ue

iϕveiϕνν3Yν3
,

ǫ12 = (2ei4ϕνc − 2)λ2νcv3
ue

iϕveiϕνν2Yν1
+ (1 − ei4ϕνc )λ2νcv3

ue
iϕve−iϕνν1Yν2

,

ǫ13 = (2ei4ϕνc − 2)λ2νcv3
ue

iϕveiϕνν3Yν1
+ (1 − ei4ϕνc )λ2νcv3

ue
iϕve−iϕνν1Yν3

,

ǫ23 = (1 − ei4ϕνc )λ2νcv3
ue

iϕveiϕν(ν3Yν2
+ ν2Yν3

). (3.28)

Two interesting limits of Eq. (3.23) where the formula becomes simple are
the following. In the limit M → ∞ and vd → 0 we obtain

(meff)ij ≃ Fij
aiaj

2κνc
, (3.29)
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where

F11 = −2ei(2ϕv−ϕνc)(2 + ei6ϕνc )
(
2 + e2iϕνc

)−2
,

F22 = F33 = −2ei(2ϕv−ϕνc)(1 + ei2ϕνc + ei4ϕνc )
(
2 + e2iϕνc

)−2
,

F12 = F13 = ei2(ϕνc+ϕv)(3 cos(3ϕνc) − i sin (3ϕνc))
(
2 + e2iϕνc

)−2
,

F23 = ei(2ϕv−ϕνc)(4ei3ϕνc cos(ϕνc) − 1)
(
2 + e2iϕνc

)−2
. (3.30)

Another interesting limit is the situation with vanishing phases i.e. real VEVs
(no SCPV), we obtain

(meff |real)ij ≃ 2

3

(κνc2 + λvuvd)ν
c

λ2(v2
u + v2

d)
2 + 4λκνc2vuvd − 12Mλ(κνc2 + λvuvd)λνc

bibj

+
1

6κνc
(1 − 3δij)aiaj , (3.31)

where we have defined

bi = Yνi
vd + 3λνi. (3.32)

Regarding the previous parameters we note that for the real case

bi = bii = b′ii,

b′2ij = biibjj = bibj ,

ǫij = 0. (3.33)

As we have already said, the analytical approximate effective neutrino mass
matrix in the case with complex VEVs (3.23) is reduced in the limit of
vanishing phases to (3.31).

In the following we will discuss certain interesting limits of the effective
neutrino mass matrix with real VEVs (3.31) in order to have a qualitative
idea of how the seesaw mechanism works in this model. For our purposes
of explaining the seesaw mechanism in the model it is preferable to ignore
the complicated phases-dependent factors moving to the limit of vanishing
phases.

Let us first rewrite the expression (3.31) in the following form:

(meff |real)ij ≃ v2

u

6κνc Yνi
Yνj

(1 − 3 δij) − 1

2Meff

[
νiνj +

vd

(
Yνi

νj + Yνj
νi

)

3λ
+

Yνi
Yνj

v2
d

9λ2

]
,

(3.34)

with

Meff ≡M

[
1 − v2

2M (κνc2 + λvuvd) 3λνc

(
2κνc2 vuvd

v2
+
λv2

2

)]
,(3.35)



3.3. THE NEUTRINO SECTOR OF THE µνSSM 49

These expressions deduced in [14] coincide with the results in [43], where the
possibility of obtaining an adequate seesaw with diagonal Yukawa couplings
was also pointed out. Here v2 = v2

u + v2
d +
∑

i ν
2
i ≈ v2

u + v2
d with v ≈ 174 GeV

has been used, since νi << vu, vd [1], and let us recall that 1
M

=
g2
1

M1
+

g2
2

M2
.

In the limit where gauginos are very heavy and decouple (i.e. M → ∞),
Eq. (3.34) reduces to

(meff |real)ij ≃
v2

u

6 κνc
Yνi
Yνj

(1 − 3 δij) . (3.36)

It is interesting to note that in contrast with the ordinary seesaw (i.e. gen-
erated only through the mixing between left- and right-handed neutrinos),
where the case of diagonal Yukawas would give rise to a diagonal mass matrix
of the form

(meff |ordinary seesaw)ij ≃
−v2

uYνi
Yνj

δij

2 κνc
, (3.37)

in this case we have an extra contribution given by the first term of Eq.
(3.36). This is due to the effective mixing of the right-handed neutrinos and
Higgsinos in this limit, and produces off-diagonal entries in the mass matrix.
Besides, when right-handed neutrinos are also decoupled (i.e. νc → ∞), the
neutrino masses are zero as corresponds to the case of a seesaw with only
Higgsinos.

Another observation is that, independently on the nature of the lightest
neutralino, Higgsino-like or νc-like or even a mixture of them (recall that the
νc can be interpreted also as the singlino component of the neutralino since
R-parity is broken), the form of the effective neutrino mass matrix is the
same when the gauginos are decoupled, as given by (3.36).

Another limit which is worth discussing is νc → ∞. Then, Eq. (3.34)
reduces to the form

(meff |real)ij ≃ − 1

2M

[
νiνj +

vd(Yνi
νj + Yνj

νi)

3λ
+
Yνi
Yνj

v2
d

9λ2

]
. (3.38)

We can also see that for vd → 0 (i.e. tan β = vu

vd
→ ∞) one obtains from

(3.38) the following expression:

(meff |real)ij ≃ −νiνj

2M
. (3.39)

Note that this result can actually be obtained if νi >>
Yνi

vd

3λ
, and that this

relation can be fulfilled with vd ∼ vu ∼ 174 GeV for suitable values of λ. It
means that decoupling right-handed neutrinos/singlinos and Higgsinos, the
seesaw mechanism is generated through the mixing of left-handed neutrinos
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∆m2
sol/10−5 eV2 sin2 θ12 sin2 θ13 sin2 θ23 ∆m2

atm/10−3 eV2

7.14-8.19 0.263-0.375 < 0.046 0.331-0.644 2.06-2.81

Table 3.1: Allowed 3σ ranges for the neutrino masses and mixings as dis-
cussed in [67].

with gauginos. This is a characteristic feature of the seesaw in the well-known
bilinear R-parity violating model (BRpV) [33].

The seesaw in the µνSSM comes, in general, from the interplay of the
above two limits. Namely, the limit where we suppress only certain Higgsino
and gaugino mixings. Hence, taking vd → 0 in Eq. (3.34), which means quite
pure gauginos but Higgsinos mixed with right-handed neutrinos, we obtain

(meff |real)ij ≃
v2

u

6κνc
Yνi
Yνj

(1 − 3δij) −
1

2Meff
νiνj . (3.40)

As above, we remark that actually this result can be obtained if νi >>
Yνi

vd

3λ
.

The effective mass Meff = M(1 − v4

12κMνc3
) represents the mixing between

gauginos and Higgsinos-νc that is not completely suppressed in this limit.
Expression (3.40) is more general than the other two limits studied above. On
the other hand, for typical values of the parameters involved in the seesaw,
Meff ≈ M , and therefore we get a simple formula that can be used to
understand the seesaw mechanism in this model in a qualitative way, that is

(meff |real)ij ≃
v2

u

6κνc
Yνi
Yνj

(1 − 3δij) −
1

2M
νiνj. (3.41)

The simplicity of Eq. (3.41), in contrast with the full formula given by Eq.
(3.34), comes from the fact that the mixing between gauginos and Higgsinos-
νc is neglected.

To continue the discussion of the seesaw in the µνSSM, let us remind that
two mass differences and mixing angles have been measured experimentally
in the neutrino sector. The allowed 3 σ ranges for these parameters are shown
in Table 3.1. We also show the compositions of the mass eigenstates in Fig.
3.1 for the normal and inverted hierarchy cases. For the discussion, hereafter
we will use indistinctly the subindices (1, 2, 3) ≡ (e, µ, τ).

Due to the fact that the mass eigenstates have, in a good approximation,
the same composition of νµ and ντ (see Fig. 3.1) we start considering Yν2

=
Yν3

and ν2 = ν3, and therefore Eq. (3.41) takes the form

meff =




d c c
c A B
c B A



 , (3.42)
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Figure 3.1: The two possible hierarchies of neutrino masses as shown in
[68]. The pattern on the left side corresponds to the normal hierarchy and is
characterized by one heavy state with a very little electron neutrino compo-
nent, and two almost degenerated light states with a mass difference which
is the solar mass difference. The pattern on the right side corresponds to
the inverted hierarchy and is characterized by two almost degenerated heavy
states with a mass difference that is the solar mass difference, and a light
state which has very little electron neutrino component. In both cases the
mass difference between the heaviest/lightest eigenstate and the almost de-
generated eigenstates is the atmospheric scale.

where

d = − v2
u

3κνc
Y 2

ν1
− 1

2M
ν2

1 ,

c =
v2

u

6κνc
Yν1

Yν2
− 1

2M
ν1ν2,

A = − v2
u

3κνc
Y 2

ν2
− 1

2M
ν2

2 ,

B =
v2

u

6κνc
Y 2

ν2
− 1

2M
ν2

2 . (3.43)
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The eigenvalues of matrix (3.42) are the following:

1
2

(
A+ B −

√
8c2 + (A +B − d)2 + d

)
,

1
2

(
A+B +

√
8c2 + (A+B − d)2 + d

)
,

A− B ,

(3.44)

and the corresponding eigenvectors (for simplicity they are not normalised)
are:

(
−A+B+

√
8c2+(A+B−d)2−d

2
, c, c

)
,

(
−A−B+

√
8c2+(A+B−d)2+d

2c
, 1, 1

)
,

(0,−1, 1) . (3.45)

We have ordered the eigenvalues in such a way that it is clear how to obtain
the normal hierarchy for the νµ − ντ degenerated case. Then we see that
sin2 θ13 = 0 and sin2 θ23 = 1

2
, as in the tri-bimaximal mixing regime. Also

we have enough freedom to fix the parameters in such a way that the ex-
perimental values for the mass differences and the remaining angle θ12 can
be reproduced. It is important to mention that the above two values of the
angles are a consequence of considering the example with νµ − ντ degenera-
tion, and therefore valid even if we use the general formula (3.34) instead of
the simplified expression (3.41). Notice that Eqs. (3.42), (3.44) and (3.45)
would be the same but with the corresponding values of A,B, c and d.

Let us remark that the fact that to obtain the correct neutrino angles is
easy in this kind of seesaw is due to the following characteristics: R-parity is
broken and the relevant scale is the electroweak one. In a sense we are giving
an explanation to the question why the mixing angles are so different in the
quark and lepton sectors.

To show qualitatively how we can obtain an adequate seesaw with diag-
onal neutrino Yukawa couplings, let us first consider the limit 2 c → 0. In
this limit the electron neutrino is the lightest neutrino, and is completely
decoupled from the rest. The second eigenvector has no νe composition
(sin θ12 → 0), and it is half νµ and half ντ . Understood this case, we can eas-
ily generalize the situation to the case sin θ12 6= 0, switching on the parameter

2Actually this limit can be obtained taking Yν1
→ 0, ν1 → 0, implying c → 0, and also

d → 0, and leading to similar conclusions. This limit means that the electron neutrino is
decoupled from the other two neutrinos, having a negligible mass.
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d. The eigenvalues in this limit are

d , A +B, A− B, (3.46)

where

|d| =

∣∣∣∣
v2

u

3κνc
Y 2

ν1
+

1

2M
ν2

1

∣∣∣∣ ,

|A+B| =

∣∣∣∣
v2

u

6κνc
Y 2

ν2
+

1

M
ν2

2

∣∣∣∣ ,

|A−B| =
v2

u

2κνc
Y 2

ν2
.

(3.47)

We can see that ∆m2
atm ∼ |4AB| =

∣∣∣4(
v4

uY 4
ν2

18κ2νc2
− 1

4M2 ν
4
2 −

v2
uY 2

ν2
ν2
2

12Mκνc )
∣∣∣ and ∆m2

sol ∼

|(A+B)2 − d2| =
∣∣∣( v2

u

6κνcY
2
ν2

+ 1
M
ν2

2)
2 − ( v2

u

3κνcY
2
ν1

+ 1
2M
ν2

1)
2
∣∣∣.

It is important to note that we need |A−B| > |A+B| for the normal hier-
archy case, otherwise the θ12 angle is zero even when c is not neglected. This
is easy to obtain for M >> 2κνc. If M ∼ 2κνc, using different signs for the
effective Majorana and gaugino masses helps to fulfill the above inequality.
For this to hold with our convention, one must take M < 0.

In the inverted hierarchy scenario, |A−B| > |A+B| leads the angle θ12 to
zero also with c 6= 0 which is not phenomenologically viable. Then we impose
|A−B| < |A+B|. Note that when c is switched on, the parameter d has to be
large enough for having the associated neutrino with an intermediate mass,
as corresponds to the inverted hierarchy scenario. Therefore in this case
we can also have easily the bilarge mixing regime for M << 2κνc. When
M ∼ 2κνc, having M > 0 helps to fulfill the above condition.

Let us finally remark that we can get the complete tri-bimaximal mixing
regime sin2 θ13 = 0, sin2 θ23 = 1/2 and sin2 θ12 = 1/3 fixing in Eq. (3.42)
c = A+B − d. In this way we obtain the eigenvalues

−(A +B) + 2d , 2(A+B) − d, A− B, (3.48)

and from Eq. (3.45), after normalization, we arrive to sin2 θ12 = 1/3.
Breaking the degeneracy between the Yν and ν of the muon and tau neu-

trinos, it is possible to find more general solutions in the normal and inverted
hierarchy cases. We will show this with numerical examples in Section 3.4,
working always in the case M ∼ 2κνc. Note also that in the case of de-
generate νµ − ντ parameters, as the Dirac CP phase always appears in the
PMNS matrix in the form sin θ13e

iδ (see Eq. (3.52) below), the SCPV effect
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is suppressed since sin θ13 is negligible. This is not the case if we break the
degeneration between νµ and ντ .

When the vacuum is non CP-conserving the situation is much more com-
plicated since new relative phases are present, but the idea still holds. In
Section 3.4 we will use the above results to find numerical examples in the
general case where also phases are generated through complex vacua. Exam-
ples are given where changing the sign of M the second and third eigenvalue
are interchanged and the behaviour is similar to the one described in this
section.

3.4 Numerical results

In Section 3.2 we have already demonstrated in an intuitive way with a
simple argument that the µνSSM can violate CP spontaneously. In Section
3.3 we have described the seesaw mechanism in the µνSSM and we have
discussed how to obtain correct neutrino masses and mixing angles in this
model, compatible with the experimental results.

In this section we will sketch the numerical method used for the search
of global minima of the µνSSM with SCPV, giving rise also to an effective
neutrino mass matrix that reproduces correctly the phenomenology of the
neutrino sector according to observations. We will also give several numerical
examples.

Thus, the principal task in this section is to find numerical examples of
global minima of the scalar potential of the µνSSM with non-trivial phases
of the VEVs. Using these SCPV minima we will study numerically the
neutrino sector of the model and we will present and discuss different plots
of the evolution of the neutrino sector parameters (mass differences, mixing
angles and CP phases) with the inputs. We will find SCPV global minima
which in addition, could reproduce the phenomenology on the neutrino sector
obtaining an effective neutrino mass matrix compatible with the experimental
constraints on the mass differences and mixing angles.

We will not study the complete vacuum structure of the model since it
is a highly non-trivial task to find CP-violating global minima and we will
only present several examples of global minima that break CP spontaneously.
We do this because our principal goal is to demonstrate that the µνSSM
can violate CP spontaneously finding numerically some CP-violating global
minima. Note that with a slightly change on the values of the phases, the
behaviour of the neutral scalar potential changes strongly. This is the main
reason, together with the elevate number of parameters and minimization
equations of the model, why it would be really hard to study the complete
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vacuum structure of the model with complex VEVs.

We also want to prove that it is possible to reproduce the experimental
constraints in the neutrino sector with the spontaneous CP-violating µνSSM
model with all the parameters in the Lagrangian being real and with a di-
agonal neutrino Yukawa coupling. It will be also interesting to study how
the CP violation that arises spontaneously from the Higgs sector is transmit-
ted to the leptonic sector resulting in non trivial CP violating phases in the
PMNS matrix.

Let us recall that, for simplicity, in order to avoid the presence of an
excessive number of parameters in the numerical study of the neutral scalar
potential of the model, we will assume that all the parameters appearing in
this neutral scalar potential are diagonal in flavour space at the electroweak
scale. The only exception will be the trilinear (Aκκ)ijk terms whose entries
different from the diagonal entries (Aκκ)iii are crucial to break CP sponta-
neously.

As a consequence, for the rest of this chapter, we will introduce the fol-
lowing notation for the flavour diagonal free parameters of the neutral scalar
potential:

κiii ≡ κi , Yνii
≡ Yνi

, (AνYν)ii ≡ (AνYν)i ,

m2
L̃ii

≡ m2
L̃i
, m2

ν̃c
ii
≡ m2

ν̃c
i
, (3.49)

with i = 1, 2, 3 being flavour indices.

Then, under this assumption, the neutral scalar potential (3.5) is obvi-
ously simplified. As a consequence, also the fifteen minimization conditions
(3.10-3.16) of the neutral scalar potential are also simplified under this as-
sumption of diagonal flavour structure of the parameters.

Thus, the neutral scalar potential is a function of 15 variables (8 modulus
and 7 phases of the VEVs). It also depends on a large number of parameters
whose numerical values are unknown at the electroweak scale. We take them
as free parameters: λi, κi, Yνi

, Aκijk
, Aλi

, Aνi
, mHd

, mHu , mν̃c
i
, mL̃i

.

The expression of the simplified neutral scalar potential is given by the
following equation:
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V =
G2

8
(
∑

i

νiνi + vdvd − vuvu)
2 +m2

Hd
vdvd +m2

Hu
vuvu +

∑

i

m2
L̃i
νiνi

+
∑

i

m2
ν̃c

i
νc

i ν
c
i − 2

∑

i

λiAλi
νc

i vuvd cos(ϕv + ϕνc
i
)

+
∑

i,j,k

2

3
κijkAκijk

νc
i ν

c
jν

c
k cos(ϕνc

i
+ ϕνc

j
+ ϕνc

k
)

+ 2
∑

i

Yνi
Aνi

vuνiν
c
i cos(χi + ϕνc

i
) +

∑

i

(λi)
2v2

dv
2
u

+
∑

i,j

λiλjv
2
dν

c
i ν

c
j cos(ϕνc

i
− ϕνc

j
)

+
∑

i,j

λiλjv
2
uν

c
i ν

c
j cos(ϕνc

i
− ϕνc

j
) +

∑

i

κiκiν
c
i ν

c
i ν

c
i ν

c
i

+ 2[−
∑

i

κiλivdvuν
c
i ν

c
i cos(2ϕνc

i
− ϕv)

+
∑

i

Yνi
κivuνiν

c
i ν

c
i cos(2ϕνc

i
− χi)

−
∑

i,k

Yνi
λkvdνiν

c
i ν

c
k cos(χi + ϕνc

i
− ϕνc

k
− ϕv)

−
∑

i

Yνi
λivdv

2
uνi cos(ϕv − χi)]

+
∑

i,k

Yνi
Yνk

νiν
c
i νkν

c
k cos(χi − χk + ϕνc

i
− ϕνc

k
)

+
∑

i

Yνi
Yνi
v2

uνiνi +
∑

i

Yνi
Yνi
v2

uν
c
i ν

c
i (3.50)

The strategy followed to find global minima of the model consists of
solving the minimization equations in terms of the soft parameters that are
linear in those equations. Then, we proceed a numerical study varying the
values of the inputs: the VEVs (modulus and phases) and the soft terms that
are not given by the minimization equations. Once we obtain the numerical
values of the soft terms solved in the minimization equations, we ensure that
the local minimum found is a global one with a numerical procedure based
on global optimisation.

More precisely, the three minimization equations (3.16), corresponding
to ∂V

∂χi
= 0, are used to solve the values of (AνYν)i only in terms of the

inputs. Using this result, the equations (3.15) for i = 2, 3, corresponding to



3.4. NUMERICAL RESULTS 57

∂V
∂ϕc

ν2,3

= 0, after substituting the values of (AνYν)i obtained before, are used

to solve (Aλλ)2,3 in terms of the inputs. Repeating the procedure using the
equation (3.14), ∂V

∂ϕv
= 0, one obtains (Aλλ)1 in terms of the inputs. Finally,

Eq. (3.15) for i = 1 is used to get (Aκκ)111. With the minimization equations
with respect to the moduli of the VEVs (3.10-3.13), substituting the values of
the soft trilinear terms obtained before, we can solve the squared soft masses
in terms of the inputs.

Then, with this procedure, given the numerical values of the inputs (that
are varied in the numerical method), we are able to obtain the values of
the soft masses m2

Hd
, m2

Hu
, m2

ν̃c
i
, m2

L̃i
and the trilinear soft terms (Aλλ)i,

(AνYν)i,(Aκκ)111 required for being in a local minimum. Then, we check
numerically if this local minimum is really a global one and we only store the
global minima found. As discussed in [14, 40], one has to check in particular
that the minimum found is deeper than the local minima with some or all
the VEVs vanishing.

To accomplish the numerical task of finding global minima, the inputs
needed are the eight moduli and seven phases of the VEVs, the superpotential
couplings λi, κi and Yνi

and the soft trilinear terms not determined by the
minimization equations (Aκκ)ijk with (i, j, k) 6= (1, 1, 1). For simplicity, we
assume a special structure for the latter: (Aκκ)222 = (Aκκ)333, a common
value for (Aκκ)ijk with i, j, k 6= 1 and another common value for (Aκκ)ijk

with one or two indices equal to 1. Let us remind that (Aκκ)111 is given by
the minimization equations. Moreover, let us recall that the modulus of the
SUSY Higgs VEVs, can be determined from v2 = v2

d + v2
u +

∑
i ν

2
i ≈ v2

d + v2
u

with v ≈ 174 GeV, and the value of tanβ is defined as usual: tanβ = vu

vd
.

One interesting thing to note is that our method of solving the minimiza-
tion equations explained before is only valid if the following constraints are
accomplished:

sin(χi + ϕνc
i
) 6= 0 , sin(ϕv + ϕνc

i
) 6= 0 , sin(3ϕνc

1
) 6= 0.

Note that the behaviour of the potential strongly depends on the values of
the phases of the VEVs since the sign of the terms in the potential can change
varying them so it is difficult to predict the general behaviour.

Let us now describe the details on how we proceed with the numerical
analysis of the neutrino sector of the model. First, we assume for simplicity
the GUT inspired relation between the gaugino masses M1 and M2, M1 =
α2

1

α2
2

M2, implying M2 ≃ 2M1 at low energy. As discussed in Section 3.3, one

has to diagonalize the neutrino effective mass matrix, meff = −mT ·M−1 ·m.
Since it is a complex symmetric matrix, it can be diagonalized with an unitary
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transformation, as it is shown in Eqs. (3.21) and (3.22). For the PMNS
matrix we follow the standard parametrization

UMNS = diag(eiδe , eiδµ , eiδτ ) · V · diag(e−iφ1/2, e−iφ2/2, 1), (3.51)

where φ1 and φ2 are the Majorana phases and V is given by

V =




c12c13 s12c13 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13
s23s12 − c23s13c12e

iδ −s23c12 − c23s13s12e
iδ c23c13


 .

(3.52)

Here cij ≡ cos θij and sij ≡ sin θij whereas δ is the Dirac CP violating phase.
The conventions used for extracting the mixing angles and the Majorana and
Dirac phases from (3.51) and (3.52) are outlined in Ref. [69].

Let us also recall that the smallness of Yνi
and νi for reproducing the

light neutrino masses implies that the neutral scalar potential of the µνSSM
can be viewed as a small deformation of the one for the NMSSM with three
generations of singlets. The neutrino sector parameters Yνi

and νi and the
gaugino mass parameter M1 can be varied without altering the condition of
global minimum. Thus, our strategy will consist of finding global minima of
the µνSSM with SCPV and then we will vary the neutrino sector parameters
and the gaugino mass for studying the neutrino sector of the model. With
this, we will find points on the parameter space of the µνSSM that corre-
sponds to CP violating global minima of the potential of the model and that
reproduce current neutrino data.

Taking all the above into account, we show in Table 3.2 the parameters
that characterize an example of a global minimum that breaks CP spon-
taneously. The values of the soft parameters not determined by the mini-
mization equations have been chosen to be (Aκκ)iii = 280 GeV for i 6= 1,
(Aκκ)ijk = −40 GeV for i, j, k 6= 1, and (Aκκ)ijk = −120 GeV for one or two
indices equal to 1. In Table 3.3 we show the neutrino/neutralino inputs used
in order to obtain a νµ-ντ degenerated case with normal hierarchy, produc-
ing values of masses and mixing angles within the ranges of Table 3.1. In
particular, we obtain sin2 θ13 ∼ 0 and sin2 θ23 = 0.5, as expected from the
discussion in Section 3.3, sin2 θ12 = 0.323, and neutrino masses m1 = 0.00305
eV, m2 = 0.00949 eV and m3 = 0.05091 eV, producing ∆m2

solar = 8.08×10−5

eV2 and ∆m2
atm = 2.50×10−3 eV2. The corresponding values of the soft terms

calculated with the minimization equations are presented in Table 3.4.
It is worth noticing that for this solution, the soft masses of the left-

handed sneutrinos, mL̃i
, do not need to be very different, and, actually, in

this case they are almost degenerated ∼ 3700 GeV. This can be understood
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λi = 0.13 κi = 0.55 νc
i = 1000 GeV

tanβ = 29 ϕv = −π ϕνc
1

= π
7

ϕνc
2

= ϕνc
3

= −π
7

χ1 = −π
6

χ2 = χ3 = π
6

Table 3.2: Numerical values of the relevant input parameters for a global
minimum that breaks CP spontaneously.

Yν1
= 4.25 × 10−7 Yν2

= Yν3
= 1.36 × 10−6 M1 = −340 GeV

ν1 = 3.88 × 10−5 GeV ν2 = ν3 = 1.24 × 10−4 GeV

Table 3.3: Numerical values of the neutrino/neutralino inputs that repro-
duce the neutrino experimental constraints, and correspond to the normal
hierarchy scenario.

using the minimization equations (3.13), neglecting the terms with products

of Yukawas. When
Yνi

νi
=

Yνj

νj
, ∀ i, j, one obtains m2

L̃i
= m2

L̃j
. However, we

have to point out that the values obtained for other soft parameters are not
so natural in a SUSY framework. Notice for example that Aν ∼ −7 TeV,
Aλ1

∼ −11 TeV, whereas Aκ111
∼ −0.5 GeV. Indeed, this is a consequence

of the particular solution shown in Table 3.2.
Although it is non-trivial to find realistic solutions, since many minima

which apparently are acceptable, at the end of the day turn out to be false
minima, we have been able to find more sensible solutions. This is the case
of the one shown in Table 3.5, with the values of the input soft parameters
(Aκκ)iii = −150 GeV for i 6= 1, (Aκκ)ijk = 75 GeV for i, j, k 6= 1 and
(Aκκ)ijk = −50 GeV for one or two indices equal to 1. For example, lowering
the values of νc one is able to lower the trilinear terms Aν ∼ −3 TeV in order
to fulfill Eqs. (3.16) (also lowering κ contributes to this result), and also to
lower the soft masses mL̃i

∼ 2.8 TeV, as shown in Table 3.7. Lowering λ
one is able to lower the trilinears Aλ1

∼ −1.5 TeV, Aλ2,3
∼ −840 GeV, in

order to fulfill Eqs. (3.14) and (3.15). Notice finally that the use of non-
degenerated νc

i allows to increase the trilinear Aκ111
∼ 36 GeV. In Table 3.6

we show the corresponding neutrino/neutralino inputs producing values of
masses and mixing angles within the ranges of Table 3.1.

Modifying the values of the phases we can also obtain other interesting
solutions. See for example the one shown in Tables 3.8, 3.9, and 3.10. In this
case the values of the input soft parameters are chosen to be (Aκκ)iii = −200
GeV for i 6= 1, (Aκκ)ijk = 125 GeV for i, j, k 6= 1 and (Aκκ)ijk = −75 GeV for
one or two indices equal to 1. Notice that now the values obtained for the soft



60 CHAPTER 3. NEUTRINO PHYSICS AND SCPV IN THE µνSSM

(AνYν)1 ≃ −0.0031 GeV (AνYν)2 ≃ −0.010 GeV (AνYν)3 ≃ −0.010 GeV
(Aλλ)1 ≃ −1487 GeV (Aλλ)2 ≃ −679 GeV (Aλλ)3 ≃ −679 GeV

(Aκκ)111 ≃ −0.25 GeV m2

Hd
≃ 7.0325 × 107 GeV2 m2

Hu
≃ −47200 GeV2

m2

ν̃c
1

≃ 260140 GeV2 m2

ν̃c
2

≃ −100820 GeV2 m2

ν̃c
3

≃ −100820 GeV2

m2

L̃1

≃ m2

L̃2

= m2

L̃3

= 1.37 × 107 GeV2

Table 3.4: Values of the soft terms calculated with the minimization equa-
tions for the global minimum associated to the parameters shown in Table
3.2.

