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In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad move.
There is a theory which states that if ever anyone discovers exactly what the Universe is
for and why it is here, it will instantly disappear and be replaced by something even
more bizarre and inexplicable.

There is another theory which states that this has already happened.

The Hitchhiker’s Guide to the Galazy
Douglas Adams
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Abstract

The main object of investigation of this thesis was the cosmological and semiclassical realm
of loop quantum gravity, which was addressed from two different directions. On the one
hand, we analysed a cosmological toy model, and on the other hand a new procedure for
conducting the computation of semiclassical expectation values was introduced. With the
help of the latter, we revisited possible singularity avoidance in loop quantum gravity —
which was so far only either analysed in so-called loop quantum cosmology, was limited

to special configurations like cubic graphs, or was only possible by utilising estimations.

The cosmological toy model considered in this thesis, a so-called Gowdy model, features
a T3 symmetry and is of special interest when the cosmological realm of (loop) quantum
gravity shall be investigated as it still, despite its simplifications, yields a field theory after
quantisation. Loop quantisations of such models relying on Dirac quantisation already
exist in the literature. We extend those results by applying a reduced quantisation via
coupling Gaussian dust to gravity as a dynamical reference frame. The quantisation is
performed for two different frameworks: reduced loop quantum gravity and algebraic
quantum gravity, where for both approaches a graph preserving prescription is applied.
Analysing a Schrodinger-like equation and finding special solutions thereof then constitute
first applications of this model. We find zero volume states and states that experience
a vanishing action of the Euclidean part of the physical Hamiltonian. When it comes to
the corresponding Lorentzian part, in turn, we analyse degeneracies caused by its action.
Overall, these are first steps for gaining an overview over the different aspects of the action

of the physical Hamiltonian of such T3 Gowdy models.

Addressing the question of singularity avoidance in full loop quantum gravity, we intro-
duce a technique relying on Kummer’s confluent hypergeometric functions. It turns out
that they feature a lot of very handy properties like an asymptotic expansion for large

arguments that allow for an exact calculation of certain semiclassical expectation values



by means of a power series in the semiclassicality parameter. These are taken of a specific
class of operators that play a pivotal role in the dynamics of the theory and with respect
to complexifier coherent states — the state-of-the-art coherent states used in loop quan-
tum gravity. Seminal results of the literature that addressed singularity avoidance are
generalised and extended with the help of this new method. Specifically, these improve-
ments are that it is not always necessary to use estimates and that it is in fact possible to
also conserve the correct powers of the momentum, e.g. The latter is also exemplified by
applying the new procedure to standard quantum mechanics, where expectation values of
fractional powers of the momentum operator can be computed analytically, resulting in a
power series in h.

On a more fundamental level, we use the Zak transformation to link coherent states on
the circle to those of the harmonic oscillator. This further allows for a more efficient
computation of (the zeroth order of) semiclassical matrix elements as we provide a link
between semiclassical matrix elements in Lo(R) and Ly(S;). What is more, also Kummer’s
confluent hypergeometric functions offer new insight on the fundamental level: As Kum-
mer’s differential equation can be linked to the heat equation, we can associate Kummer’s

confluent hypergeometric functions with solutions to the heat equation.
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Zusammenfassung

Der Titel der Arbeit iibertragt sich ins Deutsche als ,,Die Dynamik der Schleifenquanten-
gravitation im kosmologischen und semiklassischen Sektor aus der Perspektive reduzierter

Quantisierung und erweiterter semiklassischer Techniken®.

Der Fokus dieser Arbeit lag auf dem kosmologischen und semiklassischen Bereich der
Schleifenquantengravitation, welcher von zwei Seiten beleuchtet wurde. Einerseits wurde
ein kosmologisches Spielzeugmodell analysiert und andererseits eine neue Methode zur
Berechnung semiklassischer Erwartungswerte eingefiihrt. Mit Hilfe des Letzteren wurde
eine mogliche Aufhebung von Singularitaten in der Schleifenquantengravitation unter-
sucht, was zuvor stets unter gewissen Einschrankungen geschah: Sei es, indem man sich
im Rahmen der sogenannten Schleifenquantenkosmologie bewegte, indem man sich auf
spezielle Konfigurationen wie kubische Graphen beschréanken musste oder Abschétzungen

verwendet hat.

Das kosmologische Spielzeugmodell, welches wir in dieser Arbeit betrachten — ein soge-
nanntes Gowdy Modell —, weist eine T?-Symmetrie auf und ist von besonderem Interesse,
wenn man den kosmologischen Bereich der (Schleifen-)Quantengravitation untersuchen
mochte. Dies liegt daran, dass es trotz der mit der T3-Symmetrie einhergehenden Verein-
fachungen weiterhin eine Feldtheorie nach der Quantisierung hervorbringt. Schleifenquan-
tisierungen solcher Modelle basierend auf Dirac Quantisierungen existieren bereits in der
Literatur. Wir erweitern diese Resultate, indem wir eine reduzierte Quantisierung anwen-
den, fiir welche wir Gauflschen Staub an die Gravitation koppeln, den wir sodann als dy-
namischen Referenzrahmen verwenden. Diese Quantisierung erfolgte auf zweierlei Art: im
Rahmen der reduzierten Schleifenquantengravitation sowie im Rahmen der algebraischen
Quantengravitation — stets mittels Graph-erhaltender Quantisierungsvorschriften. Die er-
sten Anwendungen dieses Modells bestanden sodann aus der Analyse einer Schrédinger-

ahnlichen Gleichung und der Konstruktion spezieller Losungen hiervon. Insbesondere



fanden wir Zustédnde ohne Volumen, aber auch solche, die eine verschwindende Wirkung
des euklidischen Teils des physikalischen Hamiltonians aufweisen. Beziiglich der Wirkung
des lorentzschen Teils wiederum analysierten wir die auftretente Entartung. All dies sind
erste Schritt, um einen Uberblick iiber verschiedene Aspekte der Wirkung des physikalis-

chen Hamiltonians eines solchen T? Gwody Modells zu gewinnen.

Um die Vermeidung von Singularitdten in der (vollen) Schleifenquantengravitation zu
untersuchen, fithrten wir eine neue Methode ein, die auf Kummers konfluenten hyperge-
ometrischen Funktionen basiert. Diese besitzen einige auflerst praktische Eigenschaften,
wie zum Beispiel ihre asymptotische Entwicklung fiir groe Argumente, dank derer bes-
timmte semiklassische Erwartungswerte exakt als Potenzreihe im semiklassischen Param-
eter berechnet werden konnen. Diese Erwartungswerte wurden beziiglich sogenannter
Komplexifizierer-koharenter Zustande berechnet und von einer speziellen Klasse von Op-
eratoren, welche fiir die Dynamik der Theorie von zentraler Bedeutung sind. Mit Hilfe
dieser neuen Methode konnten wir sodann bereits existierende Ergebnisse erweitern und
generalisieren, sodass wir beispielsweise nicht mehr notwendigerweise auf Abschatzungen
zuriickgreifen mussten und somit prinzipiell auch die anfanglichen Exponenten des Im-
pulses wahrend der Berechnungen beibehalten konnten. Letzteres zeigten wir exemplar-
isch auch am Beispiel der Quantenmechanik, wo wir Erwartungswerte von gebrochenen
Potenzen des Impulsoperators berechneten und als Ergebnis eine Potenzreihe in A erhiel-
ten.

Auf fundamentalerer Ebene benutzten wir die Zak Transformation, um eine Beziehung
zwischen koharenten Zustanden auf dem Kreis und solchen des harmonischen Oszillators
aufzuzeigen. Eine Verbindung zwischen semiklassischen Matrixlementen in Ly(R) und
Ly(S1) ermoglicht es insbesondere, semklassische Matrixelemente effizienter berechnen
zu konnen. Dariiber hinaus ermdglichen auch Kummers konfluente hypergeometrische
Funktionen neue Einblicke auf fundamentaler Ebene: Wir zeigten einen Zusammenhang
zwischen Kummers Differentialgleichung und der Warmeleitungsgleichung, woduch Kum-
mers konfluente hypergeometrische Funktionen als Losungen der Warmeleitungsgleichung

verstanden werden konnen.
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Introduction

Modern physics foots with the realms of quantum theory and general relativity on two
columns that are for themselves very profound, but it is still not clear on which common
theoretical foundation they stand. Their mathematical backgrounds are very different
indeed, and yet we know they must — ultimately — be thought together, do we not
only since the spectacular observations of the Event Horizon Telescope [5-10] know that
objects exist that we assume to be situated in the realms of both these two branches.
Finding a theory of quantum gravity is therefore unsurprisingly one of the main concerns
of modern theoretical physics. Over the last decades, some ansétze arose, of which string

! The framework this thesis relies on, in

theory certainly got the most attention so far.
turn, is called loop quantum gravity and follows a very different route. With string theory
having its roots in particle physics, it replaces the point-like particles of the standard
model with one-dimensional strings that — depending on the excitation of the string,
much like a vibrating guitar string — carry the physical properties of one or the other
elementary particle. For what is more, “supersymmetric” partners of the already known
particles arise from the theory, where each bosonic elementary particle has a fermionic
“superpartner” — and vice versa —, as well as a “graviton” that carries the gravitational
force and thereby provides the link to gravity. In contrast, loop quantum gravity aims at
directly quantising general relativity as is. While the details are outlined in Part I, we may
give here a brief historical overview of how the field emerged, restricted to those findings
that are most relevant for the work at hand.? The formulation of general relativity that
constitutes the starting point of quantisation endeavours of gravity was first published in
1959 by Richard Arnowitt, Stanley Deser & Charles W. Misner [15], now known as the so-

called “ADM formalism” after their initials. It offers a Hamiltonian description of gravity

'Please refer to [11, Introduction and Sec. 4.1 & 5.1 ] or [12, App. B] for a broader overview.

2There are of course many more publications and people that were important for the development of
the field. For more comprehensive overviews, see references of ' as well as [13], with its chapter on the
history of loop quantum gravity being available online, too [14].
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CHAPTER 0. INTRODUCTION

by introducing a 3-1 split of spacetime into three spatial and one temporal dimension.
While this split is essential for a quantum theory relying on canonical quantisation, it
also respects the fundamental principles of general relativity by keeping the split arbitrary
without preferring the one or the other frame of reference. In contrast, the covariant
description of loop quantum gravity, so-called spin foam models, does not need such a
split [16-18].

Based on work from the early 1980s by Amitabha Sen [19, 20|, who introduced using
connections as field variables, Abhay Ashtekar [21, 22] in the mid- to late 1980s realised
that this allows to describe general relativity by means of a new set of canonical variables
in Yang—Mills style, which also casts the Hamiltonian constraint — one of the fundamen-
tal quantities — into polynomial form. These new variables are now referred to as the
Ashtekar—Barbero variables, honouring also the work of Fernando Barbero who proceeded
the formalism towards real-valued connections [23, 24]. It was then Ted Jacobson, Carlo
Rovelli and Lee Smolin [25, 26] who realised that these new variables can be used to apply
a canonical quantisation prescription relying on Wilson loops to quantum gravity, which
was introduced already in 1980 for Yang—Mills theories by Rodolfo Gambini & Antoni
Trias [27]. It then followed a fruitful phase of many important works on this loop repre-
sentation and we suggest the interested read to consult the book of Rodolfo Gambini &
Jorge Pullin [28] for a broad overview. From this point on — having a well understood
loop representation for quantum gravity at hand —, many progress was possible, culmi-
nating i.a. in the construction of the kinematical Hilbert space and essential proofs of its
properties by Abhay Ashtekar, Christopher Isham, Jerzy Lewandowski, Donald Marolf,
José Mourao and Thomas Thiemann in [29-34] as well as a well-defined Hamiltonian

constraint operator constructed by Thomas Thiemann in 1996 [35].

A theory of quantum gravity, as mentioned above, is expected to shed a new light on
extreme objects like black holes, but new insights are also expected concerning the Big
Bang. To proceed into this direction, Martin Bojowald and Hans Kastrup introduced
loop quantum cosmology in 1999 / 2000 [36-40]. Within this framework, it was possible
to indeed resolve the Big Bang singularity [41-45]. However, this result should only be
regarded as a first step towards singularity avoidance in full (loop) quantum gravity. Loop
quantum cosmology is based on a quantisation of symmetry reduced general relativity
with finitely many degrees of freedom, so it is not a priori clear whether its results also
transfer to the whole theory. Work by i.a. Norbert Bodendorfer, Johannes Brunnemann,

Jonathan Engle, Christian Fleischhack, Maximilian Hanusch, Tim Koslowski and Thomas

xxil



Thiemann discuss how loop quantum cosmology may be embedded into loop quantum
gravity [46-52].

Such a resolution of the Big Bang singularity was also observed by Daniele Oriti, Lorenzo
Sindoni & Edward Wilson-Ewing [53] in a framework called group field theory — to learn
more about it, we refer to beautiful publications by Laurent Freidel [54] and Daniele
Oriti [55]. Concerning the singularity resolution in group field theory, [56, Footnote
14 & context] notes that it is wholly different to that within loop quantum cosmology:
In group field theory, the continuous shrinking is prohibited by a “sort of ‘quantum
pressure’”, which “can be traced back to a never-vanishing number density [...], rather
than to the discreteness of volume spectrum or absence of zero eigenvalues from it” [56]
as it is the case in loop quantum cosmology. Very much contrary to loop quantum
cosmology, the singularity resolution also exists in group field theories with continuous
volume spectrum [57].

In (full) loop quantum gravity, in turn, addressing these questions is a lot harder. It
is this tension between working in the full theory — where calculations quickly become
very involved — and working in a toy model — where one may have chosen too drastic
simplifications — where the work of the thesis at hand aims to take a grip and offer new

insights as well as new techniques for how to tackle some of the obstacles that come up.

Goal of the thesis

The goal of the thesis at hand is twofold. On the one hand, Part II covers so-called Gowdy
models. These are cosmological models, but their properties are not linked to those of
the observable universe. They are instead of interest as they still yield a field theory
upon quantisation while also allowing for conducting computations too complex in the
full theory. This makes them a good toy model or playground for new methods to develop
or test. One such framework that we will apply to Gowdy models is so-called algebraic
quantum gravity, published by Kristina Giesel and Thomas Thiemann in 2006 [58-61].
Within this framework, we then aim at implementing first applications like finding zero

volume states or solutions to a Schrédinger-like equation.

Part III, on the other hand, then focuses on addressing singularity avoidance via the

semiclassical sector. This approach is based on a class of coherent states introduced
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CHAPTER 0. INTRODUCTION

in loop quantum gravity by Thomas Thiemann in 2002% [62]. Together with Hanno
Sahlmann [63, 64], first results on calculating specific semiclassical expectation values that
play a pivotal role in the quantum dynamics were published. Johannes Brunnemann and
Thomas Thiemann [65, 66], in turn, analysed singularity avoidance using these coherent
states and utilising chains of estimates in order to be able to solve these computations
at the analytical level. We want to look at these seminal works from a different angle
by applying a new semiclassical technique relying on Kummer’s confluent hypergeometric

functions.

This thesis therefore aims at adding new insights to both these branches: assessing
singularity avoidance via semiclassical computations as well as further developing the
treatment of Gowdy models within loop quantum gravity in order to be able to construct
and better understand novel (cosmological or semiclassical) techniques. All the afore-
mentioned steps, frameworks and techniques will be introduced in more detail within the

respective parts and chapters.

Results

When it comes to the treatment of Gowdy models in loop quantum gravity, the existing
literature mainly consists of hybrid quantisation techniques — a mixture of a quantisa-
tion a la loop quantum gravity for the homogeneous modes and a Fock quantisation for
the inhomogeneous ones. The latter part makes it then hard to compare these models
to ones that do not use a Fock quantisation. The literature also offers a few non-hybrid
quantisation anséatze for Gowdy models, using a Dirac quantisation instead. However, the
resulting quantum dynamics obtained via Dirac quantisation is so complex that the respec-
tive physical Hilbert space has not yet been constructed for these models. In contrast,
the reduced quantisation performed in this thesis offers a direct access to the physical
Hilbert space for such Gowdy models. The regularisation within the quantisation proce-
dure introduced in the work presented here also allows for a graph-preserving action in
both the loop quantum gravity as well as the algebraic quantum gravity framework. The
dynamics can then be implemented via a Schrodinger-like equation within the algebraic
quantum gravity approach. Due to the graph-preserving quantisation, the construction

of solutions of the dynamics is technically simpler than in a model with graph-modifying

3The publication year of the online preprint https://arxiv.org/abs/gr-qc/0206037
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operators. As a first step, we construct very specific solutions of the Schrodering-like
equation. Their purpose is mainly to show how one can work with the involved operators,
understand their actions and to outline techniques that help constructing more general

solutions in future work.

The results on semiclassical computations are twofold itself. On the one hand, we en
route extended results from the literature on coherent states on the circle, linking semi-
classical matrix elements of Ly(S7) and Lo(R) via the Zak transformation. This allows for
a more efficient computation of these expressions. The main result especially for the loop
quantum gravity framework, meanwhile, is the introduction of a new semiclassical tech-
nique relying on Kummer’s confluent hypergeometric functions. This procedure allowed
us to calculate semiclassical expectation values with respect to certain coherent states for
an important class of dynamical operators that include fractional powers of momentum-
like operators. While existing approaches into this direction had to rely on estimates or
consider cubic graphs only, the new technique offers more freedom. Limitations enter
when, for example, singularity avoidance should be analysed, enforcing the usage of esti-
mates. However, even then the new approach offers improvements as information on the
fractional power included in these operators is not lost. In standard quantum mechanics,
Kummer’s confluent hypergeometric functions enable the computation of semiclassical
expectation values of fractional powers of the momentum operator in terms of a power

series in A.

Note that there are longer elaborations on the motivation, goals and results of the top-
ics at the beginning and ending of their respective parts. We refer the reader interested
in those summaries to Chapter 3 on page 49 for Gowdy models and Chapter 9 p. 121 for
the semiclassical considerations. The conclusions of the two parts are found in Chap-
ter 8 p. 115 and, respectively, in Chapter 17 p. 231 for the semiclassical part. We also
provide a final conclusion in Chapter 18 p. 239.

Structure of the thesis

The work at hand is divided into three parts. Part I first of all offers an introduction
into loop quantum gravity. It also covers techniques that will be later used in the inves-
tigations of Part II and Part III, like algebraic quantum gravity in Section 2.6 p. 38 and

(complexifier) coherent states in Section 2.7 p. 39.
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As already mentioned, the following two parts on Gowdy models and semiclassical
considerations each include their own introductory chapters on motivation and goals as

well as concluding summaries.

Part II continues with the discussion of T® Gowdy models. After an introductory
chapter on the motivation of the work, Chapter 4 p. 53 introduces the classical setup,
where the symmetry reduction to the T? Gowdy model is outlined in Section 4.2 p. 55.
Chapter 5 p. 59 and Chapter 6 p. 79 are then similar in structure and concept: They
present the quantisation of the T® Gowdy model in the reduced loop quantum gravity
setup and the algebraic quantum gravity framework, respectively. The respective first
sections set the mathematical background, followed by the quantisation of the Euclidean
and Lorentzian parts in the subsections of Section 5.2 p. 6/ and Section 6.2 p. 83, respec-
tively. The first applications performed in the algebraic quantum gravity setting of the
T3 Gowdy model are then presented in Chapter 7 p. 89: A Schrodinger-like equation is
set up in Section 7.1 p. 89, where we first investigate the action of the main components
of the physical Hamiltonian on the basis states in Subsection 7.1.1 p. 92, then introduce
an ansatz for Gowdy states in Subsection 7.1.2 p. 93 and analyse the action of the phys-
ical Hamiltonian thereon in Subsection 7.1.3 p. 97. Afterwards, in Section 7.2 p. 102,
we discuss specific solutions of the Schrodinger-like equation, starting with zero-volume
eigenstates in Subsection 7.2.1 p. 103. We also outline a generalisable procedure for find-
ing specific solutions therein. Continuing, in Subsection 7.2.2 p. 10/, we construct Gowdy
states that experience a vanishing action of the Euclidean part of the Hamiltonian. The
Lorentzian part of the Hamiltonian is then examined in Subsection 7.2.3 p. 110, where we

analyse degeneracies of its action on the Gowdy states.

Part III then covers the semiclassical investigations. The overall setup, the operators of
interest and some special methods like the Poisson resummation formula are introduced in
Chapter 10 p. 129. Chapter 11 p. 135 covers Kummer’s confluent hypergeometric functions
and some of their (for our purpose) most important properties. Using standard quantum
mechanics, we furthermore show in Section 11.3 p. 139 how these functions can be used to
calculate semiclassical expectation values of fractional powers of the momentum operator,
but also of more complex operators that mimic the one later used in the loop quantum
gravity scenario. The chapter concludes in Section 11.4 p. 144 with a comparison of the
new method with one from the literature, introduced in the algebraic quantum gravity
framework. We continue by considering Kummer’s confluent hypergeometric functions

in the context of coherent states on the circle in Chapter 12 p. 147. These allow to
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compute semiclassical expectation values, as presented in Subsection 12.2.1 p. 154. Sub-
section 12.2.2 p. 157 then revisits the Zak transformation for linking semiclassical matrix
elements of Ly(S7) and Lo (R). Another aspect where Kummer’s confluent hypergeometric
functions can be used to gain new insights is discussed in this chapter’s last section, Sec-
tion 12.4 p. 165, where we present a connection between Kummer’s differential equation
and the heat equation. Chapter 13 p. 169 then carries over this new procedure to the loop
quantum gravity scenario. We start the new computations within loop quantum gravity
in Chapter 14 p. 173 with focusing on cubic graphs. Therein, Section 14.2 p. 175 presents
the analytical computation of the basic building block of the expectation values of inter-
est and Section 14.3 p. 184 offers a first remark on (cosmological) singularity avoidance.
In the last section of this chapter, Section 14.4 p. 186, we show that Kummer’s confluent
hypergeometric functions allow for retrieving the correct semiclassical continuum limit for
cubic graphs. Graphs with higher valent vertices are then covered in Chapter 15 p. 189
and Chapter 16 p. 203. First, Chapter 15 p. 189 generalises an analytic procedure from
the literature, which was introduced for cubic graphs, and compares it to the technique
using Kummer’s confluent hypergeometric functions. Then, Chapter 16 p. 203 addresses
more general configurations of the operators within the semiclassical expectation values,
making it necessary to introduce estimates. Accordingly, we first of all recap estimative
procedures from the literature in Section 16.1 p. 204 and adapt them to the approach via
Kummer’s confluent hypergeometric functions. Finally, in Section 16.2 p. 213, we elabo-
rate on finding new estimates that potentially refine the previously obtained results and
which conditions they have to fulfil — guided by new insights gained from the procedure

via Kummer’s confluent hypergeometric functions.
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Part 1

Loop Quantum Gravity






Chapter 1
Introductory remarks

This first part shall provide an introduction into loop quantum gravity — the basis of
all the considerations of this thesis. Loop quantum gravity aims at providing a quantum
theory of gravity. It does so by quantising general relativity without adding any further
structure and without understanding quantum gravity as a perturbative phenomenon.
Loop quantum gravity is therefore a background-independent theory. While it is not
necessary to introduce new structure to the theory, describing loop quantum gravity in
higher dimensions and with supersymmetry in order to find a connection to string theory
was indeed approached in a series of papers by Norbert Bodendorfer, Thomas Thiemann
& Andreas Thurn [67-75]. This indicates that loop quantum gravity can be extended to

loop quantum supergravity.

What will be introduced in the following chapter is the canonical framework of loop
quantum gravity. There also exists the covariant framework — a treatment of loop quan-
tum gravity motivated by the Feynman path integral formalism — whose main subject
are so-called spin foams. However, as the considerations of this thesis will not touch this
area and an additional introduction into this approach would nevertheless need much
space, we refrain from doing so and refer the interested reader to a review by Alejandro
Perez and introductions by John Baez [16-18]. For literature also covering the further
development of this theory, please consider the books by Carlo Rovelli and Carlo Rovelli
& Francesca Vidotto [12, 76] or the recent review by Sebastian Steinhaus [77].
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Chapter 2

Framework

2.1 Hamiltonian general relativity and the ADM for-

malism

The ADM formalism — named after Richard Arnowitt, Stanley Deser & Charles W.
Misner [15] — is the natural starting point of this thesis as it is the underlying Hamilto-
nian description of general relativity (GR) behind all subsequent considerations and for
building a quantum theory of GR in particular. Its quintessence is a 3+1 split of the
four-dimensional spacetime in order to be able to obtain a Hamiltonian formalism — that
at the very heart of it needs an entity, regarded as “time”, along which the system will
evolve. Note that this naming is only due to the fact that this variable is used to describe
the evolution of the system, while all further physical interpretations one associates with
“time” are not necessarily satisfied as well. While [15] initially considered gy, == gap as
the spatial metric,! it has become standard [11] to choose the more general induced metric
Jab ON a three-dimensional space-like submanifold >: We understand the four-dimensional
spacetime manifold M as a direct product M = R x X that is globally hyperbolic. The
latter is important as it ensures a unique solution for the initial value problem. Using X*

as coordinates on M and x® on X, we can define this embedding via

VtGR,Xt X—-M Xt(f) = X(f,t), (2].)

I'Note that we use Greek indices y, v, ... = 0,1, 2, 3 for the whole spacetime and Latin indices a, b, ... =
1,2, 3 for spatial coordinates. The (3) denotes a quantity defined on a 3-dimensional manifold.
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where the X* are collected in X and the x® in Z. This leads to a foliation of spacetime

into spatial slices ¥; := X;(3) of constant time, see Figure 2.1.

D

< B
< B
\

Figure 2.1: Foliation of M into space-like slices ¥;

Note that changing from one foliation to another can be achieved by applying a diffeo-
morphism — just concatenate the new foliation with the current one’s inverse, which is
a diffeomorphism. Accordingly, acting with a diffeomorphism can also be understood as

just changing the foliation.

On these hypersurfaces >;, we can define the precursors of the desired spatial metric

gap and the extrinsic curvature K, of X: the first and the second fundamental form

Qv = Guv +Npny and (22)
K = qhq)V oo (2.3)

respectively, where we used the standard covariant derivative of g,,,, V,,, and g, = g,,4%,
i.e. raising and lowering of indices is still performed via g,, — except for solely spatial
objects, where we can of course also use g,,. n* is a normalised vector perpendicular to

Y, arising via the definition of the deformation vector field

OXH(it)

TH(X) : pr

= N(X)n"(X) + N*(X). (2.4)
N* then is tangential to >; and we have a decomposition of T" into a part normal to
> and one tangential to it. To word these quantities meaningfully, N is called the lapse
function and N* the shift vector field.
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We can now already start to calculate all the important geometrical quantities in their
spatial projection. For example, the GauB—Codazzi equation applied to this scenario tells

us the Riemann curvature on 3, as described via the four-dimensional one of M:

(3)RWPU = ng,éqzqg(@Raﬁvé = 2K K)o (2.5)

This yields directly
GCR = qupqw(?’)}gwpa = C_IWQWM)RWW —K?4 K, K" (2.6)

for the spatial Ricci scalar ®R, where K = ¢"K w- With this, we see that we can almost

describe the classical Einstein—Hilbert action

1
Sgn = E/ d*X+/|det g| YR (2.7)

M

in terms of the 3+1 decomposition, i.e. separate spacetime and formulate YR in terms
of 3+1 quantities only. In the equation above, we defined x = 161G with Newton’s
constant G. What is now left is to replace the spacetime Riemann curvature tensor by

the corresponding spacetime Ricci scalar by means of
R = g"”g”"(‘l)Rng — qupqv0(4)RWpU —mY [VW v, |n*, (2.8)

via the split according to (2.2), and finally pull everything back to 3. Yet again, we first
of all perform further modifications before treating the pullback and replace the last term,

via expanding the commutator, by
20" [V, Vo nt = —2K,, K" + 2K* + 2V ,,(n"V,n* — n*V,n"). (2.9)

Plugging (2.9) into (2.8) and the result into (2.6), we obtain this scenario’s version of the

Codazzi relation:
@R = OR — K? + K, K" — 2V ,(n"V,n* — n*V,n"). (2.10)

If we now think about inserting this into the Einstein—Hilbert action, we recognise the
last term to be a boundary term that we can neglect from now on (for a more detailed

elaboration on this, see Subsection 1.5.1 in [11] and the bountiful references therein). We
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then proceed with the last step: As we ultimately want to have a description on R x X
at hand, i.e. in coordinates (¥, t), we can now define the already mentioned spatial metric
qap together with the pulled back extrinsic curvature K,,. They are described by means

of the initial spacetime metric g,, according to

Gab(Z, 1) = (X§'XY ) (X(Z,1)) = (X5 X} 9,0) (X (Z,1)) an (2.11)
Kao(@.1) = (XEXY o) (X(7,1)) = (XEX{ V) (X (3. >> (2.12)

where we defined .
Xi =Xl = a@%’ (2.13)

i.e. a set of three tangential vectors that together with n* build a frame.

o O —~

% As a side note: Looking at (2.11), we can now understand the initial usage of
®gap = gap in [15]: If we want g = ®gap = gap, we need Xt = 0*. We get this by
simply taking over the orientation of the spatial part of the spacetime basis for
the new spatial hypersurfaces, see Figure 2.2.2 Generally, one obtains an angle
between associated pairs of axes, depicted by the grey areas. However, one can

make them overlap via rotations to get the intrinsic convention of the original

ADM work.

it

Figure 2.2: Orientation of the bases of the spatial part of spacetime
(dashed lines) and the spatial hypersurface (solid lines)

— O

2There, only two spatial dimensions are considered. The last and all in all fourth dimension is left to
the advanced reader’s imagination.
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Let’s go back to describing the necessary quantities pulled back to . For the lapse

function N and the shift vector N , we have

N(#,t) = N(X(Z,t)) and (2.14)
NO(E, 1) 1= (7, 0)(Xogpu N7) (X (Z,1), (215)

respectively, and for the contracted extrinsic curvature and the spatial Ricci scalar

K(&,t) = (¢"Ku)(Z,t) and (2.16)
R(Z, t) = BR(z,1)
= q"(Z, )¢ (%, 1) (XU XY XEXTOR 00 ) (X (T, 1)). (2.17)

Note that we may now raise and lower these purely spatial indices via the spatial q.

Combining all the previous results, we may now rewrite the Einstein—Hilbert action in
3+1 form, called the ADM action:

SEH = /d4X\/ ]detg 4)R (218)
1
= ;/ dt/ d*z+/|det ¢| |N| (R 4+ KupK* — K?) = Sapw. (2.19)
R %

The consequent next step is to proceed with the Hamiltonian description of GR in terms
of the just introduced ADM formalism. In order to perform the initial Legendre transfor-

mation, we make use of
1
o (s — (L)) (2:20)

linking K, with both the temporal and the Lie derivative Ly of ¢, what allows us to

Kab

determine the set

5 N
P(Zt) = SADM (Z,t) = |—|\/|det gl (K — ¢™K) (2.21)
OGab Nk&
5
T(#, 1) = i‘?\].;M(:E‘,t):O (2.22)
- SSADM —
I, (%, t) = —(2,t) =0 2.23
(@,1) = (%) (2.23)

of canonically conjugate momenta of the variables q,,, N and N®. The last two equations
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tell us that we face a constrained Hamiltonian system with the primary constraints

C(#,t) =1II(7,t) = 0 and (2.24)
Co(Z,t) =T1,(Z,t) = 0. (2.25)

With these primary constraints entering our setup, we are forced to proceed via Dirac’s
algorithm for constrained systems [78], telling us to include these constraints with asso-
ciated Lagrange multipliers A\(Z,¢) and A\*(Z,t) in the primary Hamiltonian density. This

leads us to
S = / dt / d3x<qabP“b + NI 4 N°M, — A\C — \°C — NH — N“Da), (2.26)
R %

along finding the so-called Hamiltonian constraint H and the spatial diffeomorphism con-

straints D,:

1 \/|det
H = L (QaCde - _Qachd) PabPCd - MR and (227)
V/|det g 2 r
D, == —2q,. Dy P™. (2.28)

They arise by enforcing the stability condition on the primary constraints, i.e. that their
temporal derivatives vanish, too. In the above, D, is the covariant derivative metric
compatible with ¢ via

Dy he = 0 (2.29)

and defined by
D, 0" = 9,0° + Iy, (2.30)

where I'°,. are the (spatial) Christoffel symbols.
We can now also state the Hamiltonian of the system,
1
H = —/ P (A\C + \*C, + |N|H + N°D,), (2.31)
K
)

which turns out to be composed of constraints only. This gives rise to the so-called problem

of time, which we will discuss in more detail in Section 2.5.

10
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For now, with this Hamiltonian at hand, the next step of Dirac’s algorithm is to check
the stability of the primary constraints: As we demand them to be fulfilled at any instant
of time, their vanishing alone is not sufficient. We also need their temporal derivative to

vanish, and hence their evolution to be trivial:

C:={C,H}~0and C, = {C,,H} = 0. (2.32)

Before continuing with the stability analysis of the constraints, we may introduce the
notion of first class and second class constraints. First of all, the sign &~ symbolises the
notion of being fulfilled weakly: The corresponding equation holds with an = only on
the constraint hypersurface — the hypersurface on which all constraints are fulfilled. A
first class constraint then is one that has a weakly vanishing Poisson bracket with all
other constraints of the theory, i.e. it is vanishing on the constraint hypersurface. We will
see that all Poisson brackets between constraints are again proportional to constraints:
{H(|N'|),H} =~ 0. Hence, in our case, we have at hand a set of first class constraints. A
second class constraint then is one that has a non-vanishing (not even weakly) Poisson

bracket with at least one of the remaining constraints.

Now, at this point of the stability analysis, one typically goes over to use the so-called

smeared constraints

CIN') = / &a N'(7,1)C(Z. 1) and (2.33)
a(w) = / &a N7 6O, 1) = / & N'(F, 1), 1), (2.34)

which can also be generalised with arbitrary smearing functions f(Z,t) and f*(Z,t) instead
of lapse and shift. Their advantage is that using them avoids singular Poisson brackets

and we get as stability conditions the set

{C(N'), H} = H(IN']) (2.35)

{(7(1\7’),H} — 5(1\7’). (2.36)

11
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Consequently, we understand the Hamiltonian and (spatial) diffeomorphism constraints
as secondary constraints — enforcing the stability of the primary constraints —, hence

demanding
H=~0and D, =0 (2.37)

to ensure the stability of the primary constraints. Yet again, we have to check their
stability by calculating the set [11, (1.2.14)]

{H(N').H} = H(LgIN') = D(3(IN',N],9)) (2:38)
{E(N'),H}: (L |N)) ﬁ( ) (2.39)

where we used the abbreviation M*(|N'|,|N|,q) = ¢®*(|N'|0y|N| — |N|0y|N’|). Noticing
that the right hand sides are composed of constraints only, we do not need to impose

tertiary constraints and their stability is ensured from this point onwards.

— O —~

% As a side note: The above set of Poisson brackets is an immediate consequence
of the more general Dirac algebra [78], also referred to as the hypersurface de-
formation algebra [11].> There, one uses the more general ansatz of smearing
the constraints with arbitrary test functions f and f® instead of lapse and shift.
The three possible combinations of the two smeared constraints put into Poisson

brackets then reveal

[H(f), H(f)} = =D (M(f.1,0)). (2:40)
[B(7).5(7)} = B (£;7) and 2.1)
H(f),ﬁ(f)} - m(cff). (2.42)

— O

These two sets of Poisson brackets show an important aspect, that is the algebras tell

us the constraint hypersurface is invariant under the action of the constraints.

3Note, however, that it is in fact not a genuine Lie algebra as it does not contain structure constants
but structure functions.

12



2.2. ASHTEKAR VARIABLES AND THE BIRTH OF LOOP QUANTUM
GRAVITY

Summarising the procedure so far, we performed a 3+1 split of spacetime into a three-
dimensional manifold > and the one-dimensional R — the first we regard as the spatial
realm and the latter serves as the “time” line. Since we keep this split completely arbi-
trary by not further specifying N or N#, we do not break general covariance. For globally
hyperbolic manifolds, we can always choose a foliation ¥; of the four-dimensional space-
time (cf. fig. 2.1) and changing from one foliation to another is equivalent to applying a
diffeomorphism. The aim was then to rewrite the Einstein—Hilbert action in quantities
that reflect this 3+1 split. We pulled back the relevant geometrical quantities to %, like
the Ricci scalar, and found the ADM action of GR, (2.19). With this formal introduc-
tion of (a notion of) time, we proceeded with performing the Legendre transformation
in order to find the Hamiltonian description. It turned out that GR is in fact a fully
constrained Hamiltonian system and we had to include the primary constraints C' and C|,
in the Hamiltonian (2.31).

2.2 Ashtekar variables and the birth of loop quantum
gravity

In a paper published in 1986, Ashtekar introduced “new variables for classical and quan-
tum gravity” [21]. With their help, he achieved to tackle several issues of the framework
up to this point, but also managed to link GR to Yang-Mills theory. The footing of the
new variables is the so-called tetrad formalism [79]. By choosing four vector fields as
a basis — hence “tetrads” —, one can reformulate g,, and any other tensors in terms
of them. We explain this adopted to the ADM framework. There, we face the three-
dimensional sub-manifold 32, asking for three “triads” e;. We introduce the new notation

via the identities

i b _ b i
e,e; =0, and ege

= 0. (2.43)

J
The indices a and b are the usual spatial indices ranging from 1 to 3. The range of the
indices i and j is also from 1 to 3, but they are abstract SO(3)-indices, referred to as

“internal” ones.* They are called that way as they do not posses any “real” or physical

interpretation in the sense that the other sets of indices (of spacetime M or the spatial

4From now on, Latin characters from i onwards denote internal SU(2)-indices and Latin characters
from the beginning of the alphabet mark spatial indices on X.

13
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sub-manifold ¥) do and are merely relevant for actions within their symmetry group.

Describing the spatial metric in terms of the co-dreibein,’
Qub *— 52-]-62(%, (244)

we can now understand the underlying SU(2)-symmetry. While ¢, is fixed, we have the
freedom of changing/rotating the triads in SU(2)-space. This opposition is resolved by

introducing a new constraint, but we will come to that later.

Due to the introduction of this additional structure, the new configuration space is
obviously larger, which gives rise to the so-called extended phase space. Thereon, the

conjugate variable for the triad is
K! = Keb. (2.45)

Note that the correct index notation would be €%, but since we raise and lower internal
indices via the SU(2) Cartan metric 5;, we might as well use the more pleasing e? and
omit the delta for brevity. We will henceforth ignore stringent positions of internal indices

when necessary regarding this aspect.

In order to obtain simpler expressions in what follows, one proceeds with
Ef = \/detqe (2.46)
as the densitised representative of the triad. We then indeed have

{B2(@), K{()} = 260606(2,y) and

{Bi(2), E}(y)} = 0= {K;(x), K] ()}, (2.47)

with the Hamiltonian and the diffeomorphism constraints reading

_ 1 (7 N P B P ab
H= \/M(KGK,) K!Kp)ESE] —+/detq R and (2.48)
D, =2D,(K.E;) — 2Dy(K.E}), (2.49)

respectively. Note that the covariant derivative above is symbolised by an upright D, in

5“Dreibein” is just another frequently used name for the triads, derived from the German word for
tripod.

14
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GRAVITY

contrast to the italic D of the diffeomorphism constraint. The appearance of a new kind
of indices now asks for a generalised form of this covariant derivative that not only acts
on the spatial but also sees these abstract indices — as in (2.49) above, if D, acts on
the single factors of the two products. We use the same symbol D, and just extend its
method of operation on objects with both kinds of indices:

D, I} = (Do T%), + (Du 1)’ = (0.1 + I*0T), + (0.1 + T T;)" (2.50)
Note that the spatial covariant derivative, i.e. the first term in parentheses, equals (2.30).
In addition to the Christoffel symbol I'®,., there is now a new object I'y;/. We notice it
contains both spatial and internal indices and due to the latter it is called spin connection.

The new adapted “metric” compatibility then reads
Daej =0 (2.51)
and
D, Ef = 0,Ef + €' TV B = 0 (2.52)

for the densitised triad. From (2.51), we can directly derive the elements of the spin

connection via (2.50),
Lol = —(0uel + TPl el, (2.53)

and then use these to introduce
I = € T . (2.54)

In terms of the densitised triad, its components read [11]

o1 . , ) 1, , ,2Ei(det E), — E{(det E)
Lo = e S ENEL, — B, + BB EL,) + 1€ "By ot E

“ . (2.55)

Additional to the two familiar constraints above, there is now a new one — answering
the unphysical degrees of freedom of rotating the triads regarding their internal indices.
We can infer from (2.45) that due to the symmetry of K, there needs to be an equivalent

condition for K! — the rotational constraint
Gij = a[iEJq] = 0. (256)

We will already entitle this constraint as Gauf§ constraint, though the origin of this naming

15
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will become clear only later — where we will also reformulate it in a more appropriate

one-index fashion in (2.71).

All the above results in describing the status quo via the action

- % / dt / & (zEfK; — (NH + N°D, — A@'J’Gij)), (2.57)

where we had to include the new Gaufl constraint with an appropriate antisymmetric

smearing matrix A such that
/ K /
{G(A), G(A)} = 5G(A A]) (2.58)

holds for the smeared GauB constraint G(A) = [, d*2AYG};.

o O —~

% Before we proceed, we would like to check whether we still describe the same
physics. Going back to (2.44), we see that we can express g, in terms of the triad

(and hence the densitised triad) and obtain the conjugate variables

Gap = |det B E'E! and 2.959
a—b
2 .
ab __ a e d b
P = e EEE K.8Y. (2.60)

While the Gaufl constraint commutes with ¢, due to rotational invariance in the
abstract SO(2) indices, its fulfilment (2.56) reduces the second equation above
to (2.21) and we recover the familiar pair of variables from the ADM formalism.

We can then also check their Poisson brackets:

{qan(2), gealy)} = (2.61)
{P(x) d(y)}z %Q“”Cd (2)0(z,y) ~ 0 and (2.62)
{P™(2), 4ea(y) }) = K6{.5p0(x, y). (2.63)

Therein, we collected all appearances of the Gaufl constraint in the function ¢.
Hence, the corresponding Poisson bracket between two P is only weakly vanishing,

i.e. on the constraint hypersurface defined by the Gaufl constraint being fulfilled.
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GRAVITY

This tells us that working with the extended phase space and performing a
symplectic reduction with respect to the Gaufl constraint is equivalent to the

description by means of the ADM variables.

— O

Up to now, we constructed the new canonical conjugate pair (E¢, K'), being subject to

the additional GauBl constraint via their internal indices . With (2.54) and a rescaling a

la
(5BI)K2 — BBIKUi, (2.64)
1
(ﬁBI)Eia — _Eia’ (2.65)
Br1

we arrive at the Ashtekar variables ((PerAl (%e0E?) - with the Sen-Ashtekar-Immirzi-
Barbero connection [20, 21, 80, 81]

(Bogi = i 4 Be0pci, (2.66)

The rescaling coefficient fp; is referred to as the Barbero-Immirzi parameter [24, 80]
and is kept arbitrary; fg; € C\ 0.° With the new connection I\ containing triads and
co-triads to the same degree, it is not affected by the rescaling via fg; and therefore does
not need to carry the preceding superscript (8g). These Ashtekar variables then form a

pair of canonically conjugate variables:

{ B0 (), Pe0A] (y)} = 0 = { 0B (), PUED (1))} (2.67)
{PE; (@), Ay ()} = 5038000 (@ — ). (2.68)

While the previous pair of canonically conjugate variables (K!, E*) obeyed the desired
Poisson bracket relations already (cf. (2.47)) the Hamiltonian and diffeomorphism con-
straints (2.48) & (2.49) take a better accessible form in the new Ashtekar variables: We
formulated general relativity as an SU(2) gauge Yang-Mills theory, as we will discuss
below. The Gaufl constraint, on the other side, can be cast into a form that motivates

that naming. We will now address the formulation of the constraints in the new variables.

In2

SNote that there are preferred choices for the value fBpr takes. [82], e.g., showed that Bpr = 3

reproduces the Bekenstein-Hawking entropy for black holes.
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2.2.1 The constraints

We first turn towards the Gaufl constraint. Its current form (2.56) can be rewritten as
Gij = KB =0 & Gi=¢"KJE;=0. (2.69)
We can then transfer the metric compatibility of (2.52) from E} to ¥»E} and obtain
D, Feps = 9,Fpe 4 ¢ ki Peope — (. (2.70)

Adding this expression to the Gaufl constraint, we notice that the term on the right hand
side of (2.69) together with the second term of (2.70) combine for an expression ~ (#8147

and we can reformulate the Gaufl constraint as
G; = 0,PBUE 1 ¢, (Prral Bepe — (e p  (BeDpe — ), (2.71)

This form now justifies the titling Gauf§ constraint. Proceeding with the remaining Hamil-
tonian and diffeomorphism constraint, we first of all define the curvature, or field strength

tensor of Yang-Mills type, (P8UF?, as follows:
(ﬁBI)F;b — 6a(,3BI)Aé _ ab(ﬁBIMi + Gijk(ﬂBI)Ag (531)14/;' (2‘72)

By means of the curvature, we then find more compact forms of the Hamiltonian and
diffeomorphism constraints [11]:

H = B2, opi, — (B3, + 1) e, Co0gca ok R i 2 (2.73)

_ BI ;_ + 1), P A v m — ) 2.73

D, = VPelpt, Geipt — . (2.74)

Note that, as an intermediate step, one arrives at descriptions of these constraints that also
include terms proportional to the Gaufl constraint. However, with the Gaufl constraint

forming a subalgebra within the constraint algebra, we can drop these contributions [11].

With all the above, we can rewrite the Einstein—Hilbert action a la

s=1 / dt / d*x (2 Benpa Bedi — (NH + N°D, — AiGi)). (2.75)
K
R )
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2.2.2 The holonomy—flux algebra

We notice that the appearance of delta distributions in the Poisson bracket structure
(2.67) & (2.68) of the canonically conjugate pair of variables ((#1)4?, (*s)E) makes them
singular. To avoid this, it is a natural choice to proceed with smeared analogues. As we
want the basic variables to reflect the SU(2) gauge transformations caused by the Gaufl
constraint, their algebra to close and additionally do not want them to rely on the metric
as a background field — what, in turn, is often used for other Yang—Mills theories but
is clearly inapplicable when the metric is one of the central dynamical quantities as it is
for a theory of quantum gravity —, it turns out that the only solution are holonomies or
so-called Wilson loops [11].

With the notation becoming more and more evolved, we may from now on omit the
superscripts (#B0) of (B4 and (PeUE.

Having a curve c: [0, 1] — X lying in the spatial part ¥ of the manifold M, a holonomy

he(A) of a connection A along that curve reads

he(A) = Pexp(/CA) = lsu() +§;/I dtl/l dty ... /1 dt, Ale(ty)) - - - Ale(ty))

(2.76)
and is uniquely defined by the differential equation
d i Ti .q
~he, (A) = he, (A) Ay (c(n)) 5 ¢ (n) (2.77)
dn 2
with the initial condition
heo(A) = 1sy(e).- (2.78)
Therein, we used 7; = —io; as a basis of su(2) with the well-known Pauli matrices o;.

With ¢, (t) = c(nt), for n € [0, 1], it follows h., (A) =: h.(A). The conjugate variable then
is the flux

E,(9) = /nieabcEf dab A daz©, (2.79)
S

where we integrate over an oriented two-dimensional surface S € M and n is a (Lie

algebra valued) smearing field.
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The Poisson bracket of the two variables

{E.(S),he(A)} = %niTihc(A) (2.80)
then is indeed not singular anymore and closes. Note that the above only holds if the
normal of S shows in the same direction as the tangent of ¢ does, whereas we get an
additional minus sign if they show in opposite directions. If ¢ does not intersect S at all,

the Poisson bracket vanishes.

To complete the algebra of the constraints, which we already touched on for the Hamil-
ton and diffeomorphism constraints (the hypersurface deformation algebra), i.e. to include

the Gauf} constraint as well, we first define the smeared constraints:

H(N) = /H(m)N(m) d*z, (2.81)
D<J\7> = /Da(:v)Na(a:) d*z and (2.82)
GA) = / i) N (z) &, (2.83)

where M*(N, N’ q) = ¢®*(NO,N' — N'9,N) as before. We then get the full algebra of

the constraints:

(H(N), H(N")} = %5(]\2(1\@ N/,q)), (2.84)
{D(ﬁ),H(N)} — —H(LyN), (2.85)
{D(N),D( “’)} - D (EN,]V>, (2.86)
{G(A), G} = SG(A N, (2.87)
{G(A), H(N)} =0 and (2.88)
{G), p(N)} = —cegn). (2.89)

This is the formulation of GR that we want to quantise. However, there is not the one

way to quantise a system, especially when it comes to constraints involved in the theory.
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2.3 The two paths of quantisation

Let us now approach the quantisation of the constraints G; (2.71), D, (2.74) and H
(2.73), obeying the Dirac algebra (2.84) — (2.89). When quantising a system subject to
constraints, there is a decision one has to make right at the beginning: Should one first
solve the constraints in the classical theory and subsequently quantise the reduced theory,
or, the other way around, first quantise the whole theory and then solve the constraints on
the operator level. The first approach is known as reduced phase space quantisation, while
the latter is referred to as Dirac quantisation. Figure 2.3 illustrates the different steps one
has to carry out for these two very distinct paths. Details will become more clear during
the treatment of the next sections, but this figure already motivates that these two routes
are indeed quite different. As for the Dirac quantisation, one of the hardest tasks surely
is finding the joint kernel of the quantised constraint operators — and thereby proceed
from the kinematical to the physical Hilbert space. When it comes to the reduced phase
space quantisation, it is the search for appropriate reference fields and a representation
of the then obtained observable algebra that is responsible for the most effort. So there
really is no universally preferred choice between the two of them — the conservation of
difficulty — and for some scenarios it may even be best practice to mix them: Solve some
of the constraints classically and then proceed with a Dirac quantisation of the remaining

ones (see, e.g., the models outlined in [83]).

Since quantising first feels like the more canonical way to proceed, we start with this
approach and then, in Section 2.5, delve into the reduced phase space quantisation, which

the treatment of Chapter II relies on.

2.4 Dirac quantisation

We will start with introducing the notion of the basis states and the representation of
the kinematical Hilbert space. The quantisation procedure will then be outlined for the
Hamiltonian constraint and, before, for the volume operator, where we also include a
small discussion on its importance as it will be on the heart of many considerations in the

course of this work.
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Figure 2.3: Basic steps of the Dirac and reduced phase space quantisation procedure
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2.4. DIRAC QUANTISATION

2.4.1 Spin network functions and the Ashtekar—Lewandowski

representation

The functions that serve as basis states for the theory are the so-called spin network
functions T,(A) [84-86]. They are cylindrical functions of the holonomies h.(A) defined
on an underlying graph v that is embedded in the spatial manifold. The curves ¢ the
connection A is integrated along then are the graph’s edges e; and we denote by E(7) the
set of all edges of a graph v. Being a cylindrical function defined on a graph constituted of
M = |E(v)| many edges means that the structure of the associated spin network function
is edge-wise and reads

T (A) = Ty (hey (A), hey(A), - By, (A)). (2.90)

s e
On the level of the holonomies, we can therefore define the map

T,: SU2)™ — C, (2.91)

for which we use the same notation. The kinematical Hilbert space of the theory then is

Hign = L* (A, dpar), (2.92)

where A is the space of generalised connections and duar, the Ashtekar-Lewandowski

measure. This Hilbert space is equipped with the inner product

<T’Y‘T4> = / T’Y(h817 Tt hBM) Tyl(hew R heM) d:uH(hel) e dMH(hem)ﬂ (293)

SU(2)M

where dug denotes the SU(2) Haar measure. In the above, we assumed both spin network
functions to be defined on the same graph. This, of course, is not necessarily true in general
and if one in fact faces two different graphs v, and s, one proceeds with the union graph
v = 7 U7,. Last but not least, a point of a graph is called vertex v; when at least
two edges — which are not trivial extensions of each other — meet there. We collect all

vertices of a graph in the set V(7).

The spin network functions then carry one irreducible representation of SU(2) on each
edge, labelled by j. Ve € E(v). We may collect those in the vector j On the vertices,

in turn, so-called intertwiners I, sit. These tensors knit the representations of all ingoing
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edges together with the ones of all outgoing edges and are collected in the vector I Hence,
besides v, spin network functions also carry the labels j and 7. In the literature, those are
then often combined into a set, say s = {7,}, f}, used as a labelling of the states. The
notation 7, at hand only considers the label « for illustrating the graph structure of the
spin network functions while omitting ] and f, but the difference between 7', and T, in
(2.93) is precisely that of different j.T and 7, ' — we just use a more concise notation.
For a more detailed introduction of spin network states see e.g. [17, 84] or Chapter 32

of [11].

