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Gutachter/-in:

• Prof. Dr. Kristina Giesel

• Dr. Daniele Oriti

ii



Table of contents

Declaration xi

Acknowledgements xv

Abstract xvii

Zusammenfassung xix

Introduction xxi

I Loop Quantum Gravity 1

1 Introductory remarks 3

2 Framework 5

2.1 Hamiltonian general relativity and the ADM formalism . . . . . . . . . . . 5

2.2 Ashtekar variables and the birth of loop quantum gravity . . . . . . . . . . 13

2.2.1 The constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 The holonomy–flux algebra . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The two paths of quantisation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Dirac quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Spin network functions and the Ashtekar–Lewandowski representation 23

2.4.2 Geometrical Operators: The volume operator . . . . . . . . . . . . 25

2.4.3 The Gauß and diffeomorphism constraints . . . . . . . . . . . . . . 28

2.4.4 The Hamiltonian constraint . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Reduced phase space quantisation . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Algebraic quantum gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



Table of contents

2.7 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

II Gowdy models 47

3 Motivation 49

4 Classical Setup: formulation of the model with polarised T3 Gowdy

symmetry 53

4.1 Brief review of the classical reduced phase space using Gaussian dust . . . 53

4.2 Brief review of the symmetry reduction to a model with polarisedT3 Gowdy

symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Quantisation of the reduced LQG model with polarised T3 Gowdy sym-

metry 59

5.1 The physical Hilbert space in reduced LQG . . . . . . . . . . . . . . . . . 59

5.2 Quantum dynamics in the reduced LQG model . . . . . . . . . . . . . . . 64

5.2.1 Quantisation of the Euclidean part of the physical Hamiltonian . . 68

5.2.2 Quantisation of the Lorentzian part of the physical Hamiltonian . . 75

6 Quantisation of the model with polarised T3 Gowdy symmetry within

Algebraic Quantum Gravity 79

6.1 The physical Hilbert space in AQG . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Dynamics of the model with polarised T3 Gowdy symmetry in AQG . . . . 83

6.2.1 Quantisation of the Euclidean part of the physical Hamiltonian

within AQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.2 Quantisation of the Lorentzian part of the physical Hamiltonian

within AQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 First steps in applying the AQG Gowdy model 89

7.1 The Schrödinger-like equation for the AQG Gowdy model . . . . . . . . . . 89
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In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad move.

There is a theory which states that if ever anyone discovers exactly what the Universe is

for and why it is here, it will instantly disappear and be replaced by something even

more bizarre and inexplicable.

There is another theory which states that this has already happened.

The Hitchhiker’s Guide to the Galaxy

Douglas Adams
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Abstract

The main object of investigation of this thesis was the cosmological and semiclassical realm

of loop quantum gravity, which was addressed from two different directions. On the one

hand, we analysed a cosmological toy model, and on the other hand a new procedure for

conducting the computation of semiclassical expectation values was introduced. With the

help of the latter, we revisited possible singularity avoidance in loop quantum gravity —

which was so far only either analysed in so-called loop quantum cosmology, was limited

to special configurations like cubic graphs, or was only possible by utilising estimations.

The cosmological toy model considered in this thesis, a so-called Gowdy model, features

a T3 symmetry and is of special interest when the cosmological realm of (loop) quantum

gravity shall be investigated as it still, despite its simplifications, yields a field theory after

quantisation. Loop quantisations of such models relying on Dirac quantisation already

exist in the literature. We extend those results by applying a reduced quantisation via

coupling Gaussian dust to gravity as a dynamical reference frame. The quantisation is

performed for two different frameworks: reduced loop quantum gravity and algebraic

quantum gravity, where for both approaches a graph preserving prescription is applied.

Analysing a Schrödinger-like equation and finding special solutions thereof then constitute

first applications of this model. We find zero volume states and states that experience

a vanishing action of the Euclidean part of the physical Hamiltonian. When it comes to

the corresponding Lorentzian part, in turn, we analyse degeneracies caused by its action.