λi = 0.10 κi = 0.35 νc
1 = 835 GeV , νc

2 = νc
3 = 685 GeV

tan β = 29 ϕv = −π ϕνc
1

= π
7

ϕνc
2

= ϕνc
3

= −π
7

χ1 = −π
6

χ2 = χ3 = π
6

Table 3.5: Numerical values of the relevant inputs for the second global
minimum discussed in the text, that breaks CP spontaneously.

terms are also of this order. In particular, the trilinears are Aν1
∼ −657 GeV,

Aν2,3
∼ −429 GeV, Aλ1

∼ −990 GeV, Aλ2,3
∼ −830 GeV, and Aκ111

∼ 100
GeV. For the soft masses we obtain mL̃1

∼ 628 GeV, mL̃2,3
∼ 950 GeV.

A general analysis of the parameter space, finding many other interesting
complex vacua, is obviously extremely complicated given the large number
of parameters involved, and beyond the scope of this work. Nevertheless, we
have checked that other sensible solutions can indeed be obtained modifying
adequately the parameters. In the following we will work for the analysis
of the neutrino sector with the solution associated to the parameters of Ta-
ble 3.2, since the discussion below is essentially valid for other solutions. Our
strategy will consist of varying the neutrino/neutralino inputs Yνi

, νi and M1

in such a way that the derived neutrino mass differences and mixing angles
are within the ranges of Table 3.1. As mentioned above, this procedure will
not alter the vacuum structure found. Notice in this respect that gaugino
masses do not contribute to the minimization equations, and that the values
of Yνi

and νi are very small and they do not affect to the global condition of
the minimum. Let us also mention that this strategy can indeed be applied
to the much more simple issue of analysing real vacua. In particular, it was
shown in [40] that many global minima with real VEVs can be found. For
them neutrino/neutralino inputs Yνi

, νi, M1, similar to those studied here
are also valid.

As noted in Sect. 3.3 we have chosen M1 < 0 in order to guarantee
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Yν1
= 5.4 × 10−7 Yν2

= Yν3
= 9.2 × 10−7 M1 = −340 GeV

ν1 = 3.7 × 10−5 GeV ν2 = ν3 = 8.8 × 10−5 GeV

Table 3.6: Numerical values of the neutrino/neutralino inputs for the second
global minimum discussed in the text, that reproduce the neutrino experi-
mental constraints and correspond to the normal hierarchy scenario.

(AνYν)1 ≃ −0.00209 GeV (AνYν)2 ≃ −0.00294 GeV (AνYν)3 ≃ −0.00294 GeV
(Aλλ)1 ≃ −156 GeV (Aλλ)2 ≃ −84 GeV (Aλλ)3 ≃ −84 GeV

(Aκκ)111 ≃ 12.7 GeV m2
Hd

≃ 5.36 × 106 GeV2 m2
Hu

≃ −37910 GeV2

m2
ν̃c
1

≃ 51035 GeV2 m2
ν̃c
2

≃ 69155 GeV2 m2
ν̃c
3

≃ 69155 GeV2

m2
L̃1

≃ 8.07 × 106 GeV2 m2
L̃2

≃ 3.92 × 106 GeV2 m2
L̃3

≃ 3.92 × 106 GeV2

Table 3.7: Values of the soft terms calculated with the minimization equa-
tions for the second global minimum discussed in the text, associated to the
parameters shown in Table 3.5.

a viable θ12 angle. It is worth pointing out here that a redefinition of the
parameters leaving the Lagrangian invariant can be made, in such a way
that M1 becomes positive and other parameters such as the VEVs become
negative, describing indeed the same physics. In our convention the VEVs,
vd, vu, ν

c
i , νi are always taken positive.

We would also like to stress that all the numerical results have been
obtained without any approximation, that is, with the exact expression of the
10×10 neutralino mass matrix, calculating numerically the effective neutrino
mass matrix and diagonalizing it. The analytical approximate formulas for
the effective neutrino mass matrix presented in Sect. 3.3 have been deduced
with the purpose of explaining intuitively how the seesaw mechanism works
in this model but all the results presented in the following have been derived
numerically using the exact 10 × 10 neutralino mass matrix.

Let us first study how the neutrino mass differences depend on the inputs.
In Sect. 3.3 we showed that in this scenario there are two different contri-
butions to the seesaw mechanism; the one involving right-handed neutrinos

(and Higgsinos) given by
(Yνi

vu)2

2κνc , where the Dirac and Majorana masses are
parameterized by Yνi

vu and 2κνc, respectively, and the contribution coming

from the gaugino seesaw given by (g1νi)
2

M1
+ (g2νi)

2

M2
, where the Dirac and Majo-

rana masses are parameterized by gανi and Mα, respectively, with α = 1, 2.

Figs. 3.2a and 3.2b show that the heaviest eigenvalue (dashed line) has



62 CHAPTER 3. NEUTRINO PHYSICS AND SCPV IN THE µνSSM

λi = 0.10 κi = 0.42 νc
1 = 850 GeV , νc

2 = νc
3 = 550 GeV

tan β = 29 ϕv = −π ϕνc
1

= π
5

ϕνc
2

= ϕνc
3

= −π
5

χ1 = −π
3

χ2 = χ3 = π
3

Table 3.8: Numerical values of the relevant inputs for the third global mini-
mum discussed in the text, that breaks CP spontaneously.

Yν1
= 1.9 × 10−7 Yν2

= Yν3
= 8.5 × 10−7 M1 = −100 GeV

ν1 = 6 × 10−5 GeV ν2 = ν3 = 4.9 × 10−5 GeV

Table 3.9: Numerical values of the neutrino/neutralino inputs for the third
global minimum discussed in the text, that reproduce the neutrino experi-
mental constraints and correspond to the normal hierarchy scenario.

very little electron-neutrino component, as expected in the normal hierarchy
scenario (see Fig. 3.1), and therefore it does not depend on (Yν1

vu)
2/(2κνc),

whereas the intermediate (solid line) and lightest (dotted line) eigenvalues,
that have sizeable electron-neutrino components, grow with this term. As
a consequence of the latter, the squared solar mass difference (i.e. mass
squared difference between the intermediate and the lightest eigenvalues)
grows as well. On the other hand, following the arguments related to Eq.
(3.41), we can see in Figs. 3.2c and 3.2d that the heaviest eigenvalue is
controlled by the contribution of the seesaw with right-handed neutrinos
having an important muon/tau neutrino composition, thus we observe how
the heaviest eigenvalue grows with (Yν2

vu)
2/(2κνc) and, as a consequence, the

squared atmospheric mass difference (i.e. mass square difference between the
heaviest and the intermediate eigenvalues) grows accordingly. The variation
with (Yν3

vu)
2/(2κνc) is analogue.

Fig. 3.3 is analogous to Fig. 3.2 but showing the squared neutrino mass
differences dependence on the gaugino seesaw component. In this case, be-
cause the heaviest eigenstate (dashed line) practically does not mix with
the electron neutrino we can see that it does not vary with ((g1νi)

2/M1 +
(g2νi)

2/M2)
2 for i = 1, 2, 3. On the other hand, the intermediate eigenstate

grows with the mixing with the gauginos, as explained in Sect. 3.3 with
M1 < 0, therefore the squared solar mass difference also grows.

Let us now discuss the mixing angles of the neutrino sector. Note that
in the νµ-ντ degenerated case with normal hierarchy and M1 < 0 we have
obtained sin2 θ13 = 0 and sin2 θ23 = 1

2
. In Fig. 3.4 we present the variation
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(AνYν)1 ≃ −0.000125 GeV (AνYν)2 ≃ −0.000365 GeV (AνYν)3 ≃ −0.000365 GeV
(Aλλ)1 ≃ −99 GeV (Aλλ)2 ≃ −83 GeV (Aλλ)3 ≃ −83 GeV

(Aκκ)111 ≃ 41.9 GeV m2
Hd

≃ 3.6 × 106 GeV2 m2
Hu

≃ −25118 GeV2

m2
ν̃c
1

≃ −24393 GeV2 m2
ν̃c
2

≃ 208377 GeV2 m2
ν̃c
3

≃ 208377 GeV2

m2
L̃1

≃ 394777 GeV2 m2
L̃2

≃ 903528 GeV2 m2
L̃3

≃ 903528 GeV2

Table 3.10: Values of the soft terms calculated with the minimization equa-
tions for the third global minimum discussed in the text, associated to the
parameters shown in Table 3.8.

of sin2 θ12 with the ratio of the parameters that control the gaugino seesaw,
b2e/b

2
µ, where for the sake of simplicity we take bi = Yνi

vd + 3λνi and we do
not consider the complicated factors containing phases in Eqs. (3.27).

To obtain results different from sin2 θ23 ∼ 1
2

and sin2 θ13 ∼ 0, in the
following we consider the possibility of breaking the degeneracy between µ
and τ neutrinos, that is having different values for the Yν and ν parameters
for µ and τ neutrinos. We show in Fig. 3.5a sin2 θ23 as a function of the ratio
of the term that controls the Higgsino-νc seesaw, a2

µ/a
2
τ . When aµ/aτ goes

to 1, the νµ-ντ degeneracy is recovered and sin2 θ23 goes to 1/2 as expected.
In Fig. 3.5b we show sin2 θ13 as a function of 4aµaτ

(aµ+aτ )2
that is a good measure

of the degeneration in this case. Note that when 4aµaτ/(aµ + aτ )
2 → 1

the degeneracy is recovered and sin2 θ13 → 0 as expected. The parameters
ai have been defined in Eq. (3.24). Let us point out that sin2 θ13 < 10−3

since we are breaking the degeneration between µ and τ neutrinos but the
term that controls the Higgsino-νc seesaw for the first family is very small
compared to the other two families.

As mentioned previously, the µνSSM with SCPV also predicts non-zero
CP phases in the PMNS matrix. We have checked numerically that for each
of the experimentally allowed regions found, the two Majorana CP phases
and the Dirac CP phase are different from zero. This fact is reflected in
Fig. 3.6 where we present two plots in the δ − φ1 and δ − φ2 planes (Dirac-
Majorana CP phases) constructed varying all the inputs in the neutrino
sector. However, it is fair to say that due to the smallness of sin2 θ13 ∼ 10−3

in this region, the CP violation effects of the phases of the VEVs turn out
to be suppressed in the PMNS matrix because the Dirac CP phase always
appears in the form sin θ13e

iδ as can be seen in (3.52).

Notice that in all the plots of the evolution of mass squared differences,
mixing angles or CP phases, all the points plotted belong to the experimental
allowed region.
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Figure 3.2: Squared neutrino masses versus (Yνi
vu)

4/(2κνc)2. (a) and (b)
show for i = 1 the two heaviest and lightest neutrinos, respectively. The
same for (c) and (d) but for i = 2.

In order to complete the discussion about the neutrino sector in this
scenario, we will consider the possibility M1 > 0 instead of M1 < 0 . In
Sect. 3.3 we have seen that with M1 > 0 it is more complicated to have
a degeneracy between muon and tau neutrinos because it is easy to obtain
sin2 θ12 ∼ 0, in contradiction with the data (see Table 3.1). Thus we will show
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Figure 3.3: The same as in Fig. 3.2 but for the squared neutrino masses
versus [(g1νi)

2/M1 + (g2νi)
2/M2]

2.

a region where breaking the degeneracy νµ-ντ a normal hierarchy is obtained
with M1 > 0. This region is around the point of the parameter space shown
in Table 3.11. In this example the angle sin2 θ13 can easily be made small
as required by the data, but it is not necessarily negligible. Thus the CP
violating effects would be more present in the PMNS matrix. Besides,
we can roughly say that sin2 θ13 and sin2 θ12 are interchanged with respect
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Figure 3.5: (a) The variation of sin2 θ23 with respect to the relevant term
that controls its evolution, a2

µ/a
2
τ . (b) The variation of sin2 θ13 with respect

to the term that measures the νµ-ντ degeneracy.

to the case discussed above with M1 < 0. For completeness, in Fig. 3.7a
we show the variation of sin2 θ13 with respect to the term that controls the
gaugino seesaw relevant in this case, namely b2e/(b

2
µ+b2τ ). We also plot in Fig.

3.7b sin2 θ12 as a function of the relevant term that controls the Higgsino-νc

seesaw 4aµaτ

(aµ+aτ )2
. As mentioned above, an interesting feature of this region of
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Figure 3.6: δ − φ1 plane (a) and δ − φ2 plane (b) for the scenario with nor-
mal hierarchy and negative gaugino masses M < 0, varying simultaneously
Yνi
, νi,M1.

the parameter space is that the effect of the Dirac CP phase in the PMNS
matrix is not removed, since the value of sin θ13 is not negligible. Fig. 3.8
shows the derived CP phases of the PMNS matrix.

For the sake of completeness, we show in Table 3.12 an example where
the inverse hierarchy scenario is achieved.

At this point it is clear that there are many regions in the parameter
space with different characteristics, different compositions for the lightest
neutralino or regions close to the tri-bimaximal mixing regime for normal
or inverted hierarchy that can be found with different neutrino parameters.
Furthermore, we have seen that the µνSSM with SCPV predicts non-zero
CP-violating phases in the neutrino sector. We must say that none of these

Yν1
= 9.54 × 10−7 Yν2

= 9.47 × 10−7 Yν3
= 2.31 × 10−7

ν1 = 8.59 × 10−5 GeV ν2 = 2.25 × 10−4 GeV ν3 = 2.29 × 10−4 GeV
M1 = 350 GeV

Table 3.11: Numerical values of the relevant neutrino/neutralino-sector in-
puts that reproduce the neutrino experimental constraints, and correspond
to the normal hierarchy scenario with M1 > 0.



68 CHAPTER 3. NEUTRINO PHYSICS AND SCPV IN THE µνSSM

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.02  0.04  0.06  0.08  0.1  0.12  0.14

s
in

2
 θ

1
3

be
2
/(b

2
µ+b

2
τ)

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.48  0.52  0.56  0.6  0.64  0.68  0.72

s
in

2
 θ

1
2

4 aµ aτ/(aµ+aτ)
2

(a) (b)

Figure 3.7: (a) The variation of sin2 θ13 with respect to the relevant term
that controls its evolution. (b) The variation of sin2 θ12 with respect to the
relevant term 4aµaτ/(aµ + aτ )

2.

Yν1
= 5.98 × 10−7 Yν2

= 1.32 × 10−6 Yν3
= 1.40 × 10−6

ν1 = 3.276 × 10−4 GeV ν2 = 6.20 × 10−5 GeV ν3 = 6.56 × 10−5 GeV
M1 = 340 GeV

Table 3.12: Numerical values of the relevant neutrino/neutralino inputs that
reproduce the neutrino experimental constraints, and correspond to the in-
verted hierarchy scenario.

phases have been measured already so it is not clear that CP violation occurs
in the leptonic sector and the CP phases could, in principle, be zero. If in
the future a non-zero CP violating phase in the lepton sector is measured,
SCPV as the one analysed here could be a possible source.

3.5 Comments on CP phases and EDMs

Before presenting the conclusions of this chapter we would like to comment
two relevant issues, the measurability of the CP-violating phases of the
neutrino sector in neutrino experiments and the Electric Dipole Moments
(EDMs) constraints.

Let us first comment the possibility of measuring the Dirac and Majorana
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Figure 3.8: δ − φ1 plane (a) and δ − φ2 plane (b) for the scenario with
normal hierarchy and positive gaugino masses M > 0, varying simultaneously
Yνi
, νi,M1.

CP phases of the PMNS matrix in neutrino experiments. Neutrino oscillation
experiments are sensitive only to the Dirac CP phase and insensitive to the
Majorana phases. Let us briefly comment about the possible determination
of δ in future neutrino experiments. The conservation of CP implies P (να →
νβ) = P (ν̄α → ν̄β). If CP is not conserved, we would have [70]

P (νµ → νe) − P (ν̄µ → ν̄e) = −16J sin

(
∆m2

12L

4E

)
sin

(
∆m2

13L

4E

)
sin

(
∆m2

23L

4E

)
,

(3.53)

where L is the oscillation length, E is the neutrino beam energy and J
is the Jarlskog invariant for the neutrino mass matrix which is given by
J = s12c12s23c23s13c

2
13 sin δ. There is only an upper experimental limit for J ,

J < 0.04. The reason is that J depends on θ13 and δ, which are currently
unknown. If θ13 vanishes (recall the experimental bound sin2 θ13 < 0.046) J
vanishes and the effect of CP violation via (3.53) would be unobservable. The
same occurs if there was a degeneracy in the neutrino masses. In spite of these
extreme situations the process (3.53) implies that long baseline experiments
allow the observation of CP violation due to the Dirac phase δ in the neutrino
sector. Two experiments are designed for this purpose: NOνA [71] and the
T2KK detector [72].

On the other hand, although Majorana phases affect neutrinoless double
beta decay 0νββ [73], their determination turns out to be difficult.
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Figure 3.9: Loop contributions to fermion EDMs.

We want also to briefly discuss the issue of EDMs in our model. As it
is well known, EDMs represent a serious challenge for supersymmetric the-
ories in what is called the SUSY CP problem. The MSSM (with explicit
CP violation in the soft Lagrangian) predicts EDMs about three orders of
magnitude larger than the experimental bounds for the EDM of the electron
and neutron if the SUSY CP violating phases are O(1) and the SUSY parti-
cles have masses near their current experimental bounds O(100) GeV [74].
There are usually three kind of solutions to this problem in supersymmetric
theories. First, if the SUSY CP violating phases are unnaturally small, of
order O(10−2 − 10−3) the EDM bounds can be easily satisfied [74]. Second,
if the SUSY scalar particles are decoupled with masses larger than about 3
TeV and thus out of reach of the LHC but not spoiling the solution of SUSY
to the hierarchy problem, the EDM bounds could also be accomplished [75].
Third, there can be internal cancellations between the different contributions
to the EDMs [76].

The EDMs in our model arise at the loop level (see Figure 3.9). The
definition of the EDM df for a spin-1

2
particle is

LI = −
∑

µν

i

2
dfΨ̄σµνγ5ΨF

µν , (3.54)

and the general interaction Lagrangian between two fermions (Ψ̄,Ψ) and a
scalar (χ) containing CP violation is

−Lint =
∑

ik

Ψ̄f (Kik
1 − γ5

2
+ Lik

1 + γ5

2
)Ψiχk + h.c.. (3.55)

Thus we can obtain the one loop EDM as

df =
∑

ik

mi

(4π)2m2
k

Im(KikL
∗
ik)

[
QiA(

m2
i

m2
k

) +QkB(
m2

i

m2
k

)

]
, (3.56)
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where A and B are loop functions that are given by A(r) = 1
2(1−r)2

(3 −
r + 2 log r

1−r
) and B(r) = 1

2(1−r)2
(1 + r + 2r log r

1−r
). Qi, Qk are the charges and

mi,mk are the masses of the fermion and scalar respectively. Clearly CP
violation is needed Im(KikL

∗
ik) 6= 0 for having a non-zero contribution to the

EDMs. There are three different contributions depending on which particles
are running in the loop: neutralino, chargino or gluino. As mentioned above,
small EDMs compatible with the experimental bounds are achieved if these
contributions cancel out. From (3.56) we can also see that if the CP phases
are small or the scalar masses are heavy (thus respectively Im(KikL

∗
ik) → 0

or mk → ∞ in (3.56)) both yield small EDMs.

We would like to point out that the µνSSM with SCPV could implement
these three kind of solutions for the SUSY CP problem. First of all, the possi-
bility of small CP phases is obviously present in our model. There are sponta-
neous CP violating global minima with small CP phases O(10−2−10−3) that
would imply values of the EDMs compatible with the experimental bounds.
For example let us present a global minimum that break CP spontaneously
with O(10−2) CP phases. We have also found global minima with O(10−3)
phases.

The values of the soft-terms not determined by the minimization equa-
tions are chosen to be Aκiii

κiii = −175 GeV for i 6= 1, Aκijk
κijk = 100 GeV

for i, j, k 6= 1 and Aκijk
κijk = −100 GeV for one or two indices equal to

1. The numerical values of the phases and the rest of input parameters are
presented in Tables 3.13 and 3.14.

Note that in a model with SCPV small phases are not unnatural. In
the case of explicit CP violation, small CP phases in the soft Lagrangian
sector are in principle unnatural because they are free parameters at the
electroweak scale and it is difficult to realize why the breaking of supersym-
metry could give rise to such unnatural small phases. On the contrary, small
phases through VEVs are not unnatural, they are just a consequence of the
minimization equations. The free parameters in a model with SCPV are
the real soft parameters, the phases of the VEVs being determined with the
minimization equations. Thus, for natural values of the real soft parameters

λi = 0.13 for i=1,2,3 κi = 0.55 for i=1,2,3 νc
1 = 900GeV, νc

2 = νc
3 = 600GeV

tan β = 29 ϕv = 0 ϕνc
1

= π
100

ϕνc
2

= ϕνc
3

= − π
100 χ1 = − π

90 χ2 = χ3 = π
90

Table 3.13: Numerical values of the relevant inputs of a global minimum that
breaks CP spontaneously with small O(10−2) phases.
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Yν1
= 1.9 × 10−7 Yν2

= Yν3
= 1.06 × 10−6 M1 = 300 GeV

ν1 = 1.54 × 10−4 GeV ν2 = ν3 = 2.4 × 10−5 GeV

Table 3.14: Numerical values of the neutrino/neutralino inputs that repro-
duce the neutrino experimental constraints with the global minimum with
small phases.

in the µνSSM, small phases of the VEVs are natural because the minimiza-
tion conditions determine that the global minimum for these soft parameters
has small values of the phases and the SUSY CP problem is solved without
fine-tuning. This seems an advantage of the SUSY theories with the possi-
bility of SCPV compared to SUSY theories with only explicit CP violation.
Note that in this work we have taken the phases of the VEVs as inputs for
simplicity in the calculation, but this is only an artifact of the computation.

The other two solutions, heavy scalars and internal cancellations also
can be easily implemented in our model. Let us recall that the following soft
parameters remain free in our model because they do not enter in the neutral
scalar potential neither in the neutrino sector: (AuYu)ij , m2

ũc
ij

, M3, (AeYe)ij ,

m2
ẽc
ij
. Thus, the solution of the SUSY CP problem with heavy scalars remains

valid for scalar masses heavier than about 3 TeV. We also expect the internal
cancellations solution to be valid in our model since these free parameters
enter in the calculation of the EDMs and we would have enough freedom
to find regions on the parameter space where such cancellations could be
accomplished reproducing the EDMs bounds.

Note that this discussion is only referred to the SUSY CP phases. The
CKM phase has been measured to be O(1) but its contribution to the EDMs
has been proved to be several orders of magnitude smaller than the bounds.
In our model we would have various possibilities to generate the CKM phase.
For example having complex Yukawas (the origin of CP violation being a
combination of spontaneous and explicit), it is easy to generate the large
CKM phase reproducing at the same time the EDM bounds.

In any case, a full computation of the EDMs in this model is beyond the
scope of this chapter but we only wanted to remark that the usual solutions
to the SUSY CP problem remain valid in this model. For interested readers,
a more detailed analysis of EDMs constraints in a supersymmetric model
with SCPV is performed in [77].
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3.6 Conclusions

In this chapter we have studied in detail the neutrino sector of the µνSSM at
the tree-level. This analysis is highly relevant for this model because one of
the main motivations of the µνSSM is neutrino physics. We have also shown
that, even if all parameters in the scalar potential are real, SCPV is possible
at tree-level, and we have used these complex vacua to show how a complex
PMNS matrix can arise.

In particular, we have calculated first the scalar potential of the µνSSM
with real parameters, assuming the most general situation where the VEVs
of Higgses and sneutrinos can be complex. The minimization equations of the
scalar potential have been derived. We have shown, using a simple argument,
that CP can actually be spontaneously violated in this model.

Then we have discussed the neutralino-neutrino mass matrix. Although
the discussion is general, we have applied it also to the particularly interesting
case of real vacua. We have analysed how the electroweak seesaw mechanism
works in the µνSSM using approximate analytical equations for the effective
neutrino mass matrix, particularized for certain interesting limits that clarify
the neutrino sector behavior of the model. In addition, we have shown with a
toy model the qualitative idea of how to find regions in the parameter space of
the µνSSM that satisfy the neutrino experimental constraints. Let us remark
that these constraints can be fulfilled even with a diagonal neutrino Yukawa
matrix, since this seesaw does not involve only the right-handed neutrinos
but also the MSSM neutralinos. Actually, to obtain the correct neutrino
mixing angles turns out to be easy due to the following characteristics of this
seesaw: R-parity is broken and the relevant scale is the electroweak one. In
a sense, this gives an answer to the question why the mixing angles are so
different in the quark and lepton sectors.

Finally, we have presented our results describing the method to obtain
numerically global minima with SCPV, and giving examples of such minima.
Let us emphasize however that, unlike the case with real VEVs where many
global minima can be found, for the case with complex VEVs such minima are
not so easy to find. In particular, one has to choose carefully the parameters
of the model. For the examples found we have shown the dependence of
the neutrino mass differences (for both normal and inverted hierarchies),
mixing angles, and CP phases of the PMNS matrix, in terms of the relevant
neutrino inputs always being into the experimental allowed region. Last but
not least, we have checked that different regions on the parameter space
can reproduce the neutrino experimental constraints. In this context, future
neutrino experiments could be able to measure a non-zero Dirac CP-violating
phase, opening the possibility to SCPV in the µνSSM as the dominant source
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of CP violation in the leptonic sector. We have also discussed qualitatively
the SUSY phase problem in the context of the µνSSM with complex VEVs.
The three typical solutions to this problem can be implemented in our model,
small CP phases (with the advantage of being natural in the case of SCPV,
on the contrary that in the case of explicit CP violation), large masses of
scalar particles and internal cancellations. In any case, if a non-zero Dirac
CP phase is measured in neutrino experiments, SUSY models with SCPV
arises as good candidates to explain this CP assymetry and among them,
the µνSSM is probably one of the best motivated.

In what concerns the topics treated in this chapter, some phenomenolog-
ical work has still to be done. In the case of SCPV in the µνSSM, including
1-loop corrections to the study of the vacuum and the neutrino sector would
be interesting. A complete study of the EDMs in the case of SCPV would
also be very welcome. Also finding a model based on the µνSSM with SCPV
having a complex CKM matrix would be important. In this respect we would
like to point out that extending the quark sector could lead to an effective
complex CKM matrix [57] and the model found in Subsection 5.2.1 could
be an interesting starting point. This model extends the gauge group of the
µνSSM with an extra U(1) factor and exotic colour triplets have to be added
to the spectrum to cancel anomalies. Extending the Higgs sector could also
lead to a complex CKM matrix. All these issues are left for future works.



Chapter 4

Higgs sector and collider

physics

4.1 Motivations

In this chapter we will provide an overview of the collider phenomenology
of the Higgs sector of the µνSSM. It is based on the work published in
[15]. We will explain the novel features in the decays of the Higgs sector of
the µνSSM compared to R-parity conserving models such as the NMSSM
or compared to R-parity breaking models without extra singlet superfields
such as the BRpV model. There are two main features that could help to
distinguish the µνSSM from other SUSY models at colliders. On the one
hand, since the LSP is no longer stable due to the breaking of R-parity,
not all SUSY chains must yield missing energy events. In [43, 44, 45] the
decays of the lightest neutralino were discussed, as well as the correlations
of the decay branching ratios with the neutrino mixing angles. On the other
hand, the breaking of R-parity also generates a peculiar structure for the
mass matrices. In particular, the presence of right and left-handed sneutrino
VEVs leads to mixing of the neutral Higgses with the sneutrinos producing
8×8 neutral scalar mass matrices. This extended Higgs sector could be very
helpful for testing the µνSSM. It is clear than once a new model in physics is
proposed, one of the most important issues to study is how it can be proved
experimentally and this is the main motivation for this chapter.

In Section 4.2 we will analyse the Higgs sector of the µνSSM. In particular,
we will study first the Higgs sector mixings, and second the possible Higgs
decays taking place once a Higgs particle is produced at colliders. Finally, we
will discuss the LEP constraints. For that we will compute the couplings of
the Higgses with the Z boson, and the sum rules. In Section 4.3 we will briefly

75
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review the production mechanisms of Higgses at lepton and hadron colliders.
In Section 4.4 we will concentrate on Higgs decays that are genuine of this
model, and could therefore serve to distinguish it from other SUSY models in
certain regions of the parameter space. We will present a sample of numerical
examples of viable benchmark points for LHC searches. For that, we will
focus first our attention on the decays of a MSSM-like Higgs with a sizeable
branching ratio into two lightest neutralinos. These neutralinos could decay
inside the detector leading to displaced vertices. This fact can be used to
distinguish the µνSSM from R-parity conserving models. Also, the product
of the decays can be used to distinguish it from other R-parity breaking
models. Higgs-to-Higgs cascade decays will also be studied, and we will
discuss an interesting benchmark point with similar signals to the NMSSM
that could also serve to distinguish the µνSSM from other R-parity breaking
models. For completeness, we will discuss in Section 4.5 the possibility that
gravitino dark matter in this model might alter the collider phenomenology
through the decay channel neutralino to gravitino-photon. We will see that
this branching ratio turns out to be negligible. Finally, the conclusions of
this chapter are left for Section 4.6.

