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Abstract

The work presented in this thesis assesses the physics potential of central exclu-

sive production at TeV energies. The ExHuME event generator was developed

and this allowed the Durham model of central exclusive production to be fully

simulated for the first time. ExHuME was used to investigate the bb̄ decay chan-

nel of a Higgs boson at the Large Hadron Collider and di-jet production at the

Fermilab Tevatron.

The Higgs analysis was performed for a Standard Model Higgs boson and the

lightest Higgs boson in the intense coupling region of the Minimal Supersym-

metric Standard Model (MSSM). It was found that the Standard Model Higgs

boson is not observable using the proposed forward proton detectors at the AT-

LAS experiment. However, it was found that the lightest Higgs boson could be

observable in the intense coupling region of the MSSM if a low transverse energy

jet trigger is incorporated at ATLAS. The optimal luminosity for the analysis

was shown to be 5×1032 cm−2 s−1, with 5 signal events observed each year. The

significance of the observation was found to reach 3.0 after five years of data

acquisition.

In the case of di-jet production at the Tevatron, it was shown that the cen-

tral exclusive events could be separated from the majority of the background

using the standard di-jet mass fraction variable. Furthermore, it was found that

the transverse energy distribution of the central exclusive jets could be used to

distinguish between different theoretical models.
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Chapter 1

Introduction

The Standard Model of particle physics has successfully described the weak, elec-

tromagnetic and strong interactions by requiring symmetries under specific gauge

transformations. The electroweak symmetry is spontaneously broken by the Higgs

mechanism so that the particles acquire mass. This mechanism requires the ex-

istence of a massive scalar particle, the Higgs boson, but the mass of this new

particle is not predicted by the model. The discovery of the Higgs boson remains

one of the main priorities in particle physics.

The physics potential of forward proton tagging at the Large Hadron Collider

(LHC) has received a great deal of attention in recent years. The LHC is a proton-

proton collider with a centre-of-mass energy of 14 TeV. In normal circumstances

at the LHC, the protons break up during the interaction. In the central exclusive

process however, the protons lose a small fraction of their momentum, remain

intact, and all of the lost momentum goes into the production of the central

system.

The central exclusive process has a number of desirable properties. Firstly,

there is no underlying event caused by proton dissociation and the environment is,

for a hadron collider, remarkably clean. Furthermore, if the protons are detected

and the momentum loss measured, it is possible to obtain an excellent resolution

15



on the mass of the central system. If the central system is a resonance, such as

the Higgs boson, then the mass can be determined accurately regardless of the

decay channel.

The work in this thesis focuses on evaluating the physics potential of the

central exclusive process. In chapter two, a brief review of the Standard Model is

followed by a description of the Durham model of central exclusive production.

Chapter three introduces the LHC and the ATLAS experiment, which is a general

purpose detector capable of observing a variety of physics signals at the LHC.

The chapter concludes with a description of FP420, which is a system of forward

detectors for the LHC.

The ExHuME event generator, which allows computer simulation of the cen-

tral exclusive process, is described in chapter four. The magnitude of the di-

photon cross section that could be observed using ATLAS is predicted. ExHuME

is then used in chapter five to evaluate the Standard Model Higgs boson discov-

ery potential, in the bb̄ decay channel, using forward proton detectors at ATLAS.

The analysis is also extended to the lightest Higgs boson in the intense coupling

region of the Minimal Supersymmetric Standard Model. In chapter six, central

exclusive di-jet production is discussed at the Fermilab Tevatron, which is a pp̄

collider with a centre-of-mass energy of 1.96 TeV. Chapter seven summarises the

results of the previous chapters.
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Chapter 2

Theoretical Motivation

2.1 The Standard Model of Particle Physics

The Standard Model of particle physics is based on a principle of symmetry under

space-time and gauge transforms. The space-time transforms are translations,

rotations and Lorentz boosts. Lorentz symmetry implies that the scalar product

xμyμ = ημνx
μyν (2.1)

of two space-time vectors, x and y, is unchanged by transformations of the type

xμ → x′μ = Λμ
νx

ν (2.2)

where Λμ
ν is a Lorentz transform and ημν is the Minkowski metric. Since these

space-time transforms represent a change in co-ordinate system, it follows that

the laws of physics must be invariant under space-time transforms.

The Standard Model lagrangian is intended to describe the fundamental con-

situents of matter and their interactions with each other. The currently observed

particles are the bosons that mediate the electromagnetic, weak and strong forces

and the fermions. The fermionic matter content is split into the six quarks and

six leptons. The quark sector is made up of the up, down, charm, strange, top

17



and bottom quarks. The leptons are split into the charged leptons (electron,

muon and tau) and the three neutrinos. The neutrinos are the only fermions that

do not have mass1 while the photon and gluons, that mediate the electromag-

netic and strong forces respectively, are also massless. The electromagnetic force

affects only electrically charged particles, the weak force is observed to violate

parity and the leptons do not interact via the strong force. The resultant theory

must reflect all of these properties.

The Standard Model is constructed by building a massless interacting theory

and adding the particle masses at a later stage. The lagrangian density, Ldirac,

for massless spin 1/2 fields, Ψ(x), is given by

Ldirac = Ψ̄ (iγμ∂μ)Ψ (2.3)

where γμ are the Dirac matrices which satisfy the anti-commutation algebra

{γμ, γν} = 2gμν . The gauge boson interactions with the fermions are added by

requiring that the lagrangian be invariant under local transformations generated

by the gauge group

SU(3)C × SU(2)L × U(1)Y . (2.4)

The details of this requirement are outlined in the following sections, but further

information is available in the literature [2, 3, 4, 5].

2.1.1 U(1)Y Gauge Symmetry

Taking U(1)Y transforms as an instructive example, one notices that the la-

grangian is invariant under global phase transforms of the type

Ψ(x) → e−iωY Ψ(x) (2.5)

1When the Standard Model was first proposed, there was no evidence for neutrino mass and
as such they were assumed to be massless. It should be noted however, that mass differences
between the neutrinos have recently been observed [1].
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where the value of the hypercharge, Y, depends on the type of field. However,

when the phase transform is local (ω → ω(x)) then the lagrangian is no longer

invariant and has an additional piece

ΔL = Y Ψ̄γμ [∂μ ω(x)]Ψ. (2.6)

This is not an ideal situation because the phase is not a physical observable.

It seems inappropriate then, that the phase at a particular point in space-time

should depend on the phase at every other point in space-time.

It is possible to restore the symmetry of the lagrangian if the partial derivative,

∂μ, is replaced with the covariant derivative Dμ,

∂μ → Dμ = ∂μ + ig′Y Bμ (2.7)

and require that the vector field, Bμ, simultaneously transforms as

Bμ → Bμ +
1

g′∂μω(x). (2.8)

under the gauge transformation. Thus, to make the lagrangian invariant under

gauge transforms, it is necessary to introduce a new field. As a consequence of

all this, an interaction term has been introduced to the lagrangian,

Lint = −g′Y γμΨ̄BμΨ, (2.9)

which implies that the spinor field, Ψ, interacts with the vector gauge field, Bμ,

with coupling strength, g′. It is then important to look for other terms involving

Bμ that can be incorporated into the theory. The only other possible renormal-

isable and gauge invariant term that can be included in the lagrangian is the

kinetic term,

−1

4
FμνF

μν , (2.10)

where the field strength tensor, Fμν , is given by

Fμν =
−i

g′Y
[Dμ, Dν ] = ∂μBν − ∂νBμ. (2.11)
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Note that a mass term for the vector field, m2

2
BμBμ, cannot be included as it is

not invariant under the gauge transform given by equation 2.8. This holds for all

the gauge fields of the Standard Model, implying that no gauge boson can have

an explicit mass term in the lagrangian.

2.1.2 Non-Abelian Symmetry and SU(3)C

It is possible to include other interactions in the same way. The U(1)Y gauge

transform is based on the field being transformed by a simple phase that is just a

number at each point in space. However, there is no reason, if the field contains

some internal degrees of freedom, that the phase cannot be more complicated.

Fields that are invariant under SU(N) transforms have N internal degrees of

freedom and transform as

Ψ(x) → Ψ′(x) = e−iωa(x)ta

Ψ(x) (2.12)

where the ta are the N2 − 1 generators of the group. These generators, ta, have

a distinct algebra

[ta, tb] = ifabctc (2.13)

which leads to some new features in the lagrangian when compared to the U(1)Y

case. The functions fabc are the structure constants of the group. Each of the

generators of SU(N) can be represented in terms of an N×N matrix (fundamental

representation).

In the case of SU(3)C , the quarks are assigned an internal degree of freedom

known as colour. This is motivated in part by the observation that, without

colour, some of the hadrons, such as Δ++, are symmetric under the interchange

of the constituent quarks [2]. This is forbidden by Fermi-Dirac statistics and a

new degree of freedom is required to restore the anti-symmetric wave function.

There are eight generators (represented by the Gell-Mann matrices) of the SU(3)C
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group and hence eight gauge fields are required to keep the lagrangian symmetric

under gauge transformations. The covariant derivative (now a 3×3 matrix which

acts on a three component field) is given by

Dμ = ∂μI + igst
aGa

μ (2.14)

where I is the unit matrix, gs is the coupling strength and the gluon fields, Ga
μ(x),

are the gauge fields required to keep the lagrangian invariant under the SU(3)

transform.

As SU(3) is a non-abelian group, the field strength tensor, F a
μν , has more

structure than in the U(1)Y case and is given by

F a
μν = ∂μGa

ν − ∂νG
a
μ − gsf

abc Gb
μGc

ν (2.15)

where the third term arises due to the algebra of the SU(3) group. This in turn

leads to extra terms when the kinetic part of the lagrangian (equation 2.10) is

evaluated for the gluons. These are given by

Lint = gsf
abc(∂μGa

ν)G
b, μGc, ν − 1

4
g2

sf
abcfadeGb

μG
c
νG

d, μGe, ν (2.16)

which represent the self-interaction of three or four gluons respectively. This

should be contrasted with the U(1)Y case, which contained no self interaction

terms.

The interaction terms in the lagrangian can be used to calculate the probabil-

ity of a particular scattering process. For example, at leading order the coupling

of two quarks and a gluon is described by the coupling strength, gs, which ap-

pears in the lagrangian. In reality however, the measured coupling does not

correspond to just the leading order term, but includes higher order (loop) cor-

rections. This results in the running of the measured coupling, i.e gs → gs(μ
2),

where the momentum scale, μ, defines the scale at which the coupling is mea-

sured. By convention, the measured parameter is the strong coupling, αS, which

is defined as 4παS = g2
s .
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In the one-loop approximation [3], the strong coupling is given by

αS

(
μ2

)
=

12π

(33 − 2nf)

1

ln
(

μ2

Λ2

) (2.17)

where the nf is the number of active quark flavours at that momentum scale.

At the scale μ = Λ, the coupling becomes infinite. This really means that the

coupling is strong enough to make perturbation theory not applicable. Infra-red

slavery is the statement that, as μ → Λ, the interaction becomes so strong that

the coloured objects are confined into colour neutral states. This qualitatively ex-

plains why coloured objects are not observed on large distance scales. Asymptotic

freedom is the inverse statement that, at large μ, the strong coupling becomes

small and perturbation theory is applicable.

2.1.3 SU(2)L Symmetry

The SU(2) transformations follow the SU(N) algebra. There are three generators,

which can be represented (in the fundamental representation) by the Pauli ma-

trices, and hence three gauge fields, W a
μ (x), are required to keep the lagrangian

invariant under the gauge transformation. The covariant derivative is now given

by

Dμ =

⎛
⎝∂μI + i

g

2

⎛
⎝ W 3

μ

√
2W−

μ

√
2W+

μ −W 3
μ

⎞
⎠

⎞
⎠ (2.18)

with g being the coupling strength. The W± are the bosons that mediate weak

interactions such as muon decay and are given by

W± =
1√
2

(
W 1

μ ± iW 2
μ

)
. (2.19)

The fermions are rewritten as the sum of a left-handed and right-handed

component, (Ψ = ΨR + ΨL), which can be obtained by the projection operators

PR,L =
1

2
(1 ± γ5), (2.20)
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Particle Type Hypercharge
Quarks u c t 1/6

Left d s b 1/6
Handed Leptons νe νμ ντ −1/2

e μ τ −1/2

Quarks u c t 2/3
Right d s b −1/3

Handed Leptons
e μ τ −1

Table 2.1: The hypercharge values of the Standard Model fermions. The quarks
are the up (u), down (d), charm (c), strange, (s), top (t) and bottom (b). The
leptons are the electron (e), muon (μ), tau (τ) and the associated neutrinos (ν).

i.e PLΨ = ΨL. The left-handed fermions are then assigned to doublets that trans-

form under SU(2)L. For example, the left-handed components of the electron-

neutrino and electron form a doublet, Le, given by

Le =

⎛
⎝ νe,L

eL

⎞
⎠ . (2.21)

The right-handed components however, are not assigned into doublets and trans-

form as scalars under SU(2)L, e.g eR → eR. This is necessary because the final

theory must reflect the observed ‘V-A’ parity violations of the weak sector.

The different transformation properties of the left and right-handed fermions

means that an explicit mass term for the fermion fields, mΨΨ̄, also cannot be

included because this mass term will mix the right and left-handed components

of the field. As such, the mass term would not be invariant under the SU(2)L

gauge transform. The hypercharge values also differ for the right and left-handed

fermions and are given in table 2.1. The hypercharge assignments are carefully

chosen so that, after the Higgs mechanism (described in the following section),

the theory produces the correct couplings to the photon.
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2.1.4 The Higgs Mechanism

The prescription so far has been to incorporate gauge boson interactions into the

lagrangian by requiring symmetry under gauge transforms. However, this means

that none of the bosons or fermions can have an explicit mass term. In the Stan-

dard Model, the mass problem is solved by the introduction of a complex scalar

field, Φ(x), which transforms as a doublet under SU(2)L and has hypercharge

Y (Φ) = 1
2
. The lagrangian for this field is

Lscalar = |DμΦ|2 − V (Φ) (2.22)

where the covariant derivative is one appropriate to SU(2)L and U(1)Y . The

potential, V (Φ), is

V (Φ) = −μ2Φ†Φ + λ
(
Φ†Φ

)2
(2.23)

and the minimum of this potential occurs at Φ†Φ = v2 = μ2/2λ for μ2 > 0 and λ >

0. This means that the new scalar field has a non-zero vacuum expectation value.

The lagrangian is now no longer explicitly symmetric under transformations which

simply move from one vacuum to a new one. The specific choice of a vacuum

state is said to spontaneously break the gauge symmetry.

The scalar field can be expanded about the expectation value and can be

expressed, in the unitary gauge, as

Φ =

⎛
⎝ 0

v + H

⎞
⎠ (2.24)

where the Higgs field, H , is a physical field and cannot be removed by a different

choice of gauge. If this form for the scalar field is used in the scalar potential

term (equation 2.23) there is, amongst other things, a mass term for the Higgs

field with mH = 2λv. As λ is a free parameter, the Higgs mass is not predicted

by the Standard Model.
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When the scalar kinetic term is evaluated, there is a kinetic term for the

Higgs field, a set of interaction terms between the gauge boson and the Higgs

and, importantly, the mass terms

g2v2

4
W+,μW−

μ +
g2v2

8

(
W 3

μ − g′

g
Bμ

)2

. (2.25)

The first term gives a mass to the W bosons with MW = gv/2. The second

term is also a mass term but involves both the Bμ and W 3
μ fields. This term can

be identified with the final weak vector boson, Zμ, if the choice is made that

⎛
⎝ Aμ

Zμ

⎞
⎠ =

⎛
⎝ cos θW sin θW

− sin θW cos θW

⎞
⎠

⎛
⎝ Bμ

W 3
μ

⎞
⎠ (2.26)

where Aμ is the photon and the weak mixing angle, θW , is given by

g′ = g tan θW . (2.27)

Note that, with this choice, there is no mass term for the photon and that the Z

boson has a mass, MZ , given by

MZ =
gv

2cosθW
. (2.28)

Furthermore, as the three weak vector bosons are now massive objects, they have

each gained an extra degree of freedom. These originate in the complex scalar

doublet, which has four fields in a general gauge but has only one field, H(x), in

the unitary gauge. This explains why there is only one physical field, the Higgs

field, associated with the doublet in equation 2.24; the other three are ‘eaten’ by

the W± and Z bosons.

The presence of the scalar doublet allows the introduction of ‘Yukawa’ inter-

action terms in the lagrangian. These are interactions between the scalar field,

left-handed fermion doublets and right-handed fermions. An example of such a
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Yukawa interaction is

LY ukawa = −GeL̄LΦeR + (h.c) (2.29)

= −Gev√
2

ē e − Ge√
2

ē H e

where Ge is the Yukawa coupling and (h.c) is the hermitian conjugate. The

first term is a mass term for the electron. The second term is an interaction

between the electron and Higgs fields and the coupling strength is proportional

to the electron mass. The Yukawa terms for the muon and tau are constructed

in the same way, but there is no mass term for the neutrino as it does not have a

right-handed component in the Standard Model. It is impressive that the simplest

possible Higgs model provides masses for both the gauge bosons and the fermions.

Yukawa interactions can also be introduced for any of the quark fields with

similar results. However, in the quark sector, it is possible to have Yukawa terms

that involve different generations of quarks. This means that the quark doublets

that transform under SU(2)L are not mass eigenstates. The quark iso-doublets

are written as

Qu =

⎛
⎝ uL

d̃L

⎞
⎠ Qc =

⎛
⎝ bL

s̃L

⎞
⎠ Qt =

⎛
⎝ tL

b̃L

⎞
⎠ (2.30)

where the d̃, s̃ and b̃ are related to the real quarks by⎛
⎜⎜⎜⎝

d̃

s̃

b̃

⎞
⎟⎟⎟⎠ = VCKM

⎛
⎜⎜⎜⎝

d

s

b

⎞
⎟⎟⎟⎠ (2.31)

where VCKM is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix.

This has two important consequences. Firstly, the W boson can now, for example,

mediate a transition between an up and a strange quark. There is however, no as-

sociated flavour changing neutral current associated with the Z boson. Secondly,

there are four independent parameters in the CKM matrix, three weak mixing
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angles and a complex phase. The complex phase introduces the possibility of vio-

lations of charge-conjugation and parity (CP violation) in some Standard Model

interactions. Such CP violation was originally discovered in the K0, K̄0 system

[6] and has recently been observed in the B0, B̄0 system [7, 8].

2.1.5 Supersymmetric Extensions to the Standard Model

Supersymmetry [9] is a proposed extension to the Standard Model which requires

that the lagrangian be invariant under the transforms

Q |Boson〉 = |Fermion〉 and Q |Fermion〉 = |Boson〉 . (2.32)

The details of imposing this symmetry are well documented [9] and are not cov-

ered here, but there are important additions to the matter content of the Standard

Model which are relevant to this thesis. In the Minimal Supersymmetric Stan-

dard Model (MSSM), every Standard Model particle has a superpartner with the

same properties under gauge transforms but opposite spin. Furthermore, two

complex scalar doublets, with hypercharge +1
2

and −1
2
, are required to ensure

anomaly cancellation [9]. This results in five Higgs bosons in the MSSM. These

are the neutral scalar (H1, H2, mH1 < mH2), the neutral pseudo-scalar (A) and

the charged (H+,H−) Higgs bosons. The MSSM Higgs sector is often specified

in terms of the psuedo-scalar mass, mA, and the ratio of the vacuum expectation

values of the two complex doublets, tanβ.

If supersymmetry were an exact symmetry, then there would be a scalar elec-

tron (selectron) with a mass equal to that of the electron. This would be true for

all of the sfermions and also the spin 1
2

super-partners of the gauge bosons. As

there have been no observed particles with the properties described above, it is

concluded that, if realised in nature, supersymmetry is a broken symmetry.

Supersymmetry has a number of attractive properties [9, 10]. Firstly, the
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gauge couplings can meet at approximately 1016GeV, which is suggestive of uni-

fication. Secondly, if the lightest supersymmetric particle is neutral and stable,

it is a candidate for dark matter. Finally, supersymmetry can solve the so-called

hierarchy problem.

The hierarchy problem is the observation that the mass of the Standard Model

Higgs boson is not stable to radiative corrections of new physics (i.e a new par-

ticle) that manifests itself at a high mass scale. This destabilises the weak scale,

because the mass of the W boson is intimately linked to the mass of the Higgs

boson. In a supersymmetric scenario however, this new particle would have a su-

perpartner. The radiative corrections of these particles to the Higgs mass would

have opposite signs because one particle is a boson and the other a fermion. If

the particles have approximately the same mass, then the radiative corrections

approximately cancel and the hierarchy problem disappears.

2.2 Physics of Hadron-Hadron Collisions

The Standard Model is primarily tested by colliding particles at high energy and

observing the result. Given an initial state, the probability of producing a final

state is calculated using the interaction terms predicted by the Standard Model.

This allows the cross section of the scattering process to be defined and deviations

from the calculated cross section can indicate the presence of new physics. The

differential cross section for a 2 → N scatter is given by

dσ =
1

2s

∑
|M|2dΦN (2.33)

where M is the invariant amplitude and the summation is over all unobserved

quantum numbers, with the appropriate averaging of the initial state. The centre-

of-mass energy of the collision, s, is given by

s = (k1 + k2)
2 (2.34)
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where k1 and k2 are the 4-momentum of the incoming particles, whose mass is

assumed to be small compared to
√

s. The Lorentz invariant phase space for the

outgoing state, dΦN , is given by

dΦN = (2π)4 δ4
(
k1 + k2 − ΣN

i ki

) N∏
i

d4ki

(2π)4 (2π) δ
(
k2

i − m2
i

)
(2.35)

where each ki is the 4-momentum of an outgoing particle and mi is its mass. The

phase space represents the complete set of kinematical configurations available

for the outgoing state.