Acting on these basis states are the fundamental operators of the holonomy and the

flux:
(maL(he) T,)(A) = he(A)T,(A) = he(A) - To(A)  and (2.94)
(MaL(En(S)) T,)(A) = En(S)T,(A) = —ihAT,(A) (2.95)
_ b fBI S ni ) S ele, $)JITL (). (2.96)
veV (y) e3v

This representation 7tay, is called the Ashtekar—Lewandowski representation and from the
equations above it looks quite similar to the action of the familiar Schrodinger represen-
tation. However, the ji(v’e) above is not just the right-invariant vector field on SU(2), i.e.

a differential operator, but instead — due to the cyclic composition of the spin network

functions —
H(vee) X0
Ji 7 =1gue) @ Llsye) ® - ® {(L)X(e)} ® lsy@) @, (2.97)

where now Xi(e) and (L))A(Z-(e) indeed are the right- and left-invariant vector fields

5 d
(Xfe)f> (he) = (—) f(e'™h,) and (2.98)
dt /), ,
()5 (@) _ (4 -
< X! f)(he) =(=)  f(hee™). (2.99)
dt /g
The right-invariant vector field acts on the spin network functions as
o (©) Y
(Xi T,y> (h{e}) = tr (Tihe) % T7 (h{e}) (2.100)
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2.4. DIRAC QUANTISATION

and is replaced by the left-invariant vector field 95 ©

)

v. In the above, tr denotes the SU(2)-trace. Lastly, the function €(e, S) in (2.96) accounts

for the orientation of the edge with respect to the (oriented) surface S:

in (2.97) if the edge e is ingoing at

—1 if e is below S,
ele,5) =250 ifenS={ oré(ens)es, (2.101)
1

if e is above S.

Note that any arbitrary edge can be understood as a concatenation of edges of these

types.

With this, we face the familiar situation of one multiplicatively and one differentially
acting operator associated with the basic quantities. When it comes to the action of
some physically intuitive operators built from these basic ones, however, the obtained

consequences turn out to be not as familiar anymore — as the next section shows.

2.4.2 Geometrical Operators: The volume operator

One of those operators that are implemented on Hy;, is the volume operator and one can
rather directly see that it will turn out to be a function of the basic operators introduced

right before: Starting with the classical volume of a region R,
V(R) = / dr/[det g] = / &y /[det B, (2.102)
R R

we see that it depends on the electric fields E. Proceeding towards the operator equivalent,
there exist two versions in the literature: one by Rovelli & Smolin [87] and one by Ashtekar

& Lewandowski [88]. What they do share is the vertex-wise composition

Vi= >V, (2.103)

veV(R)

where the sum considers all vertices v that lie in the region R. The vertex-wise evaluation

of the volume then differs in three aspects that turn out to make a difference. While
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Rovelli-Smolin [87] constructed

Vns = rvs 3 \/eukj;vveﬂj;wj,gw | (2.104)
erNejNex=v
Ashtekar-Lewandowski [88] obtained
\A/AL = RV, AL Z eijke(ej, ey, eK)ji(v,el)jj(v,eJ)jIgv,eK) . (2105)
erNejNeg=v

First, they rely on two different but equally justified regularisation constants kv rs and
kv ar- Secondly, while the Rovelli-Smolin volume adds up the square roots of triples of the
ji(v’e) operator, the Ashtekar—Lewandowski volume considers the square root of the sum of
these triples. And lastly, Ashtekar-Lewandowski included €(ey, ey, e ), which takes into
account how the three edges are oriented. This inclusion of the edges’ orientation yields
different results when it comes, for example, to the question of zero-volume-states: When
all three edges lie in one plane, the resulting contribution of that triple within the sum is

zero — and so does the contribution for arbitrarily valent vertices if all edges are planar.

It was then [89, 90] who considered the dynamics of the theory as a consistency check,
using a reformulation of the Hamiltonian constraint by means of Thiemann’s identity
(confer (2.73) & (2.115) in the next Subsection 2.4.4). They then found that the Ashtekar—

Lewandowski volume is to be preferred and we will henceforth use

~ 1 . F(v,er) 7(v,ey) 3(v,e
V = €p3 Z - Z ezﬂke(ej,eJ,eK)Ji( ’ I)J]( ’ J)Jlg ex) (2106)
veEV(R) erNejNex=v
= 0p? QU (2.107)
€V(R)

for the volume operator. There are a number of reasons why this operator — describing an
allegedly intuitive geometrical observable — is in fact not as trivial as one would assume

and, what is more, of wide-ranging importance too:

x First of all, despite the volume being a very much graspable quantity, the calculation
of its spectrum turns out to be everything but palpable. While it is straightforward to
calculate matrix elements of the operator QU — it is just the successive action of three

different right-invariant vector fields —, the square root of it that is the volume operator
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makes the analytical determination of the spectrum of the volume unfeasible so far. Yet,
much progress was made by Brunnemann & Thiemann [91] and Brunnemann & Rideout
[92-94]. First, [91] simplified the closed formula for matrix elements of the volume operator
derived by Thiemann in [95]. This then allowed [92-94] to tackle numerical computations
of matrix elements of the volume operator for vertices of valence up to 7 (the 4-vertex

was already covered in [91]).

% Another interesting and counter-intuitive, or at least nonclassical aspect of the volume
operator is its spectrum being purely discrete [95-98]. We note that discreteness of the
spectrum was also shown for the Rovelli-Smolin volume operator by De Pietri & Rovelli
in [99]. This discreteness, however, is in multiples of the Planck volume ¢p? and therefore

experimentally out of reach by state-of-the-art methods.

% The volume operator and its spectrum also provides a starting point for asking
the question of singularity avoidance. As this is one of the main aspects of the work
at hand, only a little spoiler will be presented here. Seminal work in the field of loop
quantum cosmology (more details on this to follow, too) motivate that the initial Big
Bang singularity may in fact have to be replaced by a so-called Big Bounce [41-45]. It
is of no surprise that the analogue of the volume operator in loop quantum cosmology
plays a crucial role in these kind of considerations and hence, the class of operators one
faces during these examinations does indeed include this volume operator. That this is

via fractional powers of it makes the computations even more evolved.

s And lastly, the importance of the volume operator is not just the fact that the
volume is a physically intuitive and widely used observable. It is furthermore of uttermost
importance for the theoretical footing of loop quantum gravity itself: The quantisation
of the Hamiltonian constraint (2.73) was snookered for a long time due to the involved
factor 1/,/|det ®evp|. Tt is only for a novel identity Thomas Thiemann introduced in [35]
that progress was possible. This identity, as we will see in Subsection 2.4.4, links the
inverse volume 1/,/|det ®s0E| with the Poisson bracket of the connection and the volume
functional — leading upon quantisation to a commutator including the volume operator.
This is how the volume operator becomes a crucial ingredient for the whole quantisation

process and for progressing towards the dynamics of the theory.
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2.4.3 The Gaufl and diffeomorphism constraints

Before elaborating on the quantisation of the Hamiltonian constraint, we briefly cover the

Gaufl and the diffeomorphism constraints, whose smeared versions read

G(A) = / (D, EY)A'd*z  and (2.108)
b

D<J\7) - / Fi,E'N° &z (2.109)
b))

We keep the discussion of their quantisation rather short and refer to [83] for a more

detailed introduction as well as [11, Chapter 9] for a comprehensive discourse.

When it comes to the Gaufl constraint, one can also spare oneself its quantisation and
solve it classically, proceeding then with gauge-invariant states. However, if one wishes
to quantise it nevertheless, the procedure is quite straightforward (cf. e.g. [83, Subsection

3.3.1]) and one ultimately arrives at

) =P S [y k0o Y w9 ),
)

2
veV (y e€E(y): s(e)=v e€E(y): f(e)=v

(2.110)

where s(e) and f(e) denote the starting and ending (final) point of the edge e, respectively.
The space HC of solutions to the Gaufl constraint is then composed of all those cylindrical
functions that result in a vanishing action of G — i.e. those states for which the combined
overall angular momentum of all ingoing edges (f(e) = v) equals that of all outgoing

edges (s(e) = v) on all vertices v of the graph .

The quantisation of the diffeomorphism constraints turns out to be more evolved and
one typically draws on the so-called refined algebraic quantisation, first applied to the
diffeomorphism constraints by Ashtekar, Lewandowski, Marolf, Mourao and Thiemann
in [34] and further examined by Giulini and Marolf in [100, 101]. The reason for this
extra effort is that if you want to quantise the diffeomorphism constraint, it turns out
that the result will not live in Hy;, and finite diffeomorphisms do not even act in a
weakly continuous fashion [83]. However, this situation is surely not too special as also in
standard quantum mechanics situations like these exist [102]: Having a particle subject

to the constraint of vanishing momentum, e.g., yields non-normalisable solutions that
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therefore are not element of Hl((%M) = L*(R3). The procedure one can then make use of

in this case are the so-called rigged Hilbert spaces and that mechanism is also used for
finding solutions to the diffeomorphism constraint here. The rigged Hilbert spaces in the
quantum mechanical framework read S C Hl((%M) C 8*, where S is the Schwartz space of
smooth (Schwartz) functions with its dual S* being the space of (tempered) distributions,
and solutions to the constraint of vanishing momentum live in &*. For what we face
in loop quantum gravity, the rigged Hilbert spaces are Cyl C Hy;, C Cyl*, where Cyl
is the space of (smooth) cylindrical functions. Finding solutions to the diffeomorphism
constraint is then done by so-called group averaging — see, e.g., [103] for an overview.
Following [102],7 this can be performed in two steps, starting by averaging with respect to
symmetries ¢ € Sym(y) of the underlying graph ~. This results in the projection pSyrn('y)

onto the graph-symmetry-invariant subspace:

. 1 .
Psym(y) ¥y = N Z Oy, (2.111)
7 pesym(y)

where N, is the size of Sym(y). However, the follow-up second step consists of averaging
over all those diffeomorphisms that translate the underlying graph and this will now not
lead to a mere projection, but a map n: Cyl — Cyl*, ¥ +— (n(V)] instead. Via the inner

product (., .) on Hyy,, the diffecomorphism invariant action on elements of Cyl is obtained:

()[Dy) = Y (¢ Paym(y ¥y, ®y)  with (2.112)
€DIff /Sym(v)
(n(¥)]|¢*®.) = (n(¥,)|P,) V diffeomorphisms . (2.113)

If we now only consider those elements of Cyl as input of n that are also solutions to the

GauB constraint (i.e. lie in H%), we end up with
Cyli,, = n(CylNHY) (2.114)

as the space of solutions to both kinematical constraints — the Gaufl and the diffeomor-

phism constraints.

"We also refer to this reference for all the details.
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2.4.4 The Hamiltonian constraint

The quantisation of the Hamiltonian constraint will directly affirm the importance of
the volume operator discussed in the pre-previous subsection and is therefore the next
step. However, with even a nearly comprehensive treatment of this topic being beyond
the scope of this introduction into loop quantum gravity, only a condensed overview will
be presented that, hopefully, still manages to get the main ideas and important parts
across. The interested reader will find an exhaustive treatise in [11, Chapter 10] and a

more concise introduction in [83].

While the Hamiltonian constraint is of most importance when it comes to the dynamics
of the theory, it is also the constraint that needs the most effort to quantise. With its
current form®
GilmElaEfn .

Vdet g

containing the inverse of the root of the determinant of the electric fields, i.e. a non-

H =B Fiy— (B + 1)€ 1 KIK} ] (2.73)

polynomial dependency on a canonical variable, there was not much progress in quantising
this expression for some time. A novel quantisation procedure by Thiemann [35, 104—
106] then introduced two crucial formulae that allowed for drastic simplifications of the

expression above. These two identities read

eMmEPEL 4

et :Ee“bc{V,Ai} and (2.115)
K = %{K AL}, (2.116)

Therein, besides the volume V' of a region R, we used

K = / d*zE!K]. (2.117)
P

At this stage, it is a common practice to split up the Hamiltonian constraint after a

previous reformulation that also reflects the correct dimensionality via x:

4 2
rky/det q ky/det g

$Note that we dropped the prefix (?®1) for the variables and then used |det E| = det q.

H(z) = tr([Kq, K] [E*, E"]) — tr(Fo [E*, E)) (2.118)
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= Hiow(2) — Hoyel () (2.119)

where Heyq is referred to as the Euclidean part and Hy,, as the Lorentzian part (this
terminology will be used frequently when discussing the Gowdy model in Part II). Reca-
pitulate that we used the convention 7; = —io;. With the two Thiemann identities (2.115)
and (2.116), the smeared parts of the Hamiltonian constraint can be rewritten according

to

Hior(N) = —8(%)4 [Nu(ARI A AR} A(AVY) and (2.120)
Hona(N) = —2(%)2/Ntr(F/\{A, vy, (2.121)

which is a suitable starting point for their quantisation.

For this, we introduce a decomposition T(3) of ¥ into tetrahedra &, such that
UTe(z) N = 3. This is done including a parameter e that corresponds to the size of the
tetrahedra in such a way that the volume of the tetrahedra vanishes for ¢ — 0. Placing
a vertex v(&0) at the apex of a tetrahedron (or any corner really), the tetrahedron itself
can be defined by three edges e;(0) starting at that vertex. For the edges of the base, we
introduce arcs ar;(4) that go from the endpoint of e; () to that of e;(4). With those, we
can define loops ay;(4) around the lateral faces of the tetrahedron (defined by one edge
of the base and the vertex on the apex): ar;(0) = ef(D)oars (D) oes (D). Figure 2.4
illustrates these geometrical quantities exemplarily. Using the positive parameter ¢ < 1
for a rescaling of the edges according to e(t) — e(e-t), we can expand the holonomies

along edges and loops,

he(€) = sy + Gé“(O)Ai(v)% +0(&) and (2.122)
ha, . (€) = Lsue) + ezéa(O)é’b(O)Féb(v)% + O(e%), (2.123)

and then use these to replace the Lorentzian and Euclidean parts of the integrated Hamil-

tonian constraint by Riemann sum equivalents [11]:

Hiy(N) = 2@) > N e (h ) { ey F

DeT.(x)
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) e 0) " F ) o)V (Ruy) ) and 2120

(2.125)

Therein, V <RU ( ®>) describes the volume of a region R (D) that stands for the proximity
of the vertex v(0). Equation (2.125) therefore is in a form that we can already quantise via
multiplication operators for the holonomies, (2.94), and the volume operator of (2.106).
Lastly, Poisson brackets are replaced by commutators divided by ih: {.,.} — =[.,]. For
the Lorentzian part Hy,., however, we still need a way to quantise K. Via another classical

identity, namely
F = _{Heucl(N = 1)7 V}, (2126)

we can use the previously obtained quantised version of the Euclidean part of the Hamil-
tonian constraint, together with the volume operator, to obtain the quantised version of

the Lorentzian part of the Hamiltonian constraint.

Figure 2.4: A “triangulation” tetrahedron & defined by the three edges e; 3 that leave
vertex v and which also define the arcs a2 and as3 as well as the loop a5 around
the face set by a2 and v

32



2.5. REDUCED PHASE SPACE QUANTISATION

Ultimately, the action of these operators is understood to have the regularised operator

act first, have then the regularisation parameter sent to zero,
HT, = lim HT,, (2.127)
e—0

and lastly ensure that the obtained expression is well-defined.

This shows how a quantisation of the Hamiltonian constraint can be achieved. The pro-
cedure above, however, yields a Hamiltonian constraint operator that is graph-changing:
While the three edges leaving the apex of the tetrahedron are per definition (parts of)
edges of the underlying graph, the arcs a;; connecting such edges along the base of the
tetrahedron consequently are indeed not. Therefore, every time a holonomy operator
along such an arc acts on the graph, this arc is attached to the graph and thereby the
graph is changed. In (2.125) above, this happens for the operator representing ha”( DY as
the loop a7 7(O) along er(A) and e;(H) 7! is closed via the arc ay (&) — confer Figure 2.4.
This behaviour of altering the graph was a crucial aspect of the Hamiltonian constraint
operator when Thiemann showed in [104] that it is anomaly free in the sense that the
commutator of two Hamiltonian constraints vanishes for diffeomorphism-invariant states.
To avoid this addition of new edges, so-called minimal loops [107] can be used during the
quantisation. These minimal loops — leaving and entering a vertex of the graph — are
exclusively defined via existing edges and of minimal length by means of the number of
edges that constitute the loop and hence, a quantisation based on these loops will yield a

graph-preserving action.

2.5 Reduced phase space quantisation

The treatment of the Gowdy model in Chapter II will be based on the reduced phase
space quantisation, which will be outlined in this section. As introduced before, the name
has its origin in the different order of quantising and considering constraints: (some)
constraints will be solved already on the classical level and then, on this partially reduced
phase space, the theory is quantised. We will see that this approach, if applicable to the
setup of interest, has the advantage that one obtains a physical Hamiltonian en passant

and therefore circumvents the inherent problem of time of general relativity.
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A key framework within the reduced phase space quantisation (and obtaining a phys-
ical time evolution in general relativity) is the so-called relational formalism that was
introduced by Rovelli in a series of publications [108-111] and later extended by Dit-
trich [112, 113] and Thiemann [114, 115]. For an introduction, see for example [116] and

for an exhaustive treatment [11], while we follow closely [61].

The problem the relational formalism aims to tackle is referred to as the problem of
time in general relativity: The canonical Hamiltonian of general relativity is built entirely
from constraints — cf. (2.31) —, so using this Hamiltonian, which vanishes when all the
constraint are fulfilled, for describing the dynamics of observables or states yields a static
theory in the quantum theory without any temporal evolution. Experiencing that this
is in fact not the case in reality, it is necessary to find out how the dynamics can be

described instead.

As we will see, it turns out that in certain models this can be done in a way that looks

quite familiar:

00¢(T,0)

5y = 10s(7,0), Hpnys}. (2.128)

The only difference being the new quantities Of(7, o) and some — to be further specified
— physical Hamiltonian Hppys. Now, the reason why it is called the relational formalism is
due to reference fields 7" that are introduced, to wit: one per constraint. The observable
O¢(7,0) of a phase space function f then tells the value f takes when these clocks T'
take the values 77. To use the intuitive split of space and time, the clock 7° linked to the
Hamiltonian constraint Cy is usually referred to as T := T°, taking the value 7 := 70 at
evaluation. The remaining reference fields 7770 are then relabelled as ST := T7#°, taking
values ¢’ == 797° and the set o of all o° can be used to coordinatise the so-called dust
manifold S.

We now introduce the procedure for the general case and then return to the special
scenario of general relativity as announced above. Facing a system with a set of constraints
Cr, the first step of the construction of the observable Oy consists of weakly abelianising
the constraints [112]: The constraints C; do not necessarily commute, {C’I, c’ } £ 0, but

we can proceed to a new set of constraints that indeed does. With the introduction of

M] ={C;, T}, (2.129)
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we define a new set of constraints via

C,. (2.130)

This, of course, implies that we need to use such T for which M/ is invertible. The new

set of constraints now has the advantage that
{C], T} ~ 67. (2.131)

Therein, ~ symbolises that the equation holds at least on the constraint hypersurface
M, i.e. when all constraints are fulfilled: M = {m € M: C;(m) =0 V¥ C;}. We can then

state the Hamiltonian vector field of the linear combination
Cs=p'Cy, B eR, (2.132)

of the constraints C as
X5 =pB'Xy, (2.133)
where the Hamiltonian vector field X; of a single constraint C reads
X;={Cy, - }. (2.134)
With Xz, we can as a next step define the gauge flow ag(f) of a phase space function f
(112, 117]:
ag(f) = exp(Xp) f. (2.135)
This allows us to move f along the flow of the linear combination C'z of the abelianised
constraints C7. But, of course, we want to do this in a controlled way, in particular
in a way which we can associate with a temporal evolution. This can be achieved by
considering the gauge flow of the reference fields T simultaneously. As it was already
stated above, the relational framework describes the evolution of observables with respect

to those reference fields. Accordingly, we evaluate the gauge flow of the respective phase

space function with respect to the gauge flow of the reference fields and get

O5(7) = (£, (gry)=gery (2.136)

as the value f takes when the reference fields 77 take the values 77.

35



CHAPTER 2. FRAMEWORK

There are now some remarks to be made, where the last one also specifies the scenario

this work is about and motivates the structure of the initial evolution equation (2.128):

% First, equation (2.135) contains the exponential and hence products of Xz, which
in turn is a linear combination of the X;. Therefore, the order of the respective factors
X in (2.135) matters — in general. This is the reason why the new abelianised set of
constraints C' was used as these lead to weakly commuting Hamiltonian vector fields X;.
Similar to before, the property of two variables weakly commuting means that they do

commute when restricted to the constraint hypersurface M.

% Furthermore, the observables Oy are weak Dirac observables, which means that they

weakly commute with the constraints:

So they really are gauge invariant extensions of gauge variant phase space functions and

qualify for physically observable quantities.

% When working with the observables Oy, there are a couple of identities that make

calculations much easier. The most important ones are

Op(1) + Op(7) = Opyp(7),
O(1) - Op(7) = Op.pr(7),
{O0s(7),Op(7)} = Oy pn+(7) and
Ogapr py(T) = f(OA(T)v Op(7), Op: (1) = 7, OPI<T))‘

2.138
2.139
2.140

(
(
(
(2.141

)
)
)
)

In the second last equation, { -, - }" denotes the Dirac bracket, which is an extension of
the Poisson bracket and necessary when facing a system with second class constraints. For
the present case of having both a set of gauge fixing conditions G? := T — 7! = Cy; and

one of second class constraints C; =: C'yy, all collected in C),, the Dirac bracket reads [114]

{£. 1Y =5 1= Af.Cym{C,, '}, (2.142)

with the coupling M* = {C,,C,}.

% Last but not least, going back to the case of general relativity, the physical Hamilto-
nian Hppys that enters equation (2.128) and creates the evolution of the observables needs

to be defined. The steps to perform from this point onwards depend heavily on the kind of
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reference fields one introduces and on the general model considered. For a broad overview
over the different kinds of reference fields and their treatment, see for example [118]. We
will now exemplarily sketch the path similar to the upcoming investigations of Chapter
I1. There, introducing Gaussian dust [119] as the reference fields T allows for a simplified
description of the constraints. For the total Hamiltonian constraint H = C} consisting of

all degrees of freedom, including those of the reference fields, this new form reads
H=Cy=P+h(AE), (2.143)

where P is the canonically conjugate of T = T°. This form is referred to as a de-
parametrised form due to the fact that we can write the Hamiltonian constraint in a form
that is linear in P and where h does not depend on 7. The part h(A, E) independent
of the reference field variables (7', P) can then be used to define the time-independent’
physical Hamiltonian that describes the temporal evolution of the observables according
to (2.128) [115]:

Hpphys = /Oh do. (2.144)

S

Having a system in deparametrised form also simplifies several formulae we stated before.
By definition, M{ = {C;, T’} = 6/ holds, which implies C; = C;. Note that the
diffeomorphism constraints can not be deparametrised as the Hamiltonian constraint.

However, one can achieve getting
Crzo=Pr+hi(A E,S") (2.145)

and the fact that it still only depends linearly on P; suffices for M{ = 7. Addition-
ally, many of the weak equations become strong ones for deparametrised systems — like
{C,C;} = 0 and therefore [X;, X ;] = 0, too. Hence, performing the weak abelianisation

is not necessary when working with a deparametrised theory.

Finally, when it comes to the follow-up quantisation, deparametrised theories share the
feature that the observable algebra turns out to be isomorphic to a subset of the kinemat-
ical algebra. With that, the representation used for the kinematical Hilbert space in the
case of the Dirac quantisation procedure becomes a representation directly accessing the

physical Hilbert space. Thus, we can implement the Ashtekar-Lewandowski representa-

91f h still depends on T, the resulting physical Hamiltonian is in general time-dependent.
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tion here, Hppys = L? (71, duAL), and choose the spin network functions 7', as a suitable
basis. Note that we did respect the classical symmetries of the system during the reduced
phase space quantisation and, accordingly, so should the resulting H,y. However, [34]
showed that diffeomorphism invariant operators whose actions alter the underlying graph
can not be densely defined on Hy;, — which is why we need to implement the physical

Hamiltonian in a graph-preserving manner.

2.6 Algebraic quantum gravity

The last framework we want to outline is the so-called algebraic quantum gravity. In-
troduced in a series of papers by Giesel and Thiemann in [58-61], the name reflects the
fact that algebraic quantum gravity considers only one abstract and countably infinite
algebraic graph «. This graph is still adapted to the model one studies, so it might be
of cubic topology or, as we see later on in Chapter II for a symmetry reduced model,
just a one-dimensional line. However, the important part is that this graph will not be
changed in its structure by the action of any operator and only the charges on the edges
and vertices will be modified. As before, representations of SU(2) are associated with all
of the graph’s edges, but for algebraic quantum gravity also trivial representations can
be assigned. So no edges will be removed or added, but trivially ‘charged’ edges can be
charged and, vice versa, previously charged edges may turn into trivially charged ones,
thus mimicking the graph-changing behaviour of loop quantum gravity operators. The
naming abstract graph furthermore does indeed mean that the graph, its edges and ver-
tices, do have no geometrical or even physical meaning — at least until an embedding into
a manifold may be chosen. The Hilbert space structure then is the infinite tensor product
of the edges’ Hilbert spaces Ly(SU(2), dug), where the holonomy and flux operators act
as edge-wise multiplication and differentiation operators, respectively, and also the inner
product is just the edge-wise product of the respective inner products per edge. This
infinite tensor product of Hilbert spaces was introduced by von Neumann in [120] and
first implemented in the framework of loop quantum gravity by Thiemann and Winkler
in [121].

Now, one of the reasons why algebraic quantum gravity was introduced has to do with
the semiclassical realm of quantised general relativity, where it is important to be able to

retrieve classical general relativity in some limit. It turns out that this framework allows
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to introduce such a semiclassical analysis [59], even including computable semiclassical

perturbation theory with error control [60].

This finishes the introduction of theoretical frameworks in the realm of quantum gravity
that are important for the upcoming chapters. The next section treats the last tool that
we need for our considerations of Part I1I: semiclassical states, also referred to as coherent

states.

2.7 Coherent states

The concept of quantum mechanical states that are as close to classical states as pos-
sible is well-known from quantum mechanics, where they are typically called coherent
states. They also go by the name semiclassical states, stemming from their defining
property. Semiclassical states were first constructed by Schrodinger in 1926, when he
was looking for those states of the quantum mechanical harmonic oscillator that behave
like states of the classical one in order to find the “stetige Ubergang von der Mikro- zur
Makromechanik” [122] — i.e. the steady transition from micro- to macro-mechanics. That
coherent states then became mostly known for their application in quantum optics and
quantum electrodynamics is of no surprise, are these fields working on the link between
the classical and the quantum world. Most progress in the theoretical direction is among
others due to Klauder, Sudarshan and Glauber (see [123-125], to state the main articles
for all three of them). From the experimental side, the work of Hanbury Brown and Twiss
[126, 127] was a starting point to investigate different types of light regarding coherence,
followed by many important contributions from others, too. They thereby opened the
door for a new kind of (astronomical) interferometry by using it to measure the angular

diameter of Sirius [128].

We already motivated why the semiclassical realm is important for quantum gravity
— it should recover classical relativity as a limit. For having a tool at hand which can
provide the link between quantum and general relativity, coherent states were studied also
in this field. Based on work of Ashtekar, Lewandowski, Marolf, Mourao and Thiemann in
[129] — who in turn drew upon work of Hall [130], Segal [131] and Bargmann [132] — so-
called complezifier coherent states were introduced by Thiemann in [133]. This approach
has constantly been further developed [62, 121, 134-137] and became the state-of-the-

art framework for coherent states in loop quantum gravity. We note that [62] showed

39



CHAPTER 2. FRAMEWORK

that other coherent states constructed for quantum gravity, Varadarajan’s “polymer-like”

coherent states [138-140], are in fact also part of the class of complexifier coherent states

and so are the coherent states of the quantum mechanical oscillator [11, Subsection 11.2.2].

Now, what are the requirements in order to classify a state as a semiclassical or coherent

one? Thiemann uses a two-fold definition in [11]: While one collects three properties that

specify what “semiclassical” is supposed to mean (Definition 11.2.1. therein), the other

one contains four more mathematically necessary ones (Definition 11.2.2.). We loosely

recite them in the following list, where the first three specify “semiclassicality” and the

remaining four are the aforementioned mathematical necessities:

1.

The expectation value <QJ|O|\I/> of operators in the semiclassical limit are close to

the classical expectation value O of the associated classical observable:

(T, 00)

—1
@)

<1 (2.146)

. The expectation value of the commutator of two operators in the semiclassical limit

are close to the classical expectation value of the Poisson bracket of the associated

classical observables times ih:

(v, [O, (5/} )

R s ) 2.14
{0,077 < (2.147)

The fluctuations of the expectation value of operators in the semiclassical limit are

small:
(W, OV ]

<1 (2.148)
(U, 00

~
N | ~—

Overcompleteness: The coherent states allow for a resolution of unity:

ﬂz/dw@,-} (2.149)

The coherent states are eigenstates of an operator a, typically referred to as the

annihilation operator:
aV = a¥ (2.150)
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6. Minimal uncertainty: The coherent states fulfil the Heisenberg uncertainty relation

exactly, i.e. with the equal sign:

(W, (&~ (0, 20))0) = (0, b 1) = (¥, (5 — (0. p0)W)  (2.151)

7. Peakedness: The coherent states, or rather their overlap functions |[(¥, V)|, are

concentrated in a small cell of phase space

It makes a lot of sense to say that the first three do indeed characterise a “semiclassical”
state: Expectation values should be as close to the classical ones as possible and fluctu-
ations better be small. It is already noted in [11] that these properties are not entirely
independent of each other, as for example (5) leads to (6). Also, one could understand
(7) as a semiclassicality-property, too. Nevertheless, this list is certainly appropriate as

an overview of necessary characteristics for coherent states.

Now, complexifier coherent states get their name by the so-called complexifier that is
crucial for their construction. For the quantum harmonic oscillator coherent states, the

complexifier (operator) reads [11]

2 o)
b A p

Cho = , G = 2.152

b 2mw b 2mw ( )

and it can be used to construct the eigenvalue a of the annihilation operator a as well as

a itself:
Vmwr — ——=p
. N (2.153)
V2
Mw = (—i)"
=5 D (G}, and (2.154)
n=0
o i |Cro, &
X mw (_1) |: ho; i|
_ n 2.155
“T7 ; n!  (ik)" ( )
I e 2 Mt ot (2.156)

Therein, the iterated Poisson bracket {C,z}, is defined via {C,z}, = = and {C,z}, =
{e,{¢,z},_,} and likewise for the iterated commutator [.,.],. Additionally, note that
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p? = —h%A and we defined

ti=— 2.157
p— ( )

as the classicality parameter of the quantum harmonic oscillator. For a state 1,(z') =
e*h%chf’éx(x’ ), the following eigenvalue equation is at least formally fulfilled, when we

regard the J-distribution as an eigendistribution of z:

ata(o) = \ [T wta(a). (2.158)

However, we do not yet have ai, = ap,. To achieve this, we analytically extend the state
to the complex plane via x — 2z = x — ﬁp and then have indeed avy, = at), for the new
states 10, that in fact equal the well-known harmonic oscillator coherent states up to a

phase.

The construction of the complexifier coherent states for quantum gravity can now be
carried over quite straightforwardly. However, note that we just stated the complexifier
for the quantum harmonic oscillator — there is no rigorous way of constructing one.

Definition 2.1 of [62] specifies a complexifier as a
e positive definite,
e almost everywhere smooth function with
e dimension of an action, whose
e Hamiltonian vector field does not vanish anywhere and which
e is at least linear in the momentum variable.

Having chosen a complexifier C, one can continue with the construction procedure. While
(x,p) represented position and momentum for the quantum harmonic oscillator before,
we now use (q,p), representing the generalised configuration and conjugate momentum
variable.!® We collect them in the tuple m := (g, p) and then build the complex coordinate

via

Z(m) = (_i)n{e, q},,(m). (2.159)

n!
n=0

ONote that we understand these quantities to be smeared appropriately with test functions, thus
allowing us to omit any labels.
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Note that the requirements for the complexifier above guarantee that we can re-obtain ¢
and p from Z and its complex conjugate Z. Also, with C being required to be positive
definite, we quantise it as a positive, self-adjoint operator C. With this, the generalised

annihilation operator can be constructed:

=0
N

(2.160)

Z = i (_ni!)n [(m{j’ln = rdern,

n=0

where now the fact that the complexifier is of the dimension of an action makes the
exponential well-defined. We can now proceed towards the state via the intermediate

step

Ue(q) = e77d,(q"), (2.161)

which we now need to analytically continue to the complex plane. For this, the property
of the complexifier to be growing more than linearly in p plays a crucial role as it ensures
a hyper-exponential damping necessary for 1, to be analytic. We finally obtain

Unld) = @) = (c770,)(a)

(2.162)

q—Z(m) q—Z(m)

for the general version of the complexifier coherent states.

For adapting these states to the case of quantum gravity, we refer to [66, Appendix C],
as we will work with their form and notation of the coherent states throughout Chapter I11.

Using connections and fluxes, the coherent states read in general

W, (A') = (7584 ) (4)

_ 2.163
A—Z(m) ( )
Again, m = (A(z), E(z)) denotes the point in phase space the state is peaked around
and the complexified connection Z(m) is constructed analogously via (2.159). Now,
the o-distribution we use, d4(A’), is the one of the kinematical Hilbert space Hy, =
L? (71, d,uAL) with support at A.

During our computations of Chapter III, we will use these kind of states for the gauge
group U(1)3. This is an ansatz widely used in the literature (cf. i.a. [63-66, 134, 135]) and
is motivated due to the fact that replacing the actual gauge group SU(2) by U(1)? does

not change the outcome qualitatively, but simplifies the calculations drastically for U(1)3
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being abelian — and thus making the U(1)3 coherent states eigenstates of the volume
operator [134, 135]. In the notation of [66], the U(1)® coherent state peaked around
m = (AQ(z), EO(z)) reads

)= [[ X et o [ (2.164)

7:1E2(W3) {ni}ez

We will describe the U(1)?3 framework more detailed in Chapter III and only briefly explain
the above quantities at this stage. Introducing U(1)? means equipping all edges e; of the
graph v with three copies of U(1). These are labelled by the three charges n} € Z,
i = 1,2,3. The U(1)-holonomy — whose inverse we find as the above square bracket’s

second exponential function — reads
Bi(A) = ey Abler@) &0 dt _ iy a) (2.165)
and its complexified extension is
hi(Z(m)) = 1™ RE(Al,,) = i el (2.166)

This complexified holonomy contributes the first exponential in the square bracket of the
coherent state. The quantity p%(m) therein constitutes the canonically conjugate variable
to the holonomy h%(A). Lastly, we note that in contrast to [66], we do not consider the
classicality parameter t to be different for the graph’s edges, but rather use one t for all

of them. This is not a necessary substitution, but keeps the formulae more concise.
We close this introduction of the coherent states with some notes on their limitations.

% First, these coherent states are kinematical ones, i.e. the action of the constraint
operators does not necessarily vanish. But this indeed makes sense: Recapitulating that
we want to use these semiclassical states to check whether, e.g., the Hamiltonian has the
correct classical limit, such an investigation can not be performed would the action of the

Hamiltonian annihilate the coherent state.

% Second, their dynamical stability is not guaranteed, meaning that an initial coherent
state does not automatically evolve in time such that it remains a coherent state. This can
be easily motivated if one thinks about the two ways the temporal evolution manifests

for coherent states. On the one hand, we can simply evolve a just created coherent
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state. On the other hand, having started with a coherent state peaked around some
mg = (A(O),E(O)), we can use the classical evolution of the system to determine the
phase space point m(t) = (A(t), E(t)) around which the state should be peaked later on.
Constructing the coherent state according to the complexifier procedure for this future
m(t) does not necessarily result in the same state. However, there is new progress in this
direction [141].

s Third, the coherent states are only suitable for determining the semiclassical expec-
tation value of phase space functions whose corresponding operators preserve the under-
lying graph. When an operator adds a new edge, there is now way the coherent state can
‘know’ how to approximate the contribution of this edge if it was not already included
in its construction. This is one of the reasons why algebraic quantum gravity seems to
be a suitable framework for semiclassical investigations as all operators act in a graph

preserving manner there.
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Chapter 3
Motivation

Note that the content of this part, Part II, was already published in [1]. The text of this

article has been reused.

Loop quantum gravity provides a framework in which an analogue of the classical
Einstein’s equations can be formulated in the quantum theory. In the canonical approach,
one either considers solving the constraints in the quantum theory in the context of a Dirac
quantisation [78] or one solves the constraints already at the classical level by means of
constructing suitable Dirac observables and subsequently quantises the physical phase
space only. In full loop quantum gravity, both approaches yield quantum Einstein’s
equations that are very complex and whose general solutions are not known [11-13, 142].
This is not too surprising because already at the classical level the Einstein’s equations
without further assumptions are highly complex and constructing exact solutions is a very
non-trivial task. However, exact solutions can be constructed in simpler setups where
additional symmetry assumptions are implemented such as for instance in the context of
cosmology or black holes. If we consider symmetry reduction in the context of a quantum
gravity theory, one can either symmetry reduce already at the classical level and then
quantise or one can quantise full general relativity and afterwards access the symmetry
reduced sector in the quantum theory. While the latter strategy is presumably the one
that is able to capture more of the quantum nature of the symmetry reduced models
[47, 143-145], it is also technically more involved than first symmetry reducing at the

classical level and quantising only afterwards.
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For this reason, we follow the first approach in this part and consider a symmetry re-
duction of classical models that experience a Gowdy symmetry [146]. We furthermore
specialise to the polarised case where the two commuting Killing vectors are orthogonal.
Compared to other symmetry reduced homogeneous models in cosmology, such models
similar to spherically symmetric models have the property that they are still a field theory
with a non-trivial spatial diffeomorphism constraint and thus are closer to the situation
we face in full general relativity. Hence, understanding these models allows to investi-
gate properties of these models that might be absent in the homogeneous cosmological
models in general. As we still have to deal with a constrained theory after symmetry
reduction, we have again the option to either apply a Dirac or reduced quantisation of
the symmetry reduced model where we follow the latter in this work. The quantisation of
Gowdy models has been extensively discussed in the existing literature [147-151] starting
after Gowdy’s seminal paper [146]. Further work in terms of (complex) Ashtekar vari-
ables can be found in [152-155]. The quantisation programme could be completed in
the context of a gravitational wave quantisation in geometrodynamics in [156], see also
[157] for a further extension of this model. A modified quantisation of the model in [156]
was later considered in order to ensure that the dynamics is unitary [158-162]. All these
models have in common that even if some of them start with Ashtekar variables the final
quantum model does not involve a quantisation inspired from loop quantum gravity but
considers techniques from geometrodynamics instead after gauge fixing the models. As a
consequence, these models fail to resolve the singularity present in the classical Gowdy
model. In [163, 164], a loop quantisation of the polarised T® Gowdy has been introduced
in the framework of a Dirac quantisation. However, due to the complicated form of the
constraint operators, the quantisation programme could not be completed for that model.
Progress in this directions was obtained using a hybrid quantisation procedure where the
polymetric quantisation is applied to the homogeneous sector and a Fock quantisation to
the inhomogeneous one [165-167]. A uniqueness result for the chosen Fock quantisation
exists [168] if one demands unitary implementation of the dynamics as well as invariance
under the group of constant translations on the circle. This approach has turned out to
be also useful in the context of cosmological perturbations, see for instance [169-171] and

[172] for a recent review on the hybrid quantisation approach.

Because we will apply a reduced phase space quantisation for which we choose Gaussian
dust as the reference matter [118, 119], we cannot consider the usual Gowdy solution that

is a vacuum solution of Einstein’s equations. Spacetimes with Gowdy symmetry coupled
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to matter have been considered in the literature, see for instance [173] for a coupling
to a massless scalar field. For a corresponding quantum model see [174] and [175] for
work on Einstein—Vlaslov spacetimes with Gowdy symmetry extending former results
for the vacuum case [176, 177]. An introduction to the Einstein—Vlasov system can be
found in [178] and references therein. As discussed in [179], dust can be understood as
a distributional solution of the Vlasov equation and in this sense can be embedded in
these systems. However, the specific characteristic properties of the matter component
matter as for instance the results in [180] show where the properties of the spacetimes are
different if we couple generic Vlasov matter or dust respectively in the context of finding
a global foliation of the spacetime. For the purpose of this work, we consider general
relativity coupled to Gaussian dust and then impose a Gowdy symmetry on the total

system including the geometric as well as the matter degrees of freedom.

This setup allows us to construct Dirac observables associated with the geometric de-
grees of freedom in the framework of the relational formalism along the lines of [109, 111-
114, 181-183] that play the role of the elementary phase space variables in the reduced
phase space. Their dynamics is generated by a so-called physical Hamiltonian whose
Hamiltonian density in the Gaussian dust model is just given by the geometric contribu-
tion to the Hamiltonian constraint that is itself a Dirac observables and non-vanishing
in the physical sector of the model [118, 119]. Further reference matter models as well
as their applications in the classical theory can for instance be found in [184-188] and
applications in the quantum theory are for example discussed in [44, 61, 118, 189-193].
Dirac observables for vacuum Gowdy spacetimes have for instance also been discussed
in [194]. In the context of the relational framework, this approach can be understood
as choosing so-called geometrical clocks (or reference fields) constructed from purely ge-
ometric degrees of freedom. In contrast, we choose matter clocks in this work instead.
As a consequence, we start with additional degrees of freedom compared to [194], where
in the end one independent Dirac observables exists, while here we end up with three
independent ones. Furthermore, the construction of [194] is based on ADM variables,
whereas here we will work with Ashtekar—Barbero variables in order to be able to apply

a loop quantisation to the model later on.

Loop quantisations that do not apply a hybrid approach of vacuum polarised T? Gowdy
spacetimes in the context of a Dirac quantisation have been considered in [164, 195], where
the latter model assumes a further rotational symmetry that simplifies the setup com-

pared to [164]. The difference to the work here is that we consider a reduced phase space
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quantisation in the context of loop quantum gravity (LQG) as well as the algebraic quan-
tum gravity (AQG) framework for the Gaussian dust model. In both cases the physical
Hamiltonian needs to be quantised in a graph-preserving manner in order to respect the
classical symmetries of the physical Hamiltonian. This yields a different regularisation
of the operator compared to the one presented in [164], with in general different proper-
ties accordingly. Possible graph-preserving quantisations have been discussed in [196] in
the context of spherically symmetric models and have also been mentioned in the final
discussion of [164] as possible alternative regularisations. However, since in both works
one uses Dirac quantisation with the corresponding constraint algebra in these models, a

graph-modifying quantisation is motivated for the same reason we have in full LQG.

Because we quantise the physical Hamiltonian in the AQG framework, a detailed discus-
sion on how Gowdy states can be represented in the AQG framework is needed, allowing
to implemented the action of the physical Hamiltonian operator on this class of states
properly. The dynamics of the physical states is encoded in a Schrodinger-like equation
and finding its generic solution is beyond the scope of this part. Nevertheless, the quan-
tisation programme can be completed in this model here in the sense that the quantum
dynamics is formulated at the level of the physical Hilbert space. The purpose of this
work is to present how spacetimes with a Gowdy symmetry can be formulated in the
AQG framework. The results presented here can be taken as the starting point for de-
riving effective models directly from the quantum theory because the graph-preserving
regularisation chosen here is advantageous if semiclassical computations are to be per-
formed as already existing semiclassical techniques can be directly used and need not be
adapted to graph-modifying operators — which is still an open and difficult questions in
full generality. As first steps towards applying the model, we compute the explicit form
of the Schrodinger-like equation in the AQG framework and discuss a possible ansatz for
the solution that can be considered for graph-preserving operators but will not work for
graph-modifying ones as used in [164]. We further discuss how such an ansatz can be

used to obtain zero volume eigenstates.
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Chapter 4

Classical Setup: formulation of the
model with polarised T° Gowdy

symmetry

In this chapter, we briefly review the Gaussian dust model as well as its symmetry reduc-

tion to a model having a T? Gowdy symmetry.

4.1 Brief review of the classical reduced phase space

using Gaussian dust

We aim at quantising the reduced phase space of general relativity formulated in terms
of Ashtekar variables and symmetry reduced to the polarised Gowdy model. For this
purpose, we choose as a first step some reference matter that we dynamically couple to
gravity and that allows us to construct the corresponding elementary Dirac observables in
the reduced phase space. For the reference matter we choose the Gaussian dust model [119]
that was for instance considered in [118] in the context of loop quantum gravity. Within
the Gaussian dust model, one couples eight additional scalar fields to general relativity,
leading to a system that involves second class constraints. As shown in [118, 119], after
a reduction with respect to the second class constraints one obtains a first class system
and next to gravity four additional dust fields — denoted by 7" and S’ with j = 1,2,3

— that can be used as reference fields for the Hamiltonian and spatial diffeomorphism
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constraints respectively. In this model, these constraints take the form

EYEp§I*
P — det(E) ~det)y LaCh

B}k ’
\/1 + det(E) ~teim Lal

Here, C' and C, denote the gravitational contribution to the total Hamiltonian and spatial

ctt = O+ ct=C, + PT, +PSJ

diffeomorphism constraints! in terms of the Ashtekar variables A7 EY, while P, P; are the
momenta conjugate to T',57. Following [118], one solves C*** for P and C!°* for P; and
then writes down an equivalent set of constraints that now is Abelian. The latter allows
to directly apply the known observable map [112, 113, 181] in the framework of the
relational formalism [109, 111] and construct the corresponding Dirac observables for the
gravitational degrees of freedom denoted as O ,; and O Eo- The algebra of the observables

is given by
{0,(,0), Oy (7.0')} = 5325169 (0 = o), (4.1)
where we use k := 16TGNewton-

Using the properties of the observable map as shown in [114], for a phase space function
f(A, E) we further have

O¢a,E) o) = f(Oalr,0),...,08(T,0)), (4.2)

where in general only a weak equality holds — i.e. one that only holds on the so-called
constraint surface, the hypersurface on which all constraints are fulfilled. Hence, it is suf-
ficient to construct Dirac observables for the elementary geometric phase space variables.
To obtain their explicit form, one chooses T" as the temporal reference field for the Hamil-
tonian constraint and S’ as spatial reference fields for the diffeomorphism constraint.
These observables depend on physical temporal and spatial coordinates 7 and o7 respec-
tively and Oy (7,07) has the interpretation that it returns the values of the phase space
function f when the reference fields 7', S’ take the values 7,07 underlying the relational

formulation of the model.

INote that we use different letters for these constraints during the treatment of the Gowdy model. This
is done to be in line with the literature we want to compare our results to. Like introduced in Section 2.5,
one typically uses C . for the constraints in the framework of reduced phase space quantisation and the
index 0 or no index for the Hamiltonian constraint specifically.
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4.2. BRIEF REVIEW OF THE SYMMETRY REDUCTION TO A MODEL WITH
POLARISED T? GOWDY SYMMETRY

Because all Dirac observables O by construction commute with the canonical Hamil-

tonian, their dynamics in 7 is generated by a so-called physical Hamiltonian Hpys via

004(t,0)

or = {Of(Ta U)> thys}> (43)

where for the Gaussian dust model the physical Hamiltonian reads

Hypys = / 30 Oc (4.4)
S

and the integral is taken over the manifold coordinatised by the spatial dust reference
fields, also called the dust space S. This setup will be our starting point for the symmetry
reduction in Section 4.2. In order to keep a more compact notation, we continue using
(A, XY, E,E*, EY), (Cy,C) and (0, z,y) instead of (O4,Ox,...,08), (Oc,, Oc) and

(09, o”, ay) in the remaining part of this work.

4.2 Brief review of the symmetry reduction to a mo-

del with polarised T° Gowdy symmetry

We start by introducing the basic elementary observables of the Gowdy model in loop
quantum gravity along the seminal work of [152, 155, 197] carried over to the reduced phase

space considered here, while we follow [163, 164, 198] the closest concerning notation.

Denoting the two Killing vector fields by a% and 8% and the remaining cyclic variable

by 6, we decompose the connection and its conjugate momentum accordingly:

A= Ay(0)7;d0 + Al r;da”, (4.5)
E = EY(0)7:05 + EL(0)7:0,. (4.6)

Therein, we sum over x and y via p and z* = x,2¥ := y, while i takes the values 1, 2
and 3. Additionally, 7; = —%O‘i are the generators of su(2), with the Pauli matrices o;.

The unpolarised Gowdy model, where the Killing vector fields are not demanded to be

orthogonal, is then obtained via the choice

EY = Ef =0 and
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Aj=A=0, (4.7)

where the capital [ is now representing 1 and 2. With this set of variables, the Gaufl con-
straints GG; and G, are trivially satisfied. The same holds for the geometric contributions
to the spatial diffeomorphism constraints C, and C,. Within the relational formalism
this is taken into account by the fact that we couple only two additional dust fields 7', S?
in the symmetry reduced sector, both depending on the 6 coordinate only and thus there
is no contribution from P,, P, in the total diffeomorphism constraints. The remaining

geometric contributions to the total constraints involving gravity and dust at this stage

read
42 1
G 0o EY KATER) = Oy B KATE" 4.8
3= /@3131(9 + €37 %) = K,ﬁB(e 5+ es " AVEDR ), (4.8)
1
Cy = P —— (B (0pAL) + €3, ™ AT B A — kfp1A;Gs), (4.9)
1

— — (2A3E’A’E’ + AVEPARKES — AKEPATES — 2¢5,5 (0 A7) EL.EY

2K,\/m(03p] pHJte MK p HJ e MK 3J(‘9p>K3

— (1+ B) @KEEUKY B + K B KBS — KNEf KK EY)),
(4.10)

where we have introduced det E .= E§(E*E) — EXEY) and ' := 1. The latter absorbs
an additional factor of 4n? that stems from smearing over the two variables x and y the

model does not depend on anymore. In that sense, we solved already two of the integrals
n (4.4).

We then proceed towards our final description via two canonical transformations. For

the first one, we perform a polar decomposition of the Ag and E7 according to

Al = A, cos(a + ), All/ = —A, sin(d + B), Ef = E"cosf3, E! = —FEYsinp,

A2 = A, sin(a + j), A; = Aycos(a+p3), Ej=E"sinf, Ej= EYcosf, (4.11)

and as a result define

X = A, cosa, P? = —FE"A,sina,
Y = A, cosa, P? = —EYA,sina,
1
A= —A £ :=Ef. (4.12)
Bri
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Then, the second canonical transformation reads

_ pB _ pB
=0 - Pt =
£=p8-5, —,

_ pé 4 pp
n=B8+5, prim (4.13)

resulting in the five pairs of canonically conjugate variables (A, &), (X, E*), (Y, EY),
(n, P") and (&, P%). Since the remaining diffeomorphism constraint C§°* and the Hamil-
tonian constraint C*" are reduced at the classical level by means of constructing Dirac
observables, the only left first class constraint is the Gauss constraint G3. The latter re-
duced two degrees of freedom in phase space such that for the unpolarised Gowdy model

we end up with four physical degrees of freedom.

The polarised T? Gowdy model can now be constructed by taking a look at the line

element up to this point,

rRY O RY ESE* sin &
ds® = do? S da? S —dy® — 2B ——dxd 4.14
° EY cos ¢ +Excosf v +Eycos§ Y 3cosé i (4.14)

and demanding the dx dy-term to vanish. This can be realised by imposing the constraints

£(0)~0 and (4.15)

£(0) = 0, (4.16)
where the latter guarantees the stability of the former. We get

. Yy
x(0) = £(0) = 2P° + Ef 9y1In g— (4.17)

which fixes the conjugate momentum P¢ and also results in x(6) ~ 0 with no further

ado. These polarisation constraints together with the Gaufl constraint

1

K B

Gs (99 + P") (4.18)

complete the set of constraints. The symmetry reduced physical Hamiltonian then has

the form

Hppys = / o C(6), (4.19)
5‘1
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POLARISED T? GOWDY SYMMETRY

where S! denotes the symmetry reduced dust space. The geometric contributions to the

Hamilton constraint in terms of the Dirac observables now read

1 1
C=———| 5 (XEYEY+ AE(XE*+YEY)+ EOyn(XE* + Y EY
H/m<ﬁ]%1( ( ) 977( ))

1 1 EY\?
+1895—Z(8891nﬁ) >+
18(5895)_i' Gs* _ Pw, Gy
K O\VdetE) AVdetE 2 detE

where det £ = EE*EY. Note that the other two integrations were already dealt with

before, in (4.10). For completeness, we also present the geometric contribution to the

(4.20)

diffeomorphism constraint in the symmetry reduced Gowdy model that takes the form

1

C p—
’ K Ber

(E7(0pA]) + €5, AT BN A — kPr1A;Gs) (4.21)

but does not contribute to the physical Hamiltonian in the case of the Gaussian dust

model.

