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Abstract
Investigating and verifying the connections between the foundations of quantum mechanics and
general relativity will require extremely sensitive quantum experiments. To provide ultimate
insight into this fascinating area of physics, the realization of dedicated experiments in space will
sooner or later become a necessity. Quantum technologies, and among them quantum memories
in particular, are providing novel approaches to reach conclusive experimental results due to their
advanced state of development backed by decades of progress. Storing quantum states for
prolonged time will make it possible to study Bell tests on astronomical baselines, to increase
measurement precision for investigations of gravitational effects on quantum systems, or enable
distributed networks of quantum sensors and clocks. We here promote the case of exploiting
quantummemories for fundamental physics in space, and discuss both distinct experiments as well
as potential quantum memory platforms and their performance.

1. Introduction

Quantum technologies are currently expanding into viable public and commercial applications as well as
extending their capabilities for use in engineering and applied science. There is increasing interest to deploy
such technologies in space to advance secure quantum communication [1, 2], assist distributed quantum
computation [3–5], improve sensing [6], and run experimental tests of fundamental physics [7, 8].
Operation of complex quantum systems in space has already been successfully demonstrated by the Cold
Atom Laboratory [9] and MAIUS [10] missions, operating Bose–Einstein condensates (BECs) in space. The
upcoming project BECCAL [11] will build on this heritage and perform a multitude of new experiments,
among them the operation of a quantum memory in space. Since quantum memories are an important
component for future quantum communication systems, insights from this mission will inform further
development of space-ready hardware for global quantum networks.

In general, quantum memories allow to store a given quantum state, such as the state of a single photon,
for a specific amount of time until retrieval occurs at a later point in time. The key aspect here is that this
process of storage and retrieval conserves all previously established quantum properties, e.g. entanglement
and quantum coherence. In this way, quantum memories are able to play a key role in greatly enhancing
many scientific and technological applications, such as quantum state teleportation and long-range Bell
tests [12–16] and aiding the design of new quantum tests of general relativity [17–21].

We therefore highlight the necessity of space-borne quantum memories for fundamental quantum
physics experiments over long distances and timescales. Even though we are primarily interested in quantum
memories with long coherence times for this matter, large scale quantum networks and long distance
quantum communication will require quantum repeaters which make use of quantum memories as a
sub-component (see figure 1). The necessary distribution of entanglement between two parties is based on
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Figure 1. Single-node quantum repeater network. (a) In a first step, Alice and Bob each entangle their local quantum memories
with a quantum memory at a repeater node. (b) Once both entangled links are established, another Bell state measurement
between the two node memories generates the entangled link between the communicating parties in (c). In this scheme,
memories play a crucial role in synchronization of entangled link generation. More nodes may be concatenated to increase the
number of links and thus bridge larger and larger distances.

Bell-state-measurements (BSMs) of incident signals at connecting nodes. To bridge large distances, repeaters
can consequently be utilized to combat losses and increase signal range. A repeater necessarily requires
elements to receive and transmit signals, as well as to perform BSMs on the signals themselves. In this
configuration, quantum memories are deployed to synchronize two incoming signals by individually storing
photons for a desired period of time. In principle, repeaters can be linearly connected in-between two
communicating parties to bridge larger and larger distances, subject only to the overall channel fidelity. The
requirements for useful memories in quantum repeaters go far above the capabilities of simple
fiber-delay-loops which cannot offer on-demand retrieval and furthermore suffer from significant inherent
losses for longer storage times, i.e. increasing fiber length. For longer storage and on-demand retrievability,
other types of memories can be chosen, as will be discussed in section 3. Ultimately, the desired storage time
depends strongly on the application. For instance, measuring gravitational effects potentially requires longer
coherence times than quantum secure information transmission (section 2).

Combining quantum memories and free-space photon links in space helps to overcome several
limitations of ground-only experiments by mitigating loss from long optical fiber links or
atmosphere [22–24], extending limited line-of-sight, or providing a low-disturbance microgravity
environment [25]. Optical losses could in principle also be bridged by memory-based quantum repeaters on
Earth, but the required number of repeaters poses a substantial challenge [24, 26]. To illustrate the advantage
of space operation, the Quantum Experiment at Space Scale aboard the Micius satellite already showed order
of magnitude improvement at extending the range of quantum entanglement distribution compared to
fiber-based approaches [27]. In its mission, flight hardware carried entangled photon sources, with detection
and measurement remaining on-ground. Hence, it can be concluded that employing quantum memories at
memory-assisted ground nodes in conjunction with multiple satellites is a next step to increase the range of
entanglement distribution even further. Finally, intermediary nodes may be moved onto satellites, improving
fidelity by avoiding unnecessary light paths through the atmosphere altogether [28, 29]. Building
space-based quantum networks in this manner not only aids the establishment of future global quantum
communication, but may also be utilized in fundamental science studies in space.