4.2 Higgs sector and decays

In this section we will analyse the mixings in the scalar (Higgs) sector of
the µνSSM, and we will also study the possible decay modes of Higgses once
they are generated at colliders. We will focus our attention on the novelties
that this extended Higgs sector introduces compared to Higgs sectors of other
SUSY models, like e.g. the one of the NMSSM. Finally, we will discuss the
LEP constraints in the context of this model. In the following we will assume
for simplicity that all parameters in the potential or in the Lagrangian are
real (see Section 2.2), as well as the VEVs, i.e. that CP is conserved. As
a consequence, the neutral CP-even scalars are not mixed with the neutral
CP-odd scalars. On the other hand, all neutral scalars of the model are
mixed, and since all them get VEVs, we will call them Higgses throughout
this chapter. To be more precise, we will use the term ’Higgses’ for the
mass eigenstates, and ’Higgs doublets’ or ’singlets’ for the neutral compo-
nents of the Higgs doublets or for right-handed sneutrinos respectively in the
interaction basis.
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4.2.1 Higgs sector mixings

The presence of right- and left-handed sneutrino VEVs in the µνSSM leads
to the mixing of the neutral components of the Higgs doublets with the
sneutrinos producing the 8× 8 neutral scalar mass matrices for the CP-even
and CP-odd states [40] that can be found in Appendix A.1-A.2, where we
have defined as usual

H0
u =

hu + iPu√
2

+ vu , H0
d =

hd + iPd√
2

+ vd,

ν̃c
i =

(ν̃c
i )

R + i(ν̃c
i )

I

√
2

+ νc
i , ν̃i =

(ν̃i)
R + i(ν̃i)

I

√
2

+ νi . (4.1)

Note that after rotating away the CP-odd would be Goldstone boson, we
are left with seven states. It is also worth noticing here that in the CP-
even sector, the 5 × 5 Higgs doublets-right handed sneutrino submatrix is
basically decoupled from the 3×3 left-handed sneutrino submatrix, since the
mixing occurs only through terms proportional to νi or Yνij

in (A.7),(A.8)
and (A.10). As discussed in precedent chapters, because of the contribution
of the small couplings Yν ∼ 10−6,−7 to the minimization conditions for the
left-handed sneutrinos, their VEVs turn out to be small ν ∼ 10−4,−5 GeV.
Then, all terms containing Yν or ν are negligible compared to the rest of
terms that are of the order of the EW scale. The same decoupling between
Higgs doublets-right handed sneutrinos and left-handed sneutrinos is true for
the CP-odd sector.

On the contrary, the mixing between Higgs doublets and right-handed
sneutrinos is not necessarily small. In the CP-even sector this is given by
(A.5) and (A.6):

M2
hd(eνc

i )R = −aλi
vu + 2λiλjvdν

c
j − 2λkκijkvuν

c
j − Yνji

λkνjν
c
k − Yνjk

λiνjν
c
k ,

(4.2)

M2
hu(eνc

i )R = −aλi
vd + aνji

νj + 2λiλjvuν
c
j − 2λkκilkvdν

c
l + 2Yνjk

κilkνjν
c
l

+2Yνjk
Yνji

vuν
c
k . (4.3)

Neglecting terms proportional to Yνij
, νi, using aλi

= (Aλλ)i, and defining
µ ≡ λjν

c
j , one can write the above equations as

M2
hd(eνc

i )R ≈ 2λiµvd − 2λkκijkvuν
c
j − vu(Aλλ)i , (4.4)

M2
hu(eνc

i )R ≈ 2λiµvu − 2λkκilkvdν
c
l − vd(Aλλ)i . (4.5)

Let us now discuss how to suppress these mixings following the guide of
[15]. This can be used to have very light ν̃c-like Higgses avoiding collider
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constraints, but also, as we will discuss below, to have a doublet-like Higgs
as the lightest one being as heavy as possible. The simplest possibility to
suppress the mixings is that Eqs. (4.4) and (4.5) vanish. Clearly, this can
be obtained with λi → 0. Another possibility is that the sum of the three
terms in the above equations vanishes. To simplify this analysis let us start
with only one generation of right-handed neutrinos. Then,

0 ≈ 2λµvu − 2λκvdν
c − vdAλλ , (4.6)

0 ≈ 2λµvd − 2λκvuν
c − vuAλλ , (4.7)

and after a rotation in the mass matrix we obtain the condition [40]

Aλ =
2µ

sin 2β
− 2κνc , (4.8)

similar to the one of the NMSSM (with νc → S) [42].
Following the same arguments as above, in the CP-odd sector, and after

a rotation in the mass-squared matrix to isolate the Goldstone boson, we
obtain the condition,

λ(Aλ − 2κνc)v = 0 , (4.9)

implying λ→ 0 or Aλ = 2κνc.
The generalization of these results to three generations of right-handed

neutrinos is straightforward. In addition to the solution λi → 0, we obtain

Aλi
=

2µ

sin 2β
− 2

λi

∑

j,k

κijkλjν
c
k , (4.10)

Aλi
=

2

λi

∑

j,k

κijkλjν
c
k , (4.11)

for the CP-even and CP-odd sectors, respectively.
Nevertheless, although the above conditions for the decoupling of Higgs

doublets and right-handed sneutrinos can be used in general, they are suffi-
cient but not necessary conditions. As was shown in [40], there are regions
of the parameter space where the off-diagonal mixing terms of the neutral
scalar mass matrices are smaller than the diagonal terms, and then quite pure
singlets can be obtained. Actually, we will use this mechanism in Section 4.4
in order to obtain interesting signals at colliders.

Let us finally emphasize that some of these conditions can be applied
not only to obtain a very light ν̃c-like lightest Higgs, as discussed above, but
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also to have the lightest scalar as heavy as possible1. Clearly this lightest
scalar, for being as heavy as possible, must be Higgs doublet-like, since the
right- and left-handed sneutrinos can be as heavy as we want. Thus to have
the lightest scalar as heavy as possible the contamination with right-handed
sneutrinos should be small. For this to happen the right-handed sneutrinos
must be very heavy and/or the mixing should be small. However, for the
latter we can not use the solution λi → 0, since λi must be as large as possible
to saturate the upper bound on the lightest Higgs boson mass [40].

Summarizing, we have discussed in this subsection the mixing in the
Higgs sector of the µνSSM. In particular, we have learnt how to suppress the
mixings between right-handed sneutrinos and Higgs doublets. This can be
used to have very light ν̃c-like Higgses avoiding collider constraints, but also
to have a doublet-like Higgs as the lightest one being as heavy as possible.

4.2.2 Decays

Here we will study possible decay modes of the Higgses in the µνSSM, point-
ing out novel features with respect to other SUSY models as the MSSM,
NMSSM or the BRpV. The presence of new fields extending the Higgs sec-
tor, and the fact that R-parity is not a symmetry of the model, give rise to
new decays, thus changing substantially the phenomenology.

First of all, the Higgs-to-Higgs cascade decays can be more complicated
since more Higgses are present in this model compared to the NMSSM (or
the BRpV model in the case of R-parity breaking). As discussed above,
in the µνSSM there are eight CP-even and seven CP-odd Higgses, while in
the NMSSM there are three CP-even and two CP-odd Higgses. The relevant
couplings for Higgs-to-Higgs decays in the µνSSM were computed in [15] and
are written in Appendix B. The Feynman diagrams of all possible tree-level
decays of the Higgses are given in Figs. 4.1-4.4. In particular, for a CP-even
(CP-odd) decaying scalar we can see in Fig. 4.2 that the Feynman diagrams
a and c (b) are crucial to understand new decays with respect to the NMSSM
ones. Note that the Feynman diagram b (a and c) in the figure are present
only if a source of CP violation is taken into account 2.

Let us assume that we have enough energy to generate only one CP-even
Higgs at a collider, i.e., only one Higgs h1, has mass below the threshold
energy. Then the following decay is possible:

1Notice that the upper bound on the lightest Higgs boson mass for the µνSSM turns
out to be similar to the one of the NMSSM [40].

2In order to reduce the number of Feynman diagrams shown in the figure, we allow an
abuse of notation in the diagrams, since if CP is violated, CP-even and CP-odd Higgses
mix together and the notation ceases to make sense.
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h1 → 2 Standard Model fermions . (4.12)

In case that the second lightest Higgs, h2, can be generated, the following
cascade decay is possible if kinematically allowed:

h2 → 2h1 → 4 Standard Model fermions . (4.13)

If the third lightest Higgs, h3, can be generated, then we have the possibility
(if kinematically allowed)

h3 → 2h2 → 4h1 → 8 Standard Model fermions . (4.14)

The situation turns out to be more complicated if we take into account the
decays to scalars that are not the ones immediately below in mass. Also
we have the possibility of having light pseudoscalars entering in the game.
In the µνSSM we have three/two (six/five including left-handed sneutrinos)
pseudoscalars more than in the MSSM/NMSSM case, and they could be very
light. Thus we may need to include the following decays (if kinematically
allowed) into the cascades:

hα → hβhγ , hα → Pβ′Pγ′ , Pα′ → Pβ′hγ . (4.15)

where α, β, γ = 1, ..., 8 and α′, β ′, γ′ = 1, ..., 7.
In benchmark point 7 of Section 4.4 we will study an example where these

types of Higg-to-Higgs cascade decays are present. Working with a MSSM-
like CP even Higgs, hMSSM, it will decay into bb̄ or through the cascades
typical of the NMSSM, hMSSM → 2P → 2b2b̄, hMSSM → 2h → 4P →
4b4b̄. In benchmark point 8 we will see that hMSSM can decay with the
following relevant cascades: hMSSM → 2h1 → 4P1,2 → 4τ+4τ− or hMSSM →
2P3 → 2b2b̄, because for the singlet-like pseudoscalars P1,2 the decay into bb̄
is kinematically forbidden, whereas for P3 it is allowed. This is a genuine
signal of the µνSSM.

Another difference of the µνSSM compared to the NMSSM, that comes
from the breaking of R-parity, is that a very light lightest Higgs with the de-
cays into bb̄ or τ+τ− kinematically forbidden, could decay into two neutrinos
νiνj at the tree-level. This possibility is included in the Feynman diagram c

of Fig. 4.1, due to the mixing of the MSSM neutralinos and neutrinos. This
decay takes place due to the presence of the superpotential terms YνĤuL̂ν̂

c.
A Higgs with Hu composition can decay in this way because the light neutri-
nos, that are mainly left-handed, have small right-handed neutrino νc com-
ponents. A Higgs with ν̃ component can decay to two neutrinos because
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the light neutrinos can have respectively H̃u and νc components. Of special
interest is the fact that a Higgs with ν̃c composition can also decay into νiνj

because the light neutrinos can have H̃u component, as mentioned above, or
through the κν̂c

i ν̂
c
j ν̂

c
k terms in the superpotential, taking into account that

left- and right-handed neutrinos mix together. However, since the neutrino
Yukawa couplings are small, it is difficult to compete with the usual 1-loop
decay into photons through the chargino loop process (see Fig. 4.5). Then,
the usual constraints for very light Higgses annihilating to photons [78] still
apply.

Also we must take into account that, unless they are not kinematically al-
lowed, new decays to leptons are present, as can be deduced from the Feyman
diagram d of Fig. 4.1, since the charged leptons are mixed with the MSSM
charginos. Then, a singlet-like Higgs could decay to charged leptons through
the λν̂cĤuĤd terms in the superpotential, due to the chargino composition.
The mixing of charged leptons with charginos also affects the loop diagrams
describing Higgs decaying into photons (Fig. 4.5) due to the contribution
from charged leptons running in the loop, since the charginos are contam-
inated with them. Besides, a Higgs with ν̃ component can also decay into
charged leptons through the YeĤdL̂ê

c term in the superpotential. Notice that
it can also decay into two light neutrinos through the contamination with H̃0

u

and νc in the Yukawa term YνĤuL̂ν̂
c. For example for the benchmark point

2 shown in Table 4.2 in Section 4.4, the light singlet-like pseudoscalars P1,2,3

decay mainly into τ+τ− because of the small contamination with doublets.
An interesting situation that we will study in detail in Section 4.4, occurs

when a MSSM-like CP even Higgs, hMSSM, has a sizeable branching ratio to
two light neutralinos hMSSM → χ̃0χ̃0. Since R-parity is broken, neutralinos
can decay into a Higgs and a neutrino inside the detector leading to displaced
vertices. This possibility is included in the Feynman diagram c of Fig. 4.1,
due to the mixing of the MSSM neutralinos and neutrinos. Thus working
with light on-shell singlet-like pseudoscalars, cascades of the type hMSSM →
χ̃0χ̃0 → 2P2ν → 2b2b̄2ν, leading to the final state 4 b-jets plus missing
energy, will be present. If the decay of the pseudoscalars into two b’s is
kinematically forbidden, then they decay into τ+τ− generating the following
cascade: hMSSM → χ̃0χ̃0 → 2P2ν → 2τ+2τ−2ν. We will also see that the
final state 8 b-jets plus missing energy is possible in situations where singlet-
like scalars are produced by the decay of the neutralino, and they decay
to pseudoscalars as shown in (4.15), hMSSM → χ̃0χ̃0 → 2h2ν → 4P2ν →
4b4b̄2ν. As mentioned above, in benchmark point 8 of Section 4.4, for the
singlet-like pseudoscalars P1,2 the decay into bb̄ is kinematically forbidden,
whereas for P3 it is allowed, thus the following relevant cascades can be
produced: h4 → χ̃0

4χ̃
0
4 → 2P1,22ν → 2τ+2τ−2ν, h4 → χ̃0

4χ̃
0
4 → 2h1,2,32ν →
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4P1,22ν → 4τ+4τ−2ν, h4 → χ̃0
4χ̃

0
4 → 2P32ν → 2b2b̄2ν.

Displaced vertices are typical signals of R-parity violating models and
could help to distinguish the µνSSM from the NMSSM. In addition, other
R-parity breaking models such as the BRpV [79] do not have singlets in the
spectrum, and, as a consequence, the above decays can be considered as
genuine of the µνSSM. Note e.g. that in the BRpV, if the lightest neutralino
is lighter than gauge bosons, only three-body processes are available for its
decay.

Regarding the charged Higgses, as was discussed in [40], they are mixed
with the sleptons opening the following possibility. As usual, a slepton can
decay into a neutralino and a lepton as shown in Fig. 4.6a. In a R-parity
conserving model, if the neutralino is heavier than the slepton the latter will
be stable. However, when R-parity is broken, the left-handed neutrinos mix
with the neutralinos, and then the slepton decays into a lepton and a light
neutrino. Since the charged Higgses are mixed with the sleptons, they can
also decay in this way.

It is worth noticing here that, similarly to a slepton, a squark can decay
into a quark and a light neutrino. This can be deduced from Figs. 4.6b
and 4.6c using again that neutrinos and neutralinos mix together. Let us
also mention that, as usual in R-parity breaking models, the squarks or
the sleptons can be the LSP3 without conflict with experimental bounds.
Whereas in the MSSM/NMSSM this would imply a stable charged particle
incompatible with these bounds, in the µνSSM the LSP decays.

In the next subsection we will study the couplings of the Higgses with the
Z boson and the sum rules in the µνSSM, discussing also the LEP constraints.

4.2.3 Couplings with the Z boson and sum rules

In the following we will discuss the LEP constraints, especially the ones
coming from the Higgs-strahlung process shown in Fig. 4.7. In the pre-
vious subsection we have discussed Higgs-to-Higgs decays in the µνSSM
(see Eq.(4.15)). Thus a CP-even Higgs originated through a Higgs-strahlung
could decay in that way.

Let us remember that LEP data can be used to set lower bounds on the
lightest Higgs boson mass in non-standard models, as shown in Fig. 4.8 from
[80]. In the ratio ξ2 = (ghZZ/g

SM
hZZ)2, ghZZ designates the non-standard hZZ

3In the following we will define the LSP as the lightest supersymmetric particle present
in the Lagrangian when the neutrino Yukawas are set to zero. As usual in R-parity breaking
models, the LSP is not really well defined. For example, the lightest scalar with a singlet
sneutrino composition can be lighter than the lightest neutralino. Also the left-handed
neutrinos are very light and are mixed with the MSSM neutralinos.
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coupling and gSM
hZZ the same coupling in the Standard Model. Whereas in

Fig. 4.8, the Higgs boson is assumed to decay into fermions and bosons ac-
cording to the Standard Model, when BR(h→ bb̄) differs from the Standard
Model one, the parameter in Fig. 4.8, ξ2, must be replaced by ξ2 BR(h →
bb̄)/BRSM(h→ bb̄).

For the µνSSM for each Higgs we can define the couplings ξα, with α =
1, ..., 8, given by

ξα = [vuS(u, α) + vdS(d, α) + νiS(Li, α)]/v , (4.16)

where S(u, α), S(d, α), S(Li, α) are the fraction composition of up-type
Higgs doublet, down-type Higgs doublet and left-handed sneutrinos of the
hα neutral scalar mass eigenstate. A sum over i = 1, 2, 3 is assumed in the
last term, and v2 = v2

u + v2
d + νiνi.

If more than one Higgs with mass below 114 GeV are present but they
are degenerated, we could define ξ2 = ξαξα, where the sum is over all Higgses
below 114 GeV, and still use Fig. 4.8 for ξ2 BR(h→ bb̄)/BRSM(h→ bb̄).

Also with more than one Higgs below 114 GeV with arbitrary masses,
for each Higgs these constraints can be used for the coupling ξ2

αBR(hα →
bb̄)/BRSM(h → bb̄). Notice however that, given a value of ξ2

αBR(hα →
bb̄)/BRSM(h → bb̄), the corresponding lower bound on the Higgs mass is a
necessary but not sufficient condition to fulfil the LEP bounds.

Obviously, if the Higgs is mostly ν̃c-like the coupling goes to zero, and
we could have three very light Higgses avoiding the LEP constraints. From
the above discussion we can see that another way to avoid them would be to
make BR(h→ bb̄) small.

However, in the general case a more involved analysis is necessary, since
for example more than 2b in the final state are possible. Let us remember
that searches for h → ΦΦ and Φ → bb̄ (where Φ is a CP-odd or CP-even
Higgs) by OPAL [81] and DELPHI [82] impose a strong constraint on the
parameter space of the Standar Model. Once combined these analyses, one
obtains MH > 110 GeV for ξ ∼ 1. Nevertheless, in models with more
scalars and pseudoscalars it is possible to obtain a larger number of bb̄, e.g.
h3 → 2h2 → 4P1 → 4b4b̄. It seems therefore that a re-analysis of the LEP
data, to take into account this well motivated and complex phenomenology,
would be interesting. Specially interesting would be to re-analyse the well-
known 2.3σ excess in the e+e− → Z + bb̄ channel in the LEP data around
100 GeV. In the context of the NMSSM, the consistency of the excess with
h→ PP decays was discussed in [83].

Searches for e+e− → hZ independent of the decay mode of the Higss by
OPAL [84], could also be important to exclude some regions of the parameter
space.
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Searches for h→ ΦΦ and Φ → gg, Φ → cc̄, Φ → τ+τ− by OPAL [85], and
the recent analysis of the Higgs decaying into four taus carried out in [86],
must also be taken into account. Nevertheless, the µνSSM requires a more
detailed analysis than the one available in the literature, since for instance a
larger number of τ ′s in the final states is possible.

It is also worth mentioning that an on-shell or off-shell Z could decay into
neutralinos, with the three lightest neutralinos being very light and mainly
composed by left-handed neutrinos. The decay of the neutralinos χ̃0

a with
a = 4, ..., 10 was discussed in [43, 44]. Invisible Z width constraints [87] must
be applied.

Let us finally discuss the sum rules. For the ξα defined in Eq. (4.16), one
can obtain the following sum rule:

8∑

α=1

ξ2
α = 1 . (4.17)

Notice that for the three ν̃-like Higgses the corresponding ξα can be ne-
glected, and therefore one can write

5∑

φ=1

ξ2
φ ≈ 1 , (4.18)

where

ξφ ≈ [sin β S(u, φ) + cosβ S(d, φ)] , (4.19)

with tan β = vu

vd
defined as usual, since the VEVs νi are very small as dis-

cussed above.
Also another important sum rule, in analogy with the one discussed in

[88], is valid:

8∑

α=1

ξ2
αM

2
hα

= M2
max , (4.20)

where, neglecting terms with Yν and ν, Mmax is the upper bound on the
lightest Higgs mass studied in [40]

M2
max = M2

Z

(
cos2 2β +

2λiλi cos2 θW

g2
2

sin2 2β

)
+ rad. corr. (4.21)

Using Eqs. (4.17) and (4.20) one can deduce, as in the case of the NMSSM
[89], that

M2
h2

≤ 1

1 − ξ2
1

(M2
max − ξ2

1M
2
h1

) , (4.22)
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where h1 and h2 are the lightest and next-to-lightest Higgses.

Finally let us mention that a simple way to avoid current collider con-
straints is to make the new Higgses very heavy, in such a way that the
constraints apply only to the first one, as we will see in benchmark point
6 presented in Section 4.4. Then very interesting signals could be expected
from the Higgs cascade decays in experiments like LHC.

4.3 Production mechanisms at colliders

In this section we will briefly discuss the production mechanisms of a Higgs
at lepton and hadron colliders. Once produced, the Higgs can decay through
the processes explained in the previous section.

4.3.1 Lepton colliders

Let us start with a brief description of the main processes at leptonic colliders
regarding Higgs production.

LEP I

Running with centre of mass energies close to the mass of the Z,
√
s ≈

90 GeV, the Bjorken process shown in Fig. 4.9 is in principle the most
relevant one. Besides, in this model could be important an on-shell Z going
to two light Higgses also on-shell (one scalar and one pseudoscalar, as shown
in Fig. 4.10), as discussed in [82].

LEP II

Running with centre of mass energies close to the mass of the Z + the mass
of the Higgs, (

√
s ≈ 209 GeV), the Higgs-strahlung process shown in Fig.

4.7 is in principle one of the most relevant ones. Also important is the vector
boson fusion process shown in Fig. 4.11. But in principle these are not
the only relevant processes for Higgs production, specially for this model.
The off-shell Z could give rise to two on-shell Higgses (one scalar and one
pseudoscalar, as shown in Fig. 4.10). The Yukawa process shown in Fig. 4.12
could also be important, where the case where both fermions are ejecting a
Higgs could be relevant.

ILC

In this case vector fusion is in principle the most relevant process. But this
depends on the energy of the collider. The case of an off-shell Z giving on-
shell Higsses could be very important if the centre of mass energy is close to
the sum of the masses of the Higgses.
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4.3.2 Hadron colliders

The larger phase space with respect to the one of the MSSM, for Higgs decays,
gives a rich phenomenology that could in principle be detected at the LHC,
although constraints from hadron colliders are more complicated to analyse
because of the hadron behaviour.

The most important processes for hadron colliders are: the gluon gluon
fusion shown in Fig. 4.13, the vector fusion, the Higgs-strahlung and the
analog with the W boson, W → W h, where the first vector is off-shell and
the Higgs and the resulting W are on-shell.

The associated production with heavy quarks, this is gg → QQ̄ h or
qq̄ → QQ̄ h can also be important (see for example Fig. 4.14). Also in
hadron colliders there are several possibilities for Higgs pair production, this
is pp→ hhX, but it is beyond the scope of this work to review in detail the
Higgs production mechanisms. Nevertheless, in Section 4.4 we will briefly
discuss about the dominant production process and the production cross
sections for the benchmark points presented.

4.4 Signals at colliders

In the previous sections we have tried to provide a general overview of the
production and decays of the Higgses of the µνSSM. In this section we will
concentrate in decays that are genuine of this model, and could therefore
serve to distinguish it from other SUSY models. For that, we will focus first
our attention on the decays of a MSSM-like Higgs with a mass about 114
GeV (for being detectable in the near future), and with a sizeable branching
ratio into two lightest neutralinos. These neutralinos could decay inside the
detector leading to displaced vertices. This fact can be used to distinguish the
µνSSM from R-parity conserving models such as the NMSSM. For example,
as mentioned in subsection 4.2.2, the lightest neutralino4 χ̃0

4’s can decay into
an on-shell light singlet pseudoscalar (that subsequently decays into bb̄) and
a neutrino, and therefore the decay hMSSM → χ̃0

4χ̃
0
4 → 2P2ν → 2b2b̄2ν is

genuine of the µνSSM. In other R-parity breaking models such as the BRpV,
there are no singlet Higgses and a lightest neutralino lighter than gauge
bosons could decay only through three-body decay processes. However, we
have to point out that since the final decay products could be the same in
both models, this may be difficult to distinguish experimentally.

We will also discuss an example where the Higg-to-Higgs cascade decays

4In our convention, when we refer to ’neutralino’, we are excluding the three light
left-handed neutrinos χ̃0

1,2,3.
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studied in subsection 4.2.2 are relevant to distinguish the µνSSM from other
SUSY models.

Following the above strategy, in this section we will present a sample of
numerical examples of viable benchmark points of interest for LHC searches.
The study of the heavier doublet-like Higgs, where the cascades described in
subsection 4.2.2 could also be relevant, is left for a future work.

Let us mention that for the computation we have used a spectrum gener-
ator for the µνSSM (see [40] for a description5), linked with modified subrou-
tines for the model, based on the codes NMHdecay [90] and Spheno [91]. In
particular, the modified subroutines based on the code NMHdecay are used
to compute the two-body decays of all Higgses present in the µνSSM. We
have also built a subroutine to compute the two-body decays of neutralinos.
The modified subroutines based on the code Spheno are used to compute the
three-body decays of neutralinos.

We have searched for points of the parameter space that are safe from
exclusion by current collider constraints but that could be detected in the
near future at LHC. Nevertheless, a full analysis of these points in the light
of LEP and TEVATRON is beyond the scope of this work and then it is
not possible to totally guarantee that all the points satisfy all experimental
constraints. In any case, if any of the benchmark points provided here is not
completely safe from experimental constraints, it would be in the border and
with small variations of the values of the parameters could be driven to the
allowed experimental region.

Below we give a list with all the constraints that we are imposing on the
points analysed. Some of them have already been discussed in the previous
sections.

First, all the points are true minima of the neutral scalar potential. We
have checked that tachyons do not appear and that the couplings fulfil Lan-
dau pole constraints at the GUT scale.

We have verified that all the points satisfy 3σ neutrino sector constraints
[67] shown in Table 3.1 from the previous chapter.

We have guaranteed that current limits on sparticle masses with R-
parity conserved are satisfied, excluding points with charged Higgs/sleptons,
charginos, squarks and gluinos too light [92, 93]. We are being conservative,
since strictly speaking these limits apply only to R-parity conserving models.

In the neutral Higgs sector we have checked the constraints on the reduced
couplings × branching ratios in terms of the masses, for all the CP-even and
CP-odd scalars, in the following channels analysed at LEP:

5In this version we have included one-loop corrections to neutrino masses (in general
to neutralinos). These corrections have been computed in [46].
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1) For e+e− → hZ with the following decays of h,

• h → invisible [94, 95]. Here we are assuming as invisible, the light
neutrinos. A more elaborated analysis requires a re-analysis of LEP
data, taking into account for instance that neutralinos could partially
contribute to the missing energy when the decay distance is comparable
to the size of the detector. We have checked that in the points where
the decay length of the lightest neutralino is considerably greater than
O(1 m), considering also the LSP as invisible, the constraint is satisfied.

• h→ γγ, from LEP Higgs working group results [78].

• h→ bb̄, from the LEP Higgs working group [80].

• h to two jets, from OPAL and the LEP Higgs working group, both at
LEP2 [96, 97].

• h→ τ+τ−, from the LEP Higgs working group [80].

• h→ PP with PP decaying to 4 jets, 2 jets + cc, 2 jets + τ+τ−, 4 τ ′s,
cccc, ττ + cc, from OPAL results [85].

2) For e+e− → hP with hP decaying into 4 b, 4 τ , and PPP → 6b studied
by DELPHI [82].

3) For e+e− → hZ → PPZ → 4b+ 2jets the DELPHI constraints [82].
4) For e+e− → hZ independent of h decay mode, combining the results

of ALEPH and OPAL collaborations [94, 80].

On the other hand, as discussed in detail in [40], using the eight mini-
mization conditions for the neutral scalar potential we have solved the soft
masses mHu , mHd

, mL̃i
and mν̃c

i
in terms of tanβ, νc

i , νi, and we have used

the fact that νi are very small in order to define tanβ ≈ vu

vd
and v2 ≈ v2

u + v2
d

as usual. For simplicity, to perform the numerical analysis we have assumed a
diagonal structure of the parameters in flavour space. We have also assumed
universality for most of the parameters. In the case of the neutrino parame-
ters this is not possible, since we need at least two generations with different
Yνi

and νi in order to guarantee the correct hierarchy of neutrino masses as
shown in Chapter 3. Besides, an exact universality of the other parameters
would produce degenerations in the spectrum. Since we are working with
low-energy parameters, the presence of exact universality after the running
from higher scales seems to be extremely unlikely. To avoid this artificial
situation, but still maintaining the simplicity of using universal parameters
in the computation, we have slightly broken the universality in the diagonal
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entries of the κ tensor. On the other hand, in the case of the trilinear terms
we take all of them proportional to the corresponding Yukawa couplings.