When it comes to the GauBl constraint, we may solve it already at this (classical) level.
Noticing that 7 is just translated via the action of the Gaufl constraint, we can impose
n ~ 0. With the GauB} constraint GG3 and n being second class, we proceed with the Dirac
bracket and make the two constraints vanish strongly. For all other quantities that do
not depend on 7, the Dirac bracket reduces to the Poisson bracket and nothing more has
to be done.? Following this route, we end up with three independent pairs of elementary
Dirac observables: (A, &), (X, E7) and (Y, EY). Alternatively, as shown in [196, 197], the
Gaufl constraint can also easily be solved at the quantum level. In this case, operators
associated with (n, P") will be involved in the kinematical Hilbert space and after solving
the Gaufl constraint the subspace of the kinematical Hilbert space no longer contains

these quantum degrees of freedom.

2Note that G5 = 0 allows to solve P" for variables independent of 1 and P".
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Chapter 5

Quantisation of the reduced LQG
model with polarised T° Gowdy

symmetry

5.1 The physical Hilbert space in reduced LQG

As discussed in the former chapter, the physical phase space of the polarised Gowdy model
involves three independent pairs of canonically conjugate Dirac observables after solving
the GauBl constraint: (A,E&), (X, E”) and (Y, EY). Imposing the polarisation condition
eliminated (£, P%) and, accordingly, fulfilling the Gauf3 constraint made (1, P") vanish.
Since the algebra of these Dirac observables is given by the standard Poisson bracket we
can use the same representations that was used in [164, 196] for the kinematical Hilbert

space for the physical Hilbert space:
Hphys = LZ(ZsleQa o),

where Agi, 2 denotes the space of generalised connections on 7% ~ S x T? and py is
the analogue of the Ashtekar-Lewandowski measure in full LQG. Agiy72 is constructed
as follows: We consider Ag:1 and its projective limit over graphs I' in 8!, which are just
non-intersecting unions of edges e, that correspond to arcs here. A graph I' is then given
by I' = Uje;. We denote by V(I') the graph’s set of vertices, which is just the union of all
end points of the e;, and by E(T") its set of edges. For a given graph I" we can understand
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the space AL, as a set of maps from E(I) to U(1)#M) that is one copy of U(1) for each
edge of the graph. For a fixed edge we have

Ag i T = U(1), e h(A) = exp (ﬂ% /A), (5.1)

1
2

that the set of graphs is a partially ordered directed set and introducing the projections
PFF’ : Ag1 — Agll, A~ PFF/(AF) = AF

connections Ag: as the projective limit over graphs in S', that is

where the U(1) charges k. € 7 and, for later convenience, a factor 3 is introduced. Using

v for I" < T one can derive the set of generalised

ASI = L&n Agl
rcst

X and Y, in turn, are scalar fields and in order to still obtain a similar description, we
follow [164, 197] and define so-called point holonomies [199]

i) (X) = exp <i%X(v)) and (5.2)
R (V) = exp <i%Y(v)> (5.3)

sitting on the graph’s vertices v with corresponding charges pu,, v, € R and with

X (v),Y(v) € R. For each fixed vertex v, the space C(Rp,y,) of continuous almost periodic
functions on the Bohr compactification of the real line is used. The space of generalised
connections A2 can be obtained again as a projective limit, this time over the vertex set
V(I). For a fixed graph I', the space AL, involves maps from V(T') to (Rponr x Rpon: )V
For a fixed vertex v, we have Ags : V(I') = Rponr X Rpopy With v +— (X (v),Y (v)). Then

3 o r r
we have Agiy2 = Lin Ag @ A
rcst

The basis states of Hpnys are then labelled by a graph I' — defining the sets of the
vertices V(I') and the edges E(I') —, the U(1)-charges k. (collected in k) as well as the

point holonomies’ charges p, and v, (collected in p and v respectively) [164]:

Dk )= ] exp(i% / A) I1 exp(i%X(v)) exp<i%Y(v}>. (5.4)

ecE(T) veV (D)

We now use Figure 5.1 — showing exemplarily a five-valent Gowdy state in reduced

LQG where we work with embedded graphs — to introduce the states’ composition and
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notation. The dashed miniature lines in Figure 5.1 visualise the fact that the point

holonomies are actually not along edges.

125}
ka e
()] (%)
H3
V3 L' kl
U3 €1
1
ks|es U \\Zu
"1
AUy €5
Hals ks
Vy
€4 (%
o)
k4 M\B/ Vs

Figure 5.1: An embedded five-valent graph with charges k. on the edges and point
holonomies labelled by pu,, 1, on the vertices, serving as a basis element for Gowdy
states. To keep the notation more compact, we used kev, =: kp, fby, =t py and v,, =: vy.

The physical Hilbert space H,nys can also be written as a direct sum of the Hilbert
spaces Hr associated to each graph I' € S:

thys - @HF (55)
r

The holonomy operators act on the basis states (5.4) via multiplication:

. k

I ki) = exp (i [ AVIE ko) = by + b (50
€r

R (XD, k, o, ) = ex ('@X T,k p,v) = |,k 5.7

vr 3 oy [y p 12 (UI) | ) >M7V> | ) ’MUI+NO’V>7 ( : )

“ Y

hq(;‘))(Y)|F, k,pu,v) = exp<1§OY(v1)> T,k p,vy = (T k, o, vy, + o). (5.8)

Therein, we used the abbreviation k., + ko = k e =ke; +ko within the state and likewise

for p and v.
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The according flux operators are implemented as follows. First, we have [164]

5 . 0 Brilp? ket 9y + ke
— 2 —
EO), k,u, vy = —iBpilp 0 T, kyp,v) = 5 5

D0k, v),  (5.9)

where ke+ gy is the U(1)-charge of the edge that is outgoing at 6 and k.- ) the one of the
incoming edge. If 6 does not coincide with a vertex, the two are the same and the factor

% vanishes.

For the x- and y-flux, we first of all smear them over intervals Z,

]:_LI ::/EA”C and (5.10)
T
Foz i=/Ey, (5.11)
T
to finally obtain [164]
> _ Beilp’
Forllyk, p,v) = 5 Z oLy Ky g, v)  and (5.12)
veV(InZ)
F, 7Tk, p,v) = Perte’ > vk v). (5.13)
Y, s vy [y 92 vty vy by
veV(INZ)

Therein, we collected all contributions of vertices that lie in the union of Z and I'. We
get a factor % if an endpoint of Z coincides with a vertex. We will later, however, use
intervals that contain one vertex at most, as this simplifies the transition towards the

AQG framework presented in Chapter 6.

Before approaching the dynamics and the Hamiltonian constraint, we shortly illustrate
how to deal with the Gaufl constraint had it not been solved on the classical level already.
Then, the pair (n, P7) would still be part of the set of variables. Similar to the other

variables, the point holonomy

) (1) = exp(iXn(v)) , A\ €7, (5.14)

v

as well as the flux

Foz = / P (5.15)
T
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are defined. The corresponding holonomy operator ﬁff“)(n) acts multiplicatively on the
basis states, whose composition (5.4) is now additionally enriched with the holonomies
exp(i,n(v)) — denoted as |I', k, u, v, A). Accordingly, the corresponding flux operator

A

Fn.z acts via differentiation:

ﬁn,I’F7 k?,/L, v, )‘> - BBIEP2 Z /\U|F7 k?l’% v, )‘> (516)

veV(I'NI)

We can then use these quantities to quantise the Gaufl constraint (4.18) by means of
choosing a suitable partition P(e) of 8! in terms of intervals Z,, such that S' = U, Z,, with

T, : [0n — 5,0, +5]. We can then obtain a regularisation of the Gaufl constraint a la [164]

.1
G5 = o > /I n (9pE + P") df (5.17)
_ ,4; S (5 (en + g) _ 5<9n _ %) + fn,zn> (5.18)

Bl Zn€P(e)
(5.19)

and in the limit when we send the regulator to zero we rediscover the classical Gaufl

constraint, that is

1

G p—
° 7 K Bm

/ (0p€ + P")df = lim G5, (5.20)
St e—0
The corresponding Gauf3 constraint operator is then obtained as

s i lim — 3 (é(en + g) - é(en - g) +ﬁn7zn>. (5.21)

In€P(e)

Note that this Gaufl operator agrees in its symmetric definition with the one used in [197],

while it differs in this aspect to the one used in [164].

In the limit where we send the regulator to zero, also known as the infinite refinement
limit, we can choose the partition fine enough such that at most one vertex is contained
in Z,. Then, the action of this Gaufl constraint operator on the basis states reads [164]

(p?

—~ ke - ke _
G3|F,k7/~%%)\> == (%—F)‘U)’Fakaﬂﬂja)‘y (522)
I)

/
veV
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Therein and from now on, we use as convention for the notation of the k-labels that we
always work with outgoing edges and therefore run through the vertices with respective
superscripts. This means that the k-label of the ingoing edge at vertex v is the same as

that of the outgoing edge at the left-neighbouring vertex v—.

We can now solve the above Gaufl constraint by imposing the following vertex-wise

condition:
Ay = —— 9=y e V(T). (5.23)

As \, € Z, the difference of the k-charges has to fulfil k., — k%f € 27.

Note that from choosing an infinitely fine partition as above follows that if there is
indeed a vertex within interval Z,, there will be none in any of the two neighbouring
intervals. Hence, in the action of the flux € shown in (5.9), the two terms add up the
same charge as it is just one edge that gets split up by 6, — 3,
and not two different ones from one in- and one outgoing edge. This then leads to (5.22).

or 0, + 5 respectively,

We will later also show the implementation of a Gaufl constraint operator in the AQG
framework in Chapter 6, but nevertheless also there stick to the strategy of solving the
Gauf} constraint already on the classical level. This is foremost due to the fact that it can
be solved straightforwardly, eliminating also one pair of canonically conjugate variables

(n, P"). So there really is no need to carry them along any further from this point onwards.

5.2 Quantum dynamics in the reduced LQG model

While the quantisation of Heyue and Hye, is performed along the lines of [164], the transition
to the AQG formalism for the Brown—Kuchar model and the master constraint respectively
can be found in [200, 201]. Again, in terms of notation, we stay close to [163, 164] also used
in [198]. As before, we first regularise the classical expression for the physical Hamiltonian

Hphys in order to be able to define the corresponding operator on Hppys.

First of all and following [164, 196], we start with introducing the SU(2)-valued holonomies,

which we can later use to reformulate Heyq and Hy,,:

he(Z) = exp<73k:0 /Z A) - cos(% /Z A) +2m Sm@ /I A), (5.24)
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h.(0) = exp(uomX) = cos(u2 X) + 27, sm(’%X) and (5.25)

hy(0) = exp(vo7,Y) = cos(%Y) + 27, sin(%Y). (5.26)
Therein, we used

7.(0) == cos ()T + sin 5(0)»  and
Ty(e) = —sin B(0)1 + cos B(0) 7, (5.27)

—1g,,i=1,2,3, with the Pauli matrices o; satisfies

where the su(2) basis 7; = —3

tr; =0 and

1 1
7Ty = — % lsu) + €T (5.28)

One can show the equality of the holonomies’ splits into sine and cosine by using the
easily verifiable identities

1
.. =17 = —ZILSU(Q). (5.29)

Having the action of the basic operators at hand, we can proceed towards the quantisation
of the physical Hamiltonian operator. But not before we address the volume operator,
which will serve as a crucial ingredient of the Hamiltonian constraint operator. We follow
again closely [164, 198]. As starting point, the volume of an arc Z is classically given by

the volume functional
V()= 4n2/ df+/|det E| :4n2/ do+/|EE=EY|. (5.30)
T T

Now, similar to the discussion of the Gauf constraint above, we choose a partition P(€)z
of 7 into intervals Z,, such that we have 7 = U, Z,,. This allows us to rewrite the volume

functional as

Onts ~

V(Z) = 4r? hm E /d9 |EE*EY|(0) 47[2111% / dor/|EE=EY|(0),
€E—> €
In€P(e On—3

IHEP
(5.31)

where we choose the intervals Z,, sufficiently small, that is Z,, = [0,, — 5,0, + 5]. The
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integral can then be replaced by a Riemann sum involving e\/|E E*EY|(6,), yielding for

the regularised volume functional V¢(Z)

VAT) =4" Y VIElleE#[[eE|(0,)

IneP(E)I
On+§ -
=4’ ) |5(9n)|/ E/ By
T.eP(e)1 On—3 On—3

=4t 3 JEOFrl Forl. (5.32)

Inep(e)l

From the first to the second line, we interpreted the two products including € as approx-
imations of infinitesimal integrals and then reintroduced the smeared fluxes F, 7., F, 7,

— now with intervals labelled by n.

We then define the corresponding volume operator as

V(T) =4z lim Y \/(5

nGP 6)1‘

IIR yIn . (5.33)

In the infinite refinement limit, we have at most one 6, in each interval Z, and hence
the action of V(Z) on the basic states states (5.4) in the physical Hilbert space is given
by [164]

VI, k)= > VoIl k, u,v), (5.34)

veV(I'NZ)

where the sum involves all vertices of the graph I' that lie in the interval Z and we have

Beilp’

3
A 472 2
Vo |k, pyv) = E( 5 ) \/}keu ke, [l [Vl [T ey o, ). (5.35)

We can now turn to the regularisation and quantisation of the physical Hamiltonian

Hphys. For this, we construct the Hamilton constraint by first integrating C' over the dust
manifold S:

thys = / dHC(G) = / dﬂ(Ceucl + C]or) = Heucl =+ Hlor- (536)
St St
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We thereby introduced the convenient split into a so-called Euclidean and Lorentzian

part:
Ceua = Oe(illl + Céi)cl + Oéiil
el = — R/;%I \/ﬁ(XExYEy) (5.37)
@ = m’;& ﬁmexw) (5.38)
c® L1 (AEY EY) (5.39)

ewel T B Vdet B
CYlor = C(l) + 01(023 + Cl(jr)

lor

1 (8y)°

1 .
— _ 4
Clor Ax! /—det B (5 0)
1 &2 [9,E®  OpEY\’
() . (i (i
= — — 41
Olor 4/4,/ /—det E ( Ex Ey ) (5 )

@ ._ Ly [ EhE
c¥ = H/&)( o) (5.42)

We will now quantise Hppys, starting with the Euclidean part and continuing with the
Lorentzian one. The final physical Hamiltonian operator will then be taken to be the
symmetric combination that is ﬁphys = %(I:Ieucl +(I:IGUC1>T + Hio,r —i—(I:Ilor)T> as can be seen
in (5.78).

Note that the 7., 7, can also be used to reformulate
E®r, = EYTy + E7» and EY1, = E{1 + Ein (5.43)

of the = and y part of E(0) = £(0)130p + E*(0)7.(0)0, + E¥Y(0)71,(0)0, and as they just
result from a rotation of 7, and 73 in the 2-3-plane — which also explains (5.29) —, it
furthermore still holds that

[Ty Tyl = T3, [1y,m3] =7, and [1, 73] = —7Ts. (5.44)

A difference to the already existing quantisations of the Hamiltonian constraint in
[164, 195] is that here we consider the physical Hamiltonian that at the classical level is
invariant under spatial diffeomorphisms. If we aim at carrying over these symmetries also

to the corresponding physical Hamiltonian operator, then, as pointed out in [58, 118] for
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the usual embedded LQG framework, we need to quantise Hpys in a graph-preserving
way. Going back to the decomposition of the physical Hilbert space Hpnys in terms of
a direct sum of the individual graph Hilbert spaces Hr shown in (5.5), this means that
the physical Hamiltonian operator I:IphyS will preserve each Hr separately, similar to the
situation in full reduced LQG [61]. This can be achieved by using the notion of minimal
loops originally introduced in [63, 64] that we will adapt to the symmetry reduced case of
the polarised Gowdy model here. As discussed in [61], this has the consequence that the
quantum theory involves infinitely many conserved charges that are absent in the classical

theory and furthermore the physical Hilbert space is still non-separable in this model.

5.2.1 Quantisation of the Euclidean part of the physical Hamil-

tonian

+C8 + )

eucl euc

We notice that Ceyq = oW

el , consists of three similarly structured terms.

Hence, we illustrate the regularisation procedure and the quantisation in detail for the
first contribution C") of (5.37) only and then are more brief for the remaining two c?

eucl eucl
and C’e(iil since they can be obtained in a similar manner. As discussed in detail below, the
regularisation chosen here is different from the one in [164] to ensure the graph-preserving
property of the physical Hamiltonian operator ﬂphys. Such a choice of regularisation is,
however, closer to the way how H s will be quantised in the AQG framework discussed

in Chapter 6.

We start with choosing a partition of S} and replacing the integral over S by a cor-
responding Riemann sum of intervals Z, = [0, — 5,0, + §| with S' = U,Z, according
to

qO / o — L [, XOEO)Y(O)E(®)
o euel K BRr Jsr det E(60)
1 X OE )Y (0)E(0)
det E(60)
b X (0)E7(6,)Y (0) E¥(6r)
N iy det E(0,)

In€P(€)

Y

(5.45)

where we used in the last step that the intervals of the partition have length € and can be
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chosen to be sufficiently small. Note that we could restrain ourselves to the integral of 6
over S! since all quantities only depend on 6. Also, we want to point out again our abuse

of notation that is using o = 6 for the (cyclic) dust coordinate o on the dust manifold

St

As the next step and following [164], we use that we can regularise the summand on
the RHS of (5.45) a la

tr((hwh hx‘lh -1 hyhxhy_lhx_l)hg{hg_l,V(In)}> (5.46)
’BBI XY E*EY 2 2 9
k ————(0,) + O(e?, ug, v5),
ololo€ Gl B ( ) (€ Mo o)

where O(e?, u3,v3) denotes all terms that involve at least second powers of either €, p

4n?

or vy respectively. The expression in (5.46) transforms the term we started with into a
straightforwardly quantisable expression of holonomies and the volume functional. This
replacement neglects terms of second and higher orders in € and holds for small X, Y, fI A
as we will see, where the smallness of the latter quantity corresponds to small intervals
Z. Furthermore, tr denotes the SU(2) trace and the LHS depends of course on 6 as well
— we just refrain from writing down this dependency when the formulae become more
elongate. Along the path after (5.30), restricting ourselves to infinitesimal intervals Z,
around #,, of length e involved in the partition P(e) allows us to use the following form

for the volume functional:

V(L) = 42 / 40\/[EE7BY|(6) = dxe\/|EEZEV|(6,)

VIElleE=|leEv|(6 \/!5\

Then, we can compute the Poisson bracket of the #-holonomy and the (infinitesimal)

E:p

In

Ey

I'IL

(5.47)

volume functional, which implies the Thiemann identity:

Ex FE= . .
h@{heil V(I )} _ ,@’/BBI k'07'3 \/)ffn HfIn _ H/BBI kOTg ‘fl—n E fIn E
- 2 VIE] 2 LV(Z,)
_ﬂﬁBI /C07'3€|E ||E | (en) + 0(62). (548)

2 Vdet E

Note that we differ here from [164] by a factor of 4n? while it is in line with [196].
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The formula above already provides E* and EY for the RHS of (5.46). Next, we apply
the approximation of small X,Y and fIn A to the sine and cosine formulation of the
holonomies (5.24), (5.25) and (5.26):

ho(Z,) = 1 + 13k A+ O(%) = 1+ 13koeA(6,) + O(e?), (5.49)
he(0n) = 14 75(0n) 10X (0,) + O(pg) and (5.50)
hy(0,) =1+ 7,(0,)16Y (0,) + O(15). (5.51)

With this, we get
hohyhe " hy ™t — hyhyhy T hy T = 2731010 X (0,)Y (0,) + O (g, 13), (5.52)

where O(u2, ) means terms that involve at least second powers of either p and/or vy
and taking the SU(2)-trace of this expression multiplied by (5.48) yields the result of
(5.46). Note that it sufficed to expand the holonomies’ trigonometric functions up to
first order due to the multiplicative and subtractive structure of (5.52)’s LHS. Proceeding
to the second order in the cosines only yields precisely these terms multiplied by the
remaining holonomies’ zeroth order terms as second order contribution. But these are
then cancelled by the difference of the two products and hence there is no second order
contribution other than the one above. Hence, the regularised expression for the first

contribution denoted by HSI)CIE is given by

82

H(l)»e —
fi%%lkoﬂo’/o

eucl Z tr((hxhyhmilhyil - h‘yhzhyilhmil)he{heia V(In)})
Zn€P(e)

(5.53)

)

The corresponding operator I:ISCl is obtained in the limit where the regulator is removed

U
and where we also take into account that we can define the operator separately for each

graph Hilbert space Hr, yielding

euc eucl 0 eucl,I’

Hep = lim AOF = lim @ HO = P HL (5.54)
r

70



5.2. QUANTUM DYNAMICS IN THE REDUCED LQG MODEL

with

. 872 N N
Ao ¢ <<hxh b h N — hohoh ‘1hx‘1>h [h -1 v])
eucl,I’ ng/ﬁ?kO,UOVoﬁgl e;(r) r Y y Y Y 0170 )

(5.55)

where the operator only acts on vertices due to the fact that the volume operator is

involved — V, denotes the volume operator at vertex v as given in (5.35).

Continuing with the remaining two terms of Céizl and Céiil in (5.38) and (5.39) respec-

tively, we first of all state the corresponding Thiemann identities

E|EY

ho{h, ™ V(Z,)} = _“iBI L1072 (6y) \/%(en) +O(ud) and (5.56)
E|E”

hy{h, 1 V(Z,)} = _“gBI Vo7, (6n) \/%wn) +0(3), (5.57)

which again constitute one part of the terms’ regularisation. In analogy to (5.52), we then
find

hoheho ' he ™' — hohehy " he ' = 2kopioer, (0,)A(0,) X (0,) + O(e*, 1i5) and  (5.58)
hyhohy *he ™ — hohyhe ™ th, ™ = 2kovpeT, (0,).A)0,Y (6,0) + O(%, 13). (5.59)

Combining (5.56) with (5.59) and (5.57) with (5.58), we obtain

4%2 tr((hyhohy "ho™" — hohyhe™ hy ") hu{h. " V(Z,)})
_ K Ber Kojtovoc - AY EEY 0,)
2 Vdet E
1o 0(hoaho™ b = hahoh, ™ ho ™ iy (™ V(Z)})
/ilﬁB[ .AX(S‘EQ:

+O(e?, pd, v2) and (5.60)

(0,) + O, 3, v3). (5.61)

However, to stick closer to [164, 198, 200, 201], we will use slightly different expressions.
This is due to our choice of n &~ 0, which is not considered amongst the literature. Without
fixing 1, (5.38) and (5.39) are modified according to A +— A + Jyn and in order to be

able to regularise the involved derivatives of n one has to work with shifted holonomies of
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the form h, . = h, (6, + e).l However, the latter create new vertices in a given graph and
thus cannot be used if we require the final physical Hamiltonian operator to be graph-
preserving. As discussed above, in the Gaussian dust model this requirement is dictated
by the classical symmetries of the physical Hamiltonian that we would like to implement
also in the quantum model. Hence, if we aim at regularising in terms of shifted holonomies
as well, then we need to consider a shift to the next vertex, that is h, ¢ = hy(0,4¢) Where
& can be chosen to be £ = +1 depending on whether the shift goes into the left or right
direction from 6,,. That we only involve the next-neighbouring vertices corresponds to an
analogue choice of a minimal loop that carries over to the choice of a minimal shift here.
Now, in the former case where the shift involved the regularisation parameter ¢, it was
ensured that in the limit where we send the regulator to zero the size of the shift can
be assumed to be very tiny. This is no longer given if we associated the shift with the
two neighbouring points that will be identified with the corresponding vertices of a given
graph in the quantum theory. Then only for those graphs where the edge length between
two neighbouring vertices can be assumed to be tiny will the regularised expression yield
a good approximation of the corresponding classical expression. Note that this causes no
severe issue here because we will follow the same strategy as used in the AQG framework
[58], although in a slightly different context. For the quantisation of the Euclidean part of
the physical Hamiltonian part we do not require that the regularised expression reproduces
the classical expression directly when we send the regulator to zero. Instead, we call an
operator suitably quantised if for a chosen set of semiclassical states the corresponding
expectation values reproduce in lowest order the correct classical expression. To judge
this in detail, one needs to perform a semiclassical analysis of the relevant operators.
However, even if we do not perform a detailed semiclassical computation here, using the
existing results in [133-135] as well as [2, 3] we can already draw some conclusions here if
we restrict our discussions to the lowest order only. A suitable choice of coherent states
that we can consider here for each classical canonical pair are U(1) complexifier coherent
states that were introduced in [133]. Their expectation values as well as their peakedness
property have been analysed in [134, 135]. From these results we know that in the lowest
order of the semiclassical parameter, corresponding to the classical limit where A is sent to
zero, the expectation value of the holonomy operator agrees with the classical holonomy

and the same holds also for point holonomies. Furthermore, using the results of [2, 3],

INote that the formulae involving shifted holonomies are furthermore geometrically motivated. They
approximate the corresponding curvature within the loops described by the holonomies. Hence the
evaluation on 6 or 6 + ¢ — depending on whether one travelled in #-direction before or not.
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we also know that the expectation values of the operator ﬁ[ﬁ_l, V] agrees in the lowest
non-vanishing order of the semiclassical parameter with its classical counterpart. This
motivates to define for the two remaining parts of the Euclidean physical Hamiltonian

the following operators:

eucl - @ Heucl r and Heucl @ Hgi)cl,l"? (562)
with
0 LS (e e = by eho~h, ) [,
euch EPQHkOHOVOB]%,IQ v, Y x|l 5 Vo
veV(T)
£=+1
(5.63)
and
i LS ((hohahe et = habohae e iy [, )
eucl I’ — EP "ikO/vLOVOﬁBI z,§ T T z,§ y|1'tty o tu) o
veV (T
g==£1

(5.64)

where again the sum runs over all vertices v, we used x'A = £p? and we included an addi-
tional factor of 3 because we considered £ = +1. Further, e = ha(ve) and hy e = hy(ve)
where v, and v_ denote the neighbouring vertices of v to the right and left, respectively.
Taking into account that these coherent states satisty a resolution of identity together with
their peakedness property [134, 135] as well as the results of semiclassical expectation val-

ues for U(1) coherent states of square root operators in terms of Kummer functions [2, 3],
2)

we can conclude that in the lowest order of the semiclassical parameter the operators Heucl

and ngd will reproduce the correct classical limit, that is

(I=2,3)
<\I’(A E,X,E=Y,EY) | Heucl | \DfA,e,X,Ez,Y,Eyﬂ =

— 42 / 46 CD,(A(6), £(6), X(6), E*(6), Y (6), E¥(6)) + Ot €. o, ).
St

where one needs to choose a suitable set of coherent states such that the associated
embedded graphs I' in S! involved in the definition of \Iﬂ(t A£.X.Eey g APproximate St
well enough when the sum over all vertices of the graphs is considered. We would like

to emphasise that we can use former results on semiclassical computations here only
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because we quantised the physical Hamiltonian in a graph-preserving manner — suitable
semiclassical states for graph-modifying operators in LQG are still an open and difficult
question. Note that because we do not perform a detailed semiclassical computation here,
we cannot make any statement about the terms involved in higher orders than the lowest
order one. These can only be determined by computing the semiclassical expectation
value in detail which, however, will not be part of this work. As discussed above, working
with shifted holonomies is motivated by the fact that one needs to regularise the derivative
of n being involved when the Gaufl constraint is not solved at the classical level already.
Since these formulae are still correct for n ~ 0, we will use these from now on, too, and
thus enabling an easier transition between the two approaches. Note that for n ~ 0 we
have 7,(0) = 7 and 7,() = 7> because the §-dependent coefficients in (5.27) are either
zero or one. Furthermore, this choice ensures that the operator obtained from following
a Dirac quantisation procedure for the Gaufl constraint and the one from the reduced
quantisation considered here have the same regularisation. Because in the reduced case
we could also choose a regularisation where the holonomy is located at the same vertices
for all involved holonomies, we realise that such a choice is another example where Dirac
and reduced quantisation would not yield the same final form of the operator similar to
the situation discussed in [202], although the latter shows a stronger difference between

the two cases.

Altogether, this results in

N 8ni

eucl, ' = 75 3
lp /ik‘oHoVoﬂgl ve

V(D)
1 PN ~ N A A o A~ [a N
3 Z <hyh9hy,£_1h9_l - hGhyvfhflhy_l)h” [hx‘l,\/v}
f==+1
53 (ohegho b = hhohog o )iy [y V] ) P
E—+1
(5.65)

where we introduced in addition Pr : Hpnys — Hr, which are orthogonal projections that
ensure that the operator is indeed graph-preserving if for instance two holonomies along a
given edge combine to the identity. As before, V, denotes the volume operator at vertex v,
(5.35). This finishes our discussion on the graph-preserving quantisation of the Euclidean

part of the physical Hamiltonian.
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5.2.2 Quantisation of the Lorentzian part of the physical Hamil-

tonian

Turning our attention to the quantisation of Hj,, we start again with the first part.
According to (5.40) and choosing again a partition of S' such that S' = U,Z, with
T, : [0 — 5,0, + 5], we have

2
1 L d9 (D6€)

lor 4 Vdet F

(6)

4,MOZ/ m)

T,€P(©)
1 Z (6395( n)?

TP det E(6,,)

L 3 <8<9n+e>—5<9n>>2. (5.66)

1
Zn€P(e) =V (Zn)

The last step then also used (5.47) for the volume of a tiny interval Z,, around 6, and
E0, +¢) = E(0,) + €0s€(0,,) + O(€?) for the derivative expression.

The remaining task consists in dealing with the inverse volume involved in (5.66). For
this purpose, we consider the Thiemann identity in (5.48) as well as the two analogue
expressions in (5.56) and (5.57) and use the quantity Z(Z) introduced already in [164] to

obtain
Z(Z,) = eabe tr(ha{hafl, V(Z,) }hb{hbfl, V(Z,) }hc{hcfl, V(Z,) })

3 (kK ’
- 5( 62]31) koporoV () + O(ug, v3, €2). (5.67)

Following [164], we can then derive
Z(Z,) = € tr(ha{ha " V' (Zo) Yo {he ™, VI (T) bhe{ b V() })

3K s -
2 (%) rkoporoV A (Zn) + O(ug, v, €%)

=V L) Z(T,) + O(ug, vg, €2), (5.68)
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which allows us to introduce the following decomposition of unity:

(W' = <3("€531§S/€0M0V0 igzi)l B <3(HﬁBI§S/€0M0Vo>l (7’3VZ3Zg(>In)>Z7 (5.69)

with [ € R. We can now use this identity to eliminate the inverse volume in (5.66).

Setting -
—2)l =-1 = - —— )
(3r — 2) = r 37 3 (5.70)

results in an inverse volume on the LHS of (5.69), which we then insert into (5.66) to

obtain a regularised expression Hl(iz “ of the form:

H(l)76 L _47‘[2 < 16
lor ° Ak! 3(’£5BI>3T31{;OMOVO

3 3l

> > (EOnte) =) Z T)|,ee 2o (BT1)
In€P(e)

(1)

lop 1s obtained in the limit where

As for the Euclidean part, the corresponding operator H
the regulator is removed. We take again the infinite refinement limit where at most on
vertex is in each Z,, and where we also take into account that we can define the operator

separately for each graph Hilbert space Hr, yielding

2 (CONNNE PN < (O KR T (e _ (1)
Hlor - EI_I% Hlor - 1%@ Hlor,F - @ Hlor,F (572>
with
. 4n? [ —\” 16 :
=& Q) (o)
lor,Fl 2 > AR h 3(H5B1>3T3]€0/JJ0V0
2 A
> (ke = ke, ) 2!, Tk ), (5.73)
’UEV(F) —3 3l
where k. , is the label attached to the outgoing edge of the vertex vt and ke, is the
label attached to the edge incoming at the vertex v — i.e. outgoing from vertex v~—.

Furthermore, we used that the operator Zm [164] given by

~

T = et [ e o, 02 574

does not change the labels of the state |I', k, i, v) that it acts on.
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In similar ways, we obtain the respective expressions for the second and third Lorentzian

part:

~ (9 472 [ =i\ 16 :
HI(OB,F|Faka,U7V> = / 3
4K\ h 3(kBe1) 123ko o0

Z (kev + k€v7)4(,uvyv+ - VUNH)QZrz,vl
veV(T)

. 42 [ —i\ ¥ 16 l
i (T, b,y v) == (g) ( 3 5 )
K 3(kBer) r3koptoro

Z ((kev+ + kev) (kev++ B kev) ZT,UJ

veV(T)

o, Lk ey (B.75)
2=3y

— (ke, + ke, ) (ke , — ke ) Tor!

=373

, I)IF,k,,u, v)  (5.76)

where v denotes the subsequent vertex after v*. Note that we evaluate 7 within the

. . (2 .
second contribution HI(OB r on a different value of ry = % — %

With that, the Lorentzian contribution to I:Ip}lys reads
Hior = @ ﬂlor,F = @ ﬂfﬁﬁr + ﬂl(gr)r + ﬂfffr (5.77)
r r

and the physical Hamiltonian in the reduced loop quantum gravity Gowdy model finally

takes the following form:
N A 1 N A N A
thys - @ thys,F = 5 @(HGUCI,F +(Heucl,I‘)T + Hlor,F + (Hlor,F)T> . (578)
T I

This finishes the discussion on the quantisation of the physical Hamiltonian of the Gowdy
model in the reduced LQG framework.
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Chapter 6

Quantisation of the model with
polarised T? Gowdy symmetry
within Algebraic Quantum Gravity

As discussed in the previous Chapter 5, we needed to quantise the physical Hamiltonian
in a graph-preserving way in order to carry over its classical symmetries to the quantum
theory. In the case of reduced LQG, this corresponds to a quantisation that preserves
each graph Hilbert space H, separately, yielding infinitely many conserved charges in the
quantum theory that are absent in the classical theory. An alternative framework for the
quantisation of these kind of operators where the graph-preserving feature of operators
are implemented in a slightly different context is the algebraic quantum gravity (AQG)
approach introduced in [58] and combined with a reduced phase space quantisation for
full LQG in [61].

6.1 The physical Hilbert space in AQG

Here, we want to follow this quantisation approach in the symmetry reduced case of Gowdy
models. One of the main difference is that AQG considers only one abstract infinite graph
a, whereas we had to include infinitely many finite embedded graphs I for reduced LQG.
The underlying Hilbert space in AQG is von-Neumann’s infinite tensor product Hilbert
space denoted by Hirp so that the physical Hilbert space in the AQG framework is

79



CHAPTER 6. QUANTISATION OF THE MODEL WITH POLARISED T3
GOWDY SYMMETRY WITHIN ALGEBRAIC QUANTUM GRAVITY

Hpnys = Hrrp. The topology of the abstract graph is chosen to define the corresponding
AQG model and here this means that for the analogue of a Gowdy state’s LQG-graph
like the one of Figure 5.1, we need to rearrange it to a line with the same number of
charged vertices vy, see Figure 6.1. To the right of every vertex v, the outgoing edge e, is
attached and hence, the respective incoming edge at vertex v is e,—. The charges k., 1,
and v, are then assigned correspondingly, with the only non-straightforward assignment
being the one of edge e,,, incoming at vy, which we have to charge with k., , the charge
at the edge e,,, in order to preserve the cyclic structure (cf. Fig. 5.1). All other edges
and vertices are trivially charged and therefore do not contribute when operators such as
the fluxes act on them. Note that Figure 6.1 shows again dashed miniature loops at the
charged vertices representing the point holonomies in order to emphasise that they are

not in fact holonomies along edges.

Vinn M1 ki V2o M2 ky V3 o H3 k;3 Vo 4 ky Vs o) Hs k5
/ /

VY Ly VY
\{/ \‘/ \(/

ks U1 €1 U2 €2 Us €3 Uy €4 Us €5

Figure 6.1: An abstract infinite AQG-graph, corresponding to the embedded one of
Figure 5.1, with five vertices on which two point holonomies sit and six charged edges,
where the most leftward one — the copy of k5 — ensures the state’s periodicity. Here,

to keep the notation more compact, we used k:evl =: kr, by, =t py and v,, = vy.

In general, dynamical operators can be carried over from the embedded LQG frame-
work to AQG if they are spatially diffeomorphism invariant. In the case of the Gowdy
model, this corresponds to operators that involve integrals over the dust manifold S*. All
operators — including the physical Hamiltonian — will be implemented graph-preserving
by construction, but one of the differences to the reduced LQG case is that in AQG we

allow trivial representations on the edges of the infinite abstract graph «a.

Following the approach in [58], the holonomies, states and fluxes are introduced as
follows. To each edge of the abstract infinite graph a we associate an U(1) element
similar to the holonomy in (5.1) for reduced LQG, but with the difference that here we
do not express the U(1) element in terms of an integral along the edges but we associate

to a given edge e of the abstract graph « the U(1) element

Ak (A) = exp <1%Ae>, with A, € R. (6.1)
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Given this, we can define the analogue of the basis state in LQG shown in (5.4) now in
the AQG framework as

ke v - v
la, by, v) = H exp (i;Ae) H exp(i’%X,J exp(ng;), (6.2)
ecE(a) veV ()

where for the point holonomies we introduced the notation X, := X (v),Y, := Y (v). The

holonomy operators act on the AQG basis states |«, k, i, v) in the following way:

o k
hgjo)(A)|oz, k,p, vy = exp (1?0./46[) o, ky pw,v) = ke, + ko, iy v), ko €Z (6.3)
hE (X)), k, 1, v) = exp (1%){1},) |k, v) = |k, pro, + po,v), o €R - (6.4)
. v
hq(;(’)(Y)|oz, k,u,v) = exp <i§0YW> la, by, v) = |ay ky vy, +10), 1o € R (6.5)

Because in the AQG model there is only one abstract graph «, we will from now on
neglect the label for the graph and denote the basis states just by |k, i, v,). Note that
we can recover the classical expression for the U(1) holonomy from the operator i}é’j‘))(A)
by considering semiclassical states that encode in addition to their classical labels in the
AQG framework also information about how the abstract graph « is embedded into a
given spatial manifold from which an integral along the embedded edges involved in the
classical holonomy can be rediscovered, see the results in [59, 60] for the case of the master

constraint operator.

The main difference for the fluxes, in turn, is that they can now only act on vertices as

there are no embedded edges at hand anymore. Therefore, the elementary flux operator
within AQG read

B 5]31£p2 kev + kev_

é‘v|k7u7lj> - 2 2 |k7:u7]/>7 (66)
- _ Peilp®
Fozk, p,v) = 5 ok, p,v) and (6.7)
A V2
Pyl ) = P8 ), (6.9

where k., is the at vertex v outgoing edge’s U(1)-charge and k. _ the incoming one’s. Note
that this trivial continuation from LQG to AQG is possible by choosing the occurring
smearing intervals in such a way that they contain one vertex at most: the interval Z,

of (6.7) and (6.8) includes solely vertex wv.
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The volume operator can be transferred to AQG as straightforwardly as for the basic

operators themselves and we get

Vi= Y V=42 Y \/év Foro| [ Funl (6.9)
veV (a) veV (a)
with its action on the AQG states (6.2)
\ |kuy>:4_’T2<5BI£P2)3\/|k + ke, [l vl |, ) (6.10)
v 9 Y \/§ 2 €y ev_ v v 9 ) * *

To complete the discussion on the Gaufl constraint, we also briefly present how to
implement a Gaufl constraint operator in AQG. This can be done quite directly as well
by considering the LQG Gauf} constraint (5.21) that had the form

—

Gy =

KJ’;BI ?L%In;(e) (5 <9n + %) - 5(9n - g) + ﬁn,zn), with 6, € Z,.  (5.21)

In AQG, we need to implement the operator such that it acts on the vertices of the

£

2
vertex of v, and, accordingly, 6, 4 5 with vertex v*, the right neighbouring vertex of the

abstract graph « only and thus we associate 6, — < with vertex v~, the left neighbouring

vertex v. This way, we obtain the following AQG version of the Gaufl constraint operator:

— 1 R A A
Gilk. o) = S (gv+ — & +f,7,zv> Ik, . v)
BI veV(a)
gPZ kemL + kev - kev, - kev,,
= 7 ( 4 —|—)\v |/€,/L,V>, (6.11)
veV (o)

where v~ denotes the second vertex to the left of v and we also had to insert the AQG

version of the flux conjugate to n:
fn,ev|k7/'l’7 v, )\> :/BBI£P2)\”U|]{;7/’L7 v, )\> (6].2)

In contrast to the interval Z,, in LQG before, the edge e, in AQG can only contain one
vertex at most, so there is only one contribution within the action of %, .,. The action of
the Gauf3 constraint on the basis states |k, i, v, ), in turn, does differ more from its LQG

counterpart because for the part involving the flux operators & here the two neighbouring
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vertices of v are involved. The solution of the AQG Gauss constraint being the equivalent
to (5.23) in LQG then reads

kev+ + kev - kev_ - ke __

Ay = — 1 — Vo (6.13)

We see that solving A, to obtain solutions to the Gaufl constraint does also constrain k., .
In contrast to the LQG case where only the charges of the neighbouring edges of v were
involved, we now have a condition depending on the two after next neighbouring ones as
well. And without contributions from same edges adding up, as it was the case in LQG,
the denominator remains to be 4. This finishes the considerations on the Gaufl constraint
and we close with the remark that for the work at hand, the Gaufl constraint will be

solved on the classical level.

6.2 Dynamics of the model with polarised T° Gowdy
symmetry in AQG

In the following subsection, we will briefly discuss how the physical Hamiltonian operator
that was so far quantised in reduced LQG can be implemented in the AQG Gowdy

quantum model.

6.2.1 Quantisation of the Euclidean part of the physical Hamil-
tonian within AQG

We can now straightforwardly transfer the Euclidean part of the physical Hamiltonian
operator in (5.65) to AQG by means of the previously stated AQG holonomy operators
(6.3), (6.4) and (6.5) as well as the volume operator (6.9). For this purpose, we define the

A0/
following class of operators On/v " for r e R,v € V(«a) according to

~ 0 Aev A v Aev AT -Aev

O,, 55 V, sin 5~ sin— V, cos 5 (6.14)
N X’U AT XU XU AT XU

0,., = cos -5 V, sin — s~ V, cos Y and (6.15)
A Yo or . Yy Yo or Y,

Of,'u = o8 — V, sin - —sino V, cos 5 (6.16)
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where we used the decomposition of the holonomies into sines and cosines (equations
(5.24), (5.25) and (5.26)) offering an alternative, more concise description of the final
operator. Now we can substitute the LQG expression involved in the first part of the
Euclidean part in (5.55) by the following AQG analogue:

~

tr((ﬁxﬁyﬁx_lﬁy_l - ﬁyi}xi}y—lhx—l)ﬁg [i}e—l,\?UD A 2in X, sinY,0,.  (6.17)

The second and third part of the Euclidean part of the physical Hamiltonian shown
in (5.63) and (5.64) entail similar terms with shifted holonomies. Hence, their AQG

expressions are of the following form

tr(((hyhohye o™ = hohycho™ hy™ o[ V| ) 225 ~4sin 5 cos 2 sin A, O],
(6.18)

tr( (hohaehs™ ™ = hahohaeho™ )iy B,V ] ) £ —4sin —Ecos Trsin A, O],
(6.19)

Therein, X,, = X(v¢) and Y,, = Y(v¢), where ve is v* for £ = 1 and v~ for { = —1

denoting the two neighbouring vertices of v to the right and left respectively.

With this, we can write the Euclidean part of the Hamilton operator in AQG in a form
that is more concise and allows for a more compact evaluation of the corresponding action

on the Gowdy states later:

I:Ieucl = Z I:Ieucl,w (620)
veV (a)
with

i 4 in X, sinY,0; + (6.21)

eucly ‘= — sin X, sin Y, 0, :

b K lp2ko oo B b
1 K) Yy . AL . Xv X’U . A
+ 3 Ezﬂ (2 sin 75 cos - sin A, Oy, + 2sin TE cos —-sin A, Olll’v>] :
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6.2.2 Quantisation of the Lorentzian part of the physical Hamil-
tonian within AQG

With all the contained quantities depending on holonomies, fluxes or the volume, we can
quantise the Lorentzian part of the physical Hamiltonian that was discussed for the case
of reduced LQG in 5.2.2 straightforwardly and also directly in the AQG framework. We
then obtain for the first part the following expression

iy = > Hi (6:22)

veV (a)

with

) 472 [ —i\¥ 16 Lo N2,
Hl(OII)‘,’U = _i/ (_1> ( 3 3 ) <8U+ - 81}) Zr,vl
A"\ h 3(kBe1) r*koporo

(6.23)

where we introduced

Ty = eathr(iza [ha—l,vv} Iy [ﬁb—l,vv} he [B;l,\?v]) = —120.,00,0,,  (6.24)
as the equivalent of (5.74). In the semiclassical limit here the intervals corresponding to
7, in the reduced LQG case will be vertex-labelled intervals Z,.

This procedure can now be applied to the second and third part of the Lorentzian part
of the Hamiltonian, (5.41) and (5.42), that also act on the vertices only and thus we just
present the operators for the individual vertices v. As the second part contains derivatives

of E* and EY, the according fluxes ﬁmg and ﬁy,_’[ will appear. Ultimately, the results read

l. 2,

A ~ A

_4m? -\ 3l 16 4 L t
Hlor,v = m(?) <—3(55BI7’2)3k0N0V_0> gv (fx,L,fy,Ier - fyazvfl‘,l-v+> ng,v Tzzg—% and
(6.25)
23 g3 16 ‘e (¢ e ) ot = & (Enr — E0) 20!
o = 2 ()" (ot ) (6 (Es = 602, = & (6 - £)2.)) is
(6.26)

In accordance with [198, 200, 201], the second part was quantised in a different manner

than in [164]. While the latter introduced the inverse flux to cope with the denominators
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E* and EY appearing in (5.41), the alternative route leading to the quantisation above
uses

1 EYE 1 E*E
—=——— and —=——, (6.27)

7 ey " P (s

leading to the volume squared as denominator. Therefore, we can insert a new (1)" for
which 5 s

- _ = 6.28

2T3T (6.28)

holds and resolve the inverse volume squared in the same manner as for the inverse volume

before. Lastly, we set up =1 = 1.

Finally, the physical Hamiltonian operator now reads altogether

1 . . . )
phys == Z thysv = 5 Z <Heucl,v _|'(I—Ieucl,v)Jr + Hlor,v +<Hlor,v)T)7 (629)

veV (a veV (a)
with

Heucl + HlOY - Heucl + I—Il( 3 + Hl(oz + Hlor Z <HeUC1 vt Hl(oz v + Hl(oz v + Hl(oz v)
veV (o)

4i R
= Z {_ 1 . [SiansinYUO(iv—l—

vEV(a) K%PQkONO VOBBI

+ = Z (ZSln—cos L smAevOM—i-Zsm T os X smAeUO )]
2540

l 2
_4n? 16i AN
Ar’ <3KP(’,BBIT5I€OHOVO ) <5v+ 51)) Zr v

l . 2
161 T 7 l
( 0pO B s koovo ) g” <,/—"$ Ly ‘F?/ L+ ‘F?J ‘F Z,+ ) ZTzJ

l
16i 5 5 5 . l 5
(W 6ku) (5U+ <€U++ . aﬁ)zw+ . aJ(

1

—2_
3 3l

u>|4>

|>J>

Comparing the results for the final physical Hamiltonian operator in reduced LQG in
(5.78) and for AQG in (6.29), they reflect again the underlying difference of the way

graph-preserving operators are implemented. For reduced LQG, these involve a sum over
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all possible embedded finite graphs I' and the operator preserves each graph Hilbert space
Hr separately, whereas in AQG the operator involves a sum over the vertices of the
abstract infinite graph «. This finishes the discussion on the quantisation of the physical
Hamiltonian of the Gowdy model in the AQG framework.
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Chapter 7

First steps in applying the AQG
Gowdy model

In this chapter, we present first steps in applying the AQG Gowdy model derived in
the former chapters of this part. In particular, we want to discuss the Schrodinger-like
equation that encodes the dynamics of the quantum model. For this purpose, we compute
the action of the physical Hamiltonian ﬂphys on the basis states and due to its complexity
we will discuss the individual parts of the Euclidean and Lorentzian contributions to I:Iphys

separately.

7.1 The Schrodinger-like equation for the AQG
Gowdy model

Given the physical Hamiltonian operator in the AQG Gowdy model ﬁphys in (6.29), we
can take it as the starting point to derive the corresponding Schrodinger-like equation
encoding the dynamics of the model. For simplicity, we will restrict our discussion to the
case where we choose £ = 1 only and neglect the contribution coming from & = —1 in the
sum in (6.30) in the Euclidean part because such a restriction will not be very relevant
for the applications discussed in this section but simplifies the individual formulae. To
ensure that the semiclassical limit is still correct, we need to add an additional factor of
2 here that cancels the factor of $ in front of the sum over £ in (6.30). Carried over to

the reduced LQG case, such a restriction can also be understood as a slightly different
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regularisation of the operator where the shifted holonomies involved act only to the right
hand side of the vertex v but not to the left. As discussed above, in the definition of ﬁphys

we choose the symmetric combination of the individual parts, i.e. we have

A~

1/ ot -
thys = 5 <Heuc1 + Heual ) + H10r7 (71)

where we already used that Hyo, will turn out to be symmetric and thus we only need
to consider the symmetric combination of I:Ieucl. We can directly see this by calculating
the adjoint version of ﬂeucl. While the contained trigonometric functions sin X, cos X,

sinY, etc. are self-adjoint due to

T
(sin X,)" = (% (e — e_iX”)) = —%(e_ix” — ™) =sin X, (7.2)

~ 0

the class of operators Orix/

”is indeed not. Rewriting (6.15) as

X Xy or . X . Xy or X 1/ iy o i iy oer i
0O,, = cos —V, sin — —sin =2V cos — = — (e 2%V e2¥v — 2%V 2% ),
’ 2 2 2 Y 2 2i v Y

which we will also later use to compute the action of the physical Hamilton operator on

the basis states, we obtain

AT T 1 i AT 1 i AT @ AT
(O ) = ——.<e*§X” V, e — eV, e’ﬁx”> =-0,,. (7.4)

v v

Altogether, this results in

- 4i A0 . Az Y, Y,
(Heuch)T S ETRCTINCEY (Ol,v sin X, sin'Y, + 20, , sin T+ cos —- sin A, +
A Xy Xy .
+ 20?11) sin 2+ cos 7” sin Aev) : (7.5)

It is then straightforward to see that this acts differently on the states |k, p,v) than
Heuel,o does (cf. (6.22)): The trigonometric functions, which act first in the adjoint version,
increase or decrease the charges (cf. (7.2)) and the volume operator within the class of

~ 0 N
operators Ol,/,: v then reads out different charges than the non-adjoint Heye,, does.
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The increasingly long expression for ﬁphys can, however, also be reduced by one of its
®3)
lor

contributions. Namely, via the action' of H,,. on the basis states |k, i, )

—2_ 1
T=3773]

§:4ﬁ@ﬂg< 1 )l

4K’ 2r3ko o

A (3) 4 (3)
H10r|k7lu’7y> - Z Hlor,v|k7uvy> =
)

veV (a veV (a)

' {(k ) (ke = k) - [ (o 115 = it = 10%) (v + 1% = s = 112)

r r l
2>|:uv+|r‘yv+|r‘keu+ +k6v ] -

- (keu +keuf)<kev+ - k:evf) ’ [('Mv + 1’% - |Mv - 1|%> <|Vv + 1|% - |Vv - 1|%>

’“}l}ww, v, (16)

e e

(e 11 = e+ e = 1[F) e+,

we conclude that this expression vanishes: The minuend and the subtrahend of the differ-
ence within the curly brackets are structurally the same and only differ by the contained
charges’ indices via v — v*, v +— v and v — v, meaning that each vertex is mapped
to its left neighbouring one. By taking the sum over all v € V(«a), i.e. the sum over all
vertices of the graph «, this becomes a telescope series. Reminding ourselves that we
implemented boundary conditions such that we mimic also in the AQG case the situation
to sum along a closed circle as it is done in the reduced LQG model, we realise that the
first and last contribution of the series then are the same which means as a result that

the telescope series sums up to zero. Putting it into formulae, let us write this in compact

form as
(7.6) = 3 (W, — b3, )1 ), (7.7)
veV (a)
where hl(jr) -+ represents the respective minuends within the curly bracket of (7.6) and hfgr)m

the corresponding subtrahends. Now, assuming the abstract graph has N edges with non-
trivial representations on the edges then via the difference within the summands of the
series in (7.7), all contributions but the ones for the first vertex v; and the last one vy
appear twice and in particular with different signs. Hence,

(77 =h® ¥ (7.8)

lor,un 41 lor,vy

"'We describe the action of the main components on the basis states in more detail within the next
subsection.
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and as the definition of the abstract Gowdy graph involved periodic boundary conditions
3)

such that the vertices vy.; and vy are identified, this results in the contribution of H,,,

to vanish. This means that the final physical Hamiltonian reads

A 1/ A A1) | ()
thys = 5 (Heucl +<HEUC1)T> + Hlor + Hlor : (79)

7.1.1 Action of ﬂphys’s main components on the basis states

|k, p, v)

In order to make future calculations easier and provide a concise overview, we will now
state how the main components of ﬂphys act on the basis states |k, u, ). We start with

the trigonometric functions

sin A b, 0) = o (b, +20,0) = ke, = 2,,0), (7.10)
cos A, |k, p,v) = %(\k‘ev +2, 4, v) + ke, — 2, 1, 1)), (7.11)
sin X, |k, p,v) = %(U{:,Mv +2,v) — |k, o — 2,1)), (7.12)
cos Xk, p, vy = %(\k,uv +2,v) + |k, 1y — 2,1)), (7.13)
sin Y, |k, p, v) = %(U{:,u, Vo +2) — |k, v, —2))  and (7.14)
cos Yylk, p,v) = %(\k,u,uv+2>+]k,u,yv—2)) (7.15)

that we used instead of the actual holonomies. To have a complete list, we also recap the

fluxes’ actions

5 g 2 kev - ke —
Elke, p, 1) = 531; [k v) (6.6)
i _ Beilp?
x7Iu|k7“> V> - 2 Uv|k7 H, V) and (67)
. (p2
Fymlbo ) = P2 ). (6.9
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~ 0
Then, for the class of the Orf/y operators, we get

%_ ‘kev _1+kev_

bl 202, 1, ),

(7.16)

3 r
~ 0 . 1 gpgﬁgl
OT7U|I€,ILL,V> = Z<T (}keu +1+kev_

(1o + 112 = Jpto = 12 ) | Pk, ) and

3\ T
A 1 [ 0p332
Or,v|k7/vl’7 V> = Z( P4BBI> |kev + kev—

(7.17)

3 r
AY 1 €p35§1 % T r r
OT,U|k7M7V>:£ 4 |kev+keu*‘ |MU|2<|VU+1|2 _|VU_1’2>|]€7M’V>> (718)

where we used the action of the volume operator according to (6.10). And lastly,

r\ 3l
. 1 [ tp3 3/2
T |y g, 1) = (—12)" (5 (%) > [(‘k‘e 14k

(o + 115 =l = 112) (o + 15 = oo = 112 [k, + e

F e, = U |):

T T r l
") T 1, ).
(7.19)

The individual action of these operators will be used in the next subsection where we

discuss Gowdy states in the AQG framwork in more detail.