In section 2, we therefore want to give an outlook on how space-borne quantum memories can improve
various experiments in space. A depiction of several scenarios is shown in figure 2. It outlines long-range Bell
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Figure 2. Exemplary applications for quantum memories in space. Case 1 describes long-range Bell tests in which quantum
memories are deployed either as part of satellite-based repeaters for bridging large distances or by storing photons locally to fulfill
space-like separation requirements (section 2.1). Depicted are measurements involving ground stations, transport vehicles and an
orbiter surrounding the Moon (1a) or Mars (1b). Case 2 illustrates the collection of phases due to gravitational gradients. An
entangled photon is sent to a satellite and stored in on-board memory, while its partner is stored on Earth. (2a) and (2b) show
different conceivable orbits for such experiments which may be used for comparative measurements (sections 2.2 and 2.3). Case 3
is a description of quantum information transfer between two distant stations. Those could either be placed on Earth (3a) or on
another celestial body (3b). Both cases have been described elsewhere and require a network of quantum repeaters to enable
global coverage and long distance transmission [28]. However, an exemplary network bridge to Mars will likely require more than
ten thousand operating nodes with current technology. This poses a major challenge which will need to be addressed for deep
space applications.

tests (section 2.1) and measurements of gravitational or motional effects (sections 2.2 and 2.3). Once larger
networks become available, tasks such as more precise time-keeping (section 2.4) and distributed sensing
(section 2.5) become feasible.

Section 3 will cover available options as well as requirements and limitations of different quantum
memory platforms, where we representatively discuss warm vapor cells, cold atomic gases,
rare-earth-ion-doped crystals (REIDs), color centers in diamond, and single atoms and ions in cavities. We
conclude the section by giving a summary of engineering challenges lying ahead.

2. Memory-assisted fundamental science in space

Space-based quantum science is generating an increasing amount of interest. In the past years there have
been many proposals for potential missions to study a wide variety of quantum phenomena in space [8, 19,
30, 31]. As we will see in the following subsections, there are proposals that require entanglement between
distant users to be maintained for long duration in contrast to those that primarily require a quantum state
to be stored securely, but not necessarily for longer time periods.

2.1. Long-range Bell tests
The Copenhagen interpretation of quantum mechanics leads to the conclusion that a theory of nature
cannot both be local and realistic. This was mathematically expressed by John Stewart Bell through an
inequality that states an upper bound for correlations between measurement outcomes of distant particles
which obey both realism and locality. Numerous quantum physical experiments have shown the violation of
this inequality [32–35], with some experiments even ruling out detection and locality loopholes. However, to
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achieve statistical significance in these experiments averaging of temporally subsequent measurements
creates a memory loophole, which can only statistically but not fundamentally be ruled out. A longer
baseline could help in creating a true space-like separation between all measurements and thus close this
loophole as well.

While quantum memories are not a necessary requirement to run Bell tests over longer distances, they
are able to aid such tests by storing part of an entangled quantum state until measurements can be
synchronously carried out in satisfaction of space-like separation requirements. A simple setup could
comprise an entangled photon-pair source in which one photon is locally stored in a quantum memory for
delayed measurement, while the other is sent off to a remote location in the meantime. This type of
configuration would avoid the need for a second distributional baseline and thus reduces the requirement to
only one single long baseline. Leaving loopholes aside, to demonstrate the technical feasibility of this
approach one could install a ground-based entangled photon-pair source and a quantum memory which
sends off one photon for detection to a satellite in low-Earth-orbit (LEO), located∼200–2000 km above
ground. The required coherence time for such a memory lies in the range of milliseconds, which has already
been realized in current memories [36, 37].

Moving further ahead, source and memory might be placed on a LEO-satellite or the International Space
Station, and establish a link to a detector orbiting the Moon. This enables Bell tests investigating
‘Freedom-of-Choice’ loopholes by letting two experimenters on Moon and Earth determine their
measurement basis during the travel time of the photon [8]. The required memory coherence in this case
increases to above 1 s, which poses a challenge for current memories at single-photon level, but storage times
of several hours for many-photon states [38, 39] raise hopes to reach this goal in the near-future.

2.2. Effects of curved spacetime on localized quantum systems
Improving precision in measurements allows for the development of novel technologies as well as for the
discovery of new physical effects. In the context of interest to this work, the quantities to be measured will be
most likely encoded in degrees of freedom placed at different locations, or nodes, or the resources to be
exploited for the task will be distributed across space [17]. Generally speaking, modes of a quantum field or
other degrees of freedom will be entangled either within the same site, across sites, or both. One or more of
the nodes, holding a quantum memory where the information or state is stored, can undergo a physical
process that will affect the entanglement shared. This can occur at the detriment of the precision, due to
effective loss of information to unwanted or not accessible degrees of freedom, but it can also enhance the
overall precision if the changes are engineered correctly. Changes to the whole setup might include motion of
one or more of the crafts holding the memories [17] or a strong dynamical change in the local spacetime
curvature [40]. The language to deal with obtaining the bound of the achievable precision of measurements
that can be performed in these cases is provided by the field of quantum metrology.

Quantum metrology empowers (quantum) technologies to potentially beat the state of the art by taking
advantage of genuine quantum features, such as entanglement [41]. In this context, a unitary evolution Û(ϑ)
transforms an initial state ρ̂(0) and encodes a parameter ϑ of interest in the final one. This could be, for
example, the action of a gravitational wave affecting the quantum state stored inside a quantum memory in
space. Concretely, we have ρ̂(0)→ ρ̂(ϑ) = Û(ϑ)ρ̂(0)Û†(ϑ). The lower bound on the precision∆ϑ that can
be achieved is given by the Cramér–Rao bound∆ϑ⩾ (NH)1/2, where N is the number of measurements or
input individual quantum states, andH is the quantum Fisher information [42]. This important
information-theoretical quantity is related to (theoretical) operational ways to distinguish nearby quantum
states in the Hilbert space [43]. Measurements on quantum states are routinely performed in the laboratory
today. However, there are many new effects that exist on timescales where it is virtually impossible to
maintain the quantum coherence of quantum systems. This gap can be bridged by quantum memories,
which could allow for maintaining of the state long enough for the effects to occur.