To summarize, the independent low-energy free parameters that we are
varying in our analysis are,

λi = λ, tan β, κiii, ν
c
i = νc, ν1, ν2 = ν3, Yν1

, Yν2
= Yν3

, Aλ, Aκ, M2,

(4.23)

where for M1 and M3 we are assuming a relation that mimics the one coming

from unification at the GUT scale, M1 =
α2

1

α2
2

M2, M3 =
α2

3

α2
2

M2, implying M1 ≈
0.5M2, M3 ≈ 2.7M2. In addition we have fixed the following soft parameters
as, mQ̃ = 1000GeV, mũ = 1000GeV, md̃ = 1000GeV, mẽ = 1000GeV,
Ae = 1000GeV, Au = 2400GeV, Ad = 1000GeV, Aν = −1000GeV. Let us
remark, nevertheless, that we have varied the value of Au for certain points,
since it is relevant for the 1-loop corrections to the mass of the Standard
Model Higgs.

For the values of the parameters that we will use in the benchmark points
below, it is possible to show [40] using Appendix A that the mixing between
the Higgses and the right-handed sneutrinos is of the order of aλi

vu = Aλλvu,
and therefore small compared with the relevant diagonal terms λiλjν

c
i ν

c
j =

9λ2(νc)2. Thus the Higgs doublets are basically decoupled from the right-
handed sneutrinos. Note also that the right-handed neutrino masses are
given by a value that can be approximated as 2κiiiν

c [40].
Taking all the above into account, let us discuss now eight interesting

benchmark points for collider physics. For the first three points that we
will consider, the lightest neutralino χ̃0

4, is mainly a right-handed neutrino,
since we take the value of 2κiiiν

c small compared to the soft gaugino mass
M2 and Higgsino masses µ = λiν

c
i . This composition of the LSP is genuine

of the µνSSM and hence, very interesting to study. In principle, in such
a case the decay length is usually O(1 m) in contrast with other R-parity
violating models such as the BRpV model where the decay length of the LSP
is O(1 cm). The other right-handed neutrino-like neutralinos χ̃0

5,6 are slightly
heavier than χ̃0

4, and once produced in the decay of a Higgs, they decay
rapidly to χ̃0

4 through 3-body processes such as χ̃0
5,6 → χ̃0

4qq̄ or χ̃0
5,6 → χ̃0

4ll̄.
On the other hand, for benchmark points 4,5 and 6, the lightest neu-

tralino χ̃0
4 is MSSM-like. For example, taking small enough values for M2

one can have a MSSM lightest neutralino almost bino-like. The right-handed
neutrino-like neutralinos χ̃0

5,6,7 also decay through three-body processes to
the lightest one and quarks/leptons very promptly.

Thus, additional quarks or leptons are present in the cascades due to the
decays of the right-handed neutrino-like neutralinos into the lightest one.



90 CHAPTER 4. HIGGS SECTOR AND COLLIDER PHYSICS

Finally, in benchmark points 7 and 8 we work again with the lightest
neutralino as a right-handed neutrino, although for benchmark point 7 it
does not play an important role in the Higgs cascades and only Higgs-to-
Higgs cascade decays are relevant.

Let us also remark that for all the eight benchmark points, Aκ is chosen
small for having light pseudoscalars, since its contribution is the dominant
one in the diagonal element of the mass matrix. In this way the neutralino
can decay into a light pseudoscalar and a neutrino through two-body pro-
cesses, producing a distinctive signal. Since we have light singlets, we are
also choosing for simplicity small values of tanβ in order to be able to fulfill
LEP constraints more easily.

Benchmark point 1 is presented in Table 4.1. There we only show the
relevant masses and branching ratios for our discussion. The masses of the
heavier doublet-like Higgs and left-handed sneutrinos (both scalars or pseu-
doscalars) are larger than the ones shown, and we do not study the decays
of such Higgses. Neither the heavier MSSM-like neutralinos χ̃0

7,8,9,10 play
any role on our discussion. In this benchmark point a doublet-like Higgs
with mass mh4

= 118.8 GeV can decay into two neutralinos with masses
mχ̃0 ≈ 34 − 42 GeV, and with a branching ratio of 4%. The lightest neu-
tralino can decay through a two-body decay process to a scalar/pseudoscalar
and a neutrino. Note that the branching ratios of the decays of neutralinos
are referred only to two-body processes, while the decay lengths shown in
the tables take into account two- and three-body processes. The decay into
a pseudoscalar P1,2,3 and a neutrino takes place in 67% of the cases. These
pseudoscalars are mainly decaying into bb̄ and a displaced vertex could be
detected since the decay length of the lightest neutralino is 23 cm. Besides
the cascade h4 → χ̃0χ̃0 → 2P2ν → 2b2b̄2ν, the lightest neutralino could
also decay to a CP-even singlet and a neutrino in 33% of the cases, with the
CP-even Higgs decaying into two pseudoscalars. Then, the following cascade
is also relevant: h4 → χ̃0χ̃0 → 2h2ν → 4P2ν → 4b4b̄2ν, leading to 8 b-jets
plus missing energy with a displaced vertex.

Benchmark point 2 is given in Table 4.2. In this case the decay of the
Standard Model Higgs with a mass mh4

= 116.2 GeV into neutralinos is
enhanced to a 12%, since neutralino masses are smaller than in benchmark
point 1 due to the smaller value of 2κiiiν

c. Besides, the decay of the lightest
neutralino into CP-even Higgses is kinematically forbidden. Notice also that
in this case the decay of the pseudoscalars into two b’s is kinematically for-
bidden and then they decay into τ+τ−. Summarizing, the following cascade
leading to a displaced vertex takes place: h4 → χ̃0χ̃0 → 2P2ν → 2τ+2τ−2ν.
Note that in this case the decay length of the lightest neutralino χ̃0

4 is in-
creased to 1.89 m since the mass of the lightest neutralino is smaller than in
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benchmark point 1.
Benchmark point 3 is given in Table 4.3. A doublet-like Higgs with mass

mh4
= 116.6 GeV can decay into two neutralinos with masses mχ̃0 ≈ 47 −

50 GeV in an 0.5% of the cases, with the interesting cascade h4 → χ̃0χ̃0 →
2P2ν → 2b2b̄2ν. The decay length of the lightest neutralino χ̃0

4 is 12 cm.
Let us finally remark that, as expected, we have observed that increasing

the mass of the lightest neutralino, its decay length is reduced. On the other
hand, reducing the mass of the light pseudoscalars a few GeV, the decay
into two b’s can be kinematically forbidden, producing a dominant decay
to leptons. Also it is possible to decrease the mass of the Higgs to values
about 100 GeV, and then have a Higgs scenario in the line of the work [83],
escaping the large fine-tuning and little hierarchy problems. We would also
like to point out that, as was shown in [40], modifying the value of λ, it is
possible to increase the mass of the MSSM-like Higgs up to about 140 GeV.

The input parameters of the benchmark point 4, presented in Table 4.4,
are similar to those of the benchmark point 3, except for the fact that we
are decreasing the soft gaugino mass M2, and therefore generating a MSSM-
like lightest neutralino (almost bino-like). Thus the production through the
Standard Model-like Higgs decay is increased to 42%. Notice that while in the
previous benchmark points only three neutralinos χ̃0

4,5,6 have masses below
half of the mass of the Standard Model Higgs h4, here four neutralinos χ̃0

4,5,6,7

fulfill that condition. The lightest neutralino has a decay length of 1.65 m
and decays into a pseudoscalar P1,2,3 and a neutrino, with the pseudoscalar
decaying 93% of the cases into two b’s. In this case, the production of b’s
described through the cascade decays of the Standard Model Higgs, leading
to displaced vertices, h4 → χ̃0χ̃0 → 2P2ν → 2b2b̄2ν, is very enhanced and
competes with a similar branching ratio for the direct decay of the Standard
Model Higgs to two b’s.

Benchmark point 5 is given in Table 4.5. It is very similar to benchmark
point 4, but reducing the trilinear soft term Au, that is important for the
1-loop corrections to the mass of the Higgs, we can decrease the Standard
Model Higgs mass to mh4

∼ 112.8 GeV. LEP constraints are still satisfied
since the branching ratio of h4 into two b’s is dramatically reduced in favour
of the branching ratio into neutralinos. We have checked that in this case,
the process h4 → χ̃0χ̃0 → 2P2ν → 2b2b̄2ν satisfies the 4b’s LEP constraint.
We have also checked that the invisible Higgs constraint is satisfied even if
we consider the lightest neutralino as invisible. Nevertheless, a more involved
analysis of LEP data would be necessary regarding this point, to take into
account the missing energy carried by the neutrinos.

Benchmark point 6 is presented in Table 4.6. In this case, the spectrum
is heavier, with all CP-even singlet scalars above 114 GeV, and with h1
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being the Standard Model Higgs. The pseudoscalars are also considerably
heavier than in the other benchmark points. This case is similar to the
usual ones of the MSSM. The small difference comes from the fact that
the Standard Model Higgs would decay in a significant ratio of 2% into
neutralinos leading to displaced vertices. The lightest neutralino, MSSM-
like, will have two-body decays kinematically forbidden and will decay only
through three-body processes with a decay length of 5.33 m. In Table 4.6 we
show the branching ratios to the following decay products (with a notation
neglecting the mixings): νll, lqq̄, νqq̄, 3ν.

Benchmark point 7 is presented in Table 4.7. In this case, the universality
assumption has been broken also for the λi parameters in order to favour the
decay of h4 into two singlet-like scalars h1. Now the neutralino does not play
an important role in the cascade decays of the Higgs, since the branching ratio
of h4 into two neutralinos is very suppressed. This is due to the fact that
the only kinematically allowed decay of Higgs to neutralinos is h4 → χ̃0

4χ
0
4,

and χ̃0
4 is quite pure right-handed neutrino-like. The MSSM-like Higgs with

a mass mh4
= 119.6 GeV will have the typical decay of the MSSM into

bb̄ or the typical cascades of the NMSSM, h4 → 2P → 2b2b̄, in most of
the cases. The decay of the Higgs h4 into two CP-even singlet-like Higgses,
with a branching ratio of 4% is also possible. Thus the following cascade is
relevant h4 → 2h1 → 4P → 4b4b̄. These cascades serve to distinguish the
µνSSM from other R-parity violating models. Besides, once a SUSY particle
is produced at the collider, decaying into the LSP, the displaced vertex will
allow to distinguish the µνSSM from the NMSSM.

Finally, let us discuss benchmark point 8 shown in Table 4.8, where we
work again with a right-handed neutrino-like lightest neutralino. The main
feature of this case is that, whereas for the singlet-like pseudoscalars P1,2 the
decay into bb̄ is kinematically forbidden, for P3 it is allowed. Then, several
cascade decays are expected. The MSSM-like Higgs, h4, has a mass of 120.2
GeV. Apart from the typical decay of the MSSM, h4 → bb̄, it can also decay
without leading to displaced vertices with the following relevant cascades:
h4 → 2h1 → 4P1,2 → 4τ+4τ− or h4 → 2P3 → 2b2b̄. This is a genuine feature
of the µνSSM. The MSSM-like Higgs can also decay into neutralinos in 6% of
the cases leading to the following relevant cascades, where displaced vertices
and missing energy are expected: h4 → χ̃0

4χ̃
0
4 → 2P1,22ν → 2τ+2τ−2ν, h4 →

χ̃0
4χ̃

0
4 → 2h1,2,32ν → 4P1,22ν → 4τ+4τ−2ν or h4 → χ̃0

4χ̃
0
4 → 2P32ν → 2b2b̄2ν.

This benchmark point shows how extremely characteristic signals could be
expected in certain regions of the parameter space of the µνSSM.

Let us finally discuss in more detail the detectability of these signals at
the LHC. For that we need to study first the production cross section of the
Higgs in the context of the µνSSM. It is well known that gluon fusion and
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λ κ111 κ222 κ333 Aκ (GeV) M2 (GeV)
1.0 × 10−1 2.1 × 10−2 1.9 × 10−2 1.7 × 10−2 -5.0 −1.7 × 103

tanβ Aλ (GeV) ν1 (GeV) ν2,3(GeV) Yν1
Yν2,3

3.9 1.0 × 103 2.61 × 10−5 1.31 × 10−4 5.56 × 10−8 2.66 × 10−7

νc (GeV) mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV) mP1
(GeV)

1.0 × 103 27.9 33.3 37.9 118.8 12.2

mP2
(GeV) mP3

(GeV) mχ̃0
4

(GeV) mχ̃0
5

(GeV) mχ̃0
6

(GeV) —

13.8 20.3 34.4 38.4 42.5 —

BR(h4 →
∑6

i,j=4 χ̃
0
i χ̃

0
j ) BR(χ̃0

4 →
∑3

i=1 Piν) BR(χ̃0
4 → h1ν) BR(h1 →

∑3
i,j=1 PiPj) BR(P1,2,3) → bb̄ lχ̃0

4
→ (cm)

0.04 0.67 0.33 0.89 0.93 23

Table 4.1: Relevant input parameters, masses and branching ratios of bench-
mark point 1.

λ κ111 κ222 κ333 Aκ (GeV) M2 (GeV)
1.0 × 10−1 7.7 × 10−3 7.5 × 10−3 7.3 × 10−3 -1.0 −1.7 × 103

tanβ Aλ (GeV) ν1 (GeV) ν2,3(GeV) Yν1
Yν2,3

3.7 1.0 × 103 2.92 × 10−5 1.46 × 10−4 2.70 × 10−8 1.51 × 10−7

νc (GeV) mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV) mP1
(GeV)

8.0 × 102 13.6 13.9 17.0 116.2 8.4

mP2
(GeV) mP3

(GeV) mχ̃0
4

(GeV) mχ̃0
5

(GeV) mχ̃0
6

(GeV) —

9.5 9.6 11.8 12.2 14.0 —

BR(h4 →
∑6

i,j=4 χ̃
0
i χ̃

0
j ) BR(χ̃0

4 →
∑3

i=1 Piν) BR(P1 → τ+τ−) BR(P2 → τ+τ−) BR(P3 → τ+τ−) lχ̃0
4
→ (cm)

0.12 1.0 0.89 0.83 0.82 189

Table 4.2: Relevant input parameters, masses and branching ratios of bench-
mark point 2.

b-quark fusion are the two main production processes of a Higgs at the LHC
in the context of SUSY. Gluon fusion dominates over b-quark fusion in our
benchmark points, as can be shown using the relevant equations [98]:

σ(gg → h4) = σ(gg → HSM)
Γ(h4 → gg)

Γ(HSM → gg)
≃ σ(gg → HSM) , (4.24)

σ(bb̄→ h4) = σ(bb̄→ HSM)

(
Ybbh4

YbbHSM

)2

= σ(bb̄ → HSM)
S2(d, 4)

cos2 β
.(4.25)

We can see that for the case of b-quark fusion, the production cross section
is reduced compared to the one of the Standard Model because in our bench-
mark points the value of tanβ is low, and the main component of the Higgs
is H0

u. However, the production cross section for gluon fusion is very similar
to the one of the Standard Model. Note that in all benchmark points stud-
ied, we were interested in the production of a doublet-like Higgs (h4 in our
notation, except for the benchmark point 6 where it is the lightest Higgs and
therefore is denoted as h1). In addition, our gluinos and squarks are heavy,
and as a consequence the decay width into gluons is very similar to the one
of the Standard Model.
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λ κ111 κ222 κ333 Aκ (GeV) M2 (GeV)
1.0 × 10−1 3.1 × 10−2 3.0 × 10−2 2.9 × 10−2 -1.0 −1.7 × 103

tanβ Aλ (GeV) ν1 (GeV) ν2,3(GeV) Yν1
Yν2,3

3.7 1.0 × 103 3.04 × 10−5 1.18 × 10−4 5.10 × 10−8 2.95 × 10−7

νc (GeV) mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV) mP1
(GeV)

8.0 × 102 46.0 47.9 49.5 116.6 14.6

mP2
(GeV) mP3

(GeV) mχ̃0
4

(GeV) mχ̃0
5

(GeV) mχ̃0
6

(GeV) —

14.8 16.6 46.7 48.4 50.3 —

BR(h4 →
∑6

i,j=4 χ̃
0
i χ̃

0
j ) BR(χ̃0

4 →
∑3

i=1 Piν) BR(P1,2,3 → bb̄) lχ̃0
4
→ (cm) — —

0.005 1.0 0.93 12 — —

Table 4.3: Relevant input parameters, masses and branching ratios of bench-
mark point 3.

λ κ111 κ222 κ333 Aκ (GeV) M2 (GeV)
1.0 × 10−1 3.6 × 10−2 3.5 × 10−2 3.4 × 10−2 -1.0 −1.0 × 102

tanβ Aλ (GeV) ν1 (GeV) ν2,3(GeV) Yν1
Yν2,3

3.7 1.0 × 103 4.11 × 10−6 1.59 × 10−5 4.89 × 10−8 3.27 × 10−7

νc (GeV) mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV) mP1
(GeV)

8.0 × 102 53.7 55.7 57.4 119.7 15.5

mP2
(GeV) mP3

(GeV) mχ̃0
4

(GeV) mχ̃0
5

(GeV) mχ̃0
6

(GeV) mχ̃0
7

(GeV)

15.7 17.9 51.8 54.8 56.6 58.9

BR(h4 →
∑7

i,j=4 χ̃
0
i χ̃

0
j ) BR(χ̃0

4 →
∑3

i=1 Piν) BR(P1,2,3 → bb̄) lχ̃0
4
→ (cm) — —

0.42 1.0 0.93 165 — —

Table 4.4: Relevant input parameters, masses and branching ratios of bench-
mark point 4.

We have used the code HIGLU [99] to compute explicitly the production
cross section of a Standard Model Higgs and the decay widths into gluons
for our benchmark points, finding that 0.75 σ(gg → HSM) . σ(gg → h4) .

σ(gg → HSM). For a center of mass energy of 7 TeV we find that σ(gg →
HSM) is about 17−19.5 pb and, as a consequence, we obtain production cross
sections of about σ(gg → h4) ≃ 15−19 pb. Then, in principle we expect that
the LHC could detect the signals described in this work except maybe for
cascades with a very small branching ratio (see Table 4.9). For example, the
cascade described above with the maximal product of the cross section times
branching ratio is the one of the benchmark point 4, h4 → χ̃0

4χ̃
0
4 → 2P2ν →

2b2b̄2ν, with a result of 5860 fb. The cascade with the minimum value of this
product is the one of the benchmark point 8, h4 → χ0

4χ̃
0
4 → 2P32ν → 2b2b̄2ν,

with a result of 20 fb. The study of the detectability of these signals at the
LHC with an event generator is beyond the scope of this Thesis and is left
for a future work.
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4.5 Gravitino and colliders

As we have already mentioned, since R-parity is broken in the µνSSM, neu-
tralinos or sneutrinos, with very short lifetimes, are no longer candidates for
the dark matter of the Universe. Nevertheless, if the gravitino Ψ3/2 is the
LSP, it was shown in [11] that it could be a good candidate for dark matter,
with a lifetime much longer than the age of the Universe. There, it was also
shown that because the gravitino decays producing a monochromatic pho-
ton, the indirect detection of gravitinos in the Fermi satellite [100] with a
mass range between 0.1-10 GeV is possible. Larger masses are disfavored by
current Fermi measurements.

In this case of gravitino LSP, one should check whether or not the collider
signals studied in the previous section, are altered. In particular, the neu-
tralino partial decay length into gravitino and photon must be computed. For
this computation we can use the expression of the decay length χ̃0

4 → Ψ3/2γ
[101]. One obtains:

c τ
3/2

χ̃0
4

∼ 80 km
( m3/2

10 keV

)2 ( mχ̃0
4

50 GeV

)−5

. (4.26)

We can easily see that in order to have a significant decay to gravitinos,
the mass of the gravitino must be very low, less than 10 keV. That is,
for gravitino masses larger than 10 keV, the decay width of neutralino into
gravitino and photon is much smaller than the decay widths into SM particles
and then, the gravitino does not alter the collider phenomenology discussed.

Summarizing, we want to emphasize that in the µνSSM the gravitino
could be a viable dark matter candidate, accessible to indirect detection ex-
periments, and without altering the collider phenomenology described along
this chapter.

4.6 Conclusions

In this chapter we have studied the Higgs sector of the µνSSM focusing our
attention on collider physics. In large regions of the parameter space, the
phenomenology of the Higgs sector in this model is very rich and different
from other SUSY models. On the one hand, the Higgs sector is extended due
to the presence of left- and right-handed sneutrinos mixing with the MSSM
Higgses. On the other hand the breaking of R-parity, could lead to signatures
different from the usual missing energy.

First, we have analized the mixings in the Higgs sector of the µνSSM.
Assuming three families of right-handed neutrino superfields, one obtains
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λ κ111 κ222 κ333 Aκ (GeV) M2 (GeV)
1.0 × 10−1 3.6 × 10−2 3.5 × 10−2 3.4 × 10−2 -1.0 −1.0 × 102

tan β Aλ (GeV) ν1 (GeV) ν2,3(GeV) Yν1
Yν2,3

3.7 1.0 × 103 4.11 × 10−6 1.59 × 10−5 4.89 × 10−8 3.27 × 10−7

νc (GeV) Au (GeV) mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV)
8.0 × 102 1.2 × 103 53.3 55.6 57.4 112.8

mP1
(GeV) mP2

(GeV) mP3
(GeV) mχ̃0

4
(GeV) mχ̃0

5
(GeV) mχ̃0

6
(GeV)

15.4 15.6 17.8 51.7 54.8 56.5

mχ̃0
7

(GeV) BR(h4 →
∑7

i,j=4 χ̃
0
i χ̃

0
j ) BR(χ̃0

4 →
∑3

i=1 Piν) BR(P1,2,3 → bb̄) lχ̃0
4
→ (cm) —

58.9 0.30 1.0 0.93 164 —

Table 4.5: Relevant input parameters, masses and branching ratios of bench-
mark point 5.

eight CP-even and seven CP-odd Higgses in the model. Although the three
left-handed sneutrinos are basically decoupled from the rest of the Higgses,
the mixing between Higgs doublets and right-handed sneutrinos is not nec-
essarily small. In this work we have deduced general conditions to suppress
the latter. This can be useful to obtain very light singlets avoiding collider
constraints, but also to have a doublet-like Higgs as the lightest one being as
heavy as possible.

Then, we have provided an overview of new decays in the Higgs sector
with respect to other SUSY models with extra singlets like the NMSSM.
Due to the extended Higgs sector, Higgs-to-Higgs cascade decays could be
more complicated, as shown in subsection 4.2.2. In addition, the breaking of
R-parity gives rise to new decays.

LEP constraints have been discussed in the context of the µνSSM. For
this, we have computed the couplings of the Higgses with Z bosons and the
sum rules. Also the production mechanisms of Higgses at lepton and hadron
colliders in this model have been briefly reviewed.

Finally, in Section 4.4 we have concentrated on Higgs decays that are gen-
uine of the µνSSM, and could serve to distinguish it from other SUSY models.
We have provided benchmark points that should pass current constraints and
are interesting for LHC. In particular, we have focused first our attention on
the decays of a MSSM-like light Higgs hMSSM with a sizeable branching ratio
to two lightest neutralinos. These neutralinos could decay inside the detector
leading to displaced vertices. This fact can be used to distinguish the µνSSM
from R-parity conserving models such as the NMSSM/MSSM. However, let
us remark that in models of gauge mediated SUSY breaking, where the grav-
itino is usually the LSP, a displaced vertex can also be obtained depending
on the lifetime of the next-to-LSP, see [102] for a review.

Besides, the decays can be into a neutrino and an on-shell light singlet
pseudoscalar P , that subsequently decays into bb̄ (or if kinematically forbid-
den into τ+τ−), and therefore the decay hMSSM → χ̃0χ̃0 → 2P2ν → 2b2b̄2ν
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λ κ111 κ222 κ333 Aκ (GeV) M2 (GeV)
1.12 × 10−1 7.12 × 10−2 7.11 × 10−2 7.10 × 10−2 -18 −1.0 × 102

tan β Aλ (GeV) ν1 (GeV) ν2,3(GeV) Yν1
Yν2,3

3.7 1.0 × 103 7.21 × 10−7 1.04 × 10−7 6.66 × 10−8 4.53 × 10−7

νc (GeV) mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV) mP1
(GeV)

8.47 × 102 113.7 115.1 115.3 118.9 57.8

mP2
(GeV) mP3

(GeV) mχ̃0
4

(GeV) mχ̃0
5

(GeV) mχ̃0
6

(GeV) mχ̃0
7

(GeV)

57.9 61.3 52.1 114.2 120.2 120.4

BR(h1 → χ̃0
4χ̃

0
4) BR(χ̃0

4 → lqq̄) BR(χ̃0
4 → νll̄) BR(χ̃0

4 → νqq̄) BR(χ̃0
4 → 3ν) lχ̃0

4
→ (cm)

0.02 0.52 0.28 0.15 0.05 533

Table 4.6: Relevant input parameters, masses and branching ratios of bench-
mark point 6.

λ1,2 λ3 tanβ Aλ (GeV) Aκ (GeV) M2 (GeV)
1.0 × 10−2 2.8 × 10−1 3.7 1.0 × 103 -1 −5.88 × 103

κ111 κ222 κ333 Yν1
Yν2

Yν3

7.12 × 10−2 6.95 × 10−2 3.15 × 10−2 8.58 × 10−8 2.42 × 10−7 2.13 × 10−6

ν1 (GeV) ν2 (GeV) ν3 (GeV) νc (GeV) —
1.19 × 10−4 1.71 × 10−4 4.72 × 10−7 8.0 × 102 —

mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV) mP1,2
(GeV) mP3

(GeV)
47.9 110.9 113.6 119.6 14.0 25.7

mχ̃0
4

(GeV) mχ̃0
5

(GeV) mχ̃0
6,7

(GeV) — — —

53.9 111.2 113.9 — — —

BR(h4 → h1h1) BR(h1 →
∑3

i,j=1 PiPj) BR(Pi → bb̄) BR(h4 →
∑3

i,j=1 PiPj) BR(h4 → bb̄) —

0.04 0.97 0.93 0.39 0.40 —

Table 4.7: Relevant input parameters, masses and branching ratios of bench-
mark point 7.

is genuine of the µνSSM. For example, in other R-parity breaking mod-
els such as the BRpV, there are no singlet Higgses and a lightest neu-
tralino lighter than gauge bosons could decay only through three-body de-
cay processes. We have also seen that a final state with 8 b-jets plus miss-
ing energy is possible in situations where singlet-like scalars are produced
first by the decay of the neutralino, and they decay into pseudoscalars,
hMSSM → χ̃0χ̃0 → 2h2ν → 4P2ν → 4b4b̄2ν.

We have also studied a case with an spectrum similar to the one of the
MSSM, where all CP-even singlet scalars are above 114 GeV, and the pseu-
doscalars are heavier than the neutralinos. Then, the hMSSM will decay in a
significant ratio to neutralinos, and these will decay only through three-body
processes leading to displaced vertices.

In another case the neutralino does not play an important role and only
Higg-to-Higgs cascade decays are relevant. Although displaced vertices are
not expected, the decays hMSSM → 2P → 2b2b̄, hMSSM → 2h→ 4P → 4b4b̄
are possible, allowing to distinguish the µνSSM from other R-parity violating
models. Besides, once a SUSY particle is produced at the collider, decaying
into the LSP, the displaced vertex would allow to distinguish the µνSSM
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λ κ111 κ222 κ333 Aκ (GeV) M2 (GeV)
1.0 × 10−1 1.66 × 10−2 1.65 × 10−2 1.64 × 10−2 -5.0 −1.7 × 103

tan β Aλ (GeV) ν1 (GeV) ν2,3(GeV) Yν1
Yν2,3

4.9 1.0 × 103 5.84 × 10−5 2.25 × 10−4 1.25 × 10−7 2.26 × 10−7

νc (GeV) mh1
(GeV) mh2

(GeV) mh3
(GeV) mh4

(GeV) mP1
(GeV)

8.0 × 102 19.8 21.6 21.8 120.2 8.8

mP2
(GeV) mP3

(GeV) mχ̃0
4

(GeV) mχ̃0
5

(GeV) mχ̃0
6

(GeV) —

8.9 16.9 26.3 26.5 27.8 —

BR(h4 → h1h1) BR(h4 → P3P3) BR(h4 →
∑6

i,j=4 χ̃
0
i χ̃

0
j ) BR(h4 → bb̄) BR(h1 →

∑2
i,j=1 PiPj) BR(h2,3 →

∑2
i,j=1 PiPj)

0.05 0.12 0.06 0.55 0.98 1.0

BR(P1,2 → τ+τ−) BR(P3 → bb̄) BR(χ̃0
4 →

∑3
i=1 hiν) BR(χ̃0

4 → P1,2ν) BR(χ̃0
4 → P3ν) lχ̃0

4
(cm)

0.88 0.93 0.51 0.33 0.16 15

Table 4.8: Relevant input parameters, masses and branching ratios of bench-
mark point 8.

from the NMSSM.
Finally, we have studied a case where for singlet-like pseudoscalars P1,2

the decay into bb̄ is kinematically forbidden, but for P3 is allowed. Then,
several interesting cascade decays are expected without leading to displaced
vertices: hMSSM → 2h1 → 4P1,2 → 4τ+4τ−, hMSSM → 2P3 → 2b2b̄. This is
a genuine feature of the µνSSM. In addition, the following relevant cascades
are possible, with displaced vertices and missing energy: hMSSM → χ̃0

4χ̃
0
4 →

2P1,22ν → 2τ+2τ−2ν, hMSSM → χ̃0
4χ̃

0
4 → 2h1,2,32ν → 4P1,22ν → 4τ+4τ−2ν

or hMSSM → χ̃0
4χ̃

0
4 → 2P32ν → 2b2b̄2ν.