7.1.2 Gowdy states in the AQG model

We briefly discussed at the beginning of Chapter 6 how the symmetry reduced Gowdy
model can be carried over to the AQG framework. Because the physical Hamiltonian
operator ﬁphys also involves the adjoint (ﬁeucl)T, we need to discuss in more detail how we
can perform an adaption of the AQG-graph we consider. Due to the appearance of (IDIeud)T
within I:IphyS and its action on |k, u, v), we allow only those states in the model that have
only a finite number of the infinite number of edges with non-trivial U(1)-charges k., , the
remaining one carry trivial representations. The action of the physical Hamilton operator
ﬂphys of (6.30) on trivially charged vertices vanishes as there is always an operator of the
class Oi’/f/y acting first. Taking a look at their action on the basis states ((7.16), (7.17)
and (7.18)), we see that they vanish on trivially charged vertices — cf. (6.10) to see that

it suffices that one of k., = _k%—> iy = 0 or v, = 0 holds.
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This changes for the action of the adjoint operator (Heua)!, (7.5). Its first term acts with
sin X, sin Y, before o

~0 T T
Hence, OLU returns a non-zero value that is, i.a., ~ |kev +1+ k%— }2 — ‘kev -1+ k%— ’2.

1 thereby charging the two previously neutral charges p, and v,.
This still vanishes for vertices v with trivially charged neighbouring edges e,, , and e,,.
But taking a look at Figure 6.1, we see that vertex vy, — which is trivially charged by
means of Keoyo, = 05 poy,y, = 0 and vy, = 0 — has also e, as neighbouring edge for
which, i.a., k., ~# 0 holds. Therefore, (ﬂeucl,v)ﬂk,uw} does not vanish for v; = vyi1.
However, we can fix this by fulfilling the condition k., = —k, _ to obtain a zero eigenvalue
and set k = —ke,, . Consequently, to have all the following trivially charged vertices

to have va?u;hmg contributions as well, we need to set keUN+2 = —ke,y,, = ke, and
so forth, i.e. all edges e, > N, are charged with k., - (—1)17N. Figure 7.1 illustrates
these new states and Figure 7.2 does so for an embedded graph. The embedding is done
by creating two additional, trivially charged vertices v' and v” between vy and v; and
mapping all edges that are charged with —ky to the edge between v and v”, while all
edges that are charged with k., ~are mapped to the edge between v” and v;. Note that
the latter take over the role of the previously k., -charged edge ey to the left of vy (cf.

Fig. 7.1).

Note that all the above is not the case for the other two contributions of (ﬂeud)f:
Besides sin A, , only trigonometric functions of either X, or Y, act before (A)i’v or Ofv
respectively. Hence, via their action according to (7.18) and (7.17), O‘ll/)v contributes with
a value ~ |1, + 1|2 — |y, — 1|2, where the charge 1, = 0 is still the initial neutral one.

The same holds for C)TU and p, = 0 and we do not need to perform further adaptions.

7/1 \/\,LL]_ kl Vzl\/ /«LZ kQ 7/3‘\/ ,LL3 k‘s V4|\/ ,U/4 k4 VGl\/\ILLS k:5

—ks ks v1 € vy €2 vz € vy €4 VU5 € —ks ks

Figure 7.1: The abstract infinite AQG-graph of Figure 6.1, now also ensuring trivially
charged vertices not to contribute via the action of (I:Ieud)T — as guaranteed by
alternating charges £k on the previously uncharged edges ey, I > 5. To keep the
notation more compact, we used k:evl = kr, fty, = pr and v, = vy.
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12 3
3 /l{ k?2
(g4 Vo
v
€3 Vg %
Ha k
)
Vy(y V4 €1 1
141
]{34 €4 U1 \\)
“H1
H5("9V5 ks
Vs
es "

ks v —ks

Figure 7.2: An embedding of the abstract infinite AQG-graph of Figure 7.1, which also

A

ensures trivially charged vertices not to contribute via the action of (Heucl)Jr — as
guaranteed by the new uncharged vertices v" and v” and the new ks- and —k5-charged
edges around them, compared to Fig. 5.1. To keep the notation more compact we used

k‘eUI =: kr, by, = py and v, = 1.

Having found a suitable form for the basis states |k, 1, ), we can now address the states
|W)(7) that we will use for writing down an ansatz for the solution of the Schrédinger-like

equation of the Gowdy model given by
.0 A
th— V(7)) = Honys [¥(7)) (7.20)
-
later on in Section 7.2. For the state |¥(7)) we use the following separation ansatz:

(W) (7) = [0k, ) [X(7)), (7.21)

where we put the dependence on the physical time 7 completely into x(7), while that
quantity, in turn, does not depend on k., i, or v, and solely |p) does. Our ansatz for

|©) then reads

o)=Y 3N Crpulkpv), (7.22)

keZN pyem ven

whose structure we illustrate in the following in more detail along the lines of [198].
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In the above, N is the number of vertices and k, p and v are multi-labels: k& :=

(Bey, s s Keyy )y 1= (Hoys ooy foy ) and ¥ = (Vyy, ooy V). Lastly,

Ck,,u,u = Okevl,.. (723)

'7k€vN sHvy e o g s Vog 50y Vo

are coefficients that depend on all k-, - and v-labels. While k takes values in Z”, the

sets m:=mq X ... X my and n :=ny X ... X ny allow slightly more flexibility:

My, = {fly, +p | p € Z} and n,, = {v,, +p | p € Z} with fi,;,7,, € R Vj € {l,...,N}
(7.24)

To motivate this choice, we have a closer look at the point holonomies and take the
one of X as an example. Within its expression exp (% po; X, ), fho; € R labels the specific
irreducible representation of the Bohr compactification Ry, for each vertex vj. The cor-
responding Hilbert space Hf,i = LZ(EBOM, diiBonr) consists of square integrable functions
f over Rpop, with respect to its Haar measure dupen,. The inner product in this Hilbert

space reads

+R
(lo) = Jim 5 [ def(e)gla) (7.25)
“R

wherein f* is the complex conjugate of f. Now, using (z|p,,;) = exp (41,,2), we find the

inner product of two basis states to be

+R
oy L Y
(o 14 o= Jim e [ o 07—, (7.26)
-R
with the Kronecker delta 5,%_ ., » and also deduce the completeness relation
J
STl om,) = Lo (7.27)
Moy €em;

Therein, p,, € m;, which is a finite subset of R. And it has to be a finite subset in order

for a state

HY208) = D culimy), (7.28)

Mo €m;
with arbitrary coefficients Cuy,;» tO be normalisable — i.e. allowing it to be an element

of the Hilbert space after all. When it comes to our applications of the Gowdy model,
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however, we need to fall back on formal states, whose labels can take values in infinite
sets. The reason being that some of the operators we have to deal with will map out
of an otherwise finite set: While the Lorentzian part of the physical Hamiltonian acts

diagonally, we notice the Euclidean part (6.22) to contain the operators

sin(ij) = %(eiu;j 2Xo; e_i¥'2ij> and sin(YUj) = %(eiygjayvj — e_iygj 2Yo;
(7.29)
Clearly, those do not act diagonally and with the following operator (A)iv in (6.22) acting
again diagonally, we do have an overall non-diagonal action. If we now choose the labels
of the point holonomies to take values from a finite subset, say m’ = n’ = u x ... X u
with u = {8,27,2022}, the above operators of (7.29) will map a value 16 of one of the
labels of a state i.a. to the new label 27 + 2 = 29 ¢ u. This problem clearly exists for
any choice of finite u. Therefore, we have to choose infinite sets for the labels’ values,
where the individual elements are separated by steps of £1 — note that the physical
Hamiltonian (6.22) also contains the above operators with their arguments divided by
2. Without having any constraint on “where” this sequence starts, we can choose an
arbitrary value fi,, € R to construct the set m,, = {fi,, +p | p € Z} > j,, and similarly
for all other vertices. For symmetry reasons, we get the same for the Y point holonomy
and its labels v,;, while for the k-label we have to choose full Z itself. This leads us to
the initially stated definition (7.22) with (7.24). However, this infinite linear combination

of the basis states is a rather formal ansatz as its norm

ley=lel>= >33 >3 3> (Chpw)" - Corgoar (b |k 1 V) (7.30)

kezZN pem ven k'ezN p'em v’ en

=D D D Gkl (7.31)

keZN pem ven

diverges. We will need these extensive states for the beginning, but when it comes to zero

volume eigenstates, e.g., we will also find states with finite norm (cf. Subsec. 7.2.1).

7.1.3 Action of the physical Hamiltonian ﬂphys on the ansatz

states

We will now state the action of Hpuys on the state @) given in (7.22). As the final result

(7.39) will be rather long, we start with presenting the actions of He,,q and (ﬂeucl)T as well.
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This is furthermore convenient since we will later also use them individually. According

to the action of the operators on the basis states as listed in Subsection 7.1.1, we obtain

euc1|90 Z ZZZC]{)#U eucl,v >

veV(a) keZN pem ven
-y ¥ ZZ%HCIOW{(\/ e b, 1] = e, + ke, — 1|>\/\uvva|~

veV (a) keZN pem ven

[ o+ 2,0+ 2) — + 2,0, —2) — — 2, —z,yv—2>]+
T+ e[l (VI 11 = Iy = 11)-
‘[/{Zev+2,/L,Vv+1,VU++1>— Koo + 2,11, v + 1 vgs — 1)+
+ ke, + 2, 1,00 — Lvpr + 1) — ke, + 2, v — 1, vs — 1)—
— ke, = 2,0 + Lvr + 1) + |ke, — 2, 00 + Lvs — 1)—
ke, = 2, v — Lvgs + 1)+ kev—2,u,yv—1,l/v+—1>}—|—
P+ ke, el (VIo #11 = /e = 1)
~[l{:ev+2,uv—|—1,uv++1,u>—‘kev+2,uv+1,,uv+—l,l/>+
+ ke, + 2,10 — 1, pror + 1,0) — |key +2, 1 — 1, pror — 1,0)—
— ke, = 2,10 + 1 ptor + 1,0) + |key — 2, pto + 1, ptor — L) —
ey = 200 = 1+ L)+ ey — 2, gy — 1, s — 1,y>}} (7.32)

and likewise

eucl |90 Z Zzzck,uy euclv }k M7V>

veV (a) keZN pem ven

Y Zzﬂeudcw{ <\/

veV (a) keZN peEm ven
' [\/‘Mv + 2HV1) + 2aVv + 2> - \/“Lv + 2HVU - 2‘|k7ﬂv + 2>Vv - 2>_

— Ve =2l = 2,0, +2) + /ity — 2w — 2|k, = 2,0 — 2) |+
+ (\/’Mv+1’_\/|uv_1|) |:\/ kev+2,M,Vv+1,VU++1>_

_ \/‘kev + ke, + 2“% + 1|‘k:ev + 2,0, v + L v — 1)+

ke, + ke +1] —\/

key + ke, — 1|>

ke, + ke, +2||vy + 1
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+ \/|k:e ke 42wy = ke, + 2,00 — Lvr +1)—

ey + ke, 2|l = Uk, +2, 10— L — 1)

_ \/|kev + ke — QHVU + 1||kev = 2,0,V + 1, s + 1)+

+ \/|k:e ke = 2||vo + 1|ke, — 2, ptyvs + L s — 1)—

_ \/Ikev b ke = 2|V + ke, — 2, 1, v — Lvgs + 1)+

TR, + Ko, =2l ke, = 2, 1,0 = Ly — 1)+
+ (VI 1= Ve = 10) [ e+ e+ 2+ ULk, + 2010+ 1, s + 1)

_ \/|ke ke 20 + 1 |Key + 2,10+ 1, e — 1 0)F

e b+ 2l = [y + 200 = L + 1,0)—

- \/lkeu + kev, + 2“#1} - 1||k:61; + QaMU - 1,Mu+ - 17V>_

= e+ B, = 2+ 1 key = 2,00+ 1 s + 1, 0)+

o e by = 2l + 1k, = 2, g1+ L — 1)~

- \/lkev +kevf - 2“,uv + 1||keu - 27;“1} - 17,uv+ + 1’V>+

+ \/|k56v + ke — 2“% + 1erv — 2, phy — 1, ply+ — 1,V>]}

(7.33)
Therein, we defined
lp
eucl = . 7.34
K 1 8/{//5]313/2]{:0,[/60]/[) ( )
Note that we always collected the generated states in squared brackets [...] to provide

some clarity within the long formulae. Also, we could have structured the formula above
differently and especially combined terms with the same charge-dependent prefactors —
like every pair within the series of eight states in (7.33). We refrained from doing so as the
structure, as it is, offers an easier overview of the created recharged states. Lastly, we want

to point out the first collection of newly created states in (7.33) that all have prefactors

~ /|pto £ 2|V £ 2|. These are precisely the states that do not vanish if acting on trivially

charged vertices and thus forced us to redefine the basis states by setting k., = —ke

o
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for those in order to have their mutual prefactor \/ ‘kev + kev_ + 1! - \/ ‘kev + keu— —1

vanish (confer Figure 7.1 and Figure 7.2 and their discussions). The corresponding actions

~ (1 ~ (2
of Hl(or) and Hl(oz are more compact and read

= 2 YYD G i [

veV (a) k€ZN pnEm ven

Z Z Z Z/{lorlc(k:,uu{ - (kev+ - kevf)2 |:}k.eu + /{761)7 ’r|ﬂv’r‘VU|T'

vEV(a) keZN pem ven

(e i 12 = [y + e, =117 (it + 1% = [ — 1)

.(|yv+1|5_|yv_1|£)]l}' 2 1|k,u,y> (7.35)
=373

and

Hlor Z ZZZCk#VHlorv|k M7V>

veV (a) keZN pem ven

Y Yy chk,u,y{@ev k) ot — tios e [+ Ko7l

veV (a) keZN pem ven

r2 r2 r r
S (L e N 1!2)(|uv+1|72 ~ i = 11%)-
(e T l
(o 11 = - 11%)]'}

where we collected all constants in

V), (7.36)

r2=3— 31

47‘[2£P\/%< 1 )l d
Rlor, = "
lor,1 165/ 2rikoporo ) |,
l 3 3l (737)
4112513\/5_BI< 1 )

/‘for, =
lor,2 165/ 2ro’koporo ) |, 4

2=373]

We can now combine all these contributions to state the full action of ﬂphysz

thys ‘90> =

-y ¥ ZZOW{ Flewes 4 (Fluet ' +ﬂ$3,v+ﬂf§3,v}|k,u,v> (7.38)

veV (a) keZN pem ven
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= > ZZZCMV{RG“CI(\/U@ +he  +1] - \/\k: + ke —1|)

veV (a) keZN pem ven

(VI + 20w+ 20+ VIl ] ) o o + 2,0+ 2) -
— (VI =20l =2+ VIl ) e, o + 2,0, = 2)=
= (Vi =20+ 21+ VIl ) b, o = 2,0 +2)+
+ (VI 20 =2+ VIl ks = 200 = 2k, = 2,0, = 2]+
o+ 11 = /Ty = 1])-

|:(\/k‘+k‘ +2Huv+1|+\/

+ ’ieuc

ke, + ke, ||Vv\)|kev + 2, 1,0 + 1, v+ + 1)—

Feo ke, +2mo+ 1]+ 4/

ke, + ke, _ quy) ke, + 2,y vy + 1, v — 1)+

+

ke, 4 ke, _ +2||yv—1|+\/

ke, + ke, |[vo] ke, + 2, 10 — Lvps + 1)—

v
v

oo+ hey + 2o — 1[4/

kev—i_k “Vv| |keu+2 My Uy — 17VU+_1>_

ke, + ke, _ —2}|uv+1|+\/

_|_

ke, + ke, —2||uv+1|+\/

keu+k HV’U| |k6 27N7VU+17V’U+_1>_

Bey +he, — 2|l — 1 44/

ke, + ke, |Ivo] ke, = 2, 1,05 — Lvpr + 1)+

k8v+k |V'U|)|ke 27M7VU+17VU++1>+

ke ke, =2l — 11+ /
Z/U—i—ll—\/\uv—l)-

kev+ke,+2\|uv+1\+\/

ke, + ke “VUO |key — 2,y vy — Ly — 1) |+

(v

¢
eV
1

(T + ey 2110 — 14 3 Jhy + ey ol ) By + 2,10 — L prr + 1)

v

kev+ke\luv>|k + 2,00 + 1, o+ +1,0)—

ke, + ke, + 2|l + 1] + \/!kev + ke, }Iuvl) ke, + 2, o + 1, pror — 1,0)+

ke, +k’ev7 +2H,Uv — 1]+ \/

ke, + ke —2||po + 1] + \/

kev +k€U—H:uU |k€ 27Mv+1auv+ +17V>+

v
(v
3
3
(v
v
v
(
3
v

kev+kev“uv)|k + 2, Ho — 1>MU+_17V>_
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+ (\/}k by = 2+ 1+ g [hey + b HM) ey — 2, fi + 1, i — 1, 0)—

_ (\/‘kev + ke, — 2“/% -1+ \/‘kzev + ke, Huv\) ke, — 2,y — 1, i + 1, )+

(T R = 2= 11l = 20— L = 1.0} -
— o (ke = e, ) e e il ol ([ 4 e, 1[5 = [, e, = 1)
o P (e (P e T
t Ktora (Key + ke, ) (ot — pus 1) [[Kew + Koo, | 1] 1]

r2 r2 r2 r2
(b 1%~ 11%) (1 — - 17)

(e T L), (739

Note that some contributions from He,q and (I:Ieucl)T were combined, while some identical
numerical charge-dependent prefactors were not factored out in order to keep a form that

allows for an easy read-out of the newly created states.

7.2 On specific solutions of the Schrodinger-like

equation

Having found an appropriate physical Hamiltonian (7.9) and states (7.21), we can ap-

proach solving the Schrodinger-like equation
1.0, 19(7)) = Hppnys | (7)). (7.40)
We already introduced the well-known separation ansatz

(W(7)) = le(k, 1, v))Ix(7)) (7.21)

for the states and we will later see that additional ansitze of this kind allow us to better

understand the action of the physical Hamiltonian.
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With this partitioning of the state, we can proceed to the time-independent version of

the Schrodinger-like equation just like in standard quantum mechanics and obtain

I:Iphys ) = Elo), (7.41)

where we used E as the constant that arises due to the separation of the variables.
This eigenvalue equation is now easier to solve, yet the involved action of the physical
Hamiltonian makes it still very complicated to find general solutions. For this reason, we
will first search for zero-volume eigenstates in the next subsection, as all terms of ﬂphys
do indeed contain the volume operator this corresponds to the case £ = 0. This is also
an illustrative introduction in how to handle the action of operators on Gowdy states
because determining the spectrum of ﬂphys is beyond the scope of this part. Furthermore,
the special case of choosing ¥ = 0 corresponds at the classical level to the limiting case
where the dust energy density vanishes and thus should in some formal sense make contact
to the vacuum Gowdy case. A more rigorous understanding of taking this limit in the
quantum theory will be necessary in future work as well as analysing the question whether
zero is involved in the spectrum of I:IphyS at all; both questions will not be addressed in this
work. Here, considering this specific choice should rather be understood as an illustrative
example in which we can obtain some first intuition about the action of the physical

Hamiltonian operator on Gowdy states.

7.2.1 Zero-volume eigenstates

This subsection is about finding states |p) for which the volume vanishes. While this
certainly holds for trivially charged states k., = pu, = v, = 0,Yv € V(«), there are
also ones with less rigid restrictions. We will use this subsection about finding those
zero-volume states also as an introduction for what comes afterwards, as the technique of
finding constraints for the coeflicients Cj, ., such that the corresponding state |¢) features

a desired property is the basis of our treatment of the Schrodinger-like equation, too.

We can derive the action of the volume operator on the states |¢) from (6.10):

\7|S0>: Z Zzzck,m >

veV () keZN peEm ven

= > ) DD Crww—r (Wp) Vo + ke, el vl [, v). (7.42)

veV (a) keZN pem ven
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If we now want to find solutions for which the above eigenvalue vanishes, we deduce the

condition

Ve, + ke, [l ] = 00 € V(a), (7.43)

Note that contributions from different vertices can not sum up to zero as there are no
negative eigenvalues, i.e. no negative volume contribution. This leads to the following

basic conditions:
1. k., =0= k%— and f,, v, arbitrary
2. ke, = —k:ef and p,, v, arbitrary
3. u, =0 and k., v, arbitrary
4. v, =0 and k., , arbitrary

The charges k., play a special role as neighbouring k., are coupled via 4/ }kev + ke ’ This
is the reason why setting k., = 0 is not sufficient for fulfilling (7.43), but instead at least
ke, = 0 has to be chosen, too. Now, for having the total volume of |©) to vanish, one
may combine vertex-wise any of the above conditions. However, if one wants to construct
zero-volume states, one rather works with the coefficients Cy .. The above conditions
for the charges then translate into conditions for the coefficients by assigning only to all
those C} ,,, a non-zero value such that the thereby non-suppressed states |k, 14, V> fulfil,
as a set, for all vertices at least one of the above conditions. As an example, if we wish
to have a state that has zero volume through p, = 0 Vv € V(«), we set all those Cy ., to

zero whose set p contains at least one i, # 0:

py =0V € V(a) <= Cipp =0if Jv e V(a): 0 # p, € p. (7.44)
This way, by assigning specific values to certain coefficients Cj, . ,,, we can construct states
that fulfil a desired property such as having zero volume.
7.2.2 Vanishing action states for Hg,

The procedure of carrying over to conditions the coefficients C}, ., have to satisfy can also
be used to construct states that cause a vanishing action of ﬂeuol. We exemplarily show

this for the three-vertex graph — with basis states denoted by |p3) = !k‘, 1, 1/>3 — as it
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allows for clearer formulae. To keep our notation more compact, we use the abbreviations

o =1, (7.45)
ke,, = ki, ke, =t k11, Fe,p = brgr,
I I
Moy == H1, Moo= == H1-1, Mot =2 141,
Vo, = VI, Uy = V1, Upt = VI41. (7.46)

With this notation, we deduce from (7.32) the following form of the action of Heyq on
lp3) after having performed substitutions of the charges so there is no shift in the basis

states anymore:

3
eucl |903 Z Z Z Z Ok,u,u I:Ieucl,v

I=1 keZ3 pem ven

’/>3

3

Z ZZI{eucl{(\/V{?l‘i‘kI—l‘f’”—\/|k1+k1_1_1|>,

I=1 kc €Em ven

<Ck,u1 owi—2V I = 2|[vr = 2 + Crpys242V/ 111 + 2l |vr + 2] —
_Ck,uz+2,u1—2\/|,ul + 2||VI - 2| - Ck,u1—2,1/1+2\/|,u[ — 2||V1 + 2|)+
+ (\/ |l + 1| — \/|M—1|>'

' [(Ck1+2,u,uz+l,w+1+l — Chys 2w +1wra—1) V Ik + ko1 + 2[|vr + 1]+

+ (Cryr2pwr—1wra+1 — Cryszgvr—twr 1) V Ik + ki + 2]y — 1]+
+ (Ckl—Q,/J,,V]+1,V]+1—1 - Ck[—2,ﬂ,1/[+1,1/1+1+1) \/|kl + k[—l - 2HVI + 1|+
+ (Ck1—27,u71/[—1,yl+1—1 - Ck,—z,u,u,—l,ulﬂﬂ) \/|k‘1 + ki — 2||V1 — 1|]ﬁ+

(V= Vi) [ e ], )

V), (7.47)

Therein, » [... (p+—v)... ]ﬁ < stands for the square bracket with subscript § of the four
lines before just with the roles of p and v interchanged. The notation for the coefficients
Cl v 1s similar to the one of the states that we already used: Only the charges that were
de- or increased are specifically denoted. The above formula is, of course, only possible
since we sum over all charges from —oo to oo and the substitution therefore does not

change the solution space.
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Noticing that there is no mixing of the three classes of charges k, u and v, we introduce
the separation ansatz
Ck,u,u = Ck : CM : CV' (748)

With this, the above action becomes

Heuel |3) = Z Z Z Zﬁeuc1{0k<\/|k1 + ki + 1) =k + kg — 1|>

I=1 keZ3 pem ven

(CureaV/ Tt + 2 = Cpy 2/l = 20) - (Cora/or + 21 = Gy /oy — 21 ) +

+ (Ck,+2\/\k1 + k1 + 2| — Cry o/ |kr +kr1 — 2|)

'[CH(\/’MI+1|_\/|M1_1|)(<Cuil_cuf1) |VI+1|+<CV;1—CV:1> |VI_1|>

T e } }

where the last line’s > 7”7(;“—% < denotes the ditto mark of the line before with the

roles of p and v interchanged. As before, while C stands for the coefficient representing

1/>3, (7.49)

all unshifted k-charges, Cj,12 means that all but k; are unshifted and k; is increased
by two. We then introduced a new abbreviation for coefficients that feature shifts in
the charges of both v; and vy: Cyil = Cuirr+1y Cot1 = Cugrpi -1, Cyil =

CI/]—LV]+1+1 a‘nd CI/:l = CVI_17VI+1_1'

To get an intuition of the formula above, we may consider graphs for which the action
vanishes. We can then state two basic principles to achieve this — or, in fact, any other

degeneracy, too:

1. The sum over the vertices causes the individual contributions to cancel each other

/ equal the desired value, or

2. each individual contribution vanishes / amounts for the same contribution to the

desired value.

While for the last one we can ignore the sum over the vertices and just need to find
coefficients that make up for 1/g(vertices)-th of the final result’s value, the first one is more
complicated and we may not find general solutions that reflect, e.g., the symmetries of
the Gowdy models. For that reason, we concentrate on solutions that fulfil the chosen

constraint vertex-wise.
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If we want (7.49) to vanish, we first of all notice that we face a sum of two contributions
within the curly brackets. As the two are products and sums/differences of square roots,
we may conclude that it is unlikely for the two to annihilate, although that can be achieved

for specific choices. Hence, we want both summands to vanish on their own, which can
be fulfilled, e.g., by

L CMH-Q\/ |:ul + 2| = C,UI—Q V |:u1 - 2|

2. Ck1+2\/|kl —|— k[,1 —|— 2’ — C]gI,Q\/Uf[ —|— ]{3[,1 - 2|

The first choice is, of course, equivalently replaceable by the corresponding condition with
pr — vr due to the multiplicative structure of the first summand within (7.49). Likewise,
one could replace the above second condition with one that makes the second summand of
(7.49) vanish via a zero contribution from the square brackets. Considering this bracket’s
additive structure, in turn, more than one such condition would be required. Therefore,
the above conditions can be considered as the most basic ones. The chart in Figure 7.3
illustrates what this condition means in terms of the three kr-charges, after having gone

over to the equivalent form

’k] -+ kjfl‘ )
|]€[ + ki1 + 4’ e

Chyra = (7.50)

Starting with a specific value for (77, we can determine the value of, say, C'15 afterwards.
This means that there are two paths leading to the new value of C55: Either via C11; —
Ch15 — Cis5 or C1; — C51 — Cs5. Doing so, we get contradictory results for the two
paths (confer Figure 7.3). This is due to the condition depending also on k;_;. During
the path via C}51, this charge was increased by four before being evaluated, while it was
increased only after being evaluated during the other path — which is also why there the
prefactor \/2/_6 appears in both steps. Lastly, note that the trivial solution is of course
not excluded and marks the only scenario where the above contradiction does not apply.
Even though this condition turned out to be inapplicable, it showed the general strategy
we pursue — and where one has to be cautious. Proceeding to the condition for p (or
v), we first of all notice that there is no link between the respective charges of different

vertices. Therefore, we may separate the coefficients once more into

C, =cu - Cu, - Cuy and (7.51)

Cy=cy - Cpy - Cuy- (7.52)
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C(111

k‘gT/ \sz

\/%Cul = Ch15 Ci51 = \/ng

ko ks

VECis=Cis  Ciss=1/5Cm

1.

le. .
Cis5 = \/%CHH— f —Ci55 = \/%CHI

Figure 7.3: On the condition (7.50) on k

With this and moving the shift again into one of the coefficients only, the condition now

reads

M1
Curr2V s +2] = Cpya/|ur = 2| = cppra= | Cur- (7.53)

\pr + 4]

This condition is, e.g., fulfilled by

arbitrary, for pu; =0

cu; = 4 0, Yur € 47, . (7.54)
A /|T1,\7 rest
Due to the denominator diverging for uy = —4, the first two cases of the solution above

are rather formal. As the condition (7.53) is a recurrence relation of order 4, we chose
the remaining three initial conditions as ¢; = 1,¢5 = \/g ,C3 = \/g to obtain the intuitive
solution (7.54). With this, we can now set the first part of the action to zero for all vertices.
However, as shown before, we need a different procedure than the initially discussed one
for the second part. Starting with the relevant part after the last separation, the square
brackets of (7.49)

—

- ((r.49) =
= CM(\/LUI + 1’ - \/‘:uf - 1’)CV1+2 (CVI+1+1 - CV1+1*1) (CV1+1 \Y ‘I/I + 1’ + Cor—1V ’VI - 1’)
+

S T (7.55)

(pe—v)’
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we realise we can choose any of the following four options for making this expression

vanish:
Cuppr+1 — Copyy—1 =0 or (7.56a)
Cur+1V |l/[ -+ ]_| + Cur—1V |I/[ - ]_| =0 (756b)
and

Cppsr+l — Cup—1 =0 or (7.57a)

a1V pr + 1 + ¢/ | — 1 = 0. (7.57b)

With the second line representing conditions on the c,,, we have to guarantee compati-
bility with the previously obtained solution (7.54), or rather the constraint (7.53) behind
it. However, it is easy to show that solutions of (7.57b) automatically fulfil (7.53):

Curr2/ | + 2| = =/l v o
= = Cupr2V | + 2| =
CurV | = =2/ Ipr = 2| 7
= cu—2V/ |pr — 2| = (7.53). (7.58)

Note that the inverse does not hold — solutions to (7.53) do not automatically also solve
(7.57b). The proof thereof is analogous to (7.58).

(7.57b)

In contrast to the condition (7.53) that we solved before, we now have its equivalent
difference equation of second order and with alternating sign at hand. Hence, the solution
to (7.57b) can be derived from (7.54):

arbitrary, for uy =0
Cuy =40, Yy € 27 . (7.59)

-1 = L rest
[per]

I.e., while it remains structurally the same, it considers the alternating minus sign and the

necessity of setting every second coefficient zero — compared to every fourth one before.

With (7.59) and the adapted form for v;, we can achieve a vanishing action according to

(7.49). Alternatively, we can replace one of the two by (7.57a) or (7.56a), whose solutions
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are obtained straightforwardly as

arbitrary, for u; € {0,1}
u (7.57a) B Vi € 22\ {0} (7.60)
1, Vur € 22+ 1\ {1}
and the corresponding expression for v;. Note that (7.56a) and (7.57a) are conditions for

vertices vy, 1, but as we sum over all vertices and try to find conditions that hold already

vertex-wise, we can neglect that shift.

Summarising, we can make the action of Hg,q vanish by

(7.59)

v (7.59)

v

A ((7.60) ) (S1)

or, equivalently, with 1 and v interchanged. Note that these turn out to be the only two
combinations of the solutions stated above: (7.55) showed that we need one condition for p
and one for v as the solutions to (7.56a) and (7.56b) are not compatible (and likewise those
to (7.57a) and (7.57b)). Furthermore, the solution (7.54) for either p or v, which makes
the first part of the Euclidean action vanish, does not so for any contribution of the second
part, (7.55). In turn, the condition (7.53) behind that solution is automatically fulfilled by
solutions to (7.57b) (and, again, the same holds for the respective v equivalents). Hence,
we have to choose (7.59) for at least one of the charges v and v, which then makes one
part of the Euclidean action’s second contribution vanish as well as the first contribution.
The remaining contribution then vanishes by setting (7.59) or (7.60) for the respective

other set of charges.

We therefore found states [p) = 3 un D cm 2 ven Chpuw ks i1, v) that experience a
vanishing action of Heu by fulfilling constraints for the separated coefficients Cj, ., =
Ci [1; cu,¢v,- The solution we stated above, however, poses restrictions for the p and v

coefficients only.

7.2.3 Degeneracies of the action of the Lorentzian part ﬁlor

While the diagonal action (7.61) of H,,: makes a discussion as the one of the previous
subsection irrelevant — note that a diagonal action includes that there are no shifted

coefficients —, it in turn allows for a discussion of degeneracies.
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Recall the action of Hy, on the state |p) via (7.35) and (7.36)

IiIlor |90> = Z Z Z Z Ck,u,u{{ - Hlor,l (kev - kev_)z |:|ke1, + kev_

veV () keZN pem ven

T T r
|| v

' <\’fev b, AL = e, 4R - 1I%> (Iuv + 115 — |y — 1|3)-

- <]1/U F1E | — 1\5”1}' A+

—2_1
=373

+ {Hlor,2 (kev + kev_)4(,uvyv+ - Mv+yv)2 eru + kev_ |T2|NU|T2'

r2
2

ol (e 4 e+ 1% = ey ke =17 (o + 2% — [y — 1),

T e l
.(|yv 117 — |y, — 1|72)} }

We notice that i.a. due to the appearance of r and r, as different exponents in the

}|k,u, V). (7.61)

—2_5
r2=3731

two contributions (and in ki1 and Kier g, confer (7.37)), it is very unlikely for the two
contributions to result in the same value or annihilate each other. Therefore, we consider

both summands alone.

From the vertex-wise composition follow immediately two of the most basic degen-
eracies, namely rotations and flips of the graph and its vertices. Rotations and their

corresponding rearrangement of the vertices are described by
Vor € V(a): vy = vrgy, for some n € N, (S2)
while flips of a graph o with N = |V («)| many vertices can be represented as
Vor € V(a): v = Uny1-14n, for some n € N. (S3)

With this, all charges p, and v, change their indices the same way. Hence, these two
mappings do not change the value of (7.61) when the summation over all vertices is

considered.

The other basic degeneracy is the interchange of all ; and v charges,

Vo € V(a): py = V) Avy = il (S4)
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As for all considerations before, p and v play the same role in (7.61). The only factor
that does not reflect this behaviour immediately is (pyVp+ — fip+ Vv)z, but due to the even
exponent, the minus within the bracket that arises via the interchange of the p and v

charges does not change its value as well.

After having specified these three basic degeneracies, an aspect of interest may be
whether shifts created by the action of ICIeucl result in a new degenerate state with the
same eigenvalue of ﬂlor. Addressing this question, we recapitulate that ﬂeucl acts only
vertex-wise. Changing only the contribution of one vertex in (7.61), however, is in general
not preserving its value, but we can indeed find configurations that do fulfil this connection
of Hyy and Hy,,. From (7.32), we recapitulate that oo |k, 1L, I/> generates the shifted

states

k,p,v) ey

kev:l:27lu’vj:17,uv+ilay>7

ke, £2,p0,vp & 1w £ 1), |k, gy £ 2,1, £2).
(7.62)
We then see that individual states of the set above do preserve some factors’ values within
(7.61) for specific values of the charges, but not the whole expression. It is in particular the
link between the k-charges of different vertices that causes trouble: (kev + k% +)4 can not
be preserved when only k., is de- or increased by two. The only way that’s possible is for
k., = 0 and k., = +1. But as we would have to fulfil it for every vertex, this choice leads
to a contradiction. While this excludes the first two sets of states of (7.62), we can indeed
find states of the third set that have the same Lorentz energy? as the initial }k, u,u>.
They are shown in Figure 7.4 and represent states where, at one vertex v, the charges p,
and v, happen to be £1. Acting with ICIeucl on such a state produces i.a. states of the
third set of states of (7.62) that only change the signs of these charges yu, and v,: from
-1 to +1 or vice versa. This clearly preserves all factors |, 1| of the Lorentz action
(7.61) and also the products <’,uv + 1]5’%2 — |py — 1|§’%2> <|1/v + 1|§’%2 g’%) due

to the double change of the sign. Lastly, (p, v+ — o+ VU)Z experiences a change of the sign

— | —1

in both its subtrahend and its minuend, hence preserves its value because of the square.
Note that this factor has to be preserved for the vertex v;_; as well, due to the mixture
of the charges of the current and the next vertex. All other u- and v-charges as well as all
k., can, however, be chosen arbitrary as the symmetry of -1 and +1 suffices to conserve

the Lorentz energy.

2We call the eigenvalues of Hior “Lorentz energies”, even though they are, of course, not necessarily
one part/summand of the (proper) energy eigenvalues of Hppys.
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Vr-1 vrer U1 U141
o Ly £ 2 L
Hoy= &W Mo+ — Ho= Co— W Mo
Vy— Vy4 vy £2 Vy— Uyt
My = -1 oo 1
v, =—1 v, =1
(a) parallel degeneracy
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o= €y yy Ho+ — Ho= MW Mo+
Uy Vs Uy F 2 Uy Vot
My = -1 Ly = 1
U, = v, =—1

(b) cross degeneracy

Figure 7.4: Specific degeneracies of states linked by the action of Heua. As before in the
figures also here to keep the notation more compact we used keu, =k, jty, = pr and
Vy, = Vg etc.

To give a further example of a more special degeneracy, we deduce from (7.61) that the

charges k., always appear in the combination k., + k% L or kev L k:ef. This allows to set

ke, £a forl €2Z,acR
ke,, = ! (Sh)
kev,jFa for I €27+ 1,a € R

for graphs with an even number of vertices and yet get the same Lorentz energy.
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Chapter 8

Conclusion

In this part, we considered a reduced model with a polarised T? Gowdy symmetry result-
ing from Gaussian dust coupled to general relativity and afterwards applying the symme-
try reduction. The corresponding physical phase space has three independent canonical
pairs consisting of Dirac observables associated with the connection and triad variables
and describe an unconstrained U(1) gauge field theory. The evolution of these Dirac ob-
servables is generated by a physical Hamiltonian that itself is a Dirac observable. This
classical model was taken as a starting point and quantised in the reduced LQG as well
as the AQG framework in this work. In both cases, due to the symmetry of the classical
physical Hamiltonian a graph-preserving quantisation was chosen in order to implement
these symmetries also at the quantum level. The results presented here extend the ones
in the literature in the following aspects: On the one hand, the models existing so far that
use a loop but not hybrid quantisation [164, 195] have all applied a Dirac quantisation
where a kinematical Hilbert space is chosen as an intermediate step on which the Hamilto-
nian, spatial diffeomorphism and Gaufl constraints of the Gowdy model are implemented
as operators. The physical Hilbert space then involves those physical states that are an-
nihilated by all constraint operators. The model discussed in [165-167] considers a hybrid
quantisation where the homogeneous modes are quantised using loop quantum gravity
techniques whereas for the quantisation of the inhomogeneous modes a Fock quantisation
has been chosen. They are thus not easy to relate to those models where no Fock quanti-
sation has been used such as, e.g., full LQG. The model in [195] derives the full physical
Hilbert space in a simpler setup where vacuum Gowdy spacetimes have been considered

with an additional rotational symmetry. The model that comes most closely to the one
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discussed here is the one in [164] where similarities but also differences exist. The main
difference is that [164] also follows a Dirac quantisation for the individual constraints with
partly a different regularisation. Since also for their chosen regularisation the structure of
the constraint operators is similarly complicated as the Schrodinger-like equation we ob-
tain here, the physical Hilbert space of that model has not yet been derived. Furthermore,
because one works with the Hamiltonian constraint instead of a physical Hamiltonian, the
properties of the constraint algebra, as in the full theory, favour a graph-modifying quan-
tisation of the Hamiltonian constraints. This yields a setup where the construction of
semiclassical states as well as solutions of the constraint operator equations become more
complicated compared to the model presented in this work due to the fact that operators
modify the underlying graph they are acting on. In contrast, in the models presented here,
the graph-preserving property comes in accordance with the requirement to implement
classical symmetries also at the quantum level in the case of the reduced LQG model
where the usual Ashtekar-Lewandowski representation is chosen for the physical Hilbert
space. We further discussed the differences in the implementation of graph-preserving
operators in the reduced LQG and AQG framework. Furthermore, because we couple
Gaussian dust to gravity, the number of physical degrees of freedom differ in the two
models. The one of [164] has just one independent degree of freedom, whereas here we
have three. This is reflected in the fact that all geometric degrees of freedom encoded
in the Dirac observables of the model presented here are unconstrained, while for the
corresponding quantities on the kinematical Hilbert space described in [164] constraints
still exist. We also derived the explicit form of the Schrodinger-like equation of the model
in the AQG framework. This result provides an option for future work in which one can
analyse this Schrodinger-like equation numerically or perform a semiclassical analysis of
this equation in order to derive the corresponding effective model. As far as these future
computations are considered, the model with polarised T? Gowdy symmetry introduced
here has — due to its symmetry reduction — the advantage that the volume operator acts
diagonally on the basis states and hence the spectrum of the volume operator is known
in the quantum theory. For semiclassical computations we therefore do not need to apply
semiclassical perturbation theory along the lines of [60], as it is necessary for full LQG.
As we do not analyse the Schrodinger-like equation in full detail here but just derive it
for the model and then discuss some very specific zero volume solutions in order to obtain
a first intuition on how the physical Hamiltonian operator acts, it will be an interesting
question for future work to better understand whether the model in [164] can in some

sense be embedded in the model presented here at the quantum level, when we extend
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our model by additional constraints that reduce the dust degrees of freedom and allow
to go back to the vacuum case — and how this might be reflected in the solutions of the

Schrédinger-like equation we obtain in this work.

Another scenario where we can get a notion of how the physical Hamiltonian and
especially its Euclidean and Lorentzian parts (inter-)act is degenerate perturbation theory.
First steps were already performed in [203], where the action of the symmetrised Euclidean

A~ A

part % (Heud —I—(Heucl)T> is treated as a perturbation on top of the action of the Lorentzian

part. However, as the complete set of degeneracies of Hy,, is not known, a comprehensive
treatment of that ansatz is not possible. The special cases considered in [203] still illustrate
nicely the interplay of the actions of the two parts of the physical Hamiltonian and how
one can in general approach degenerate perturbation theory for Gowdy models like the

one considered herein.
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Chapter 9
Motivation

Note that the content of this part, Part I1I, was already published in [2, 3].

Sections of text within this part have been reused from an article published in Classical
and Quantum Gravity. IOP Publishing Ltd is not responsible for any errors or omissions
in the text included within this thesis. The Accepted Manuscript of the to be published
article is available online at https: //dot. org/10. 1088/ 1361-6382/ accOc7.

Part III of the work at hand is in particular about the question of singularity avoidance
in loop quantum gravity and a new procedure for computing semiclassical expectation
values in general. We start with introducing the loop quantum gravity setup in Chapter 10
and continue with Kummer’s confluent hypergeometric functions in Chapter 11. They are
the key part of the new mechanism that allows i.a. to compute semiclassical expectation
values of operators like the momentum operator to the power of a rational number. At
the beginning of Chapter 11, we present the basic properties of Kummer’s functions
that will be used throughout this part of the work at hand. As a warm up example, we
discuss in Section 11.3 fractional powers of momentum operators in the standard quantum
mechanical case and compute their semiclassical expectation values analytically by means
of Kummer’s functions and their Fourier transforms, respectively. We then also compute
the semiclassical expectation value of an operator that mimics the operator of interest in
the loop quantum gravity part. As a comparison with this result via Kummer’s functions,
we apply in Section 11.4 a different technique of computing fractional powers of operators

in a more general context, called the AQG-III algorithm [60].
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The applications of the new procedure are then two-fold: We first consider coherent
states on the circle in Chapter 12 and then cover the realm of loop quantum gravity in
the remainder of Part III.

9.1 Kummer’s functions and coherent states on the

circle

In Chapter 12, we discuss coherent states for a particle on a circle, which have for instance
been discussed in earlier work in [204-208] and references therein. In [204-207], coherent
states in the Hilbert space Ly(S') were constructed by means of the so-called Zak trans-
formation [209], whereas in [208] complexifier coherent states [133] for the group U(1)
were used, leading finally to the same kind of coherent states. These complexifier coher-
ent states have been introduced in the framework of loop quantum gravity for the group
SU(2) and analyses of their properties can be found in [121, 134, 135], while we refer to
[59, 60, 63-66] for further applications. Expectation values for elementary operators like
(integer powers) of the holonomy as well as the momentum operator with respect to co-
herent states in Ly(S'), also called semiclassical expectation values, have been computed
in [204-208]. These semiclassical expectation values can be understood as an expansion in
a classicality parameter, denoted by ¢ in our work. For the standard harmonic oscillator
coherent states, this classicality parameter can be identified with A/(mw). One is then
interested in the classical limit of the expectation values, that is when ¢ is sent to zero.
If a set of coherent states provides an appropriate description of the semiclassical sector
of the given quantum theory, we expect that at least for the elementary operators the
quantum theory is built from, the classical limit (zeroth order in the semiclassical param-
eter t) agrees with the corresponding classical theory. Such an analysis allows to check
whether, for a given operator in the quantum theory, the considered coherent states are
suitable. In [205-207], expectation values with respect to coherent states in Lo(S!) were
expressed in terms of Jacobi’s theta function and its derivatives, which naturally occurs
once one applies the Zak transform onto a Gaussian — the theta function is the image of

the Gaussian under the Zak transformation.

In the course of Chapter 12, we extend these former results in two directions. On the
one hand, we generalise the computation of semiclassical expectation values from integers

powers of momentum operators to fractional powers. The motivation for this comes from
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loop quantum gravity and loop quantum cosmology respectively where operators like the
square root of the determinant of momentum operators play a pivotal role when the
dynamics is quantised. This generalisation can be done by using Kummer’s confluent
hypergeometric functions of the first and second kind. A basic result [210] we will rely on
is the fact that the Kummer functions of the first and second kind are mapped onto each
other under Fourier transformations if their parameters are adjusted accordingly. This
allows to compute those expectation values completely analytically without the need to
use estimates or approximations for the integrals involved. In a further step, one can
use the well-known asymptotic expansions of Kummer’s functions in order to obtain an
expansion in terms of A or any other classicality parameter. This also allows to compute

the classical limit, the lowest order of that expansion, for this kind of expectation values.

The second direction we will explore is to consider the Zak transformation not only
for obtaining coherent states in Ly(S'), as it has been done in [205-207], but also in the
context of computing semiclassical expectation values. By using the basic properties of
the Zak transformation, we can show that there exists a very simple relation between the
semiclassical matrix elements in Ly(R) and Ly(S'). For a given operator on Lo(S') (or a
suitable domain thereof), the semiclassical matrix elements can be understood as a Fourier
series with Fourier coefficients made from the corresponding matrix elements in Ly(RR),
which involve the counterpart of the operator on Ly(IR) as well as a translation operator.
In particular, this means that any semiclassical matrix element in Ly(S') is completely
determined by these corresponding matrix elements in Ly(R). Interestingly, the leading
order term, that is the limit in which the semiclassical parameter vanishes, exactly agrees
with the semiclassical result obtained in Ly(R). The latter is just a consequence of the
unitarity of the Zak transformation. This relation, obtained in Subsection 12.2.2, provides
an alternative way for computing semiclassical matrix elements and expectation values,
respectively. It might also allow to reconsider those techniques from a different angle that
have been used in the context of U(1) complexifier coherent states in [63, 64, 134, 135, 208|
in order to estimate semiclassical expectation values and to obtain the classical limit.
Although we will restrict to the one-dimensional case here, the Zak transformation, and
thus also the results presented here, can be easily generalised to higher finite dimensional
systems. As a more complex application of these techniques, we will apply them to U(1)3
coherent states, which are often used as a toy model for loop quantum gravity, in the
follow-up chapters. There, we will be mainly interested in computing the semiclassical

expectation values of dynamical operators as it has for instance been done in [63-66]. The
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usage of Kummer’s functions in this context allows to analytically compute some parts

that have been only estimated in earlier work.

This first part on applications of Kummer’s confluent hypergeometric functions other
than in quantum mechanics is structured as follows: Since, as in [208], we come from
the complexifier coherent states, after a brief introduction to the Zak transformation, we
apply it to the heat kernel. This is more convenient in this context, in contrast to using the
harmonic oscillator coherent states directly. For this purpose, we use former work from
[211] and as expected we end up with the same coherent states for Ly(S'). Given this
set of coherent states, we compute semiclassical expectation values of operators involving
fractional powers of the momentum operators in Subsection 12.2.1. The relation between
semiclassical matrix elements in Ly(R) and Ly(S?) is derived and discussed in Subsection
12.2.2. As an application of this relation, we recompute a couple of semiclassical matrix
elements and expectation values respectively and show that we obtain the correct results.
Section 12.3 briefly covers the connection between the Zak transformation and the Poisson
resummation formula, which is an integral tool in the context of complexifier coherent
states. Lastly, we discuss in Section 12.4 — based on results obtained in [212] — that
the heat equation can be transformed into Kummer’s differential equation for a specific
choice of the parameters of Kummer’s functions and thus Kummer’s functions can be

understood as solutions of the heat equation for certain choices of boundary data.