One case of particular interest is that of dynamical creation of entanglement within moving cavities. It
has been shown that (relativistic) motion of a cavity that confines a quantum field can not only create
particles, the well-known dynamical Casimir effect [44], but it can also create quantum correlations between
the field excitations [45–48]. A systematic study of the effects of motion unveiled the properties of the
transformations involved, and how they can be engineered to produce different (entangling) quantum
gates [49, 50]. Specific techniques were subsequently developed to apply the concepts of quantum metrology
to a relativistic setting, and an ideal application was proposed for gravitational wave sensing using entangled
states of phonons within a BEC [40]. In these studies the cavities were assumed to be infinitely rigid. While
this is a good approximation for proof-of-principle studies, elastic properties of the cavity must be taken into
account. This can be done, and preliminary attempts in this direction in the same context of the
aforementioned studies have been successfully conducted [51, 52]. More work is necessary to properly
characterize the system including these aspects for concrete mission proposals.
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Figure 3. (a) A quantummemory is placed in space. The initial state of the degrees of freedom that encode the desired information
is ρ̂(0). (b) The spacecraft containing the memory is moved for some time t, and the state of the quantum system is altered. (c) In
general, the state ρ̂(t) of the quantum systems that do constitute the memory—say the modes k and k′ of a quantum field—is
(slightly) entangled with other degrees of freedom, thereby affecting the ability to faithfully retrieve the quantum state initially
stored. Quantum metrology techniques are then used to obtain bounds on the precision of measurements of relevant parameters.

Precise measurements based on relativistic quantum fields are therefore a potentially promising avenue,
which is nevertheless marred by the ability to sustain quantum states for a long time for later processing. The
key issue here is, therefore, the ability to store the quantum states created, while the cavity is located in an
isolated environment, thereby reducing mechanical vibrations and other constraints due to being
Earth-bound. The state of the field, once stored, can then be affected by the motion of the support that
confines the memory and this, in turn, results in the entanglement initially present in the state to be affected
as well. It has been shown that specifically designed resonances enhance the effects (on the entanglement or
the average particle number) linearly or quadratically with time [50]. A rough estimate shows that longer
times are desirable in photonic cavities within the considered perturbative regimes. The question is different,
however, if the characteristic frequencies inherent in the particular memory are smaller than those of light. In
that case, it was shown that perturbations of the phononic perturbations of a supporting many-body system
(such as the phonons of a BEC) are affected by gravity and motion, and therefore the techniques discussed
here apply as well. This means that quantum memories with characteristic small frequencies can witness
larger effects in a shorter time. A depiction of such scenarios can be found in figure 3.

2.3. Entanglement dynamics due to motion
Quantum memories can also be used to boost sensitivity of entanglement-related measurements. For these
applications, the storage of quantum states for prolonged time is required to probe effects in changing
gravitational environments [53]. For example, one proposal puts forward the use of two entangled cold
atomic gases to probe gravitation- or acceleration-induced decoherence [17]. By use of two memories located
on two different spacecrafts, an initial joint quantum state entangles both memories when they are located on
the same orbit corresponding to a shared inertial frame. Afterwards, one of the spacecrafts is accelerated to a
different orbit. As discussed in section 2.2, it has been shown that the motion of a cavity affects the quantum
states of localized systems confined within, such as the field modes of quantum field [45] or the phononic
modes of a BEC [40]. Therefore, it is expected that any entanglement shared between the degrees the modes
in the moving cavity and other quantum systems will be affected as well. Estimates of necessary coherence
times range from 100ms [17] to seconds or minutes using more conservative assumptions for reasonable
sensitivity. Multiplexing capabilities to generate high enough signal-to-noise through statistical data are
likely necessary here, depending on memory efficiency and fidelity. The scheme is depicted in figure 4.
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Figure 4. (a) Two satellites S1 and S2 travel on the same orbital path O1. This makes them both inertial. Two memories hosted
inside the satellites are entangled with each other (symbolized by the dotted line). (b) Satellite S2 performs a maneuver that brings
it onto orbit O2, where it will be inertial again. The process of orbit transfer inevitably requires satellite S2 to be non-inertial for a
period of time. During this process, the entanglement between the memories will be altered due to the effects of non-inertial
motion on the confined quantum systems, as depicted in figures 3(a) and (b).

2.4. Quantummemories for improved clock precision
Precise time-keeping is not only interesting for standardization [54], but also positioning accuracy in
applications such as global navigation satellite systems, or possibly mapping of gravitational potentials [55].
Sharing timing information within a classical network of clocks can already help to decrease the Allan
deviation of involved nodes by classical averaging. A quantum network of N clocks distributed across a finite
volume in space has been proposed in order to increase time keeping precision even further [56]. By utilizing
quantum entanglement, clock nodes are potentially able to interrogate and stabilize the average frequency of
the network via a shared quantum state, instead of classically operating and correcting each node separately.
For short averaging times, this leads to a

√
N improvement in precision of fully-quantum networks

compared to those basing their operation solely on classical interrogation and cooperation.
Entanglement propagation between clocks can either be achieved by direct exchange of flying qubits or

by using quantum repeaters. While timing issues in entanglement generation can be solved by smart design
of the synchronization algorithm, quantum memories may be able to offer more flexibility by storing states
until clock qubits are ready for further processing, especially in larger and more complex networks. In case all
generated photon pairs for entanglement distribution need to be simultaneously stored in one memory, the
optimal number of modes for a clock scales as [log(n)]2 [56], requiring a mode capacity of 85 per channel
and clock containing n= 104 qubits. This is well in reach for present quantum memories [57–59].