In conclusion, the above discussion gives us the idea that extremely char-
acteristic signals could be expected in certain regions of the parameter space
of the µνSSM.

We have also emphasized that in the µνSSM the gravitino could be a
viable dark matter candidate, accessible to indirect detection experiments,
and without altering the collider phenomenology described along this work.
In particular, the branching ratio of neutralino to gravitino-photon turns out
to be negligible.

Let us finally remark that the collider phenomenology of the µνSSM is
very rich and peculiar, as shown here using several benchmark points, and,
as a consequence, we still need to carry out much work in the future to cover
all interesting aspects of the model.

For example, it would be interesting to study in the future the decays
of the heavier Higgses where the Higgs-to-Higgs cascade decays would be
relevant. In this work we have concentrated in the case where the lightest
neutralino is the LSP. The situation having a squark, a sneutrino or a slep-
ton LSP has not been analysed in the literature and it would be also very
interesting to study in the context of the µνSSM. The analysis of these and
other signals with an event generator will be performed in future works.
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Benchmark point Cascade σ(gg → h4) ×BRcascade (fb)
1 h4 → χ̃0

4χ̃
0
4 → 2P2ν → 2b2b̄2ν 270

h4 → χ̃0
4χ̃

0
4 → 2h2ν → 4P2ν → 4b4b̄2ν 44

2 h4 → χ̃0
4χ̃

0
4 → 2P2ν → 2τ+2τ−2ν 1620

3 h4 → χ̃0
4χ̃

0
4 → 2P2ν → 2b2b̄2ν 70

4 h4 → χ̃0
4χ̃

0
4 → 2P2ν → 2b2b̄2ν 5860

5 h4 → χ̃0
4χ̃

0
4 → 2P2ν → 2b2b̄2ν 4870

6 h1 → χ̃0
4χ̃

0
4 → 2l2q2q̄ 150

h1 → χ̃0
4χ̃

0
4 → 2ν2l2l̄ 80

h1 → χ̃0
4χ̃

0
4 → 2ν2q2q̄ 40

h1 → χ̃0
4χ̃

0
4 → 6ν 15

7 h4 → 2P → 2b2b̄ 5450
h4 → 2h1 → 4P → 4b4b̄ 460

8 h4 → 2P3 → 2b2b̄ 1660
h4 → h1h1 → 4P1,2 → 4τ+4τ− 460

h4 → χ̃0
4χ̃

0
4 → 2P1,22ν → 2τ+2τ−2ν 80

h4 → χ̃0
4χ̃

0
4 → 2h2ν → 4P1,22ν → 4τ+4τ−2ν 150

h4 → χ̃0
4χ̃

0
4 → 2P32ν → 2b2b̄2ν 20

Table 4.9: Production cross sections times branching ratios of the cascades
for the benchmark points discussed in the text.
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Figure 4.1: Feynman diagrams of Higgs decay to fermions, with α = 1, ..., 8,
i = 1, 2, 3, a′, b′ = 1, ..., 10, and a′′, b′′ = 1, ..., 5. Replacing the decaying hα

by a pseudoscalar Pα′ , with α′ = 1, ..., 7, all the Feynman diagrams are valid.
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Figure 4.2: Feynman diagrams of Higgs decays to scalars (under Lorentz),
with I, J = 1..6. Replacing the decaying hα by a pseudoscalar Pα′ , all the
Feynman diagrams are valid. The index convention is like in Fig. 4.1.
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Figure 4.3: Feynman diagrams of Higgs decays to scalars and vectors (under
Lorentz). Replacing the decaying hα by a pseudoscalar Pα′ , all the Feynman
diagrams are valid. The index convention is like in Fig. 4.1.

Figure 4.4: Feynman diagrams of Higgs decays to vectors (under Lorentz).
The index convention is like in Fig. 4.1.
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Figure 4.5: Di-photon Higgs decay. Replacing the decaying hα by a pseu-
doscalar Pα′ , the Feynman diagram is valid. The index convention is like in
Fig. 4.1.

(a) (b) (c)

Figure 4.6: (a) Charged slepton decay. (b) Up squark decay. (c) Down
squark decay. The index convention is like in Figs. 4.1 and 4.2.
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Figure 4.7: Higgs-strahlung. The index convention is like in Fig. 4.1.
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Figure 4.8: The 95% confidence level upper bound on the ratio ξ2 =
(ghZZ/g

SM
hZZ)2 from [80]. The dark and light shaded bands around the me-

dian expected line correspond to the 68% and 95% probability bands. The
horizontal line corresponds to the Standard Model coupling for Higgs boson
decays predicted by the Standard Model.
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Figure 4.9: Bjorken process. The index convention is like in Fig. 4.1.

Figure 4.10: Pair production of a scalar and a pseudoscalar Higgs. The index
convention is like in Fig. 4.1.
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(a) (b)

Figure 4.11: (a) Vector (Z) boson fusion. (b) Vector (W) boson fusion. The
index convention is like in Fig. 4.1.

Figure 4.12: Yukawa process producing a Higgs. Replacing the hα by a
pseudoscalar Pα′, the Feynman diagram is valid. The index convention is
like in Fig. 4.1.
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Figure 4.13: Gluon gluon fusion giving a Higgs. Replacing the hα by a
pseudoscalar Pα′, the Feynman diagram is valid. The index convention is
like in Fig. 4.1.

(a) (b)

Figure 4.14: Examples of associated production of a Higgs with heavy quarks
where φ can be either a CP-even or a CP-odd Higgs.
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Chapter 5

The µνSSM with an extra U(1)

In this chapter we will analyse the possibility of extending the gauge group
of the µνSSM with an extra U(1) factor. It is based on the results presented
in [16].

Once R-parity is not a symmetry of the model, lepton and baryon number
violating operators are allowed by gauge invariance in the superpotential. If
stringent unnatural bounds are not imposed on certain combinations of the
corresponding couplings, too fast proton decay occurs. There are several
solutions to this problem such as discrete symmetries, like e.g. baryon trial-
ity [103], or arguments based on string theory. In string constructions, the
matter superfields can be located in different sectors or have different extra
U(1) charges, in such a way that some R-parity breaking operators can be
forbidden [104], but others can be allowed.

Another problem is related to the absence of both, an explicit µ term and
an explicit Majorana mass term for neutrinos in the superpotential (2.3) of
the µνSSM, since both type of bilinear terms are allowed by gauge invari-
ance. Again, several solutions are available. The fact that only dimensionless
trilinear terms are present can be explained invoking a Z3 symmetry. An-
other solution comes from string constructions, where the low-energy limit
is determined by the massless string modes. Since the massive modes are
of the order of the string scale, only trilinear couplings are present in the
low-energy superpotential.

Moreover, since the µνSSM superpotential contains only trilinear terms,
it has a Z3 symmetry, just like the NMSSM. Then, one expects to have also
a cosmological domain wall problem [37]. Nevertheless, the usual solution
[37, 38] based on non-renormalizable operators also works in this case.

The aim of this chapter is to solve these three problems adopting a dif-
ferent strategy. In particular, we will add an extra U(1) gauge symmetry
to the gauge group of the SM. In this way, and since all the fields can be

109
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charged under the extra U(1), all the dangerous operators could be forbid-
den without relying in string theory arguments, discrete symmetries or non-
renormalizable operators. In a sense, we substitute the two discrete global
symmetries (R-parity and Z3) of the NMSSM by only one gauge symmetry.

In Section 5.1 we will explain in detail the motivations for extending the
gauge group. In Subsection 5.1.1 we will discuss the proton decay problem
in SUSY and the role of R-parity. In Subsection 5.1.2 we will explain the µ
problem (related to the issue of bilinear terms in the superpotential) and the
domain wall problem. In Section 5.2, we will use the U(1) extra charges of
the matter fields to allow the interesting operators, forbidding the dangerous
ones. We will also impose the anomaly cancellation conditions associated
with the extra U(1) to constrain the values of the U(1) charges. We will
see that the introduction of extra matter is required. Once we have found
consistent assignments of the extra charges (models), in Section 5.3 we will
study their phenomenology concerning the electroweak symmetry breaking.
We will also check for the different models the experimental constraints on
an extra gauge boson and neutrino masses. We will also show how the upper
bound on the lightest Higgs mass is improved in the extra U(1) version of
the µνSSM. Finally, the conclusions of this chapter are left for Section 5.4.

5.1 Motivations

5.1.1 Proton stability in SUSY models and R-parity

In this subsection we will explain the issue of proton decay in SUSY and
the role of R-parity. Let us first focus our attention on the simplest SUSY
extension of the SM, the MSSM (see [7] for a review). The superpotential is
given by:

W = ǫab(Y
ij
u Ĥ

b
2Q̂

a
i û

c
j + Y ij

d Ĥ
a
1 Q̂

b
i d̂

c
j + Y ij

e Ĥ
a
1 L̂

b
i ê

c
j) − ǫab µĤ

a
1 Ĥ

b
2. (5.1)

It contains Yukawa terms for generating charged fermion masses and an
explicit µ term required by phenomenology. There are also other renormal-
izable, gauge invariant terms allowed by SUSY that do not appear in (5.1).
They violate either lepton or baryon number and are given by:

W∆L=1 = ǫab(λ
′′′ijkL̂a

i L̂
b
j ê

c
k + λ′ijkL̂a

i Q̂
b
j d̂

c
k + µiL̂a

i Ĥ
b
2) (5.2)

W∆B=1 = λ′′ijkûc
i d̂

c
j d̂

c
k (5.3)

If both type of terms are allowed in the superpotential, a phenomenological
problem arises since the L or B violating processes associated to these opera-
tors have not been detected in nature. The most strict restriction comes from
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the non-observation of proton decay [105]. The experimental lower bound
on its lifetime is τproton ≥ 1032 years. Many other processes also give strong
constraints on the violation of lepton and baryon numbers [106, 107]. For
evading too fast proton decay mediated by the interchange of squarks with
masses of the order of the EW scale (see for example Figure 5.1), very strin-
gent bounds on certain combinations of the B or L violating couplings have
to be imposed as e.g. λ′112λ

′′
112 ≤ 2 × 10−27 [108]. As this seems unnatural,

one usually forbids at least one type of the dangerous operators.

Figure 5.1: p→ e+π0 Other possible decay processes of the proton would be
p→ e+K0 , p→ µ+π0 , p→ µ+K0 , p→ νK+ , p→ νπ+ etc...

Note that in the SM, L and B are accidental anomalous global symmetries
since the gauge symmetry does not allow for L- or B-violating terms in the
Lagrangian. One of the goals of this chapter is to protect the proton of
decaying in the µνSSM only with the gauge symmetry.

The most popular option in SUSY to protect the proton of decaying is
to use a discrete symmetry called R-parity [10] (Rp = (−1)R with R = 1 for
SM particles and R = −1 for SUSY particles) that forbids both L- and B-
violating renormalizable operators at the same time. Nevertheless, in SUSY
models with conserved R-parity there are dimension-five non-renormalizable
operators of the type QQQL, QQQH1, Qu

cecH1 that violate L and/or B.
They are suppressed by one power of the energy scale until the theory is
valid (for example the GUT scale) but could induce too fast proton decay
if the couplings are of order one. So, in this sense, the R-parity conserving
models do not evade a certain fine-tuning to prevent fast proton decay [109].
The most important feature of R-parity is that in all vertex of a Feynman
diagram, there have to be an even number of SUSY particles. Then, the
LSP is stable and if it is electrically neutral and colourless, it is a good DM
candidate.

In spite of these nice features, R-parity, as a discrete global symmetry,
seems not to be a fundamental symmetry. Gauge symmetries have been
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proved to be very useful, with the application of the gauge principle for ex-
plaining the distance forces and to build the SM of particle physics. Moreover,
global symmetries can be violated by quantum gravitational effects [110].

Other discrete symmetries as lepton parity or baryon triality [103] can
forbid proton decay allowing respectively B- or L-violating couplings. There-
fore, R-parity is not an essential ingredient of low energy supersymmetry.
In addition, R-parity is not a minimal approach to solve the proton decay
problem since it forbids both L and B-violating operators at the same time.

As the µνSSM violates R-parity and L-violating operators are required
by phenomenology, the issue of proton stability should be addressed. Several
solutions are available: discrete symmetries such as baryon triality, or string
theory arguments. In string constructions, the matter superfields can be lo-
cated in different sectors or have different extra U(1) charges, in such a way
that some R-parity breaking operators can be forbidden [104], but others can
be allowed. In this chapter we will ensure proton stability in the context of
quantum field theory without appealing to discrete symmetries. This will be
accomplished adding an extra U(1) gauge group that forbids all renormal-
izable B-violating operators. The proton is thus protected from decaying in
the same way that in the SM, by the gauge symmetry. In addition, in the
model found, all dimension-five B-violating operators are forbidden by the
extra U(1). The addition of an extra U(1) gauge symmetry to SUSY models
for addressing the proton stability problem has been extensively considered
in the literature [30, 31].

5.1.2 Forbidding bilinear operators. The domain wall

problem

Let us remind that the µ problem [8] of the MSSM, related to the presence
of the bilinear term µH1H2 in the superpotential (5.1), is one of the main
motivations of the µνSSM. Being the only bilinear term appearing in (5.1),
µ is the only superpotential parameter of the MSSM with mass dimension.

For phenomenological reasons concerning the correct EW breaking, the
dimensionful parameter µ has to be of the order of the EW scale O(102 GeV).
On the other hand, being a superpotential term, there is not a reason for µ
to be of this order of magnitude since in principle, a bare µ term is not linked
to the SUSY or EW breaking scale. The natural value of µ would be the
energy scale until the theory remains valid, e.g. the GUT scale O(1016 GeV)
or the Planck scale O(1019 GeV). This apparent contradiction between the
theoretical and the phenomenological expectations on the order of magnitude
of the µ term is what is called the µ problem of SUSY. Note that the presence
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of a µ term or a term playing a similar role on the superpotential of SUSY
models is necessary for two phenomenological reasons. On one hand, if µ = 0
the superpotential (5.1) would have a global U(1) symmetry H1,2 → eiαH1,2

spontaneously broken by the VEVs of the Higgses giving rise to an undetected
massless Goldstone boson. On the other hand, if the µ term would vanish,
charginos would be lighter than current experimental bounds [111]. When
minimizing the MSSM scalar potential the following equation arises:

µ2 =
m2

Hd
−m2

Hu
tan2 β

tan2 β − 1
− 1

2
m2

Z . (5.4)

We can see from (5.4) that µ has to be O(102 GeV) since the terms on the
right side are of the order of the EW scale (or soft SUSY breaking scale).

In general, the solutions to the µ problem appearing in the literature
try to generate an effective µ term from the breaking of a symmetry for
explaining the smallness of µ. For example, it is usual to link the generation
of the µ term with the breaking of SUSY, but this approach depends on the
nature of the hidden sector and on the mechanism of transmission to the
visible sector (see e.g. [112, 113]). Other solutions to the µ problem have
been proposed at low energy, linking the generation of an effective µ term
with the EW breaking. In this context, the NMSSM [29], suggests to extend
the particle content of the MSSM with an extra gauge singlet superfield Ŝ.
The superpotential is given by the following expression (for simplicity we
suppress color, family and SU(2) indices):

W = YuĤ2Q̂û
c + YdĤ1Q̂d̂

c + YeĤ1L̂ê
c − λŜĤ1Ĥ2 +

1

3
κŜŜŜ. (5.5)

The µ problem is solved since all the terms in (5.5) are trilinear. An effec-
tive µ term, µeff = λ 〈S〉 arises when the scalar component of the singlet
superfield takes a VEV in the EW breaking, naturally of the order of the
EW scale as required by phenomenology. The last term in (5.5), allowed
by all symmetries, is required by phenomenology since it evades the prob-
lem of an undetected Goldstone boson associated to a global U(1) symmetry
H1H2 → eiαH1H2 , S → e−iαS that would be spontaneously broken by the
VEVs of the Higgses. In the NMSSM, the absence of an explicit µ term is
supported invoking a discrete Z3 symmetry under which all the superfields
transform as: φ̂→ ei2π/3φ̂, only allowing trilinear terms.

Then, the NMSSM is expected to have a cosmological domain wall prob-
lem [37] since the Z3 symmetry would be spontaneously broken during the
EW phase transition in the primitive universe. Due to the existence of causal
horizons in the universe in evolution, the formation of domains of different
degenerate vacua separated by domain walls takes place. These walls would
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have a surface energy density given by σ ∼ (〈S〉)3, where 〈S〉 is of the or-
der of the EW scale, that could dominate the energy density of the universe
giving rise to large anisotropies in the cosmic microwave background incom-
patible with the observational results. There are solutions available to this
problem in the NMSSM that can be applied in a similar way to the µνSSM
since this model could also suffer from this problem. Non-renormalizable op-
erators that break explicitly the dangerous Z3 symmetry could be added to
the superpotential [37, 38] lifting the degeneracy of the three original vacua.
This can be done without reintroducing hierarchy problems and choosing
these operators small enough as not to alter the low-energy phenomenology.
Another option is to add an extra U(1) factor to the gauge symmetry of the
model that would embed the discrete Z3 symmetry and prohibiting the dan-
gerous term 1

3
κŜŜŜ as well as the explicit µ term solving the domain wall

problem. The Goldstone boson that would appear without the term 1
3
κŜŜŜ

is eaten by the Z ′ in the EW breaking to provide its longitudinal component.

Concerning U(1)SSM like-models, there is a vast amount of literature
[115]. In the U(1)SSM, the solution to the µ problem is similar to the one of
the NMSSM in the sense that the effective µ term is also generated through
the VEV of the scalar component of an extra singlet superfield. The difference
between these two models consists of the symmetry that forbids the explicit
µ term. In the U(1)SSM, instead of using a discrete Z3 symmetry, an extra
U(1) gauge symmetry embedding Z3 is used and the domain wall problem
is solved. The anomaly cancellation conditions for the extra U(1) usually
imply the addition of exotic matter to the spectrum.

The µνSSM also solves the µ problem generating an effective µ term
through the VEVs of gauge singlets, in this case, right-handed sneutrinos. A
superpotential term λiν̂c

i Ĥ1Ĥ2 is used, neutrino data is reproduced, and no
extra singlet superfields are added to the spectrum. As in the NMSSM, the
symmetry invoked to forbid the explicit µ term is a Z3 discrete symmetry and
consequently, the µνSSM is expected to have the same domain wall problem.
Nevertheless, the usual solution with non-renormalizable operators work in
the same way that in the NMSSM. Anyway, it is also interesting to extend
the gauge group of the µνSSM with an extra U(1) factor for embedding the
Z3 symmetry and solve the domain wall problem.

Summarizing, we have interesting motivations for extending the gauge
group of the µνSSM. In the following we will study the extension with a
U(1) factor for selecting the terms allowed in the superpotential. With the
anomaly cancellation conditions we will determine the extra charges of the
particles and we will see that exotic matter has to be added to the spectrum.
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5.2 Anomaly cancellation conditions

The idea of extending the gauge group of the SM has been extensively anal-
ysed in the literature in many different frameworks (see [114] for early ex-
amples). In the context of SUSY, we have already mentioned U(1)SSM-type
models [115]. There are restrictive experimental bounds to the extension
with an extra U(1) factor deduced from direct searches of a new gauge boson
Z ′ at Tevatron, precision indirect tests at the Z-pole performed in LEP2 or
weak neutral current experiments. These bounds depend on the couplings of
the Z ′ of the specific model considered but, in general, the lower limit on the
mass of the Z ′ [116] and the upper limit to the mixing between the Z and
the Z ′ [117] are usually estimated to be respectively MZ′ > (500− 800 GeV)
and R < O(10−3).

In the following, we will work with the gauge group of the SM adding an
extra U(1),

SU(3)C × SU(2)L × U(1)Y × U(1)extra. (5.6)

With this extra U(1) we will select the terms that will be allowed in the
superpotential and we will prohibit the terms that could lead to phenomeno-
logical problems as we have already explained in Section 5.1. We will see that,
except in the case not considered here where certain superpotential couplings
are prohibited at the tree-level [118], the cancellation of the gauge anomalies
associated to the extra U(1) forces the introduction of exotic matter to the
spectrum. We will search for a model with minimal extra matter content
that selects adequately all the terms allowed in the superpotential. With the
anomaly cancellation conditions we will constrain the extra charges.

The matter content of the µνSSM with three families of quarks and lep-
tons has the following representation under the gauge group (5.6):

Q(3, 2,
1

6
, QQ) ; uc(3̄, 1,−2

3
, Qu) ; dc(3̄, 1,

1

3
, Qd) ; L(1, 2,−1

2
, QL)

ec(1, 1, 1, Qe) ; νc(1, 1, 0, Qνc) ; H1(1, 2,−
1

2
, QH1

) ; H2(1, 2,
1

2
, QH2

)

(5.7)

where for simplicity we take the extra charges as family independent.

Now we ask the Yukawa terms Q̂Ĥ1d̂
c, Q̂Ĥ2û

c, L̂Ĥ1ê
c, L̂Ĥ2ν̂

c (that give
tree-level masses to all fermions) and the effective µ term ν̂cĤ1Ĥ2 to be
allowed in the superpotential. Since they have to be invariant under the
U(1)extra, we can obtain five equations for the extra U(1) charges. Using
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these equations we can express five charges in terms of the other three:

Qu = QH1
+Qd −QH2

QQ = −QH1
−Qd

Qe = −2QH1

QL = QH1

Qνc = −QH1
−QH2

. (5.8)

It is worth noticing here that equations (5.8) imply that the lepton num-
ber violating terms, L̂L̂êc and L̂Q̂d̂c, are automatically allowed. Thus to
avoid fast proton decay, the baryon number violating term, ûcd̂cd̂c, should
be forbidden and using (5.8) we obtain:

QH1
6= QH2

− 3Qd. (5.9)

Besides, to forbid the bilinear µ term, µĤ1Ĥ2, one has to impose,

QH1
6= −QH2

. (5.10)

Given (5.8), this implies that the bilinear lepton number violating operator
L̂Ĥ2 is automatically forbidden. In addition, from (5.8) one obtains that
Qνc 6= 0 and, as a consequence, the term that generates the cosmological
domain wall problem, ν̂cν̂cν̂c, is also automatically forbidden. It is worth
noticing here that a Goldstone boson does not appear from the absence of
this term in the superpotential, since the U(1) symmetry is gauged. As a
consequence, the Goldstone boson is eaten by the Z’ in the process of EW
symmetry breaking. Although this effective Majorana mass term, typical
of the µνSSM, is not present now, we will see in the next section that a
generalized seesaw matrix mixing neutrinos with neutralinos can generate
the correct neutrino masses.

Summarizing, selecting the terms allowed in the superpotential, the fol-
lowing conditions on the extra charges are obtained:

Qu = QH1
+Qd −QH2

QQ = −QH1
−Qd

Qe = −2QH1

QL = QH1

Qνc = −QH1
−QH2

QH1
6= QH2

− 3Qd to evade the proton decay problem.

QH1
6= −QH2

to forbid bilinear terms and domain walls.

(5.11)
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Figure 5.2: Feynman diagram of a triangular anomaly.

All realistic models on particle physics have to be free from gauge anoma-
lies in order to satisfy important theoretical requirements as renormalizability
and consistency. In Fig. 5.2 is represented the anomaly Feynman diagram.
In the case of the SM, the values of the hypercharges lead to the cancellation
of the gauge anomalies associated to U(1)Y . In fact, this configuration of the
hypercharges is the only possible one that cancels all the gauge anomalies of
the SM (once we consider the gravitational anomaly). Therefore, we will use
this powerful argument of the cancellation of gauge anomalies to determine
the extra charges of the particles of the µνSSM. We will see that the addition
of exotic matter is needed. This exotic matter should be sufficiently massive
to have escaped detection and the hypercharges have to be chosen in a way
not to spoil the SM anomaly cancellation.

We have six anomaly cancellation equations (see Table 5.1) to determine
the extra charges of the model. Note that we take into account the gravi-

∣∣∣∣∣∣∣∣∣∣∣∣

[SU(3)C ]2 − U(1)extra

∑
Qextra = 0 (color triplets only)

[SU(2)L]2 − U(1)extra

∑
Qextra = 0 (SU(2) doublet fermions only)

[U(1)Y ]2 − U(1)extra

∑
QextraY

2 = 0
U(1)Y − [U(1)extra]

2
∑
Y Q2

extra = 0
[U(1)extra]

3
∑
Q3

extra = 0
[Gravity]2 − U(1)extra

∑
Qextra = 0

∣∣∣∣∣∣∣∣∣∣∣∣

Table 5.1: Anomaly cancellation equations (see e.g. [119]). The sum extends
over all left-handed fermions and antifermions. Qextra generically denotes the
extra charges of the particles.

tational anomaly. We also want to stress that we take the number of Higgs
families, nH , as unknown to be determined with the anomaly conditions.
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Let us analyse the anomaly equation [SU(3)C ]2U(1)extra given in Table
5.1. In the corresponding Feynman diagram, see Fig. 5.2, only color triplets
run in the loop. The anomaly equation reads: 3(2QQ +Qu +Qd) = 0. Using
(5.11) this equation is reduced to QH1

= −QH2
, which does not fulfill (5.10),

thus the bilinear operators would be allowed in the superpotential, spoiling
the solution of the µνSSM to the µ problem. Then, we conclude that exotic
matter with color charge has to be added to the spectrum. On the other
hand, in order not to alter the anomaly cancellation conditions associated
to the SM gauge group, we assume that we have nq generations of exotics
which are vector-like pairs of chiral superfields with opposite hypercharges,
q̂(3, 1, Yq, Qq) and q̂c(3̄, 1,−Yq, Qqc). In addition, to avoid conflicts with ex-
periments, the exotic quarks must be sufficiently heavy to not have been
detected. Then, we add a trilinear effective mass term in the superpotential:

λijk
q ν̂c

i q̂j q̂
c
k. (5.12)

Requiring that this term is allowed by the U(1)extra, i.e. Qνc = −Qq − Qqc ,
and using (5.11), we obtain the relation:

Qq +Qqc = QH1
+QH2

(5.13)

Taking into account this relation together with the equation of cancellation
of the [SU(3)C ]2U(1)extra anomaly, we finally obtain nq = 3.

The [Gravity]2U(1)extra anomaly equation takes the form:

3(6QQ + 3Qu + 3Qd + 2QL +Qe +Qνc) + nH(2QH1
+ 2QH2

)

+3(3Qq + 3Qqc) = 0, (5.14)

and using (5.11) and (5.13) we arrive to (2nH −3)(QH1
+QH2

) = 0 which has
no solution for QH1

6= −QH2
or an integer number of Higgs families. Then we

conclude that we have to add more exotic matter to the spectrum to cancel
the gravitational anomaly. Since we would like to extend the model with the
minimal content of matter, the simplest option is to add a third degree of
freedom on the extra charges, with ns generations of singlets under the SM
gauge group, ŝ(1, 1, 0, Qs), in order not to alter the SM anomaly cancellation.
Being a singlet under the SM gauge group, it would only interact through
the gravitational interaction or through its extra U(1) charge. As there is a
high lower bound to the mass of the Z ′ this extra singlet would have escaped
experimental detection and no mass term is needed in the superpotential.

In the [SU(2)L]2U(1)extra anomaly equation, only SU(2)L doublets run in
the loop and takes the form:

3(3QQ +QL) + nH(QH1
+QH2

) = 0 (5.15)
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and using (5.11) we obtain Qd = nH−6
9
QH1

+ nH

9
QH2

. Note that in the case
nH = 3 we would have QH1

= QH2
− 3Qd that leads to B-violating operators

in the superpotential. Therefore, the case nH = 3 is excluded for solving the
proton decay problem. The gravitational anomaly after using (5.11) gives
the value of the extra charge of the extra singlets: Qs = 3−2nH

ns
(QH1

+QH2
).