9.2 Kummer’s functions in loop quantum gravity

Motivated by results in loop quantum cosmology (LQC) on the cosmological singularity
avoidance, it is of big interest to find out whether singularities — and especially the Big
Bang singularity — are resolved in the framework of full loop quantum gravity, too. Loop
quantum cosmology is a quantum mechanical toy model of loop quantum gravity with a
finite amount of degrees of freedom as it quantises general relativity not as a whole but
only its symmetry reduced, cosmological sector. It was introduced by Bojowald in a series
of papers [37-40] based on former work with Kastrup [213] and evolved quickly into an
active field of research; see for instance [214-216] for reviews and the references therein.
While the results of [41-45] are indeed very promising concerning the avoidance of the Big
Bang singularity and replacing it by a big bounce accordingly, there is a lot of discussion on
how LQC is embedded into full LQG [46-52]. Hence, it is of importance to also approach
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the possibility of singularity avoidance from the side of full LQG — guided by the seminal
results of LQC where possible. In order to proceed into this direction, an analysis of the
operators describing the quantum dynamics in LQG is necessary. One approach that
addresses this question follows the strategy to obtain cosmological models from full LQG
as for instance in [144, 217], where the latter relies on semiclassical techniques in order to
obtain cosmological models from LQG. In general, the semiclassical sector of the theory
provides a framework where this question is of interest. Entering this realm, in turn,
requires that we have appropriate semiclassical states for the theory, which we can use for
computing expectation values of the relevant operators such as for instance the inverse
scale factor in this sector. For loop quantum gravity, SU(2) complexifier coherent states
were constructed in [62], based on a complexification method introduced in [130, 218],
which was later generalised to diffeomorphism invariant gauge theories [129]. In a series
of papers [121, 133-135], it was shown that these complexifier coherent states fulfil the
desired properties such as peakedness in the configuration, momentum and phase space
representation or the Ehrenfest theorems, i.e. that they do reflect the behaviour of classical
physics in zeroth order in A, and that the commutator of two operators (divided by ih)
resembles the Poisson bracket of the corresponding classical functions. Accordingly, those
states are also referred to as semiclassical states and one can use them to perform a
semiclassical analysis. One class of dynamical operators relevant in this context, denoted
as ¢’(r), constitutes the main ingredient of many quantum operators that are important
for describing the theory’s dynamics. As the inverse scale factor can be constructed from
it as well, it is furthermore the main object of investigation when looking into singularity
avoidance in cosmology. One of the reasons why this class of operators, however, is not
easy to handle is that they contain the volume operator to the power of r € ), making
many analytical calculations impossible since the full spectrum of the volume operator
is not known. This is the reason why we are forced to use estimates, approximations
or simplified models if we want to proceed. As far as semiclassical investigations are
concerned, so-called semiclassical perturbation theory was introduced in [60] that allows
to replace the volume operator by a power series expansion in terms of operators that
involve only integer powers of the flux operators. For those, semiclassical expectation
values can be analytically computed if one uses the SU(2) complexifier coherent states as
has been shown in [121, 133-135]. Another possibility is to replace the SU(2) coherent
states by U(1)? coherent states, which have the advantage that they diagonalise the volume

operator.
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In previous work [63, 64], Sahlmann and Thiemann presented i.a. a procedure for calcu-
lating expectation values with respect to U(1)% complexifier coherent states of the opera-
tors that constitute the Hamiltonians of various fields being coupled to gravity, including
the operator ¢/(r). They were able to perform their calculations without the usage of
estimates to solve the occurring integrals in the expectation value as they restricted their
analysis to cubic graphs. However, their approach involves a Taylor expansion of quan-
tities with fractional powers, which was crucial for obtaining analytical expressions as
final results. Later, Brunnemann and Thiemann [65, 66] analysed the question of singu-
larity avoidance in loop quantum gravity. In their work, they showed that the analogue
of the inverse scale factor operator in LQG is unbounded from above on zero volume
states. However, they found indeed an upper bound for the expectation value of the
inverse scale factor operator with respect to U(1)? coherent states at the Big Bang. In
order to obtain this result, they applied a chain of estimates that allowed them to cir-
cumvent the evaluation of the initial integrals and instead replace them by ones that can
be integrated analytically with the methods they used. The details will be discussed in
Subsection 16.1.1. They conclude that singularity avoidance in LQG, if existing, has to
be addressed differently than in LQC, but the existence of an upper bound of the in-
verse scale factor’s expectation value with respect to coherent states at the Big Bang can
be seen as a strong indication for the respective singularity’s resolution at least in the

semiclassical sector of the theory.

This part of the work at hand aims at revisiting the semiclassical analysis of the inverse
scale factor operator by applying the new technique introduced before: Kummer’s con-
fluent hypergeometric functions can be used to analytically compute expectation values
of fractional powers of the momentum operator with respect to U(1) coherent states or
the well-known quantum mechanical coherent states. This technique also applies to U(1)3
coherent states frequently used in the earlier analysis of LQG. The reason why Kummer’s
functions fit well into this framework is that Kummer’s functions of first and second kind
are in some sense dual to each other under the Fourier transform, which was shown in [210]
and heavily used and discussed in detail in [2]. The integrals at hand for the semiclassical
expectation values result essentially in Kummer’s confluent hypergeometric function of
the first kind. If being interested in the semiclassical limit, one can subsequently make
use of the asymptotic expansion for large arguments of Kummer’s functions to obtain in
zeroth order the result one would expect from the classical calculation. This expansion

is performed in terms of the classicality parameter encoded in the coherent states, which
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is h in the case of the quantum mechanical coherent states. The aim of this part of the
present work now is to apply this new procedure in the LQG-framework and calculate
semiclassical expectation values there. An advantage of this method compared to the
former analysis in [63-66] is that we are able to avoid estimates at certain stages of the
computation since we can integrate fractional powers against Gaussians, whereas in the
former work either Taylor expansions or estimates were necessary to substitute the in-
volved fractional powers. In our analysis here, depending on the scenario we consider, we
can perform our computations either even without the additional usage of estimates or
with ones that are slightly better adapted to the fractional power of the operator. The
scenarios we consider differ by the choice of the underlying graph, particularly its valence,
or by the power of the operator ¢/(r). We will show that we can on the one hand extend
the method used by Sahlmann and Thiemann also to more general graphs than cubic ones
and on the other hand adapt the procedure of Brunnemann and Thiemann with the use
of Kummer’s functions and compare their results to ours. The latter allows us further to

discuss limitations and generalisations of existing estimates in this context.

These considerations are structured as follows: First, we use this new procedure to
compute the expectation value of fractional powers of the momentum operator with re-
spect to coherent states in Chapter 13 as an illustrating example.

In Chapter 14, we apply this method to the volume operator and perform semiclassical
computations without the additional usage of estimates. Starting with graphs of cubic
topology, we first calculate the basic building block of their semiclassical expectation
value of d}g (r) with respect to U(1)® coherent states in Section 14.2. We only illustrate
the general procedure, which we summarise in a note on page 181, while the details of this
calculation are moved to Appendix B. The final result can be found in (14.27) on page
183. Its specialisation to the case p = 0, which corresponds classically to the cosmological
singularity, is shown in (14.31) on page 185. Afterwards, we discuss the semiclassical limit
in Section 14.4, where the detailed derivation is presented in Appendix D.

In our next step in Chapter 15, we then proceed to higher valent vertices and, after a
general introduction, apply the procedure of Sahlmann and Thiemann to these not nec-
essarily cubic graphs in Section 15.1. The final result for the semiclassical expectation
values of ngl cjf,’; (r) via a generalised form of the procedure of Sahlmann and Thiemann
can be found on page 198 in (15.20) and we close this chapter with a comparison of the
two approaches in Section 15.2.

For more complicated and general scenarios, the relevant integrals cannot be solved by
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the methods discussed in the former chapter and therefore, in Chapter 16, we discuss
semiclassical computations for the volume operator that also rely on estimates. The first
calculation of Subsection 16.1.1 follows the route of Brunnemann and Thiemann and —
likewise to their result — also yields an upper bound for the inverse scale factor, but in
our case is adopted in such a way that we use different estimates as we can then evaluate
the integrals at hand by means of Kummer’s functions. The semiclassical expectation
values of ¢°(r) using a generalised form of the estimates of Brunnemann and Thiemann
is shown in (16.15) on page 208. The case p = 0 is separately discussed and can be
found in (16.19) on page 209. A generalisation of the above procedure for Hszl cjtj]’jv (r) is
given in (16.27) on page 211 and for the specific case p = 0 in (16.31) on page 212. The
comparison of the way different estimates enter into the final result allows us to discuss
the limitations of such estimates as well as finding new estimates that potentially improve
the results, or at least let us understand the problems that arise due to the utilisation of
them. These are illustrated in Section 16.2, which concludes in a comparison with the
initial Brunnemann and Thiemann approach in Subsection 16.2.3. The final result for
the semiclassical expectation values of d}g (r) using a new kind of estimate is presented in
(16.41) on page 216 and in (16.42) on page 217 for the case p = 0. Considering a further
new kind of estimate, the semiclassical expectation value of (j}g(r) has been recalculated
in (16.63) on page 222. Subsection 16.2.2 presents a brief overview over conditions we

may impose on possible new estimates.
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Chapter 10

The setup — U(1)?, the operator

Q}%(r} and coherent states

Investigating these kind of questions, it is common practice [63-66] to replace the gauge
group SU(2) by U(1)3. While the qualitative meaning of the obtained results is not
altered by this substitution [60, 134, 135], working with the Abelian U(1)? renders many
calculations more palpable. This is why U(1)? is gladly used for approaching new problems

or testing novel techniques.

Going over to U(1)3 requires some changes, of course. However, the underlying graph
v will not be changed and we still collect all edges e in E() and all vertices v in V(7).
Each of those edges e is now equipped with the Hilbert space H, = Lo(U(1)3, dug), with
the Haar measure dug, and the holonomy flux algebra reads
7i ok Lp® ki k 1i 7k ik
[hg, pe,} S e [h@,he,] =0 and [pl,p] =0. (10.1)
a
Therein, a length scale a was introduced that allows us to work with dimensionless fluxes
for later convenience. It originates from the construction of the coherent states and is used

there to have at hand a dimensionless complexifier. Note that it also links the classicality
parameter ¢ with the Planck length fp: ¢ = r?/a2.

Concerning the basis states, the previously introduced spin network functions 7T, are
replaced by so-called charge network functions T for U(1)3. The name derives from the
fact that all edges er are now “charged” with three U(1)-charges n%,i € {1,2,3}. The
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holonomy operator iz} acts on these states via multiplication and increases the corre-
sponding charge n’ of the U(1)-copy i of the edge ey by 1. The flux operator then acts
j_ 0

via differentiation: pl = —;hl TR

The main operator of interest, or rather class of operators, is the previously mentioned

i) = (i (1) "V ) (102

Its components are a basis 7; of su(2), the holonomy operator he acting on edge e and the

volume operator V to the power of r € Q. We already stated the latter in Subsection 2.4.2

as
$ 1 P v,e v,e v,e
V= tp? Z — Z e’ﬂke(e],ej,eK)J ’J( JJ( ) (10.3)
veEV(R) ejﬂe_;ﬁeK v
=67 Y ,/ (10.4)
veV(R)

The great importance of this class of operators in the framework of loop quantum gravity
now stems from their appearance in various (matter) Hamiltonian operators [63, 64] via

products of the form
N
114
k=1
Yet, they also are indeed crucial when tackling the question of singularity avoidance as

the inverse scale factor can be obtained by setting r = %, N = 6 and multiplying by an

additional 1/¢12 in order to get the dimensions right.

The U(1)3-equivalent we will work with reads
~i Lo (300" o
QI?)(T) = th?) {(h[%) ,V :| ) (10.5)
where we again considered the length scale a in order to work with dimensionless quanti-

ties. We adopted from [66] the marker o to highlight the specific U(1)-copy and edge the

holonomies act on. The benefit of this will become clear soon.
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For the action of cj}g (r) on charge network functions, we first state the action of the

volume operator on a charge network state:

{”1} ZEP Z Z (1K )nin?nk. 13, (10.6)
1K
where we chose Z = i—; [89]. The notation is in accordance with the literature [66], in

particularly with regard to naming the eigenvalues A\({n%}). Therein, {n%} highlights that
A depends on the whole set of the charges n. We see that the charge network functions
diagonalise the volume operator — another key advantage of U(1)3. The structure of
the eigenvalues, accordingly, follows closely that of the volume operator itself: First, the
action is vertex-wise and we sum over all vertices v € V(). Then, the square root collects
in its argument all combinations of configurations of three edges ey, e, ex that meet at v
(note that we abbreviated >, . . _ by > ; ), covering their respective orientation
via €(/JK). The quantity this sum collects is what we may call the determinant of the
“charge matrix”: eijkn’)nf}n]}(, where one dimension of the matrix is spanned by the three

edges e, ey, ex and the other one by the three copies of U(1), labelled by 1, j, k.

With this, we can now state the action of ¢ (r) on charge network states 7¢ [66]:

SIS T N
vt = (Vi v (i) )

(V7 ({0t ) = A ({nh — 5908, })) <. (10.7)

We see that the eigenvalue of the volume operator changes for the contribution in which the
(inverse) holonomy acting on edge ey, and U(1)-copy i is involved. The inverse holonomy

decreases the charge n? by 1 and hence, the volume operator sees only this reduced value
K
when acting on (h I%) T3. The following non-inverse holonomy then reproduces 77 and

we obtain the above difference of the “normal” volume eigenvalue and one experiencing
a shift.

Much of the obstacles we will be facing during the upcoming investigations stems from
the involved structure of (10.6). Computing semiclassical expectation values means to
integrate these eigenvalues against Gaussian functions, which is not per se possible. This
means that one either has to turn towards simplified configurations, where one can indeed

perform the integration(s). Or, alternatively, one pursues the approximative part and tries
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to deduce estimates that allow finding upper bounds for the expression of interest. Over

the next sections, we will delve into both branches.

The last ingredient of our setup are the complexifier coherent states for U(1)3. We
already introduced them in Subsection 2.7, (2.164):

V)= [[ 3 sl sminion[goiome-in) ™ (10.8)
i2s {ni}ez

As a brief recap, m = (A (z), E©®)(z)) is the point the coherent state is peaked around
and the quantity ¢ is called the classicality parameter as the limit ¢ — 0 reflects entering
the classical realm of the theory. In one exponent, we find p} — the canonical conjugate
of the holonomy, entering via the complexified holonomy. The whole expression shows
clearly the edge- and U(1)-copy-wise structure of the coherent states. What is more, the
coherent state is built up by the inverse holonomy, as one can infer from the minus sign
—i07(A)

in the square bracket’s term e . Accordingly, the coherent states are in fact linear

combinations of the conjugate charge network functions Ti. With this minus sign, the
action of an additional inverse holonomy (ﬁ}‘;)l, as happening in the second part of the
operator of interest (j}g (), will not decrease the corresponding charge n’ by 1 but instead
increase it. Having this in mind, we can now state the expectation value of gy (r) with

respect to the coherent states:

e I DIl PR (C})
v o &
o e ) (v (fi}) - X ({nf + 53, 1)
{n}}ez

1 —t(ni)? i pi r o
= Z eZu( t( 1) +2p5 I>gp3r|Z’2 ZG(IJK)Eijkn/;n{]n];(
a2 2

1

e

T

2

- Z 6(]JK)€Z'jk (n} + 5ii05110) (n?] + 5ji06J[O) (TZI;( + 5kiO5K]0>
1JK

(10.9)

We first of all defined the eigenvalue as X’({nzl‘;}), where the indices tell the specific

charge the (inverse) holonomy acts on and we kept the curly brackets to indicate that it
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still depends on all the charges of the state. The last line now reflects the aforementioned
fact that acting on the conjugate charge network functions, the inverse holonomy will act
by adding 1 to the shifted charge nzl((’) We also introduced in the second line 53’}’0 as a

shorthand notation for §“°d;;, .

When it comes to the computation of expressions like (10.9) in the light of a semiclassical
analysis, sending the classicality parameter ¢t towards zero causes calculatory difficulty:
With ¢ becoming smaller and smaller, the Gaussian functions with t(n§)2 as their argument
become wider and wider — forcing us to consider more and more contributions of the sum
over all charges. What one would instead prefer to have at hand is an expression that
converges quickly for ¢ — 0. The typical tool to achieve this is the so-called Poisson
resummation formula [65, 66, 121, 130, 133135, 218| and, in fact, after applying it we

will ultimately only have to consider one contribution, which is even the trivial one.

Poisson resummation formula [134, Theorem 4.1]: For functions f € L(RR, dz) for
which

F(z) = i flx+nT), T >0, (10.10)

n=—oo

is absolutely and uniformly convergent for x € [0, 77, the (re-)summation formula

o0

S ) = 2% N;oof<2nTN> (10.11)

n=—oo

with the Fourier transform f(k) = [ dze **f(z) of f(x) holds.

To apply the Poisson resummation formula close to literature [66] in matters of notation,

we first define

T =+t (10.12)
xh = Tnt (10.13)
and then get
2|27 2\ T S () et 1
<qlg(r)>‘1’m: ||\IJ ||2 Z T dgxle I( I T 1>T3T
" {wNiter o0
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T

2
Z e(ITK)epata’ k.| —
1JK
3
- Z E(IJK)EZ‘]‘]C (IL‘} + T(siioéjjo) (I?] + T(;jio(;J]O) (l'];( + T(SkioéK[O)
1JK

(10.14)

Now, there are remarks to be made. First, we used the fact that we can associate the clas-
sicality parameter ¢ with the Planck length ¢p and the length scale a via T = vt = %P
Second, the new “pseudo-charges” N that enter our formulae via the Poisson resum-
mation formula are, in fact, not linked in any way to the previous U(1)-charges n%. So
whenever we talk about values of N¢, this does not transfer to the same information about

n%. This will become especially important when we consider solutions { Nt} = 0 only.

Similarly to above and following again the notation of [66], applying the Poisson re-

summation formula to the norm of the coherent states results in

”\Ijm”2: H ZQTE\/je ) 2 (n)? +2mN1pI H QK\/je t 1+Kt),

er€E(y) NieZ er€E(y
icl, 2 3 zel,2,3

(10.15)
where K; is of order O(t*), meaning we can neglect it when considering the limit ¢ — 0.
This is a crucial point that we will heavily make us of: An increasingly smaller classicality
parameter t will steadily squeeze the Gaussian functions more and more until, effectively,

only terms with N} = 0 contribute.

A straightforward analytical computation of expectation values like (10.14) is, however,
still not feasible and we are in need further techniques. We already mentioned that there
are two branches: Proceeding with estimates and obtain approximative results, or choose

special scenarios that then indeed allow an analytical calculation.
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Chapter 11

Kummer’s confluent hypergeometric

functions

This is the key ingredient we will work with in both the analytic branch as well as during
the approximative approach — at least for some ansatze there. We start with describing
the origin and definition of these special functions and then introduce those properties
that we will use during our investigations. Afterwards, we explain the general integration
procedure via Kummer’s confluent hypergeometric functions by taking the example of

quantum mechanics.

Kummer’s confluent hypergeometric functions — which we will abbreviate as KCHF's
— originate as solutions to Kummer’s differential equation [219]
d?w

dw
ZW%—(b—z)E—aw:O. (11.1)

This equation has two independent solutions, which are straightforwardly referred to as
Kummer functions of the first and of the second kind, respectively. Denoting the Kummer
function of the first kind by 1F;(a,b, z) and that of the second kind by U(a,b, z), they

read

— = (a)n n
1Fi(a, b, z) = nZ:O (b)nn!Z and (11.2)
Ula,b,z) = F(l—_i)lFl(a, b,z) + le—blﬂ(l +a—5b2-bz2). (11.3)

I'(1+a—0b) I'(a)
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We will call z the argument of 1F1(a,b, z), while referring to a and b as its parameters.

The quantities (a),, therein are the Pochhammer symbol, also named the rising factorial:

(a)o =1,
(a); = a and
(a), =ala+1)(a+2) - (a+n—1). (11.4)

When it comes to the naming of special functions and accompanied notations, however,
the literature offers a vast amount of different choices. We use those that became —
to our best knowledge — the established standard over time, but the interested reader
may find other ones, too: Initially, Kummer used ¢(«, §, z) instead of 1F;(a, b, z) in [219,
cf. e.g. eq. 1.], while it is nowadays often symbolised by M(a,b, z). This should not be
confused with the regularised KCHF M(a, b, 2) T'(b) := M(a, b, z), denoted by an upright
M, which is often used due its advantageous avoidance of the KCHFs’ singularities when
b is 0 or a negative integer. The Kummer functions of the second kind, U(a,b, z), are
in turn sometimes also referred to as Tricomi’s functions, named after Francesco Tricomi
who introduced them in [220]. Lastly, also the Pochhammer symbol offers a similar variety
of labellings: You may find it in the literature as a™ or ", while Pochhammer himself
denoted it by [a]}, confer [221, p.80-81]. Therein, you will also find (a),, which he,
however, used for the binomial coefficient (f;) Note that (a), is sometimes even used not
for the rising but the falling factorial — one really has to pay attention to the context
when seeing any of those symbols. When we later use the falling factorial, we will use
(a),, to stick to the logics of the Pochhammer symbol, while you will mostly find a” in

the literature.

Kummer’s functions 1F;(a, b, z) are entire functions in a and z, while they are mero-
morphic functions in b: they experience the aforementioned poles in b = —nVn € Ny.
Note that M(a, b, z) is therefore an entire function of all a, z and b. Kummer’s function
of the second kind has a branch point at z = 0 and is otherwise entire in a and b. KCHFs

include numerous elementary functions via particular choices of their parameters, like

1F1(07b7 Z) = 17 (115>
1Fi(a,a,2) = €, (11.6)

_Z _z 2 — 2 %: r
U(-5-52%) = (@7 = lal", (11.7)
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1
U(—g, 2 22) =2"H,(z) with the Hermite polynomials H,(z) (11.8)

and many further ones, including links to Bateman’s function, Bessel functions, Laguerre
polynomials etc. [222, 223]. Kummer’s confluent hypergeometric function for its part can
be seen as a special limit of the (ordinary) Gaussian hypergeometric function oF (a, ¢; b; 2):

1F1(a, b, z) = lim gFl(a, c; b; z), where (11.9)
c

c—00

oF1(a,c;b;z) == Z %z”. (11.10)

n=0

We end the general introduction of Kummer’s functions with an an important property,

the so-called Kummer’s transformations

1Fi(a,b,2) =€*1F1(b—a,b,—z) and (11.11)
27U (@ —b—1,2—b,2), (11.12)

-
—
L
s

N
~—

I

which we will use quite frequently during our calculations. The upcoming two subsections
introduce two further properties in some more detail as they are key techniques for the
subsequent computations.

In Appendix A, we also offer a brief biographical overview over the influential life and

work of Ernst Eduard Kummer.

11.1 The Fourier transformation

The first of those properties is about the Fourier transformation. It turns out that the
Kummer functions of the first and second kind can be transferred from one to the other
via Fourier transformations including Gaussian functions. So to some extend, the two
Kummer functions are dual to each other. This result was published by Pichler in [210,
Theorem 3] and its proof relies on another theorem therein, [210, Theorem 1], namely the
“Expansion of Kummer’s functions in terms of Laguerre polynomials”. Adopted to our

notation, the relevant part of [210, Theorem 3] for our purpose reads:
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Theorem 1 (Pichler) (Fourier transform of Kummer’s functions). Kummer’s func-
tions are symmetric with respect to Fourier transformation. Let x,k € R, we have for
Re(b—a) >0

2 1 F(§ —b) k2 3 k2
.7:<e U(a,b, I2)> = Em e 4 1F1 (CL,CE"’ 5 - b, Z) and (1].].3)

2 1 F(b) _ k2 3 k2
T 2 e S . v
]-"(e 1F1(a,b,x)> AT - a) e 4U<a,a—i-2 b, 4>. (11.14)

Therein, we used

1
V2n

T
R

dk (k) el

FUE) = fk) = — / do f(z) e * and F3)(x) = g(x) =

for the one-dimensional Fourier transformation F[f], or f, and its inverse F~![f]. How-
ever, for our purpose, we work with a slightly modified version of this theorem, which was

introduced in [2]:

Lemma 1 Let x,k € R,Re(b—a) >0 and a € C. Then, we have

-z i 1 F(§ — b) _Geme)? 3 (k: — &)2
-7:(@ QU(%b»fE?)e ):Eme 4 1F1(a,a—|—§—b,T> and

, , 1 T —a)? 3 k—a)?
]_—(e—m 1F1(@7b7 $2)ela$> = Eﬁ e_w‘l)U(a,(l-l- 5 - b7 %) (1116)

It essentially follows from the modulation property of the Fourier transformation itself:

F(e* f(z)) = f(k — ko). (11.17)

11.2 The asymptotic expansion for large arguments

The second property will be of paramount importance during our semiclassical consid-

erations: the asymptotic expansion for large arguments of the KCHF. For |z| — oo, we
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have [222]

2| =00 etriay—a (a)n(1+a—0),
F ~ I
iFi(a,b.2) (®) IL'(b—a) n!

n=0

0?20 b —a —a
@) > i, (1L18)

n=0

where we need to choose the minus sign in exp(+mnia) if z lies in the right half plane [222].

A similar expansion is also available for the Kummer function of the second kind, reading

Ula,b,2) "= e -~ (@a(l+a—b), (—2)". (11.19)

n!

3
Il
o

Note that we now use the symbol &~ to highlight approximations like applying one of

the asymptotic expansion formulae.

11.3 The procedure — exemplified by quantum me-

chanics

In this section, we will use familiar quantum mechanics and its coherent states to introduce
the general idea of the procedure that we will later use in the U(1)3-scenario. We start
by computing semiclassical expectation values of fractional powers of the momentum
|'r

operator, |p|”, and then proceed to an operator that we can use to mimic the cj}g (r)-

operator of loop quantum gravity.

The way KCHFs will enter our calculations most times is via one of the two integrals

/ o P (@—p)? |x|de=|p|1rr(T+ )1]5‘1( r pzuz) or (11.20)

. 2 2797

00 1 11
/ o P T2 e |z|"dz = ‘P‘_I_TF(T —; ) 1F1q (T —5 ' P2M2)7 (11.21)

where Re(r) > —1 and Re(p?) > 0. First of all, these two identities are, of course, related.
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Via the Kummer transformation (11.11), we can rewrite

r 1 _ 147r 1
1F1<—§,§’—p2,u2) —e P2“21F1< : ,§,p2,u2) (11.22)

and obtain a link between the respective right hand sides of (11.20) and (11.21). The ad-
ditional Gaussian can now be used to complete the square on the left hand side of (11.21)

and we see the two identities do indeed describe the same integration procedure.

We can also understand these two formulae via the generalised Lemma 1 we introduced
in Section 11.1. Using (11.7),
r 2\ 3 r_r oo
_ (22) = U(__7__, ) 11.23
ol = (+?) o (11.23)
gives rise to the Kummer function of the second kind within the integrand of both (11.20)
and (11.21) and we can indeed apply Lemma 1 to both.

Now, when it comes to classical quantum mechanics, the coherent states take the well-

known form
1 _(z—q)? i
e 2o2  erP” (11.24)

\I/co :\Ph =
h NN

in the position representation. Therein, the subscript ¢,p highlights that the state is

peaked around (g, p) in phase space, while the superscript i labels the state as being a
quantum mechanical one — as opposed to the coherent states of SU(2) or U(1)?. We
collect all constants in o = \/% , which also corresponds to the width of the coherent
state in phase space. As already stated, we start with computing the expectation value

of fractional powers of the momentum operator, i.e.

oo

(B Y, = (o, [ 1BI" | Tg,) = / dk F[] ) (k) [k F1¥g,] (k) (11.25)

—00

1
WithTEQ/\T>—§.

While the integral above is well-defined for » > —1 already, we further constrain r > —% as
this additionally implies that |p|" ¥}  is normalisable. For the last identity above, we used
that the momentum operator acts diagonally on the (generalised) momentum eigenstates
of quantum mechanics, which we put into the expression via a resolution of identity. We

can now use the already mentioned modulation property of the Fourier transform as well
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as the the self-reciprocity of Gaussian functions under Fourier transformations and obtain

oo

/ dk (k?) : 7%]6 = \/(Zhe((’;p>2 / dk(kQ)%e_(%k)Qei(_m%p)%k.
T

(B[ wn, =

q,p h\/_

—00

(11.26)
The last identity therein was introduced as a preparation for applying Lemma 1. We
already have the exponential function and what is left is replacing |k|” by a KCHF. Using
(11.23) we find

o \2 h " i 2 7 ? iZ Z
v, = 5el®' (2] [ akv(=5 g+ (F4) ) (B 288 1z

%%;(e—(é‘i)im (_g % (%)2» = U(—g, —Z+1, (%k>2> (79

_ F(é) (g):Fl (_g %,_<%>2> (11.29)

and see that we reproduced (11.20) to obtain the expectation value of |p|” with respect

to coherent states — namely a Kummer function of the first kind. A quick check for
r = 0 recovers the normalisation of the coherent states via 1F; (O, ;, —(‘%’)2> = 1. Also,
when it comes to the applicability of Lemma 1, we need to ensure Re(b — a) > 0 for the
involved KCHFs. With constraining » > —1, this is fulfilled for both 1F;(—%,1,.) and

U(=55+1)

Note that this was a completely analytical computation, without the need of estimates
or performing a Taylor expansion. However, as a final result, (11.29) is still a bit unsatisfy-
ing and this is where the previously introduced asymptotic expansion for large arguments

of the KCHF, (11.18), comes into play. Working in quantum mechanics, we have with &
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a parameter at hand that can be used to tell whether a quantity can be considered as
being small or, via inverse powers of it, in fact large. In the final result of (11.29) above,

the argument of the KCHF reads z = — (0—”)2 — —-2_ and we can therefore indeed apply

h hAmw

the expansion for large arguments:

e D) (Vo [ () & (20 (5), (e
w92 () T ey ()
2 9 _1-57"
Pl ) 3 (55),(0+5)n (_hmw)”
F(_g) n—0 n! p2
~ |7 S (_g)n(l%)n hmw\"
= nzzo n! ( p? )
~ [p|" (1 B 7“(14— r) hzzw N (’)(hQ)), )

Therein, a computationally advantageous feature of the asymptotic expansion was used
that we will always face in our considerations: Out of the two sums of the asymptotic
expansions, one generically vanishes due to a remaining Gaussian prefactor that damps
that contribution to O(A*). In the above, this is the case for the second sum, which is
preceded by the Gaussian function e_%. Next, we have a minus sign in the exponential

function within the first sum as the argument of the KCHF is negative and a = —3.

Together with the fractional power of -1 within the prefactor (—%) 2, this completes

to e ™3 (—1)2 = (—1)"2(—1)2 = 1 and there is no imaginary part left — as it should be.
Thereby, we end up with a series expansion that is calculable up to any desired order and

which also reproduces the expected zeroth order result [p|".

We now proceed to an operator that we use to mimic the class of U(1)-operators ¢ (r)

in quantum mechanics:
Qo (1) = €92 [679%, P[] = [p]" — [l e, (11.31)

With the volume operator depending on the fluxes, recap (2.106), it is a straightforward
choice to choose the momentum operator as representative in the quantum mechanical
toy model. The exponent r is then used to get the correct power. As equivalent of the

holonomy operator, we introduced e'“*. If we single out the last e-function P within
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the definition of the quantum mechanical coherent states, (11.24), we can combine it with
el the action of the holonomy-like quantum mechanical operator, to obtain a shifted
momentum p — p — ha. This is also how the holonomy operator acts in U(1), so the

choice does indeed make sense.

We will now perform the calculations for the choice of r that, in U(1)3, reflects the sce-
nario where cj}g (r) contains the square root of the volume operator — which is a frequently
appearing quantity in loop quantum gravity. Recap that the volume operator (2.106) is
essentially the square root of the operator Qv, (2.107), which in turn is proportional to the
product of three fluxes. Interpreting the momentum operator as the quantum mechanical
equivalent of the fluxes in loop quantum gravity, we are therefore left with the association

/o

3
= |pl*
lag

and the expectation value of interest reads
qm

(JGqm (P Y = (W0 [e? {e—iaf, v/ |15|3] ot ). (11.32)

We can compute this in two steps, referring to our previous result for (|p|")ys , (11.29).
With one of the two contributions being precisely the result of (11.29) for r = %, we have

W 1 (B 31 o2
( |p|3>\pg,p=ﬁ(g) F(g)lFl(—g,ﬁ,—ﬁpQ) (11.33)

As we already associated the action of the holonomy-like operator as a shift in the mo-

mentum only, we can also directly deduce

N 1 (R 31 o
( |p|3>e_iaf\pgp = ﬁ (E) F(%)1F1 (—g, > —ﬁ(p — ﬁoz)2). (11.34)

The arguments of the KCHF's in both contributions go with —%—spz = — 2 e with %

mwh’

in at least one of their terms. We can therefore apply the asymptotic expansion for large

arguments, (11.18), and get

3 3 3
Y X 3alp|* 3 a?plt 15 amwl|p|*
Pl |elad iaz 4 3 Pl Vo 2 h 2 B2
< q,P‘e {e ’ ’p‘ 1‘ q,p> 4 P + 32 p2 + 256 p3

< 5 a3|p|% 135 a2mw|p|% 1755 am2w2|p|%

B3 B, 11.
128 p3 2048  pt 32768  p° ) +O(h) (11.35)
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Just like before, we were able to drop one sum per expansion due to damping Gaussian
prefactors.! The lowest order contribution divided by A matches the result one obtains
for the Poisson bracket of the classical counterparts of the involved operators. In the next
section, we will try to replicate this result by means of a different approach to semiclassical

analyses from the literature.

Before, we also want to address the case p = 0 as we notice that the result above would
diverge did we take that limit. Setting p = 0 in (11.33) & (11.34), we immediately see
that we have to proceed differently from thereon anyway. With p = 0, the argument
of the KCHF within (11.33) vanishes, yielding 1F;(a,b,0) = 1. For (11.34) with p = 0,
in turn, we can use the non-approximative series expansion of the KCHF, (11.2), and

directly obtain a power series in h:

o e o2 et (1- 5 B (22))

So we do in fact not end up with a diverging expression for the limit p = 0 after all.

11.4 Comparison with the algebraic quantum gravity

approach

We now want to compare the previously obtained analytical result for the semiclassical
expectation value with an approximative method from the literature. This procedure
originates from the previously introduced framework called algebraic quantum gravity,
introduced by Giesel and Thiemann in [58-61]. In the third paper of this series, [60],
they show that one can replace the operator of interest, i.e. which one aims to compute
semiclassical expectation values of, by a power series in the classicality parameter that
only contains integer powers of operators one can in turn compute expectation values of.
So starting with an operator to the power of r € @, one ends up with a power series in
expectation values of that operator to the power of n € N. In our case, this operator

is QU: If we want to compute semiclassical expectation values of d}g (r) in loop quantum

'Note that we could have used just as well the final result after performing the expansion, (11.30).
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gravity, which include VT, it ultimately means to compute semiclassical expectation values

of <Qv> ® We motivated that this is not analytically possible in full generality, but via

~

the method of [60], we end up with computing integer powers (Qv> ,n € N, only. The
actual replacement of the volume operator to the power of a rational number within the

semiclassical expectation value with respect to U by a power series then looks like [60]

2k+1

o «Q > <1+§: 7H1q QV'JH—Jf—Q(k§g£_1)>, (11.37)

which is correct up to the order RF*!.

We now apply this technique to the toy model of semiclassical expectation values of
(11.31) within quantum mechanics. As before, we consider the square root of the volume
operator, meaning r = %, and for the power series above we choose k = 1, i.e. we include
correction terms up to ~ h?. With k& = 1, we have to compute expectation values of
powers of p up to p'®. However, for integer powers we can use the standard techniques

and end up with

3alp|t 3 a2p|T 15 amwlp|t
aplt, (3 a’plt 15 amwlp|*

iai | —iai 4[|A13 2 4 3
~ — h R’). (11.

Comparing this result with the previously obtained one via KCHFs, (11.35), we realise
that they do indeed agree.

145



CHAPTER 11. KUMMER'S CONFLUENT HYPERGEOMETRIC FUNCTIONS

146



Chapter 12

Kummer’s functions and coherent

states on the circle

Before we delve into the computation of semiclassical expectation values via Kummer’s
confluent hypergeometric functions in loop quantum gravity, we use this chapter to inves-
tigate coherent states on the circle in the light of Kummer’s functions. In the literature,
coherent states on the circle were investigated so far either via the complexifier method
[208] or using the so-called Zak transform [204-207]. This chapter now aims at combining
these two approaches and Kummer’s confluent hypergeometric functions help computing

semiclassical expectation values.

12.1 The Zak transformation

We start with some short remarks along the lines of [224]: The Zak transformation is
named after Joshua Zak who introduced it in [209] as the “k-q representation” for de-
scribing Bloch electrons in electromagnetic fields. Israil Gel’fand discovered it already
earlier in [225], but it is only rarely found as the “Gel’fand mapping” as it was Zak who
started to investigate it in more detail. There exists also a different variety of the Zak
transform, named the “Weil-Brezin map” after André Weil® [228] and Jonathan Brezin
[229]. For this particular map, [230] argues that Carl Friedrich Gau8 was already aware
of it.

LAs a side note, it was also André Weil who published the collected work of Ernst Eduard Kummer
[226, 227].
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With the Zak transformation, we can map functions from R to the torus T?:

Z,: Ly(R) = Ly(R*/2%), [+ Zi[fl(x,¢) =va Y f(z+2mma)e "< (12.1)

n=—oo

Therein, ¢ € [0,1/a] and — in abuse of notation — we use the same x € [0,2na] for
both the old and new variable. Note that while we work in one dimension only, the

Zak transform can also be extended to Lo(R™). The corresponding inverse mapping
Z1: Ly(R?*/Z?) — La(R) now reads

1

Z gl(x) = x/E/ d¢ g(z, €), (12.2)

with a # 0 € R. After applying the Zak transformation, we obtain with Z,[f] a periodic

function in ¢ that is furthermore quasiperiodic in x:

g(z, ¢+ %) =g(z,¢) and g(z + 2mam,() = " %Cg(x,¢) for g= Z,[f], {.m € Z.
(12.3)
Accordingly, the choice of its values in [0, 2ra] % [0, 1] fully defines Z,[f].

As a short example, we compute the Zak transformation of a Gaussian fq: R = R,z —

22
fa(x) ==e . To keep the formulae short, we use a = 1 and 2, =: Z:

o0

Z(fcl(z,¢) = Z o5 (@+2mn)? —2irn¢

n=—0oo
o0
2

. . (2m)2n2
:e—ﬁ—b § : eQm(fn(+12nﬁ)e—7"4b

n=-—00
2imr In

= e 4b@<—TEC + E, 3) (124)

In the last step, we introduced Jacobi’s third theta function O(z,e™) = O(z,7) =
S e?inzeinn® with Tm(r) > 0.

n=—oo

We will later also use the combination of the Zak transform of a function and the

dilation D, of its argument defined as D, f(x) = /7 f(yx) for v > 0. Using a result of
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[231], the Zak transform of a dilated function reads

Z[Dy fl(z,¢) = Z,[f](ve, /), (12.5)

where again Z := Z;. Associating the two parameters v = a, the Zak transformation

above becomes

Zafllazx,¢/a) = Va Z f(az + 2mna)e "¢ (12.6)

n=—oo

and we will from now on consider the special case of a = 1.

As a further example and to get more familiar with the Zak transformation, we show
its unitarity following [211]. For f € L;(R) N Ly(R),

/dx|f :-Z /dx|f / :Z|a;+2nk; <oo  (12.7)

R k==00 5 k+[0,27]

holds. The first step consists of a partition of R into intervals of [0, 21]. We then applied
Fubini’s theorem and lastly used that f € Ls(R). Hence, > o= _ |f(z + 21k)]* < o0
for a.e. # € R and the Fourier series >~ f(z + 2nk) e #™¢ is well-defined for f €
Li(R) N Ly(R). We also have

1

/dqz z,¢)? Z | f(x + 2nk)|? (12.8)

0 k=—00
and with an additional integration over x combined with Fubini’s theorem, we end up
with

2n 1
1
V20 ey = 5 / da / 4|2(a, ) (129)

- / a3 1wt om0 = [l P = 1 (1210

k=—o00 R

from which we can now deduce the unitarity of the Zak transform as L;(R) N Ly(R) is
dense in Ly(R).
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We previously saw that the image of a Gaussian function under the Zak transformation
is a theta function. The Zak transform can, however, also be generalised to be applicable
to distributions [211]. This results in a bijection between S'(R) and Q'(R?) — the dual
of the Schwartz space and the dual of the space of all quasiperiodic (as in (12.3)) smooth

functions.

We now turn towards the complexifier procedure for constructing coherent states, which
we already discussed in Section 2.7. Viewed from a different angle, this mechanism con-
structs coherent states like (11.24) by analytically continuing the heat kernel

1 _@w?
pi(z,y) = Chorm—7 € "al . (12.11)

Vit

We label the diffusion constant by k4 and the normalisation constant by Clom. To face

normalised states, the latter should of course be Cporm = \/42?. Note that Section 12.4
will present more details about the heat equation and self similar solutions thereof. In

general, a solution u(z,t) to the heat equation reads

o0

u(a, ) = / Ay o, 1) (5) = Bolf)(x,1), (12.12)

—00

where f(z) describes the boundary conditions and we introduced the so-called Gaussian
integral operator B,: S(R) = S(R) (borrowing the notation of [211]).

The quantum mechanical coherent states can then be obtained via

(z—q)?

\IJZ,p(x) = [ph(x, y)]y—)q—i—ip = C‘]ap»h e e%px7 (1213)
where C 1 = Chomm exp(%(—%qp +p2)) and kq = %, m=1,w =1, yielding o = V.

As before, we choose a = 1 and obtain [211]

2r 1
ZB, Z7 g|(z,¢) = //Kpt(JUaClay7<2)9(y,C2)dydC2 (12.14)
00

for the Zak transformation ZB,, Z7': Q(R?) — Q(R?) of B,,. For the kernel
KCoi(x,Ci,y,C2), [211] then showed the following link to the Zak transform of the heat
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kernel:
’Cpt(xa C17y7C2> = Z[pt]('I?bea _C2)7 (xaCi)?(ya CQ) S ]R‘Q' (1215)

Note that the minus sign in the fourth argument stems directly from the kernel being a

function in x — y. With that, we have

00
]_ _(z+2nn7y72nm)2 o .
’Cpt (:[j, Cl? v, CQ) = Cnorm% E e Ikt e 2inn(y e21ﬂ:m(2
n,m=—00
e
1 _@—ytantm)? o
= Cnorm% § e akqt g AmnGLg—2inmey (12.16)
n,m=—o0

which we now reformulate by means of theta functions. For doing so, we need n :==n+m

and m :=n —m and then get

C > (z—y+2n7)2
—(r— TN _9; l ~ o~ _ o l =~
Ko (2,61, y,Go) = —= g e~ dkat @ AmCig () —2inag(A—m)

Vit

_@=y)?
4kt e 2n
_ Cnorm € d § e_;kdt( )e (4)6;,5 e—2lTE7’L (<1+<2) —2inmi (Cl (2)
Vit

_(z—y)?
CHOI'II] e 4kdt

s 2in(x — —2inm(G1—Ca)
_= ik Sl 74 imi g (G1—C2 12.1
7 @( S(G+G)+ Tt kdt) _Z e (12.17)

n,mM=—00

T,M=—00

The remaining, non-converging sum above can be cast into

MG —G) = hm 0n (G — Z emr(ca=ar), (12.18)
where n
5u(Co — 1) = Z elmm(C2—C1). (12.19)
This leads us to
ZBptZ_l[g]($7C1) =
— lim Cnorm/d dC 7%@ _E(C +C)+1n($—y) i 5(§ _g) ( C)
=TV B PRI M

T2
(12.20)
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CIRCLE
Integrating over (5 and taking the limit n — oo, we find
u(z,t,¢1) = ZB,, Z " g](z, ()
- Cﬁm / dy e‘“ikﬁf@<—rccl + —m(;ck;y),%)g@,cl). (12.21)

T2

Therefore, we have with u(x,t,¢(;) = ZB,, Z ' [g](x, (1) a solution of the pushforward of
the heat equation by the Zak transform, subject to the quasiperiodic boundary condition

u(z,0,¢) = e 2 g(x, ¢;). The new g(x, ¢) includes the normalisation constant Corm.

As a check, we may now directly look at the pushforward of the heat equation by the Zak
transformation. For the differential 5%, [211] found the pushforward Z, 52 = -2 — where
we again used x for both the old and new coordinates. Accordingly, the pushforwarded

heat equation then reads

O 12 (z,t,¢1) =0 (12.22)
ot dal'Q u\r,t,61) = V. .
From this form — with the differential operator part being independent of (; —, we

deduce that u(z,t, ;) of (12.21) is a solution for any value of (; and we may as well set
(1 = 0. Lastly, we note that (; corresponds to ¢ in [205, 207, 208] and & in [206].

This is furthermore in accordance with the convolution property of the Zak transform,

shown i.a. in [231]:
Vi, fo € La(R), f1 * f2 € Li(R): Z[f1 = fo] = Z[f1] %y Z[/2], (12.23)

where

(o fo) () = / dy iz =) faly),  ZLfle ZLf) (2, C) = / dyZ[fi)(@—y. O Z1f2) (5. C).

(12.24)
We can confirm this consistency check by setting f; = p; and f, = ¢, with the Zak

transformation of p; reading

_@—w)?

Cnorrn 4kdt i - 1
Zlp(x —y,Q) = +@ (—nc + % %) (12.25)
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We may now rewrite the theta kernel in a more concise way, using that the theta

function scales according to

@Q%T)z(—nyﬁexp(ﬁi>@(f,—l). (12.26)

1T T T

Choosing 7 = ,% and z = —n¢ + 5(z — y), we find

@(—TEC + %, %) = @(—TEC + %(m —vy), %) = 0O(z,7). (12.27)

With 22 /(in7) = —C2kqt + % +i((z — y), we can then reformulate the Zak transform

of p; as

CYnorrn kat _ -2 o s 1 1
Zlp(z —y,0) = NG T;e ¢ hatic( y)@(—é+§(m—y),—;)

VEd oy 1 Fat
= Cnorm_ —Chat IC(xfy)@ ] k t - - -
R e iChat + 5 (x —y), ——
CrormVkd Z —(n+¢)2kat i -
norm e (1 d el(n+<)($ y)’ (1228)
ﬁ nez

using the very definition of the theta function during the last step.

We now have everything at hand that is needed to construct coherent states on the circle.
Using again t for the classicality parameter and considering the analytic continuation of

the image of the heat kernel, the not yet normalised coherent states on the circle read

Vo o (0:0) = [Zlod(¢ =4, Oly—pysip (12.29)
C'nolrm k — i — i . 1 . kqt
— do=Chatgico=(0o+ip) g (1det + 5(1‘ — (6o +ip)), —%)
Cuormv'ka Z o~ (nF0)?kat o (n+C)é o =i(n+)fo o (n+O)p. (12.30)

\/E nez

Therein, we used ¢ € S* for the coordinate, emphasising the states are defined on a
circle for each fixed value of ¢ — confer [206] for a proof. Note that we regain the U(1)

153



CHAPTER 12. KUMMER’S FUNCTIONS AND COHERENT STATES ON THE

CIRCLE

complexifier coherent states of [208]?,
Wh (670) = Y em (et Oreint Qi O (12.31)
if we choose Chorm = % and a diffusion constant of kg = %, leading to Chorm = V2.

Comparing our result to the U(1) coherent states of [63, 64, 121, 133-135], we find different
signs of 0y and ¢ for ( = 0. The origin of this discrepancy is their usage of the convention
{p,q} = 1, leading to a complexified g of z = ¢ — ip. However, this is not problematic as
the contribution of 6y is just a phase and concerning e.g. expectation values, the integral

including ¢ is invariant under ¢ +— —a.

In what follows, we set kq = % to be able to easier compare our results with the ones
of [121, 133-135, 208]. ¢, however, will be kept arbitrary, allowing for a straightforward
mapping between the U(1) scenario and the one of standard Ls(R) via the Zak transfor-

mation at any time.

12.2 Semiclassical matrix elements

In this section, we first compute semiclassical expectation values with respect to coher-
ent states on the circle of the dynamical operators discussed already in the quantum
mechanical case during Section 11.3. We then continue with introducing a link between

semiclassical matrix elements of Ly(S') and Ly(R) in Subsection 12.2.2.

12.2.1 Semiclassical expectation values via Kummer’s functions

We use the previously constructed non-normalised U(1) coherent states on the circle in
the form

U (¢:¢) = Z o3 (n+0)? (i(n+) (6= (Bo+ip)) (12.32)

0o,p
n=—oo

2 As stated above, the § in [208] corresponds to our (.
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and start with computing semiclassical expectation values of |[p|". The corresponding

momentum operator of U(1) acts on these coherent states in the following way:

o

W (@) = 3 (n )t e 5P tOG-Gotin) (12.33)

n=—0oo

90 p(¢ C) (b

The expectation value that we are interested in then reads

(Why () 1B [l p(0)) = [ W > D 1+ Ottt (12.34)

neZ

Compared to the usual case where ( is fixed to be zero, we realise that the way the
non-vanishing ( enters into the expectation value is as a kind of shift of n. Therefore,
if we apply the Poisson resummation formula now and use the modulation property of
the Fourier transform, the result is the same as in the standard case up to an additional
exponential of the form e?V™_ where N denotes the summation index after the Poisson

resummation has been performed. Thus, we obtain

_ t 2V 21 r - 2inN¢ < dz r —g24 2y 2mN
(W )BT 19,0 = WO 77T 30 66 [ paperobertt

(12.35)

where we defined = n+ ¢, T := v/t and used the translation invariance of dz. Now, we
can proceed as in the quantum mechanical case. We rewrite |z|” in terms of the Kummer
function of the second kind and afterwards write the integrand above as a product of the
Fourier transform of the Kummer function, a Gaussian and a complex exponential. This

yields

<W%p(ﬂl\\w%m(»

o D S B L
N=—o00 —00

= Hw;@)}l‘z%r > HNF (UL, -5 4+ 1,22 )e e () (25)

=—00

r+1 00 2TEN+2iTp 2
- |‘¢;(O il—‘(i) Z_: eQmNCe_(T4)1F1 (_g)

T AT
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t 72TT r41 - 2N ¢ _M T 1 T[N lp 2
:‘Wg(g)H TF(T) Z € e 12 1F 5y T+T , (12.36)

N=—00

where we applied Lemma 1 in the second step and also used F(%) = /m. Using the

Kummer transformation for 1F;(a, b, z) shown in (11.11), we finally obtain

(W () DI ¥, ,,(C))

T 2
= Hw;(C)H—??F Z e2mNC <T‘51,;’ (%) ) (12.37)

N=—o00

To complete this calculation, let us compute the norm of the coherent states that is

involved in the result above. After the Poisson resummation, we get

o0

QI = 3 ematemon - [1 57 e ot (12.38)
N=—00

n=—oo

Being now interested in the asymptotics of small ¢, and hence T accordingly, we can
apply the asymptotic expansion for large arguments of the KCHF, (11.18), on (12.37).
This follows closely the procedure of the quantum mechanical scenario of (11.30). With
the norm (12.38), a Gaussian in P*/t enters the expectation value. Hence, out of the two
series of the KCHF’s asymptotic expansion, only the one with the inverse Gaussian in »°/t

remains, while the other one is damped to O(¢*). In the end, we obtain

(W5, (O 1A [W5,,,(€)) = ol Z E8F. (1)

p

= |p|" (1 - ¥1¥ + O(tQ)), (12.39)

which resembles perfectly the quantum mechanical result of (11.30). That this is expected
will be discussed in detail in Subsection 12.2.2, where the relation between semiclassical
expectation values of quantum mechanics and U(1) is analysed by means of the Zak

transform and its properties.

Before this, we now compute semiclassical expectation values of the class of operators
4(r), which as already stated are of great importance in loop quantum gravity. With the
previously obtained results of (12.37) and (12.38), we may now also rigorously compute

expectation values of them in U(1). From (12.37), we can directly derive the expectation
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value of |p|” w.r.t. the coherent state the inverse holonomy acted on:

(A=, (O DI [ R, ,(0))
LT 1 T2 — 7N
= 05O FT (55 Z ANy (T;r ; (p — )) (12.40)

N=—0c0

Like in the standard quantum mechanical case of Section 11.3, the inverse holonomy
acting on the coherent state causes an (infinitesimal) shift in the momentum. With the
holonomy being h = €'?, the momentum operator’s ¢-derivative now not only sees e (" +<)¢
as in (12.33), but acts on el("+0)%e=i¢ = (l(n+¢=1)¢ instead. Hence, |p|” acting on the shifted
coherent state evaluates now |(n + ¢ — 1)t|” and we can cast that shift into p — p — ¢ in
the state’s exponentials via a redefinition of n — n — 1. Having these two expectation
values of |p|", we can combine them to the commutator’s expectation value and proceed as
before in the quantum mechanical case, namely by performing the asymptotic expansion
for large arguments of the KCHF's, as both of them grow with % for small ¢. In the end,

we obtain

- 1—7r) 7(2—=3r+172
(@), = |§| t+Ip|" ( (2p2 ) o g ))t2+0(t3). (12.41)

We see again that the series’ first term corresponds one-to-one to the derivative’s result.
For the next order, we got two contributions: one that resembles the second derivative
but also a further one. If we compare the result above to the quantum mechanic’s result
of (11.35), we notice that the A%-contribution there also comprised two terms. While one
included o2, namely the one with the numerical prefactors and powers of p in accordance

to the second derivative, the second one was proportional to «.