To provide a global time reference, a sufficiently large clock network necessarily has to operate in space,
due to the already discussed losses associated with ground-only optical links.

2.5. Distributed quantum sensing
Similar to the quantum-cooperative clock network described above, distributed networks of quantum
sensors can utilize the same underlying principle to enable operation of distributed sensing, where noise
scales with 1/N for a fully quantum-operated network compared to 1/

√
N for a fully classically-operated

one, giving rise to a
√
N improvement. Large enough networks may therefore lead to sensitive measurements

below the standard quantum limit [60–62] and enable detection of gravitational effects, possibly linking
spacetime to quantum physics [53].

One particular proposal for using distributed quantum sensors is their application in astronomy to build
interferometric telescopes [63] or optical wavelength telescope arrays [64, 65]. Stationary Earth-bound
quantum memories will likely be the first realizable generation of hardware and are needed to support any
quantum sensor network. Again, the evolution towards space-based arrays of quantum sensors and
memories as envisioned in quantum communication networks will yield similar benefits for astronomy and
geodesy. The feasibility of applying quantum networks to geodesic measurements has recently been shown by
detecting and localizing seismic events [66].

3. Quantummemory types

To enable the experiments discussed in section 2, reliable storage of photons (flying qubits) for a flexible or
predefined amount of time has to be achieved. Quantum memories have the capability of acting as interfaces
between flying and stationary qubits. They are able to absorb and re-emit photonic qubits on-demand or
after a specific time defined by the system itself. Many different platforms exist for the realization of quantum
memories (see figure 5). One can differentiate between ensemble-based platforms, such as cold and warm
atomic gases, as well as REIDs, and single emitters, such as nitrogen-vacancy (NV) centers in diamond or
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Figure 5. Possible quantum memory platforms. Among ensemble-based photon storage, we find (a) warm vapor cells, (b) cold
atomic gases in magneto-optical traps, and (c) rare-earth-ion-doped crystals (REIDs). Using single emitters, noticeable examples
are (d) color centers in diamond or (e) single atoms/ions in a cavity.

single atoms and molecules. Optically active systems serve as prime candidates due to already advanced
technology for photonic distribution of quantum states. We therefore focus on these platforms and do not
discuss those which currently lack optical interfaces, despite some of them featuring exceptional coherence
times and fidelities [67].

A variety of protocols exists to implement quantum storage for different platforms. They can be divided
into optically controlled ones, for example electromagnetically induced transparency (EIT) [68],
Raman-type schemes [69], the fast-ladder memory [70], and the off-resonant-cascaded-absorption memory
[71], as well as engineered absorption schemes, where one finds gradient-echo memory [72],
controlled-reversible-inhomogeneous broadening [73], and atomic-frequency comb (AFC) [74–76]
protocols. Each platform often supports more than one protocol. Proper selection highly depends on the
planned memory application. So far, no single combination yields a sufficient solution for a general-purpose
device, i.e. trade-offs exist between large efficiencies, long storage times, temporal and spatial multimode
capacity, large bandwidths, high fidelities, etc. In case of memory efficiencies, special attention has to be paid
to not only include memory-intrinsic values, but also of the setup as a whole. In the end, these trade-offs
have to be balanced with respect to a targeted application. As an example, on-demand readout may not be
necessary in scenarios where storage times are already fixed beforehand, such as in the case of Bell tests over
(approximately) constant baselines. This may relax requirements on memory protocols, which in turn can
reduce system complexity, for example by circumventing the need for long-term spin-wave storage in REIDs,
if optical coherence times suffice already.

In the following subsections, a selection of the most relevant platforms will be described in more detail,
and exemplary state-of-the-art implementations will be mentioned. Some of the experiments have been
performed storing bright laser pulses containing many photons instead of operating at single-photon level.
However, true single photons are mandatory for most scenarios. Therefore, the memories need to be paired
with single-photon sources, which poses an additional challenge on the memory platforms [77], as well as on
the development of efficient photon sources [78] matched to the memories.

3.1. Warm vapor cells
Vapor cells are low-complexity systems which can be operated over a wide range of temperatures and
conditions without the need for any cryogenic refrigeration and large magnetic fields, which makes them an
easily scalable platform. Commonly used are alkaline atoms since they possess energetically low-lying spin
states and long coherence times. These states function as storage states in EIT and Raman protocols [77].
Atomic vapors show high optical depths even at room temperature and thus high storage efficiencies can be
achieved. However, these types of memories are known to be susceptible to noise, especially from
four-wave-mixing [79].