Outside of the interaction region, the particles entering and leaving the hard

scatter are assumed to be free from interactions. The interaction itself is assumed

to happen on a short time scale. Protons, however, are composite objects made

from coloured quarks and gluons, collectively known as partons. It is the partons

which enter the hard scatter and are used in calculating cross sections. Outside of

the scattering region however, the partons are colour confined inside the proton

and, as such, are not free from interactions. Fortunately, for a hard scattering

process, the proton-proton (pp) cross section can be factorised into a hard scatter

part, which occurs on short time scales, and a long range part which occurs on

time scales much larger than the hard scattering. The cross section of pp → X

is given by [11]

dσpp→X =
∑
j,k

∫ 1

0

dx1 gj/p

(
x1, μ

2
F

) ∫ 1

0

dx2 gk/p

(
x2, μ

2
F

)
dσ̂jk→X (2.36)

where the gb/a(x, μ2
F ) are the parton density functions (PDFs) which give the

probability of a parton, b, from the the incoming hadron, a, entering the hard

scatter with a fraction, x, of the hadron momentum.

The PDFs depend upon the momentum scale at which they are probed. The

factorisation of the cross section necessarily introduces a momentum scale, μF ,

which separates the short-time (or large momentum) scales, from the long-time

(or small momentum) scales. Thus, interactions below the factorisation scale are
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Figure 2.1: Example vertices in the Feynman diagram approach. Figure (a) shows
a u quark interacting with a gluon. Figure (b) shows an electron interacting with
a W− boson and changing into an electron neutrino.

incorporated into the PDFs, which explains the scale dependence. The change of

PDF with respect to the momentum scale is described in perturbative QCD using

the DGLAP evolution equations [11]. However, a specific input PDF cannot be

predicted using perturbative techniques and experimental data from, for example,

HERA [12, 13] is required to obtain knowledge of the PDF at a specific scale.

2.2.1 Feynman Diagrams

The invariant amplitude, used in the cross section calculation of equation 2.33,

can be calculated using Feynman diagrams [2]. In this approach, the interaction

terms in the lagrangian represent vertices in momentum space. The internal

particle lines that connect the vertices are propagator terms. Examples of vertex

terms are shown in figure 2.1. The initial state is positioned on the left hand

side and the final state on the right hand side of the diagram. Fermions are

represented by arrows pointing left to right, while anti-fermions point from right

to left.

The external particles have a simple description in Feynman language. Each

external fermion and anti-fermion is associated with one of the four spinors
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(u,ū,v,v̄) that satisfy the Dirac equation, which is obtained from equation 2.3

using the standard Euler-Lagrange equations. Each external vector boson is as-

sociated with a polarisation vector, εμ or εμ ∗. The full amplitude for a scattering

process can involve multiple diagrams and is calculated by the coherent sum of the

individual diagrams. Examples of how to use these rules in a complete calculation

are given in [2, 4].

2.3 Experimental Searches for the Higgs Boson

The discovery in 1995 of the top quark [14] meant that all of the Standard Model

particles had been observed except for the Higgs boson. Direct searches for the

Higgs at LEP2 [15] in the Higgsstrahlung production process e+e− → Z∗ → ZH

resulted in a lower bound on the Higgs boson mass of 114.4 GeV with 95% confi-

dence level (CL). Furthermore, precision electroweak fits by the LEP Electroweak

Working Group [16] indicate that the Higgs boson should not be too much heav-

ier than this lower bound. The best fit to electroweak data gives a Higgs mass

of 85+39
−28 GeV as shown in figure 2.2 (a). The upper bound on the Higgs mass

is 166 GeV with 95% CL for the precision fits. This increases to 199 GeV if the

direct search lower bound of LEP2 is included.

Further direct Higgs searches are being performed at the Tevatron [17]. These

searches also focus on associated Higgs production, i.e the production of Higgs

boson and a W or Z boson in the final state. There is no observed excess over

Standard Model background processes. Furthermore, the 95% confidence level

upper bound on the Higgs production cross section is a factor of 10 larger than

the Standard Model prediction for a Higgs mass of 120 GeV, as shown in figure

2.2 (b).

31



0

1

2

3

4

5

6

10030 300

mH [GeV]

Δχ
2

Excluded Preliminary

Δαhad =Δα(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

(a)

)2 (GeV/cHm
100 110 120 130 140 150 160 170 180 190 200

9
5
%

 C
L

 L
im

it
 /
 S

M

0

5

10

15

20

25

30

35

40

DØ Expected
CDF Expected
Tevatron Expected
Tevatron Observed

Tevatron Run II Preliminary
-1

 Ldt=0.3-1.0 fb∫

L
E

P
E

x
c
lu

d
e
d

(b)

Figure 2.2: The LEP Electroweak working group fit to precision Standard Model
parameters (a). Figure (b) shows the 95% confidence level cross section ratio for
Higgs boson production at the Tevatron [17].

2.4 Central Exclusive Production

2.4.1 Kinematics

Central exclusive production (CEP) is defined as the process pp → p + X + p,

where the protons remain intact and X is a central system typically produced in

a hard scatter. The term ‘exclusive’ demands that the central system consists of

just the products of the hard scatter and no other activity. The outgoing protons

lose a fraction, ξ, of their longitudinal momentum during the interaction and

this momentum loss can, in principle, be measured. The longitudinal direction is

given by the trajectory of the incoming protons.

If the outgoing proton momenta are measured, then the mass, M , of the

central system can be calculated using the missing mass method [18]. This states

that the mass is given by

M2 = (p1 + p2 − p′1 − p′2)
2 ≈ ξ1ξ2s (2.37)
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where pi and p′i are the momenta of the incoming and outgoing protons respec-

tively and ξi is the longitudinal momentum loss of proton i. The outgoing proton

momenta can also be used to calculate the rapidity of the central system. The

rapidity, y, of an object is defined by

y =
1

2
ln

(
E + pz

E − pz

)
(2.38)

where E and p are the energy and momentum of the object and z is the longitu-

dinal component. The rapidity of the central system can be written as

y ≈ 1

2
ln

(
ξ1

ξ2

)
(2.39)

which again is expressed entirely in terms of the proton momenta. Finally, the

momentum transfer of each proton, ti, is given by

ti = (p′i − pi)
2

(2.40)

= 2
(
m2

p − EE ′ + |p| |p′| (1 − cos θ)
)

where mp is the proton mass and θ is the angle through which the proton is

scattered.

2.4.2 The Durham Model

The Durham model of central exclusive production [19, 20, 21] is shown in figure

2.3 for Higgs boson production. In this model, gluons from each proton fuse to

produce the central hard scatter. However, a second, colour-screening gluon is

passed between the interacting protons, which allows the proton to remain intact.

The central exclusive cross section is factorised into the form

dσ = S2 ∂2L
∂M2∂y

dσ̂ (2.41)

where L is the effective luminosity function of the incoming gluons and S2 is

the soft-survival factor. The interaction shown in figure 2.3 has a large rapid-

ity gap between the outgoing protons and the central system if ξ1,2 � 1. The
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Figure 2.3: Central exclusive Higgs boson production.

soft-survival factor is the probability that the rapidity gaps are not filled with

additional particles that originate from the soft scattering of spectator partons

in the protons.

The dependence of the cross section on the proton momentum transfer is

assumed to be given by

∂σ

∂t1∂t2
∝ eb(t1+t2) (2.42)

where b is called the slope parameter. The slope parameter is process dependent

and the Durham group estimate that b ∼4 GeV−2 for central exclusive production

of a Standard Model Higgs of mass 	 100 GeV.

The effective luminosity of the incoming gluons is given by

M2 ∂2L
∂M2∂y

=
1

b2

[
π

8

∫
dQ2

T

Q4
T

fg

(
x1, x

′
1, Q

2
T , μ

)
fg

(
x2, x

′
2, Q

2
T , μ

)]2

(2.43)

where QT is the transverse momentum of the screening gluon, μ is the scale of the

hard scatter and fg(xi, x
′
i, Q

2
T , μ2) is the off-diagonal, skewed, unintegrated gluon

distribution in the proton. These distributions give the probability amplitude to

find the two gluons in the proton with momentum fractions xi and x′
i. The fg

distributions are given by

fg

(
xi, x

′
i, Q

2
T , μ

)
= Rg

∂

∂ ln Q2
T

(√
T (QT , μ)xi g

(
xi, Q

2
T

))
(2.44)
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where g(xi, Q
2
T ) is the standard (integrated) gluon density function of the proton

and Rg is a skewness parameter that is required because x′
i � xi. The Sudakov

factor, T , suppresses radiation from the gluons that enter the hard scatter. This

preserves the exclusivity of the interaction, namely xi = ξi, which simply states

that all of the momentum lost from the proton enters the hard scatter. The

Sudakov factor is given by

T (QT , μ) = exp

(
−

∫ μ2

Q2
T

αs (k2
T )

2π

dk2
T

k2
T

∫ 1−Δ

0

[
zPgg (z) +

∑
q

Pqg (z)

]
dz

)

(2.45)

where Pab are Altarelli-Parisi splitting functions that give the probability of par-

ton a being produced from parton b with transverse momentum, kT , and a frac-

tion, z, of parton b’s momentum.

There are two conditions imposed on the central system. Firstly, as the pro-

tons remain intact, the central system must be in a colour singlet state and the

scattering amplitude is given by

M =
1

N2
C − 1

∑
a,b

Mabδab (2.46)

where a and b indicate the colour of the incoming gluons. The second condition

is that the hard scatter is produced in a Jz = 0 state. The amplitude is thus

given by

M =
1

2

∑
λ1,λ2

Mλ1λ2δλ1λ2 (2.47)

where λ1 and λ2 are the helicity states of the incoming gluons. This condition

is exact for zero angle scattering. The condition remains valid if the transverse

momentum of the protons satisfy p2
T,i � Q2

T .

2.4.3 Higgs Boson Production

The central exclusive process can be used for Higgs searches. The advantage of

central exclusive production is that, because the protons remain intact, the mass
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of the Higgs boson can be determined from the outgoing proton momenta using

equation 2.37. The disadvantage is that the production cross section in CEP

is usually small compared to the inclusive case. It has been shown in previous

studies, that a Standard Model Higgs with mH 	 140 GeV will be observable in

the gg → H → WW ∗ channel [22].

For Higgs masses below 140 GeV however, the only option is to use the gg →

H → bb̄ channel. Normally at hadron colliders, the gg → bb̄ background is

too large for this channel to be observable, which is why the Higgs is studied

in associated production or the gg → H → γγ channel. In central exclusive

production however, the bb̄ final state is suppressed by the colour singlet and

spin-0 selection rules. It has been estimated by the Durham group [23], that this

channel will be observable if the experimental conditions are favourable.

For central exclusive Higgs production in the MSSM, the Durham group have

focussed on the so-called intense coupling region, with mA ∼ 130 GeV and large

values of tanβ [24]. In this region of parameter space, the three neutral Higgs

bosons have similar mass and the coupling of the Higgs to the photon, W and

Z bosons is suppressed. This means that conventional searches using associated

production would have a reduced cross section. They evaluated the tanβ =30

(tanβ =50) scenario and found that the cross section of the lightest Higgs boson

increased by a factor of 2.91 (7.64) relative to the Standard Model Higgs boson

in the bb̄ decay channel. Because of this, it was concluded that central exclusive

production would be the ideal tool to discover the Higgs if the intense coupling

region was realised in nature.
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(a) (b) (c)

Figure 2.4: Elastic (a), soft single diffractive dissociation (b) and soft double
diffractive dissociation (c). Each diagram shows the incoming protons interacting
by pomeron exchange in the t channel (denoted by a zig-zag line).

2.5 Diffractive Processes and Double Pomeron

Exchange

The total cross section, σT , at hadron-hadron colliders can be written as

σT = σel + σd + σnd (2.48)

where σel, σd and σnd are the elastic, diffractive and non-diffractive cross sections

respectively. The diffractive contributions, which are single diffractive, pp → pX,

and double diffractive, pp → XY , are shown in figure 2.4 along with the elastic

process, pp → pp. The elastic and diffractive events are characterised by a large

rapidity gap between the outgoing states and the existence of the gap implies the

exchange of something with vacuum quantum numbers. In the language of Regge

theory, the hadron-hadron scattering is described by the t-channel exchange of a

pomeron [25].

In addition to the soft (non-perturbative) scattering described above, it is

possible to have diffractive production of a hard scatter. In this case one, or both,

of the partons entering the hard scatter come from a proton that is associated
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with a diffractive exchange. The diffractive parton density functions (DPDFs)

are the probability distributions for partons in the proton given that the proton

remains intact. Ingelman and Schlein proposed [26] that the diffractive parton

density functions, fi(x, μ2
F , ξ, t), can be written as

fi

(
x, μ2

F , ξ, t
)

= fIP/p (ξ, t) fi

(
β, μ2

F

)
(2.49)

which is the product of a pomeron flux factor, fIP/p (ξ, t), and a parton density

function for the pomeron, fi (β, Q2). The variable β is the longitudinal momen-

tum of the pomeron that is carried by the parton entering the hard scatter, i.e

β = x/ξ. The pomeron flux factor, typically given by

fIP/p (ξ, t) = AIP
eBIPt

ξ 2αIP(t)−1
, (2.50)

is the probability for a pomeron to couple to the proton given specific values of

ξ and t [27]. AIP is a normalisation factor and the pomeron trajectory, αIP(t), is

assumed to take the form

αIP(t) = α(0) + α′t. (2.51)

Diffractive deep inelastic scattering (DDIS) data [27, 28] show that the diffractive

parton density function given in equation 2.49 is only valid for small values of ξ.

To give a good description of all the diffractive DIS data, a sub-leading reggeon

(IR) exchange is also needed, which contributes significantly at high ξ.

Double pomeron exchange (DPE) is a process in which both of the partons

entering the hard scatter come from a diffractive exchange. The protons remain

intact, but pomeron remnants accompany the hard scatter in the central sys-

tem, as shown in figure 2.5. While of interest in its own right, DPE acts as a

background to central exclusive processes. DPE can mimic the central exclusive

process if the pomeron remnants carry a small fraction of the total central mass.

This can occur if both partons entering the hard scatter in DPE have large values

of β.
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Figure 2.5: The double pomeron exchange process for bb̄ production. The zig zag
line denotes pomeron exchange from the proton. Also shown is the hard scatter
accompanied by pomeron remnants.
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Chapter 3

Experimental Considerations

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [29] is a proton-proton collider at CERN. The

machine is being built in a 27 km ring and proton collisions are due to start

in 2007. The protons will be accelerated up to 0.45 TeV in a chain of smaller

accelerators. At this point, the protons will be injected into the two counter-

rotative beam pipes which make up the main LHC ring. The protons will be

kept in a circular path by super-conducting magnets. Finally, the protons will be

accelerated up to the design beam energy of 7 TeV. There are four points on the

ring where the proton beams will be focused and collided.

The resultant proton-proton centre-of-mass energy will be 14 TeV. This is

approximately an order of magnitude larger than the current high energy fron-

tier at the Tevatron at Fermilab - which has a collision centre-of-mass energy

of 1.96 TeV. This makes the LHC a discovery machine, with the capability of

searching for new physics that manifests itself in the low TeV mass range.

For any process, the event rate, ṅ, is given by

ṅ = σL (3.1)
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where σ is the production cross section and L is the machine luminosity. The

event rate can be increased by maximising the luminosity. This is desirable

because the cross section for new physics could be quite small. The luminosity

at a collider is given [30] by

L =
1

4π

N2kf

σ2
T

(3.2)

where N is the number of protons per bunch, k is the number of bunches in the

beam, f is the revolution frequency and σT is the transverse size of the beam

at the interaction point. At the LHC, the bunch positions will be spaced every

25 ns and 2808 out of the 3564 possible bunches will be filled with protons [29].

The transverse size of the beam will be 16.7 μm at the interaction points. The

number of protons that can be put into each bunch is limited by the electrostatic

repulsion of the protons. There are two designated running modes at the LHC -

the low luminosity regime (L = 1033 cm−2 s−1) and the high luminosity regime

(L = 1034 cm−2 s−1). The integrated luminosity per year of data taking will be

10 fb−1 at low luminosity and 100 fb−1 at high luminosity.

Although increasing the luminosity results in a higher event rate, there is a

price to pay. The average number of interactions per bunch crossing, N̄ , can be

estimated using the total cross section, σT , by

N̄ =
σT L

Bf
(3.3)

where B is the fraction of bunches that are filled with protons. Equation 3.3

is just the product of the total event rate and the average time between bunch

crossings. The total cross section at the LHC is predicted to be 111.5+3.7
−11.1 mb

[31] and the average number of interactions per bunch crossing will be N̄ ∼ 3.5

and N̄ ∼ 35 at low and high luminosity running respectively.
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3.2 The ATLAS Detector

The ATLAS detector [32], shown in figure 3.1, is a large, multi-purpose detector

designed with the ability to discover a variety of different physics signals during

the lifetime of the LHC. To do this, the detector is comprised of a number of sub-

detectors each of which which fulfills a specific function. At the centre of ATLAS,

surrounding the interaction point, is the inner detector (ID). The ID provides

tracking, vertex reconstruction, transverse momentum measurement and some

level of particle identification. Surrounding the ID are the electromagnetic and

hadronic calorimeters, which provide energy and position measurement for all

incident photons, electrons and hadrons. On the outside of ATLAS is the muon

spectrometer, which provides muon tracking and momentum reconstruction.

The coordinate system used by the ATLAS detector defines the origin to

be at the interaction point and the z direction to be along the beam line [33].

Pseudo-rapidity, η, is defined as

η = − ln tan

(
θ

2

)
(3.4)

where θ is the angle with respect to the z axis. The transverse energy, ET , and

transverse momentum, pT , of an object are also defined relative to the z axis by

ET = E sin θ and pT = p sin θ (3.5)

where E and p are the energy and momentum of the object in question. The

azimuthal angle, φ, in the transverse plane is defined to be zero in the x direction

which points to the centre of the LHC ring. Finally, there is the length used by

detector elements covering the azimuthal direction, defined as Rφ = Rφ, where

R is the radial distance to the beam line.
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Figure 3.1: The ATLAS detector [32].

3.2.1 The Inner Detector

The ID [33, 34] comprises three sub-detectors covering the pseudo-rapidity range

|η| < 2.5. The detector nearest the beam is the pixel detector, which is surrounded

by the semi-conductor tracker (SCT). The outermost detector is the transition

radiation tracker (TRT). Each of these sub-detectors is split into three main

components. One is a barrel region which is cylindrical about the beam line with

the interaction point at the centre. The other two are endcap regions either side

of the interaction point.

The pixel detector and the SCT are made from silicon. A charged particle

passing through the silicon creates electron-hole pairs and a bias voltage across

the silicon causes the charges to drift to a readout electrode. If the amount of
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charge produced is greater than a threshold value then a particle hit is recorded.

The pixel detector is granular and segmented into pixels of 50 μm × 300 μm.

A pixel module consists of 61440 pixels in a 21.4 mm × 62.4 mm rectangle. In

the barrel region, the longer edge of each module is aligned in the z direction

and the shorter edge in Rφ. The barrel consists of three layers of modules, with

each layer providing coverage of |η| < 1.7 and complete coverage in azimuth.

The granularity of the pixels allows precise measurements in Rφ and z, with a

resolution of 12 μm and 66 μm respectively. Each pixel end-cap consists of five

disks of modules covering the pseudo-rapidity range 1.7 < |η| < 2.5. The position

resolution is 12 μm in Rφ and 77 μm in R.

The SCT is made of single sided p-on-n silicon microstrip detectors which

have dimension 6.36 × 6.40 cm2 (in the barrel region). Each detector consists of

768 strips of 80 μm pitch. A module consists of four of these detectors, which are

wire bonded in pairs to give a length of 12.8 cm. These pairs are then glued back

to back at a crossing angle of 40 mrad. This allows precision measurement in one

direction, using the granularity provided by the microstrip width, and another

measurement perpendicular to the strips using small angle stereo. In the barrel

(|η| < 1.4), there are 4 layers of modules which are arranged so that the strips

offer segmentation of the Rφ direction. This results in a resolution in Rφ of 16 μm

and the small angle stereo gives a z measurement accurate to 580 μm.

The two SCT end-caps each consist of nine disks covering the range 1.4 <

|η| < 2.5. The end-cap modules are constructed in the same way as the barrel

modules. However, the microstrips themselves are tapered and there are three

sizes of module covering the inner, middle and outer regions of the disk. The

modules are aligned on the disks so that one set of strips is in the radial direction,

again giving precision measurements in the Rφ direction. The resolution of the

end-cap measurements in (Rφ, R) is the same as the barrel measurements in
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(Rφ, z).

The TRT is based on straw detector technology. The straws are filled with

gas (70% Xe, 27% CO2, 3% O2) and a charged particle traversing the gas causes

ionisation. The electrons drift toward a wire readout in the centre of the straw,

due to a bias voltage. A particle hit is defined in a similar way to the silicon

detectors using a threshold of collected charge. The TRT is made of straws 4 mm

in diameter and up to 144 cm long. The barrel section (|η| < 0.7|) has 50000

straws, aligned lengthways in the z direction. The end-cap wheels have 320000

radial straws, which are arranged in 18 wheels per end-cap and cover the pseudo-

rapidity region 0.7 < |η| < 2.5. Drift time measurements result in a resolution of

170 μm per straw. A charged particle passing through the TRT gives typically

36 hits per track.

Radiator material is placed between the straws. Particles with βγ ≥ 1000

emit transition radiation photons at the radiator-straw boundary. The emitted

radiation is absorbed by the xenon and results in more ionisation than just the

initial particle alone. The TRT uses a second, higher threshold to determine

whether the hit consists of a particle plus transition radiation. This mechanism

allows electron-pion separation in the momentum range p < 100 GeV.