12.2.2 Linking semiclassical matrix elements of Ly(S') and Ls(R)

As discussed in Section 12.1, the Zak transformation provides a unitary map between
the Hilbert spaces Lo(RR) and Ly(IR?/Z?). Therefore, the expectation values of the usual
quantum mechanical operators and their corresponding Zak-transformed counterparts are
identical. However, if we compute matrix elements or semiclassical expectation values with
respect to U(1) coherent states for fixed ¢, as one does for coherent states on a circle,

we only perform one of the integrals, namely the one over 6, out of the two integrations
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involved in the inner product of Ly(IR?/Z?). Nevertheless, as we will show below, the
expectation value with respect to U(1) coherent states is completely determined if we know
the matrix elements of the corresponding operator with respect to the harmonic oscillator
coherent states in Lo(IR). As shown above, the U(1) coherent states can be written by
means of the Zak transform as (¢, ¢) = Z[¥! 1(¢,(¢), and accordingly operators OQM
transform under Z as ZOquZ~"'. Hence, the integrand of an L,(S') expectation value

with respect to U(1) coherent states is given by

Z[Wh 1(6,0)Z0quZ " Z[V" 1(4,¢) = Z[V% (6, () Z[Oqm¥h ) (6, €). (12.42)

In the following considerations, we want to examine the relation between

2 d¢ R :

| SEE 0.0 200 W, (6.0
and matrix elements (0!, , | Oqui | ¥ )1, w). We will follow [231], where some of the for-
mulae are presented but partly without proofs®. With f,g € Ly(R), Z[f](¢,¢)Z[g](6, )
is periodic in (, which follows directly from the definition of the Zak transform. Further-

more, it is also 2rn-periodic in ¢: We have

m(ﬁb + 27—5, () [ ](gb+ 21 C Z f ¢ + 27 + 2TCm) i2nm( (¢ 4o+ 2].[71) —i2mn¢

o (12.43)
2 i F(o+2mr) 00 (¢ 4 2ms) e 271N
o (12.44)
i F( +2nr) €7 g(¢ + 2ms) o7 (12.45)
= Z[f1(¢,¢) Zlg](¢, O). (12.46)
As a consequence, we can expand Z[f]Z][g] into a Fourier series given by
(Z[N1Z2[9))(¢:¢) = Z Foam €7 270 (12.47)

m,n=—00

3Note that in [231], some definitions might differ by factors of © because we adopted the operators to
the case needed for our work.
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where F,,, denote the Fourier coefficients that have the form

- / d¢ / (¢ ) eI g 2mnC, (12.48)

Next, we introduce the translation and scaling operators defined by
(T.f)(z) = f(x+a) and (Ryf)(x) =e " f(x), a,beR. (12.49)
The Fourier coefficients F,,,, can be easily computed as already discussed in [231] and in

more detail in [232]:

Lemma 2 The Fourier coefficients Fo,, in

(Z[f] Z fmn elxm 2min (1250)
are given by
fmn = <R—mT27mfa g>L2(IR)- (1251)

In order to proof the lemma above, we just have to compute the Zak transform of
R_,,T5.,f. We obtain

o0

Z[R Toanf)(0,0) = D (RowTomaf)(¢ + 21k) e 27
k=—o00
_ i f(¢+27c(/<:+n)) o 2imk¢ ei(¢+2n(k+n))m
k=—o0
_ i f(¢+ 271]{:) eQiTmC e—2iﬂ:k< plom
= kzz[ﬁ((p ¢) elom erien, (12.52)

where we used the quasi-periodicity of Z in the second last step. Given this, the complex

conjugate reads

Z[R_Torenf1(0,€) = Z[f1(¢, ¢)e e 2mm, (12.53)
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Reinserting this back into the Fourier coefficients F,,,,, we get
2 1
do¢ —_—
Fan = [ 52 [ AR T 1210)(0,0)

0 0
= (Z[R_nTornf], Z19]) Lo(s1x(51)%)
= <RfmT27mf7 g)Lg(]R)7 (1254)

where we used the unitarity of the Zak transform in the last step. Therefore, the Fourier

series associated with (Z[f](¢), Z[g](¢))rL,(s1) reads

m,n=—00

2n oo
ENQ. 20 Disy = [52 D (RonTimd  ghray o7 2
0

= Z <T2Tmf7 g>L2(]R) e%mc- (1255)

n=—oo

If we apply the result in (12.55) on the harmonic oscillator coherent states, we obtain the

following relation between semiclassical matrix elements in Ly(S') and Ly(R):

Lemma 3 For a linear operator O on (a suitable domain of ) Ly(S") that is obtained from
the corresponding operator OQM on (a suitable domain of) Lo(R) by O = ZOAQMZ_1 we

have the following relation between the matriz elements in Lo(S') and Ly(R):

<\I}t67p'(o 10| qjéoﬂp(g»b(sl) - Z emm%T?Tm\Pg’,p’ | Oqu |\I]21P>L2(R)|9%:=@ mod 21
n=-00 0,=q' mod 2r
(12.56)

We realise the semiclassical matrix elements in Ly(S!') can be understood as a Fourier
series in ¢ with Fourier coefficients ¢, = (Tornf, 9)r,(r). This means that the matrix
elements in Ly(S') are completely determined by the corresponding matrix elements in
the ordinary quantum mechanics case in Ly(RR). In particular, an additional integration
over fol d(¢ just projects onto the n = 0 coefficient and this yields, as expected from the

unitarity of Z, the semiclassical matrix element in Ly(R).

Expectation values of U(1) coherent states for integer powers of holonomy and momen-
tum operators have been computed in [134, 135, 208] using complexifier coherent states.

In [134, 135], these were computed for the special case of ( = 0, whereas in [208] an
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arbitrary ¢ was considered. In both works, they show that it is justified to only consider
the n = 0 term if we are interested in the classical limit ¢ — 0. Given this, we know from
the lemma above that in this limit the result for Ly(S') and Ly(R) exactly coincide and
the value of ( is irrelevant. In [205-207], these kind of expectation values were computed
and higher n terms were rewritten in terms of Jacobi’s theta function and its derivative
respectively. We believe that the relation shown in the lemma above yields a simpler
formulation of the higher order terms in n and easily allows to extract the semiclassical

limit ¢ — 0.

To demonstrate that Lemma 3 may indeed simplify computations of semiclassical matrix
elements and expectations values, we apply it to a couple of examples. First, we consider
the overlap of two coherent states and thus choose f = \Il p and g = \Ifg,p. The matrix
element of interest in Lo(R) is then

2

T _1(a=d+ip+p) nr
<T2m‘1ﬂql’7p’ “Ij}qlm)Lz(R) = \/% € h'( ’ " ) . (12-57)

Given this, the corresponding overlap for Lo (S!) reads

q q+l(p+p) nr in
(Wl () W5, (O Lagsn) \/> d e * )e2 | = . (12.58)

Oo= q mod 27

n=-—00 0y=¢' mod 2n

which exactly agrees with the result in [208] and reproduces also the correct result for the

norm, for instance computed in [133, 135, 208], as a special case:

2 T - —=(ip+nn Tin
(W) W sy = [ | = [T 3 rbomsmotermn (12.59)

n=—oo

In our further discussion, we will consider semiclassical expectation values of the basic
operators as well as matrix elements for fractional powers of the momentum operator. We
start with integer powers of holonomy operators, that is hm = ¢im®  For this operator, we

get

mh

T — 7 (ip+nn —2) _—inmnm
<T2TETL‘I]Z, | lmm|‘;[jqp>L2 R) — \/%e h(p+ )e ™l )e ) (1260)

and therefore the corresponding semiclassical expectation value for U(1) coherent states
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yields

o0

imae T im(g—mt ip+nmr)? —mnm Tin.
(W 01678 10, st = [ 08 3 bt |

n=—oo

90 q mod 27:
6{=¢' mod 2n
which agrees for m = 1 and up to a different normalisation with the results in [205, 207].
We cannot directly compare it to the results in [135], since they only considered the limit

t — 0 and thus some terms were neglected during the computation.

Let us briefly discuss the matrix elements in Ly(R) that enter the Fourier expansion
of semiclassical expectation values in Ly(S?). For an operator of the form O = f(z), the

Fourier coefficients have the following form:

1 —Lip+nxn)2 (z—g+mn
(Taon Vi | F@) |V iy = 5 <107 [ oy ebiemmmmnr,
R

We realise that the only difference to the case n = 0, when the translation operator
becomes the identity operator, is that (some) ¢ and p labels get shifted by nt or —nn
respectively. Note that this cannot be carried over to a shift in the ¢, p labels for the
entire state \DZP since also the normalisation constant C,, ; depends on these labels and
no shift occurs there. Likewise, considering the Fourier transform of the states \I!Z o W
can write down a smilar result for operators O = f(p) given by

1

<T27m\I/Z7 | ( ) |‘Ijqp>L2(R) = ﬁ/ dk e—gk2€%k(—ip+mt)f(k)'

R

Now, if we choose as an example f(p) = [p|", we can easily show that the result in (12.37)
is consistent with Lemma 3. This also explains the additional shift by nn in the argument
of the Kummer function compared to the result for the quantum mechanical expectation
value of (11.29), yielding a consistency check of our computations in the former sections.
Moreover, for n = 0 the results of (12.36) and (11.29) agree as required if the normalisation

is taken correctly.

Finally, we present the computation of matrix elements for fractional powers of the

momentum operator, that is we are aiming at computing (W 9617 () DI 1E(C)) pacsry by
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applying Lemma 3. For this purpose we need the explicit form of

(Tonn Py | 1B | W) o) = /dk‘J'"(‘I’Zp/)(/f)Ikl’"f(\lfip)(k)e‘ih%”"”. (12.61)

Reinserting the Fourier transform F (¥} )(k) = Cypne~ 2k e=5k=p)da together with
Cyppe 2P TPl = \/ﬁ and Cy y pe~ 2’ )Z’lp'q' = \}ﬁ, we obtain

.
1 1
e 2€¢ﬁk< N~

¢ —ip’ _ q+ip 27{77.) (

r_ k
<T2’m ||p| |\Ijqp>L2() = hs l/dk'ﬁ

Next, we rewrite the absolute value in terms of the Kummer function of the first kind,
that is ‘\%‘ =U(—5,—5 + 1, %2) Further, we introduce the new variable k = \/Lﬁ and
perform the integration by using the duality of Kummer’s function of the first and second

kind under Fourier transformations, as discussed in Section 11.1. This yields

(Tonn Wy | 1B | W) o) = (12.63)
r (=L e _1(a=d i) o 2 o / 2
:\/% é(i))iﬁe h< : - ) 1141(—%%)%(%%}7)—{—%7[) )
2

If we specialise the above result to the case r = 0 and consider that {Fy (O, %, z) =1 for

all z, then the result exactly agrees with the overlap shown in (12.57). Given the result
for the matrix element in Ls(R) by means of Lemma 3, we immediately get the analogue
for Ly(S), which finally takes the form

(Woy o (O 11D | Wy (O a5y = (12.64)
() S _1(a=d+itptp) o 2 i p 2
\/‘ ( 2 )tQZelzmge P ) _57%’%<q o+ ) Jrnn) | o= ‘
t F(Q) -0 6o=qg mod 2xn
n= 6,=¢’ mod 2x

Comparing the final result in (12.64) to the result in (12.36), we realise that if we choose
0, = 0y and p’ = p corresponding to ¢ = ¢ and p' = p in (12.64) as well as take
into account that 7" = /¢, then for this special case the results in (12.36) and (12.64)
exactly coincide. As can be seen for all examples discussed in this subsection, Lemma 3
provides a method to compute semiclassical matrix elements for Lo(S*) by computing the
corresponding shifted matrix elements in Ly(R). In the next section, we will discuss the

relation between the Zak transform and the Poisson resummation formula.
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12.3 The Zak transformation and the Poisson resum-

mation formula

In the framework of complexifier coherent states, the Poisson resummation formula is
heavily used during computations of semiclassical matrix elements. For the benefit of the
reader, we therefore review the relation between the Zak transformation and the Poisson
resummation by following [233]. In order to relate the Zak transformation to the Poisson

resummation formula, we introduces a dual Zak transformation Z defined as

£,¢)= Y f(C+n)e™.

n=—oo

For g(x,¢) = Z[f](z,() and g(z,() = [f]( ,(), the inverse of Z and Z are given by
1 2n

27glw) = [ degle¢) and Z30) = [ 5Ea.0)

0

[e=]

Defining the operator U[g](z,¢) = e ™ g(x,(), it is easy to show that Z-UZ[f] =
V21nF[f] and hence related to the Fourier transformation. Likewise, one can also show
that Z-U1Z = /2nF (). We just consider the case of the Fourier transform here,

for which we have

2n
N da 0 . .
Zil z _ ) —2ink¢ —ixz¢
UZ]S] /—27T §_: fz+27k) e e

= Z /—f (x + 2nk) e —i(z+2mk)C

k=—o0 0
- / daf(z) e = VIRF[f](). (12.65)
R
With this, we equivalently have
Z[f] = V2rZ|FIf]). (12.66)

Considering the explicit forms of Z and Z , we finally obtain

Z f(x + 2mn) e 2 o7i2¢ = /on Z FIf1(¢ +n) . (12.67)

n=—0oo n=—oo

164



12.4. KUMMER’'S FUNCTIONS AND THE HEAT EQUATION

If we now choose ( = x = 0, we obtain the standard Poisson resummation formula. As far
as the application on complexifier coherent states is considered, we can choose f = go .S,
where S; is a scaling by the classicality parameter ¢ defined as S;z = %, and we obtain

the form of the Poisson resummation formula used in this context.

12.4 Kummer’s functions and the heat equation

In this section, we briefly discuss the physical interpretation of Kummer functions in the
context of self-similar solutions of the heat equation following closely the ideas of [212]

and slightly generalising some aspects of their work. We start with the heat equation

0 0?
a—?:(:zc,t) = ka5 ulx.). (12.68)

Along the lines of [212], we introduce self-similar coordinates (£, 7) given by

X

VkaL(r)’

where the explicit form of the functions L and 7 still needs to be determined. As an

T=7(t) and ¢:= (12.69)

ansatz for a self-similar solution of the heat equation, we consider
u(z,t) = A(r(t)w(é(z,1), 7(t)), (12.70)
which leads to the following differential equation:
A’ ow L'\ ow ke 07
; el =)= = — 12.71
((5)e 5 - () %) - e t2.7)

where the dot denotes a derivative with respect to ¢ and a prime one with respect to

7. Now, the requirements made in [212] are that the self-similar solution is static in
the (&, 7)-frame, and hence there cannot be any explicit time-dependence. This yields a
relation between 7 and L(7) of the form 7 = LQL(T) Furthermore, we are only interested
in solutions for which % =: G = const > 0 and AZ/ =: B = const.* As can be seen directly
from (12.71), the first condition corresponds to a constant expansion rate and the second

condition determines the scaling of the amplitude A(7(t)) with ¢ parametrised by b. As

“Note that our 3 is equal to b in the notation of [212].
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shown in [212], these conditions yield the following expressions for the functions L and A:

L(t) = L% < L(t):\/ﬁ(t—to)% and

A(r) = A" & A(t):AO(%(t—to))m. (12.72)

We realise that the scaling of L(t) is always with ¢'/2, whereas the one of A(t) can be

different from ¢—1/2

g — as emphasised by the authors in [212]. With the above assumptions at hand, the

differential equation that w has to satisfy for a static self-similar solution of the heat

, which holds for the heat kernel solution, for appropriate choices of

equation in the (&, 7)-frame reads

0? 0
8—§2w + Gga—gw — fw = 0. (12.73)

Introducing the following scaling of the £-coordinate as well as the variable W

£ = \/gg, W= e%w, (12.74)

the differential equation for w in (12.73) can be transformed into a generalised Hermite

differential equation for W given by

82
o¢

~ 0
W —26—=W 4+ 20W =0, 17:—(£+1). (12.75)
O¢ G
In contrast to the standard Hermite differential equation, 7 does not necessarily have to
be a natural number. If we go a little beyond the discussion in [212] and perform a further
final substitution of the variables according to z == &2 with F(z) = F(£2?), then we can

easily show that the differential equation in (12.75) transforms into Kummer’s differential

equation with the special choice of b = % and a = —% = % + 1:
d?F 1 dFf v
——z|—+=F=0. 12.76
Zdz2+(2 Z>d2+2 ( )

The two linearly independent solutions are given by 1F; (—%, %, z) and U (—g, %, z). This

allows to express the self-similar solution of the heat equation u(z,t) in terms of Kummer
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functions of the first and second kind as

W@, ) = A5 G) o= (cl(ﬁ)U(—g, % 5QG) + e () Fy <_g % 52G)), (12.77)

2 2
with
pe (20 awne = a(Ca) Y 6o —
V-——(a‘i‘ )> (t;;G) = O(L_g( - 0)) an f—m-
(12.78)

In [212], they do not perform the last transformation into the Kummer differential equa-

tion and this is probably the reason why they do not relate the first independent solution

to the Kummer function of the first kind, which automatically occurs in our discussion

here. As discussed in [212], in the special case where 7 is an even integer, the two Kummer

functions are multiples of each other and can be identified with the Hermite polynomials —

they are no longer independent functions. In this case, next to the solution U (—%, %, %)
¢

we can use £1F; <% -3, %, 7) as a second independent solution.

7 2 . . . .
-5, %, %) is concerned, this is exactly the expression

that we obtain in the computation of the semiclassical expectation values in Section 11.3

2
Interestingly, as far as e 1Fy (

and Subsection 12.2.1, respectively. Hence, the result of the Fourier transform involved
in these computations corresponds to a self-similar solution of the 1+1-dimensional heat
equation. The fractional power r of the momentum operator in these semiclassical ex-
pectation values determines the scaling behaviour of the time dependent amplitude of
the self-similar solution. As can be easily seen and has been already discussed in [212],
for 7 # 0 we obtain a scaling behaviour of the amplitude that differs from the standard
=2, Carried over to the expectation values of fractional powers of the momentum oper-
ator, the case 7 = 0 corresponds to the scenario where the operator becomes the identity
operator and the expectation value the squared norm of the coherent states. For com-
plexifier coherent states based on the analytic continuation of the heat kernel, this is the
expected scaling behaviour of the norm with respect to the classicality parameter that

can be identified with the temporal coordinate of the heat equation in this context.
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Chapter 13

Kummer’s functions and loop

quantum gravity — basics

We want to use this chapter to carry over the procedure of computing semiclassical expec-
tation values via Kummer’s confluent hypergeometric functions to loop quantum gravity

and thereby also recall the respective quantities and nomenclature.

Starting with U(1), we can reduce the coherent states for U(1)?, (2.164), to obtain as
coherent states for U(1)
w; = Ze’%”erp”(eig(m)e’ig)n. (13.1)

neZ
We again follow the notation of [134]: m denotes the point in phase space the coherent
state is peaked around. The subscript g represents the complexified holonomy g = eP*10(m)

—i0(4) Lastly, the coherent

where p is the canonically conjugate of the holonomy h(A) = e
state is labelled by the superscript ¢, which corresponds to the classicality parameter
t. The condensed, basic steps of how we compute semiclassical expectation values of

fractional powers of, e.g., the momentum operator then are

o0

<|p‘r>wz = H'lb;H_Q Z |tn|7“eftn2+2np

n=—oo

:WEHQZT—KTT 3 /d:p|x|’”e_””2+?w—2’}“%
Ne—oo
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22T = ey r+11 [(p—niN)’
“1g e 3 e (S5 (5 132
50, r(l—r)t r(l—r)2—-7)3—1)t 3
~ |p| (1 12 o E+(9(t) : (13.3)

From the first to the second line, we apply the Poisson resummation formula (10.11) by
setting x = v/tn = Tn. We then obtain the integral of a Gaussian function against the
r-th root of the absolute value. Using (11.21) we can solve this integral, resulting in a
KCHEF in the third line. The last step then is obtaining a power series in the classicality
parameter ¢ via the asymptotic expansion for large arguments of the KCHF, (11.18). We

thereby also inserted the norm of the coherent states,

Hw;”2 _ 21_[\/; Z eéei *“3”2 eQnin% — Qn\/gﬂ eé(l —+ g{t)7 (134)

n=—oo

with K, =° 0+ O(t>°) — i.e. K; can be neglected when considering the semiclassical limit

t — 0. The intermediate step between (13.2) and (13.3) reads in some more detail

[e.9]

<13‘2):2n\/_(1+9<t)T2L PIRICOINCE

N=—o00

(13.5)

To go from here to (13.3), we first of all notice that the norm of the coherent state adds
another Gaussian to the expression: exp (—r°/¢t). While this Gaussian makes the first series
within the square brackets above vanish for ¢t — 0, the second one is already scaled by the
inverse of a Gaussian in 222, The remaining Gaussian exp (—=*¥*/¢) implies that only

the term with N = 0 contributes for ¢ — 0. This does not only simplify the calculations

T/z, which reduces to the prefactor

but also eliminates the imaginary part of ((P*ﬂiN/T)z)
and zeroth order contribution |p/7|". We thereby arrived at (13.3) and notice that the steps
as well as the reduction to only one series and N = 0 resembles the quantum mechanical

case of Section 11.3, confer (11.30).
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The last aspect of this note on the basics of the procedure shall be the transition to
U(1)3. Computing the expectation value of the momentum operator now means consid-
ering pt, for a specific edge e; of the graph and a specific choice i for the corresponding
copy of U(1). With the coherent states for U(1)? being just the edge- and U(1)-copy-
wise product of the coherent states of U(1), confer (2.164), the expectation value can be

deduced from the respective result of U(1) in a rather straightforward manner:

{

PR Y = 0] D Jtnl |Tezi,1(—t(n3)2+zn;p3)
{nj}}ez

L fom\ M r 3M i |0 |7 Zu(f(z})%rﬁzf"f}x})
e (E) T [ aa )

T
(viTer
0 | i r(l—r) t r(l—r)(2—7r)(3—7r) ¢ 5
~ |l | 1— 2 — +O(¢ ‘
i (-2 o ).

(13.6)

We noticed in the second line that only the integral over x}% is not of standard Gaussian
type. Hence, 3M —1 many integrals can be easily solved, obtaining 1/ exp (—(P3—“1N}/T)2>
a time. For the remaining integral, the steps are the same as the ones leading to (13.3) for
U(1). Accordingly, the result looks the same and we only need to consider the labelling
of the momentum, i.e. iy for the chosen copy of U(1) the momentum should be evaluated

on as well as the edge e;.

This should suffice as an overview on the basics for computing semiclassical expectation
values in loop quantum gravity with the help of Kummer’s confluent hypergeometric
functions. This mechanism offers i.a. a concise way of computing expectation values of
rational powers of the momentum operator that results in the classical limit for zeroth
order in t. Last but not least, we want to note that [135] were in fact also able to reproduce
this zeroth order, making use of the Hamburger momentum problem, but had to constrain

rtor=%,n €N, and did not further examine the higher order correction terms.

171



CHAPTER 13. KUMMER’S FUNCTIONS AND LOOP QUANTUM GRAVITY —
BASICS

172



Chapter 14

Kummer’s functions and loop

quantum gravity — cubic graphs

We introduced in the last chapter a tool for computing semiclassical expectation values in
loop quantum gravity that can also be applied to operators like the momentum operator
to the power of a rational number. This chapter now covers the application of that
procedure to the computation of semiclassical expectation values of the class of operators
cj}g (r), (10.14), while focusing on the case of cubic graphs. First of all, we will notice that
determining the expectation value for cubic graphs corresponds to the computation of the
basic building block of the general expectation value, so it is the next logical step to do.
We will also be able to perform the computations analytically for this simplified scenario
— at least for ¢ — 0 without also considering p — 0. When simultaneously addressing

the limit p — 0, it will turn out that we are indeed forced to use estimates.

14.1 The setup

During our treatment of cubic graphs, we will have in mind the work of [64] where also
semiclassical expectation values of the class of operators (}}g (r) were considered for cubic
graphs. However, they did use a slightly different notation and we will also highlight these

difference in the course of this section about the setup.
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For cubic graphs, the volume operator evaluated on a vertex v reads

XX Xk, -XF_ XE XD

~ v,ef v,e] v,e, v,e, v,e3 v,e5

2 2 2 ’

(14.1)

where we mainly adopted the notation of [64] and only replaced their notation }A/je for the

right-invariant vector fields of U(1) with our already previously used Xge We note that

1
2

the volume operator according to (2.106). Considering also a factor of

combine to one part of the numerical prefactor ﬁ that is included in

1
6’

from fixing the order of the edges for cubic graphs, we ultimately obtain the full %.

the three factors

which comes

Most notably, (14.1) does not include a sum over edges anymore. Due to the regular
structure of cubic graphs, we can explicitly write down the combination of all edges that
we combined to three pairs of one ingoing and one outgoing edge each: 6%:172,3. This

results directly in the eigenvalue

j j k k ! !
Tinp 21 Ty~ Top Ty3 T3

9 ' 9 ' 9 ’

N ({#)) =7 | |ejm (14.2)

of aér V", where we factored out the arbitrary length scale a to only work with the clas-
sicality parameter ¢[64, cf. eq. (4.6) therein]. Up to now, in the semiclassical expectation
value including the eigenvalues above, we have all 18 charges — 6 edges and 3 copies of
U(1) — in both Gaussian functions as well as the absolute value within A". We can reduce

the number of charges within A" by a factor of one half by substituting

¥, -

Ty = % and (14.3)
o+

vl = % (14.4)

For the Gaussian functions stemming from the coherent states, this means that those six
of them that contain the x}rj can be easily integrated as they are of normal Gaussian form.

The remaining nine integrals over x;; then contain

T

N ({a7,}) =7 \/det(z])) (14.5)
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additionally to the Gaussian functions. With all this as well as the norm of the coherent
states, we can state the form of the expectation values of interest by comparing (10.14)
with equation (4.20) of [64]:

tN Hé?/,i W =(1i/Ct)\/7 /dgxe *2us(+2) HAM({ }) (14.6)

with the eigenvalues A ; reading

AN Ch 3 R Rk 8

o ({2 + % }) =2 t . (14.7)
Note that we will not use the superscript label = within x7; and p}; anymore in order to
have a more concise notation. We furthermore used the previously introduced (1 + K;)
instead of the prefactor of [64]. Another difference in notation compared to [64] is that we
do not include the label o in A" that specifies the orientation of an edge. For cubic graphs,
as [64] states as well, the orientation has no influence anymore. Last, the prefactor % stems
from an additional factor of 2 due to the regularisation of the Poisson bracket [234] and
the substitution of 7; by i during the replacement of SU(2) by U(1)? and the quantisation
that implies a division by A. In [64], this prefactor is part of an alternative definition of

the class of operators cj}g (r), as can be seen in equation (4.2) of that reference.!

If we now set N =1 in (14.6), we call the resulting expression the basic building block
of the kind of semiclassical expectation values (10.14) as it describes the most simple
configuration: The difference of two determinants of two charge matrices, where the
charge matrix of the subtrahend experiences a shift +267% in its element (ji, Ji). This
is the setup for the next section where we will perform the analytical computation of this

semiclassical expectation value.

14.2 Analytical computation of (¢)

We now want to perform the computation of the previously introduced semiclassical

expectation values. For not overcomplicating the notation, we get rid of one pair of

'We note that the 2 is supposed to be in the nominator there and when it comes to the regularisation
of the Poisson bracket, the additional factor of 2 was not used.
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variables: (ig, Ip), which specify the holonomy included in cj}g (r). Instead, we fix this
holonomy to be in 7o = 1 and Iy, = 1. This is not a special case at all as we will soon see.

The starting point for computing the semiclassical expectation value of ¢} (r) then reads

2

2@ 0D =
_2_ " 3 <2m>9/ oo 2~ ) (1 det XJ" — [ det XT)
L, 2 T i =
{ni}ez oo

2 <2nf> T3T 2 p; —miN; 2 ra 2 . p;—miNg 2 ~
=t Z X 2( ) / dz; e” G (\detX|T - ]detX|T),
t

leal? 5, J
(14.8)
where
1 .2 .3 r
Ty ri X7 1 T2 X3 T1+3 T2 X3
X=|a) 22 23| =24 25 6 and X = vy x5 w6 |- (14.9)
I:l)) J]g C(]g 7 Tg X9 T rs T9

We can now clearly see what happens had we not started with ¢{ (r) but any other choice
of (ig, Io): X would have the shift not in its (1, 1)-component but the one corresponding to
the choice of (ig, Iy). However, we can of course rearrange the matrix elements accordingly,
ending up again with the shift in the (1,1)-component. Alternatively, all the upcoming
steps can also be performed for any other matrix element than the (1,1) one. Our final

result will also be of a form that it is straightforwardly transferable to the general case.

In (14.8), we used [ d%z% as an abbreviation for [~ --- [7 dzjdaf---dz} and Y,
f _
or 2,

for the U(1)-copy, but as an index for the matrix elements z;, p; and N; — which are

. Note that from the second line onwards, we do no longer use i as a label

just the z7;, p;; and ny; of [64]. As another point of reducing the complexity of our
upcoming expressions, we use plain r as the exponent of |det X|". To account for the

correct dimensions, we accordingly changed ¢p3" and a®" to /p°" and a%", respectively.

In general, our starting point is just right after having performed the Poisson resumma-

tion formula. We did this via the introduction of x; := T'n;, with 72 := ¢, just as before.
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To start with the integration procedure, we first tackle the x;-integration:

i 2
/ de, e 2= |det X|" =

— 00

o
_2(1:1_7p1—7tiN1 )2 r
= dz, e T |21 25T + ToTeT7 + T3T4Ty — T1TeTy — ToTyTy — T3Ts5T7|

—0o0

(14.10)

We want to have an expression at hand that is of the form (11.20) and notice that we can

achieve this via the substitution

r] = det X, (14.11)
Th 9= T 9, (14.12)
where
T5Tg — TeLg LTy — T4lyg T4Tg — T5T7
da’ 0 1 0 ..
det <d—:2) = det 0 0 1 o — T5Tg — TgIg-

(14.13)

With this, we can express the x;-integration as

[e.e]
—miNg |2
/ da; e 2(=:="7) |det X|" =

—00

2
B ahebahyeleliel ehelel —abalal o
d / —2 el al —al ol + alal —al x! B T 331
— 1‘1 e 579 7678 579 7678 _—
! . ! A
| w52y — wgwy]

2
. T z 1|7
_ / d!, e (i) Il (14.14)

Therein, we obtained the rather long offset zy that results from inserting the inversion
x1 = z1(x],...,2zg) of (14.11). During our treatment of the remaining integrals, confer

Appendix B, we obtain similar expressions that we abbreviate straight away by a, b, o, 7,
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etc. Through the substitution, also the term |zfxy — zgry| entered our formulae. With
this difference being found in the denominator, we could in principle run into problems
when it approaches, or equals, 0. However, we notice that the preceding Gaussian is
also in 1/(afay—a42y) and therefore suppresses those points and regions. Even during the
upcoming integrations of x%-, xy-, zg- & xf we will not have trouble with this expression
as the result of the x)-integration will neatly merge with it into a once again integrable

expression.

We can now combine (11.20) and (11.22) to obtain our basic integration rule

[e.o]

s\ 1 1
/da: o 2(£-m0) |x|7":(\/5)—1—’“|s|1+rr(1—;’“)e—2<x0>21F1( ;r,§,2(:p0)2), (14.15)

—00

which applied to the x;-integration results in

00 00 , 2
p1—miNg \2 —2(m71+x ) xX
/ day e 20 det X[ = / dz! & \FAp=rs T |71

—00 —00
71147

g 1 1
_ |xixy — xhak (ﬂ)_l_rr(u)e—ﬂxo)lel( T _,2(;30)2), (14.16)

|52y — iyl

As expected, there is no dependency on z1") left, but instead p; entered our formulae. It is
contained in the offset xy, together with all the remaining integration variables 2, . . ., xj.
For those, we additionally have the Gaussian functions, which we just ignored during the
isolated treatment of the z,")-integration. We now continue in a similar fashion with the
integral over zf, where we combine the result of the first integration, (14.16), with the

Gaussian in xj:

r | pgoniNgy? . 147 1
/ dxls efz(a:fps TN ) |xgxé—xéxé| (\/5)_1—rr(12i)e—2(zo)2lFl( —;—7"’572(%)2)‘

When it comes to the first two factors of the integrand, it looks as if we could apply the
same integration rule as before. However, via xq enter two additional factors that contain
xs and with one being the KCHF resulting from the z)-integration, this thwarts any
analytical integration. We are therefore forced to proceed differently and first examine

Ty,
— N
20 = F({zi,}) - 1%, (14.17)

178



14.2. ANALYTICAL COMPUTATION OF (q)

realising that it can be understood as being built up by two different parts: While
f({xg\l}) collects all dependencies on the remaining integration variables, the second
part is the offset ’”_TniNl of the initial Gaussian in z;. Having in mind that we are ulti-
mately interested in the semiclassical limit of the expectation value, i.e. consider small ¢
and small T" accordingly, we can apply the asymptotic expansion for large arguments of
the KCHF, (11.18), as at least the part 2=F™ of the argument of the KCHF will indeed

be large. Doing so results in

pq—mi 2
/ day e 25T det X7 =
r —1—r Y\ o—2(z0)? 1+ 1
oty — el (VDT (U D o)
t—0 1 , : r(1—7) (x> _
~ Ebéxé—xéxé’ (1) ((w0)?) (1— 1 5 +0((w)™ ") ), (14.18)

where as before only one series of the expansion hat to be considered due to a damping
Gaussian prefactor — here in 5. We see that we obtain a power series in integer powers
but also keep track of the initial exponent r. In the literature [64-66], Taylor expansions
or the application of estimates leads to results that are also, but there indeed exclusively
power series with integer powers and the non-integer exponent of the initial operator is
lost, i.e. the exponent r of V" within Q}g (r). So if we manage to preserve this rational
exponent in the integration variables, we will likely end up with a final result that also
features the initial exponent in the p;. However, the expression above is still not integrable
in this form as the expressions including xy are too involved. Taking a look at (14.8), we
see that we still have an additional Gaussian in pl%“iNl that originates from completing
the square in z; of the initial Gaussian function. This Gaussian will also cause a damping
in the semiclassical limit, but via dividing by the norm of the state, we will ultimately
eliminate the part in p; — and all other p; —, confer (B.51). Hence, the Gaussian in
N; is left and as we already performed the integration over z1), another factor that
eliminates this function cannot come up. This leads us to the conclusion that only the
contribution N; = 0 will not be suppressed when taking the limit of ¢ — 0. This reduction
to N; = 0, as already mentioned earlier, is a recurring feature also in the literature (cf.

[64, 66, 134, 135]) and the very reason for applying the Poisson resummation formula.

179



CHAPTER 14. KUMMER’S FUNCTIONS AND LOOP QUANTUM GRAVITY —
CUBIC GRAPHS

With N; = 0, we have x()’ Ny—o € R and therefore

[Nl

((20)*) = |ol". (14.19)

N1=0

As we also face another absolute value to the power of r, we may combine those:

! ! 1T ro_ /AN A ! ! / ! ! ! ! ! ! / ! pl r
257y — wgag] |vo|” = |w3aial + 2hal Ty — THTEal — TRy Ty — (ThTe — THT )T
_ / o ' P1 ~ "
= |at <x39€7 - ng) + o (14.20)

From the first line we infer that we actually face a similar situation as right at the
beginning — the only difference being the replacement of x; by %, while the structure
itself is very much like a determinant. However, additionally to this familiar expressions,
we also face a power series that contains another term ~ (xo)_Q. Concerning this term,
we realise that it is a power series in xy where we are actually interested in a power series
directly in ¢ or 7', respectively:

r(1—7r) () > r(l—r) T?

11— ~1-—

4 2 4 2p2

+0(T%) = S. (14.21)

Proceeding to a power series in T therefore results in z;-independent correction terms up
to T? and we can therefore continue with the remaining integrations: The integral over
xs can now be solved by the same steps as the ones we performed for the integral over
z. We want to point out that in the Taylor expansion (14.21), the higher order terms
O(T?) do indeed contain the remaining integration variables. So if we are interested in
higher order correction terms, we will have to deal with those in a different way than the
previously applied one (the first choice would be to try a new kind of substitution). For
the scope of this work, we will only concentrate on the first correction terms and therefore

leave this question open.

Continuing with the integral over x}, we take along some of the arisen prefactors and

face solving

; _p5—7iNg 2 T
F(%)S/ dat o2z 1) x%(méxé—xé%)—i—xo :
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With this integral resembling the one for z), (14.10), we start in a similar way by

substituting
Tt = 1l <x§x’7 — xé%) + Zo, (14.22)
T3346789 = 193467895 (14.23)
det ( ((1;;/:) = xoah — xg% (14.24)

We thereby end up with integrating the Gaussian function against

B

[T — oy
and realise that this is also equivalent to the corresponding expression during the z-
integration. With this we refer to Appendix B for the treatment of the remaining integrals.
Even though some integrals, or rather results of them, have to be dealt with slightly

different, the main procedure will remain the same.

% We recap the procedure: First of all, the determinant-like expression within
the integrand was substituted as the new integration variable. This gave rise to a
new, oblong offset in the corresponding Gaussian function. Yet, this integral was
feasible via (11.20) & (11.22) and we end up with a KCHF. Proceeding straight-
away with one of the remaining integrals, in turn, was then indeed not possible
as the integrand at this point was too intricate due to the KCHF containing all
left over integration variables in its argument (amongst other obstacles). How-
ever, the argument of the KCHF was also ~ 71/7 and as we are interested in the
semiclassical limit T" — 0, we can therefore make use of the asymptotic expan-
sion for large arguments of the KCHF, (11.18). This resulted in a power series
in the inverse of the argument of the KCHF and, consequently, we converted it
into a power series in T itself, whose two lowest order contributions were then
independent of the remaining integration variables. The last hurdle that had to
be overcome was a new factor that entered our formulae in the course of the
asymptotic expansion: The argument of the KCHF to the power of 7/2. One issue

is that it is a complex number but, as we started with a semiclassical expectation
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value, the overall expression should still be real. This can be solved by observing
the Gaussian prefactors. Realising there is a Gaussian in (P1—miN)/7 we argued
that all contributions Ny # 0 are suppressed for 7" — 0 and only the solution
N; = 0 makes up the final result. This also causes the imaginary part of the
argument of the KCHF to vanish, turning it into an absolute value to the power
of r. With a follow-up combination of this factor with one that came up during
the substitution, we end up with an expression quite similar to our starting point,

where only z; is replaced by »1/7.

— O

Having illustrated the procedure for the first term of the commutator q”l‘(; (r), we now
consider the shifted contribution, i.e. the part of (14.8) that contains | det X|". We defined
X in (14.9) as the matrix of all the integration variables but with x; being replaced by

1+ % We can then rewrite that part as

%) oo 2<~ p1+T;niN1>2
~ —miNg \2 - Tl———7
/ day | det X|7 o225 / di| det X[ o T (14.25)
by substituting z; = x; + % Hence, for the shifted contribution, not much changes

except for p; — p1 + %2. Accordingly, we can perform the same integration procedure.
For the subsequent treatment of the KCHF, i.e. applying the asymptotic expansion for
large arguments, we have to be careful due to the additional part being dependent on 7.
However, we quickly realise that there is no issue with the new term as the important part

was that the argument becomes large for t — 0 — and this still holds for 2 + % In fact,

T
2

nevertheless still change the overall result compared to that of the unshifted expression.
Within the absolute value of the offset — (14.19) for the unshifted part — the shift will

still be present and the difference of the shifted and unshifted part will therefore not cancel

will not even contribute in this limit, at least for this part of the expression. It does

each other.? With all remaining integrations being shown in Appendix B, we now only
state the final result here. For a graph of cubic topology, the semiclassical expectation
value of the operator 2¢{(r) reads

260w, [detp["Ar(p)

~

t det p +F({p})t + O(t%) (14.26)

2All details behind this are explained in more detail in Appendix B.
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All the new variables therein emerge peu a peu during the integration procedure covered
in Appendix B. First of all, det p denotes the determinant of the matrix of all momenta p’.
We already saw during the x;-integration that the obtained result corresponds to replacing

x1 + pp in the initial expression, so it is of no surprise that the final result accordingly

contains det X |, ,,:. Furthermore, we have Al(p) = p2p3 — p2p3 = pspy — peps — the
minor of the matrix of all momenta with respect to pl = p;. Note that this index is
precisely the one of the holonomy that acts within 24 (r). The last expression, F ({p;}),
collects all first order contributions in ¢. It is a rather evolved function, defined in (B.56)
of Appendix B. We note that this order actually contributes with 7% before dividing the
whole expression by . This may sound suspicious, considering that we only included terms
up to ~ T? in §. However, the final result (B.53) is of such a multiplicative structure
that causes all of the terms ~ T3 of § to ultimately contribute with at least O(7°) and

we were able to collect all terms up to T*.

When it comes to the structure of the lowest order contribution within (14.26), we find
that it corresponds to the expected result, having mind the expression of the respective
classical Poisson bracket. Differentiating a determinant to the power of r with respect to
one of its elements, we will obtain that determinant to the power of r — 1 along the term
resulting from the chain rule — which is just the minor of the initial matrix with respect

to that element the differentiation considers.

As promised at the beginning of the integration procedure, we can straightforwardly
deduce the general result from (14.26) for the holonomy acting on an arbitrary edge Iy

and U(1)-copy io:

2(qp (r)w |detp"AR(P) = s
LPO F{pHt+0O(t2). 14.27
. e, TN o(i) (14.27)
We already argued that the initial fixing of Iy = 1,i9 = 1 was of no mathematical

importance whatsoever and indeed, for any other choice of (ly,iy) the calculatory steps
are just the same, leading to an equivalent result. Of course, det p will build up as well
and only the element of the matrix with respect to which the minor of the matrix is
considered will change. The function F({p;}) then is of similar shape F({p;}) was for
the specific choice Iy = 1,75 = 1 and only the order of how the individual p; enter the
formula, (B.56), changes.
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Up to now, we did not need to use any estimates. For cubic graphs, this was also
achieved in [64] but via intermediate Taylor expansions that replaced fractional powers
by integer ones. In contrast, during the procedure presented here, the powers of the in-
tegration variables remain the same up to the considered order in 7" and the performed
Taylor expansions did not change these — compare (14.21) and the remarks following
(B.33) and (B.40) within Appendix B. Taking a look at the final result of [64], Theorem
4.2 therein, we consider N = 1 and compare this with (14.27) above. The notable differ-
ence between the two stems from the fact that [64] already included the influence of the
lattice parameter on the fluxes, i.e. lattice fluctuations, while (14.27) contains the fluxes
themselves. More details on this will be covered during both Subsection 14.4 and Section
15. The next section focuses on the cosmological singularity, where we can continue with

expressions including the fluxes [65, 66].

14.3 The cosmological singularity

Being interested in investigating the cosmological singularity means to consider the limit
pi = 0. However, taking a look at (14.26) or (14.27) we notice that this limit is not
applicable for those results. This is not surprising, did we perform calculatory steps at
earlier stages that were already not applicable for p; = 0: The asymptotic expansion for
large arguments of the KCHF, as the name says, requires the KCHF’s argument to be
large. The important part of the KCHF’s argument for this point was ’%T“N’ With
p; = 0 — and the subsequent realisation that only N; = 0 contributes — this does not
hold anymore and we need to deviate from our integration procedure right from the start.
For the non-Gaussian part of the integrand of (14.8), we therefore perform estimates to

cast it into an expression that is integrable against Gaussian functions:

T

~ |7 T
|det X|" — ‘detX‘ = |det X|" — |det X + §Ai(X)

(16.3) v LT )
< S| A0 = S leswe — wers

(16.4) T . .

< §(|$5x9| + |zezs|)

(16.5) T ) ot ) .

< g (ol - laof")" + (fool + [2sf*)")

(64 7 r T T r

< oo (™ + Jol™ + ol + Jas). (14.28)
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The estimates we used here will be explained in more detail later, when they are of key
importance for our investigation of the general U(1)? scenario in Chapter 16. The result
we obtained in (14.28) is indeed integrable against Gaussians and we even face four similar

integrals of the form

o0

. L(r+ 1

/ dz ¢ 2|z = (—12) (14.29)
23

The five remaining integrals are of pure Gaussian form but can also be derived from

(14.29) for r = 0. As before, we can reduce the N; to the contributions N; = 0. In this

scenario, the N; appear exclusively as arguments of Gaussian functions and therefore all

terms with N; # 0 are exponentially damped. The final result for p; = 0 according to the
procedure of (14.28) then is

9
R 2nv2 3r
2(q1(r) v, pi=0 2( T >T
- 2
t T

9
21v2 r o0
 (52) T
AT

= L1“(7’ + e,

\/E23r 2

A, 2@’ (| det X|" — | det )~<|T)

dei e—QZi(xi)2(|m5|2r + |l‘9|2r + |x6|2r + |$8|2r)

(14.30)
which we can straightforwardly generalise to
204 (1)w,, »=0 8

o 7 m — T Ly2r=1 14.31

e 1 L) (1431

This was of course possible because a change in the choice of (Iy, iy) only leads to different
x; being present in (14.28). There are still four integration variables left at the end and
the result of the subsequent integrations was independent of the indices of the integration

variables.

In general, we therefore do not have a zeroth order contribution — only for r = %, ie.
when the volume operator is contained within ¢} (r). It is, however, of no surprise that
there is no fundamental t°-term as we did not even obtain one in the quantum mechanical

analogue of (11.36). We even get a negative exponent in ¢ if r < %, so i.a. when we consider
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\/§ — a quite important case in loop quantum gravity. As a result, the limit ¢ — 0 is not
well-defined for those scenarios. To compare our result with the literature, we find that the
final result (4.7) of [65] divided by ¢ features a t° contribution for r = %, corresponding
to \73 considering their usage of r. As they performed a different procedure based on
different estimates, this is already a hint that the final result will drastically depend on

the estimates one chooses to apply — even concerning the exponents of the basic variables.

14.4 'The semiclassical continuum limit

So far, we considered the semiclassical limit of expectation values of 2(¢(r))y,,. With

t — 0, we expected them to equal —{ f% A" (z), VE"}, with Vi, as the volume of a region
R, around z. To also access the continuum limit, we now additionally take the limit of a
vanishing regularisation parameter a. This combination of the two limits, however, will
only be possible for the leading zeroth order in ¢, while the lattice corrections can in fact
cause higher order terms in ¢ to grow tremendously when also considering a vanishing
regularisation parameter. In [64], a lattice regularisation parameter ¢ = fp®a'~%, with
0<a< %, was introduced that allows to differ on whether higher order terms do in fact
still contribute less than the zeroth order even for small but non-zero ¢. The authors of
[64] then chose oo = % for the operators they considered. We will now show that as far
as the leading order is concerned, we do indeed obtain the correct semiclassical limit via
the integration procedure of the previous subsections. More details on lattice fluctuations

and an adapted power counting will be presented later in Section 15.1, after (15.17).

We will then be able to verify that our final result (14.27), which was obtained within a
setup of a discretised cubic graph, still leads to the expected expression when we addition-
ally take the continuum limit. Note that all higher order contributions can be neglected
in this limit as they vanish anyhow. To investigate this question, we have to fall back on
the (integration) variables that were the difference of the initial ones, as defined in (14.3).

The final result that we derive in more detail in Appendix D then reads

2, |detp AR ()
m-—————=—r

— 9ip0 io) 1 2r }
=0 t det p~ —21h10{(h10) V7 (Ro,) (14.32)
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and

2G0T e [ i —1 e 1 o
llmhm% = 11m<21h10{(h10) A% (Rme)}> = W{/el Al V2 (Rz)}

e—0t—0 e—0
0

(14.33)

So indeed, we do end up with the right classical limit at least for cubic graphs when
performing the integration procedure with the help of Kummer’s confluent hypergeomet-
ric functions and their properties such as the asymptotic expansion for large arguments.
During the treatment of Appendix D, two aspects are of great importance: the choice
Z = Cieg = % for the regularisation constant and an additional factor of 2 after us-
ing the Thiemann identity and the regularisation of the Poisson bracket. As we already
mentioned, the regularisation constant Cye = 5= was first introduced in [88] and then val-
idated by an independent consistency check in [89, 90]. The extra factor of 2, meanwhile,
is examined in more detail in [234]. As a final note, we point out that these considera-
tions are only valid for graphs of cubic topology. More complex setups, with graphs of
higher valence, are not covered by what we just discussed as the regularisation constant
Z = Cieg to the power of some rational number 7’ will still be present in the final result.
Only for graphs of cubic topology does % match precisely the combinatorics of the U(1)?

configuration of the edges. We will soon see a counter-example in (15.17).
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Chapter 15

Graphs with higher valent vertices

We now turn towards graphs of higher valence — i.e. of more complex structure than
the cubic topology we considered previously. For those cubic graphs, the integration
procedure based on KCHF's was possible as we had to integrate only the so-called basic
building block of the eigenvalue of the operator d}g (r), which consisted of one single
determinant that we were able to tackle via appropriate substitutions. For the general
setup, we have to consider the whole expression (10.14), which is much more evolved as it
is the root of the absolute value of a sum of determinants. Singling out the delicate part

of the integrand, i.e. neglecting the Gaussian functions for a start, we face

r
2 2

Y e(ITK ey (wy + Tof ) (o) + T ) («f + T35,
1JK

Z e(ITK)epata’ k.
IJK

We can now apply Laplace’s formula on the individual sums in the following way:

T

2

Z e(ITK)epaia’ah,| =
1JK

3
2 SO AD (re) — Y AR ) + S AL (a50) + det X,

JK JK JK

(15.1)

189



CHAPTER 15. (GRAPHS WITH HIGHER VALENT VERTICES

and

:
Z e(ITK)en () + T(ﬁifoo) ("E?I + T‘S?}ilt)o) (xl;( + Tél;(i?o)
1K

(e +T) Y AR (wgr) — 2™ > AP (wgm) + 2 AR @)+
JK JK JK
%

+ det X\, 1, (15.2)

where we first of all need to make some remarks on the notation: First, we abbreviated
ZI,LK: ernesMeg—y 8 > 17k denoting the sum over all edges ey, e, ex such that e;Ne; N
ex = v and where no edges of a chosen combination of three edges are the same — which
is so far also guaranteed by e(IJK). In the same spirit, we use ), for the sum over
all edges ey, ek such that e, NeyNex = v A J, K # Iy ANJ # K. The specific way of
applying Laplace’s formula was on purpose: The respective first sums within the absolute
values on the right hand sides of the two equations above are precisely where the shift
caused by the (inverse) holonomy within cj}g (r) leaves its trace. As it acts on the element
corresponding to the combination of the edge Iy and U(1)-copy iy, we have a shift +7T
in the contribution of z} within the second term of the eigenvalue of ¢i(r). According
to Laplace’s formula, the (shifted) matrix element z? (+7') is multiplied by the minor of
the matrix with respect to z7, which we call AP (z;x) — and in the present scenario, we
additionally have a sum over all occurring minors that we label by the two involved edges
ey and eg. The next two contributions then correspond to the remaining summands of
Laplace’s formula, where the shorthand notation ig + 1 and iy 4+ 2 of the superscripts is
understood to fulfil periodicity in the indices according to 4 — 1 and 5 + 2. Finally, the
last term det X\;, 7, stands for the collection of all determinants that do not contain the

matrix element ZEZI% )

Due to this elaborate structure of the integrand, where we have many contributions
that do contain the (shifted) z}° and many that do not, finding a suitable substitution
and proceeding in the same way as we did for cubic graphs seems impossible. Even if
we did this for the first integration variable, we would still need to compute all further
integrals one by one, too. Accordingly, we had to solve 3M integrals for M many edges.
What is more, the substitution would have to consider the whole sum and hence, inserting

the inversion of the substitution will produce increasingly intricate expressions that we
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then have to further integrate. This will ultimately lead us to drawing on estimates that
allow us to simplify the integrand. Before doing so, there is one further setup where we do
in fact not need to rely on estimates — not even on our integration procedure via KCHF's

—, but where we in turn can not access the limit p — 0 of the cosmological singularity.

15.1 The Sahlmann—Thiemann approach

We already introduced the work of Sahlmann and Thiemann, who in [64] i.a. developed
a mechanism to calculate semiclassical expectation values of the class of operators (j}g(r)
for graphs of cubic topology. The computation of semiclassical expectation values via
Kummer’s confluent hypergeometric functions introduced in the previous chapters then
was also applicable for this case and hence two questions arise: Can we find a link between
the two paths, at least when restricted to cubic graphs? Is it — the other way around —
also possible to carry over the method specifically designed to investigate cubic graphs to

(more) general scenarios?

While we elaborate on the first question in Section 15.2, the following considerations
tackle the possibility of applying the Sahlmann—Thiemann approach on more general
graphs than cubic ones. However, we illustrate their procedure using the example of

cubic graphs and start with

6rN|Z ‘TN

0o i i 2
2\’ U om () s
Ak _ p Y g 4% i T *Zu(zf)
Hqu Ym a6rN||\I]m||2 Z (T) / xIT?)rN ¢ €

{N;}EZ —0

: lN—[(|det(X +P)[" — ‘det (Xk + P)

k=1

) (15.3)

where we again used r instead of § to spare us unnecessary complexity in the notation
at least in this part. For the matrices in (15.3), we introduced the notation X + P =
((x —l—p)il) with matrix elements (z 4 p)’; = ' +

w. The matrix including the

shift reads accordingly X, = X + (5jkj 87, J%), where <§j’fj 07, J%> is a matrix of eight
zeroes and n% in entry (ji, Jx). The variable m. allows to cover the general case as well
as the special case of cubic graphs simultaneously: We see that m. = 2 reproduces the
setup for graphs of cubic topology while we have to stay with m., = 1 in the general case

where it is not possible to work with the integration variables z*. Finally, we introduced
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Zy = Zeomb () * Creg = Zeomnb(7Y) - ﬁ that takes over the role of Z before. The reason
is that the new Z, casts the upcoming formulae into forms that are easier to compare
with those from the literature as well as the previous ones for graphs of cubic topology
in Subsection 14.2. We still use Cieg = %

arbitrary graphs, there is nothing further to do. Hence, we can then set Z, = Z = Cieg,

and when it comes to the general case of

which is just equivalent to Zeomp(y) = 1 above. When, in turn, it comes to graphs of
cubic topology, the combinatorics of the configuration of the edges allow to factor out

48 = Zcomb(’}/) ~ is cubic’
back then — and this was vitally important for being able to recover the semiclassical

which is why we did not have any Z or combinatorical prefactors

continuum limit in Section 14.4. For the new Z, above, this translates to Z,

7 is cubic
Beginning with adopting equation (4.21) of [64] to our notation, we face

|det(X + P)|” — ‘det <Xk + P) ‘ — |det P|" (|det(P—1X +1)| - ’det(P‘lf(k + 1) )
(15.4)

as the starting point. The inverse P~! of the matrix P of all p’ that we introduced above

is built up according to

LAl (PY), (15.5)

(P = qp &

where we again use the letter A for the minor A% (PT) of PT with respect to entry (i,1):
AL (PT) = (PO - (PT) e = (PO - (PT) (15.6)

Note that the shorthand notation of the sub- and superscripts again uses periodicity of

the indices.