The anomaly [U(1)Y ]2U(1)extra is given by:

3(6Y 2
QQQ + 3Y 2

uQu + 3Y 2
d Qd + 2Y 2

LQL + Y 2
e Qe + Y 2

ν Qνc)

+nH(2Y 2
H1
QH1

+ 2Y 2
H2
QH2

) + 3(3Y 2
q Qq + 3Y 2

qcQqc) + nsY
2
s Qs = 0

(5.16)

and after using (5.11), (5.13), Ys = 0 and Yqc = −Yq we finally obtain
(9Y 2

q +nH −4)(QH1
+QH2

) = 0. Taking into account QH1
6= −QH2

we obtain

Yq =
√

4−nH

3
. The cases nH = 1, 2 are excluded since Yq takes irrational values.

Values for nH > 4 are also excluded since Yq would be complex. Finally,
the case nH = 4 is excluded since the anomaly equation [U(1)extra]

2U(1)Y

would automatically lead to QH1
= −QH2

. The only option left is nH = 3
with Yq = ±1

3
but we have already seen that the [SU(2)L]2U(1)extra implies

nH 6= 3 for solving the proton decay problem.

We conclude that it is not possible to cancel all the anomalies with only
three new degrees of freedom (Qq, Qqc , Qs). Then, we are forced to introduce
more exotic matter to the spectrum. Before carrying out that analysis in
Subsection 5.2.2, let us suppose that the proton decay problem is solved
with baryon triality or string theory arguments and then study the interesting
solution with nH = 3 and Yq = ±1

3
in the next subsection.

5.2.1 An U(1)extra extension with B-violating operators

In this subsection we will study an interesting model that consists of a
U(1)extra extension of the µνSSM with B-violating operators allowed in the
superpotential. This model solves the domain wall problem, forbids bilinear
terms but does not address proton decay. Nevertheless, baryon triality or
string theory arguments could guarantee the stability of the proton.

Let us recall that this model has nq = 3 extra color triplets, vector-like un-
der the SM gauge group q̂(3, 1, Yq, Qq) and q̂c(3̄, 1,−Yq, Qqc) with Qq +Qqc =
QH1

+ QH2
as well as ns generations of SM singlets. The anomaly equa-

tion [U(1)Y ]2U(1)extra gives nH = 3 and Yq = ±1
3
. The [SU(2)L]2U(1)extra

anomaly equation gives QH1
= QH2

− 3Qd and the gravitational anomaly
leads to Qs = −3

ns
(QH1

+ QH2
). The [U(1)extra]

2U(1)Y is quadratic on the
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extra charges and is given by:

3(6YQQ
2
Q + 3YuQ

2
u + 3YdQ

2
d + 2YLQ

2
L + YeQ

2
e + YνQ

2
νc)

+3(2YH1
Q2

H1
+ 2YH2

Q2
H2

) + 3(3YqQ
2
q + 3YqcQ2

qc) + nsYsQ
2
s = 0

(5.17)

and after substituting all the variables known we would obtain a complicate
expression for Qq in terms of QH1

and QH2
and using Qq +Qqc = QH1

+QH2

we would also obtain an expression for Qqc as a function of QH1
and QH2

.
Finally, the anomaly equation U(1)3

extra is cubic in the extra charges:

3(6Q3
Q + 3Q3

u + 3Q3
d + 2Q3

L +Q3
e +Q3

νc) + 3(2Q3
H1

+ 2Q3
H2

)

+3(3Q3
q + 3Q3

qc) + nsQ
3
s = 0 (5.18)

and after replacing all the variables known we obtain 3(27n2
s+9(n2

s−36))
36n2

s
(QH1

+

QH2
)3 = 0. The only way for solving this equation with QH1

6= −QH2
is to

impose ns = 3. Note that with the six anomaly cancellation equations we
have been able to solve all the extra charges in terms of two of them, QH1

and QH2
. At the same time we have been able to determine the number of

generations and hypercharges of the exotic matter in a unique way. For the
complete determination of the extra charges, in this class of U ′(1) extensions
of SUSY models, it is usual to impose additional conditions. The value ofQH2

in terms of QH1
can be obtained imposing that the bases of the hypercharge

and the extra charge have to be orthogonal, that is Tr[Y Y ′] = 0. The
normalization factor, that is, the numerical value of QH1

can be obtained
imposing Tr[Y 2] = Tr[Y ′2]. We will explain in more detail why to use such
additional conditions in Subsection 5.2.2.

For definiteness, here we present the values of the extra charges up to the
normalization factor for the case Yq = 1

3
:

QH2
= 4QH1

, QQ = −2QH1
, Qu = −2QH1

, Qd = QH1
, QL = QH1

Qe = −2QH1
, Qνc = −5QH1

, Qq = QH1
, Qqc = 4QH1

, Qs = −5QH1

(5.19)

This model is an interesting U ′(1) extension of the µνSSM since it has the
minimal matter content and the solution is unique. It also has the nice
feature of having three generations of Higgses as well as three generations
of exotic matter. The superpotential of the model taking into account all
renormalizable gauge invariant terms, neglecting generation, color and SU(2)
indices and omitting the corresponding couplings is given by:

W = H2Qu
c +H1Qd

c +H1Le
c +H2Lν

c +QLdc + LLec

+ ucdcdc + LH2s+ νcH1H2 + νcqqc + sH1H2 + sqqc

+ ucqcqc +Qqq +QLqc +QH1q
c + νcqdc + sqdc (5.20)
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Let us briefly remark that, as the extra singlets have the same quantum
numbers as the right-handed neutrinos and they couple in the same way
in the superpotential, these three generations of exotic singlets are in fact
three more generations of right-handed neutrinos. Nevertheless, one could
imagine that those six generations are in fact 3+3 generations that could be
distinguished by some high-energy extra U(1) gauge group, perhaps coming
from the compactification of a string model [104].

It is interesting to note that this model could serve as the starting point
to construct a SUSY model with SCPV having a complex CKM matrix ex-
plaining the recent experimental results from BABAR [53] and BELLE [54]
and being in agreement with the EDMs bounds and with the experiments
with K mesons. As it is explained in Chapter 3, SCPV is an alternative
to the usual CKM mechanism (that is, with explicit CP violation through
complex Yukawas) for explaining the CP violation measured experimentally
in the quark sector. In Chapter 3 it is demonstrated that the µνSSM can
violate CP spontaneously at the tree-level. The main drawback of SUSY
models with SCPV is that, in general, the CKM matrix is real since the
complex phases of the VEVs are not transmitted to the quark sector due to
the fact that these phases can be reasorbed. A real CKM matrix has been
recently excluded in [52]. In [57] a SUSY model with SCPV where a complex
CKM matrix arises is built adding to the spectrum exotic quarks vector-like
under the SM gauge group that couple to the ordinary quarks of the SM. In
principle, a similar study could be performed with the model presented here.
This is out of the scope of this Thesis, but this analysis is left for a future
work.

5.2.2 The U(1)extra extension of the µνSSM

We have seen before Subsection 5.2.1 that with three extra degrees of freedom
in the extra charges it is not possible to cancel all the anomalies prohibiting
at the same time B-violating and bilinear operators. Then, we have to add
more exotic matter. As we would like to find the model with minimal matter
content, we have tried to find a model with four extra degrees of freedom
in the extra charges. We have not found any viable model. Here we only
summarise our results:

• Exotic matter: nq1
and nq2

generations of color triplets vector-like
q̂1(3, 1, Y1, Qq1

), q̂c
1(3̄, 1,−Y1, Qqc

1
), q̂2(3, 1, Y2, Qq2

) and q̂c
2(3̄, 1,−Y2, Qqc

2
).

In this model with two types of color triplets with effective mass terms
in the superpotential ν̂cq̂1q̂

c
1 and ν̂cq̂2q̂

c
2, we have checked that it is not

possible to cancel all the anomaly equations associated to the extra
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U(1) with QH1
6= −QH2

.

• Exotic matter: nq generations of color triplets vector-like q̂(3, 1, Yq, Qq)
and q̂c(3̄, 1,−Yq, Qqc), nl and ns generations of SU(2)L doublets and

singlets respectively l̂(1, 2, 0, Ql) and ŝ(1, 1, 0, Qs) with vanishing hy-
percharge to not spoil the anomaly cancellation of the SM. It is possible
to cancel all the anomaly equations with QH1

6= −QH2
but without a

mass term in the superpotential for the extra doublets.

• Exotic matter: nq generations of color triplets vector-like q̂(3, 1, Yq, Qq)
and q̂c(3̄, 1,−Yq, Qqc) and ns generations of two types of singlets un-
der SU(3)C ×SU(2)L with non-vanishing and opposite hypercharge to
not spoil the SM anomaly cancellation (for vanishing hypercharge it
is impossible to cancel all the anomalies). As the singlets have non-
zero hypercharge, they have to be sufficiently massive to have not been
detected. If we impose to have an effective mass term in the super-
potential of the type ν̂cŝ1ŝ2 we have checked that it is not possible to
cancel all the anomaly equations with QH1

6= −QH2
.

• Exotic matter: nq generations of color triplets vector-like q̂(3, 1, Yq, Qq)
and q̂c(3̄, 1,−Yq, Qqc) and nl generations of two type of SU(2)L doublets
with opposite hypercharges to not spoil the SM anomaly cancellation
l(1, 2, Yl, Ql) and lc(1, 2,−Yl, Qlc) with effective mass terms in the su-
perpotential ν̂cq̂q̂c and ν̂c l̂l̂c. In this case the gravitational anomaly,
after substitutions, takes the form (2nH +2nl−3)(QH1

+QH2
) = 0 and

can not be satisfied for QH1
6= −QH2

and integer number of families.

We have demonstrated that with four extra variables in the extra charges,
it is not possible to cancel all the anomalies selecting the adequate super-
potential terms at the same time. Then, with five extra variables on the
extra charges there are various possibilities. Here we only present the model
that we consider the simplest U(1)extra extension of the µνSSM with mini-
mal exotic matter content. This model has the following extra matter: nq

generations of color triplets vector-like under the SM gauge group

q(3, 1, Yq, Qq) , q
c(3̄, 1,−Yq, Qqc), (5.21)

nl generations of SU(2)L doublets vector-like

l(1, 2, Yl, Ql) , l
c(1, 2,−Yl, Qlc) (5.22)

and ns generations of singlets

s(1, 1, 0, Qs). (5.23)
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As the exotic triplets and doublets have to be sufficiently massive to evade
experimental detection, we include effective mass terms in the superpotential

λqν̂
cq̂q̂c + λlν̂

c l̂l̂c (5.24)

giving rise to two additional equations:

Qq +Qqc = QH1
+QH2

Ql +Qlc = QH1
+QH2

. (5.25)

We will see that the exotic singlets do not couple in the superpotential and
do not play any role in the breaking of the EW symmetry. The presence of
these extra singlets in the spectrum is not unexpected from a string theory
point of view because, when string theory models are constructed for trying
to reproduce the SM at low energies, extra singlets usually appear [120].

Now, we will follow the anomaly equations to determine the unknown ex-
tra charges, the numbers of generations and the hypercharges of the exotics.
Let us remind that with the selection of the allowed terms in the superpoten-
tial we arrived to a system of equations for the extra charges of the particles
of the spectrum (5.11). The five extra charges of the exotic matter add three
more unknowns once we take into account the two equations for having effec-
tive mass terms in the superpotential (5.25). The number of Higgs families
nH as well as the numbers of exotic matter generations are also taken as
unknowns, the same as the hypercharges of the extra triplets and doublets.
The [SU(3)C ]2U(1)extra anomaly equation gives

nq = 3. (5.26)

The [SU(2)L]2U(1)extra anomaly equation, after using (5.11) and (5.25) leads
to

Qd =
nH + nl − 6

9
QH1

+
nH + nl

9
QH2

. (5.27)

Note that the condition QH1
6= QH2

− 3Qd to forbid B-violating operators
gives a constraint for the numbers of generations nH + nl 6= 3. The gravita-
tional anomaly after using (5.11), (5.25)-(5.27) gives:

Qs =
3 − 2nH − 2nl

ns
(QH1

+QH2
). (5.28)

The [U(1)Y ]2U(1)extra, after substitutions, leads to (18Y 2
q +4nlY

2
l +nl+2nH−

8)(QH1
+QH2

) = 0 giving the following restriction:

18Y 2
q + 4nlY

2
l = 8 − nl − 2nH . (5.29)
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∣∣∣∣∣∣∣∣

nH 1 1 1 1 2 2 3 2 3
nl 3 3 4 4 2 2 1 2 1
Yq ±2

5
0 ±1

3
±1

9
±1

5
±1

3
±2

9
0 0

Yl ± 1
10

±1
2

0 ±1
3

±2
5

0 ±1
6

±1
2

±1
2

∣∣∣∣∣∣∣∣

Table 5.2: Number of generations of Higgses and extra doublets, and hyper-
charges that solve the [U(1)Y ]2 − U(1)extra anomaly equation.

Note that the left-hand side of equation (5.29) is a sum of positive quantities
and we can deduce an upper bound on the numbers of generations given by:

nl + 2nH ≤ 8 (5.30)

We can study (5.29) searching for reasonable rational values of the hyper-
charges. The solutions are presented in Table 5.2.

The [U(1)extra]
2U(1)Y anomaly equation is quadratic in the extra charges:

3(6YQQ
2
Q + 3YuQ

2
u + 3YdQ

2
d + 2YLQ

2
L + YeQ

2
e + YνQ

2
νc) + nH(2YH1

Q2
H1

+
2YH2

Q2
H2

) + nq(3YqQ
2
q + 3YqcQ2

qc) + nl(2YlQ
2
l + 2YlcQ

2
lc) + nsYsQ

2
s = 0. For

each set of solutions appearing in Table 5.2 and using (5.11), (5.25)-(5.27),
we can solve the value of Qq as a complicate function of QH1

, QH2
and Ql

and using (5.25) we can obtain Qqc in terms of the same variables.
The [U(1)extra]

3 anomaly equation is cubic in the extra charges: 3(6Q3
Q +

3Q3
u +3Q3

d +2Q3
L +Q3

e +Q3
νc)+2nH(Q3

H1
+Q3

H2
)+3nq(Q

3
q +Q3

qc)+2nl(Q
3
l +

Q3
lc) + nsQ

3
s = 0. For each set of values (nH , nl, Yq, Yl) that satisfies the

[U(1)Y ]2U(1)extra anomaly equation we obtain the value of Ql in terms of
QH1

and QH2
and using (5.25) we obtain Qlc in terms of QH1

and QH2
. The

only set of values (nH , nl, Yq, Yl) in Table 5.2 that give rise to rational values
for Ql and Qlc are:

• nH = 1, nl = 3, ns = 6, Yq = ±2
5
, Yl = 1

10
with two distinct solutions

for Ql.

• nH = 1, nl = 3, ns = 6, Yq = 0, Yl = ±1
2

with two distinct solutions
for Qq.

It is worth noticing here that, although at the end we are left with the six
different solutions (models) discussed above, we will see in the next section
that all of them give rise to the same phenomenology at low energies. This is
because the six models only differ in the extra charges and hypercharges of
the exotic matter, and this matter does not play any role in the EW breaking.

We have then obtained all the extra charges in terms of two of them, QH1

andQH2
. For rational values ofQH1

and QH2
we obtain rational values for the
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rest of extra charges. For definiteness, we add two additional conditions for
the complete determination of the extra charges. First, we impose that the
bases of the hypercharge and the extra charge are orthogonal. This means
Tr[Y Q] = 0. This condition gives us QH2

= 6QH1
. Second, we impose the

normalization condition for the extra charges Tr[Q2] = Tr[Y 2] as is done in
[31]. This condition is not physical since the relevant quantity is the product
of the extra gauge coupling constant g′1 times the normalization factor. The
normalization factor is irrational but this is irrelevant. With this condition
we obtain the numerical value of QH1

and consequently, the numerical values
of all the extra charges. We present these values in Tables 5.3 and 5.4, where

the normalization factor is given by N =
√

3
2426

.

∣∣∣∣
QH1

= 3 N QH2
= 18 N QQ = −31

3
N Qu = −23

3
N Qd = 22

3
N

QL = 3 N Qe = −6 N Qνc = −21 N Qs = −35
2
N

∣∣∣∣

Table 5.3: Values of the U(1)extra charges for the Standard Model content of
the µνSSM and for the extra singlets.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Qq Qqc Ql Qlc

257
30 N 373

30 N 19
15N 296

15 N Model 1: Yq = 2
5 , Yl = 1

10 , Ql = 1
45 (−5QH1

+ 4QH2
)

173
30 N 457

30 N 271
15 N 44

15N Model 2: Yq = 2
5 , Yl = 1

10 , Ql = 1
45 (31QH1

+ 40QH2
)

373
30 N 257

30 N 19
15N 296

15 N Model 3: Yq = − 2
5 , Yl = 1

10 , Ql = 1
45 (−5QH1

+ 4QH2
)

457
30 N 173

30 N 271
15 N 44

15N Model 4: Yq = − 2
5 , Yl = 1

10 , Ql = 1
45 (31QH1

+ 40QH2
)

7
2N 35

2 N 19
3 N 44

3 N Model 5: Yq = 0, Yl = 1
2 , Qq = 1

6 (QH1
+ QH2

)
35
2 N 7

2N 19
3 N 44

3 N Model 6: Yq = 0, Yl = 1
2 , Qq = 5

6 (QH1
+ QH2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Table 5.4: Values of the U(1)extra charges for the extra triplets and doublets
added to the Standard Model spectrum of the µνSSM, for the six solutions
of the [U(1)extra]

3 anomaly equation.

Summarizing, we have found six interesting models with the following
exotic matter: three generations of vector-like color triplets with respect to
the SM gauge group (5.21), three generations of SU(2)L doublets (5.22), and
six generations of SM singlets (5.23). The superpotential is given by:

W = ǫab(Y
ij
u Ĥ

b
2Q̂

a
i û

c
j + Y ij

d Ĥ
a
1 Q̂

b
i d̂

c
j + Y ij

e Ĥ
a
1 L̂

b
i ê

c
j + Y ij

ν Ĥ
b
2L̂

a
i ν̂

c
j )

− ǫabλ
iν̂c

i Ĥ
a
1 Ĥ

b
2 + ǫab(λ

′ijkQ̂a
i L̂

b
j d̂

c
k + λ

′′′ijkL̂a
i L̂

b
j ê

c
k)

+ λijk
q ν̂c

i q̂j q̂
c
k + ǫabλ

ijk
l ν̂c

i l̂
a
j (l̂

b
k)

c (5.31)
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Let us now make a few comments on the hypercharges of the extra matter.
In this model, the hypercharges of the exotic matter lead to non-standard
fractional electric charges. This issue has been discussed for example in
[121], and references therein. In the case of the exotic triplets, they could
form colour-neutral fractionally charged states since the triplets can bind. In
principle, the existence of stable charged states could create conflicts with
cosmological bounds. Thermal production of these particles would overclose
the Universe unless their masses are below a few TeV [122, 123]. In mod-
els with non-standard extra triplets, the lightest colour-neutral fractionally
charged state will be stable due to electric charge conservation. The estima-
tion of its relic abundance contradicts limits on the existence of fractional
charge in matter which is less than 10−20 per nucleon [123]. Thus, avoiding
such fractionally charged states is necessary. A possible mechanism to carry
it out is inflation. The inflationary period would dilute these particles. For
this to happen, the reheating temperature TRH should be low enough not to
produce them again. This reheating temperature must be smaller than 10−3

times the mass of the particles [124]. In our case, since the exotic triplets
have masses of the order of the TeV scale (given by λijk

q νc
i ), we should have

TRH < 1 GeV. This, in principle is possible since the only constraint on this
temperature is that it has to be larger than 1 MeV not to spoil the successful
nucleosynthesis predictions.

Let us finally recall that R-parity conserving models still need some fine-
tuning to agree with the experimental bounds on the proton lifetime since
R-parity does not forbid non-renormalizable dimension five operators that
break baryon or lepton number, and could produce too fast proton decay
if the couplings are of order one [109]. We have checked that in the model
analysed here, there are 43 non-renormalizable dimension five B-violating
operators allowed by the gauge symmetry of the SM such as Q̂Q̂Q̂L̂, ûcûcd̂cêc

or Q̂Q̂Q̂Ĥ1. Nevertheless, all of them are prohibited by the extra U(1). In
this sense, the extra U(1) symmetry is more successful than R-parity to
protect the proton of decaying. It is then clear that the µνSSM with an
extra U(1) is safe from constraints from the non-observation of proton decay
at Super-Kamiokande [105].

In Section 5.3 we will study some relevant aspects of the phenomenology
of this model.

5.3 EW breaking and experimental constraints

In this section we will study the phenomenology of the U(1)extra µνSSM
model presented in Subsection 5.2.2.
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The gauge symmetry SU(3)C × SU(2)L × U(1)Y × U(1)extra has to be
spontaneously broken to SU(3)C × U(1)e.m.. To discuss this breaking we
have first to calculate the neutral scalar potential, which is the sum of three
contributions: F-terms, D-terms and soft terms. Working in the framework
of gravity-mediated SUSY breaking, the soft Lagrangian can be written as:

Lsoft =
1

2
(M3λ̃3λ̃3 +M2λ̃2λ̃2 +M1λ̃1λ̃1 +M ′

1λ̃
′
1λ̃

′
1 + h.c.)

− ǫab[(AuYu)
ijHb

2Q̃
a
i ũ

c
j + (AdYd)

ijHa
1 Q̃

b
i d̃

c
j + (AeYe)

ijHa
1 L̃

b
i ẽ

c
j

+ (AνYν)
ijHb

2L̃
a
i ν̃

c
j + (Aλ′λ′)ijkQ̃a

i L̃
b
j d̃

c
k + (Aλ′′′λ′′′)ijkL̃a

i L̃
b
j ẽ

c
k

− (Aλλ)iν̃c
iH

a
1H

b
2 + (Aλl

λl)
ijkν̃c

i l̃
a
j l̃

kc
b + h.c.]

− [(Aλqλq)
ijkν̃c

i q̃j q̃
c
k + h.c] − [(M2

Q̃
)ijQ̃a∗

i Q̃
a
j + (M2

ũc)ij ũc∗
i ũ

c
j

+ (M2
d̃c)

ij d̃c∗
i d̃

c
j + (M2

L̃
)ijL̃a∗

i L̃
a
j + (M2

ẽc)ij ẽc∗
i ẽ

c
j +M2

H1
Ha∗

1 H
a
1

+ M2
H2
Ha∗

2 H
a
2 + (M2

ν̃c)ij ν̃c∗
i ν̃

c
j + (M2

s̃ )ij s̃∗i s̃j + (M2
q̃ )ij q̃∗i q̃j

+ (M2
q̃c)ij q̃c∗

i q̃
c
j + (M2

l̃
)ij l̃∗i l̃j + (M2

l̃c
)ij l̃ac∗

i l̃ac
j ] (5.32)

Once the EW symmetry is spontaneously broken, the neutral scalars develop
in general the following VEVs:

〈H0
1 〉 = v1, 〈H0

2〉 = v2, 〈ν̃i〉 = νi 〈ν̃c
i 〉 = νc

i .

We have checked that the neutral components of the exotic matter do not
take VEVs in a wide region of the parameter space, where we will concen-
trate. In what follows, it will be enough for our purposes to neglect mixing
between generations in (5.31) and (5.32), and to assume that only one gen-
eration of sneutrinos gets VEVs ν and νc. The extension of the analysis
to all generations is straightforward, and the conclusions are similar. The
expression of the neutral scalar potential is then given by:

< V 0 > =
1

8
(g2

1 + g2
2)(|v1|2 + |ν|2 − |v2|2)2

+
1

2
g′21 (QH1

|v1|2 +QH2
|v2|2 +QL|ν|2 +Qνc |νc|2)2

+ |Yν|2(|v2|2|νc|2 + |v2|2|ν|2 + |ν|2|νc|2)
+ |λ|2(|v1|2|v2|2 + |νc|2|v2|2 + |νc|2|v1|2)
+ (−λY ∗

ν v1ν
∗|v2|2 − λY ∗

ν v1ν
∗|νc|2 + h.c.)

+ M2
L̃
|ν|2 +M2

ν̃c|νc|2 +M2
H1
|v1|2 +M2

H2
|v2|2

+ (AνYνv2νν
c − Aλλν

cv1v2 + h.c.) (5.33)
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We also assume, for simplicity, that there is not CP violation in the scalar
sector and we take all the parameters and VEVs real in (5.33). The four
minimization conditions are:

∂〈V 0〉
∂v1

=
1

4
(g2

1 + g2
2)(v

2
1 + ν2 − v2

2)v1

+ g′21 (QH1
v2
1 +QH2

v2
2 +QLν

2 +Qνcνc2)QH1
v1 + λ2v1(v

2
2 + νc2)

+ M2
H1
v1 − λYνν|v2|2 − λYνν|νc|2 −Aλλν

cv2 = 0

∂〈V 0〉
∂v2

= −1

4
(g2

1 + g2
2)(v

2
1 + ν2 − v2

2)v2

+ g′21 (QH1
v2
1 +QH2

v2
2 +QLν

2 +Qνcνc2)QH2
v2 + Y 2

ν v2(ν
2 + νc2)

+ λ2v2(v
2
1 + νc2) +M2

H2
v2 − 2λYνv1νv2

+ AνYννν
c − Aλλν

cv1 = 0

∂〈V 0〉
∂νc

= g′21 (QH1
v2
1 +QH2

v2
2 +QLν

2 +Qνcνc2)Qνcνc + Y 2
ν ν

c(v2
2 + ν2)

+ λ2νc(v2
1 + v2

2) +M2
ν̃cνc − 2λYνv1νν

c

+ AνYνv2ν − Aλλv1v2 = 0

∂〈V 0〉
∂ν

=
1

4
(g2

1 + g2
2)(v

2
1 + ν2 − v2

2)ν

+ g′21 (QH1
v2
1 +QH2

v2
2 +QLν

2 +Qνcνc2)QLν + Y 2
ν ν(v

2
2 + νc2)

+ M2
L̃
ν − λYνv1v

2
2 − λYνv1ν

c2 + AνYνv2ν
c = 0 (5.34)

Notice that in the last equation in (5.34), ν → 0 when Yν → 0 and since the
Yukawa coupling Yν determines the Dirac mass for the neutrinos, mD ≡ Yνv2,
it has to be very small for reproducing the bounds on neutrino masses. The
smallness of the left-handed sneutrino VEVs for a correct description of the
neutrino sector in the µνSSM has been numerically proved in [43, 44, 14].

We can now approximate the minimization equations neglecting the val-
ues of ν and Yν , and we are left with only three equations. Solving the
minimization conditions for the soft masses in terms of the extra charges,
coupling constants, VEVs, and the parameters λ and Aλλ, one obtains:
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M2
H1

= −1

4
(g2

1 + g2
2)(v

2
1 − v2

2) − g′21 (QH1
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1 +QH2
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2 +Qνcνc2)QH1

− λ2(v2
2 + νc2) + Aλλν

c v2

v1

M2
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1

4
(g2
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2
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2) − g′21 (QH1
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1 +QH2

v2
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− λ2(v2
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c v1
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M2
ν̃c = −g′21 (QH1

v2
1 +QH2

v2
2 +Qνcνc2)Qνc − λ2(v2

1 + v2
2) + Aλλ

v1v2

νc

(5.35)

Note that these equations are equivalent (substituting νc by the VEV of a
singlet scalar) to the minimization conditions for U(1)SSM models, where
correct EW breaking is known to take place.

On the other hand, the VEVs have to satisfy several phenomenological
constraints. First, the mass of the W boson, MW = 1

2
g2
2(v

2
1 + v2

2 + ν2), is well
determined, leading to (v2

1 + v2
2) ≃ (174 GeV)2 when ν is neglected. Second,

the Z boson of the SM and the Z’ boson associated to the U(1)extra are mixed
with a mass-squared matrix given by:

(
M2

Z M2
ZZ′

M2
ZZ′ M2

Z′

)
(5.36)

where the entries are functions of the VEVs, gauge coupling constants and
extra charges:

M2
Z =

1

2
(g2

1 + g2
2)(v

2
1 + v2

2)

M2
Z′ = 2g′21 (Q2

H1
v2
1 +Q2

H2
v2
2 +Q2

νcνc2)

M2
ZZ′ = g′1

√
g2
1 + g2

2(−QH1
v2
1 +QH2

v2
2). (5.37)

Diagonalizing this matrix one obtains the mass eigenstates. The experimen-
tal constraints imply the following bound [117] for the mixing parameter:

R =
(M2

ZZ′)2

M2
ZM

2
Z′

≤ 10−3. (5.38)

In addition, the mass of the heaviest eigenstate should be larger than about
600 GeV [116]. If we also ask the heaviest eigenstate to be lighter than
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2000 GeV in order not to have a very large fine-tuning (and for the Z ′ to be
discovered at present accelerator experiments), then

(600)2 ≤ 1
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1 +Q2
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1 (v2

1 + v2
2)(Q

2
H1
v2
1 +Q2
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v2
2 +Q2

νcνc2)

+g′21 (g2
1 + g2

2)(−QH1
v2
1 +QH2

v2
2)

2]1/2 ≤ (2000)2 (5.39)

From the above equations and Eq. (5.35) it is obvious that the six models
found in Section 5.2 give rise to the same phenomenology at low energies,
since they only differ in the extra charges and hypercharges of the exotic
matter, and this matter does not play any role in the EW breaking.