The ID is surrounded by a superconducting central solenoid magnet which

provides a 2 T magnetic field in the z direction. The central solenoid is kept at

4.5 K and shares the same vacuum vessel as the electromagnetic barrel calorime-

ter. The charged particles bend in the presence of the magnetic field and the

transverse momentum of the particle can be obtained from the radius of curva-

ture of the track. The large number of track hits in the TRT, coupled with the

precision measurements of the silicon detectors, result in excellent reconstruction

of particle pseudo-rapidity, azimuth, impact parameter (d0) and vertex identifica-

tion (z0). The resolution of reconstructed muon track parameters, obtained from
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full simulation [34], are:

σ

(
1

pT

)
= 0.36 +

13

pT

√
sin θ

(TeV−1)

σ (φ) = 0.075 +
1.8

pT

√
sin θ

(mrad)

σ (cot θ) =

(
0.7 +

2.0

pT

√
sin3 θ

)
× 10−3

σ (d0) = 11 +
73

pT

√
sin θ

(μm)

σ (z0) = 87 +
115

pT

√
sin3 θ

(μm). (3.6)

Pions and electrons are less well measured. Pions have a probability of undergoing

a nuclear interaction, which causes tails in reconstructed track parameters. This

problem is removed by the standard track quality cuts which are [34]: at least

nine precision hits in the silicon detectors, at least two pixel hits - with one

in the inner layer - and a transverse impact parameter less than 1 mm. The

effect of these track quality requirements is to reduce the efficiency of pion track

reconstruction, but results in similar resolutions as equation 3.6. Electrons on

the other hand, emit bremsstrahlung radiation which leads to a broadening of

the smeared distributions of 1/pT , d0 and φ.

3.2.2 The Calorimeters

Calorimeters measure the total energy of particles by complete absorption. The

two ATLAS calorimeters [33, 35, 36] use alternating sheets of material to repeat-

edly sample the energy. The first type of material causes the particles to shower

into a number of secondary particles. The second type of material forms the

active part of the detector, which absorbs and measures some of the energy of

the produced particles. This process is repeated in many layers until all of the

energy is absorbed.

The electromagnetic calorimeter (EM) uses a lead/liquid argon combination
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to measure the energy of photons and electrons. In the presence of heavy nuclei,

electrons emit bremsstralung photons; photons on the other hand split into an

electron-positron pair. Thus an incident electron or photon results in a shower

of new particles when passing through the lead layer. The electrons produced in

the shower cause ionisation in the liquid argon (LAr) and the charge is collected

on copper electrodes.

The barrel EM calorimeter covers the region |η| < 1.475 and the end-caps

cover 1.375 < |η| < 3.2. However, in the pseudo-rapidity region |η| < 1.8, the

EM calorimeter is preceded by a presampler, which is a just a layer of liquid

argon (LAr). The reason for this is that the material preceding the calorimeter

can cause showering and the presampler corrects for this energy loss.

The EM barrel calorimeter is split into three sampling regions of differing

granularity that are arranged in layers. The inner layer has a granularity of

0.003 × 0.01 in η × φ and a depth of approximately six radiation lengths. The

second sampler absorbs the majority of the energy of the particle due to a radial

depth of more than 16 radiation lengths and has a granularity of 0.025 in both η

and φ. The final layer is coarser, with a granularity of 0.05 × 0.025 in η× φ, and

is between 2 and 12 radiation lengths in depth. The EM end-caps have a more

complicated geometry, shown in table 3.1, where the granularity and number

of samplings depends on the pseudo-rapidity. The end-caps are more than 26

radiation lengths in depth.

The energy resolution, σE , of the EM calorimeter is parameterised by

σE

E
=

√(
a2

E
+ b2

)
(3.7)

where a is a sampling term (% GeV1/2) and b is a constant (%). The sampling

term varies between 8 and 13 from low to high rapidity when a full simulation

of the calorimeter is used [35]. The constant term is less than 0.5% for electrons

and less than 0.25% for photons.
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End-Cap Sampling number |η| η × φ
EM 1 1.375 < |η| < 1.5 0.025×0.1

1.5 < |η| < 1.8 0.003×0.1
1.8 < |η| < 2.0 0.004×0.1
2.0 < |η| < 2.5 0.006×0.1
2.5 < |η| < 3.2 0.1×0.1

2 1.375 < |η| < 2.5 0.025×0.025
2.5 < |η| < 3.2 0.1×0.1

3 1.5 < |η| < 2.5 0.05×0.025
HEC All 1.5 < |η| < 2.5 0.1×0.1

All 2.5 < |η| < 3.2 0.2×0.2

Table 3.1: The granularity (η × φ) of the electromagnetic (EM) and hadronic
(HEC) end-cap calorimeters [33].

The hadronic calorimeters are used to measure the energy of baryons and

mesons. In the barrel (|η| < 1.0) and extended barrel (0.8 < η < 1.7) regions,

iron is used to shower the hadrons and 3 mm scintillating tiles are used as the

active absorber. Each side of the tile is read out by a photomultiplier tube. The

readout cells are divided to give 64 modules in azimuth. In the z direction, the

readout from the cells are grouped in such a way so that the resulting granularity

is 0.1 × 0.1 in η × φ for the first 2 samplings. The final sampling is less granular

with η × φ = 0.2 × 0.1.

The hadronic end-cap, 1.7 < η < 3.2, is split into two wheels and uses

copper to provide the hadron shower and an 8.5 mm LAr gap as the active

absorber. There a four sampling regions and the granularity depends on the

pseudo-rapidity as in the EM end-cap. The granularity is given in table 3.1. The

forward calorimeter, 3.1 < η < 4.9, also uses liquid argon and consists of three

sections. Each section consists of a metal matrix (copper or tungsten) with regu-

larly spaced channels. Cylindrical rods are placed in the channels and carry high

voltage, which causes the charge drift in the LAr gap. The resulting granularity

is η × φ = 0.2 × 0.2.
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|η| A (%GeV1/2) B (%)
0.3 40±1 3.0 ± 0.1
1.3 44±3 1.6 ± 0.3

1.8 < |η| < 3.05 55 < A < 60 2.5 < B < 3.0

Table 3.2: The sampling (A) and constant (B) terms for pions. The final reso-
lution combines information from the electromagnetic and hadronic calorimeters
and corrects for energy lost in dead material such as the cryostat wall [36].

The resolution in energy measurement for hadrons takes into account energy

deposited in the EM and hadronic calorimeters and also dead material in the

detector. The resolution is parameterised [36] by

σE

E
=

A√
E

+ B (3.8)

where A and B are the sampling and constant terms respectively. The sampling

and constant terms for pions, obtained from full simulation, are pseudo-rapidity

dependent and are given in table 3.2.

3.2.3 The Muon Spectrometer

The muon spectrometer [33, 37] is designed to determine the transverse momen-

tum and charge sign of muons by measuring the radius of curvature of muon

tracks in a magnetic field. The magnetic field is provided by three superconduct-

ing air-core toroid systems (shown in figure 3.1). The end-cap toroids are inserted

into the barrel toroid. The overall bending power is 2-6 Tm in the pseudo-rapidity

region |η| < 1.3 and 4-8 Tm in the region 1.6 < |η| < 2.7. The overlap region of

the barrel and end-cap toroids, 1.3 < |η| < 1.6, has a lower bending power.

The muon spectrometer is divided into precision tracking and trigger cham-

bers. In the barrel region, |η| < 1.0, the precision chambers are arranged into

three stations of monitored drift tubes (MDTs). The MDTs are made from 30 mm

aluminium tubes, each with a 50 μm W-Re readout wire in the centre. The single
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wire resolution is 80 μm. A super-layer is defined as four layers of tubes in the

inner station and three layers in the middle and outer stations. The chambers

themselves consist of two super-layers, one on each side of the support structure

to which they are attached. The barrel muon spectrometer consists of 1194 such

chambers.

In the end-caps, the precision chambers are MDTs in the region 1.0 < |η| < 2.0

and cathode strip chambers (CSCs) in the region 2.0 < |η| < 2.7. The CSCs are

multi-wire proportional chambers with the first set of cathode strips perpendicular

to the anode. The precision point is measured by reading out the induced charge

on the cathode due to electron avalanche on the anode. The second set of cathode

strips is parallel to the anode and thus provides the transverse component. The

position resolution of the cathode strips is 60 μm.

The momentum resolution of the muon spectrometer depends on the trans-

verse momentum and pseudo-rapidity of the muon itself. High transverse mo-

mentum muons are bent less in the magnetic field and hence the radius of cur-

vature is less well measured. In the overlap region between barrel and end-cap

toroids, the bending power is smaller and hence the momentum less well mea-

sured. Even so, the momentum resolution of the muon spectrometers, for more

than 75% of the available phase space, is approximately 3% for muons with

30 GeV< pT < 100 GeV, better than 5% for pT < 300 GeV and approximately

10% for 1 TeV muons [37].

The trigger chambers are resistive plate chambers (RPCs) in the barrel region,

|η| < 1.0, and thin gap chambers (TGCs) in the region 1.0 < |η| < 2.4. An RPC

unit is made of two parallel resistive plates separated by a gas gap. Each trigger

chamber consists of two such units and the resolution in space-time of the RPCs is

approximately 1 cm × 1 ns. The ionisation electrons are multiplied by an electric

field of 4.5 kV mm−1 and the resultant charge is read out by perpendicular sets
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of metal strips on either side of the unit. The η strips are aligned with the

wires in the MDTs. The φ strips are then used in offline reconstruction. The

TGCs are multi-wire proportional chambers with a gas gap of 2.8 mm and a wire

pitch of 1.8 mm. The wires are aligned with the wires in the MDTs. Graphite

cathode read-out strips, which are arranged perpendicular to the anode wires, fan

out radially from the beampipe and provide the azimuthal coordinate in offline

reconstruction.

3.2.4 Trigger and Data Acquisition

It is not desirable for the ATLAS collaboration to store all the event data from

every bunch crossing. Firstly, each event will occupy approximately 1.5 MB of

memory in offline storage. As the bunch crossing rate at the LHC will be 40 MHz,

this would correspond to a data rate of 60 TB s−1. Secondly, the majority of these

events will be soft QCD events. New physics signals, such as the discovery of the

Higgs boson, will be relatively rare and searching through such a large data set

for a potential signal would take too long. A better strategy therefore, would

be to examine the data immediately and store the event permanently only if it

passes a set of criteria. This is known as triggering.

The ATLAS trigger [33, 38] is designed to execute in three successive stages;

level 1, level 2 and the event filter. For each bunch crossing, the information

from each sub-detector is pushed into pipeline memories. Each sub-detector then

identifies which memory block corresponded to a particular bunch crossing after

receiving a clock signal from the level 1 central processor. For practical and

economical reasons the length of the pipelines must be kept short and this limits

the time the sub-detector will retain the information.

The level 1 trigger has the initial responsibility of retaining events of possible

interest. The decision to keep an event is made within 2.5 μs. The trigger relies
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Trigger Rate (kHz)
MU6 23

EM20I 11
EM15I ×2 2

J180 0.2
J75 ×3 0.2
J55 ×4 0.2

J50 + XE50 0.4
T20 + XE30 2

Other 5

Table 3.3: Low luminosity level 1 trigger menu [38] with expected trigger
rates. The following codes are standard in level 1: MU(muon spectrometer),
EM(electromagnetic object), J(jet), T(tau), XE(missing ET ) and I is an isolation
criterion. For example, EM20I means the (reduced granularity) electromagnetic
object must have an ET > 20 GeV and be isolated from other EM activity.

on reduced granularity information from the muon spectrometer and calorimeters

in order to define objects of interest. Muons are identified using just the RPCs

and TGCs. The calorimeter trigger is used to define electron/photon, tau, jet,

missing and scalar transverse energy objects.

A physics menu provides a list of criteria that define objects of potential

interest. An example of a level 1 physics menu is shown in table 3.3. The jet

triggers have a very high transverse energy threshold because of the very large

QCD rate at low transverse energy. The muon transverse momentum requirement

is low in order to keep soft muons from B-physics events. If an object passes one

of these criteria, the entire event is kept. The data is then read out, formatted

and stored in read-out buffers (RoBs). The maximum data rate of events selected

at level 1 is 75 kHz. The current estimate, given in table 3.3, is 44 kHz.

The level 2 trigger operates on regions-of-interest (RoIs). An RoI is a small

amount of information provided by level 1 that allows level 2 to request read-out

data from relevant sub-detectors, i.e those near the region of interest. Level 2

starts out by confirming the level 1 result. The level 2 trigger then refines the

result by searching other sub-detectors for relevant information. In the case of
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muons for example, an isolation criterion can be applied by looking for activity in

the calorimeters. Level 2 then defines global trigger objects based on information

from all sub-detectors and makes a decision to keep the event or not. The total

processing time at level 2 is approximately 10 ms and the data rate which is

passed to the event filter is approximately 2 kHz. The event filter further refines

the event by using the full granularity of the detector. It is at this stage that

the most complex algorithms, such as track fitting or vertex reconstruction, are

applied to the data because the processing time is a few seconds. The final event

rate is expected to be approximately 100 Hz.

3.3 The FP420 Project

FP420 is a proposed new sub-detector capable of measuring the momenta of the

protons scattered in central exclusive processes [39]. The basic design of FP420 is

a magnetic spectrometer. The protons scattered during the interaction will have

lower momentum than the beam protons and will be bent out of the beam by the

superconducting magnets in the LHC ring. The aim is to install movable silicon

tracking detectors 420 m either side of the interaction point. The measurement

of the angle and displacement of the protons with respect to the beam line will

allow the proton momentum to be determined if the beam optics are well known.

In the present design of the LHC, there is a 15 m connection cryostat in the

420 m region. The cross section of the cryostat is shown in figure 3.2. V1 and V2

are the beam pipes, with V2 containing the outgoing beam from the interaction

point. The detector stations will be placed between V1 and V2. M1, M2 and

M3 are superconducting bus bars which carry the current for the magnets. It is

possible to move these bus bars to make extra room for detector access. The heat

exchanger, labelled X, cannot be moved because it must remain parallel to the

tunnel floor at all times.
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Figure 3.2: The 15 m cryostat at 420 m from the ATLAS interaction point [39].

The detector stations will be moved closer to the beam after proton injection

and acceleration, when the beam has stabilised. The Hamburg Pipe design pro-

poses that the stations will be rigidly fixed to the V2 beam pipe and the position

measured to 1 μm with an optical bench arrangement. The entire structure will

then be moved to place the detectors closer to the beam line itself. The position

of each station with respect to the beam will be measured using beam positioning

monitors (BPMs), which are precise to a few 10’s of μm. At least two detector

stations will be required to make the momentum measurement, but 3-4 could be

used for redundancy purposes and background (halo) rejection. The stations will

be placed over an 8 m length along the beam pipe.

Each detector station will be capable of measuring the position of the proton

relative to the beam and the time of flight (TOF) of the proton from the interac-

tion point. The position measurement will be made using layers of 3D edgeless
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silicon. It is estimated that the position of a proton hit within the silicon layers

can be measured to 10 μm and the angle to 1-2 mrad [39]. The limiting factor on

the relative position measurement will be due to the BPMs and this can proba-

bly be improved using clean high rate processes such as γγ → μ+μ− in off-line

calibration.

The TOF detectors will be fast-timing Cerenkov counters. Protons traversing

the active volume will emit Cerenkov radiation which is then detected by photo-

multiplier tubes. Two types of TOF unit will be used; GASTOF and QUARTIC,

which are designed to use gas and quartz respectively. GASTOF will be used in

the stations nearest the interaction point whilst QUARTIC will be used only in

the final station and will be positioned after the silicon layers. This configuration

was chosen because there will be a large probability for the proton to have multiple

scatterings in quartz, which could change the direction of the proton or cause it

to break up completely. Thus QUARTIC can only be used after all of the position

measurements. The final TOF measurement is estimated to be accurate to 10 ps.

The TOF measurements for the outgoing protons either side of the interaction

point will be made relative to each other, making a reference clock unnecessary.

The ΔTOF measurement corresponds to an interaction vertex measurement with

an accuracy of 2.1 mm.

The ξ acceptance will depend upon how close the detector stations can get

to the beam and the dispersion of the LHC at 420 m. The closest distance of

approach to the beam has been considered to be 10σx + 0.5 mm [40], where σx is

the horizontal beam width at 420 m. This results in a lower limit of 3 mm and

will require ideal beam conditions. Larger distances of 5 mm, 7.5 mm and 10 mm

have also been studied [39]. The distance from the beam will affect the low ξ

acceptance, and hence the lower central mass reach of FP420. However, using the

FPTRACK program [41], it was found that the acceptance for a 120 GeV central
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Figure 3.3: The acceptance of FP420 [39] as a function of the mass of the central
system. Results are shown for different distances of closest approach to the beam.

mass is constant for the three closest configurations as shown in figure 3.3. The

ξ acceptance of the 5 mm configuration is given [41] by

0.0023 ≤ ξ1 ≤ 0.0129

0.0029 ≤ ξ2 ≤ 0.0171 (3.9)

where the asymmetry is due to differences in the beam optics on each side of the

ATLAS detector. The dominant contribution to the uncertainty in the momen-

tum loss measurement is expected to be the intrinsic momentum spread of the

protons within the beam at the LHC (0.77 GeV). This is also the dominant un-

certainty on the resolution on the central mass measurement, which is estimated

to be 1 − 2%.

Finally, the signal from FP420 will arrive at the central trigger processor 3 μs

after the interaction occurred. This means that information from FP420 can only

be used at trigger level 2 onwards. Thus the central exclusive events will only

be available for analysis if they pass one of the standard level 1 triggers given in

section 3.2.4.
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Chapter 4

The ExHuME Generator

4.1 Monte Carlo Methods

4.1.1 Monte Carlo Integration

The basic Monte Carlo (MC) method is an integration technique based on ran-

domly sampling a distribution. Consider a one dimensional function, f(x). The

definite integral, I, can be estimated [42] by

I =

∫ x2

x1

f(x)dx ≈ x2 − x1

N

N∑
i=1

f(xi) (4.1)

where N is the number of sampling points chosen randomly in the range {x1, x2}.

The function is averaged across the specified range and the approximation be-

comes exact as N → ∞. The uncertainty in the integral, σI , is calculated by

σ2
I =

(x2 − x1)
2

N

⎡
⎣ 1

N

N∑
i=1

f(xi)
2 −

(
1

N

N∑
i=1

f(xi)

)2
⎤
⎦ (4.2)

where the term in square brackets is the variance of the function. The uncertainty

in the integral can be reduced significantly in two ways. Firstly, the uncertainty

decreases with N1/2, which means that sampling more points results in a better

estimate of the integral. Secondly, the uncertainty decreases with the variance of
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the function. Therefore, if the amount by which a function varies from its average

is reduced, the uncertainty in the integral will also decrease.

The smoothing out of functions in this way is achieved by the use of a weight

function. A new integration variable, y, is introduced such that

dy

dx
= w(x) (4.3)

where w(x) is the weight function. The integral can then be rewritten as

I =

∫ y2

y1

f(x(y))

w(x(y))
dy ≈ y2 − y1

N

N∑
i=1

f(x(yi))

w(x(yi))
(4.4)

where the sampling points are chosen randomly in the range {y1, y2}. The uncer-

tainty in the integral can be evaluated using equation 4.2 with the substitution

f(x) → f(x)
w(x)

. The uncertainty is now dependent on the variance of f(x)
w(x)

, which

can be minimised by an appropriately chosen weight function.

The power of the MC integration technique is realised with the extension to

an arbitrary number of dimensions. Each component of the n-dimensional point

x = (x1, ..., xn) is chosen independently and the integral is approximated by

I ≈ 1

N

N∑
i=1

f(xi)

n∏
j=1

(
xj

2 − xj
1

)
(4.5)

where the product term is simply the volume element over which the integration

is performed. An n-dimensional weight function can then be chosen providing it

factorises into the form

w(x) =

n∏
j=1

w(xj) (4.6)

where each w(xj) is a weight function for dimension j. This results in the new n-

dimensional integration variable, y, the components of which are chosen randomly

and independently between {yj
1, y

j
2}.
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4.1.2 Pseudo-Random Number Generators

A computer does not generate true random numbers, but rather generates num-

bers according to an algorithm. These pseudo-random numbers appear random

to someone who does not know the details of the algorithm. The generation of

these numbers must have three important characteristics [43].

Firstly, the random number sequence must have a long period. Any algorithm

that generates a sequence of numbers will eventually start repeating itself. For

any given calculation, the number of pseudo-random numbers generated must not

become close to the period of the sequence.

Secondly, the results of the generation must be repeatable. This is achieved by

the use of a seed number from which the algorithm generates the sequence. Thus,

the complete calculation can then be repeated and the same results obtained. The

seed can also be recorded at any time. This allows a small subset of numbers to

be recreated from a large sequence. This is desirable if, for example, a small set of

numbers is changing the result of the calculation. The set can then be examined

at any time without having to regenerate the entire sequence.

The final requirement is a good distribution, which means that the random

numbers should not be correlated and should be uniformly distributed. The only

way to see if a random number generator results in a good distribution is to

subject it to a variety of tests [44, 45].

4.1.3 Generation of Random Numbers to a Distribution

The basic Monte Carlo evaluation of an integral required random numbers to be

distributed uniformly in the integration variable of interest. The introduction of

the weight function however, results in the random numbers being distributed

uniformly in a new variable defined by equation 4.3. This can be viewed as the

smoothing out of the function by changing integration variables. However, the
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uniform distribution of random numbers in this new variable is equivalent to

the random numbers being picked - in the original integration variable - with a

probability density defined by the (normalised) weight function. This is known

as importance sampling because random numbers are more likely to be picked in

regions of interest determined by the weight function.

This method only allows random numbers to be picked for an analytical func-

tion that is integrable. For a non-analytic function, Von Neumann rejection can

be used to distribute the random numbers. Von Neumann rejection works as

follows for a one dimensional function f(x):

1. A weight function, w(x), is chosen such that, for all x, w(x) ≥ f(x).

2. The random values of x are distributed according to w(x).

3. For each value of x, a random number, r, is picked in the interval {0, 1}.

4. The point is accepted if

f(x)

w(x)
≥ r. (4.7)

The result of such an algorithm is shown in figure 4.1 (a). Using this method,

random numbers can be distributed to any function providing a suitable weight

function can be chosen. The efficiency, ε, of picking the points is given by

ε =
NP

NT
(4.8)

where NT and NP are the number of points attempted and accepted respectively.