We can already state two observations at this point: First, the fact that we had to
include P! is the very reason why we will not be able to address the cosmological
singularity as setting all p’ to zero will not be possible. Second, the minor of the matrix
of all the p’ right at the start is a promising signal that we will indeed end up with an

expression that resembles the classical, differentiation-like result.

When it comes to the T-dependency of the derived quantities of P above, we have
det P ~ T3 and A;(PT) ~ T2 as a direct consequence of its elements (P)’; = p—Zf;lN} .

Via (15.5), we can then verify the expected (P~1)"; ~ T. Having these dependencies at
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hand, we can expand the determinants on the right hand side of (15.4) around the point
1. In doing so and following the argument of [64], we directly neglect all contributions
Nt =0 due to the fact that they contribute with O(T) as (15.3) also contains Gaussian
functions in % Since up to now there were still imaginary parts ~ iN? present, we also
managed to cast all expressions real. We then follow [64] and proceed by applying the

decomposition
1
det(14+A)=1+trA+ 5((t1rA)2 — tr A?) + det A (15.7)

to the difference of the two determinants on the right hand side of (15.4),

(det(P‘lX + 1)2>; - <det (P—le - 1)2) .

Hence, we in fact need the square of (15.7), which we may as well already at this stage

truncate to fourth order in 7" to obtain

det(14+ A =1+2tr A+ 2(tr A)? —tr A2+ (tr A)* —tr A - tr A%+

+det A+trA-det A+ %L(tm)4 - %(trA)Q tr A%+ O(T°)

= 1+2440O(T°) (15.8)
= (det(1 + A)2)% ~ Z (i) (z4)" + o(1°). (15.9)

Now, A does not only contain terms ~ 7', coming from the P~!. For A = P~1X,, there
are also terms ~ T2 due to the shift within X,. For this reason as well as for z4 being
multiplied with itself, (15.9) contains terms of higher order in 7" than we in fact want
to consider. However, to have clearer formulae, we keep it this way and discard these
higher order terms later. We can now insert this decomposition into (15.3), with the

result reading

N rN 9
v T67"N|Z| 2% ;1 i
Taomw - " (5) [ o &

Es

) e Zni(er)’ |det P|™.

2
k=1 "\Ijm ”

ra(PX) = (P ) 5 (e (P - (P

N
k=1
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,

2

r?(r —1)
2

(r (u(P‘%))z - tr(P—le)2> +r(r — 1) te(PX) te(PTIX P (0796, ,T) ) —

(tr(P71X))* - tr (P~ (6798,,,T)) + O(T%)|. (15.10)

Therein, we already used the fact that X and X, differ only in one entry — X =
X + (5jkj 0, Jml> — to have more concise expressions for the last two terms. We can
Y

similarly obtain further simplifications via
tr(PX) — (PG = — (P (670,00 ) ) = =2 (P (1500)
and
(P X) (PR =
() (7 (5 2))) - (5 (o))
= 2w ((Px) (P (5990, ))) = S (P (52)

2
mV

where we also used
(P (890,05 ) ) = S (P7) 50400, = (P, = S ((P)T) 0 (1513

With also considering the norm of the state, we therefore now have

. TG’FN 7 rN o0 ‘ 2
AT (), = a2l eq pr / @i o Snler)
1 \/E T3rN

= (GO

(P s (PX) (P (P (#9008 ) ) ) ¢

Frlr =13 () S (P (P 0 () =

(P (P )7Y) (x9)° + o(19)

v j.J

. (15.14)
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We notice that the integration of all terms in the second line of the square bracket against
the preceding Gaussians will yield zero as they are linear in one of the integration variables

z%.! The remaining integrals are then either

o0

/ dx e_z2x2 = 7 (1515)

—00

or of pure Gaussian form — yielding /7. We will therefore get an overall factor of \/Eg
which eliminates the corresponding factor in the denominator, stemming from the norm
of the state.

As a last ingredient, we need

. det p 1y A (p)
pio— Y det P = P =T k=7 15.16
I T = de T3 = (( ) ) T detp ( )

for the respective factors in (15.14). We can now state our final result, where we have to

consider the factor f—ﬁ as we now face an N-fold product of the operators (}f,’z (r):

2V ([T, % ().,

tN

2N rN rN 2
= iz e I

< 2
t Ajk 1 . Ajk

—r -]k< )_|_ r( r) — ( 2) +
m., detp 2 m2 (det p)

Gt VS Af}’“(p)A?f(p)Affk(p) Cr—1) 2 A} Z +o(i)
2 m (detp)’ o detp3 —

g N L (1det el N P !

- 21z o (G [[850] +0(:).

(15.17)
With m, = 2 and Z, = 1, we retrieve the same lowest order contribution as we did for
cubic graphs — confer (14.26) —, just that we now also cover the more general case of
an N-fold product. Therefore, as already mentioned in Section 14.4, it is only for cubic
graphs that we can reproduce the semiclassical continuum limit, while for arbitrary graphs

we will still have Z, in our formulae.

If we now compare (15.17) with the respective result of [64, Theorem 4.2 or (4.45)],
we see that the two are expressed differently: While [64] explicitly considers the lattice

'We also directly neglected linear contributions from the terms of the third and fourth line.
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fluctuations, (15.17) above has those still encoded in the fluxes p%. As we already pointed
out during the discussion at the end of Appendix B, Sahlmann and Thiemann [64] in-
troduced s = t%_o‘, with 0 < a < %, for also considering the lattice fluctuations. Their
resulting power series [64, (4.39)] was then truncated to contributions ~ 3T, with the
first order they neglected being (s7)°. This is the reason why [64, (4.45)] does not contain
all the terms that are ~ * in the square bracket of (15.17) above (i.e. make up the first
higher-order correction terms): the ¢*-contribution in the first line of (15.17) corresponds
to the (sT)*term of [64] and is therefore neglected in [64, (4.45)]. While these lattice
fluctuations will be present regardless of the choice of o, we kept these higher order terms
to be able to compare the results a la Sahlmann-Thiemann with the U(1) and quantum
mechanical scenario. There, these two different kind of correction terms share the same
order in ¢ or h, respectively: Taking a look at (11.30), we see that the expectation value
of [p|" in standard quantum mechanics already features fluctuations — and this is not due
to a rational exponent but already true for |p|* and higher powers. Proceeding to (11.35),
we saw that we obtain two terms that contribute with next-to-leading order A2. Of these,
the second one can be found to be the derivative of the fluctuation contribution of (11.30).
The first one, in turn, corresponds to the second derivative of the initial expression just
like the A-contribution corresponds to the first derivative. For the U(1)-case, the same
behaviour can be observed if we compare the fluctuations of the expectation value of |p|"
in U(1), (12.39), with the second t-contribution of the final result for the expectation
value of ¢", (12.41). We find this also in [64, Theorem 4.3 / eq. (4.48)]: If we differentiate
the fluctuation correction of the expectation value of the volume operator as stated there,
we get terms ~ q%_‘?’. This does indeed fit the correction terms ~ s* of [64, (4.45)] for
N =1

As a last comment on the general procedure of Sahlmann—Thiemann [64], we note that
it can happen that there are additional terms in the power series [64, (4.39)], contribut-
ing with a power in ¢ between the term (sz)® and the omitted contributions O(sT') —
depending on the choice of . Terms ~ sT ~ t7@ will, of course, always be of higher
order in ¢ than those ~ (sz)° ~ t172¢ — as 0 < o < 2 —, but for terms ~ (sz)" this is

n

not as straightforward: Their t-dependence is ¢ ", meaning that for a fixed value of «,

11—«

2—a”
everything is fine: They chose o ~ % (confer [64, comment after (3.12)]), demanding to
include all terms (sz)" with n < 2.5. However, if a were approaching %,

to consider all (sx)" with n € 2N and only the contributions with odd n can be neglected

we have to consider all contributions (sz)" with n < For the case [64] considers,

we would have

for their integral against the preceding Gaussian functions vanishes.

196



15.1. THE SAHLMANN—THIEMANN APPROACH

Having introduced the procedure of Sahlmann—Thiemann to compute semiclassical ex-
pectation values of (products of) (j}g (r) for cubic graphs, we try to extend it to more
general scenarios in what follows. Note that this implies m., = 1 and we may therefore as

well omit it. The delicate part of the integrand of our starting point now is

ﬁ( - ;det(fgkm) )

k=1
where the sum over i is shorthand for summing over the contributions of all triples of edges

> " det(X; + P)

i

as in (10.6). As before, we now try to perform a Taylor expansion on this expression. For
being able to do so, we first factor out det P; and apply the decomposition (15.7). This
yields

r

2) = |det P1|r

() + (A7 X)) - (A7 X)) +

B det P, _ 1 _ _
+det (P X)) + Zdetpl (1+tr(R~ L) + 5 ((r(PX0)" - e (PTX)°)+

T

+ det(Pl-lXi)> (15.18)

for the unshifted part. We see that we can now indeed perform a Taylor expansion on this

det P;
i#1 det Py

of (15.18) that this contribution will then be eliminated by the equivalent part that one

expression — just around 1+ this time. We can also infer from the structure
gets for the second contribution of the commutator, the one containing the shift. Hence,
we only get terms of higher order than 7. With an increasing amount of terms per order
in T as well as their more and more complex compositions, we consider only the lowest
order contributions from now on. In its lowest order, only one term will contribute: the
one corresponding to tr A in (15.7), which became r tr A after the Taylor expansion (15.9)
of the root. We now have to collect this contribution of all possible combinations of three

edges, which we ultimately find as

N T
H( Zdet(Xi +P)| — Zdet(&k +R> ) \det P | rNH rir(PX ) —
k=1 ) % k=1
~ det P; det P; ~
—t(P*X) PlX) — t( X) o(T?
ru ! Lk +r;detpl rzde P1 g + ( )
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det p;

= (- T‘3TN+2NH<Z ool g >) FO(TTIE). (15.19)

i

If we now want to compare this with the classical Poisson bracket, we have to multiply

the result above by f—ﬁ and get

s B _ TNH@\cie;zz (o ))w(;) (15.20

having in mind that we again used r instead of the initial 5. As expected, we can not
fully reproduce the classical result of the Poisson bracket with Z, = % still being part of
the expression above. Furthermore, we already noted at the beginning that the entering
of P~! into our formulae will likely lead to the limit p — 0 not being accessible — and

we see that this turned out to be indeed true.

We close this part on non-estimative approaches for determining semiclassical expecta-
tion values of the class of operators cj}g (r) with a short recap. First, we used Kummer’s
confluent hypergeometric functions to develop a computation procedure for the basic
building block of these expectation values and were able to apply it to graphs of cubic
topology. Second, the procedure Sahlmann and Thiemann introduced in [64] was gener-
alised to applying it to graphs of not necessarily cubic topology. All these investigations
where possible without having to rely on estimates — at least unless the cosmological
limit of p = 0 was considered. Just like the work of Brunnemann and Thiemann, [65, 66],
we then had to use estimates as well and obtained a diverging expression when considering
both p — 0 and ¢ — 0. The next section will cover a short comparison of the KCHF
procedure and the one of Sahlmann and Thiemann, before we delve into estimative ap-
proaches in the next chapter, which then is in closer relation to the work of Brunnemann
and Thiemann [65, 66].
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15.2 Comparison of the KCHF procedure and the

one of Sahlmann and Thiemann

Seeing that the two paths — the one of Sahlmann—Thiemann [64] and the one via KCHFs
— share scenarios they can be applied to and then yield the same result, the question
arises whether there may in fact be a link between the two. For this, we start with the

U(1)-case and the integral

o
R o B e
J=|¥| " T"er | dxe

—00

p T
= 15.21
T+ (15.21)

reflecting the basic structure of the integrals we investigate. Note that we directly con-
2
sidered only the contribution of N = 0 and the norm of the state then is |¥[* = /7 e7?.

Adapting the procedure of Sahlmann—Thiemann [64], we perform a power series expan-

sion of the non-Gaussian part of the integrand as follows:

T+ =

ozl
T

= ’%‘r . ’1 +p_1Tac|r S ‘%‘r(l +rp Tz + 7’(7“2— D (jo_lTx)2 + O(T3)>.
(15.22)

Having in mind that the integral of the term linear in z against the preceding Gaussian

vanishes, we get

o L rr— )T [ ,

J = |p| 1+ ﬁTF / dr e x° + O(T ) (15.23)
o r(r—1)T? 5
= |p| (1+ T +0(17%) ). (15.24)

For the KCHF-procedure, we already presented the general steps several times and
applied to (15.21), they read

[e.e]

2 p? p )2
3 = |9 2ok / de o #) |2 (15.25)

- e (5 5-()) (1520
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Tr 2 r 2
_ ﬁr(%) o5, (%1% (%) ) (15.27)
~ |p|r Z (_g)n(;% + §)n (pflT)%l (1528)
= |p" <1 + #Z—j + O(T3)>. (15.29)

These are the Kummer transformation (11.11), which we used from the second to the
third line, and the asymptotic expansion for large arguments of the KCHF (11.18) from
the third to the fourth line. For the latter, we noticed that we have to consider only one

of the resulting series — as usual by now.

So we see that the two paths do indeed yield the same result and we now try to better
understand how the two may be linked. For this, we examine the Taylor series (15.22)
and, as stated above, neglect all contributions with odd powers in . We can do so by
modifying the Taylor series to sum over 2n instead of n. This allows us to associate the
respective numerical prefactors of (15.23) and (15.28), where the ones of the Taylor series
are just the generalised binomial coefficients (7’;) We reformulate these in terms of the

falling factorial

(a)g =1,

(a)] =a and

(a), =ala—1)(a—2)---(a—n+1) (15.30)
(2) - (:3‘" (15.31)

and then have to verify

%E;gﬁ / dr ety = T8 (G5 F5)u (15.32)

—00

This identity is straightforwardly validated via

[e.e]

/ dr e 2 =T(n+1) = TR (15.33)

—0o0
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and we can therefore rewrite the asymptotic expansion for large arguments of the KCHF

using the contributions of the Taylor expansion of Sahlmann—Thiemann:

oo

gj)’j (p~'1)™" / do e 2. (15.34)

—0o0

2 r+1 1 p? =1
Tre 2 F, [ - = = 2 ) ~ T.E —
€ T4 1( 9 ’27T2) |p| nzoﬁ

So we can say that in this scenario, the two paths are just two sides of the same medal.
This immediately does not hold anymore if we were interested in taking the limit p — 0.
Then, introducing p~! during the Sahlmann-Thiemann procedure causes trouble, while
using KCHF's would still be feasible with the very definition of the KCHFs, (11.2), directly
resulting in a power series in t. For the U(1)3-scenario, we can not maintain this link
between the two procedures. The Sahlmann—Thiemann way still tackles the integrals
that one faces after the power series expansion all at once, but the KCHF procedure

forced us to perform them iteratively, confer Appendix B.
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Chapter 16

Kummer’s functions and loop
quantum gravity — estimative

approaches

In the previous chapter, we were able to determine semiclassical expectation values of the
class of operators Q}g (r) without the help of estimates. However, if we wanted to consider
the limit of the cosmological singularity, i.e. p — 0, we in fact had to rely on estimates.
A different procedure by Sahlmann-Thiemann [64] allows to compute similar expectation
values for cubic graphs and we saw that also this one can not handle the cosmological
singularity as its mechanism relies on the introduction of P~!. As a consequence, we infer
that we need to use estimates once we are interested in investigating the initial singularity.
As we will see, the choice of which estimates to use is by far not a simple one and it heavily

affects the outcome.

We start this part with revisiting an estimative approach introduced by Brunnemann
and Thiemann in a pair of two papers [65, 66], which we will directly slightly modify
by using KCHFs. While we start with the simple case of one (j}(o’ (r), we will then also
consider the N-fold product (ch\;l cjff; (r))w,,. The remainder of this chapter then focuses
on developing a notion of how to find suitable estimates that allow to improve the obtained

result such that the power of both the classicality parameter and the fluxes is conserved.
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ESTIMATIVE APPROACHES

16.1 Revisiting the approach of Brunnemann and

Thiemann

16.1.1 Estimative computation of <cj}g(r)>

Brunnemann-Thiemann established in [65, 66] i.a. a procedure of how to utilise estimates
to cast the intertwined integrals one faces when computing semiclassical expectation values
of ¢ (r) (and products thereof) into ones that then can be solved. We now introduce their

procedure using the example of (10.9), which reads

T

; 1 —t(ni ) Lopini - o 2
@}E(T»‘Pm =5 Z eZi,I( t(n}) +2p} I>EP3T|Z|§ ZE(IJK)Eijan]TL?]nI;(
”\Ilm“ a {n}}eZ IJK

- Z E(IJ}()EZ‘]']C (n’] + 5ii05110) (n?] -+ 5ji0(5J[0) (n% + 5ki05}(]0)

I1JK

(16.1)

First, note that we went back to naming the regularisation constant Z. We do not consider

special graphs anymore, like cubic ones, so we can as well use Zeomp(7) =1 = Z, = Creg =
1
48
resummation, meaning that we still work with the actual U(1)3-charges n. For the work

=: Z. An important aspect of our starting point above is that it is before the Poisson

of Brunnemann—Thiemann, this was important with their crucial estimate
la]” = [b]" < [la] — [b]] (16.2)

only applying to integer values of a,b € Z, where r € Q. With the help of this
estimate, they obtained an integrand that no longer contains roots or rational powers of
the integration variables but instead integer powers, which they then integrated against
the preceding Gaussian functions. Having the KCHF procedure at hand, allowing us to
integrate at least basic integrands including rational powers of the integration variable,
we do not have to eliminate the rational exponent completely. Hence, while we follow the
main route of the Brunnemann-Thiemann path, we do divert from it when it comes to

retaining the exponent r. The new estimates that we will use in addition to or instead of
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the ones of Brunnemann—Thiemann, respectively, are

la|” = [b]" < '[a —b[" (16.3)
la+b]" <lal" + b (16.4)
2|ab] < |a)* + b]> and (16.5)
Jal* + [b]* < (la] + |b])?, (16.6)
where we can now allow a,b,r € R with 0 < r < 1. Additionally, we will later use
la+C|I" = |(a—1)+C|" < la]" = |a — 1" + 2, (16.7)

where a,C,r € R and 0 < r < 1. A short summary of those estimates is also provided in

Appendix C for future reference.

In what follows, we often only work with the part of the integrand we perform the esti-
mates on, which allows us to have more concise formulae. For the part of the expectation
value of Q}g (r) that contains the difference of the shifted and unshifted eigenvalues of the

volume operator only, we have in the notation of [65, 66]

AX = X ({n}) = X (fnf + 65, )

= 07|22 | D e(TTK )egrnimnl
IJK
. . 5
— D e TK)egpnindmle +3) " e(loJK)esunimlc| | (16.8)
IJK JK

As before, we used the shorthand notation ), for summing over all combinations of
distinct edges ey, ey and ex that meet at the vertex v. Likewise, ), collects all edges
ej # ex that meet at v with I,. We already know that integrating this expression against
Gaussian functions is a cul-de-sac and we now want to proceed with using estimates.
However, we saw that also with the help of KCHFs we could only integrate rather basic
functions of the integration variables and rational exponents, so the estimates we use
should try to simplify the structure of the terms above. We currently face rational powers
of absolute values of sums of determinants and we need to get expressions that are, at

best, just sums of monomials in the charges — where we would allow the exponents to
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still be rational. Using the estimates stated above, we obtain the chain of estimates

r
2

(16.3) .o .
AN < 021232 e(IgJ K ey indmc

JK

(16.4) o ‘ ’
2 ot o)
JK jk

[Nl

3
< 1233 (z Wé@)

< (™| 7535 (%3M<Z\n3|2+21n‘;<|2>)
Kk

Jj
" s (S
Jj

" 21500 S| 169

Jj

Note some subtlety of the notation used above: As we applied estimate (16.4), we do no
longer have a summation over j, k inside the absolute value of the second line et seq. —
both indices appearing twice is not understood as summing over them here. We instead
sum multiple absolute values with different j, k inserted. Continuing, all € were estimated
as 1 and we obtained a combinatorical prefactor 3M. It originates in the empty sum we
face after having applied (16.5). In the fourth line, the first term n?, that is summed over
all J, K, j, k does not contain K or k and vice versa for the second term. While of course
not all M edges necessarily meet at v — and, in fact, with two edges being fixed it would
be M — 2 maximum —, we still estimate the overall amount by M for reasons of brevity
and to be able to compare our result with [66], who used M as well. The same holds for
the 3 of the empty sum over the remaining (in fact one) U(1)-charge.

This expression, (16.9), is what we now need to integrate against Gaussians in the njj The

equivalent part of the integrand of Brunnemann—Thiemann reads [66, eq. (C.39) therein]

AN < VA A (16.10)

Jj
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and we see that we obtained a quite similar expression. However, as we already argued,
Brunnemann—Thiemann wanted to replace the rational exponent r by integer ones, while

we still have r. Having in mind that 0 < r < 1, we can deduce the new estimate to be less

. Still, we were not able to preserve the initial power
3r
in the charges, |n| 2. As we will later see and one may expect, this affects the final result

and is the very reason why we will try to find more suitable estimates in Section 16.2

Continuing with the integration of (16.9), we have

(p"| Z|2(9M)? nd ni
<qlg (7“)>\Ifm < P aLrH’\IJ( " )2 Z Zu( 1 +2p1 I Z‘HJ}
m {ni}EZ

3M i\2 zﬂ._zni ixi j
”\Iij Z / d3M i ( ) eZu (‘(fvl) +ah TNI 1) Z ‘:L;]T

{Ni}ezoo Jj
6 (2TE)3M\/JTE3M_1 D1\ %77&;\1} : 41
= ”\I/ ”2 T3M+r Z Ze ( ) F(T)
n {Nitem Ji
. .\ 2
r+1 1 o TN
AP s (% = TJ> , (16.11)
where we combined all prefactors in & = T%|Z|2(9M)5. In the second line, we also

realised that we integrate only one xf, over a Gaussian multiplied by the absolute value

to the power of r, while all remaining ones are just of standard Gaussian form:

7 dat o () NG e(%*mﬁ)z. (16.12)

The ones including the absolute value to the power of r result in a KCHF, just as before:

o) 2 ol =iNJ ) . .\ 2
(et o (1 (RN
dzJe ’.TJ| :F(T)lFl T,é, T—T . (1613)

This is the reason why in the third line of (16.11), the product of the Gaussians does
not include the one for (j,.J) — symbolised by >, ;; — as for that we instead have the
factor corresponding to the right hand side of (16.13). With this, we can perform the by
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now familiar follow-up steps of inserting the norm of the states,

3M i\ 2
Il = (2117\”/%) =) [T+ K. (16.14)

Ii

applying the asymptotic expansion for large arguments of the KCHF and discarding all
terms N # 0, to obtain

i), )> < (16.11) "Z° T3 2|2 (9M) 522 “3), T) wlp [T (16.5)

Jj n=0

1

5, 1.e. where the

We directly state the corresponding result for the important case of r =

root of the volume operator is contained in (j}(o’ (r):

A1 1 j
—<qu(§>>@’” < Tz oMY |p;‘ = % L % ‘/% - +0(t) |,
7\ v Viy|p| 7|
(16.16)
with the leading order
O I — .
% < 1215 oM)T Y s +o<t4)_ (16.17)

Jj

We may now want to investigate the cosmological singularity, i.e. consider the limit p — 0.
As before, this forces us to deviate from how we proceeded from (16.11) onwards as we can
no longer argue that the argument of the KCHF is large, which allowed us to apply the
asymptotic expansion.! However, we can instead first perform a Kummer transformation
according to (11.11) and then insert the definition of the KCHF in terms of a power series,
(11.2), leading to

(G2 (r)w,, » Pz !Z|§(9M>§ 1 S, (N
Of < \/E t Z Z e Ii\Jj ¢ 1) .
{Ni}ez Ji

w(5 %—%Nﬁf)

'Note that we will ultimately only consider contributions with N} = 0.
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() [ZPFOM)E oy ~Sn (V)]
V- & LD DED D

{Nj}ezm Ji

. (1 —r (V) + %%(Nﬁ)él + O(t3)>. (16.18)

With there still being Gaussians in the N? present, we can again consider the terms with
Ni = 0 only and finally get the upper bound of the semiclassical expectation value of
G (r) divided by ¢ in both limits p — 0 and t — 0:

(i (r))w,, 120 |Z]2(9M)"
t N Vv

Choosing the volume operator itself to be contained in (ﬁg(r), ie. r = 1, yields a first

INC A (16.19)

order contributing with ¢°. Still, it is not a problem at all that we do not obtain a t°
contribution as lowest order in general — remember that this was not even the case in

standard quantum mechanics, confer (11.36).

As a final remark on this first application of an estimative approach using KCHF's, we
note that all the results (16.15), (16.16) and (16.19) did not reflect the initial exponents of
the momenta. Having started with the volume operator to the power of r, i.e. ~ n%, using
the estimates leading to (16.9) resulted in an expression ~ n” — which ultimately yielded
p". The t-dependency, meanwhile, ended up being ¢tz~! for the lowest order contribution

n (16.15), changing to ¢"~! for the limit p — 0 in (16.19). This change, however, was
not caused by applying additional estimates — both results come from (16.11) with only

identities or (asymptotic) expansions being applied thereafter.
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16.1.2 Generalisation to products of Q}’Z

Having introduced the estimative approach a la Brunnemann—Thiemann with KCHFs
in the previous subsection, we now generalise it to products H,]f:l cﬁi, where £ labels
the specific choice of the U(1)-copy and the edge on which the holonomy acts for each
operator of the product. We can then use the estimate we found for a single ¢;° (r), (16.9),

to deduce the semiclassical expectation value of a product of these operators:

Z Zh( t(n}) +2p3n3> (Z’”.JJ‘T)

{né}EZ Jj

_ TN 2 (M) F RS RS S ERLE o1/
> \/E3M Z e 2 t /d3M;L'Ie ( ) Z .

{N;}EZ —0

ﬁ Vo (¥ N|Z)F (9M) %
ol "= a0, |

(16.20)

In contrast to the single qA}g (r), we now face the sum over all the absolute values to the
power of r being taken to the power of N. Hence, we have to add some more structure

to tackle the remaining integrations:

(Z |x1| ) Cng | m“v (16'21)
{I)/2 Ii

with

al ( N (16.22)
Gy == =1| 1 5 ) )
Hu ”3,/5! Iy s 00 gy - - s P

Via the sum ), ., we consider all distributions of IV into non-negative integers ny s € N,
ie. with Y7, n7, = N. The combinatorical prefactors are then just the multinomial

coefficients c¢,,.

With this, all integrals that are not just of standard Gaussian type read

= ; _pj-miN} :
T, = d i T\T1iT T T i
¢ = Tl e Y

"y g

—00

) PN 2
TN - Pp =Ny rnt i _miN? 2
_F(H‘ 1/e> e ( T ) 1F1<1+21’k,%; (pl TNI> > (16.23)
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and we can proceed as usual — i.e. first consider the general case of p # 0 and proceed
with the asymptotic expansion for large arguments of the KCHF. Note that our notation
also allows to cover all the integrals of standard Gaussian type as well, just set 1237,% = 0.

Performing all further steps such as neglecting contributions with Nt # 0 yields

Ii t;}(] 1—‘(%) ‘p[’ vI,/f (1 _ 7"11?7/%(1*7“12?/5) (p;)z _|_ O(tQ)) (1624)

nr g TWZ}JK’ 4
and altogether we obtain

t~>0

/\lk
quk Ym =

t—=0 r mI k rnt —rnt
S T3TN|Z|TN<9 Z Cny H | < . I,/z(14 I,/{) t -+ O(t2))
TT”I ‘ (ﬂ})

{ns} Ii

r N r r
<1202 (9M)F BM)V [l + O (13 1), (16.25)

where we additionally estimated all p} by puax == maxz;{p%}. This allowed us to combine

i |rnY
[1,:1p5" " to pi. as an upper bound and to use

> e = (M) (16.26)

as there were no other dependencies of nj left. With additionally dividing by ¢V to account

for the N-fold product of the operators, the final result reads

(I @), 20

tN -

50N 215 (9a) 3 (3M) |pmax\’"N+O<( )N+1>. (16.27)

Turning towards the cosmological singularity, we have to change our tactics from (16.23)

onwards, just like before. With a Kummer transformation according to (11.11), we have

2 2 ¢
n rn TE2 z 2
_F(H”) F1( 1/17%7&> (16.28)

and the preceding Gaussian in (16.20) tells us we can again neglect all contributions

ﬂz(N})2 i 2(Ni)?2
T, p=0 o - F<1+r/zlk)1F1 1Jr1”nI,,2 1 T ( I)
;=
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Nt 0. With inserting the defining power series (11.2) of the KCHF, we get

=(vh)’ p=0 [ 1+rni =(v)° , 112(]V")2 1

_ = TRY g _ i T _ . +rng g

e t -1-”7;7/‘; = F( 21">e t 1_7/.”-[7/%T+O(t 2) F( I/).
(16.29)

We can then combine these parts for all the factors of the product to obtain

H“k Vo < N (M) 2)F Py Hr(”’"””) (16.30)
Vi

as an intermediate step towards the final result, which ultimately also considers the divi-

sion by tV:

Ak —0 . r N
<Hk ;3&( )>\1/m pg t(r_l)N(9M)TN’Z‘TNZ C”k l_II‘(1+ ”) (16.31)

{ng}

With a factor \/EBM still being present in the denominator, it may now look as if some
normalisation did not work out as expected. However, this factor is (partially) compen-
sated by all I'((1+7%:)/2) for which n}, = 0. What remains is a factor SR where
we denote by jj(fz}k) the number of non-zero nﬁﬁ within the respective decomposition n.
This corresponds to and stems from the number of integrals that were not just of stan-
dard Gaussian type and therefore resulted in F((Hmfr,/é)/z) instead of F(%) = /1. What
is more, having a fraction of a gamma function and a square root of © within our final
result is nothing new, have we also seen this behaviour in (14.30) and even in (11.36)

during the quantum mechanical treatment.

The Brunnemann-Thiemann path can therefore be modified by using KCHF's in order
to compute semiclassical expectation values of N-fold products of the operators (j}i . This
allowed us to preserve the initial exponents at least to some extent: We were able to keep
them fractional and did not need to replace them by integer ones, but the estimates still
altered them. Concerning the semiclassical limit ¢ — 0, we obtained the same divergence
like Brunnemann—Thiemann. In what follows, we aim at improving the estimates a la
Brunnemann—Thiemann we used so far and try to understand how this choice affects the

final dependence on the classicality parameter and the momenta.
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16.2 New estimates

From what we saw up to now, we are led to think that an improved estimate, which will
turn out to recreate the correct dependency on t and p, should still be one featuring a
difference in two terms — where one somehow contains the shift and the other does not.
We already realised that breaking the expression down to one contribution destroys not
only the exponent of the integration variables but also causes the lowest order term of the
resulting power series to survive — there is no counterpart that could compensate it in
the way it happened during our analytical computations of Chapter 14. Simultaneously,
we have to simplify the expressions with the KCHF procedure not allowing too complex

functions of the integration variables as integrand.

To recap, our starting point is

T

2

N ({nih) =N ({nh +0™01}) = 6671 2] -

Z det (n}n?]n';()

1JK

2

— 1> det((n) + 6611,) () + 676 51, ) (i + 6"°0c1,)) (16.32)

1JK

One possible path now is to factor out one charge after the other. For this, we can use
Laplace’s rule once more. To introduce the principle, we apply it to a difference of two

matrices which should mimic a charge matrix and its shifted counterpart:

a b c\|° (a—1) b c\| . .
det|d e f|| —|det d e f = adet(a,)+5‘2—‘(a— 1) det(a_) + C|".
g h 1 g h 1

(16.33)
Therein, we used det(a_) for the minor of the matrix with respect to the element a, while
C = —bdet(b_) + cdet(c_) collects all contributions that do not contain that a.

If we now think about how an estimate of the expression above should look like such
that we can not only integrate it but also in a way that it still is a difference in two
terms — therefore leading to a difference in two KCHFs and an elimination of the zeroth
order contribution —, we realise that getting rid of C' would yield precisely such an
expression: After factoring out det(a_), integrating over a results in a difference in two

KCHF's and the remaining integration over the variables in det(a_) can be handled via
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suitable substitutions. To start into this direction, we first of all rewrite

(a— 1) det(a-) + 8| = (det(a_))? (ja + CIF — |(a— 1) + ).
(16.34)

as this provides an expression with isolated a. Applying now our new estimate (16.7),

adet(a-) + 5’5 —

la+C12—|(a—1)+C)2 <la|* —ja—1]> +2, (16.7)

on (16.32) including the previous reformulations, we obtain

%
AN < ™| Z15 1Y e(Tod K )eqgunyni
JK

[[nio]? = [np +1]7 + 2] (16.35)

First, we note that our new estimate (16.7) indeed dropped the collection C' of all ad-
ditional contributions, but that came at a price: We had to include an additional offset
+2, as can be quickly motivated by setting a = 0 A C = 1 in (16.7). See Appendix C
for a proof of that inequality. As before, ), stands for the sum over all edges e; and
ex with ej, NeyNex =v A J K # Iy N J # K, ie. it collects all minors of the charge
matrices containing n}% with respect to this charge. In that sense, the det(a_) from before
became a sum over those terms. Accordingly, the offset C' collects all remaining terms of
the Laplace expansions and those determinants of charge matrices that are independent
of n}%

With (16.35) above, we now do have an expression at hand that is integrable against
the Gaussian prefactor after a previous Poisson resummation. Performing the latter after
having inserted the estimate (16.35) into (16.1), the follow-up integration over  results

1m

(g (), <

. 2
omipt N m( N7 00 N
T3\ 7|2 “Xn| =+ (t ) o (g PN
< Z e /d3M_1 i\io e Ii\Igig \ I T .

T\ Iy

2 : N2
] —r | p—Z (7 r 1 pp — mN,°
. ZE(IoJK)EinkiL‘?]IL‘I}:( T [T 21—‘(72)1]:7‘1 _Z’E’_<% B
1
2

JK
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We kept the basic structure of the previous inequality (16.35) so the terms in the respec-
tive square brackets correspond to each other. Continuing with the remaining integrals,
we notice that the sum over all minors with respect to xZ[% makes further integrations

unfeasible so far. We therefore use the previously introduced inequality
la+0b|" < la|"+|b|" (where a,b,r € Rand 0 <r <1) (16.4)

to further estimate the expression above via

r
2

ZG(IOJK)einkx?]xl;( < Z ‘E(IOJK)einkx?]xl;( 2

JK JK jk
TR
= || ek ]® (16.37)
JKjk
Note that the estimate caused the sum over J, K to happen outside the absolute value
and, accordingly, there is no additional summation over J, K inside the absolute value

— regardless of their double appearance therein. However, we still consider only distinct
J, K # Iy and the same holds for j, k,i5. With that, we have

i ;. py—miNt 2
N - _ i )
A3M—1gNio o 21i\loi (ml T ) Z |$J ‘%‘xk |% =
IN\Io J K -
—00 JKjk

A N2 ‘ 5

M3 9 o r 1 Py — miN7 r 1 pk. — niNFE

=n I (T) E 1F1 _1757_(T 1F1 vy \ T 7
(16.38)

for the remaining integrals. The exponent 3M — 3 of the square root of w is due to two
of the 3M — 1 many integrations resulting in a KCHF', which — in some sense — include
those normalisation terms. The two Gamma functions, of course, also stem from these

two integrations.

Combining all estimates and integrations, we face
(@ (), <

PZET¥ T (N +"2(N})2>

2 (2 t t

TR S i (z52) [F (—
{N}}ez

=3

; io \ 2
ZO . ZO
1 plo—mNIO
o — | T —
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J —miNJ 2 —mi 2
: Z lFl (_ﬁyéa_<pJTNJ> )lFl (_57%a_<u> ) 9 (1639)

on which we may now perform the asymptotic expansion for large arguments of (all) the
KCHFs. As usual, only the contributions N¥ = 0 will not vanish for 7" — 0 and only
one series per asymptotic expansion is not damped by a preceding Gaussian function.
Including also the division by ¢ in order to compare the result with the classical Poisson

bracket, we find the upper bound

{dn(r))

e < 1| gl

. T . 2s
v+ 1| (25). () (p’fﬁ ) :
N R s s —|—2T2
T —~ s! T
j 00 r - j 25 5 OO r - —as
5 pjzz:(—z)s(%)s v zi?z(—z)s(%)s i)
s! T T s! T
JKjk 5=0 s=0

for an arbitrary graph consisting of M edges. For the lowest order contributions up to
s = 1, we realise that the zeroth order contributions of the sums inside the square bracket
annul each other and with defining the maximum p as |[pmax| = max;;, 121, ({|p4]}), we
have

<(ﬁo <T)>\I/m T 3T T r i il 5=l _r

=l < |z)ir 2[2Tz — S senpiy [P T2 7E + O (1 z)}-

i k|5 (p§)2+(pl;<)2 i k52— .
D |k PTT =2 ) 7, g [Pk T T+ O(T)
JKjk 16(pJ) (pK)

r r,T_ r r i in | 5—1
S |Z‘22M (z‘pmax‘ t2 1 é‘pmax‘ Sgnp[% |p1(())‘2 to -

@!pmaxl’”ﬁ) +O(tY).
(16.41)

Note that the introduction of p., requires pna. to increase no faster than ¢ approaches

0 as otherwise the order of the contributions would change. As a last step, we used 2M

as an estimate of the sum over the remaining edges and U(1)-copies.
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Taking a closer look at the new results above, we see that also these diverge for t — 0 —
the reason being the offset +272 from our new estimate (16.35). We aimed to obtain an
estimate that in the end leads to an expression that is still a difference in two KCHFs —
which causes the zeroth order contributions to vanish. However, we could not entirely get
this but had to include the bespoke offset +2. The lowest order contribution then indeed
is the contribution of this offset, 272, multiplied with the lowest order contribution of
the second line of (16.41). Otherwise, had we not to include this offset, the lowest order
contribution would indeed be the t°-term that on top of that also features the expected
p-dependency: Having in mind the differentiation-like action of the Poisson bracket, we
expect the exponent 7 of the momentum p}% to get decreased by one while also causing

the numerical prefactor 5. The other two momenta are not affected and combine to an

overall p"-dependency. This is precisely what the t°-term above looks like.

If we now consider the limit p — 0, we can again not use the asymptotic expansion for
large arguments of the KCHF and have to deviate from our previous path from (16.39)
onwards. As before, we first of all set p = 0 in (16.39). Due to the Gaussian prefactors, we
can again only consider the contributions with Nt = 0. With that, most KCHFs reduce
to 1F1(a,b,0) = 1, while the one that contains the shift directly yields a power series in ¢.
We can then estimate the empty sum via > _ ;. 1 < (3M )* to obtain the upper bound
in the limit p — O:

~io Pi=0 | 713 (3M)? 2 3r 3r
(@ (e 120 |ZIPBMY 1 iy (207 oy 1 +(9(t”4)  (16.42)
t e L(=2) 2

The lowest order contribution can again be linked to the offset +2 of our new estimate
(16.35). With that, we realise that we ended up having the same ¢-dependencies as in
Subsection 16.1.1 for both the general case and when considering p = 0. Accordingly, we

also obtain a diverging expression when additionally taking the semiclassical limit ¢ — 0.

16.2.1 Finding them

All the estimates we used up to now made us end up with results of undesired dependencies
in p or t — or both. They allowed us to integrate the thereby obtained expressions as
these were simply Gaussians multiplied by absolute values of the integration variables to
the power of r. However, we saw that we can in fact also compute integrals were the

integrand are Gaussians and the absolute value of a determinant to the power of r — we
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do not actually need to reduce it to isolated z% in the absolute values. So all we need to
get rid of is the sum of determinants within the absolute value, which we can achieve via
estimates as well. For this, we assume there are N charge matrices N, that include the

charge n%, to which we assign the shift:?

T
2 N 2

Z (det N, — det Kfn)

n=1

NS

N
> det N, +C

n=1

N
Zdet/\fn +C

n=1

< . (16.43)

The charge matrices N, correspond to the normal charge matrices N, but include the
shift in the element nj. C' then collects all remaining determinants and vanishes via the

application of (16.3). We continue with a Laplace expansion along the three charges n}

of edge 1:
N 2 N
S (det Ny — det G )| = |3 (MALAG) — nARNG) + ndAT(NG) -
n=1 n=1
~(nd + )AL + m2AZNG) — nIATA)|
o= (i ) <o 1)
n—1 17 nj nj 1J ny nj

Note that we again abbreviated the sum over all edges e; # e; that meet e; at v with

>~;; and the minor of the charge matrix N, with respect to n} as A}(N;):

noniony
1 2 3

ny |y Ny

The most important aspect now is that we estimated the difference of two terms that
are fractional powers by the fractional power of a difference of two terms. As many
contributions of these two terms were the same, we are left with only the sum over all
minors of the charge matrices with respect to the shifted charge. To get an integrable

expression, we then applied (16.4) to cast the fractional power of a sum into the sum of

2 As before, this can be done without loss of generality as we work with determinants, allowing us to
reshuffle the matrix accordingly.
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fractional powers. We now need to integrate these against the Gaussian functions. Out
of these 3M many integrals, 3M — 4 many are not over integration variables that are
also contained in the minor of the determinant. These integrals therefore are of standard
Gaussian type, resulting in y/7. Recap that during our analytical integration of the basic
building block, we had to compute all 3M = 9 many non-Gaussian-type integrals, as
we did not just face the minor of the charge matrix but the whole determinant (confer
Section 14.2 and Appendix B).

r.
PR

(G, (r)) mg( 7:/_>3Me—2u(1;§)2 0p%|Z|* | <2_T[>3M Z ezﬂ(w)g.

2 6sTL.(1+ KH)\ T
T/ T a% [[,(1+ K7) (Ni}ez

. mN
RELION: _211(9”3 2= I)

— 00

Applying now the Poisson resummation formula, we have with s =

LG Tt2 i 2
T T (2"‘35Nf+($’> )
e .
\/_ H (1 + KZ {N’L}GZ

k _ink o\ 2
pr-—miN
2 2 3 Z};i%?,(ﬂ‘* r K) 3.2
E de dxl d:l:J d:l:J e = ‘:UI:EJ—:E]xJ
—0o0

(16.46)

The determinant-like part of the integrand can then be substituted along the line of our

rigorous treatment of the basic building blocks in Section 14.2:

it = wirt — xia? (16.47)

dz} = |2%]da? . (16.48)

This leads us to
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.| 322 p2 s s(l—s) 2302 p2 —2
s[5 - (- U () oty
N pi 5| s(1—s) T°
s - o (1 L2 o) (1649

=7

via (11.20) & (11.18) for the Z2-integration. Therein, we again only considered the con-
tribution N? = 0, with all non-zero contributions being exponentially damped by the

preceding Gaussian. Next, we substitute

2

7= %x?, — 282 (16.50)
p2

di = % da?, (16.51)

and solve in a similar fashion the z3-integration according to

7 ,(§i+1213,m>2 Tl .
)7 [ az o G E T | Ly
Pr
218 z?z% p%*ﬂiN:"} 2 3,.2 3 3 3 2
s Y (101 (3
F(z)yF(Q)T e AP 1F1< 2 "2\ pi/r T
s S -2
NF(1)2 IARE ] 1_3(1—5) afad  py L o(1?)
2 T P%/T T 4 vi/T T
2,38 2
piby s(1—s) T 3
()27 a2 Rl BT I (16.52)
2 77 4 )
~

We may then proceed with the Z3-integration, where we first substitute

2.3
7= 32y L }%’ (16.53)
dz} = |25| da? (16.54)
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and subsequently find

oo 3
rr . PiPg

()T g’ / 73 e_(73+T2””3 adl
K |25
p2pS  pI—miN3 2 2.3 3 “AT3\ 2
_1(1)2 L\ (25 T\ T2 T 1+31 pipy P — TNj
=I(3) TTT() |25]" e (3 ) Pl e\ T T
2.3 3 s 1— S) p2p3 pz —2
~ T |PIPs _ Prozl (g 8 <”——I> +O(T°
(2) T2 T J 4 szg T ( )
2,3 3 s 2\2 4
3 pipy P o s(1—s)(z3)"T 5
~T(3) 7T’ R oaial (1 R — +0(1°) |. (16.55)
P

Now, the last integration will be different as the first non-constant term of the Taylor
series in 71" is not independent of the remaining integration variable. We faced a similar

situation during our integration of the basic building block and we therefore continue

analogously by first setting

~2 .
‘TJ‘

~2
dz5 =

and then using (B.33) to get

,( Ty PIPJ
3 e p?/T T2p?/T
pr

n(3)’Tg’ / 43|

— 00

pi o PPy
T " T2
pi

da?

PJ mNJ> |

. s(1—s) T4 (i3+
4 (pipd)* \Fifr

(alw)?
2 e p§T

=TGRy 77T )% 8(p2pip3)*
[z<p3p3>2(4<p1> (1 - 917).F

+s(1—s*)T7 <(p§T) 1Fi <

2
pipy _
T2ri/T

S

i (575
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3+s 3 (Ap)\*
—4A}(p)p?p§1F1< : ,§,<p13(T))
I

SN (1 (e (Y o).

(16.58)

In accordance with the minor of the charge matrices, we defined the minors of the mo-

mentum matrix with respect to p} as
A(p) = pipy — pip7 - (16.59)

Note that we refrained from including the indices I, J due to reasons of clearer formulae
and we just keep in mind that there is not just one such minor. As the penultimate step,
we insert all the previous results into (16.46), multiply the expansion with both 7 and
J" while keeping terms of the order 72 and obtain

" T|Z) Al (. s—s) )
(@ (), < TS %: D (1 - =T+ 0(T ))
|1Zj|L K Z\A )|ST2S(1 - 8(14_ ) 017+ O(T3)>. (16.60)

Therein, we collected all p-dependent parts of the T-contribution of the series in

Wrph)” + (ALE)* (03 + 03)° + )°)
@[J = 2 . (1661)
(AL(p) pird)

We finally divide by ¢ to get the lowest order contribution

25 L O(t5), (16.62)

(G1(r))w., :
B 120 Y |AY )
1J
which for the general case of the shift happening in entry (ig, ly) reads

a2 (r) e, r io (N[5 pE— 5
Ul < 10 5 Ao + 0 (1), (16.63)
1J

Analysing the p-dependency, we first recap that our starting point was an expression

~ p* = p”?, while we ultimately arrived at one that is ~ AP (p)2, i.e. ~ p". From the
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derivative-like action of the Poisson bracket, we expected the lowest order to contribute
with ~ p*/2~1. However, this lowest order term is also expected to be ~ t°, which is not
per se true for the result above — and we can even face a negative exponent of ¢, for
example if we consider the important case of r = % when the square root of the volume

operator is part of §;° (r).

Like during our previous calculation of semiclassical expectation values of (j}‘; (r), we have
to proceed differently if being interested in the cosmological singularity p = 0 as we notice
that the asymptotic expansion for large arguments of the KCHF during (16.52) is not
applicable in this case. We therefore need to apply further estimates on the determinant-
like part of the integrand in (16.46) and we can deduce that doing so will lead us to a

similar expression as (14.31) or (16.19) up to numerical factors.

16.2.2 Conditions for new estimates

We now summarise which different estimative routes we took so far. In Subsection 16.1.1,
we presented a chain of estimates that is similar to the one Brunnemann and Thiemann
chose in [66], just that we did not perform the step of replacing the fractional powers
with integer ones. Next, in Section 16.2, we aimed at keeping the difference in the two
absolute values when applying estimates. While we found a respective estimate that also
made the expression integrable, we had to include a t-independent offset which then also
altered the p- and t-dependency. Subsection 16.2.1 then was about estimates that do not
yield absolute values of the plain charges but only let us replace the absolute value of a
sum of determinants by a sum of the absolute values of determinants: From our rigorous
integration of the basic building block in Section 14.2 and Appendix B, we know that we
can in fact integrate single determinants within an absolute value to the power of r. Yet,
the estimate went too far as it automatically reduced the expression to the minor of the

determinant — and resulted in a single KCHF only.

We can now state some observations on properties of estimates as we analysed different
approaches in the previous subsections. Our first attempts, along the line of Brunnemann
and Thiemann [66], lead us to the conclusion that any estimate(s) we use should still

result in
1. having a difference in two fractional powers

as only this guarantees that the zeroth order terms of the resulting power series in T'
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cancel each other.®> We later saw that the additional introduction of a zeroth-order term
via (16.35) likewise yields undesired powers in p and ¢. Continuing with using estimates
that did not go as far and meant we sill had to integrate determinants, we realised that

it is similarly important to
2. conserve the initial exponents of the charges n’,

as these estimates led us to integrate only the minor of the charge matrix — i.e. with the
overall exponent of the charges decreased by 1. This also resulted in an expression with

altered powers in p and t.

While it seems that the first point above is important for the correct power in ¢ and
the second one for the correct power in p, there may be in fact more to it. First of all,
changing the exponent of the charges n% will of course result in an analogously different
power in the pt. At least when it comes to the t-dependency, both points may play a
role. During our analytical computation of the basic building block in Section 14.2 and
Appendix B, it was crucial that we did not just have a final Taylor series starting with
a constant zeroth-order contribution. Instead, we faced the difference of two fractional
powers with similar arguments, where the second one had an additional contribution ~ 7
due to the shift — confer (B.54). With the lowest orders annulling each other via the
difference, it was this additional 7?-term that caused the lowest order contribution to be
~ t2. However, the second point above, about the power of the charges, can also affect the
t-dependency. During the integration over the %, these integration variables are replaced
by p%’ and, accordingly, modifying the exponent of the n} results in altered powers in the

. 2z
integration variables x% and therefore Z%, too.

So what we need is an estimate that only restructures the sum and the absolute values
while keeping the difference in two terms that are ~ ns — of which one also considers
the shift. If we once more take a look at our estimate (16.35), we see that it looks quite

promising if we neglect the +2,

2

2

. (16.64)

T
2 N

> AL

n=1

< [nd® ~ It +1)7]

N
Z det N, + C
n=1

N
Z det N, + C
n=1

3Therefore, this also holds for estimates that result in an even number of terms with one half con-
tributing with a plus sign and the other half with a minus sign.
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and then estimate this expression by an integrable one:

(16.64) < [\nﬂ% —|nl+ 1\5} 3 |AkG)

n=1

2, (16.65)

We already mentioned that we do indeed need this offset 42, but just to affirm our premise
that an estimate of this kind would yield a desired result, we may still quickly check the
final outcome. For this purpose, we can reuse our previous result of (16.46), where we

just have to replace one /7 of the standard Gaussian-type integral over z1 according to

2
p{*KiNll

r 1 1 _(l’% T ) 118 1 s
\/EH/dxlﬁe (‘xl‘ —|x1+T‘)%

(4 s(1—s) T? }S 9 — S %S 4 6
N ;55) (1_ (14 )(p%)s) (_S%T +%%T +O(T )), (16.66)

coming from the Poisson resummation result of the square bracket in (16.65). Combining
this with the remaining steps after (16.46), the lowest order contribution stemming from

the incorrect estimate reads

1 v § LAL()|2
<q1(2)>mm X _212,22%“9@). (16.67)
1J 1

Indeed, this expression features the desired dependency in both p and ¢: t° for the lowest

—1 in accordance with the derivative-like action of the Poisson

order term as well as ~ p%r
bracket. The composition is also a visible consequence of the estimates applied. We
replaced the rational root of the absolute value of the sum of determinants by the difference
of the rational root of the absolute value of the shifted and unshifted =1, multiplied by the
sum over all minors of the matrices of the x% with respect to x{. With all determinants
that do not contain 1 vanishing via the estimate, the remaining part of (16.67) resembles

precisely this structure.