In order to study the solutions of the equations, we assume the following
reasonable values for the parameters: Aλλ = 0.1 TeV and λ = 0.1, 0.3. For
the sake of definiteness we also take g′1 = g1, together with the extra charges
normalization condition Tr[Y ′2] = Tr[Y 2], 1 < tanβ = v2

v1
< 35, and we

work in the parameter space (νc, tan β). Once imposed the experimental
constraints on the existence of a new gauge boson Z ′, we have checked that
the effect of the bound on the Z − Z ′ mixing is more important than the
bounds on the mass of the heaviest eigenstate, although it is still possible
to find wide allowed regions. The former experimental constraint implies a
lower bound on the VEV of the right-handed sneutrino νc, depending on the
value of tan β. In particular, for λ = 0.3 and tan β = 1, νc must be larger
than 2 TeV. For increasing values of tanβ, the lower bound on νc increases
since it is more difficult to suppress the Z − Z ′mixing. For example, for
tan β = 3 (7), one obtains that νc must be larger than about 4 (4.6) TeV.
For tanβ larger than 7, the lower bound on νc practically does not vary.
Similar results are obtained for λ = 0.1, although in this case a tachyonic
region appears and we always need values of νc larger than 2.5 TeV.

One can translate the constraints on the Z ′ to the plane (M2
H1
,M2

H2
),

finding the allowed region in the parameter space of the soft masses. We
show these regions in Figs. 5.3 and 5.4 for λ = 0.1 and 0.3, respectively.

Once we have shown that the model is phenomenologically viable, let us
focus our attention on the neutralino sector. In the µνSSM with an extra
U(1) gauge symmetry, the MSSM neutralinos mix with the extra gaugino.
The fact that R-parity is broken in this model also produces the mixing of the
neutralinos with left- and right-handed neutrinos. Of course, now we have
to be sure that one eigenvalue of this matrix is very small, reproducing the
experimental results about neutrino masses. In the weak interaction basis
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Figure 5.3: Allowed region by the experimental constraints on the Z ′ in the
plane M2

H1
−M2

H2
for λ = 0.1

defined by ψ0t = (Z̃ ′, B̃0 = −iλ̃′, W̃ 0
3 = −iλ̃3, H̃

0
1 , H̃

0
2 , ν

c, ν), the neutral
fermion mass terms in the Lagrangian are Lmass

neutral = −1
2
(ψ0)tMnψ

0 + h.c.,
with Mn a 7× 7 matrix (11× 11 if we include all generations of neutrinos),

Mn =

(
M m
mt 0

)
, (5.40)

where
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(5.41)

and

mt = (
√

2g′1Qνν , −
1√
2
g1ν ,

1√
2
g2ν , 0 , Yνν

c , Yνv2 ). (5.42)

Using typical values of the soft gaugino masses, and with values for the rest
of parameters in the region allowed by the constraints on the Z ′, we have
checked numerically that correct neutrino masses can easily be obtained, i.e.
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for λ = 0.3

once we diagonalize the neutralino mass matrix, one eigenvalue is sufficiently
small, of the order of 10−2 eV. If we include the three generations in the
analysis we can obtain different neutrino mass hierarchies playing with the
hierarchies in the Dirac masses. For an extensive analysis of the neutrino
sector in the µνSSM see Chapter 3. Although such extensive analysis for
the case of the neutrino sector in the µνSSM with an extra U(1) is beyond
the scope of this Thesis, we can conclude that the neutrino mass generation
mechanism works correctly in this model.

We have also performed an estimation of the tree-level upper bound on
the lightest Higgs mass in this model. Let us recall that the MSSM has a
problem corcerning the mass of the lightest Higgs boson. At tree-level, the
mass of the lightest CP-even MSSM Higgs boson is bounded by the mass
of the Z gauge boson, m2

h ≤ M2
Z cos2 β. This upper bound is considerably

smaller than the experimental lower bound from LEP [80], mh ≥ 114 GeV,
for a SM-like h0. This experimental bound on the lightest Higgs boson mass
does not rule out the MSSM because the upper bound can receive large
radiative corrections, especially from a heavy scalar top but the agreement
with the experimental bound requires certain fine-tuning. The bound on the
lightest Higgs boson mass in the case of the NMSSM is given by (5.43) and
numerically, can be increased to about 110 GeV for λ as large as possible and
tan β ≃ 2, substantially ameliorating the Higgs mass problem of the MSSM
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(here the radiative corrections also help).
Neglecting the small neutrino Yukawa coupling effects, the expression of

the upper bound on the lightest Higgs mass in the µνSSM is equivalent to
that of the NMSSM, once we define λ2 = λ2

1 + λ2
2 + λ2

3, and this is given by
the following tree-level expression [40]:

m2
h ≤M2

Z(cos2 2β +
2λ2 cos2 θW

g2
2

sin2 2β) (5.43)

In the case of extra U(1) supersymmetric models, the upper bound re-
ceives a positive contribution from the extra U(1) sector that is given by
[125]: 2g′1v

2(QH2
cos2 β+QH1

sin2 β)2. Adding the two contributions, we can
write the tree-level expression on the upper bound to the lightest Higgs mass
in the µνSSM with extra U(1) gauge symmetry as:

m2
h ≤M2

Z(cos2 2β +
2λ2 cos2 θW

g2
2

sin2 2β) + 2g′1v
2(QH2

cos2 β +QH1
sin2 β)2.

(5.44)

In the case of the µνSSM, this issue has been analysed in [40] numerically
and the upper bound in this model is tipically of the order of that of the
NMSSM of about 110 GeV. In the case of the µνSSM with extra U(1) gauge
symmetry, we have used (5.44) in order to estimate numerically the upper
bound on the lightest Higgs boson mass in this model. It is clear that the
numerical value of this bound will depend on the unknown value of the extra
gauge coupling constant g′1. Whereas for g′1 ≃ g1 this bound is only raised to
113 GeV, for g′1 ≃ 2g1 it is raised to about 120 GeV. Thus, the addition of an
extra U(1) gauge group to the µνSSM has also the nice feature of increasing
the upper bound on the lightest Higgs mass leading to a larger window for
the discovery of the Higgs at collider experiments.

5.4 Conclusions

In this chapter, we have analysed the possibility of extending the gauge sym-
metry of the µνSSM with an extra U(1) factor. The superpotential of the
µνSSM includes R-parity violating terms (there are L-violating terms that
are phenomenologically necessary) and, just like the NMSSM, can present a
cosmological domain wall problem. One can think that the stability of the
proton can be ensured with baryon triality or string theory arguments and
that the usual solutions to the domain wall problem present in the NMSSM
also work in the case of the µνSSM. In spite of this, we have used an extra
U(1) gauge symmetry to forbid dimension 4 and dimension 5 B-violating
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operators to ensure the stability of the proton and, at the same time to solve
the cosmological domain wall problem. We have searched for consistent mod-
els using the anomaly cancellation conditions to constrain the extra charges
and selecting which terms are allowed in the superpotential. Exotic matter
should be added to the spectrum to cancel all the anomalies and has to be
sufficiently massive to have escaped detection. In particular, three gener-
ations of vector-like color triplets and SU(2)L doublets, as well as six SM
singlets are needed.

We have analysed the electroweak breaking and the consistency with the
experimental bounds on the Z’ finding that the model is phenomenologically
viable in large regions of the parameter space. We have also studied the
neutralino sector of the model. In this model, the MSSM neutralinos mix
with left- and right-handed neutrinos and the extra gaugino also mix giving
rise to an eleven-states neutralino mass matrix. A complete analysis of the
neutrino sector in this model was out of the scope of this work but we have
checked numerically that the experimental bound on neutrino masses can be
easily reproduced probing that the mechanism of neutrino mass generation
works correctly in this model. Finally, we have estimated the upper bound
on the lightest Higgs mass in this model finding that it is improved due to the
extra U(1) contribution and can be raised to about 120 GeV at the tree-level.

It is clear that to complete the study of the phenomenology of this ex-
tension of the µνSSM, much work remains. First, a complete study of the
neutrino sector could be carried out. In particular, it would be interesting to
reproduce numerically the experimental bounds on the neutrino mass differ-
ences and mixing angles, and to explain in an intuitive way how the absence
of the effective Majorana mass term and the presence of the extra gaug-
ino affects the seesaw mechanism in this extension compared to the original
µνSSM. To carry out a complete study of the vacuum of the model in the
general case with three generations of sneutrinos and complex VEVs would
also be interesting. The computation of mass matrices and the spectrum
would also be welcome. Finally, it would be interesting to study the possi-
ble experimental signatures of this extension of the µνSSM. All these issues
deserve to be addressed in future works.



Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this Thesis we have studied the most relevant aspects of the phenomenol-
ogy of a supersymmetric model called µνSSM because the µ problem is solved
connecting it with ν − physics. After the introduction presented in Chapter
1, in Chapter 2 we have explained the motivations for going from the SM
of particle physics to Supersymmetry and once in SUSY we have explained
problems that presents the MSSM and why the µνSSM solves them. After
that, we have reviewed the basics of the model.

As neutrino physics is one of the main motivations of the µνSSM, in
Chapter 3 we have performed a complete analysis of the neutrino sector of
the model at the tree-level based on our results published in [14]. The main
conclusion we can extract from this study is that the µνSSM is able to ac-
commodate in a wide region of the parameter space current experimental
neutrino data even with a diagonal neutrino Yukawa coupling. The see-
saw mechanism is at the TeV scale and is due to the mixing of left- and
right-handed neutrinos with the MSSM neutralinos. We have presented an
intuitive idea of how the seesaw mechanism works in this model and we have
derived approximate analytical equations for the effective neutrino mass ma-
trix. We have also performed a numerical analysis and we have presented our
results with plots of the evolution of mass differences, mixing angles and CP
phases with the inputs always being into the experimental allowed region.

In this chapter we have also carried out a necessary task that is, to com-
plete the study of the vacuum of the model. We have demonstrated both
theoretically and numerically that the vacuum of the µνSSM is in general
complex, that is, the VEVs are in general complex. This CP violation arising
from the Higgs sector can not explain enterely the CP violation measured

135
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in the quark sector since the CKM matrix would be real if the model is not
extended. Nevertheless, extending the Higgs sector with three families of
Higgses or extending the quark sector or allowing for explicit CP violation
in the quark sector, it is possible to generate the CKM phase. Then, having
SCPV in the µνSSM is a nice feature of this model since it can generate
CP-violation for the leptonic sector without extending the model and also
can solve the SUSY phase problem. The SCPV at the tree-level present in
the µνSSM is a very characteristic feature of this model since in general,
SUSY models do not present SCPV at the tree-level. We have computed the
neutral scalar potential and the minimization equations with complex VEVs
and we have performed a numerical analysis of the minimization of the po-
tential finding global minima that break spontaneously CP. Then, we have
shown how these CP phases are transmitted to the lepton sector generating
the Dirac and Majorana phases of the PMNS matrix. If the Dirac phase
would be measured in future experiments, the SCPV origin from the µνSSM
could well explain this measure.

We have also discussed the problem of EDMs in the case of SCPV in
the µνSSM. The two solutions consisting of internal cancellations or the de-
coupling of scalar particles are possible to implement in this model. The
advantage of SCPV respect to explicit CP violation is that the small CP-
phases solution to the EDMs problem is natural since the small CP phases
arise from the electroweak breaking, they are not unnaturally small param-
eters of the Lagrangian.

Since the vacuum of the model and the neutrino sector have been analysed
in this Thesis in Chapter 3 and other important topics like gravitino dark
matter or baryogenesis have been covered in other works, our next aim was to
study in detail the Higgs sector of the model and possible signals at colliders.
In Chapter 4 we have presented an analysis on the collider phenomenology
of the µνSSM focusing our attention on the Higgs sector. This chapter is
based on the results published in [15].

The µνSSM has an extended Higgs sector since sneutrinos are mixed with
doublet Higgses. We have described the mixings in the Higgs sector and how
to suppress them in order to have light singlets safe from collider constraints
or to have the lightest scalar as heavy as possible. For that, relations on the
Aλi

parameters are derived and it is pointed out that there are also other
regions in the parameter space giving rise to small mixings in the Higgs
sector.

After that, an overview of the novelties on the decays of the Higgs sector
of this model has been provided. To distinguish the µνSSM from other SUSY
models, there are two main features. On one hand, the breaking of R-parity
implies the decay of the LSP. Displaced vertices are expected on decays of
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a Higgs leading to the LSP that subsequently decays. These displaced ver-
tices are typical signals of R-parity breaking models in contrast with missing
energy signatures expected in R-parity conserving models. Moreover, the
products of the decays of the lightest neutralino can also serve to distinguish
the µνSSM from other R-parity breaking models since two-body decays of the
lightest neutralino into a Higgs and a neutrino are available in the µνSSM.
On the other hand, as we have already said, the mixing of both left- and
right-handed sneutrinos with doublet Higgses leads to an extended Higgs sec-
tor. Then, more complicated Higgs-to-Higgs cascade decays could be present
in this model than in the NMSSM. This fact can also serve to distinguish
the µνSSM from other R-parity breaking models as the BRpV model where
the Higgs sector does not contain singlets. After presenting the overview
on the decays of the Higgs sector, LEP constraints have been discussed in
the context of the µνSSM. For that, we have computed the couplings of the
Higgs bosons with Z bosons and the sum rules. Also we have reviewed the
production mechanims of Higgses at lepton and hadron colliders.

After that, we have provided benchmark points obtained in numerical
computations where typical signals of the µνSSM are expected and could
arise in the near future at the LHC while all current experimental con-
straints are satisfied. In particular, we have focused our attention first on
the decays of a MSSM-like light Higgs hMSSM with a sizeable branching
ratio to two lightest neutralinos. These neutralinos could decay inside the
detector leading to displaced vertices. This can be used to distinguish the
µνSSM from R-parity conserving models. Besides, the decays can be into
a neutrino and an on-shell light singlet pseudoscalar P , that subsequently
decays into bb̄ (or if kinematically forbidden into τ+τ−). Then, the decay
hMSSM → χ̃0χ̃0 → 2P2ν → 2b2b̄2ν is genuine of the µνSSM. Note that in
other R-parity breaking models as the BRpV, there are not singlet Higgses
and a lightest neutralino lighter than gauge bosons could decay only through
three-body decay processes. Final states with 8 b-jets plus missing energy
are possible in situations where singlet-like scalars are produced first by the
decay of the neutralino, hMSSM → χ̃0χ̃0 → 2h2ν → 4P2ν → 4b4b̄2ν.

We have also studied a case with a spectrum similar to the one of the
MSSM where all CP-even singlet scalars are above 114 GeV and the pseu-
doscalars are heavier than the neutralinos. Then, the MSSM-like Higgs will
decay in a significant ratio to neutralinos, and these will decay only through
three-body processes leading to displaced vertices. In another case the neu-
tralino does not play an important role and only Higgs-to-Higgs cascade de-
cays are relevant. Although displaced vertices are not expected, the decays
hMSSM → 2P → 2b2b̄, hMSSM → 2h → 4P → 4b4b̄ are possible, allowing
to distinguish the µνSSM from other R-parity violating models. Besides,
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once a SUSY particle is produced at the collider, decaying into the LSP,
the displaced vertex will allow to distinguish the µνSSM from the NMSSM.
Finally, we have studied a case where for singlet-like pseudoscalars P1,2 the
decay into bb̄ is kinematically forbidden, but for P3 is allowed. Then, sev-
eral interesting cascade decays are expected without leading to displaced
vertices: hMSSM → 2h1 → 4P1,2 → 4τ+4τ−, hMSSM → 2P3 → 2b2b̄. This
is a genuine feature of the µνSSM. In addition, the following cascades are
possible, with displaced vertices and missing energy: hMSSM → χ̃0χ̃0 →
2P1,22ν → 2τ+2τ−2ν, hMSSM → χ̃0χ̃0 → 2h1,2,32ν → 4P1,22ν → 4τ+4τ−2ν,
hMSSM → χ̃0χ̃0 → 2P32ν → 2b2b̄2ν. In conclusion, the above discussion
gives us the idea that extremely characteristic signals can be expected in
certain regions of the parameter space of the µνSSM.

We have also emphasized that in the µνSSM the gravitino could be a
viable dark matter candidate, accessible to indirect detection experiments,
and without altering the collider phenomenology. In particular, the branch-
ing ratio of neutralino into gravitino-photon turns out to be negligible.

The µνSSM solves the µ problem of the MSSM and generates correct neu-
trino masses by simply using right-handed neutrino superfields. This mech-
anism implies that only dimensionless trilinear terms, breaking R-parity, are
present in the superpotential. The non-presence in the superpotential of
proton decay operators breaking R-parity, a trilinear term generating a do-
main wall problem, and bilinear terms such as the µ term and the Majorana
masses, can be explained in the µνSSM using string theory arguments, dis-
crete symmetries or non-renormalizable operators. In Chapter 5 we have
used a different strategy, namely an extra U(1) gauge symmetry is added to
the gauge group of the SM. Since all the fields of the µνSSM can be charged
under the extra U(1), all the dangerous operators mentioned above could in
principle be forbidden. We have checked that this is precisely the case. For
example, dimension four and five baryon number violating operators are for-
bidden in the superpotential, ensuring the stability of the proton. Chapter
5 is based on [16].

There, we have extensively explained the motivations for extending the
gauge group and we have performed the analysis of the anomaly equations
to constrain the extra charges, finding that exotic matter should be added
to the spectrum. In particular, three generations of vector-like color triplets
and SU(2)L doublets, as well as six SM singlets are needed. We have found
a minimal model and we have calculated the extra charges and the hyper-
charges of all the particles and the numbers of generations of the exotics.
Then we have studied the phenomenology of the model found, focusing our
attention on the electroweak breaking and the compatibility with the experi-
mental Z ′ constraints. A lot of phenomenological work remains to study this
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extension of the µνSSM but the main conclusions we can extract are that
the proton decay issue and the domain wall problem can be solved with this
U(1) extension since we have found a unique and minimal model that selects
adequately the allowed operators in the superpotential. In a wide region of
the parameter space, the constraints on the existence of a new gauge bo-
son Z ′ can be accommodated and the model presents a correct electroweak
breaking. In spite that the complete analysis of the neutrino sector of this
extension was out of the scope of this Thesis, we have checked that small
neutrino masses compatible with the experimental bounds arise. Another
nice feature of this extension is that the upper limit on the lightest Higgs
mass is increased opening a larger window to the discovery of the Higgs in
accelerator experiments, relaxing the so called little hierarchy problem.

It is clear that, being a relatively new model and due to its complex-
ity, much work remains to complete the study of the phenomenology of the
µνSSM. Nevertheless, being a very well motivated model with characteris-
tic features, it deserves to be extensively analysed. This Thesis has covered
important parts of the phenomenological study as the neutrino sector, the
vacuum, the possibility of SCPV, the collider phenomenology of the Higgs
sector or the extra U(1) extension of the gauge group. In all these issues, the
µνSSM has been proved to be able to agree with experimental data in rele-
vant parts of the parameter space. If the LHC finds in the near future SUSY
particles, the next step would be to try to identify the SUSY model realized
in nature. Then, if R-parity violating signals are detected, the µνSSM would
be one of the best motivated models for being the correct one.

6.2 Outlook

Since the µνSSM is a relatively new model, and for the moment only several
works have studied its phenomenology [1, 40, 43, 44, 45, 14, 46, 15, 47, 16,
11, 12, 50], much work has still to be done for having a complete knowledge
of the model.

Probably the most important part is a complete exploration of the signals
that this model would produce in present and future accelerators. Several
works in this area have been already published (see [15] and references along
this Thesis), but a SUSY model of the complexity of the µνSSM needs more
work in order to do a complete study of the signals that could produce at
a collider. There are two issues that could lead to characteristic signals of
the µνSSM that can differentiate it among other SUSY models. On the one
hand, as R-parity is broken, the study of the decays of the LSP is crucial
since the typical SUSY signals of missing energy could not be present. In the
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case of neutralino LSP, in [43, 44, 45] the decays of the lightest neutralino
were discussed, as well as the correlations of the decay branching ratios with
the neutrino mixing angles. A similar study in the case of squark, slepton or
sneutrino LSP has not been performed and it would be important since in R-
parity breaking models, the LSP can be a charged particle. It is clear that R-
parity breaking signals at colliders would be very welcome for the µνSSM but
this in principle would not allow to distinguish our model from other R-parity
breaking models as the BRpV, except possibly in the µνSSM genuine case
of singlino LSP. For the distinction, probably it would be necessary to focus
the attention on the Higgs sector. An overview of the phenomenology of the
Higgs sector of the µνSSM has been provided in [15]. Different benchmark
points with genuine signals of the µνSSM have been presented there, see
Chapter 4 of this Thesis. We have focused our attention on the decays of
the lightest doublet-like Higgs with a mass of about 120 GeV. It would be
also interesting to study the decays of the heavier doublet-like Higgs, where
complicate Higgs-to-Higgs decay chains could be important. Studies of the
µνSSM with the help of event generators are also necessary.

For the moment, the µνSSM has been only studied within the framework
of gravity mediated SUSY breaking. It would be also interesting to study the
µνSSM within the framework of gauge mediated SUSY breaking or anomaly
mediated SUSY breaking.

The electroweak breaking has been already almost studied, including com-
plex vacua and discarding unphysical or phenomenologically forbidden vacua
in the real case. The mass matrices and the spectrum have also been com-
puted, as well as the Landau pole constraints. The neutrino sector has been
studied in the literature by different groups (see [14] and references along this
Thesis), including tree-level analysis with CP phases and 1-loop analysis. In
what concerns the analysis of complex vacua, it would be interesting to study
extensions of the µνSSM with SCPV that could generate a complex CKM
matrix. In this way all the CP-violation could be originated spontaneously
through complex VEVs and could be transmitted to the quark sector extend-
ing the Higgs sector with three Higgs families or extending the quark sector
having a complex effective CKM matrix. With those extensions the SUSY
phase problem would be solved.

The dark matter issue in the µνSSM is highly relevant since the most
popular dark matter candidate in SUSY, the lightest neutralino, is excluded
because the breaking of R-parity. Gravitino dark matter in the context of
the µνSSM has been studied in the literature but for sure, more work has
still to be done in this area, including other dark matter candidates as the
axion or the axino.

The work performed in Chapter 5 finding an extra U(1) extension of the
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µνSSM [16] has opened a new line of research. In this context, it is clear
that much phenomenological work has still to be done. In particular, all the
phenomenological work carried out for the µνSSM could also be performed for
this extension. The complete analysis of the neutrino sector of this new model
would be highly relevant and slightly different from the one of the original
µνSSM since in the case of the extra U(1) extension, the extra gaugino mix
with the neutralinos giving rise to an 11× 11 neutralino mass matrix and in
addition, there are not effective Majorana mass terms. A complete analysis of
the vacuum would also be welcome, as well as the study of the experimental
signals that could produce this new model at colliders.

Finally, let us summarize saying that if the LHC finds SUSY particles
and therefore the supersymmetric theory is proved to describe nature at the
TeV scale, the next step would be to find which SUSY model is the correct
one. And for this, all well motivated SUSY models should be extensively
studied. In the case of the µνSSM, while much work has already been done,
there remains relevant issues that have to be explored in the near future.

6.3 Conclusiones

En esta Tesis hemos estudiado los aspectos más relevantes de la fenomenoloǵıa
de un modelo supersimétrico llamado µνSSM porque resuelve el problema µ
conectando su solución con la f́ısica de neutrinos. Después de realizar una
breve introducción en el caṕıtulo 1, en el caṕıtulo 2 hemos resumido las
razones para pasar desde el SM de F́ısica de Part́ıculas a la Teoŕıa de Su-
persimetŕıa. Una vez en el contexto de Supersimetŕıa, hemos explicado los
problemas que presenta el MSSM y cómo el modelo µνSSM los ataca. A
continuación, hemos revisado las claves de este modelo.

Debido a que una de las principales motivaciones del µνSSM es la f́ısica
de neutrinos, en el Caṕıtulo 3 hemos realizado un análisis completo del sector
de neutrinos del modelo a nivel árbol basándonos en los resultados publica-
dos en [14]. La principal conclusión que se puede extraer de este estudio
es que el µνSSM es capaz de acomodar en una vasta región del espacio de
parámetros los datos experimentales actuales de neutrinos, incluso con un
acoplo de Yukawa diagonal. El mecanismo del seesaw se realiza a la escala
de enerǵıas del TeV gracias a que tanto los neutrinos levógiros como los
dextrógiros se mezclan con los neutralinos del MSSM. Hemos explicado de
forma intuitiva cómo se realiza el mecanismo del seesaw en este modelo y
hemos calculado ecuaciones anaĺıticas aproximadas para la matriz de masa
efectiva de neutrinos. También hemos realizado el análisis numérico del sec-
tor de neutrinos y hemos presentado nuestros resultados con gráficos de la
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evolución de las diferencias de masa, ángulos de mezcla y fases de CP con los
parámetros libres del modelo, siempre dentro de la región experimentalmente
permitida.

En ese mismo caṕıtulo también hemos realizado una tarea necesaria que
consiste en completar el estudio del vaćıo en este modelo. Hemos demostrado
de forma teórica y numérica que, en general, el vaćıo en el µνSSM es com-
plejo, es decir, los VEVs son en general complejos y a este hecho se le conoce
como Violación Espontánea de CP. Esta violación de CP proveniente del
sector de Higgs no puede explicar la violación de CP medida en el sector de
quarks ya que la matriz CKM seŕıa real si no se extiende de alguna forma
el modelo. Sin embargo, extendiendo el sector de Higgs con tres familias de
Higgses, o extendiendo el sector de quarks, o permitiendo violación expĺıcita
de CP en el sector de quarks, es posible generar la fase de la matriz CKM.
Por lo tanto, el hecho de que el µνSSM presente SCPV es una caracteŕıstica
con implicaciones positivas ya que este mecanismo puede generar violación
de CP en el sector leptónico y también puede resolver el problema de las
fases supersimétricas. La SCPV a nivel árbol que presenta el µνSSM es una
propiedad muy caracteŕıstica de este modelo ya que, en general, los modelos
supersimétricos no presentan SCPV a nivel árbol. Hemos calculado el po-
tencial escalar neutro, las ecuaciones de minimización con VEVs complejos
y hemos realizado un estudio numérico de la minimización del potencial, en-
contrando mı́nimos globales que violan espontáneamente CP. Seguidamente
hemos mostrado cómo se transmiten las fases CP de los VEVs al sector
leptónico generando las fases de Dirac y de Majorana de la matriz PMNS.
Si se consiguiera medir la fase de Dirac en experimentos futuros, una buena
forma de explicar esa violación de CP podŕıa ser a través de SCPV en el
modelo µνSSM.

También hemos discutido el problema de los EDMs en el caso del SCPV
µνSSM. Las dos soluciones a este problema, cancelaciones internas y de-
sacoplo de las part́ıculas escalares, pueden ser implementadas en este modelo.
La ventaja de tener SCPV frente a violación expĺıcita de CP consiste en que
la tercera posible solución al problema de los EDMs, fases CP pequeñas, es
natural ya que esas fases CP pequeñas provienen de la rotura de la simetŕıa
electrodébil, no son parámetros del Lagrangiano arbitrariamente pequeños.

Dado que el vaćıo y el sector de neutrinos del modelo ya han sido analiza-
dos en esta Tesis en el caṕıtulo 3 y otros temas importantes como gravitino
candidato a materia oscura o bariogénesis en el µνSSM han sido cubiertos
en otros trabajos, nuestro siguiente objetivo ha consistido en el estudio del
sector de Higgs y de las posibles señales en experimentos de aceleradores. En
el caṕıtulo 4 hemos realizado un análisis de la fenomenoloǵıa en aceleradores
del µνSSM focalizando nuetra atención en el sector de Higgs. Este caṕıtulo



6.3. CONCLUSIONES 143

se basa en los resultados publicados en [15].
El µνSSM tiene un sector de Higgs extendido ya que los sneutrinos se

mezclan con los dobletes de Higgs. Hemos descrito las mezclas en el sector
de Higgs y los mecanismos para suprimirlas para tener singletes ligeros a
salvo de las cotas experimentales de colisionadores o para que el escalar más
ligero sea lo más pesado posible. Para conseguirlo, hemos deducido relaciones
para los parámetros Aλi

y sugerido que hay otras regiones en el espacio de
parámetros que dan lugar a mezclas pequeñas en el sector de Higgs.