By use of the spin-orientation degrees of freedom of Cs atoms and a special chamber coating, Katz and
Firstenberg [80] report memory efficiencies of 9%–14% at storage times up to 150ms. By applying a specific
week-long temperature cycle to combat spin destruction, they are able to increase storage times up to 430ms
and claim that the memory is sufficient to store weak coherent states and squeezed states. Through the
hyperfine manifold, they posit possible single photon operation. Guo et al [81] achieve the highest efficiency
to date in warm vapor memories with a value of 82% by an off-resonant Raman scheme in a rubidium
memory. They further obtain fidelities at single photon level up to 98%. Focusing on the interfacing of the
memories with a single photon source, in [82] a memory with an acceptance bandwidth of 0.66GHz is
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realized, which is suitable for photons from semiconductor quantum dots. Low noise levels in atomic vapors
are achieved in [83], who report on values of µ1 = 0.20 noise photons without performing cavity
engineering schemes as done in [84]. In [85] noise levels below µ1 = 0.04 are reported.

All of the above results are achieved as a trade-off to remaining memory parameters. A simultaneous
optimization of two relevant parameters, the end-to-end efficiency and signal-to-noise ratio at single photon
level is performed in [86]. True single photon storage and retrieval in a ground-state warm atomic vapor
memory using a photon from a spontaneous-parametric-down-conversion source is demonstrated for the
first time in [87].

Spatial multiplexing for multimode capacity is feasible in these systems, at the cost of more powerful
lasers [88], but has to our knowledge not yet been realized experimentally. Microfabrication techniques have
enabled cell dimensions of millimeter size, which may aid miniaturization for satellite integration [89].

3.2. Cold atomic gases
In contrast to vapor cells, cold atomic gases are cooled in magneto-optical traps to reduce atomic motion to
100µK or below which provides a route for reaching long coherence times. The creation of BECs at even
lower temperatures requires either stronger lasers for deeper traps or atom-chips for
radio-frequency-evaporative cooling. Atom-chip assemblies have aided miniaturization [90] and
manipulation, but require more careful planning of vacuum feedthroughs and interaction between atom
cloud and chip surface.

Cold gases generally implement the same memory protocols as warm gases. High efficiencies and storage
times have been achieved; in particular, Yang [91] reports an intrinsic retrieval rate of 76% for storage times
of 220ms in a rubidium gas. In [36] memory efficiencies of 73% have been achieved, although at lower
storage times of 3.2ms. Multimode capability has been realized through orbital angular momentum [92] or
spatial multiplexing [58], and entanglement between two rubidium memories has recently been
demonstrated [93].

Portable versions of cold atomic gases already exist [10, 94, 95] and on-chip optics might in future
alleviate the need for bulkier optical components [96]. Nevertheless, the upper limit of photon absorption
rate puts a constraint on minimum system size for reasonable BEC creation in the centimeters range.
Especially interesting for space applications are developments in miniaturization of passively pumped
systems with 1000 day ultra-high-vacuum (UHV) operation using microfabricated magneto-optical
traps [97].

Heritage from previous missions MAIUS [10] and CAL [9] make cold atom gases an important
contender for space quantum memories, with project BECCAL [11] serving as a future cornerstone.

3.3. REIDs
The inherent strengths of solid-state based systems lie in their low-complexity, compactness, and
micro-integration possibilities. In REIDs, optical modes down to single-photon level are stored in a collective
excitation of the dopant rare-earth ions in a crystal which is typically cooled to temperatures below 6K.
Prominent dopants are praseodymium (141Pr3+) or europium (151/153Eu3+) embedded in an
yttrium-orthosilicate matrix (Y2SiO5), although various other materials exist [98–100], even compatible
with telecommunication wavelengths [101, 102].

Optical coherence times range can approach 100µs [100, 102–104], in some cases even hundreds of
µs [98, 105, 106]. To achieve longest coherence times, optical excitations can be converted into spin waves
whose dephasing can then be suppressed by using dynamical decoupling techniques [107]. Systems based on
europium (151Eu) donors furthermore enable operation at a magnetically insensitive transition around 1T,
achieving spin coherence times ranging up to 6 h [38] and optical storage up to 1 h [39]. Single-photon
operation has been achieved with photon noise levels of µ1 = 0.069(2) [108] and µ1 = 0.10(2) [37] for
comparable storage times around 12µs.

Most REIDs are operated as hybrid-AFC memories to store a frequency comb in a spin-wave for
on-demand retrieval, although EIT memories exist as well [109, 110]. Down-conversion to match telecom
wavelength is possible [57, 111] which was recently used for multimode operation between two REID
memories [112] or to interface with cold atomic gases [113].

When considering system miniaturization for space flight, the requirement of bulky magnets can be
circumvented by operating at smaller but sufficient bias fields [107, 114]. Crystals can also be integrated
using optical waveguides [115]. Recent developments in compact cryocoolers for single photon detectors
benefit cooling requirements of solid-state based systems as well [116].

3.4. Color centers in diamond
Other contenders for a solid-state quantum memory are the various color centers in diamond or silicon
carbide [117]. Well studied is the NV center in diamond, where a substitutional nitrogen atom next to a

8



Quantum Sci. Technol. 8 (2023) 024006 J-M Mol et al

vacancy inside the carbon lattice of bulk diamond leads to magnetically tunable fluorescence. In addition to
its use as a sensitive magnetometer, the color center has general access to the quantum properties of the
associated free electron spin as well as the nitrogen atom and any proximal 13C nuclei. These nuclei have
recently been utilized to form a ten-qubit memory register with coherence times of 75 s for arbitrary
single-qubit states and more than 10 s for two-qubit entanglement [118]. Techniques to improve storage
times include entanglement distillation via 13C nuclei [119], isotopic purification of diamond to minimize
inhomogeneous broadening [120], and strain engineering [121].