The choice of weight function is important from a computing perspective as a

poor efficiency increases the time taken to complete the task. Figure 4.1 (b)

shows the effect of choosing a weight function that does not satisfy w(x) ≥ f(x).

The actual distribution generated in this case would be min(f(x), w(x)).
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Figure 4.1: Figure (a) shows the Von Neumann rejection method to generate
random numbers, x, to a specific distribution, f(x). Initially the values of x were
distributed according to an appropriately chosen weight function, w(x). Figure
(b) shows the effect of picking a weight function that doesn’t satisfy f(x) ≤ w(x)
for all x.

4.1.4 Numerical Methods for Estimating the Weight Func-

tion

The problem with the generation of random numbers to a distribution is that prior

knowledge of the distribution is required in order to choose an appropriate weight

function. Without this knowledge, the result can be the incorrect distribution

of the points or very inefficient picking. One way to avoid these problems is to

numerically estimate the normalised weight function, or probability density, by

calculating the integral.

This type of approach has been implemented in the VEGAS algorithm [46],

which allows n-dimensional distribution of random numbers. An adapted version

of VEGAS is described here. For each axis, j, the integration range, {aj , bj}, is

divided into M0 strips and therefore the integration volume is divided into (M0)
n

hypercubes that form a grid as shown in figure 4.2 (a). For M0 strips, there are

M0 + 1 axis divisions, xj
k, where 0 ≤ k ≤ M0, and the separation of each division

is bj−aj

M0
. The boundaries of the integration range satisfy xj

0 = aj and xj
M0

= bj .

A standard Monte Carlo sampling is carried out for N points assuming a
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uniform probability density for each axis. The integral of each strip, Ij
k , which

is bounded by the divisions xj
k and xj

k−1, is recorded for each axis. Note that,

by definition, the integral Ij
0 is set to zero for all j, since this strip is outside the

range of integration. The probability density, ρj
k, of each strip is then given by

ρj
k =

Ij
k

I
(4.9)

where I is the total integral. Any number, I ′, in the range {0, I} can be mapped

back to a point on an axis, xj , by recognising that

I ′ =

∫ xj

aj

f(xj) dxj (4.10)

and using linear interpolation. Firstly, the strip of interest, k′, is identified using

Cj
k′−1 ≤ I ′ ≤ Cj

k′. (4.11)

where Cj
k′ is the cumulative integral up to the division xj

k′ and defined as

Cj
k′ =

k=k′∑
k=0

Ij
k. (4.12)

The boundary conditions for the cumulative integrals are Cj
0 = 0 and Cj

M0
= I.

The point on the axis that corresponds to I ′ is given by

xj = xj
k′−1 +

(
I ′ − Cj

k′−1

Cj
k′ − Cj

k′−1

)(
xj

k′ − xj
k′−1

)
. (4.13)

After the initial estimate of the probability density for each axis, a new grid

is formed with each strip in the grid having approximately the same integral,

Ij
k = I

M0
. This is achieved by creating new strip boundaries by setting I ′ = kI

M0
in

equation 4.13. An example of the grid changing is shown in figure 4.2 (b). Another

Monte Carlo sampling is carried out with the random numbers being picked in

the range {0, I} for each axis and the actual point on the axis is determined by

equation 4.13. This concentrates points in the region where the integral is largest,

which corresponds to small hypercubes in the new grid. The new Ij
k are recorded.
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(a) (b)

Figure 4.2: Figure (a) shows the VEGAS grid for a uniform probability density.
This is the grid that VEGAS initialises. Figure (b) shows a grid which corresponds
to uniform distribution in the vertical coordinate, but an decreasing distribution
(left to right) in the horizontal coordinate.

This process is repeated as many times as the user requires. Each iteration

results in a probability density that more closely resembles the function of interest.

At the end of the calculation, when the user is satisfied that the integral and

probability density are well known, points on each axis can be picked efficiently by

selecting a random number in the range {0, I} and using equation 4.13. The error,

σα, in the integral, Iα, is reduced in each sampling, α, as the probability density

becomes more like the function of interest. The combined integral estimate is

then given by

I = σ̄2
∑

α

Iα

σ2
α

(4.14)

where σ̄ is the uncertainty of the combined sample and is given by

1

σ̄2
=

∑
α

1

σ2
α

. (4.15)

The VEGAS method works well for distributions that do not contain sharp

peaks or divergences that are a function of two coordinates. For example, a

discontinuous function with an edge perpendicular to an axis will be handled

efficiently by VEGAS. On the other hand, a discontinuous function with an edge

45 degrees to two axes will cause problems and will result in inefficient weighting.
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This problem arises because, within each strip on the axis in question, there

are areas where the function and integral will be zero. The integral of the strip

however, can be quite large. Thus picking the two coordinates independently can

result in a lot of points picked in an area of zero integral. Although these points

can then be rejected by Von Neumann methods, the result is an overall increase

in computing resources required to complete the task.

If the problem is restricted to one dimension, then Monte Carlo methods do

not need to be used to calculate the integral in order to estimate the probability

distribution. The integration range, {a, b}, is divided into M0 + 1 equally spaced

points, xk, with the boundary conditions x0 = a and xM0 = b. The integral

between each point

Ik =

∫ xk

xk−1

f(x)dx (4.16)

can then be calculated using Simpson’s rule [42]. The total integral is just the

sum of the integrals, I =
∑M0

k=0 Ik, with I0 = 0.

The integral is then refined by placing more points in the region where the

integral is largest. This is achieved by selecting M1 new points equally spaced

in {0, I}. The position of the points on the axis are calculated by equation 4.13

with I ′ = kI
M

. There now exists M0 + M1 + 1 points in the integration region and

Simpson’s rule is again used to calculate the integral between each point. This

procedure is iterated until the user is satisfied that the integral is well determined

and many points have been placed in the region of largest integral. The final result

is that points distributed in the range {0, I} can be mapped back to points on

the axis using equation 4.13.

4.2 Event Generators

The purpose of an event generator is to accurately simulate the physics of a

particle-particle collision at a given centre-of-mass energy. An event generator
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does not include the effects of a detector, but produces the final state particles

that interact with the detector. The purpose of this section is to explain how

event generators, such as HERWIG [47] and Pythia [48], simulate hadron-hadron

collisions. For each process, a point in the available phase space is generated using

the techniques described in section 4.1. There are four stages of simulation needed

to turn that particular point in phase space into a full, realistic description of an

event observed at a hadron-hadron collider. These are massive particle decays,

parton showering, hadronisation and multiple interactions. For more than one

proton-proton interaction, pile-up events will have to be included for a realistic

description.

Particles such as the Higgs boson are not stable and will decay to lower mass

particles. The probability for a specific decay to occur, such as H → bb̄, is a

calculable quantity in perturbation theory and is given by the branching ratio.

The decay products are typically quarks, leptons or another massive unstable

particle (a resonance). In the case of another resonance, further decays will be

necessary. If the decay products are quarks, parton showering will be added as

described below.

Parton showering is an attempt to account for higher order corrections in the

simulation of a leading order process. Consider the simulation of the gg → bb̄

process. It is known that the higher order process gg → bb̄g has a large amplitude

when the final state gluon becomes soft or collinear with one of the other partons.

The parton shower approach is to simulate these effects by radiating a soft or

collinear parton from one of the partons in the leading order process. Each of the

resultant partons can then also radiate and this results in a shower of coloured

partons.

Two types of showering are necessary in QCD event generators. Using the

example of gg → bb̄, both the initial state (gg) and the final state (bb̄) can radiate.
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The final state parton shower is described as time-like because the virtuality of

the emitting parton is greater than zero. At each point in the shower, a parton

with time-like momentum is emitted and the radiating parton moves to smaller

virtualities. This is also known as the forward evolution of the shower, because the

intial momentum of the final state parton is known, but a range of final momenta

are possible during the event generation. There is a lower cut off in virtuality

to stop parton showering in the non-perturbative region when αS becomes large.

The initial state parton shower is known as space-like because the virtuality of

the incoming parton is negative. QCD event generators use backward evolution

for the initial state radiation, i.e the final momentum of the parton entering the

hard scatter is known at the beginning of the shower. Again there is a cut off in

virtuality to end the shower.

At the end of the parton shower, the event consists of many coloured partons

from both the hard scatter and the proton remnants. It is known however, that

these partons must be bound inside hadrons as only colourless objects have been

observed. Therefore a mechanism for this hadronisation is necessary to simulate

a realistic event. Perturbation theory is no longer applicable because the strong

coupling becomes large and so QCD event generators use a hadronisation model

to determine the final colour neutral state. There are currently two commonly

used hadronisation models; the string model which is used in Pythia, and the

cluster model which is used in HERWIG. Details of these models can be found

in the appropriate literature [47, 48].

Multiple interactions, or underlying event, are scatters between spectator par-

tons from the proton-proton collision that produced the primary hard scatter.

Multiple interactions are primarily QCD 2 → 2 scatters at low transverse mo-

mentum and must be included in the event generator to accurately describe the
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data of hadron-hadron collisions [49]. After the production of the secondary scat-

ters, the new partons then undergo parton showering and hadronisation in the

same way as the primary hard scatter.

Pile-up events are multiple proton-proton scatters in the same beam bunch

crossing which are overlaid with the initial interaction. The probability of a pile-

up event being a specific type is given by the ratio of the cross section for that

process to the total cross section. The number of pile-up events overlaid with

the primary event is dependent on the experimental conditions and is given by

equation 3.3.

4.3 ExHuME

The ExHuME generator [50] is a direct implementation of the Durham model

of central exclusive production. When new processes are developed, the usual

prescription is to insert the hard subprocess into a standard event generator

using the Les Houches accord [51]. This allows all the existing machinery of the

event generator to be used. For each event, the developer is required to pass

the hard subprocess particle types and momenta, the specific colour connections

and an event weight to the generator. The event weight tells the generator the

probability of this point in phase space occuring. The generator then treats the

hard subprocess particles in the way described in section 4.2 to produce the final

state.

In the case of the ExHuME generator, this approach is not used. Firstly,

initial state radiation is not required because of the Sudakov suppression fac-

tor, which explicitly forbids radiation from the incoming gluon. Secondly, the

effective luminosity of the incoming gluons depends on the skewed, unintegrated

parton density functions rather than the integrated parton density functions used

in standard event generators. Thus the parton density treatment is different for
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central exclusive event generators. Finally, the protons themselves remain intact

and have no secondary scatters. All that is required for a central exclusive gener-

ator is that the final state be passed through parton showering and hadronisation

algorithms.

ExHuME was designed in a modular way using C++ and is built upon

six main class types: Event, CrossSection, Weight, Random, Particle and

PhaseSpace. The Random class provides uniformly distributed random numbers

in the region {0, 1} using the RandFlat class contained in CLHEP [52]. A Weight

class is provided that can be used to numerically distribute random numbers for

any one dimensional function, using the method outlined in section 4.1.4. The

Particle class contains information such as 4-momentum, vertex, particle type

(given by the PDG Monte Carlo numbering scheme [53]) and colour flow (given

by the Les Houches accord).

The Event class handles the generator on an event-by-event basis by picking

the random numbers required to generate the phase space of an event. There are

six variables that are required for every subprocess; M , y, t1, t2 and the azimuth

of the outgoing protons, φ1 and φ2. These variables correspond to the five phase

space variables of 2 → 3 scattering in addition to an overall azimuthal rotation.

The three outgoing objects at this stage are the two protons and the central

system as a whole.

The φ1 and φ2 distributions are flat and are picked in the range {0, 2π}. The

t dependence of the cross section is given by equation 2.42 and the Monte Carlo

does not lose any efficiency if a weight function of the form

w(t1, t2) = eb(t1+t2−tmax
1 −tmax

2 ) (4.17)

is used. The range that the ti are picked in, {tmin
i , tmax

i }, can be specified by the

user before event generation. The y distribution of the central exclusive process is

relatively flat [19], and a uniform probability distribution results in a 40% efficient
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Monte Carlo. Such a choice is not optimal, but allows the mass distribution to be

estimated numerically using the Weight class, which implements the technique

developed at the end of section 4.1.4. This technique recursively adds points in

the regions of largest integral and, as such, is extremely efficient at picking out

the narrow mass peak of a single central object such as the Higgs boson. The

mass range is defined by the user before event generation and the rapidity range

is calculated on an event by event basis.

The CrossSection class calculates the differential cross section. It is an

abstract class that contains the calculation of the differential luminosity given

by equation 2.43. LHAPDF [54] is used for the parton density functions. This

allows different PDFs to be used in the calculation, which could lead to changes

in both the cross section value and the differential cross section distribution [55].

If the central system consists of two or more particles, then additional vari-

ables are required to generate the complete phase space of the final state. The

subprocesses inherit from CrossSection via an intermediate set of PhaseSpace

classes. These define the appropriate weight functions and boundaries of any

phase space variables that are not covered in the Event class. For example, a

central system containing two particles requires an extra two variables that define

the solid angle of one of the outgoing particles in the centre-of-mass frame. These

variables are picked uniformly in the range {0, 1} by the Event class and passed

to the subprocess.

At present, there are four subprocesses released in the ExHuME package -

Higgs, gg, qq̄ and γγ. However, new processes can be added easily by inheritance

from the appropriate PhaseSpace class. To complete the event generator, the

central system is decayed, parton showered and hadronised using the appropriate

functions in Pythia. In this way a fully hadronic system is created.

ExHuME can be set to run at the LHC or at the Fermilab Tevatron. The
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Figure 4.3: The integrand of equation 2.43 which calculates the luminosity of
the proton-gluon vertices is shown in (a) as a function of QT for different values
of the central system rapidity. The effect on the integrand of producing a lower
central system mass is shown in (b).

default soft-survival is chosen to be 0.03 (0.045) at the LHC (Tevatron) in ac-

cordance with the Durham model. Similarly, the default value of the skewness

parameter, Rg, is chosen to be 1.2 and 1.4 at the LHC and Tevatron respectively.

Details on the practical use of the ExHuME generator are given in [50]. All results

presented in the following sections are for the LHC.

4.3.1 General Distributions

ExHuME has a number of run control parameters that the user can change to

alter the calculation and these are listed in Appendix A. For example, the value

of the soft survival factor can be changed, although this simply re-scales the cross

section and does not alter any distributions. The issue of a lower bound in the

integral of equation 2.43, which calculates the effective luminosity of the incoming

gluons, is more important however. Formally, the integral requires a lower bound

to avoid the pole in the calculation of αS (equation 2.17).

Figure 4.3 (a) shows the integrand of equation 2.43 as calculated by ExHuME
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Figure 4.4: The luminosity of the proton-gluon vertices at y = 0 for three different
parton density functions, MRST2002 (NLO and NNLO) and CTEQ6M.

at a central mass of 120 GeV. The peak of the distribution is above 1.0 and

quickly falls to zero as QT → 1.0, due to the Sudakov suppression factor. There

is a noticeable kink in the distribution which arises because the integrated PDF’s

are frozen to stop the DGLAP evolution entering regions where there is no avail-

able data [54]. The unintegrated gluon density function, given by equation 2.44,

is a derivative of the product of the Sudakov factor and the integrated gluon

distribution. Thus, when the PDF’s are frozen, the term which is a derivative

of the integrated PDF vanishes, but the overall integrand does not fall to zero

because of the term containing the derivative of the Sudakov factor.

The lower bound on QT must be small enough to contain the majority of the

integral, yet large enough so that the perturbative calculation is applicable. The

default lower bound in ExHuME is chosen to be QT = 0.8, which is justified by

figure 4.3 (a) for all rapidity values at a central mass of 120 GeV. Figure 4.3 (b)

shows the QT dependence of the integrand at a lower mass. Again, the integrand

is above 1.0 and the lower bound justified.

In addition to the minimum value of QT , the choice of parton density func-

tion can have a major impact on the central exclusive cross section. Figure 4.4
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Figure 4.5: The proton t, φ and pT distributions are shown in (a), (b) and (c)
respectively. Figure (d) shows the transverse momentum of the central system,
pX

T , as produced by ExHuME.

shows the effective luminosity of the incoming gluons as a function of mass for

three different PDF choices - MRST2002 (NLO and NNLO) and CTEQ6M. The

ExHuME default was chosen to be MRST2002NLO to keep the default ExHuME

predictions matching that of the Durham model. However, the other PDFs reflect

the uncertainty due to the choice of parton density function.

The proton t and φ distributions for 100000 dummy events are shown in figures

4.5 (a) and (b). The dummy subprocess has no extra phase space parameters and

these distributions represent general ExHuME production for all subprocesses. As
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Figure 4.6: The FP420 acceptance as a function of the mass of the central system
for silicon detectors placed 5 mm from the beam.

expected, the t distribution is strongly peaked at zero and the φ distribution is

flat. The transverse momentum distribution of the outgoing protons is shown in

figure 4.5 (c) and the typical value is less than 1.0. The peak value of the proton

transverse momentum, in conjunction with the peak QT value given in figure 4.3

(a), leads to a typical value of
p2

T

Q2
T

of 0.1 and satisfies the criteria for the Jz = 0

selection rule.

For the central exclusive process, momentum conservation implies that all

of this transverse momentum, in addition to the transverse momentum from

the other proton, is transferred to the central system. This means that the

transverse momentum of the central system, pX
T , will also be very small regardless

of the subprocess chosen. This is verified in figure 4.5 (d), where the transverse

momentum of the central system peaks at 0.5 GeV.

Finally, it is possible to reproduce the acceptance of the FP420 sub-detectors

using the maximum and minimum values of ξ presented in section 3.3, which

correspond to the detectors being 5 mm from the beam. Figure 4.6 shows the

acceptance of FP420 as a function of the mass of the central system for the

MRST2002NLO parton density function. FP420 has almost zero acceptance for
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Figure 4.7: The central exclusive Higgs cross section, σH , as a function of Higgs
boson mass, MH , at the LHC.

central masses above 200 GeV and the peak acceptance for this configuration is

approximately 35% at a central mass of 90 GeV. The acceptance is found to be

the same for the CTEQ6M and MRST2002NNLO parton density functions. Note

that the acceptance in figure 4.6 is smaller than the acceptance presented in [39].

Therefore, any results obtained using the ξ cuts to estimate FP420 acceptance

should be considered to be conservative.

4.3.2 Higgs Boson Production

The colour singlet, Jz = 0 cross section for gg → H is given [19] by

σ̂gg→H =
2π2K Γ0 (H → gg)

M3
H

δ

(
1 − M2

H

M2

)
(4.18)

where K is a next to leading order correction factor (K ≈ 1.5), Γ0 (H → gg) is

the two-gluon partial width of the Higgs resonance [56] and MH is the mass of

the Higgs boson. In ExHuME, the delta function is replaced by the Higgs boson

lineshape given in [57]. The production cross section is shown as a function of

mass in figure 4.7 for three choices of parton density function. The choice of

PDF changes the cross section by up to a factor of two, which implies a ±50%

uncertainty on the more central (default) PDF. This is somewhat larger than
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Figure 4.8: The mass (a) and rapidity (b) distributions for a 120 GeV Higgs
boson.

the estimated contribution to the Higgs cross section uncertainty from the PDFs,

which was ±22% [23].

The central mass and rapidity distributions for a 120 GeV Higgs Boson are

shown in figures 4.8 (a) and (b) respectively. The distributions are in agreement

with the numerical results of the Durham group [19] and further demonstrate the

validity of the ExHuME generator. It is also apparent from the rapidity distri-

bution why FP420 has a low acceptance of 25% for a central mass of 120 GeV.

Using the bounds of the FP420 ξ acceptance with equations 2.37 and 2.39 gives

the rapidity acceptance for a 120 GeV Higgs boson to be −0.7 < y < 0.4. The

rapidity distribution in figure 4.8 (b) however, extends up to |y| = 4, which means

that FP420 measures a thin slice of the central region.

The transverse energy of the quark in the H → bb̄ decay channel is shown

in figure 4.9. The Higgs boson is a scalar particle and decays uniformly in solid

angle in its own rest frame. This results in a sinθ distribution in polar angle,

which explains the peak at large transverse energy when θ = π
2
. The sharp edge

occurs because the transverse momentum of the central system is typically very

small, giving no transverse energy boost to the quark to values greater than mH

2
.
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Figure 4.9: The transverse energy distribution of the b quark from the H → bb̄
process if the Higgs boson has a mass of 120 GeV.

4.3.3 Production of gg and qq̄

The leading order, colour singlet, Jz = 0 cross section for gg → gg production is

given [19] by (
dσ̂

dΩ

)
CM

=
9

16

M2 α2
S

p4
T

(4.19)

where Ω is the solid angle of one of the outgoing gluons in the centre-of-mass

(CM) frame. The corresponding cross section for gg → qq̄ production is given by(
dσ̂

dΩ

)
CM

=
1

24

m2
q α2

S β3(
m2

q + p2
T

)2 (4.20)

where β is given by

β =

√
1 − 4

m2
q

M2
(4.21)

and mq is the mass of the produced quark. The strong coupling is evaluated

at M
2

in line with the Durham calculation [19]. The qq̄ cross section contains a

suppression factor of
m2

q

M2 , which is a consequence of the Jz = 0 projection of the

initial state.

Within ExHuME, both of these subprocesses derive from the two-particle

phase space class. In the discussion that follows, both θ and φ are defined in the

subprocess CM frame. The two-particle final state has a flat φ dependence and
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as such the weight function for φ is uniform over the range {0, 2π}. The cos θ

dependence of the final state depends on the subprocess involved and the Weight

class is used to determine the one-dimensional weight function upon initialisation.

This results in 100% efficiency in the case of the gg final state because the cos θ

dependence completely factorises from the central mass dependence.