A continuación, hemos resumido las novedades que se producen en los
decaimientos del sector de Higgs del modelo. Para distinguir el µνSSM de
otros modelos supersimétricos existen dos caracteŕısticas principales. Por un
lado, la rotura de R-parity implica el decaimiento de la LSP. Por ello, se
esperan vértices desplazados en los decays de un Higgs a la LSP, que decae
a continuación. Estos vértices desplazados son señales t́ıpicas de modelos
que rompen R-parity, en contraste con las señales de enerǵıa perdida que se
esperan en los modelos que conservan R-parity. Además, los productos de
los decaimientos del neutralino más ligero pueden servir para distinguir el
modelo µνSSM de otros modelos que rompen R-parity ya que en el µνSSM
se pueden producir decaimientos a dos cuerpos del neutralino más ligero en
un Higgs y un neutrino. Por otra parte, como ya hemos dicho, la mezcla de
los sneutrinos dextrógiros y levógiros con los dobletes de Higgs produce un
sector de Higgs extendido. Por ello, cascadas Higgs a Higgs más complicadas
que las del NMSSM pueden producirse en este modelo. Este hecho puede
servir para distinguir el µνSSM de otros modelos que rompen R-parity como
el modelo BRpV, en los que el sector de Higgs no contiene singletes. Después
de presentar la panorámica general de los decaimientos en el sector de Higgs
del µνSSM, hemos analizado las cotas experimentales de LEP en el contexto
de este modelo. Para ello hemos calculado los acoplos de los Higgses con los
bosones Z y las reglas de adición. También hemos repasado los mecanismos
de producción de los Higgses en aceleradores leptónicos y hadrónicos.

A continuación hemos proporcionado puntos de test en el espacio de
parámetros obtenidos con computaciones numéricas en los que se esperan
señales t́ıpicas del µνSSM, que pasan todas las cotas experimentales ac-
tuales y que puedan ser detectados pronto en el LHC. En concreto, nos
hemos centrado en los decaimientos de un Higgs tipo MSSM, hMSSM , con
una fracción de decaimiento a dos neutralinos ligeros apreciable. Estos neu-
tralinos pueden decaer dentro del detector produciendo vértices desplaza-
dos. Esto se puede usar para distinguir el µνSSM de modelos con R-parity
conservada. Además, estos decaimientos pueden ser en un neutrino y un
singlete pseudoescalar ligero P en la capa de masas que a continuación de-
cae en bb̄ (o si está cinemáticamente prohibido, a τ+τ−). Por tanto, el de-
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caimiento hMSSM → χ̃0χ̃0 → 2P2ν → 2b2b̄2ν es genuino del µνSSM. Nótese
que en otros modelos con rotura de R-parity como el BRpV no hay Hig-
gses singletes y el neutralino más ligero, si es más ligero que los bosones
gauge, sólo podŕıa decaer a través de procesos a tres cuerpos. Estados fi-
nales con 8 b-jets y enerǵıa perdida son posibles en situaciones en las que
se producen primero escalares singletes por el decaimiento del neutralino,
hMSSM → χ̃0χ̃0 → 2h2ν → 4P2ν → 4b4b̄2ν. También hemos estudiado el
caso de un espectro similar al del MSSM, con todos los escalares singletes
pares bajo CP por encima de 114 GeV y siendo los pseudoescalares más pe-
sados que los neutralinos. En este caso, el Higgs de tipo MSSM decaerá en
una fracción significativa en neutralinos, y éstos decaerán sólo a través de
procesos a tres cuerpos dando lugar a vértices desplazados. En otro caso que
hemos analizado, el neutralino no juega un papel importante y sólo son rel-
evantes cascadas Higgs a Higgs. Aunque no se esperan vértices desplazados,
los decays hMSSM → 2P → 2b2b̄, hMSSM → 2h → 4P → 4b4b̄ son posi-
bles, permitiendo distinguir el µνSSM de otros modelos que violan R-parity.
Además, una vez que se produzca una part́ıcula supersimétrica en el coli-
sionador, con su decaimiento a la LSP y su consiguiente vértice desplazado,
permitiŕıa distinguir el µνSSM del NMSSM. Finalmente hemos estudiado
un caso en el que para los singletes pseudoescalares P1,2 el decaimiento a
bb̄ está cinemáticamente prohibido pero para P3 está permitido. Entonces,
varias cascadas interesantes pueden esperarse, sin dejar vértices desplazados:
hMSSM → 2h1 → 4P1,2 → 4τ+4τ−, hMSSM → 2P3 → 2b2b̄. Este hecho es
genuino del µνSSM. Además, las siguientes cascadas con vértices desplaza-
dos y enerǵıa perdida son posibles: hMSSM → χ̃0χ̃0 → 2P1,22ν → 2τ+2τ−2ν,
hMSSM → χ̃0χ̃0 → 2h1,2,32ν → 4P1,22ν → 4τ+4τ−2ν, hMSSM → χ̃0χ̃0 →
2P32ν → 2b2b̄2ν. En conclusión, la exposición anterior nos da la idea de que
se pueden esperar señales extremadamente caracteŕısticas en ciertas regiones
del espacio de parámetros del µνSSM.

También hemos apuntado que en el µνSSM, el gravitino puede ser un
candidato viable a materia oscura del universo, accesible a experimentos
de detección indirecta y sin alterar la fenomenoloǵıa en aceleradores. En
concreto, la fracción de decaimiento del neutralino en gravitino y fotón resulta
ser despreciable.

El µνSSM resuelve el problema µ del MSSM y genera las masas de neu-
trinos correctas simplemente usando supercampos de neutrinos dextrógiros.
Este mecanismo implica que únicamente están presentes en el superpotencial
términos trilineales adimensionales que rompen R-parity. La ausencia en el
superpotencial de operadores que producen el decaimiento del protón y que
violan R-parity, un término trilineal que origina el problema de paredes de
dominio y términos bilineales como el término µ o la masa de Majorana,
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puede ser explicada en el µνSSM usando argumentos de teoŕıa de cuerdas,
simetŕıas discretas u operadores no renormalizables. En el Caṕıtulo 5 hemos
usado una estrategia distinta, consistente en añadir una simetŕıa gauge U(1)
al grupo gauge del SM. Como todos los campos del µνSSM pueden estar car-
gados bajo el grupo U(1) extra, todos los operadores peligrosos mencionados
anteriormente podŕıan en principio estar prohibidos. Hemos comprobado
que eso es posible. Por ejemplo, operadores de dimensión cuatro y cinco que
violan número bariónico están prohibidos en el superpotencial, asegurando
la estabilidad del protón. El Caṕıtulo 5 se basa en los resultados de [16].

En ese caṕıtulo hemos explicado ampliamente las motivaciones para ex-
tender el grupo gauge y hemos analizado las ecuaciones de cancelación de
anomaĺıas demostrando que se debe añadir materia exótica al espectro. En
concreto, se necesitan añadir tres generaciones de tripletes de color y de
dobletes de SU(2)L aśı como seis generaciones de singletes bajo el SM.
Hemos encontrado un modelo mı́nimo y hemos calculado las cargas extra
e hipercargas de las part́ıculas aśı como los números de familias de la mate-
ria exótica. Una vez encontrado un modelo viable, hemos iniciado el estudio
de su fenomenoloǵıa centrando nuestra atención en la rotura electrodébil y
en la compatibilidad con las cotas experimentales sobre la existencia de un
nuevo bosón gauge Z ′. Queda mucho trabajo para estudiar completamente
la fenomenoloǵıa de esta extensión del µνSSM pero la principal conclusión
que se puede extraer es que la cuestión de la estabilidad del protón y el prob-
lema de las paredes de dominio pueden ser resueltos con esta extensión U(1)
extra ya que hemos encontrado una extensión única y mı́nima que selecciona
adecuadamente los operadores permitidos en el superpotencial. Las cotas ex-
perimentales sobre el Z ′ se pueden cumplir en una amplia región del espacio
de parámetros y el modelo rompe la simetŕıa electrodébil correctamente. A
pesar de que el estudio detallado del sector de neutrinos de esta extensión
no ha sido realizado en esta tesis, hemos comprobado que se pueden generar
masas de neutrinos pequeñas, compatibles con las cotas experimentales. Otra
implicación positiva que presenta la extensión U(1) extra del µνSSM consiste
en que la cota superior a la masa del Higgs más ligero se incrementa un poco
gracias a la contribución del U(1) extra, ampliando la ventana para la de-
tección del Higgs en experimentos de aceleradores, relajando aśı el llamado
little hierarchy problem.

Está claro que, siendo un modelo relativamente nuevo y debido a su com-
plejidad, queda mucho trabajo por realizar para completar el estudio de la
fenomenoloǵıa del modelo µνSSM y debido a que es un modelo muy bien
motivado y con caracteŕısticas muy peculiares, es necesario hacerlo. Esta
Tesis ha cubierto partes muy importantes del estudio de la fenomenoloǵıa de
este modelo como el sector de neutrinos, el vaćıo, la posibilidad de SCPV,
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la fenomenoloǵıa en aceleradores del sector de Higgs o la extensión U(1) ex-
tra del grupo gauge. En todas estas cuestiones, el modelo µνSSM ha sido
capaz de ajustarse a los datos experimentales en partes relevantes del es-
pacio de parámetros. Si el LHC encuentra en un futuro próximo part́ıculas
supersimétricas, el siguiente paso seŕıa tratar de identificar qué modelo super-
simétrico es el que describe la naturaleza. Entonces, si se detectaran señales
de violación de R-parity, el µνSSM seŕıa uno de los modelos mejor motivados
y podŕıa ser el correcto.

6.4 Trabajo futuro

Debido a que el modelo µνSSM ha sido propuesto hace relativamente poco
tiempo y de momento sólo algunos trabajos han estudiado su fenomenoloǵıa
[1, 40, 43, 44, 45, 14, 46, 15, 47, 16, 11, 12, 50], queda mucho trabajo por
hacer para obtener un conocimiento completo.

Posiblemente, la parte más importante seŕıa una exploración completa de
las señales que dejaŕıa el modelo en aceleradores de part́ıculas presentes y
futuros. Algunos trabajos sobre este tema ya han sido publicados (ver [15]
y las referencias a lo largo de esta tesis) pero es obvio que un modelo de la
complejidad del µνSSM necesita mucho más trabajo para tener completa-
mente analizado el tema de su detección experimental. Hay principalmente
dos sectores que pueden proporcionar señales caracteŕısticas que permitan
distinguir el modelo µνSSM de otros modelos supersimétricos. Por un lado,
como R-parity está rota, el estudio de los decaimientos de la part́ıcula super-
simétrica más ligera es crucial ya que las señales de enerǵıa perdida t́ıpicas
de supersimetŕıa pueden dejar de estar presentes. Para el caso del neutralino
como LSP, en [43, 44, 45] se han estudiado los decaimientos del neutralino
más ligero aśı como las correlaciones de las fracciones de decaimiento con los
ángulos de mezcla de neutrinos. No se ha realizado un estudio similar en los
casos de squark, slepton o sneutrino como LSP, pero seŕıa muy importante
ya que en modelos que rompen R-parity la LSP puede ser una part́ıcula car-
gada. Está claro que señales de rotura de R-parity en aceleradores seŕıan
muy importantes para el µνSSM, pero en principio no permitiŕıan distin-
guir nuestro modelo de otros modelos que rompen R-parity como el BRpV,
salvo posiblemente en el caso genuino del µνSSM con singlino como LSP.
Para ello, seŕıa necesario centrar la atención en el sector de Higgs. En [15]
se ha expuesto una panorámica de la fenomenoloǵıa del sector de Higgs en
el µνSSM. En esa referencia se han presentado diferentes puntos benchmark
con señales genuinas del µνSSM (ver caṕıtulo 4 de esta Tesis). Nos hemos
limitado a estudiar los decaimientos del Higgs doblete más ligero con una
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masa de unos 120 GeV. Seŕıa interesante estudiar también los decaimientos
del Higgs doblete pesado, en los que cascadas complicadas Higgs a Higgs
pueden ser importantes. Estudios del µνSSM con generadores de eventos
también son necesarios.

Por el momento, el µνSSM sólo ha sido estudiado en el contexto de rotura
de supersimetŕıa mediada por gravedad. Seŕıa interesante estudiar el modelo
en el contexto de otras teoŕıas de rotura de supersimetŕıa como rotura de
supersimetŕıa mediada por interacciones gauge o rotura de supersimetŕıa
mediada por anomaĺıas.

La rotura electrodébil en el modelo ya ha sido estudiada en profundi-
dad, incluyendo vaćıos con VEVs complejos y descartando vaćıos no f́ısicos
o fenomenológicamente inaceptables. Las matrices de masa y el espectro
ya han sido calculados, aśı como las restricciones provenientes de polos de
Landau. El sector de neutrinos también ha sido estudiado en detalle en la lit-
eratura por diferentes grupos (ver [14] y referencias a lo largo de esta Tesis),
incluyendo en el análisis fases de violación de CP a nivel árbol y a 1-loop.
En lo concerniente al análisis del vaćıo complejo, seŕıa interesante estudiar
extensiones del µνSSM con SCPV que pudieran generar una matriz CKM
compleja. De esta forma, toda la violación de CP se originaŕıa de forma
espontánea a través de VEVs complejos y podŕıa transmitirse al sector de
quarks extendiendo el sector de Higgs con tres generaciones de Higgses o
extendiendo el sector de quarks para generar una matriz efectiva CKM com-
pleja. Con estas extensiones el problema de las fases supersimétrico podŕıa
quedar resuelto.

La cuestión de la naturaleza de la materia oscura en el µνSSM es muy
relevante ya que el mejor candidato a DM en supersimetŕıa, el neutralino
más ligero, está exclúıdo por la rotura de R-parity. La cuestión de materia
oscura formada por gravitinos en el contexto del µνSSM ha sido estudiada
en la literatura, pero seguramente se necesitan realizar más trabajos en este
área, incluyendo otros candidatos a materia oscura como el axión o el axino.

El trabajo realizado en el caṕıtulo 5 en el que se encuentra una extensión
U(1) extra del µνSSM [16] ha abierto una nueva ĺınea de investigación. En
este contexto, está claro que queda todav́ıa mucho trabajo por hacer. En con-
creto, todo el trabajo fenomenológico que se ha hecho sobre el µνSSM podŕıa
hacerse también para esta extensión. El análisis del sector de neutrinos de
este nuevo modelo seŕıa muy interesante y diferente del análisis en el µνSSM
original ya que en la extensión, al mezclarse el gaugino extra con los neutrali-
nos, la matriz de masa de neutralinos seŕıa una matriz 11× 11. Además, no
hay ningún término de masa de Majorana efectivo. Un análisis completo del
vaćıo de este nuevo modelo aśı como el estudio de las señales caracteŕısticas
que dejaŕıa en un acelerador de part́ıculas también seŕıan importantes.
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Para concluir, resumamos todo lo anterior diciendo que si el LHC con-
sigue detectar part́ıculas supersimétricas demostrando que la supersimetŕıa
describe la naturaleza a la escala del TeV, el siguiente paso seŕıa determinar
qué modelo supersimétrico es el correcto. Y para ello, todos los modelos
supersimétricos consistentes debeŕıan ser estudiados en profundidad. En el
caso del µνSSM, aunque ya se ha realizado mucho trabajo, todav́ıa quedan
cuestiones relevantes que hay que explorar en un futuro próximo.



Appendix A

Mass matrices

In this Appendix we will provide the general mass matrices of the µνSSM
except the neutralino and chargino mass matrices that have been already
presented in precedent chapters. We will use the indices i, j, k, l,m = 1, 2, 3
and α, β, γ, δ = 1, ..., 8.

A.1 CP-even neutral scalars

Let us first recall that, due to the breaking of R-parity, the neutral Higgses
are mixed with the sneutrinos. The quadratic potential includes

Vquadratic =
1

2
h′

αM
2
hαβ

h′
β + ... , (A.1)

where h′
α = (hd, hu, (ν̃

c
i )

R, (ν̃i)
R) is in the unrotated basis, and below we give

the expressions for the independent coefficients of M2
hαβ

M2
hdhd

= m2
Hd

+
G2

4
{3v2

d − v2
u + νiνi} + λiλjν

c
i ν

c
j + λiλiv

2
u , (A.2)

M2
huhu

= m2
Hu

+
G2

4
(−v2

d + 3v2
u − νiνi) + λiλjν

c
i ν

c
j + λiλiv

2
d

−2Yνij
λjvdνi + Yνik

Yνij
νc

jν
c
k + Yνik

Yνjk
νiνj , (A.3)

M2
hdhu

= −aλi
νc

i −
G2

2
vdvu + 2vdvuλiλi − (λkκijkν

c
i ν

c
j + 2Yνij

λjvuνi) ,

(A.4)
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M2
hd(eνc

i )R = −aλi
vu + 2λiλjvdν

c
j − 2λkκijkvuν

c
j − Yνji

λkνjν
c
k − Yνjk

λiνjν
c
k ,

(A.5)

M2
hu(eνc

i )R = −aλi
vd + aνji

νj + 2λiλjvuν
c
j − 2λkκilkvdν

c
l

+ 2Yνjk
κilkνjν

c
l + 2Yνjk

Yνji
vuν

c
k , (A.6)

M2
hd(eνi)R =

1

2
G2vdνi − (Yνij

λjv
2
u + Yνij

λkν
c
kν

c
j ) , (A.7)

M2
hu(eνi)R = aνij

νc
j −

G2

2
vuνi − 2Yνij

λjvdvu + Yνik
κljkν

c
l ν

c
j + 2Yνij

Yνkj
vuνk ,

(A.8)

M2
(eνi)R(eνj)R = m2

L̃ij
+
G2

2
νiνj +

1

4
G2(νkνk + v2

d − v2
u)δij

+ Yνik
Yνjk

v2
u + Yνik

Yνjl
νc

kν
c
l , (A.9)

M2
(eνi)R(eνc

j )R = aνij
vu − Yνij

λkvdν
c
k − Yνik

λjvdν
c
k + 2Yνik

κjlkvuν
c
l

+ Yνij
Yνkl

νkν
c
l + Yνil

Yνkj
νkν

c
l , (A.10)

M2
(eνc

i )R(eνc
j )R = m2

eνc
ij

+ 2aκijk
νc

k − 2λkκijkvdvu + 2κijkκlmkν
c
l ν

c
m

+ 4κilkκjmkν
c
l ν

c
m + λiλj(v

2
d + v2

u) + 2Yνlk
κijkvuνl

− (Yνkj
λi + Yνki

λj)vdνk + Yνki
Yνkj

v2
u + Yνki

Yνlj
νkνl . (A.11)

Then the mass eingenvectors are

hα = Rh
αβh

′
β (A.12)

with the diagonal mass matrix

(Mdiag
hαβ

)2 = Rh
αγM

2
hγδ
Rh

βδ . (A.13)
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A.2 CP-odd neutral scalars

In the unrotated basis P′
α =

(
Pd, Pu, (ν̃

c
i )

I , (ν̃i)
I
)

we have

Vquadratic =
1

2
P′

αM
2
Pαβ

P′
β + ... (A.14)

Below we give the expressions for the independent cofficients of M2
Pαβ

M2
PdPd

= m2
Hd

+
G2

4
(v2

d − v2
u + νiνi) + λiλjν

c
i ν

c
j + λiλiv

2
u , (A.15)

M2
PuPu

= m2
Hu

+
G2

4
(v2

u − v2
d − νiνi) + λiλjν

c
i ν

c
j + λiλiv

2
d

−2Yνij
λjvdνi + Yνik

Yνij
νc

kν
c
j + Yνik

Yνjk
νiνj , (A.16)

M2
PdPu

= aλi
νc

i + λkκijkν
c
i ν

c
j , (A.17)

M2
Pd(eνc

i )I = aλi
vu − 2λkκijkvuν

c
j − Yνji

λkν
c
kνj + Yνjk

λiν
c
kνj , (A.18)

M2
Pd(eνi)I = −Yνij

λjv
2
u − Yνij

λkν
c
kν

c
j , (A.19)

M2
Pu(eνc

i )I =aλi
vd − aνji

νj − 2λkκilkvdν
c
l + 2Yνjk

κilkνjν
c
l , (A.20)

M2
Pu(eνi)I = −aνij

νc
j − Yνik

κljkν
c
l ν

c
j , (A.21)

M2
(eνi)I(eνj)I = m2

eLij
+

1

4
G2(νkνk + v2

d − v2
u)δij + Yνik

Yνjk
v2

u + Yνik
Yνjl

νc
kν

c
l ,

(A.22)

M2
(eνi)I(eνc

j )I = − aνij
vu − Yνik

λjvdν
c
k − Yνij

Yνlk
νlν

c
k + Yνik

Yνlj
νlν

c
k

+ Yνij
λkvdν

c
k + 2Yνil

κjlkvuν
c
k , (A.23)

M2
(eνc

i )I(eνc
j )I = m2

eνc
ij
− 2aκijk

νc
k + 2λkκijkvdvu − 2κijkκlmkν

c
l ν

c
m

+ 4κimkκljkν
c
l ν

c
m + λiλj(v

2
d + v2

u) − (Yνki
λj + Yνkj

λi)vdνk

− 2Yνlk
κijkvuνl + Yνki

Yνkj
v2

u + Yνli
Yνkj

νkνl . (A.24)

Then the mass eingenvectors are

Pα = RP
αβP

′
β , (A.25)

with the diagonal mass matrix

(Mdiag
Pαβ

)2 = RP
αγM

2
Pγδ
RP

βδ . (A.26)
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A.3 Charged scalars

Let us first recall that, due to the breaking of R-parity, the charged Higgses
are mixed with the charged sleptons. We give here the mass matrix coeffi-
cients for the charged scalars which follows from the quadratic term in the
potential

Vquadratic = S′−
αM

2
s±
αβ

S′
β
+
. (A.27)

The unrotated charged scalars are S′+
α = (H+

d , H
+
u , ẽ

+
L , µ̃

+
L , τ̃

+
L , ẽ

+
R, µ

+
R, τ

+
R ),

and

M2
HdHd

= m2
Hd

+
1

2
g2
2(vu

2 − νiνi) +
G2

4
(νiνi + v2

d − v2
u)

+ λiλjν
c
i ν

c
j + Yeik

Yejk
νiνj (A.28)

M2
HuHu

= m2
Hu

+
1

2
g2
2(v

2
d + νiνi) −

G2

4
(vivi + v2

d − v2
u)

+ λiλjν
c
i ν

c
j + Yνij

Yνik
νc

jν
c
k (A.29)

M2
HdHu

= aλi
νc

i +
1

2
g2
2vdvu − λiλivdvu + λkκijkν

c
i ν

c
j + Yνij

λjvuνi (A.30)

M2
eeLi

eeLj
= m2

eLji
+
g2
2

2
(−νkνk − v2

d + v2
u)δij +

1

2
g2
2νiνj

+
1

4
G2(νkνk + v2

d − v2
u)δij + Yνil

Yνjk
νc

l ν
c
k + Yeil

Yejl
v2

d (A.31)

M2
eeLi

eeRj
= aeij

vd − Yeij
λkvuν

c
k (A.32)

M2
eeRj

eeLi
= M2

eeLi
eeRj

(A.33)

M2
eeRi

eeRj
= m2

eec
ij

+
g2
1

2
(−νkνk − v2

d + v2
u)δij + Yeki

Yekj
v2

d + Yeli
Yekj

νkνl

(A.34)

M2
eeLi

Hd
=
g2
2

2
vdνi − Yνij

λkν
c
kν

c
j − Yeij

Yekj
vdνk (A.35)
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M2
eeLi

Hu
= −aνij

νc
j +

g2
2

2
vuνi − Yνij

κljkν
c
l ν

c
k + Yνij

λjvdvu − Yνik
Yνkj

vuνj

(A.36)

M2
eeRi

Hd
= −aeji

νj − Yeki
Yνkj

vuν
c
j (A.37)

M2
eeRi

Hu
= −Yeki

(λjνkν
c
j + Yνkj

vdν
c
j ) , (A.38)

where aeij
≡ (AeYe)ij. Then the mass eigenvectors are

S±
α = Rs±

αβS
′±
β , (A.39)

with the diagonal mass matrix

(Mdiag
s± )2

αβ = Rs±
αγM

2
s±
γδ

Rs±
βδ . (A.40)

A.4 Squarks

In the unrotated basis, ũ′i = (ũLi
, ũ∗Ri

) and d̃′i = (d̃Li
, d̃∗Ri

), we get

Vquadratic =
1

2
ũ′

†
M2

eu ũ
′ +

1

2
d̃′

†
M2

ed d̃
′ , (A.41)

where

M2
eqij

=

(
M2

eqLiLj
M2

eqLiRj

M2
eqRiLj

M2
eqRiRj

)
, (A.42)

with q̃ = (ũ′, d̃′). The blocks are different for up and down quarks, and we
have

M2
euLiLj

= m2
eQij

+
1

6
(
3g2

2

2
− g2

1

2
)(v2

d − v2
u + νkνk) + Yuik

Yujk
v2

u ,

M2
euRiRj

= m2
euij

+
g2
1

3
(v2

d − v2
u + νkνk) + Yuki

Yukj
v2

u ,

M2
euLiRj

= auij
vu − Yuij

λkvdν
c
k + Yνlk

Yuij
νlν

c
k ,

M2
euLiRj

= m2
euRjLi

, (A.43)
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and

M2
edLiLj

= m2
eQij

− 1

6
(
3g2

2

2
+
g2
1

2
)(v2

d − v2
u + νkνk) + Ydik

Ydjk
v2

d

M2
edRiRj

= m2
edij

− g2
1

6
(v2

d − v2
u + νkνk) + Ydik

Ydjk
v2

d

M2
edLiRj

= adij
vd − Ydij

λkvuν
c
k

M2
edLiRj

= m2
edRjLi

, (A.44)

where auij
≡ (AuYu)ij and adij

≡ (AdYd)ij. For the mass state q̃i we have

q̃i = Req
ij q̃j , (A.45)

with the diagonal mass matrix

(Mdiag
eq )2

ij = Req
ilM

2
eqlk
Req

jk . (A.46)



Appendix B

Higgs sector couplings

During this Thesis we have computed the couplings of the Higgs sector of
the µνSSM. Here we only present the couplings needed for computing neutral
Higgs-to-Higgs decays.

hδhǫhη :

λiλj√
2

[νc
i (Π

11(j+2)
δǫη + Π

22(j+2)
δǫη ) + vdΠ

1(i+2)(j+2)
δǫη + vuΠ

2(i+2)(j+2)
δǫη ]

+
1√
2
λlλl[vdΠ

122
δǫη + vuΠ211

δǫη ] − 1√
2
λlκljk[vdΠ

2(j+2)(k+2)
δǫη

+vuΠ
1(j+2)(k+2)
δǫη + 2νc

jΠ
12(k+2)
δǫη ]

+
√

2κljkκlbd[ν
c
jΠ

(k+2)(b+2)(d+2)
δǫη ] +

Yνij
Yνkl√
2

[νiΠ
(j+2)(l+2)(k+5)
δǫη + νc

jΠ
(l+2)(i+5)(k+5)
δǫη ]

− 1√
2
Yνij

λk[νiΠ
1(j+2)(k+2)
δǫη + νc

jΠ
1(k+2)(i+5)
δǫη + νc

kΠ
1(j+2)(i+5)
δǫη + vdΠ

(j+2)(k+2)(i+5)
δǫη ]

+
1√
2
Yνlj

Yνlm
[vuΠ

2(j+2)(m+2)
δǫη + νc

jΠ
22(m+2)
δǫη ]

+
1√
2
Yνil

Yνjl
[vuΠ

2(i+5)(j+5)
δǫη + νiΠ

22(j+5)
δǫη ]

− 1√
2
λlYνil

[2vuΠ
12(i+5)
δǫη + vdΠ

22(i+5)
δǫη + νiΠ

122
δǫη ]

+
1√
2
κljkYνil

[2νc
jΠ

2(k+2)(i+5)
δǫη + vuΠ

(j+2)(k+2)(i+5)
δǫη + νiΠ

2(j+2)(k+2)
δǫη ]

− 1√
2
(Aλλ)iΠ

12(i+2)
δǫη +

1√
2
(AνYν)ijΠ

2(i+2)(j+5)
δǫη +

1

3
√

2
(Aκκ)ijkΠ

(i+2)(j+2)(k+2)
δǫη

+
g2
1 + g2

2

4
√

2
[νiΠ

(i+5)(j+5)(j+5)
δǫη + νiΠ

11(i+5)
δǫη − νiΠ

22(i+5)
δǫη

+vdΠ
1(i+5)(i+5)
δǫη + vdΠ

111
δǫη − vdΠ

122
δǫη − vuΠ

2(i+5)(i+5)
δǫη + vuΠ222

δǫη − vuΠ112
δǫη ] , (B.1)
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where b, d, i, j, k, l,m = 1, 2, 3; α, β, γ, δ, ǫ, η = 1, ..., 8, and

Παβγ
δǫη = Rh

δαR
h
ǫβR

h
ηγ +Rh

δαR
h
ηβR

h
ǫγ +Rh

ǫαR
h
δβR

h
ηγ

+Rh
ǫαR

h
ηβR

h
δγ +Rh

ηαR
h
δβR

h
ǫγ +Rh

ηαR
h
ǫβR

h
δγ .

(B.2)

hδPǫPη :

λiλj√
2

[νc
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(j+2)11
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(j+2)22
δǫη ) + vdΠ
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2(i+2)(j+2)
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2
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+
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+
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2
[Π
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δǫη )] , (B.3)

where b, d, i, j, k, l,m = 1, 2, 3; α, β, γ, δ = 1, ..., 8; ǫ, η = 1, ..., 7, and

Παβγ
δǫη = Rh

δα(RP
ǫβR

P
ηγ +RP

ηβR
P
ǫγ) .

(B.4)
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