Although NVs are currently the most mature system, which have recently been complemented by
tin-vacancy (SnV) [122] or silicon-vacancy (SiV) [123] centers, which offer better compatibility in photonic
nanostructures due to their inversion symmetry, yielding high collection efficiencies [124]. In comparison to
the low temperatures needed for longer coherence in SiV, similar or better coherence at temperatures above
1K might be offered by SnV.

Color centers are mostly read out using confocal microscopes which impact system size considerably.
Optical cavities [124], photonic chips [125–127] or photoelectric readout [128] are therefore helpful
developments to shrink system sizes. Additionally, since color centers also serve as excellent single-photon
emitters [129], they are able to provide native sources in integrated systems.

Low efficiencies in absorptive storage schemes may make vacancy centers more attractive as emissive
quantum memories, which can be of use in Bell tests (section 2.1) or distributed clocks and sensors
(sections 2.4 and 2.5).

3.5. Single atoms and ions
Single atoms and ions in high finesse cavities were among the first candidates investigated for quantum
memories [3, 130, 131]. They offer excellent coherence properties, combined with efficient optical interfaces.
Tasks like entanglement swapping have been demonstrated [132]. Using high finesse cavities, the optical
interaction can be enhanced by the Purcell effect and even strong coupling to a cavity mode can be
achieved [133–136].

Used as memories, single ions allowed for about 70% efficiency with [137], limited by the ion’s level
structure. Deterministic entanglement at a fidelity of 90.1(17)% between a trapped Yb ion and a photon
emitted into the resonator mode was achieved [138]. A memory based on a single atom reached 22%
efficiency and a storage time of 100ms [139]. Moreover, single atoms allow for heralded storage [140] and
when coupling to nearby particles [141, 142] basic quantum information processing can be realized, which is
useful for quantum error correction.

However, the experimental complexity is high and with the limited multimode capacity imposes a hard
limit to applications that require multimode memories, e.g. for entanglement distribution.

3.6. Engineering challenges for quantummemories in space
Our discussion highlights the special interest to mount quantum memories to space borne platforms. As
space-based research and technology development always underlies restrictions with respect to size, mass,
and power, investigations to integrate quantum technologies into CubeSats [31, 143] or satellites are a
natural development [144]. This goes alongside hardening against harsh environmental requirements, as
required for a lunar mission or beyond [8, 145].

With long distances being a major concern in transferring single photons to execute quantum
measurements, the feasibility demonstration of quantum-limited signal propagation from geostationary
Earth orbit to ground by Alphasat I-XL [146] is a major milestone. This underlines that memories in
geostationary orbits or as relay stations are a viable and necessary option to bridge long distances. Successful
feasibility studies of Bell-tests over high-loss channels also paint a positive picture for space-based
fundamental science [16].

Deploying optical hardware in space will inevitably have to take into account the challenges of alignment
and robustness of components, such as high numeric aperture lenses and others. Solutions can be found in
already existing technology such as laser communication terminals [146–148] and optical clocks [149, 150].

When it comes to the preferential choice of quantum memory platform for space missions, multiple
factors have to be considered: in the intermediate run, warm vapor cells and cold atomic gases provide the
most advanced capabilities for miniaturization due to already existing flight heritage and relatively
low-complexity peripherals. Their high optical efficiencies and bandwidth currently put them ahead as well,
but longer storage times may ultimately be provided by REIDs and color centers. Relatively compact
cryocoolers for satellites are readily available and can offer cooling powers in excess of 100mW at 35K. For
typical temperature requirements of solid-state quantum memories of 6 K and below, cooling power and
associated size, weight and power budget require more engineering effort. Also, vibrational influence on
optical assemblies is a major concern, especially in smaller footprint satellites where compressors cannot
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Table 1. Exemplary quantummemories and their key performance indices. Efficiencies are typically memory intrinsic. ‘Store & Retrieve’
indicates whether photon storage and/or retrieval are possible.

Platform Mechanism
(S)tore &
(R)etrieve Bandwidth Efficiency

Storage
time

Warm vapor cells
87Rb [81] Raman S & R 77MHz 82.0% 170 ns
87Rb [82] EIT S & R 660MHz 17% 50 ns

Cold atomic gases
87Rb [36] EIT R — 73% 3.2ms
87Rb [91] EIT R — 76% 220ms

Rare-earth-ion-doped crystals
151Eu3+ : Y2SiO5 [114] Hybrid-AFC S & R 1.5MHz 7.4% 20ms
141Pr3+ : Y2SiO5 [151] Hybrid-AFC S & R <2MHz 5% 13µs

Color centers in diamond
NV [152] Absorption S 12MHz 1% >10 s
SiV [124] Dispersive S ≈50MHz — 0.2ms

Single atoms and ions
87Rb [139] Raman R — 22% 100ms
171Yb+ [138] Raman R 19.4MHz 10.1% 1.022ms

easily be spatially separated from cold-stages. Nevertheless, solid-state-based systems are rapidly progressing
and will likely find applications on-ground in the intermediate run, before more compact cryogenics or
higher temperature operation will make them more suitable for space missions in the long-term.
Additionally, possible photonic integration promotes them as excellent candidates in the long run, both in
system size and memory efficiency.