For heavy quarks however, this is not the case. The maximum possible value

of the cosθ distribution is always at |cosθ| = 1, where the denominator of equation

4.20 is proportional to m4
q . The minimum always occurs at cosθ = 0, where the

denominator is proportional to M4

16
. The weight function for cosθ must therefore

be calculated at the lowest possible value of central mass that can be generated,

to ensure the weight function criterion, w(cosθ) ≥ f(cosθ). The minimum mass

was originally chosen to be threshold, 2mq, to remove the possibility during event

generation of the central mass being picked below the value at which the cosθ

distribution was evaluated. The problem with this approach was poor efficiency

far from threshold. Because of this, the minimum value of central mass is sup-

plied by the user when the mass range is set, which results in greater efficiency

during event generation. Finally, the gg cross section diverges at low transverse

momentum, i.e when |cosθ| → 1, and to avoid this a maximum value of |cosθ|

is required. This can be set by the user before event generation but defaults to

|cosθ| ≤ 0.95 if not set.

The divergence of the gg cross section at low transverse momentum is not

a cause for concern because perturbative QCD is not applicable for such soft,

long-range physics. All event generators have a minimum cut on the transverse

momentum of the outgoing partons to remove these divergences. Nevertheless,

when generating the gg final state, care should be taken to make sure that areas

of the phase space are not being neglected. More importantly, the observable of

interest should not depend upon the maximum value of cosθ used in the event
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Figure 4.10: The transverse energy distribution dependence of the gg final state
on the cos θ (CM) cut for central exclusive masses in the range 40 ≤ M ≤ 400
(a). Figure (b) shows the mass distribution for both the gg and bb̄ subprocesses
with a | cos θ| < 0.95 cut imposed for comparative purposes.

generation.

An example of this is the differential cross section above a minimum transverse

energy. Figure 4.10 (a) shows the effect on the differential cross section when the

maximum cosθ cut is changed. The mass range was chosen to be {40, 400} and

the transverse energy of the outgoing gluons was restricted to ET > 20 GeV. In

this example, the difference between the cross sections are within the statistical

uncertainty of the samples. This would not be the case however, if the minimum

transverse energy was chosen to be 5 GeV, because a central mass of 40 GeV

would produce final state gluons with |cosθ| > 0.95.

The mass distributions for the gg and bb̄ subprocesses are shown in figure 4.10

(b). A | cos θ| < 0.95 cut was imposed on both cross sections for comparative

purposes. The Jz = 0 suppression of the qq̄ cross section is apparent in the

steeper bb̄ distribution.
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Figure 4.11: The leading order diagram for gg → γγ. The incoming gluons are
labelled 1 and 2 and the outgoing photons are labelled 3 and 4 so that the helicity
structure of the amplitude is well described.

4.3.4 Di-Photon Production

The central exclusive di-photon cross section is calculated using the γγ → γγ

helicity amplitudes given in [58]. Figure 4.11 shows the leading order Feynman

diagram for the central exclusive process, gg → γγ, where the incoming gluons

have been labelled as 1 and 2 and the outgoing photons as 3 and 4. The colour

singlet gg → γγ helicity amplitude, M, is related to the γγ → γγ amplitude,

Mγγ, by

Mλ1λ2λ3λ4 =
1

2

αS

α

1

Q2N
Mγγ

λ1λ2λ3λ4
(4.22)

where λ1,2 and λ3,4 denote the helicities of the incoming gluons and outgoing

photons respectively, Q is the fractional charge of the quark in the loop, α is the

fine structure constant and N = 3. The relation is calculated by exchanging two

photon-quark vertices with gluon-quark vertices and imposing the colour singlet

condition (equation 2.46) on the incoming gluons. The Jz = 0, colour singlet

gg → γγ cross section is then given by

(
dσ̂

dΩ

)
CM

=
34

81

α2 α2
S

4π2 M2

(
B2

2
+ 2

)
(4.23)
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Figure 4.12: The mass distribution (a) of the central exclusive γγ process in the
mass region of interest for studies using FP420. A cos θ < 0.95 cut has been
imposed. Figure (b) shows the transverse energy of a photon from all events that
have a central mass of 10 GeV or greater.

where the factor of 34/81 comes from the sum of the fractional charges of the

quarks in the loop. B is obtained from the results in [58] and is given by

B = M++++ + M−−++ = −1

2

t2 + u2

s2

[
ln2

(
t

u

)
+ π2

]
− t − u

s
ln

(
t

u

)
. (4.24)

The Mandelstam variables, t and u, for 2 → 2 scattering are given by

t = (k3 − k1)
2 = (k4 − k2)

2 and (4.25)

u = (k4 − k1)
2 = (k3 − k2)

2 (4.26)

where ki is the momentum of particle i.

The mass distribution for this subprocess is shown in figure 4.12 (a), where a

maximum |cosθ| of 0.95 has been imposed. The cross section for the mass range

60 < M < 120 GeV is 0.83 fb, which implies that FP420 can be used to identify

the process as the acceptance is approximately 30% in this region. The relevant

low luminosity trigger at ATLAS is two photons with transverse energy greater

than 15 GeV (table 3.3). It is found that 85% of the di-photon events in the

sample pass this requirement, which means that 2.1 events would be observed
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every year at low luminosity with forward proton tagging. At high luminosity,

the trigger threshold for two photons is increased to ET > 20 GeV [38]. This

would result in 17.4 di-photon events observed every year with forward proton

tagging.

An alternative strategy would be to study di-photon production at lower cen-

tral masses, for photons with smaller transverse energy, and not use FP420 to tag

the protons. The transverse energy distribution of the photons is shown in figure

4.12 (b) for events with a central mass greater than 10 GeV. The cross section

for two photons with ET > 10 GeV is 60 fb. This suggests a possible study at

a machine luminosity of 1032 cm−2 s−1, where the expected number of pile-up

events is zero. The photon transverse energy trigger could then be lowered in

conjunction with a lack of activity, or rapidity gap, in the rest of the calorime-

ters. A trigger of two photons with transverse energy greater than 10 GeV would

result in 6 events per year. If the photon transverse energy could be lowered to

5 GeV then the cross section would increase to 998 fb, giving approximately 100

events per year at this luminosity.
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Chapter 5

H → bb̄ at ATLAS

5.1 Jet Algorithms

Final states containing coloured partons undergo parton showering and hadroni-

sation as outlined in section 4.2. This means that the observable final state will

consist of collimated streams of hadrons, which are called jets. Naively, one would

expect a di-parton system to result in a two-jet final state. However, hard, wide-

angle gluon radiation can occur in the parton showering stage and this would

produce a new stream of particles and could look like a three-jet system. The

exact classification of a system in terms of the number of jets depends on the

jet algorithm used. In this section, the mid-point cone and KT clustering jet

algorithms are reviewed.

The ideal jet algorithm, as defined by a Tevatron Run II Jet Physics working

group [59], should possess the following criteria:

1. The algorithm should be fully defined.

2. The algorithm should be collinear and infrared safe.

3. It should perform equally well at parton, hadron and detector level.
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4. It should not depend on detector quantities such as cell or tower size.

The last two criteria will only ever be approximately true in a real algorithm due

to detector resolution and granularity. The size of the towers and cells will never

allow the direction of the particle to be exactly known, hence the algorithm will

perform slightly differently at detector level. The first criterion is a requirement

of the algorithm definition. The second criterion is required so that not only is

the perturbative QCD calculation free of soft and collinear singularities, but the

result after jet-finding is insensitive to soft or collinear radiation.

5.1.1 The Mid-Point Cone Algorithm

The mid-point cone algorithm has a geometrical motivation and defines a jet to

be a group of particles within a cone of radius, Rcone, in η × φ space. The cone

radius is used to define the spatial extent of the jet. The basic cone algorithm

[59] works as follows:

1. A seed is assigned to every particle or calorimeter tower. This seed is used

as the centroid direction,
(
ηC , φC

)
, for a proto-jet.

2. All particles, i, that satisfy the requirement

(
ηi − ηC

)2
+

(
φi − φC

)2 ≤ R2
cone (5.1)

are then clustered to find the proto-jet. The axis of the proto-jet,
(
ηJ , φJ

)
,

is found by the ET weighted sum of particles in the jet, i.e

ηJ =

∑
Ei

T ηi∑
Ei

T

and φJ =

∑
Ei

T φi∑
Ei

T

(5.2)

where the sum is over all particles within the cone, C.

3. The proto-jet axis is then used as the seed for a new cone and step 2

repeated. In this way, the calculation is iterated to find stable proto-jets

when ηC = ηJ and φC = φJ .
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Figure 5.1: Infra-red sensitivity of a basic cone algorithm [59]. The two hard
partons, represented as arrows, are separated by more than Rcone but less than
2Rcone. In the absence of radiation between the jets (left), 2 distinct jets will be
found. However, radiation between the jets (right) would cause only 1 jet to be
found.

4. Steps 2 and 3 are repeated to find all possible proto-jets.

5. The above procedure produces jets which overlap in η × φ space. In this

case, the lower transverse energy jet is discarded if the fraction, f , of its

energy that is shared with the other jet is greater than an overlap fraction,

O. If f < O, then the particles in the overlap region are assigned to the

nearest jet centre.

This algorithm would not be infra-red safe as it stands. Figure 5.1 highlights

the problem of soft radiation in the middle of two possible proto-jets which are

separated by more than Rcone in η×φ space, but less than 2Rcone. It is clear that

the number of jets in the final state is dependent on whether soft radiation is

emitted between the jets. In the absence of the soft radiation, two jets would be

found. However, the soft radiation between the jets would provide a new seed and

only one jet would be found. Hence the final result is sensitive to soft radiation

between the jets.

This problem is removed if, in addition to using the particles as seeds, a seed

is created in the middle (in η × φ) of every two particles that are separated by

less than 2Rcone. Now the final result is independent of soft radiation. This type

of algorithm is called a mid-point cone algorithm.
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5.1.2 The KT Clustering Algorithm

The KT algorithm is kinematically motivated. The prescription is to merge parti-

cles together if they have a low transverse momentum with respect to one another.

The basic inclusive KT algorithm, outlined in [60], defines jets in the following

way:

1. The resolution variables, dkB and dkl, are computed for every object, k, and

every pair of objects, k and l. The resolution variables are defined to be

dkB = p2
Tk and

dkl = min
(
p2

Tk, p
2
T l

) [
(ηk − ηl)

2 + (φk − φl)
2] . (5.3)

At the start of the algorithm, the list of objects are particles or calorimeter

towers.

2. The dkB are scaled by

dk = R2
KT

dkB (5.4)

where RKT
is a user defined parameter.

3. The smallest resolution variable is found in the set of dk and dkl. If this is

one of the dkl, then objects k and l are merged into a single object. If one

of the dk is the smallest resolution variable then k is defined as a jet and

removed from the list.

4. Steps 1 - 3 are repeated until all objects are defined as jets.

This algorithm is insensitive to soft or collinear radiation. It is the nature of

the KT algorithm to merge soft/collinear particles first because these have the

smallest dkl resolution variable.
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5.2 Central Exclusive Jet Variables

Assuming the outgoing protons are tagged, there are a number of kinematic vari-

ables that can be measured in the central system and matched to the information

from FP420. In this section, the variables of interest in a di-jet analysis are in-

troduced. The fraction of proton momentum that enters the hard-subprocess can

be estimated by

x1,2 	
1√
s

∑
i

Ei
T e±ηi (5.5)

where the sum is over the highest two transverse energy jets [61, 62] and s is the

collision centre-of-mass energy of the incoming beams. The values of x1 and x2

can be combined to obtain the di-jet mass M2
jj 	 x1x2s. The variable Rjj , given

by

Rjj =
Mjj

M
, (5.6)

measures the fraction of the central system mass that is contained in the di-jets

[62]. The measurement of the mass, M , by FP420 is given by equation 2.37.

Therefore, the central exclusive condition , x = ξ, should result in Rjj = 1. In

practice, parton showering and jet finding inefficiencies result in the actual Rjj

being somewhat less than 1.0 and in the case of hard final state radiation, the

value of Rjj could be much lower than 1.0.

To combat the problem of hard final state radiation, a new measure of the

di-jet mass fraction has been introduced [63]. The new variable, Rj , is motivated

by the knowledge that the highest transverse energy jet in the event will have

been least affected by hard final state parton showering. Rj is defined as

Rj =
2ET

M
cosh (ηj − y) (5.7)

where ηj and ET are the pseudorapidity and transverse energy of the leading

(highest transverse energy) jet and y is the rapidity of the central system given

by equation 2.39.
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A further consequence of tagging the outgoing protons is that the rapidity of

the central system can be measured by both FP420 and the central detector. The

difference in these measurements, Δy, given by

Δy = y − (η1 + η2)

2
, (5.8)

should be approximately zero for the exclusive final state. Note the use of pseudo-

rapidity for the jets in the central system. Pseudo-rapidity is a good approxima-

tion to rapidity if the transverse momentum of the jet satisfies pT 
 m, where

m is the mass of the parton in the hard scatter that produces the jet. The first

term on the right hand side of equation 5.8 is the rapidity of the central system

measured by FP420, whilst the second term is simply the average pseudo-rapidity

of the highest two transverse energy jets.

Finally, it is possible to examine the activity outside of the di-jet system.

In central exclusive and double pomeron exchange events, the protons are not

colour connected to the central system. This results in rapidity gaps between

the outgoing protons and the central system. In the absence of pile-up, the

rapidity gaps can be used to identify these events by requiring low activity in the

calorimeters in the high rapidity regions. However, at nominal low luminosity

running at the LHC, there are on average 3.5 interactions per bunch crossing,

which can destroy the rapidity gap.

This does not mean that one cannot look at activity outside of the di-jet

system. The excellent vertex resolution of the ATLAS detector allows charged

tracks to be associated with specific vertices, even in the presence of pile-up.

Because the protons remain intact, there are no multiple interactions and one

would expect few extra tracks, NC , associated with the di-jet vertex but outside

of the di-jet system. The exact cut off will be jet parameter dependent. A better

measure of the activity outside of the di-jets could be the number of charged

tracks, N⊥
C , that are transverse to the leading jet. N⊥

C is defined as the number
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of charged tracks in the ranges

π

3
< |φk − φj| <

2π

3
and

4π

3
< |φk − φj| <

5π

3
(5.9)

where j labels the leading jet and k a charged track associated with the di-jet

vertex.

5.3 Central Exclusive H → bb̄ at ATLAS

The aim of this section is to determine whether it is possible to observe the bb̄

decay channel of a Higgs boson in central exclusive production at ATLAS. It has

already been shown that the WW ∗ decay channel is adequate for discovering the

Standard Model Higgs using FP420 for 140 ≤ mH ≤ 200 GeV [22]. Therefore, in

this analysis, the choice of Higgs mass is mH = 120 GeV.

The choice of jet algorithm will affect the reconstructed exclusive variables and

hence the choice of cut required to remove the background. The strategy here

is to firstly extract the best kinematic matching cuts between the central system

and FP420 for each jet algorithm. Further possible exclusivity requirements are

then examined in order to reduce the non-exclusive backgrounds. Finally, the

cross sections and significance of discovery are presented, along with the impact

of possible experimental triggers.

5.3.1 Backgrounds

The backgrounds to the central exclusive H → bb̄ channel are divided into three

categories; central exclusive, double pomeron exchange and overlap. The central

exclusive backgrounds are gg → bb̄ and gg → gg and are simulated, along with

the Standard Model Higgs signal, using the ExHuME Monte Carlo. The bb̄ and

gg backgrounds are generated in the mass range 80 ≤ M ≤ 160 GeV with a

| cos θ| ≤ 0.98 cut in the CM frame.
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The double pomeron exchange processes are simulated using the POMWIG

event generator [64]. As FP420 has acceptance for small values of ξ, the processes

are generated using the IPIP fusion process without the contribution from the

subleading reggeon, which is expected to be small. POMWIG is normalised to

H1 data [65] and does not contain a value of the soft survival factor. For the

purposes of this analysis, the soft-survival is set to 0.03 [66]. There are two DPE

processes that act as background: bb̄ and jj, where the j are light quark and

gluon jets. These backgrounds have two intact protons in the final state and a

jet-like central system. However, the kinematics of the two-jet event measured in

the ATLAS detector should not match the kinematics measured in FP420 because

of the presence of pomeron remnants in the final state. Section 5.3.2 deals with

the correct identification of these events.

The overlap background involves two single diffractive (SD) events, which

produce the protons measured in FP420, plus a QCD di-jet event all in one

bunch crossing at the LHC. The relevant QCD processes are again bb̄ and jj

and are generated using the HERWIG event generator. However, the protons

from the SD events have absolutely no relation to the QCD event and as such,

one would expect the kinematics to very rarely match between FP420 and the

central ATLAS detector. Furthermore, the protons that gave rise to the QCD

event have broken up, which deposits extra energy in the calorimeters and leaves

extra tracks in the inner detector. This type of background is covered in more

detail in section 5.3.3.

5.3.2 Jet Algorithm effects and Kinematic Matching Cuts

Starting with just the H → bb̄ signal events, the two types of jet algorithm

were applied. Events were only retained if the highest transverse energy jet
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Figure 5.2: The reconstructed signal Rjj distribution using the cone (a) and KT

(b) jet-finding algorithms. The effect of changing Rcone or RKT
is also shown.

had ET > 40 GeV. This choice is motivated by the transverse energy of the b-

quarks peaking at 60 GeV if mH = 120 GeV (figure 4.9) in addition to the steep

transverse energy dependence of the central exclusive backgrounds (figure 4.10

(a)). The effects of the cone and inclusive KT algorithms on the reconstructed

Rjj distribution are shown in figure 5.2. The Rjj distribution has a peak close to

1.0 but a long tail to medium Rjj values. This is due to hard final state radiation

from one of the b quarks not being recovered by the jet algorithm. The effect of

reducing the cone radius results in less of the energy being reconstructed in the

two-jet system and a flatter Rjj distribution as expected. Reducing RKT
has a

similar effect.

In contrast, the variable Rj is defined to be less affected by very hard radiation

from one of the jets. The Rj distribution, shown in figure 5.3, has a narrower peak

than the Rjj distribution with the long tail removed. Furthermore, changing the

jet algorithm parameter has less effect on the distribution - decreasing Rcone or

RKT
results in only a small shift to lower values of Rj as progressively more soft

particles are not reconstructed in the highest transverse energy jet. This makes

Rj a robust variable for defining exclusive events. The KT algorithm performs
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Figure 5.3: The reconstructed signal Rj distribution using the cone (a) and KT

(b) jet-finding algorithms. The Rj distribution less sensitive to changes in Rcone

or RKT
than Rjj.

slightly better than the cone algorithm because the distribution is less susceptible

to changes in RKT
. Both algorithms produce similar shapes of distribution.

The final kinematic matching variable, Δy, is shown in figure 5.4. Both dis-

tributions have the majority of events concentrated in the region Δy < 0.1. The

conclusion is that the Rj and Δy variables are extremely good at defining the

exclusive event. Furthermore, it is possible to choose small values of Rcone or RKT

without too much change in the reconstructed signal. This will be important in

high luminosity running at the LHC, where 35 events are expected in every bunch

crossing. Smaller values of Rcone and RKT
will result in less particles from the

pile-up being wrongly added into the jets of interest.

The objective now is to define a set of exclusivity cuts that keep as much of

the signal as possible, whilst rejecting a large fraction of the background. The

Rjj, Rj and Δy distributions for the central exclusive Higgs are plotted in figure

5.5 against the bb̄ background produced via double pomeron exchange. A cone

radius of 0.4 and a KT R-parameter of 0.55 are used, and the distributions are

normalised to the same area. It should be noted that, at this stage, the double
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Figure 5.4: The reconstructed signal Δy distribution using the cone (a) and
inclusive KT (b) jet-finding algorithms.

pomeron exchange bb̄ cross section is approximately 380 times larger than the

signal although spread over a larger mass range.

The values Rcone = 0.4 and RKT
= 0.55 are chosen for two reasons. Firstly,

they produce similar distributions and do not give a false impression that one

algorithm is superior. Secondly, these smaller values of Rcone and RKT
are less

likely to reconstruct di-jets containing some of the pomeron remnants. This is

desirable in order to reconstruct the hard-scattering part of the double pomeron

exchange process. The difference between DPE and CEP events is obvious and

expected, the presence of pomeron remnants means that the kinematics of the

hard sub-process does not match the kinematics measured in FP420.

Using Rj instead of Rjj has some interesting effects. Firstly, as expected, the

low Rjj tail is not present in the Rj distribution for both the signal and back-

ground. This initially leads to the presumption that the Rj variable is better at

reconstructing the mass of the hard-scatter than Rjj. However, for the double

pomeron bb̄ events, the Rj distribution extends to higher values than Rjj. Some

of this increase can be attributed to the highest transverse energy jet contain-

ing some pomeron remnant. This extra energy is then counted twice in the Rj
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Figure 5.5: The normalised Rjj, Rj and Δy distributions for exclusive Higgs and
double pomeron bb̄ production, using a cone radius of 0.4 (a, c, e) and inclusive
KT R-parameter of 0.55 (b, d, e).
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Figure 5.6: The dependence of the Rjj and Rj cuts as a function of Rcone (a) and
RKT

(b).

reconstruction. This problem is reduced by the use of small values of Rcone and

RKT
but can never be completely removed. The second effect of using the Rj

variable is that there is a sharper, more distinct separation between the signal

and background when compared to the Rjj variable. This is mainly due to the

long tail in the signal Rjj distribution.

The distributions presented in figure 5.5 give a feel for the loosest possible

cuts in those distributions. The loose cut is defined as the point at which the

normalised signal and background distributions cross over. For example, a cut of

Rj > 0.85 can be applied to di-jets reconstructed using the inclusive KT algorithm

with RKT
= 0.55. Moving this cut to lower Rj would include a larger fraction

of background with only a very small gain in signal. This loose cross-over cut

is not the optimum cut for the analysis because the unnormalised background is

so much larger than the signal; it only indicates the region of interest for further

study. The best cut is determined later by requiring a favourable ratio of signal

to all background.

The cut value depends on the values of Rcone or RKT
used to reconstruct the
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di-jets. Figure 5.6 shows how the cross-over cut values for Rjj and Rj change

with the jet algorithm parameter. Using the KT algorithm as an instructive

example, it is clear that the Rj cut is less dependent on RKT
than the Rjj cut.