16.2.3 Comparison with the approach of Brunnemann and Thie-

mann

In this subsection, we aim at giving a comparison of the work of Brunnemann and Thie-

mann [65, 66] on calculating semiclassical expectation values of (products of) the class of
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operators cj}g (r) and the new approaches that we presented in the work at hand. First of
all, our analytical calculations of Section 14.2 only considered the monomial case N =1
of one cj}g(r) In Chapter 15, we then investigated general products H]k;V:1 c}f]’z (r) but
were not able to access the cosmological singularity p = 0. Another difference is that
Brunnemann—Thiemann obtain a diverging expression for the semiclassical limit t — 0 —
confer, e.g., the important choice of r = % for their general case [65, (4.6)]~ (2N and
(65, (4.7)]~ 5DV for p = 0. In the present work, at least the rigorous computations
of Section 14.2 featured the expected t-dependency.

We are therefore led to conclude that if we can access p = 0, then ¢ — 0 yields a
diverging expression; and if we consider ¢ — 0, we can not as well investigate p = 0.
Thinking about possible reasons for this, it seems that it is due to using estimates — at
least for the first reasoning, with accessing p = 0 without estimates seems not possible
so far. We already motivated that estimates may cause changes in the exponent of the
charges and thereby of the integration variables and the final momenta, too. For a better
understanding on how that comes about, we consider the ¢t-dependency of the volume

operator to the power of 7:
V', ~ %S| (16.68)

If we now recap the steps from (16.9) to (16.15), we find that the integration of > |n|"
against a Gaussian function results in an expression ~ t~". Therefore, we get with ¢r/a =
T = +/t the desired t°-dependency

AT

(Vhw,, ~ 6% S |nd|% s fp¥t% = o™ - 10, (16.69)

However, applying estimates so far means that there are at least some terms with a
different exponent of the charges. This alters the above procedure of the “t-conversion”
as the preceding factor £p®" remains as it is — it stems from looking at V" and sets the
right dimension. Applying an estimate on the charges that changes their exponent then

results in, e.g.,
(Va7 302 < ¥ 3 [l v ™72 = 0¥ 475, (16.70)

The unaffected prefactor £p3" can not fully compensate the new decreased exponent of .
We see this also happening in the p = 0 limit, where [65, (4.7)]~ 52 (for N =1 and
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including the additional division by ¢) and (16.19)~ ¢"~! at the end of our similar but
slightly different chain of estimates.

As a last remark on the Brunnemann—Thiemann approach, we discuss what seems to be
one of the key quantities within their integration procedure. Between equations (5.3) and
(5.7) in [66], Brunnemann-Thiemann introduce the variable A% in a series of additional
estimates and it is this quantity’s constant contribution that ultimately constitutes the
non-vanishing part in the limit p — 0. With the integration procedure by means of
KCHF's at hand, we can now investigate the importance of this new variable by explicitly
computing the status of their calculations right before and after this step. We first adopt
[66, (5.3)] to our notation:

166, (5.3)] =

3rN N % 72 N = — ) zi—m i "
_ EP (9]?\)41\2 ]JZ’ Z e—Zn tl) / d3M$ZI [§ Z“( ! I ’ I) (Z(le)z) )
Vit {Ni}ez

—00

(16.71)

where we directly included the norm of the state and completed the square within the

4 We can quite clearly integrate this expression with the methods

Gaussian functions.
introduced in Subsection 16.1.2, seeing that the above (16.71) is quite similar to (16.20)
with r = 2 and % € R = |2¢|> = (2})°. The prefactors ¢p and |Z| are not affected by the
estimates but (9M )% indeed is — it originates from the sequence of estimates (16.9). If
we set r = 2 therein, we can reproduce the estimate [66, (C.39)]. The calculatory steps

then are the same as in Subsection 16.1.2 and we therefore just state the finale result
t—0 N 3r 3r_
66, (5.3)] 'S (27M2)"|Z]% (puar)? Vel 2V 4 o( o3 >N“). (16.72)

Therein, to be able to find an overall upper bound, we again used ppay = maxp{p;}. In

the same way, we get for the limit of the cosmological singularity

66, (5.3)] =" (90M)N| 2= t(F )N § \/ﬁ";M H T(n}; + (16.73)
{n1}

Hence, like before, we face incompletely cancelled normalisation constants /7. The over-

4We note that [66, (5.6) et seq.] lack the minus sign in the Gaussian functions in =*(Ni)’/s, which
returns on page 30.
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all factor /7" first of all is reduced by all those L(n} 4 + 3) with n} ; = 0. What is left
is /T ﬁ("?’*), where we denote by f(n} ) the number of ns # 0 within the particular de-
composition ng. This corresponds to the number of non-standard-Gaussian type integrals
resulting in T'(n} ; 4 3) instead of ['(§) = /7.

With this, we can now turn towards the integrals Brunnemann—Thiemann face directly

after their introduction of A¥:

o0

Vi 3rN oM N 7 % 2 N ' s
o6, (5] - S ONAT 5o, T g
vt {Ni}ez o

- (Z (Aj,(X}')2 - |p;|j:4lf + I (7{\;}) )) . (16.74)

Ii

Before expanding the sum to the power of NV, we may already now neglect all contributions
with Nt £ 0 — this is, of course, possible due to the preceding Gaussian in N?. The much

shorter expansion then reads

(Z(A’}(X}') !pI\A )) =S, TT (4 x) ) (_% ) -

Ii {ns} Ii

Therein, we had to introduce a second kind of non-negative integer, m?} ., as we did not
have a sum of single terms to the power of N as before. The new pair n% ,, m} , of the

decomposition n; of N into non-negative integers then follows > . (nﬁﬁ + m}h) = N and

N! N
oy = 1,7, mi ! A\, 2 3 102 3 ) (16.76)
it my ! DYy 15 gy e ooy g Y s 3 s M

So what is the same as before is that we face the integration of Gaussian functions against
the integration variable to the power of some even, non-negative integer. In contrast to
before, we now do not have any offsets ~ p} or ~ Nj in either parts of the integrand.

Accordingly, the integrations can be solved via

/ dxt e (X1)° (XI)™15 =T (n}, + 1) (16.77)

—0Q0

and there is nothing further to do — especially no asymptotic expansions. Combining
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the formulae above, we have

166, (5.7)] =

EINOMNZT o 1 NECIEARE
d,z AZ IZI i i 1 mr [ WPIIT .
\/E {ne} ﬂ Ii ( +2)\/E ( 2T

ng 1

(16.78)

This also means that we can directly tackle the case of p = 0: Having |p}|mz“", we can say
that the overall result will not vanish as for some of the decompositions n; of N it does

indeed hold mj , = 04, I. The expression for p = 0 then reads

peo tE DN 000N 2%
66, (5.7)] "= N > d, HF g+ (16.79)
{ng} s.t.
1721,L0Vzl

With these results, we can now deduce the effect of the introduction of A} in [66]. Starting
with the case of p = 0, we can say that both (16.73) and (16.79) are ~ (51N and this
also holds for the final result of Brunnemann-Thiemann [66, (5.10) with p = 0]. For the
general case, however, we found a t-dependence of ~ +(F=2)N before their introduction
of A%, as (16.72) shows, while we obtained ~ t20=DN for the expression right after the
introduction of A7, as (16.78) indicates when considering ), m}; = N to obtain the
lowest order. Therefore, the introduction of A% based on additional estimates does not
play an important role concerning the initial singularity p = 0 and only causes a change
in the combinatorical prefactors. When it comes to the introduction of A? itself, it is not
clear how this was done. Applying the binomial formula estimate within the sequence of
steps from [66, (5.6] to [66, (5.7)] is in fact not possible due to X € € and a similar
question arises for the first line of that chain. Accordingly, the integration over Xt should
in fact be complex. We point out that if one considers only the contributions Nt = 0
already from [66, (5.3)] onwards and does not introduce the absolute values, analogous

computations can indeed be performed.

229



CHAPTER 16. KUMMER’S FUNCTIONS AND LOOP QUANTUM GRAVITY —
ESTIMATIVE APPROACHES

230



Chapter 17

Conclusion and outlook

17.1 Kummer’s functions and coherent states on the

circle

In the first part about Kummer’s functions, we extended former results of [204-208] on
coherent states on the circle in two different directions. We showed that we can compute
semiclassical expectation values of fractional powers of the momentum operator by means
of Kummer’s confluent hypergeometric functions, which we have demonstrated in Section
11.3 and Subsection 12.2.1 for Ly(R) and Lo (S?), respectively. For all operators considered
in this part, the involved integrals were computed analytically without the need to perform
any estimates during the calculations, as it has been done i.a. in [135] for fractional powers.
Furthermore, since the asymptotic behaviour of Kummer’s functions is well-known in this
context, we can perform an expansion of these semiclassical expectation values in terms
of the semiclassical parameter. It turns out that we automatically end up with the correct
fractional power in the classical limit due to the fact that we do not need to estimate the

integrals.

As a further result, we also discussed the computation of generic semiclassical matrix
elements in the context of the Zak transformation and we were able to show that there
exists a simple relation between semiclassical expectation values in Lo(R) and Ly(S1) —
as discussed in Subsection 12.2.2. Given an operator OQM that is well-defined on the set
of coherent states, we can compute the associated matrix element (Thr, W7, | Oqu | i)

in Ly(R), where Th,, denotes a translation operator that translates by 2mn with n €
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N. The matrix element for Ly(S') can be expanded into a Fourier series whose Fourier
coefficients ¢, are then exactly given by ¢, = <T2nn‘IJZ’/7p/ \ OQM ] \I/Z’m). This shows that the
semiclassical matrix elements in Ly(S') are completely determined by the corresponding
“translated” matrix elements in Ls(R). The variable in which the Fourier transform is
evaluated is exactly the parameter 6 used in [207, 208] that naturally enters the definition
of the coherent states because it is the second argument of the Zak transform and for
coherent states on the circle it can be understood as an additional fixed parameter in
the interval 0 to 1. For a more detailed discussion on the physical properties of this
parameter, see for instance [207]. Given this relation, semiclassical matrix elements like for
instance in [135, 205, 206, 208, 208] can be computed in an alternative and possibly simpler
manner. If we have an operator on Lo(S') of which we want to compute semiclassical
matrix elements, we just compute its Fourier coefficients, which in turn are simply matrix
elements with respect to standard harmonic oscillator coherent states. Given these matrix
elements, we can without any further computation directly write down the corresponding
result for the matrix element in Lo(S'). We thereby avoid explicitly performing the
Poisson resummation formula because that step is automatically taken care of by the
procedure via the Zak transformation. This might likely reduce the actual effort of these
semiclassical computations. Compared to the results of the expectation values in terms
of Jacobi’s theta functions and its derivatives as done in [205-207], we believe that the
relation from Lemma 3 in equation (12.56) provides a more convenient alternative as far

as the extraction of the classical limit is concerned.

Having restricted our considerations to coherent states on the circle, a natural ques-
tion is whether the techniques introduced here can be generalised to more complicated
situations. As already mentioned before, if we consider the Zak transform as a map from
Ly(R™) to Ly(R?™/Z*"), the relation of the matrix elements discussed in Subsection 12.2.2
carries over to the higher but finite dimensional case. As far as operators with fractional
powers are concerned in a higher dimensional model, the operators can become more com-
plicated functions of fractional powers than we considered here and thus it can happen
that the integrals involved can no longer be solved by just using Kummer’s functions.
However, as we later discussed in Chapter 13 et seq., similar techniques can be used for
U(1)® coherent states and a certain class of dynamical operators — generalisations of
the operator considered at the end of Subsection 12.2.1 and also considered in [65, 66]
—, which improve the final semiclassical expansion in certain aspects. In the context

of loop quantum gravity, a generalisation from U(1)% to SU(2) of this procedure would
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be beneficial to have at hand, in particular also because the semiclassical computations
for SU(2) coherent states are much more involved in this case, so any simplification in
this direction is welcome. Since the theta function can also be defined for SU(2) [235],
we have a starting point for analysing in more detail whether a Zak transformation or a

generalisation thereof can be used for SU(2) coherent states in a similar way.

17.2 Kummer’s functions in loop quantum gravity

In the remainder of the work at hand, we extended the previously introduced method
to analytically compute semiclassical expectation values based on Kummer’s confluent
hypergeometric functions to the case of U(1)® coherent states and the dynamical opera-
tors relevant in loop quantum gravity. We discussed this new procedure for computing
semiclassical expectation values in addition to already existing ones in the loop quantum
gravity literature. In particular, we investigated the question of singularity avoidance and
compared our method to results by Brunnemann and Thiemann [65, 66]. The utilisation
of Kummer’s confluent hypergeometric functions allows to analytically evaluate integrals
involving products of roots and Gaussians. Concerning the evaluation of these semiclas-
sical expectation values, we differed between two main paths: The first one — covered in
Chapter 14 and Chapter 15 — involves semiclassical computations that can be performed
without estimates, whereas for the second path in Chapter 16 the calculations do rely on
estimates. As a first scenario in the framework of loop quantum gravity, we considered
graphs of cubic topology in Section 14.2, similar to the work of Sahlmann and Thiemann
[63, 64], and aimed at computing semiclassical expectation values of the crucial dynamical
operators cﬁg(r), products of which include for instance the analogue of the inverse scale
factor in loop quantum gravity. Moreover, these operators are also involved in more com-
plicated dynamical operators such as matter Hamiltonians or the Hamiltonian constraint
of loop quantum gravity. We showed that for cubic graphs and linear power of cj}g(r)
our technique allows to compute the semiclassical expectation value of é}g(r) analytically
without using estimates, as opposed to [65, 66], thereby extending results from the litera-
ture in the sense that the final outcomes still contain a stronger fingerprint of the initially
involved fractional power r. The final expression for all semiclassical expectation values
considered here can be written as a power series in the classicality parameter ¢t and one
expects to get the classical result in the limit where ¢ is sent to zero. In the case of a

graph of cubic topology and for non-vanishing classical triad labels of the complexifier
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coherent states, we were able to show that we obtain the correct classical limit in zeroth
order of the classicality parameter without using estimates and, moreover, perform the
continuum limit in which the regulator is removed as well. In the latter step, we were
able to confirm in Section 14.4 that the regularisation constant of the volume operator for
the U(1)? case needs to be 55 in order to obtain the correct classical limit as was already
pointed out in [64, 89, 90]. How this is related to the different result found in [236] —
where the SU(2) case is considered using the graphical calculus — will be discussed in
[234]. To analyse the singularity avoidance, we need to investigate the case in which the
triad label of the coherent states vanishes, i.e. p — 0. Then, the asymptotic expansion of
Kummer’s functions cannot be used in a similar manner as before; therefore, the compu-
tation of the semiclassical expectation value becomes more involved. As a consequence,
we needed to introduce estimates in this specific case, which are however different to the
ones used in [65, 66]. In accordance with their result, we also obtain a finite upper bound
for the semiclassical value of cj}g (r) for a graph of cubic topology and obtain singularity
avoidance. However, the way how the fractional power enters into the final result differs
and, as discussed in Section 14.3, therefore also for which values of the fractional power
a finite expression in the ¢ — 0 limit exists. In our results, this happens if qA}g (r) involves
the volume operator linearly in the commutator, whereas for [65, 66] this is the case for a
fractional power of the volume operator of r = %, showing, as rather expected, that such
properties do highly depend on the kind of estimates used during the computations. The
results discussed so far are restricted to linear powers of the operator cj}g(r) and cubic
graphs. The next, more involved case was considered in Chapter 15, where we recapitu-
lated the procedure introduced by Sahlmann and Thiemann in [63, 64], which there was
applied to cubic graphs. We extended this method to more general graphs and obtained,
again up to some expected rescaling caused by the regularisation constant, the expected
classical expression in the zeroth order of the classicality parameter. The case of p = 0,
however, was not treatable with this procedure because it requires that the matrix built
from the classical triad labels of the complexifier coherent states is invertible, which is no

longer given in the limit p — 0.

Concerning the second path covered in Chapter 16, we analysed whether our method
based on Kummer’s confluent hypergeometric functions can be used to improve the re-
sults for the upper bound regarding the singularity avoidance, that is the case p = 0.
As discussed in the applications in Chapter 16, introducing estimates usually has the

consequence that one estimates the original fractional powers by different powers in the
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classical label p, the classicality parameter t — or both. Compared to the estimates used
in [65, 66], in some steps of our work we could keep fractional powers and did not need to
estimate those by integer powers. Therefore, we aimed at trying to understand in more
detail how the aforementioned modification of the order in ¢ and p respectively arises
when one uses estimates. As a first step, we carried out a computation that followed
the path of [65, 66], where it was shown i.a. that there exists an upper bound for the
semiclassical expectation value of the operator-analogue of the inverse scale factor even
when approaching the initial singularity via p = 0. We modified the approach of [65, 66]
in two ways: First, we did not need to get rid of the non-integer exponent of the charges
as we could rely on the KCHF procedure. And secondly, the integration by means of
KCHFs also allowed us to refrain from using additional estimates in order to evaluate the
resulting integral. We discussed the case of one single cj}g (r) and N-multiple ones sepa-
rately in order to better demonstrate the differences and similarities of the two methods.
Our result then features the same property when we want to consider ¢t — 0 additionally
to p = 0 — or vice versa —, namely that the expression is not well defined if both limits
are taken. We were able to find two aspects of estimates that cause this issue: One is
changing the initial exponent of the charges via an estimate, causing ultimately a modified
exponent of ¢ as well. The other one is to apply estimates such that the initial difference
due to the commutator is replaced by one single expression, whose integration then gives
rise to one single KCHF and its power series. We saw during the analytical computation
for graphs of cubic topology (cf. Section 14.2 and the last steps of Appendix B) that in
the end, the zeroth order of the commutator’s two KCHF's cancel each other — and this
is of course not possible anymore when having only one function after using an estimate.
Maybe one finds an estimate that changes the overall exponent in ¢, i.e. as a prefactor
of the series, in such a way that this series’ lowest order contribution turns out to carry
the correct order in ¢, but the authors are not too positive about this possibility; and for
such complicated operators this might also not be expected. Having these two reasons in
mind, we continued to test new estimates that respect the “rules” of having a difference
in KCHF's and not altering the U(1)-charges’ exponents involved in the eigenvalue of the
volume operator. However, for the analysed modified estimates in Section 16.2 there was
always some issue occurring such that we ultimately had to break with one of the condi-
tions — but our analysis gives a more detailed picture of where this exactly comes from
in the application of the estimate. This can help to perform a future analysis on improved
estimates in a more focused manner. For instance, one could use the ansatz for a new

estimate that we stated at the end of Section 16.2 — where we showed that an intuitive,
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yet inapplicable estimate would yield the expected classical result — in order to reverse

engineer a similar and indeed applicable estimate.

Another follow up question is whether there exists a link between the approaches via
KCHFs and the Sahlmann and Thiemann one based on a Taylor expansion. Section
15.2 shows such a connection for the U(1) case, where one can associate the asymptotic
expansion of the KCHF with the power series expansion of [64]. For higher-dimensional
scenarios, however, this is not deducible in a similar straightforward manner as the KCHF
way then means to successively perform the interwoven integrals. In contrast to this,
the procedure Sahlmann and Thiemann used in [64] allows for tackling all integrations

simultaneously after a disentanglement via a power series expansion.

A further and interesting generalisation of the methods presented in our work would
be to extend the KCHF procedure for computing semiclassical expectation values and
matrix elements to the case of SU(2) complexifier coherent states and understand how
the techniques and results are related to the ones that one obtains via the semiclassical
perturbation theory introduced in [60]. Besides that, there exists also work on matrix-
valued KCHFs [237, 238, and references therein] that one may use in order to evaluate
the integrals of the determinants. The authors looked into this but could not find a way
to handle the calculations properly so far. However, the authors are also aware that this
is still an active field of research and with investing more time, there might be ways to
tackle it.
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Chapter 18

Summary

We started this thesis with an introduction to loop quantum gravity in Part I p. 3, where
we aimed at motivating the importance of the theory, its main ideas and concepts as well

as specific frameworks that are relevant for what would follow — like coherent states.

Part II then covered the analysis of Gowdy models. We first introduced these models
and motivated why they are of interest in Chapter 3 p. /9. The classical Gowdy model
was then quantised in both reduced loop quantum gravity and algebraic quantum gravity.
We chose for the first time a graph-preserving quantisation prescription for respecting the
symmetries of the model also at the quantum level. Ultimately, we were interested in also
finding first solutions to the Schrodinger-like equation of the Gowdy model quantised in
algebraic quantum gravity. We started by constructing zero-volume eigenstates, which we
used to outline the general procedure of how we can construct Gowdy states with specific,
desired properties — namely by finding appropriate conditions for the coefficients within
the linear combination of basis states such that the resulting state features that prop-
erty. This allowed us to find also more complex states like ones that feature a vanishing
action of the Euclidean part of the Hamiltonian. What is more, we could also discuss
degeneracies of the action of the Lorentzian part. As possible next steps, we assume a
perturbation theory approach can be of interest, where the symmetrised Euclidean part
acts as a perturbation of the Lorentzian part [203]. Another direction would be to ap-
proach solutions to the evolved equations by means of numerical methods.

The more detailed conclusion on the Gowdy model investigations can be found in Chap-
ter 8 p. 115.
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Part IIT continued with semiclassical aspects of loop quantum gravity, while also lay-
ing the mathematical foundations of new procedures and illustratively applying them in
standard quantum mechanics or for coherent states on a circle. We again started with
an introduction and motivation, confer Chapter 9 p. 121. The main target of this part
was to shed new light on the singularity avoidance in loop quantum gravity. For this, we
introduced a new procedure that relies on Kummer’s confluent hypergeometric functions
and which allows us to compute semiclassical matrix elements and expectation values that
can otherwise only be estimated. Carried over to standard quantum mechanics, the new
procedure allows, e.g., to compute the semiclassical expectation value of fractional powers
of the momentum operator. In loop quantum gravity, we can compute semiclassical ma-
trix elements of a certain class of dynamical operators that can also be used to build the
inverse scale factor. This allowed us to generalise and improve results from the literature
concerning singularity avoidance. These new insights also allowed us to see Kummer’s
confluent hypergeometric functions themselves from a different angle — they are solutions
to the heat equation — and find that the Zak transform can be used to map semiclassical
matrix elements of coherent states on the circle to those of harmonic oscillator ones. As
all these calculations were performed in Abelian scenarios, the consequential next step
would be to analyse how we can extend the new procedures to SU(2).

The more detailed conclusion on the semiclassical considerations can be found in Chap-
ter 17 p. 251.
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Appendix A

Ernst Eduard Kummer

Despite his achievements and his outstand-
ing influence on the development of mod-
ern mathematics, Ernst Eduard Kummer
is a name you hardly hear or read (at least
the authors did not recognise him when
they first encountered his confluent hyper-
geometric functions). We want to use this
appendix to briefly motivate why this cir-
cumstance is very much unjustified and
thereby pay tribute to this brilliant math-
ematician and influential teacher. We refer
the interested reader to the more detailed
biography by Hans—Joachim Girlich [240]
as well as [241-244], which served as

sources for this appendix.!

B

B o e

Figure A.1: Ernst Eduard Kummer [239]

One of the reasons why one barely encounters Ernst Eduard Kummer could be that

he did not see too much value in writing books and instead only published scientific

treatises. It is not even half a century ago that these were collectively published under

the editorship of André Weil [226, 227]. However, this circumstance does not mean that

he had no pedagogical abilities. Quite contrary, he enjoyed the reputation of being an

'We note that this appendix is supposed to be only a supplement to the thesis. It collects publicly
available information on the life of Ernst Eduard Kummer, as the authors thought it may interest the
reader as well. If so, we warmly recommend reading the references, too.
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excellent teacher — with sometimes 250 students following his lectures — and being able
to spark his students’ interest on mathematical problems, while also offering personal
and material support. When he was a school teacher in Legnica (then Liegnitz), two of
his students were Leopold Kronecker and Ferdinand Joachimsthal — both of whom he
could convince to pursue their mathematical talents. While Joachimsthal later took over
Kummer’s chair in Wroctaw (then Breslau), he enjoyed a lifelong friendship with Leopold
Kronecker, who later also became his student and whom he brought to Berlin when he was
professor there. In Berlin, he took over the chair of Peter Gustav Lejeune Dirichlet, who
moved to Gottingen. Together with Leopold Kronecker and Karl Weierstrafl — whom he
also got a professorship in Berlin —, he made Berlin the centre for mathematics. Notable
doctoral students of his are Georg Cantor, Elwin Bruno Christoffel, Georg Frobenius,
Wilhelm Killing, Leo August Pochhammer, Carl Runge, Arthur Schoenflies, Friedrich
Schur and Hermann Amandus Schwarz [245], while he also supported Alfred Clebsch and

Lazarus Fuchs — many names we already encountered in the main part of this thesis.

His mathematical achievements include work on hypergeometric functions — where we
encountered his name — and laying the foundation for all future work on Fermat’s Last
Theorem by, i.a., introducing ideal numbers. For the latter, he was awarded the Grand
prixz des sciences mathématiques by the Académie des sciences, Paris, in 1857. The
price was originally denoted for providing a solution to Fermat’s Last Theorem, but with
Kummer’s work showing that all the current approaches have to fail and setting a new
path for finding a solution, it was decided that this is an equally honourable achievement.
With the help of these ideal numbers, he was able to show that Fermat’s Last Theorem
holds for all exponents that are multiples of regular primes. Further work of his was, i.a.,

on ray systems — a more geometrical topic — and ballistic problems.

In 1860, he was also elected as a member of the Académie des sciences, Paris, and in
1863 likewise for the Royal Society, London, while he was a member of the Preuffische
Akademie der Wissenschaften, Berlin, already from 1839 on. He retired in 1890 as he —
and only he himself — noticed a diminishing capability of his memory. Three years later,
he died in Berlin aged 83.
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Appendix B

The 9 integrations

This appendix provides the integration of all the remaining integrals of Section 14.2. We

directly start with

(), = (B.1)

9

/ 6r(2n\/§> pi—miN;\2  Of py—miN; \ 2

2 tp 23 (B =23 (=i~ =

:_—2 e 7,( T ) / dg,flj'ie 2( T ) (‘detX’r_|detX|T)7
tas|W,,|* T3 Z

{NZ‘}EZ —c0
where as before
1,2 .3 T
Ty r{ Xy 1 T2 X3 T1+35 T2 X3
X= |2l 22 23| =24 25 26 and X = ry x5 w6 |. (B.2)
ZL’% ZE% ZE% 7 Tg T9 T rsg T9

As mentioned during the introduction of Section 14.1, the integration variables z; that
we use correspond to the integration variables z7; of [64], while the remaining azjrj can be
easily integrated over — they are of pure Gaussian type. In (B.2), we directly cancelled

those contributions with one part of the norm of the coherent state, ||\I/||i

ot = (25) S T ). () SO (k) w3

7 %

J/

-~

g
2
[¥m 5 19,02

= | W} Wl (B.4)
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We absorbed both expansions HZ<1 + Kt(i)) into |¥,,|> to have more concise formulae
at hand

Now, (B.2) is not integrable via our integration procedure by means of KCHFs and we

therefore start with the substitution

Ty = det X, (B.5)
xIQ,...79 = x?,...797 (BG)
with
T5lg — Lgxlg XLy — TgXg T4y — Ty
da’ 0 1 0 .

We therefore have to integrate
|z3|"
|52 — whg|
against the Gaussian functions. At this point, we slightly deviate from the procedure

started in Section 14.2 by also performing a second substitution right now:

"o 1t W
Ty = Ty — Tgly, (B.8)
" )
21,2,3,4,6,7,89 "= 11,2346,7,89 (B.9)
dx//
det = g, (B.10)
da’ 9
This leads us to integrating
n\r
|27
Vi "
|25 ||zg

against the Gaussians and we got rid off the difference in the denominator. Note that
this is the same substitution we announced in Section 14.2 after having performed the
integration over z, and with x| — 2] = z!| integrating over z/ is just equivalent to

integrating over x) first. This integration over z now reads

i r ! 2 — 1= 'd 1 1
/ dxﬂxlll 6—2( 1/1;5—"-(1) = \/5 ! e_2a2|x/5/ 1+ F(%)1F1< ;—r7 572a2>7 (Bl]')
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where we defined
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which originates from considering x| = ) (z1,...,29) and zf = af(«),...,x5). The

subsequent integration over z then has to also comprise all terms ~ a = a(x%, .. .):

oo

/ da? 672(“”/5//15%)252“2|x,5/|r1F1 (1 ; a %’ 2a2)7
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with . N
Tl T ps — ilN5

b= 58 _ . B.13

xgy T ( )

Just like during the treatment of Section 14.2, we now need to apply the asymptotic
expansion for large arguments of the KCHF as integrals including a KCHF as well as an
absolute value to the power of r are not feasible. With a ~ %, we can indeed perform the

expansion, yielding

e p (L7 10\ | TG)
e 1F1< B ,2,2&>~F(1_5T)

(20%) (1 - @‘; + O((a2)2)), (B.14)

where — as usual — one of the expansion’s series was damped by a preceding Gaussian

function and can therefore be neglected. We now define a = 5 + d to make the depen-
5

dency on z palpable. Therein, ¢ represents the numerator of that fraction of the definition

of a, (B.12), that has z as its denominator and d collects the remaining contributions

independent of zf. The integration over zf up to now then is
T vy 1 2 2 1— -2
/ dmg e—Q(ws/x9+b) ’xg‘r 2(% 4 d) 1 — T( T) (% 4 d) )
x5 8 T

At this point, we may first consider the shifted contribution. We already introduced

(M

the integration over x; of this part in Section 14.2:

0 00 T2 2
~ p1—miNg )2 _2<£1_pl+2Tle>
/dx1|detX|T e 2(e =) o / i | det X" e . (B.15)
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with Z; == x; + % and X as X|;,z in abuse of notation. As mentioned earlier, this
expression is just the one for the unshifted part with the only difference being p; — pl—i—%z.
However, be aware that within the (inverse) Gaussian functions including p; “outside”

the integral, p; is not shifted.

We then perform the same steps as for the unshifted part and obtain

7 r Yoy s —l=r T‘ 1 1
[ astsre e’ < e prag e (120 Low), (e

where a = a| . The subsequent asymptotic expansion for large arguments of the

r—>p+2

KCHF therein yields
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resulting in the integration over x% of the contribution experiencing the shift as

r —2( %4 c T 2\ & r(l—r)(c T\
et ) (< d— = A Y i B I
[t G (e a3) ) - 252 (- )

From this form, we infer that the lowest order terms of the square brackets of the shifted
and unshifted versions of the zZ-integration do not just cancel each other for the shift
being also present in the preceding factor to the power of 7. Hence, we have to continue

with performing the remaining integrations one after the other.

The next step was also already motivated in Section 14.2 and consists of performing a
Taylor expansion of the square brackets. As we are ultimately interested in a power series
in T, or in fact t = T2, this is also just consequent. We then end up with the power series

1—7r)T?
S=1- g— + O(T?) (B.18)

8 p1?
for indeed both square brackets — the one within the shifted as well as the unshifted part.
Noticing that this expression does not include terms depending on z7 up to contributions

~ T? we managed to cast the square brackets into expressions that do not hinder the
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integration over zf anymore. The reason why there is no N; within & leads to the last
modification we have to undertake. The last part of the integrand that has to be modified
now are the factors that are squared and taken to the power of 7. Going back to our
starting point, (B.2), we notice that there are still Gaussian prefactors in % Therefore,
we can discard all contributions N; # 0 — and will do so for all upcoming N;, too —,
as all those terms will be damped to zero for ¢ — 0. This means that now! d € R

and the squares to the power of 7 become just the absolute value to the power of r:

(). ]2

With all this, we can now state the current status of our semiclassical expectation value:

2,
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It now seems natural to continue with the integration over xy. The situation is very much
like before: The integrand contains a KCHF that needs to transformed via the asymptotic
expansion for large arguments — possible via b ~ % —, where again only one of the sums

will contribute and we directly apply a Taylor expansion afterwards, in order to have a

IFor reasons of brevity and due to the limits of the alphabet, we continue using the letter d also for
the quantity d|n,—o.

i —miN; \2
2 Also for reasons of brevity, we do not modify the expression (Ni)ez 2Zi(*F)" each time one
of the N; is set to zero.
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power series in T'. In the end, this leads to

r(l—r) T?

§=1-———"_"— 1+ 0(T?), B.21
o) (B.21)

setting already N5 = 0. This is again justified by considering the Gaussian prefactor in

% that makes all contributions N5 # 0 (exponentially) vanish. Just as before, it also

transforms the square of the KCHF’s argument to the power of 7 into the absolute value

of the KCHF’s argument to the power of r. Hence, we are now facing
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Therein, we abbreviated the peaks of the Gaussians as they are after a substitution making

xg the only argument of the absolute value according to

D5 L0 .0 p1 .00 1 W0 L0 i} :
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One feature of the procedure can already be noticed now: The numerator in (B.22) and

(B.23) contains the numerical prefactor \/59, stemming from the factor of 2 within the
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Gaussians, which in turn entered our formulae via the substitution following (14.2). The
successive integrations now build up a numerical prefactor v2" in the denominator that

ultimately compensates the respective factor in the numerator.

From (B.23), we proceed as before and perform the asymptotic expansion of the two
KCHFs — guaranteed as both ¢ and ¢ are ~ % The follow-up Taylor expansion (setting
already Ng = 0) then yields

r(l—r)T?
$"=1—-——"— +O(T"). B.26
oo (B.20
Therefore, we now have
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with
. Dh1 Dy P1PsP9

T = Thxgay — Txgxg T rhrl + T3 (B.28)
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T = Ty%l7 — —p—T6%s ~ T TaTy + T3 : (B.29)

We see that we can again apply the asymptotic expansion for large arguments of the
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KCHF on both KCHF's and with also performing the subsequent Taylor expansion we get

(B.27) =
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As usual, only the N3 = 0 contribution was considered and we abbreviated

b3 b1 pg P1PsPg
3 D3 <P1 + 7) Do (Pl + )]%Pg
Vi | [ S w | Tttt (B.32)

This time, we do indeed face a different situation with the Taylor expansion’s first non-
r(l-r) (z’7’2T

8 (p1®po?
variable x7. Even though it looks as if thls term were contributing with 7%, it turns out

constant contribution 1 —

belng still dependent on the (next) integration

to contribute with T2 after the integration, just like the higher order contributions of all
the Taylor expansions before. The important point now is that z7 is contained in the
integrand with an integer power (and not within a KCHF, for example), allowing us to

continue with the integration procedure via

r Y 1471
[ o e E g @ = et e (g >{d21F1( =R 2’b>+
L+ 3+r 1 , 1—|—'r 3—1—7’ 3

Also note that the Taylor expansion that caused this additional appearance of x% did
again not change the exponent of the integration variable, at least up to the first order in
T. The asymptotic expansion for large arguments of the KCHF generates a series 27" in
the argument z of the KCHF. For both KCHFs in (B.27), the argument is ~ (z%)* and

therefore, the asymptotic expansion will contain a first order term ~ (a7’7’)2 Hence, the
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following Taylor expansion did not change the power of the integration variable z7.

Combining (B.33) & (B.30) and applying the asymptotic expansion on all six KCHF's,

we obtain
(B.30) ~
9
r( 22 1)\5 : i

2 TV (35%) T1(3)°88'8" oy (B T ey (ay-mpy’

~ ; - - e i d Tio46 € i=2,4,6 .
[9.]” V2 (N:yez e
T’(l - ’l“) r _of g Ps=TiNg\? p3 P1 "
: (1 i PT2) / dayg e 2o ") |::L‘/8,<TIZ TIIG,) +x| —

—

+Z '
- l‘é’(%fvi{ AT T x’é) +X| | (B.34)
where we defined
2 2
. b7 b3
P=—"—+ - (B.35)
DP1™ P9 (p1p9 — P3p7)
D7 D9 DP1PsPy — P3P5P7 D7 Do P
o= (G = o) + BEREEE — g (- Rat) ¢ 5 (B30)
. P
¥ (Faf = Dal) + 5 + 22 (B.37)
Continuing, we get
(B.34) ~
9 6 0o .
2T3T (%) F(%) S§&'S"S" Qz(Pi*;iNi)Q 5 2% (x;'_Pr;Ni)Z
=~ E 2 6 e ¢ / d .1711274 (] i=2,4 .
||\]:J7TL||—\/§ {NL‘}EZ — 00
I (gl P6=TiNg )2 r(1 =) (psay — prag)*T? pr P1Ds r
-/dx'éeQ(ﬁ T )<1— : 4 7326 [xg(fxg—ﬁ>+z9—

r

wl| P71 _n <p1 + %2>p8 Q
ZL‘G TCCQ — T —|— 19 ,

(B.38)
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with
__ un{P3Ps Py 4, P
Y= Xy <W - TZU2> + 773, (B39)
_ n(P3Ps Py //) P P5P9
= x‘*( 7 7") Tt (B-40)

and we face again a prefactor that is not independent of the remaining integration vari-
ables. However, we can still perform the integration a la (B.33) even though there are
now two integration variables involved. A rather long evaluation of all the usual steps

then reveals

(B.38) ~
T3r 2nv/2 QF 1 788/81/3/// Nz O i —miN; \ 2
T (52) 1) gy T e (e
~ z 2 - e d $1:274 e == .
|0, V2 (N;lez e
r(1—7) pi?peP? + pi2ps*P?, v (D3Ps Py .\ . Debr_, . P '
.<1_ 3 B2 7 ) | (s — k) + et g -
::9(////
P Al
(B Py Dby P 210 (B.41)
where
P=P - P1PePs = P1PsP9 — P3PsPr — P1PsPs (B.42)
continues to build up the determinant of the matrix of the p;. Also, we defined
A1(p) = pspo — PeDs (B.43)

as the minor of that determinant with respect to p; = pj where the shift happens:

2
D1+ Tj D2 D3
Pa |[P5 Do : (B.44)
pr Ps P9

Having resulted in an integration variable independent prefactor 8", we can integrate
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over x)j in the by now well-known manner:

9
T3 (M) (L SSS/S”S/”S""S”/" piomiNg 2 % '
(B.41) %g r (2) 622( T )/ dIL’IQI e—Q(xg_wy.

2 8
t ||‘1’m\L\/§ {N;}eZ

—0o0

i PeP7 — P4P9 75 ' i PeP7 — P4P9 75 A}(p) '
with
P =P + pspaps (B.46)
SMm.— 1 — T’(l — T) p32Ap82 T2 (B47)
8 P2

Before the final integration over zf, we can already see that the integrand of (B.45)
looks very promising. First, with P we have an expression that has nearly built up the
determinant of the matrix of the p; and the last missing terms are the ones including
po. Knowing how the integration replaces the integration variable by the corresponding p;
divided by T', we see that these last contributions should be provided after the integration
over z4: Within the absolute value to the power of r, 27 is multiplied by psp7 — psapy which
is just the minor of the matrix of the p; with respect to po. Combined with P, this would
sum up to detp. Furthermore, the shifted contribution contains as an additional term
compared to the unshifted part the minor of the matrix of the p; with respect to py, Al(p).

This term is also of higher order in T', just as anticipated for the final result.

Now, the ultimate integration over ) is of no unknown structure and we can analogously

to the ones before perform the necessary steps, yielding

9 T3r (%)911(%)QSS/S”S”/S”HSW” Z Zz(pi_;wi )2
(B.45) =~ - 5 e :
t |92 v/2
mil— {N,}€Z
detp|” |detp Al(p)|
Lo o 1 B4
o { T3 ™ " or || (B.48)

with

S .1 _ r(1—r) (pepr — p4§)9)2T2 (B.49)
8 (det p)
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and — finally — the determinant of the matrix of the p;:

det p := P + papepr — p2papo. (B.50)

As a last step, we include the remaining part of the norm of the coherent state,

bq

[0,,]2 = H<1 + K1) (%)9 ST H(1 + k), (B.51)

(2

multiply the expansion-series-like prefactors and combine the contributions of the shifted
and unshifted parts. Recap that in (B.51), Kt(i) = O(t), ie limy_o K fim = 0 Vn €
N [66]. The reason for this is again that for

H<1+K§“) S e_QZ(T#ﬁ*Tg) (B.52)

% {N;}eZ

only the solution {N;} = 0 will contribute, while all other are exponentially damped.
-\ 2
The inverse Gaussian factors ¢2=:{(#)  within the norm of the coherent state compensate
i — TN, 2 3 :
2 Zi(T) of (B.45), having in mind that {N;} = 0. As an intermediate result, we

therefore now have

r

detp
T3

detp Ai(p
75 " oT

92 F(%)9T3TSS/S”S”/S//”SWHSWW [
CVRTL (0 KO I (14 &)

2,
@0,

)H (B.53)

First, we can say that the normalisation prefactors cancel as F(%) = /%. The rest of the
expression is just as expected: We face a difference in the absolute value to the power
of r of a unshifted and shifted contribution, multiplied by power-series-like prefactors
(1— @ f({p:})T?). We can now use the remaining T°" to reformulate the difference
of the unshifted an shifted part as

o [|detp|”  |detp Al(p)| T2
3r B 1 ro_ 1
T [ 5 5 T = |det p| detp + Al(p)—2
det p|"Al(p) T? — 1) |det p|" (AL(p))?
~ —7’| € §| l(p) . T(T’ ) | € p| ( lz(p)) T4 O(TG) <B54)
etp 2 8 |detp|
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For the very last step, we insert this into (B.53) and multiply all S+ to obtain

2 |detp["Al(p)T? 2 2
2 |detp| 1(p)_+_gT4+Z@(T5), (B.55)

2 ~1
_<q1(r)>\1’m ~ t detp 2 t

t

The zeroth order contribution
L detp|"Aq(p)
det p

then perfectly resembles the result of the Poisson bracket of the corresponding classical
expressions. During the last step, this contribution was the result of the term ~ T2 of
(B.54) multiplied by all 1s from the $U~"). Due to all these factors being series & la
1—...T?+ O(T?) and (B.54) being of the form ...T? +...T* 4+ O(T"), we were able to
also state the next higher order term ~ T%: All final terms ~ T are either the term ~ 7
of (B.54) multiplied by all the 1s of the $U"), or the term ~ T? of (B.54) multiplied by
the sum of all terms ~ T2 of the /). Note that had we included also terms ~ 7% within
the S~/ those would be multiplied at least with the term ~ T2 of (B.54), therefore

resulting in an overall term ~ T°. We then collected all those terms ~ T* in
1 1

1
— 4+ =4+ =+ P+
{pﬂ P52 Do?

Cr(r=1) [detp| (Ad(p)*  r*(r— 1) |det p|"Ad(p)

F =
8 |det p|” 16 det p

(B.56)

n p12p62752 + p12ps?P? n p3°ps” n (pep7 — p4p9)2
P2p2 P2 (det p)?

Checking the overall powers in the p; for all terms of (B.56), we need to have in mind that
(B35) _pp2 pa® : ~ 2 . 5 B O

P = St g 1€ P ~ p=<, while all of P, P, P are ~ p°. Therefore, the first

term does indeed have a different overall power in the p; than the remaining ones: p* 2

vs. p> 3. This feature of the next-to-leading order term containing two contributions

with different powers in the fluxes/momenta can also be seen in the quantum mechanical
case, confer (11.35) and (11.38). However, in (4.45) of [64], this behaviour is not observed
as all terms there are ~ p®273 for N = 1. We assume the reason for this is the power
counting performed in (4.39) of [64]: There, the point is made that one could neglect
terms ~ sT compared to terms ~ s2, where s = t27*. o was defined via p—qi=pt™®

1

in order to have a quantity “of order unity”. This s is always paired with ¢~ as there

should be no trace of « in the final result. Therefore, sT = t'=¢ is of higher order in

t than s? = t'72% as a > 0. However, all terms ~ s7T are combined with ¢!

, causing
them to be ~ t — just like all terms ~ s, which are paired with ¢~2. Now, this term

~ sT' that was not considered anymore contains one less inverse ¢ compared to the term
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52, making it of higher order in p than the one included in the final result. With the
final result of [64] containing terms ~ p32~3 in the contribution ~ ¢, this is in accordance

with the observation that (B.56) also contains a part ~ p3 2

— note that we used r,
where [64] used §. Accordingly, the correction terms [64] considers should be the same
as the ones of the second part of (B.56) above. This can even be motivated by both
the quantum mechanical and the U(1) case, confer the discussion following (15.17), as
they should be the derivative of the fluctuations of the expectation value of the volume
operator. However, finding a stringent link between the two procedures was not possible
so far. For the U(1) case, Section 15.2 offers a connection but for the higher dimensional
case, the procedures deviate too much. For the correction term ~ sT' that was neglected
in [64, cf. eq. (4.39)], it is in turn quite straightforward to check that it corresponds to

the first part of (B.56).
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Appendix C

Estimates

This is a list of the fundamental estimates that we use during our considerations on

semiclassical expectation values of the class of operators Q}g (r).

e Brunnemann and Thiemann [66] used the estimate
la|” — |b]" < ||a| = [b]] (where a,b € Z and r € Qo)) (C.1)

to get rid of the roots.

e With the help of
la|” = |b]" < |a—b|" (where a,b,r € R and 0 <r < 1), (C.2)

we replace the difference in roots by a single root. We can then perform further
modifications of the term corresponding to (a—b), allowing us in the end to integrate

the expression against Gaussians by means of KCHF's.

e For the root of a sum, the — to some extend — equivalent but reverse estimate
reads
la+b]" <lal" + |b]" (where a,b,r € R and 0 <r < 1), (C.3)

which we will also need.

e We will use

la+C|"—[(a—1)+C|" < |a|"—|a—1|"+2 (wherea,C,r € Rand 0 <r < 1) (C.4)
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during our search for a “good” estimate for the case of U(1)3.

Using (C.2), we can straightforwardly proof this estimate:

la+Cl"—la+d+Cl"+]a+0]"—|a]" <|a+C —(a+d+C)|"+|a+d—al
= 205", (C.5)

The important part of the estimates (C.2), (C.3) and (C.4) is that they still contain

|...[", i.e. the initial exponent r, while (C.1) does not.
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Appendix D

The semiclassical continuum limit

for graphs of cubic topology

This appendix covers the derivation of the result we already presented in Section 14.4
concerning the semiclassical continuum limit for graphs of cubic topology. We stated
that in this scenario, taking both limits ¢ — 0 and ¢ — 0 — i.e. having the classicality
parameter and the lattice regularisation parameter vanish — reproduces the classical

Poisson bracket:

a0, detp AR ()
im——" = —r
t—0 t det p~

= Qihj,g{(h;g)_l, V2T<RD€)} (D.1)

/ Ao, V2’"(Rz)}. (D.2)

6‘[0

i (2685 ()™ V¥ (e ) = i{

Therein, i entered the formulae as we work with U(1)? instead of SU(2), the quantisation
is performed by additionally dividing by % and a% is considered in order to work with a
dimensionless volume — confer (10.5). We already mentioned in Section 14.4 that we have
to include an extra factor of 2 for getting the correct semiclassical limit of the Thiemann
identity (see [234]).

We start by showing that the classical identity

FAP (p7)

hé%{(h;%)fl,VQT(RDG)} = —12—Z2'r’|detp*‘ —

= _12—227”det - }T (<p,),1)10i0
(D.3)
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CUBIC TOPOLOGY

holds for cubic graphs in the U(1)? setup. For the Poisson bracket, we have

() Ve = iy | d(‘;(fl())) (Sanl) 0

where we can rephrase the two factors of the integrand as

. 1
0 5(h21(()))—1 : 2 a 30 SQ
h10< SAL(2) = —1/ dt & (t)0"° 036 (t, 2) (D.5)
0

and

<5v@%p) 5cbtp)7 D.6)

S = e ) (s

respectively. For determining the functional derivative of the last identity, we need to
reintroduce the pr,si, as in [64]. Recap that the subscripts denote the edges Iy = 1,2, 3,
the U(1)-copy 79 = 1,2, 3 as well as the sign 0y = £ that tells whether the edge is in- or

outgoing. With a follow-up insertion of the fluxes

S.o

@@:/Eﬁﬂ, (D.7)

S.o

J

we have
_ 1 1 Io Io
p[@io = §(p10+7,'0 - p[ofio) = ﬁ(E’io-i- - Eio—)’ (DS)
1 1

Plyip = §(p10+i0 + Pro—io) = Q_CH(E£)+ + Ezloo,) (D.9)

Sea . .
In (D.7), Ses denotes the surface that is dual to the edge €7 and nq ” then is the respective
Sea ‘
conormal of that surface. For the latter, we use the shorthand notation n/? := n,™/. This

yields

0det p~ det p~ 1 2 J+sksa 2 J-cksa
<5E2t<];>): tp ((p_)_ )Jj / d uni 5j6b5(x(u),z)—/ d ung 5j(5b5(13(U),Z)

2a2
S 4 5

°J €J

(D.10)
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Combining (D.5) and (D.10) with (D.4), we reproduce (D.3) via

v {0V (e} = ety | et (7))

Toip

(D.11)

Note that we also used A’I‘S (p7) = %eiokgqomp;(kpgf in the last step.

Having in mind

— pt - — ot - _ ot —
p10+i0 - p[oio + p[()io A pI()*Z'O - p[o’i() - ploio — pIOUOiO - p[oio + Sgn(ao)p10i07

we can reformulate ((p~)~"), . = (Pr,) " a8

Sgn<o-0)(p;010> (1 p[oo'()zo (p1010)> 11);017010 (D12)

Therein, we used the superscript ~! to mark the inverse of the corresponding matrix and
the subscripts then specify the matrix element one currently considers. For pjolaoio, we
then get
M N
prl = 1 = glomn JoMN PMoomPNoon a’ & iomn JoMN Enoo B,
foooio 9 det py, 2 det E,,
with the already used notational convention det E,, = det (E]“-’UO). Being interested in
expanding both the fluxes and their just mentioned determinant in powers of the lattice

regularisation parameter, we introduce the embedding

Xg: [_gu %] — 0, <t17t27t3) = Xg(t17t27t3)7 Xg(07070) = v.

We can then perform the two expansions as

Ej, =€€E!(v)n)(v) + O(e*) and (D.13)
det E, = det(E; 7)) = det(e 2Ef(0)n)? (v) + O(€)) = ® det (E(v)) det(n; (v)) + O(€)
= " det E(v) - det n” (v) + O(€"). (D.14)

We now have det E(v) = det ( ¢(v)), where the E¢ are linked to the EY by means of
(D.7), and detn?(v) = det(n] (v)) Having in mind that n/*(v) = —n/~(v) and with

a
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CUBIC TOPOLOGY

pfoio formulated as in (D.9), we conclude that the leading order vanishes. With that,
the contribution ~ p;()}roiopz)io in (D.12) is of higher order in the lattice regularisation
parameter ¢ compared to the part with the unit matrix 1 and can therefore be neglected

when considering € — 0. We therefore have for (D.12)

CL2 iomTLeIoMN Egn iLMUOEb NUO ( 1+O(6> ) (D15)

521(00) (Pri,) " = s&n(00) e det E(v)|det n"( I\ e2+0(e)

where the sgn accounts for the absolute value we introduced in the denominator.

For the expansion of (D.3), all this yields

6 T

i ()™ VP (Re) b = g o det B(w) - deton? (0) + O(€)

2a?
R a_zeiomneloMN Ezl (]1\400Eb ) 1 + O<€) (D 16)
2 det E(v )|detn“( N\e2+0() ) '

What is left is taking the limit ¢ — 0 that we are ultimately interested in. Starting with

the absolute value within (D.16), we realise

LOX? 0X¢

0X¢\ |2
b v o __ v
n’te 5 =0, sgn(o )‘det(atK)‘ and detn? = ‘det(atK) ; (D.17)

for aaff being tangent vectors. As a consequence, we can formulate the limit € — 0 of the
absolute value within (D.16) as

2r

1 1
= / dzvdet E(x) | = Vi, (D.18)
at" "

a67“

\/detE ‘ det(aX >

e—0

v

based on the fact that €3

det(atK>‘ = va A3z for € — 0.

For the remaining part of (D.16), which corresponds to (p;; )~", we start by reformu-

lating

’dsi;?(ai?z) - ‘det(a_Xd) ‘ Sgn(00>€abc%- (D.19)
R

Moy, Nog __
€oMNTyg 0y 7 = detn €abe
0 “ otlo otlo
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Using previous results and multiplying by an additional €, we obtain

Eg (v)ES (v) 0X¢
i — ) b= _az ‘ Sgn(ao)eiomne‘lbcmat_fo
lim(py,,,)"" = lim : Do)
e—0 e—0\ 2 e3vdet E(v) ’ det (g‘tig > ‘ D

1
L Eg Eb 90X
[ dbseimneac T M g2 '
) _ _Vﬁ / dt A'LaO e t ,V - éUO a
P [ )
(s

242 |
- %ng{/do Ao, VRI}. (D.21)

I

1

Finally, combining both (D.18) and (D.20) with (D.3), we end up with

fim)
e”O

I

1 .
- aT{/o AZO,V;:} (D.22)
610

and have therefore verified the identities (D.1) & (D.2).

R 7 io) 1 r T2 T—
2 lim hip { (i) ™' V¥ (Re) § = 2o VA 1{
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