In the end, key performance factors which are exemplified in table 1 have to be addressed with respect to
respective experiments to be executed. The list of entries is by no means exhaustive, but should give a
representative overview for applications discussed in this paper. It highlights the various trade-offs to be
considered when optimizing for explicit application requirements.

4. Conclusion

Space-borne quantum memories have a huge potential in boosting fundamental physics experiments [7, 8,
19, 30, 31]. Once the ability to perform long-distance Bell tests has been established, memory-assisted
experiments will serve as an excellent platform for more complex measurements of relativistic effects on
localized quantum systems that share entanglement between moving observers [17], as well as experiments
located within regions of spacetime with dynamical gravitational fields [40]. Not only will quantum
memories allow for tests of predictions of science at the overlap of relativity and quantum mechanics, but
these investigations will also support future technological developments for deep-space quantum
communications [8, 145].

We have discussed ideas that lie behind recent predictions of the effects of motion and dynamical
gravitational fields on the quantum state of a localized system, and how testing such predictions requires
storage of quantum states for a long time. Storage times and efficiencies in quantum memories are
approaching a useful regime for space applications, and multimode capabilities are currently heavily
investigated. Additionally, the many activities which are ongoing in the quantum technology and quantum
memory communities provide an optimistic outlook for improvements in the next few years.
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[59] Lipka M, Mazelanik M, Leszczyński A, Wasilewski W and Parniak M 2021 Massively-multiplexed generation of Bell-type

entanglement using a quantum memory Commun. Phys. 4 46
[60] Zhang Z and Zhuang Q 2021 Distributed quantum sensing Quantum. Sci. Technol. 6 043001
[61] Zhuang Q, Zhang Z and Shapiro J H 2018 Distributed quantum sensing using continuous-variable multipartite entanglement

Phys. Rev. A 97 032329
[62] Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S and Andersen U L 2020

Distributed quantum sensing in a continuous-variable entangled network Nat. Phys. 16 281
[63] Gottesman D, Jennewein T and Croke S 2012 Longer-baseline telescopes using quantum repeaters Phys. Rev. Lett. 109 070503
[64] Khabiboulline E, Borregaard J, Greve K D and Lukin M 2019 Optical interferometry with quantum networks Phys. Rev. Lett.

123 070504
[65] Khabiboulline E T, Borregaard J, Greve K D and Lukin M D 2019 Quantum-assisted telescope arrays Phys. Rev. A 100 022316
[66] Chen J-P et al 2022 Quantum key distribution over 658 km fiber with distributed vibration sensing Phys. Rev. Lett. 128 180502
[67] Steger M, Saeedi K, Thewalt M L W, Morton J J L, Riemann H, Abrosimov N V, Becker P and Pohl H-J 2012 Quantum

information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum” Science 336 1280
[68] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Storage of light in atomic vapor Phys. Rev. Lett. 86 783
[69] Reim K, Nunn J, Lorenz V, Sussman B, Lee K, Langford N, Jaksch D and Walmsley I 2010 Towards high-speed optical quantum

memories Nat. Photon. 4 218
[70] Finkelstein R, Poem E, Michel O, Lahad O and Firstenberg O 2018 Fast, noise-free memory for photon synchronization at room

temperature Sci. Adv. 4 eaa8598
[71] Kaczmarek K T et al 2018 High-speed noise-free optical quantum memory Phys. Rev. A 97 042316
[72] Hosseini M, Sparkes B M, Campbell G, Lam P K and Buchler B C 2011 High efficiency coherent optical memory with warm

rubidium vapour Nat. Commun. 2 174
[73] Kraus B, Tittel W, Gisin N, Nilsson M, Kröll S and Cirac J I 2006 Quantum memory for nonstationary light fields based on

controlled reversible inhomogeneous broadening Phys. Rev. A 73 020302
[74] Afzelius M, Simon C, de Riedmatten H and Gisin N 2009 Multimode quantum memory based on atomic frequency combs Phys.

Rev. A 79 052329
[75] Afzelius M et al 2010 Demonstration of atomic frequency comb memory for light with spin-wave storage Phys. Rev. Lett.

104 040503
[76] Main D, Hird T M, Gao S, Walmsley I A and Ledingham P M 2021 Room temperature atomic frequency comb storage for light

Opt. Lett. 46 2960
[77] Heshami K, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J and Sussman B J 2016 Quantum memories:

emerging applications and recent advances J. Mod. Opt. 63 2005
[78] Mottola R, Buser G, Müller C, Kroh T, Ahlrichs A, Ramelow S, Benson O, Treutlein P and Wolters J 2020 An efficient, tunable and

robust source of narrow-band photon pairs at the 87Rb D1 line Opt. Express 28 3159
[79] Michelberger P S et al 2015 Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory New J.