The steep dependence of the Rjj cut with RKT
is easily understood, because the

signal is reconstructed with larger Rjj when RKT
is increased (figure 5.2 (b)).

Furthermore, the background will also be reconstructed with larger Rjj as it is

just as susceptible to parton showering. Therefore the cut naturally increases to

keep the signal efficiency high and the background efficiency low. A similar effect

is found for the cone algorithm, but the dependence is less steep with Rcone

The Rj cut however, has a weaker dependence on the value of RKT
used to

define the jets. Figure 5.3 showed that the reconstructed signal shape is almost

RKT
independent. The only change is a small shift to larger Rj as the value

of RKT
is increased. It is natural to assume that the background would follow

the same trend. These larger values of RKT
are more likely to pull in some of

the remnants, thus the cut increases to keep the background efficiency low. The

performance of the cone algorithm is similar across the range of Rcone used.

The Δy cut is always less than 0.1 and decreases with RKT
because there is

less chance of parton showering changing the direction of a jet. The cut on Δy

is not examined further because it is smaller than the granularity of the towers

in the hadronic calorimeter. It is not obvious that the direction of a jet can be

measured more accurately than the tower granularity and so the exclusivity cut

is set at Δy < 0.1 for the rest of the analysis.

The reconstructed signal and background efficiencies as a function of Rcone and

RKT
are shown in figure 5.7. For each jet algorithm parameter, the preferred cuts

given in figure 5.6 are used. For the signal, the performance of the cone and KT

algorithms are similar. In the case of the Rj cut, the efficiency is approximately

flat with a slight decrease at large and small values of Rcone and RKT
. In contrast,
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the efficiency of the Rjj cut increases with both Rcone and RKT
. This is a direct

consequence of the flatter Rjj distributions at smaller Rcone and RKT
, which result

in less signal events in the region of interest. In all cases, the best efficiency for

signal reconstruction occurs after cuts on the Rj variable.

The reconstructed double pomeron background is more interesting. The per-

centage of events passing the Rjj cut decreases as Rcone or RKT
increases. This

contradicts the expectation that increasing the jet algorithm parameter would

result in more of the pomeron remnants being reconstructed in the di-jets for

DPE processes. However, as previously stated, the Rjj cut increases with Rcone

or RKT
because more signal events are reconstructed at high Rjj. The only ex-

planation is that the improved signal reconstruction cancels the effect of more

pomeron remnants being added into the jets. A similar result is found for the

cone algorithm when applying an Rj cut.

The KT algorithm on the other hand shows completely different dependence

for the Rj variable. The percentage of background events passing the Rj cut

initially decreases with RKT
if a cut on Rj is made. However, at larger values

of RKT
the percentage of events passing the cut begins to increase again. The

explanation is that, at these larger values of RKT
, the probability of pomeron

remnants being reconstructed in the highest ET jet increases, while the signal

distribution remains relatively unaffected. The cone algorithm does not show

this because the signal Rj distribution changes more with Rcone than with RKT

(figure 5.3).

With the small cross sections involved in central exclusive production, it is

important to retain as much signal as possible. Furthermore, the cuts should be

chosen to minimise the effect of experimental conditions at the LHC. The first

point of note is that large values of RKT
and Rcone will be more affected by pile-

up than smaller values, which implies that smaller values of Rcone and RKT
are
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Figure 5.7: The efficiency of the Rjj and Rj cuts as a function of Rcone and RKT

for the central exclusive Higgs (a,c) and DPE bb̄ (b,d) processes.
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Cut RKT
= 0.55 Rcone = 0.4

Rmin
j 0.85 0.82

Rmax
j 1.10 1.10
Δy 0.1 0.1

Table 5.1: The finalised kinematic matching cuts for the cone and KT algorithms.
The Rmin

j cut was chosen to be the point at which the normalised double pomeron
exchange bb̄ and central exclusive H → bb̄ distributions crossed over. The Rmax

j

and Δy cuts were chosen after consideration of detector effects.

desirable. With this in mind it is sensible to cut on the Rj variable as the signal

efficiency is independent of Rcone and RKT
. In the case of the KT algorithm,

the natural choice is then to use RKT
= 0.55 because this results in the lowest

percentage of background events passing the cut (figure 5.7 (d)). For the cone

algorithm, the choice is less straightforward. The plots presented in figure 5.7

would indicate that large values of Rcone should be used in order to reduce the

background by a large value. However, the pile-up issues require small values of

Rcone. As a compromise, the intermediate value of Rcone = 0.4 is chosen.

The finalised kinematic matching cuts are determined by the jet algorithm

parameter and are presented in table 5.1. The upper window on Rj is chosen

after consideration of detector resolution. In [67], the offline reconstructed jet

resolution was found to be 8.5% for jets with an energy of 50 GeV, which is the

approximate energy of the jets in this analysis. The resolution of the Rj variable

is dominated by this energy resolution because the FP420 mass resolution is

expected to be approximately 2%. This means that the Rj variable should not

be constrained by a window smaller than 0.9 < Rj < 1.1, which leaves open the

possibility of tightening the lower bounds in Rj later if necessary.

5.3.3 Simulation of the Overlap Background

The overlap background is defined as a threefold coincidence of a QCD event and

two single diffractive events all in one bunch crossing at the LHC. The overlap
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background cross section, σolap, can be estimated by

σolap = (N − 1) (N − 2) P1 P2 Q σ (5.10)

where N is the number of interactions per bunch crossing, Q is the QUARTIC

rejection factor and the Pi are the probabilities of an event at the LHC being a

single diffractive event that causes a proton hit in FP420. The labels 1 and 2

indicate the beam to which the single diffractive proton belongs. The input cross

section, σ, is the cross section of the normal inclusive QCD events.

The number of interactions per bunch crossing at the LHC is luminosity de-

pendent and is given in equation 3.3. QUARTIC performs the measurement of

the time-of-flight difference of the two scattered protons. As stated in section

3.3, this gives a measurement of the interaction vertex to an accuracy of 2.1 mm.

In the case of the overlap backgrounds, a fake vertex is reconstructed from the

two single diffractive protons. This vertex does not, in general, coincide with the

QCD event vertex.

The QUARTIC rejection factor is calculated by picking three random points

according to a gaussian distribution of width 5.6 cm, which is the longitudinal

beam spot size at the LHC [34]. Two of these points correspond to the SD vertices

and the average corresponds to the fake vertex measured by QUARTIC. If the

final point, which corresponds to the primary QCD vertex, is within 2.1 mm of

the fake vertex, then the event will pass the QUARTIC measurement. It is found

that only 2.5% of overlap events satisfy this requirement.

The Pi are found using the single diffractive cross section, σSD, which is given

[68] by

1

σT

dσSD

dtdxL
=

g2
N(t)g3IP

16π2gN(0)
(1 − xL)αIP(0)−2αIP(t) S2

SD(s, t) (5.11)

where σT is the total cross section, xL = 1− ξ and g3IP(t) = gN(0)/3 is the triple

pomeron vertex. The soft-survival factor for single diffraction, S2
SD, is taken to
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be 0.085 at the LHC [68]. The pomeron-nucleon coupling, gN(t), is given by

gN(t) = 8

(
3.52 − 2.79t

3.52 − t

)
1(

1 − t
0.71

)2 (5.12)

and the Regge trajectory of the pomeron, αIP(t), by1

αIP(t) = 1.11 + 0.07t. (5.13)

Each Pi is calculated by integrating equation 5.11 over the FP420 acceptance

range for ξ given in section 3.3. This results is P1 = 0.85% and P2 = 0.86%.

The overlap cross section can then be reduced by kinematic matching. The

overlap background events are constructed in two steps. The proton ξ1,2 and t1,2

values are constructed using equation 5.11 and the Monte Carlo methods pre-

sented in section 4.1.3. The values of t are distributed in the range {−3, 0} and

the values of ξ in the FP420 acceptance range. The QCD event is generated

using HERWIG, with JIMMY used for the underlying event [70]. JIMMY calcu-

lates the number of secondary scatters during a proton-proton collision and has

two main input parameters: PTJIM specifies the minimum transverse momen-

tum of a secondary scatter and JMRAD(73) specifies the inverse square proton

radius. JIMMY has been tuned to Tevatron data [49] with PTJIM=3 GeV and

JMRAD(73)=2.13.

5.3.4 Further Exclusivity Requirements

It is now possible to estimate the signal-to-background ratio for central exclusive

H → bb̄ using the following cuts on the MC samples:

1. The KT and cone algorithms are used, with RKT
= 0.55 or Rcone = 0.4.

1The actual pomeron trajectory used in [68] differs from the standard soft pomeron trajectory
of Donnachie and Landshoff [69]. This is necessary in the new approach to both fit the data
and account for rescattering corrections. The triple pomeron vertex is also different for similar
reasons. The author would like to thank Misha Ryskin for clarification on this issue.
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Figure 5.8: The distance, in η-φ space, of jets with transverse energy greater than
10 GeV from a b quark in the HERWIG + JIMMY bb̄ sample.

2. The highest transverse energy jet must satisfy ET > 40 GeV.

3. The longitudinal momentum loss of the protons must lie in the FP420 ac-

ceptance range, 0.0023 < ξ1 < 0.0129 and 0.0029 < ξ2 < 0.0171.

4. The di-jet mass fraction must be in the range 0.85 < Rj < 1.10 for the KT

algorithm or 0.82 < Rj < 1.10 for the cone algorithm.

5. The difference between the rapidity of the central system measured by

FP420 and the average jet pseudo-rapidity should satisfy Δy < 0.1.

The first requirement is the choice of jet finding parameter discussed in section

5.3.2. The second cut is motivated by the transverse energy distributions of the

Higgs decay products peaking at mH

2
. The third cut limits the protons to produce

a hit in FP420. The final two cuts reduce the background by kinematic matching

as discussed in section 5.3.2. The subsequent analysis is carried out with both

the cone and KT algorithms, but all the plots presented in this section are for the

KT algorithm unless explicitly stated. The final results are presented for both

cone and KT algorithms.

Potential signal events are those in which the highest two transverse energy

jets are tagged as b-jets. Because of this, a rudimentary b-tagging procedure is
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applied to the MC samples. For the bb̄ samples, a jet is defined to originate from

a b-quark if the distance

ΔRb =

√
(φj − φb)

2 + (ηj − ηb)
2 (5.14)

between the jet, j, and the b-quark, b, is smaller than a specified amount. Figure

5.8 shows the ΔRb distribution for the HERWIG bb̄ sample using all jets with

transverse energy greater than 10 GeV. There is a clear minimum in the distri-

bution and a b-jet is therefore defined by ΔRb ≤ 0.4. The jets in the gg and light

quark samples are assumed to be non b-jets.

This designation of jets is necessary because the bb̄ final state in the HERWIG

samples is often constructed by gb scattering, with the b̄ quark produced in the

intial state parton shower. In this case, the highest two transverse energy jets will

not both originate from b quarks and have a lower probability of being tagged as

a bb̄ event. The experimental b-tagging efficiency at ATLAS, which is assumed to

be 0.6 for a b-jet and 0.013 for light quark and gluon jets [32], is applied to the

two highest transverse energy jets. Thus, each event in the samples is assigned a

probability to be tagged as bb̄; the tagging probability is 0.36 if the two highest

transverse energy jets are both b-jets, 0.0078 for gb and gb̄ systems and 1.69×10−4

for gg and jj.

The cross sections, defined by the cuts at the beginning of this section and

scaled by the b-tagging procedure, are shown in table 5.2. The large gg and jj

backgrounds have been significantly reduced by the b-tagging. The H → bb̄ cross

section is just 0.08 fb and all subsequent cuts are chosen to limit the reduction

in the signal. As the overlap background is luminosity dependent, it is quoted at

a specific luminosity (2×1033 cm−2 s−1).

The backgrounds can be reduced by cutting a mass window around the Higgs

peak. The mass distributions for the signal and background are shown in figure 5.9

after smearing the central mass by a gaussian with a width of 2%, which simulates
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Generator Process Cross section (fb)
RKT

= 0.55 Rcone = 0.4
ExHuME H → bb̄ 0.083 0.078

bb̄ 2.39 1.73
gg 3.58 1.93

POMWIG bb̄ 3.94 2.61
jj 0.078 0.034

HERWIG + 2×SD bb̄ 69.2 44.9
jj 4.52 2.57

Table 5.2: The cross sections for signal and background. All samples have had a
ET > 40 GeV cut applied to the leading jet and the b-tagging procedure applied
to the two highest ET jets. The proton momentum losses were restricted to
the FP420 acceptance range 0.0023 < ξ1 < 0.0129 and 0.0029 < ξ2 < 0.0171.
The cut 0.85 < Rj < 1.1 has been applied when using the KT algorithm. The
corresponding cut for the cone algorithm is 0.82 < Rj < 1.1, and Δy < 0.1 is
applied for both algorithms. The overlap background is defined at a luminosity
of 2 × 1033 cm−2 s−1.
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Figure 5.9: The mass distributions of signal and background processes as mea-
sured by FP420. The mass, M , has been smeared by a gaussian of width 0.02M
to approximate the resolution of FP420.
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the FP420 mass resolution. The background distributions are continuous across

the region of interest, thus a mass window of 116 ≤ M ≤124 GeV is applied to the

samples. It is clear that after such a cut, the dominant background comes from

the bb̄ overlap events. Furthermore, all of the backgrounds, with the exception of

the DPE jj process, remain larger than the signal.

The overlap background can be reduced further by examining the number of

charged tracks associated with the di-jet vertex. As stated in section 5.2, an

exclusive event only has tracks originating from the hard scatter associated with

the primary jet vertex. The overlap events, however, have an inclusive QCD

event as the primary vertex. This means that there will be extra particles from

the secondary scatters and the break up of the protons. If these particles are

charged and lie within the pseudo-rapidity coverage of the inner detector, it will

be possible to make a cut on them. The underlying event measures introduced in

section 5.2, NC and N⊥
C , are calculated for charged tracks that have pT > 0.5 GeV

and lie in the pseudo-rapidity range |η| < 2.5. The NC and N⊥
C distributions are

shown in figure 5.10 for the central exclusive Higgs, the DPE bb̄ background and

the bb̄ overlap background.

Clearly, the number of charged tracks associated with the primary vertex is

a good discriminator for all diffractive events, not just exclusive ones, as shown

in figure 5.10. The signal N⊥
C distribution is narrower than the NC distribution,

which makes it a better measure of the underlying event activity. The NC dis-

tribution suffers because particles that are part of the hard scatter may not be

reconstructed in the di-jets by the jet algorithm, hence the broader distribution.

However, the NC distribution covers more of the φ space and therefore has more

chance of picking up activity that is not part of the hard scatter. It is concluded

that both cuts are required to remove the overlap background. The tight, under-

lying event cut, N⊥
C ≤ 1, is applied first to remove the majority of the background.
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Figure 5.10: The NC distribution (a). Charged particles are defined as tracks if
they have pT ≥ 0.5 GeV and |η| ≤ 2.5. Also shown (b) is the N⊥

C distribution
which defines tracks that are perpendicular to jets (equation 5.9).

The looser, NC ≤ 5 cut is then applied to the samples to remove events with a

large number of particles outside of the transverse region but also outside of the

jets.

The NC and N⊥
C cuts are dependent on the performance of the inner detec-

tor, specifically the lowest transverse momentum a particle can have and still be

reconstructed as a track. The effect of changing the minimum transverse momen-

tum on the NC and N⊥
C distributions is shown in figure 5.11 (a) and (b). It is

important that the inner detector be able to pick up particles with pT 	 0.5 GeV,

otherwise the overlap background could increase by an order of magnitude. Fig-

ures 5.11 (c) and (d) show the effect on the NC and N⊥
C distributions if the

pseudo-rapidity range of the charged tracks is restricted. It is found that limiting

the η range does not affect the distributions as much as the minimum transverse

momentum cut.

The backgrounds can be further reduced by cutting on the two leading jets,

specifically the variables

Δη = |η1 − η2| and Δφ = φ1 − φ2 (5.15)
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Figure 5.11: The effect on the NC distribution of bb̄ overlap events of changing
the minimum transverse momentum that a charged particle can have in order to
produce hits in the inner detector (a). Also shown (b) is the effect on the N⊥

C

distribution. Both distributions assume particles are detected in the full pseudo-
rapidity range of the inner detector. Figures (c) and (d) show the effect on the
NC and N⊥

C distributions of limiting the pseudo-rapidity range of charged particle
tracks (with pT > 0.5 GeV). All plots are normalised to equal areas.
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Figure 5.12: The Δη and Δφ distributions of the signal and relevant backgrounds.
The Δη cut is meant to remove the central exclusive backgrounds, whereas the
Δφ cut is meant to remove the overlap background.

where ηi and φi are the pseudo-rapidity and azimuthal angle of jet i. Figure

5.12 (a) shows the Δη of the signal and some of the backgrounds after the mass

window cut. A cut on Δη would remove a large fraction of the signal as well as

the background. As the cross section is already small, a cut on Δη is not made.

The Δφ distributions are shown in figure 5.12 (b). The overlap background

could be significantly reduced by cutting on π−0.2 < Δφ < π+0.2, whilst leaving

the signal relatively unaffected. The central exclusive events are back to back in

φ because they have very little overall transverse boost (figure 4.5 (d)), due to

the the t dependence of the cross section. The central exclusive gg distribution

is broader than the signal because gluon jets have a larger emission probability

and each emission can change the azimuthal angle of the jet.

Finally, the Rj cut must be tightened as much as possible to remove the DPE

background. Figure 5.13 (a) shows the Rj distribution for the KT algorithm.

The optimum cut to remove the DPE events would be Rj >0.95. However, the

transverse energy resolution of the ATLAS calorimeter again limits the Rj cut and

the minimum Rj is therefore set to 0.9. In figure 5.13 (b), the Rj distribution for
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Figure 5.13: The Rj distribution after a mass window cut (a) for the KT algorithm
with RKT

= 0.55. Also shown is the same distribution but using a cone algorithm
with Rcone = 0.4 (a).

the cone algorithm is shown. The cone algorithm reconstructs less DPE events

in the large Rj region, which means that the cone algorithm will out perform

the KT algorithm in removing the DPE backgrounds. For both algorithms, the

higher emission probability for the gluons results in a higher percentage of gg

events being removed by the Rj cut in comparison to the Higgs signal.

5.3.5 Final Cross Section and Discovery Potential

The efficiency of all the cuts discussed in the previous section are given in table

5.3 for the analysis using the KT algorithm. Each cut was chosen to significantly

reduce at least one type of background whilst leaving the signal relatively unaf-

fected. The combined cuts let through approximately two-thirds of the signal.

For the analysis using the cone algorithm, the distributions are similar, but the

optimal cuts are different (Rj > 0.875 and NC ≤ 7). The efficiency of the cuts

for the cone based analysis are shown in table 5.4 . In the case of the overlap

background, the final Rj cut was estimated, for both algorithms, assuming a flat

Rj distribution as implied by figure 5.13. This was necessary because of the low
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Process Cut Efficiency
116 ≤ M ≤ 124 |Δφ − π| ≤ 0.2 N⊥

C ≤ 1 + Rj ≥ 0.9
(GeV) NC ≤ 5

CEP H 0.905 0.920 0.836 0.982
bb̄ 0.071 0.883 0.837 0.979
gg 0.104 0.832 0.612 0.950

DPE bb̄ 0.135 0.980 0.694 0.392
jj 0.117 0.944 0.617 0.351

Overlap bb̄ 0.104 0.363 3 × 10−3 0.80
jj 0.102 0.332 5 × 10−3 0.80

Table 5.3: Efficiency of the optimum cuts for the KT algorithm (RKT
= 0.55).

The first cut is relative to the cross sections defined in table 5.2. Each subsequent
cut is then relative to the previous cut in the table.

statistics of the overlap events at this stage of the analysis. The statistical error

on the final overlap estimates is approximately 20%.

The type of jet algorithm has a major effect on the final results. The cross

sections for the signal and background, after the appropriate cuts, are shown

in table 5.5, where the overlap background has been defined at a luminosity of

2 × 1033 cm−2 s−1. The H → bb̄ cross section is 0.057 fb for the KT algorithm

and 0.053 fb for the cone algorithm. The cone algorithm however, outperforms

the KT algorithm in reducing every background and this is shown in the ratio of

the cross sections in table 5.5. The important reductions are in the DPE and gg

(CEP) backgrounds.

Both of these reductions are explained by the fundamental differences of the

KT and cone algorithms. The KT algorithm reconstructs jets by merging particles

that have small transverse momentum with respect to one another. Therefore

soft, final state radiation will be reconstructed inside the jets in the case of the

KT algorithm. The cone algorithm on the other hand, will only pull particles

into a jet if they lie within the cone radius. Because of this, the Rj and NC

cuts are looser in the case of the cone algorithm to retain as much of the signal

cross section as possible. Nevertheless, small cone jets reconstruct less of the gg
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Process Cut Efficiency
116 ≤ M ≤ 124 |Δφ − π| ≤ 0.2 N⊥

C ≤ 1 Rj ≥ 0.875
(GeV) NC ≤ 7

CEP H 0.907 0.922 0.839 0.957
bb̄ 0.086 0.896 0.819 0.949
gg 0.133 0.884 0.531 0.649

DPE bb̄ 0.149 0.978 0.681 0.315
jj 0.146 0.943 0.480 0.250

Overlap bb̄ 0.099 0.392 4×10−3 0.80
jj 0.106 0.361 5×10−3 0.80

Table 5.4: Efficiency of the optimum cuts for the cone algorithm (Rcone = 0.4).
The first cut is relative to the cross sections defined in table 5.2. Each subsequent
cut is then relative to the previous cut in the table.

Generator Process Cross section (fb) σcone

σkT

RKT
= 0.55 Rcone = 0.4

ExHuME H → bb̄ 0.057 0.053 0.93
bb̄ 0.12 0.10 0.84
gg 0.18 0.08 0.44

POMWIG bb̄ 0.14 0.08 0.57
jj 1.9×10−3 5×10−4 0.26

HERWIG + 2×SD bb̄ 0.007 0.006 0.86
jj 6×10−4 4×10−4 0.67

Table 5.5: The final cross sections for the H → bb̄ and relevant backgrounds for
cone and KT algorithms. The overlap background is defined at a luminosity of
2 × 1033 cm−2 s−1. The ratio of the cone to KT cross sections is also given for
each process .

background in the high Rj and low NC regions as shown in tables 5.3 and 5.4.

In the case of DPE, the KT algorithm has a greater chance of pulling in soft

pomeron remnants and therefore reconstructs more of the DPE background in

the high Rj region.

The resultant signal-to-background ratio, S/B, is calculated to be 0.13 for the

KT algorithm and 0.20 for the cone algorithm using the cross sections presented

in table 5.5. This is not constant however, because the overlap cross section in-

creases with luminosity due to the increased number of interactions in each bunch

crossing. The signal-to-background ratio is shown as a function of luminosity in
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Figure 5.14: The signal-to-background ratio as a function of luminosity (a). The
decrease of the signal-to-background ratio with luminosity is due to the increased
overlap background at higher luminosities. Figure (b) shows the significance of
discovery per year of running at a particular luminosity

figure 5.14 (a) and decreases with luminosity.

Experimentally, the important observable is the number of events that are

produced in a given period of time. The number of events is calculated using

equation 3.1, where the machine luminosity is integrated over the time period

of data taking; for example, one year of low luminosity running corresponds

to 10 fb−1 of data and one year at high luminosity corresponds to 100 fb−1.

The signal appears as an excess of events over the expected background. The

significance, S, of this excess is a measure of the probability that the predicted

background statistically fluctuates to produce a fake signal, and is given by

S =
Ns√
Nb

(5.16)

where Ns and Nb are the number of signal and background events respectively.

A significance of three is taken to be strong evidence of a new process and a

significance of five is defined as a discovery. Usually, results are presented in

terms of a significance for a specific amount of integrated luminosity, for example

30 fb−1, which corresponds to three years running at low luminosity. In this
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study however, such a number is meaningless because the overlap background is

dependent on the instantaneous machine luminosity. Therefore, the significance

for 30 fb−1 depends upon whether the data was obtained at low or high luminosity.

Figure 5.14 (b) shows the significance per year of running at a specific luminos-

ity. This can be turned into the significance over a longer time period simply by

multiplying by
√

ny, where ny is the number of years of data acquisition. The cone

and KT algorithms result in a maximum significance of 0.71 yr−1 and 0.64 yr−1

respectively at a luminosity of 1034 cm−2 s−1. However, in terms of significance,

the advantage of performing the analysis at high luminosity is not much greater

than running at a luminosity of 5× 1033 cm−2 s−1, which yields a significance of

0.61 yr−1 and 0.54 yr−1 for the cone and KT algorithms respectively.

The low significance means that the central exclusive H → bb̄ is not observable

for a Standard Model Higgs using FP420. It would take 18 years of running

at high luminosity to get a significance of three, which is simply not feasible.

However, as mentioned in section 2.4.3, a light Higgs boson in the intense coupling

region of the MSSM can have an increased cross section for the bb̄ decay channel

with respect to the Standard Model Higgs boson.

For the rest of this analysis, production of a light Higgs in the MSSM is

discussed for the two benchmark points given in section 2.4.3. The first point

(P1) is defined as MA = 130 GeV and tanβ = 30, which results in a light Higgs

of mass 122.7 GeV with a total decay width of 2 GeV. The second point (P2)

is defined as MA = 130 GeV and tanβ = 50, which gives a light Higgs of mass

124.4 GeV with a decay width of 6 GeV. The MSSM signal events are created

using the ExHuME H → bb̄ process with an altered decay width to match the

MSSM scenarios. The production cross sections are then scaled up using the

factors given in section 2.4.3.

The backgrounds for both of these benchmark points will increase relative to
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Figure 5.15: The reconstructed mass of the MSSM Higgs boson with mA =
130 GeV and tanβ = 30 (P1) or tanβ = 50 (P2). Also shown is the Standard
Model Higgs prediction (SM) if mH = 120 GeV.

the Standard Model Higgs analysis due to the large decay width of the Higgs in

the intense coupling region of the MSSM. Figure 5.15 shows the reconstructed

mass, using FP420, of the lightest MSSM Higgs for P1 and P2. The original mass

window of ±4 GeV is no longer sufficient to contain a large fraction of the MSSM

Higgs signal and it is necessary to increase the mass window to ±6 GeV for P1

and ±10 GeV for P2. The rest of the cuts applied to the signal and background

samples remain the same as the Standard Model Higgs analysis.

The final cross section for the lightest Higgs in the MSSM is 0.132 fb for P1

and 0.316 fb for P2. At low luminosity, only P2 is potentially observable with 3.2

events produced per year at a significance of 1.2 (P1 has 1.3 events per year with

a significance of 0.61). Thus P2 would have a significance of 2.94 after six years

of data acquisition. At high luminosity, both benchmark points are potentially

observable. There would be 13.2 signal events passing the analysis cuts each year

for P1, with a significance of 1.5. In the case of P2, there would be 32 events

observed every year with a significance of 2.8. P1 would reach a significance of 3

after four years, while P2 would reach a significance of 5.6 after four years.
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5.3.6 Trigger Considerations

The results presented thus far assume a perfect trigger that retains all of the

events for the analysis. In reality, this is not the case and the trigger strategy will

have an effect on the observable number of events. As the information from FP420

will not be available for the level 1 global decision, the ATLAS detector must be

used to retain the event. The analysis required a jet with a transverse energy

greater than 40 GeV in the central detector, which is a triggerable constraint.

Unfortunately, jets with such low transverse momentum will not be not retained

by the level 1 jet trigger (table 3.3) because the rate for normal QCD events is

too large.

Normally, the maximum level 1 rate assigned to jet physics is similar to the

level 2 rate, because level 2 does not offer a great deal of additional rejection.

In the case of FP420 however, a non-diffractive QCD event will only be retained

if there is a coincidence with two SD events in the same bunch crossing. The

probability of this threefold coincidence is obtained from equation 5.10, and a

large rejective power can be obtained at level 2 by requiring two hits in the

forward detectors. Furthermore, if QUARTIC is available for the level 2 decision,

then the rejection power of FP420 is very large. This is shown in table 5.6, where

the probability of two hits plus QUARTIC is given for different luminosities.

The standard assumption is that FP420 would be assigned approximately one

percent of the level 1 and 2 triggers [71]. As the maximum total event rate at level

2 is approximately 2 kHz, this implies that FP420 will have to reduce the event

rate to 20 Hz. Using the rejection powers given in table 5.6, it can be shown that

in the worse case scenario of high luminosity and no fast-timing detectors, the

level 1 rate could be 240 Hz. If fast-timing is included, the level 1 rate could be

as high as 10 kHz at high luminosity. The situation continues to improve at lower

luminosities, with a maximum rate of 3 MHz at low luminosity, which exceeds
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Luminosity Non-diffractive reduction by FP420
(×1033) without QUARTIC with QUARTIC

1 2.7×10−4 6.8×10−6

3 5.8×10−3 1.5×10−4

5 1.8×10−2 4.6×10−4

10 8.1×10−2 2×10−3

Table 5.6: Rejection power of FP420 for the level 2 trigger. The non-diffractive
events can only pass the trigger if there has been a threefold coincidence of the pri-
mary event with two single diffractive events. The results are given as a function
of luminosity with, and without, the use of fast-timing (QUARTIC).

the maximum ATLAS level 1 event rate of 75 kHz. Nevertheless, this implies

that a 1 kHz rate at level 1 (∼1%) does not necessarily have to be imposed if the

target is 1% of the level 2 trigger.

The total rate for jets with transverse energy greater than 40 GeV will be

25 kHz at low luminosity and 250 kHz at high luminosity [38, 71]. In principle,

table 3.3 shows that it is possible to have such a high jet rate at low luminosity

because the predicted total rate at level 1 has a safety margin of 31 kHz. Even

without QUARTIC, the FP420 reduction would result in a level 2 jet rate of

5.4 Hz. If this strategy was adopted, all of the events in the analysis would pass

the trigger and P2 would be observable after six years as previously stated.

A different trigger strategy at low luminosity would be to utilise the large

rapidity gap between the central system and the outgoing proton. Such a trigger

would require a lack of hadronic activity in the forward calorimeters and would

be susceptible to pile-up events in the same bunch crossing. Pile-up interactions

will be distributed according to Poisson statistics, i.e the probability, Pn, of a

specific number of pile-up events, n, is given by

Pn =
μn

n!
e−μ (5.17)

where μ is the average number of pile-up events at that luminosity. At low

luminosity, the average number of inelastic pile-up events per bunch crossing will

be 2.0 and the probability of no inelastic pile-up events accompanying the central
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exclusive process is calculated to be 13.5%. Due to the low signal cross-section,

one would expect only 0.43 events per year for the P2 scenario. It is concluded

that it will not be possible to use a rapidity gap trigger for this analysis at the

LHC.

The only other way to trigger the events used in this analysis will be to

use the low transverse momentum muon trigger, which requires one muon with

pT > 6 GeV. The muon trigger factor for the bb̄ events used in this analysis, fbb̄,

is given by

fbb̄ = 2P (μ | b) (5.18)

where P (μ | b) is the probability of a b-jet containing a muon with pT > 6 GeV

and the factor of two takes into account that either jet can produce a muon.

Using the ExHuME bb̄ process, P (μ | b) is calculated to be 7.2% for a minimum b

quark transverse energy of 40 GeV.

In the case of the gg final state, the muon trigger factor, fgg, is given by

fgg =
2P (μ | g)

P (bb̄ | g)
(5.19)

where P (bb̄ | g) is the probability for the perturbative splitting g → bb̄ and P (μ | g)

is the probability for a gluon to produce a muon with pT > 6 GeV. These proba-

bilities were calculated to be 2.8% and 0.29% using the ExHuME gg process with

a minimum gluon transverse energy of 40 GeV. The removal of the P (bb̄ | g) factor

is necessary because the gluon mis-tag was applied generically to the whole sam-

ple in section 5.3.4. The final state muons however, come from the weak decay

of b quarks produced in the perturbative splitting and therefore P (μ | g) contains

P (bb̄ | g).

Simulation of the ATLAS muon tracker [38], shows that it is 80% efficient

at detecting and triggering on muons with transverse momentum greater than

6 GeV. This means, for example, that the muon trigger factor for bb̄ events

reduces from 0.144 (equation 5.18) to 0.115. The significance per year for the
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MSSM benchmark points are shown in figure 5.16 with the muon trigger applied.

The muon trigger reduces the significance of both P1 and P2 to less than 1.0 per

year. This means that an additional trigger is necessary in order to boost the

significance in this analysis.

It may be possible to have a low transverse energy jet trigger, which is pre-

scaled so that the rate of events passing the trigger does not exceed a specified

level. For example, if a jet rate of 5 kHz is allowed for jets with transverse energy

greater than 40 GeV, then the pre-scale factor at low luminosity would have to be

0.2 in order to reduce the total jet rate of 25 kHz. By pre-scaling the jet rate to

a fixed value, the total number of events passing this trigger would be constant,

regardless of the luminosity. FP420 could then be used to veto the events at level

2, keeping the final jet rate low.

The effect of having a pre-scaled jet trigger, in addition to the muon trigger,

is shown in figures 5.16 (a) and (b) for specified level 1 jet rates. The significance

per year does not change enough for P1 to become observable and remains below

0.7 in all cases. This corresponds to 18 years of data acquisition to obtain a

significance of three. It is concluded that P1 is not observable at ATLAS. P2

on the other hand, has a significance greater than 1.0 per year if the level 1 jet

rate is allowed to be greater than 10 kHz. If the level 1 jet rate is allowed to be

25 kHz, then there would be 5 events produced every year, with a significance of

1.35, at a luminosity of 5×1033 cm−2 s−1. This corresponds to a significance of

3.0 after five years of data taking. It is concluded that the P2 is observable, but

only if a pre-scaled jet trigger is developed at ATLAS.

The low transverse momentum muon trigger is strictly only applicable at low

luminosities. However, at higher luminosities, this trigger can be viewed as an

additional veto on low transverse energy jets. The total rate, R, for one jet with

transverse energy greater than 40 GeV and a muon with pT > 6 GeV can be
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Figure 5.16: The significance of light Higgs production for the benchmark points
P1 (a) and P2 (b). The triggers are defined as one muon with transverse mo-
mentum greater than 6 GeV (MU6) or a jet trigger for ET > 40 GeV which is
pre-scaled to give a maximum level 1 rate of 5 kHz, 10 kHz or 25 kHz. For 5 kHz,
typical pre-scales are 0.2 at low luminosity and 0.02 at high luminosity.

estimated by

R = 2

[
P (μ | g)

σg

σjets
+ P (μ | c) σc

σjets
+ P (μ | b) σb

σjets

]
Rjets (5.20)

where σjets is the total jet cross section for jets with transverse energy greater

than 40 GeV and σg, σc and σb are the light quark/gluon, c and b jet cross sections

respectively. Rjets is the total rate for jets with transverse energy greater than

40 GeV. P (μ | c) is the probability for a c jet to contain a muon with pT > 6 GeV

and is calculated to be 3.3% using the ExHuME cc̄ process with a minimum c

quark transverse energy of 40 GeV.

The jet cross sections are calculated using HERWIG with a minimum parton

transverse energy of 40 GeV. The total jet cross section is found to be 48 μb and

the c and b jet cross sections are found to be 2.2 μb and 1.5 μb respectively. The

total jet rate scales from 25 kHz at low luminosity to 250 kHz at high luminosity,

which gives a final rate for a muon plus jet trigger of 0.323 kHz at low luminosity

and 3.23 kHz at high luminosity. This trigger would therefore be allowed up to
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3×1033 cm−2 s−1 if the rate is constrained to be ∼1% of the total level 1 rate.

However, as FP420 has a large rejection power at level 2, this trigger could be

allowed at high luminosity if a larger percentage of the level 1 rate is allowed.

5.3.7 Uncertainties on the Cross Section

In this section, the uncertainties on the results given in section 5.3.6 are discussed.

The central exclusive processes all suffer from uncertainties associated with the

calculation of the luminosity of the incoming gluons given in equation 2.43. As

shown in figure 4.4, there is a 50% uncertainty from the choice of parton density

function. The Durham group estimate [23] that the soft survival factor is accu-

rate to 50% and that NLO contributions to the Sudakov suppression result in a

20% uncertainty. Non-perturbative effects are estimated to contribute another

50% uncertainty to the calculation. This results in an overall factor of 1.9 uncer-

tainty in the calculation of the luminosity of the incoming gluons. For the hard

subprocesses, the Durham group estimate that NNLO corrections to the gg → H

vertex introduce a 25% uncertainty in the Higgs cross section. No higher order

corrections to the CEP bb̄ and gg cross sections have yet been published.

The main uncertainty for the double pomeron exchange processes comes from

the modelling of the pomeron in the POMWIG event generator. The first issue is

the choice of diffractive PDF that should be used. POMWIG implements two fits,

known as H1 Fit 2 and H1 Fit 3 [65]. The results presented in section 5.3.5 were

obtained using the H1 Fit 2 diffractive structure function, which is the default

in POMWIG. If H1 Fit 3 was used however, the final DPE cross section would

increase because Fit 3 has a peaked gluon at high β and more DPE events would

therefore be reconstructed in the high Rj region. Fit 3 however, has recently

been ruled out by the H1 Collaboration [28], which finds a steadily falling gluon

distribution at larger values of β.
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POMWIG also allows the user to define the valence partons in the pomeron

to be either quarks or gluons. The default setting is that the valence partons

are gluons, which is motivated by the observation that the pomeron is mainly

a gluonic object. In the case of di-jet production which is considered here, the

partons entering the hard scatter are most likely to be gluons. However, if the

valence partons are defined to be quarks, the HERWIG initial state parton shower

will be forced to continue until a qq̄ pair is produced. This increases the activity

in the remnant sector and high β values are less likely. The effect of using valence

quarks is to decrease the DPE bb̄ cross section (using a cone algorithm of radius

0.4) from 0.08 fb to 0.01 fb. This should be considered a lower bound on the

calculated cross section, and the realistic cross section should lie in the range

0.01 - 0.08 fb.

The first source of uncertainty for the overlap background is the number of

pile-up events at each luminosity. The cross section of two single diffractive events

plus a hard scatter is given by equation 5.10, which has a square dependency on

the number of interactions per bunch crossing. The average number of interac-

tions, for a specific machine luminosity, is given by equation 3.3 and is dependent

on the total cross section at the LHC. As the total cross section is predicted to

be 111.5+3.7
−11.1 mb, the overlap background estimate is accurate to (+12.4, -37.1)%

at low luminosity and (+6.9, −20.9)% at high luminosity.

The second source of uncertainty on the overlap background comes from the

underlying event model used in the analysis. The JIMMY parameters are tuned

so that HERWIG reproduces existing Tevatron data. However, it was found [49]

that two different tunings can be used to describe the data. In this analysis, Tune

A was used (PTJIM=3.0, JMRAD(73)=2.13), which predicts more underlying

event activity at the LHC than Tune B (PTJIM=2.0, JMRAD(73)=0.71). Tune

A was chosen because it gives a slightly better description of the Tevatron data.
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If Tune B is used however, the effectiveness of the charged particle multiplicity

cuts at removing the overlap background decreases from 99.6% to 99.3%. This

increases the overlap background by a factor of 1.75, which implies an additional

uncertainty of +75% on the overlap background.

The final source of uncertainty comes from the effect of pile-up on the charged

track multiplicity cut. The problem is that charged tracks from pile-up events

could be identified with the primary event. Experimentally, one would define a

vertex window around the primary event vertex and the size of the window would

depend on two factors: the severity of the pile-up and the vertex resolution of

charged tracks in the inner detector. An attempt is made here to qualitatively

estimate the effect on the signal and background.

Firstly, the charged track vertex resolution, σz, of the inner detector limits

the vertex window size, v, to be

v ≈ ±2σz (5.21)

in order to keep the effectiveness of the charged particle multiplicity cuts. The

vertex resolution, given in equation 3.6, is dependent on the transverse momentum

and pseudo-rapidity and will be less accurate if either pT is small or |η| is large.

Figures 5.11 (a) and (b) showed that the detection of particles with low trans-

verse momentum particles is essential if the multiplicity cut is to be fully effective.

However figures 5.11 (c) and (d) showed that narrowing the pseudo-rapidity range

of the particles had a smaller effect on the multiplicity distributions. This is im-

portant because the vertex resolution for particles with pT > 0.5 GeV is 0.59 mm,

1.31 mm and 3.61 mm for pseudo-rapidities of 1.0, 1.75 and 2.5 respectively. It is

possible therefore, to restrict the pseudo-rapidity range to |η| < 1.75 in order to

have a smaller vertex window in accordance with equation 5.21. If the particle

range is restricted to |η| < 1.75, the overlap backgrounds increase by a factor of

1.5. This gives an error of +50% on the overlap backgrounds from the unknown
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Figure 5.17: The probability, P , of an inelastic pile-up event being within a given
distance, ±δ mm, of the primary vertex. The pile-up events were distributed by
a gaussian with a width of 5.6 cm, which is the longitudinal beam spot size at
ATLAS.

vertex size.

The effect of tracks from inelastic pile-up and the optimisation of the vertex

window could only be accurately calculated with full detector simulation. How-

ever, figure 5.17 shows the probability, P , of an inelastic pile-up event falling

within a given distance, δ, of the primary vertex. The δ = ±2.6 mm curve cor-

responds to an inelastic pile-up event falling within a vertex window defined for

particles with |η| < 1.75. The majority of these events will affect the charged mul-

tiplicity cut and so (1−P ) is a good estimate of the number of events unaffected

by inelastic pile-up. This implies that more than 70% of events will continue

to pass the charged multiplicity cut at a luminosity of 5×1033 cm−2 s−1. The

δ = ±7.2 mm shows the probability of a pile-up event falling within the vertex

window if all charged tracks in the inner detector are used for the multiplicity

cut, i.e |η| < 2.5. In this case only 40% of events would pass the charged particle

multiplicity cut at a luminosity of 5×1033 cm−2 s−1, which shows the importance

of determining the optimal vertex window size. For the rest of the discussion, a

vertex window of ±2.6 mm is assumed to be optimal.
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Figure 5.18: The uncertainty bounds due to the central exclusive processes (a) on
the significance of P2. The triggered events either have a muon with pT greater
than 6 GeV or pass a pre-scaled jet trigger of ET > 40 GeV. The pre-scale factor
was chosen to limit the total inclusive jet rate to 25 kHz regardless of luminosity.
At high luminosity, this corresponds to a pre-scale factor of 0.1. Figure (b) shows
the total uncertainty due to all processes. The upper limit is almost unchanged.
The lower limit reduces slightly due to the larger overlap background.

Each of the uncertainties discussed in this section produces an uncertainty in

the discovery potential of the MSSM benchmark point P2. The uncertainty in

significance (per year of data acquisition) due to the central exclusive processes

is shown in figure 5.18 (a). As the central exclusive processes dominate both

the signal and background cross sections, one would expect that they would also

dominate the uncertainty in significance.

Figure 5.18 (b) shows the total uncertainty in significance. The total un-

certainty was estimated by calculating the change in significance due to each

individual uncertainty and adding the results in quadrature. It is clear from fig-

ures 5.18 (a) and (b) that the central exclusive uncertainty dominates the range

in discovery potential as expected. Furthermore, this large uncertainty in signif-

icance has a major effect on the discovery potential. The upper bound of the

uncertainty, with a significance of 2.1 per year of data acquisition at a luminosity
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of 5×1033 cm−2 s−1, would reach a significance of 3.0 after just two years. Con-

versely, the lower bound in significance is always less than 1.0 per year and would

not be observable using the ATLAS detector.