Phys. 17 043006
[80] Katz O and Firstenberg O 2018 Light storage for one second in room-temperature alkali vapor Nat. Commun. 9 2074
[81] Guo J, Feng X, Yang P, Yu Z, Chen L, Yuan C-H and Zhang W 2019 High-performance Raman quantum memory with optimal

control in room temperature atoms Nat. Commun. 10 1
[82] Wolters J, Buser G, Horsley A, Béguin L, Jöckel A, Jahn J-P, Warburton R J and Treutlein P 2017 Simple atomic quantum memory

suitable for semiconductor quantum dot single photons Phys. Rev. Lett. 119 060502
[83] Thomas S E, Hird T M, Munns J H, Brecht B, Saunders D J, Nunn J, Walmsley I A and Ledingham P M 2019 Raman quantum

memory with built-in suppression of four-wave-mixing noise Phys. Rev. A 100 033801
[84] Saunders D, Munns J, Champion T, Qiu C, Kaczmarek K, Poem E, Ledingham P, Walmsley I and Nunn J 2016 Cavity-enhanced

room-temperature broadband Raman memory Phys. Rev. Lett. 116 090501
[85] Namazi M, Kupchak C, Jordaan B, Shahrokhshahi R and Figueroa E 2017 Ultralow-noise room-temperature quantum memory

for polarization qubits Phys. Rev. Appl. 8 034023
[86] Esguerra L, Meßner L, Robertson E, Ewald N V, Gündoğan M and Wolters J 2022 Optimization and readout-noise analysis of a

hot vapor EIT memory on the Cs D1 line (arXiv:2203.06151)
[87] Buser G, Mottola R, Cotting B, Wolters J and Treutlein P 2022 Single-photon storage in a ground-state vapor cell quantum

memory (arXiv:2204.12389)

12

https://doi.org/10.1103/PhysRevD.85.025012
https://doi.org/10.1103/PhysRevD.85.025012
https://doi.org/10.1103/PhysRevD.85.081701
https://doi.org/10.1103/PhysRevD.85.081701
https://doi.org/10.1103/PhysRevLett.111.090504
https://doi.org/10.1103/PhysRevLett.111.090504
https://doi.org/10.1103/PhysRevD.86.105003
https://doi.org/10.1103/PhysRevD.86.105003
https://doi.org/10.1088/1367-2630/15/7/073052
https://doi.org/10.1088/1367-2630/15/7/073052
https://doi.org/10.1088/1367-2630/aac0ac
https://doi.org/10.1088/1367-2630/aac0ac
https://arxiv.org/abs/2204.07869
https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1088/0026-1394/42/3/S04
https://doi.org/10.1088/0026-1394/42/3/S04
https://doi.org/10.1126/science.1192720
https://doi.org/10.1126/science.1192720
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
https://doi.org/10.1103/PhysRevLett.123.080502
https://doi.org/10.1103/PhysRevLett.123.080502
https://doi.org/10.1038/ncomms15359
https://doi.org/10.1038/ncomms15359
https://doi.org/10.1038/s42005-021-00551-1
https://doi.org/10.1038/s42005-021-00551-1
https://doi.org/10.1088/2058-9565/abd4c3
https://doi.org/10.1088/2058-9565/abd4c3
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1038/s41567-019-0743-x
https://doi.org/10.1038/s41567-019-0743-x
https://doi.org/10.1103/PhysRevLett.109.070503
https://doi.org/10.1103/PhysRevLett.109.070503
https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevA.100.022316
https://doi.org/10.1103/PhysRevA.100.022316
https://doi.org/10.1103/PhysRevLett.128.180502
https://doi.org/10.1103/PhysRevLett.128.180502
https://doi.org/10.1126/science.1217635
https://doi.org/10.1126/science.1217635
https://doi.org/10.1103/PhysRevLett.86.783
https://doi.org/10.1103/PhysRevLett.86.783
https://doi.org/10.1038/nphoton.2010.30
https://doi.org/10.1038/nphoton.2010.30
https://doi.org/10.1126/sciadv.aap8598
https://doi.org/10.1126/sciadv.aap8598
https://doi.org/10.1103/PhysRevA.97.042316
https://doi.org/10.1103/PhysRevA.97.042316
https://doi.org/10.1038/ncomms1175
https://doi.org/10.1038/ncomms1175
https://doi.org/10.1103/PhysRevA.73.020302
https://doi.org/10.1103/PhysRevA.73.020302
https://doi.org/10.1103/PhysRevA.79.052329
https://doi.org/10.1103/PhysRevA.79.052329
https://doi.org/10.1103/PhysRevLett.104.040503
https://doi.org/10.1103/PhysRevLett.104.040503
https://doi.org/10.1364/OL.426753
https://doi.org/10.1364/OL.426753
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1364/OE.384081
https://doi.org/10.1364/OE.384081
https://doi.org/10.1088/1367-2630/17/4/043006
https://doi.org/10.1088/1367-2630/17/4/043006
https://doi.org/10.1038/s41467-018-04458-4
https://doi.org/10.1038/s41467-018-04458-4
https://doi.org/10.1038/s41467-018-08118-5
https://doi.org/10.1038/s41467-018-08118-5
https://doi.org/10.1103/PhysRevLett.119.060502
https://doi.org/10.1103/PhysRevLett.119.060502
https://doi.org/10.1103/PhysRevA.100.033801
https://doi.org/10.1103/PhysRevA.100.033801
https://doi.org/10.1103/PhysRevLett.116.090501
https://doi.org/10.1103/PhysRevLett.116.090501
https://doi.org/10.1103/PhysRevApplied.8.034023
https://doi.org/10.1103/PhysRevApplied.8.034023
https://arxiv.org/abs/2203.06151
https://arxiv.org/abs/2204.12389


Quantum Sci. Technol. 8 (2023) 024006 J-M Mol et al
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