124



Chapter 6

Di-Jet Production at the

Tevatron

6.1 The Tevatron and CDF

The Tevatron is a pp̄ collider based at Fermilab. From 1992-1996, data was

obtained at a centre-of-mass energy of 1.8 TeV in a period known as Run I [72].

The accelerator was then upgraded and has been taking data since 2002 at a

centre-of mass energy of 1.96 TeV in a period known as Run II. The machine

luminosity was also increased by a factor of ten and reached 1.7×1032 cm−2 s−1

[73].

The Collider Detector at Fermilab (CDF) [74] is an all-purpose detector that

performs the same role at the Tevatron that ATLAS does at the LHC. The

detector itself was upgraded between Run I and Run II, with the addition of

several new sub-detectors. However, it has the same basic sub-detector structure

as ATLAS - a tracking detector near to the collision point, calorimeters to measure

the energy of particles and a muon system on the outside. In Run I, CDF recorded

an integrated luminosity of 120 pb−1.
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As the Tevatron is a hadron-hadron collider, the central exclusive process

should be present in the data [75]. CDF published the first results on di-jet

production via double pomeron exchange [62] for the Run I data and set an

upper limit on the exclusive di-jet cross section. In this chapter, the analysis

and discussion that led to the predictions published in [76] is presented. Firstly,

Monte Carlo event generators are used to reproduce the Run I results, which

allows POMWIG to be normalised using published data and a soft-survival factor

extracted for the DPE process. Secondly ExHuME is used, in conjunction with

the normalised POMWIG generator, to predict the central exclusive component

that should be present in the Run II data.

6.2 CDF Run I Results

The CDF data sample for DPE di-jet production was defined [62] by

E1,2
T > 7 GeV (6.1)

−4.2 ≤ η1,2 ≤ 2.4 (6.2)

0.035 ≤ ξp̄ ≤ 0.095 (6.3)

|tp̄| < 1 GeV2 (6.4)

2.4 ≤ ηgap ≤ 5.9 (6.5)

where 1 and 2 specify the two leading jets and ηgap is a lack of hadronic activity

in the specified pseudo-rapidity region. The jets were defined using a cone algo-

rithm with radius 0.7 and overlap parameter of 0.75. At CDF, the momentum

loss fractions are defined as ξp (proton) and ξp̄ (anti-proton) respectively. As

large values of ξp̄ are allowed, the IPIP processes are supplemented by additional

reggeon (IR) exchange diagrams as explained in section 2.5. The POMWIG event

generator includes IPIP and IRIR fusion, but does not allow production via IPIR

126



or IRIP fusion. Therefore, contributions from these diagrams will be absent in

the MC samples. The pomeron valence partons are defined to be gluons for the

reasons given in section 5.3.7. The reggeon valence partons however, are defined

to be quarks because it is known that mesons (qq̄) lie on the Regge trajectories

[77].

The CDF collaboration did not fully correct the Run I data for detector

effects. In order to compare the MC samples to the published data, the energy

and momenta of the final state particles are smeared by the detector resolution

quoted in the CDF technical design reports [74, 78]. CDF also applied a noise

suppression cut, E < 100 MeV, to the calorimeter towers. This cut is applied

to the smeared energies of the final state particles in the Monte Carlo samples

before jet finding.

The CDF detector has a forward anti-proton detector, Roman Pot (RP), that

is capable of measuring the anti-proton fractional momentum loss and momentum

transfer in the ranges given by equation 6.3 and 6.4. CDF does not have a forward

detector on the outgoing proton side and the analysis relies on the observation of a

large rapidity gap to define the DPE sample. The gap was defined by demanding

no particle hits in the Beam-Beam Counters (BBC), which cover the pseudo-

rapidity range 3.2 < η < 5.9, and no energy deposit greater than 1.5 GeV in the

forward calorimeters, which cover the range 2.4 < η < 4.2.

The presence of a rapidity gap implied that no pile-up events were present

in the central detector. This means that the fractional momentum loss of the

proton and anti-proton could be reconstructed by

ξCAL
p,p̄ =

1√
s

∑
Ei

T e±ηi (6.6)

where the sum is over all calorimeter towers. For the MC samples, equation

6.6 is calculated using all final state particles that satisfy |η| < 4.2, which is

the coverage of the CDF calorimeters [74]. CDF then compared the fractional

127



pξ
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

pξddN  
N1

0

5

10

15

20

25

30

35

40

CDF Data

POMWIG

(a)

p
ξ

0.04 0.05 0.06 0.07 0.08 0.09

pξddN  
N1

0

5

10

15

20

25

30

(b)

Figure 6.1: The ξp and ξp̄ distributions compared to the CDF data. ξp̄ is measured
directly in the RP, which has a coverage of 0.035 < ξp̄ < 0.095. ξp is measured in
the calorimeter and a correction factor of 1.2 applied.

momentum loss of the anti-proton measured in the calorimeter (ξCAL
p̄ ) to that

measured in the Roman Pot (ξRP
p̄ ).

CDF found that the calorimeter measurement of the anti-proton fractional

momentum loss should be multiplied by a correction factor of 1.7 in order to

reproduce the measurement in the RP. This in turn implied that the proton

momentum loss as measured in the calorimeter was also a factor of 1.7 too small.

The procedure was repeated in this analysis and a smaller correction factor of

1.2 was found. It is possible that extra detector effects, such as particles losing

energy before the calorimeters or missing the calorimeters entirely, could account

for some of the difference between the correction factors. Furthermore, the CDF

Run I sample had very low statistics which could also affect the correction factor.

In the remainder of the Run I comparison, the smaller correction factor of 1.2 is

used for the MC samples to account for kinematical problems in reconstructing

the proton momentum loss. The fractional momentum losses are then given by

ξp = 1.2 ξCAL
p (6.7)

ξp̄ = ξRP
p̄ . (6.8)
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Figure 6.2: The average transverse energy (a) and average pseudo-rapidity (b)
distributions of the two leading jets compared to the CDF Run I data.

The ξp and ξp̄ distributions produced by POMWIG are compared to the CDF

data in figure 6.1. The ξp distribution describes the data well and the differences

in certain bins are attributed to statistical fluctuations in the data. The ξp̄ dis-

tribution however, seems flatter than the data. There is a possibility that a IPIR

contribution could be the difference in this distribution. This is because the RP

accepts anti-protons with large values of ξp̄, where there is a significant reggeon

contribution. The rapidity gap however, favours events with low ξp, which is

dominated by pomeron exchange. Thus the addition of a IPIR term, with the

pomeron originating from the proton, would increase the high ξp̄ region in figure

6.1 (b) and also pass the rapidity gap cuts. The conclusion is that the effects are

due to a missing IPIR contribution in addition to low statistics.

The average transverse energy and average pseudo-rapidity of the two jets,

E∗
T =

E1
T + E2

T

2
and η∗ =

η1 + η2

2
, (6.9)

are compared with the CDF data in figures 6.2 (a) and (b) respectively. Reason-

able agreement is found between MC and data, with the differences attributed

to extra detector effects and statistical fluctuations in the data. The ExHuME
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Figure 6.3: The Rjj distribution compared to the CDF Run I data.

contribution is very small and the data is just as well described by POMWIG

alone. This was also the conclusion of a previous analysis presented in [79].

The cross section was defined by CDF to be the DPE sample restricted to the

kinematic region 0.01 ≤ ξp ≤ 0.03. If this is imposed on the MC samples, it is

found that POMWIG overestimates the cross section by a factor of approximately

4. This leads to an ‘effective’ soft-survival factor of 0.27. It should be noted that

this is not the real soft-survival, S2, but accounts for both the soft-survival and

the missing IPIR contributions. The normalisation of POMWIG is now fixed for

the remainder of the analysis.

Figure 6.3 shows the Rjj, distribution for the MC samples. It seems that the

POMWIG distribution has the same shape as the data, but is shifted to larger

values of Rjj. There are two possible explanations for this. Firstly, the ξp̄ dis-

tribution is different between data and MC. The data suggest larger values of ξp̄

are present and this was attributed, in this section, to a IPIR contribution in con-

junction with low statistics. The larger values of ξp̄ in the data naturally result

in lower values of Rjj. Secondly, the CDF correction factor for ξCAL
p was much

larger than the factor calculated for the MC samples. If, due to low statistics,
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ET,min (GeV) σTOT (nb) σRJJ>0.8 (nb)
CDF 7 43.6±4.4±21.6 < 3.7

POMWIG 7 42.53 0.01
ExHuME 7 0.59 0.03

POMWIG + ExHuME 7 43.12 0.04
CDF 10 3.4±1.0±2.0 -

POMWIG 10 6.91 < 0.01
ExHuME 10 0.28 0.03

POMWIG + ExHuME 10 7.19 0.03

Table 6.1: The cross section predictions from POMWIG (with an effective gap
survival factor S̃2 = 0.27) and ExHuME in the CDF Run I kinematic range
described in the text, with detector smearing included. Also shown are the CDF
Run I published cross sections, taken from [62].

this factor has been overestimated, the values of Rjj in the data will be corre-

spondingly underestimated. The conclusion is that the shift in Rjj is due to a

combination of the two effects.

The cross section for the MC samples is shown after detector smearing, in

table 6.1. CDF give two cross section measurements, which were defined by

the minimum transverse energy of the leading jet being 7 GeV and 10 GeV

respectively. For Rjj > 0.8, POMWIG does not generate many events and the

cross section is dominated by the exclusive gg events generated by ExHuME.

The combined MC result for Rjj > 0.8 is consistent with the CDF upper limit of

3.7 nb.

6.3 CDF Run II Prediction

Having fixed the POMWIG normalisation at the Tevatron using the published

Run I results, predictions for the increased statistics of Run II can be made. The

increased statistics are partly due to a dedicated trigger that looks for an incident

hit in the RP and one calorimeter tower with ET > 5 GeV. The approach adopted

for the Run II prediction is to follow, as closely as possible, the preliminary DPE
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di-jet analysis presented in [80, 81]. Because the CDF analysis was preliminary,

the predictions in this section are not compared to the data and as such there is

no need to smear the MC final state particles.

The kinematic region for Run II is defined [80] as

E1,2
T > 10 GeV (6.10)

|η1,2| < 2.5 (6.11)

0.03 < ξp̄ < 0.1 (6.12)

ξp < 0.1 (6.13)

|tp̄| < 1 GeV2. (6.14)

The larger ξp range is due to a new configuration of forward detectors, the

MiniPlug (MP) and Beam-Shower Counters (BSC) [82], which cover the pseudo-

rapidity region 3.6 < η < 7.5.

In addition to ExHuME, the DPEMC event generator [83] is also used to

predict the exclusive component. This generator is based on a different, non-

perturbative model of central exclusive production [84, 55]. The differences be-

tween the generators have been well documented for Higgs production at the

LHC [85], but the most important difference is that DPEMC does not contain a

Sudakov suppression factor. As the Sudakov factor suppresses radiation up to the

scale of the hard scatter, the cross section predicted by the Durham model has

a steeper mass dependence because the phase space for gluon emission increases

with central mass. The DPEMC model requires a soft-survival factor which is

taken to be S2 = 0.1 [86]. DPEMC is included to investigate whether Run II

data could distinguish between the two models.

The cross section of the event generators after applying the Run II kinematic

constraints are shown in table 6.2 where, for completeness, the effect of using the

CTEQ6M parton distribution functions is included for ExHuME. In all cases, the
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Emin
T (GeV) σT (nb) σRJJ>0.8 (nb)

POMWIG 10 188.16 0.10
ExHuME (MRST2002) 10 0.82 0.26
ExHuME (CTEQ6M) 10 1.45 0.43

DPEMC 10 2.61 0.80
POMWIG + ExHuME (MRST2002) 10 188.98 0.36
POMWIG + ExHuME (CTEQ6M) 10 189.61 0.53

POMWIG + DPEMC 10 190.77 0.90
POMWIG 25 0.940 0.008

ExHuME (MRST2002) 25 0.016 0.012
ExHuME (CTEQ6M) 25 0.037 0.027

DPEMC 25 0.176 0.118
POMWIG + ExHuME (MRST2002) 25 0.956 0.020
POMWIG + ExHuME (CTEQ6M) 25 0.977 0.035

POMWIG + DPEMC 25 1.116 0.126

Table 6.2: The cross section predictions, σT , from POMWIG (with an effective
gap survival factor S2 = 0.27), ExHuME and DPEMC, in the CDF Run II
preliminary kinematic range as described in the text. Also shown is the ExHuME
prediction using the CTEQ6M parton density function. Emin

T is the minimum
transverse energy of the jets and σRJJ >0.8 is the cross section of the exclusive
region Rjj > 0.8.

exclusive component is larger than the POMWIG contribution for events that

satisfy Rjj > 0.8. However, as shown in figure 6.4, this excess does not manifest

itself as a visible peak above the DPE background, which is entirely consistent

with the preliminary data. The DPEMC event generator predicts a larger cross

section than ExHuME, although the different soft-survival factors play a major

part in this.

Table 6.2 gives a hint of the differences between the two exclusive models. The

ratio of the ExHuME (MRST2002) cross section to the DPEMC cross section is

0.31 for all events with jets that satisfy ET > 10 GeV. For jets with transverse

energy greater than 25 GeV however, the ratio decreases to 0.09. Figure 6.5 (a)

shows the cross section in the exclusive region, Rjj > 0.8, as a function of the

minimum transverse energy of the jets, Emin
T . There is a clear difference in the

distributions produced by POMWIG+ExHuME and POMWIG+DPEMC.
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Figure 6.4: The predicted Rjj distributions for the ExHuME (a) and DPEMC
(b) event generators for Run II at the Tevatron.

If the background DPE events are subtracted, then the transverse energy de-

pendence of the cross section for events that satisfy Rjj > 0.8 is represented by

one of the exclusive curves in figure 6.5 (b), which have been normalised to pass

through the same point at Emin
T = 10 GeV. The difference in the predictions

of the two exclusive generators is now even more pronounced as ExHuME pre-

dicts a significantly steeper transverse energy distribution than DPEMC. This is

entirely due to the Sudakov suppression factor; if large central masses are sup-

pressed, then large transverse energy jets will be suppressed. It is concluded that

the transverse energy distribution of the events that satisfy Rjj > 0.8 can, in

principle, distinguish between the two exclusive models.

6.4 Recent CDF results

After normalising the MC to the published Run I data in section 6.2, it was

shown in section 6.3, and published in [76], that an exclusive component to di-

jet data does not manifest itself as a peak in the Rjj distribution. Instead, the

exclusive events exist as an excess over DPE processes at large values of Rjj . It
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Figure 6.5: The cross section of the exclusive region, Rjj > 0.8, as a function
of the minimum transverse energy of the second jet (a). Figure (b) shows the
contribution to the Rjj region from the exclusive event generators.

was also shown that the transverse energy distribution of the exclusive events

could distinguish between the exclusive models.

Subsequently, the CDF collaboration approved new preliminary results [87,

88], which confirmed the predictions of section 6.3. In the new results, the

POMWIG event generator was used in conjunction with the full CDF detec-

tor simulation and compared with the preliminary data. A clear excess of data

over the POMWIG prediction was observed. The ExHuME and DPEMC gen-

erators were then used to account for this excess in the way outlined in section

6.3, but using a global normalisation factor in order to fit the data. The parton

distribution function for ExHuME was set to the default MRST2002NLO. The

latest CDF preliminary result for the Rjj distribution is shown in figure 6.6, which

confirms that using POMWIG with an exclusive generator can give a successful

description of the data. The ExHuME normalisation is within the factor of two

theoretical uncertainty on the cross section calculation [89]. It was concluded

that this was evidence for an exclusive component to the di-jet data.

Equally as important is the need to distinguish between the exclusive models.
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Figure 6.6: The preliminary [87, 88] CDF Run II result for the Rjj distribution.
The exclusive component (ExHuME (a) or DPEMC (b)) is needed to account for
the excess at high Rjj.

CDF have produced the exclusive cross section as a function of transverse energy,

which was predicted in section 6.3 and [76] to be capable of differentiating between

the exclusive models. The exclusive component was identified by subtracting the

predicted DPE background from the data for each Emin
T bin. The preliminary

result is shown in figure 6.7 (a) and implies that that ExHuME gives a better

description of the data than DPEMC. Figure 6.7 (b) shows the mass dependence

of the exclusive component. In this case, ExHuME gives an excellent description

of the preliminary CDF Run II data.
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Figure 6.7: The preliminary [90] CDF Run II result for the exclusive cross section
as a function of the minimum transverse energy of the jets (a). Figure (b) shows
the exclusive cross section predicted by ExHuME as a function of the mass of the
central system.
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Chapter 7

Conclusions

An investigation into central exclusive production has been presented in this

thesis. The study focused on the bb̄ decay channel of a Higgs boson at the

LHC and di-jet production at the Tevatron, both of which had been predicted

to be observable in the literature. These analyses required the development of a

new Monte Carlo event generator that was capable of simulating the full central

exclusive event.

The ExHuME generator was developed, which implemented the Durham

model of central exclusive production. Four processes were included for gen-

eral use: Higgs, qq̄, gg and γγ. The program was written in C++ and designed

so that users could easily implement new processes if the central system was a

one or two particle state.

Initial studies using ExHuME showed that the cross section of central exclusive

processes are dependent on the parton density function used in the calculation.

It was found that changing the parton density function could change the cross

section by up to a factor of two. The potential observation of central exclusive

di-photon events at ATLAS was evaluated by calculating the number of events

that would pass the ATLAS level 1 photon trigger. It was shown that the process

will be observable at ATLAS if forward proton detectors were installed 420 m
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either side of the interaction point. It was also shown that a complementary

study will be possible at very low luminosity (1032 cm−2 s−1) if a rapidity gap is

required in addition to a lower transverse energy trigger for the photons.

The potential observation of central exclusive di-jets at the Tevatron was

investigated. The distribution of the di-jet mass fraction, Rjj, was predicted

for CDF Run II, using a double pomeron exchange (DPE) event generator in

conjunction with ExHuME. The central exclusive events were shown to be an

excess over the DPE events at large values of the di-jet mass fraction. It was

shown that the transverse energy distribution of the jets from events that satisfy

Rjj > 0.8 could be used to distinguish between the different theoretical models

of central exclusive production.

The central exclusive bb̄ decay channel of a Higgs boson was investigated

at the LHC, assuming that forward proton detectors would be installed in the

420 m region either side of the interaction point at ATLAS. The analysis covered

the Standard Model Higgs boson and the MSSM lightest Higgs boson for two

MSSM parameter choices. The backgrounds simulated in the study were the

central exclusive gg and bb̄ processes and the diffractive (DPE) and non-diffractive

production of light jets and bb̄. Non-diffractive events were shown to act as a

background if a threefold coincidence occurred between a non-diffractive event

and two single diffractive events.

A series of analysis cuts were developed to reduce these backgrounds. Two

methods of reconstructing the di-jet mass fraction were examined, Rjj and Rj ,

and it was found that the Rj variable was less susceptible to final state radiation

effects than the Rjj variable. A comparative study of the cone and kT algorithms

was performed, with the emphasis being placed on the separation of the central

exclusive and DPE processes. It was found that the cone algorithm was more suc-

cessful than the kT algorithm at reducing the DPE background. Furthermore, the
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central exclusive gg background was also reduced when using the cone algorithm.

It was discovered that matching the kinematic information between the pro-

tons in the forward detectors and the jets in the central detector would not have

enough rejection power to reduce the non-diffractive background. It was shown

that these backgrounds could be further reduced by charged particle multiplicity

cuts, which were motivated by the observation that protons in non-diffractive

events can have multiple parton interactions. This resulted in the non-diffractive

events being reduced to a tolerable level.

A preliminary trigger study was performed, which examined the possibility of

using muon, rapidity gap and jet triggers to retain the signal events at ATLAS. It

was concluded that it would not be possible to implement a rapidity gap trigger

due to the large number of pile-up events at the LHC. It was also found that

the currently proposed low transverse momentum muon trigger would not retain

enough of the signal. However, it was shown that a low transverse energy jet

trigger could be implemented at level 1, if the large rejection power from the

forward detectors was used to reduce the rate at level 2. This jet trigger would

have to be pre-scaled so that a fixed jet rate occurred at level 1, and it was shown

that meaningful results could only be obtained if the allowed rate was 25 kHz.

Unfortunately, the Standard Model Higgs cross section is too small to observe

a significant excess of signal over background in the bb̄ decay channel. In the case

of the MSSM, only one of the parameter choices (mA = 130 GeV, tanβ = 50) was

potentially observable at ATLAS. It was found that a significance of 3.0 could be

achieved after five years of data acquisition, with 5 signal events observed every

year. This prediction has a large uncertainty, with the dominant effect being

the uncertainty in the central exclusive calculation. Future work could focus

on reducing the uncertainty associated with each of the processes used in this

analysis.
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Appendix A

ExHuME Run Control

Parameters

ExHuME can be controlled by passing a card file from the command line that

can contain the control parameters given in table A.1. The collider can be set

to the LHC (1), the Tevatron (0) or neither (−1). Choosing a collider sets the

proton collision energy,
√

s, the survival factor, S2, and Rg, which accounts for the

skewed effect in the un-integrated gluons. Choosing neither means that the user

must set these parameters. The PDF values are the PDF set numbers accepted

by the LHAPDF library. Freeze is a scale below which αs is frozen and Q⊥min

is the lower bound on the integral in equation 2.43.
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Parameter Name Type Default
α AlphaEW double 0.0072974
MW WMass double 80.33
MZ ZMass double 91.127
Mh HiggsMass double 120.0
Mt TopMass double 175.0
Mb BottomMass double 4.6
Mc CharmMass double 1.42
Ms StrangeMass double 0.19
Mτ TauMass double 1.77
Mμ MuonMass double 0.1057
v HiggsVev double 246.0
Q2

⊥min MinQt2 double 0.64
Λ (MeV ) LambdaQCD double 80 (MeV )

Freeze double Q⊥min

b B double 4.0
collider FNAL or LHC int 1
s s double 1.96 × 108

s
1
2 root s double 14000.0

S2 Survive double 0.03
PDF PDF int 20250

Table A.1: ExHuME control parameters
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