Overall, these are first steps for gaining an overview over the different aspects of the action

of the physical Hamiltonian of such T3 Gowdy models.

Addressing the question of singularity avoidance in full loop quantum gravity, we intro-

duce a technique relying on Kummer’s confluent hypergeometric functions. It turns out

that they feature a lot of very handy properties like an asymptotic expansion for large

arguments that allow for an exact calculation of certain semiclassical expectation values



by means of a power series in the semiclassicality parameter. These are taken of a specific

class of operators that play a pivotal role in the dynamics of the theory and with respect

to complexifier coherent states — the state-of-the-art coherent states used in loop quan-

tum gravity. Seminal results of the literature that addressed singularity avoidance are

generalised and extended with the help of this new method. Specifically, these improve-

ments are that it is not always necessary to use estimates and that it is in fact possible to

also conserve the correct powers of the momentum, e.g. The latter is also exemplified by

applying the new procedure to standard quantum mechanics, where expectation values of

fractional powers of the momentum operator can be computed analytically, resulting in a

power series in ~.

On a more fundamental level, we use the Zak transformation to link coherent states on

the circle to those of the harmonic oscillator. This further allows for a more efficient

computation of (the zeroth order of) semiclassical matrix elements as we provide a link

between semiclassical matrix elements in L2(R) and L2(S1). What is more, also Kummer’s

confluent hypergeometric functions offer new insight on the fundamental level: As Kum-

mer’s differential equation can be linked to the heat equation, we can associate Kummer’s

confluent hypergeometric functions with solutions to the heat equation.

xviii



Zusammenfassung

Der Titel der Arbeit überträgt sich ins Deutsche als
”
Die Dynamik der Schleifenquanten-

gravitation im kosmologischen und semiklassischen Sektor aus der Perspektive reduzierter

Quantisierung und erweiterter semiklassischer Techniken“.

Der Fokus dieser Arbeit lag auf dem kosmologischen und semiklassischen Bereich der

Schleifenquantengravitation, welcher von zwei Seiten beleuchtet wurde. Einerseits wurde

ein kosmologisches Spielzeugmodell analysiert und andererseits eine neue Methode zur

Berechnung semiklassischer Erwartungswerte eingeführt. Mit Hilfe des Letzteren wurde

eine mögliche Aufhebung von Singularitäten in der Schleifenquantengravitation unter-

sucht, was zuvor stets unter gewissen Einschränkungen geschah: Sei es, indem man sich

im Rahmen der sogenannten Schleifenquantenkosmologie bewegte, indem man sich auf

spezielle Konfigurationen wie kubische Graphen beschränken musste oder Abschätzungen

verwendet hat.

Das kosmologische Spielzeugmodell, welches wir in dieser Arbeit betrachten – ein soge-

nanntes Gowdy Modell –, weist eine T3-Symmetrie auf und ist von besonderem Interesse,

wenn man den kosmologischen Bereich der (Schleifen-)Quantengravitation untersuchen

möchte. Dies liegt daran, dass es trotz der mit der T3-Symmetrie einhergehenden Verein-

fachungen weiterhin eine Feldtheorie nach der Quantisierung hervorbringt. Schleifenquan-

tisierungen solcher Modelle basierend auf Dirac Quantisierungen existieren bereits in der

Literatur. Wir erweitern diese Resultate, indem wir eine reduzierte Quantisierung anwen-

den, für welche wir Gaußschen Staub an die Gravitation koppeln, den wir sodann als dy-

namischen Referenzrahmen verwenden. Diese Quantisierung erfolgte auf zweierlei Art: im

Rahmen der reduzierten Schleifenquantengravitation sowie im Rahmen der algebraischen

Quantengravitation – stets mittels Graph-erhaltender Quantisierungsvorschriften. Die er-

sten Anwendungen dieses Modells bestanden sodann aus der Analyse einer Schrödinger-

ähnlichen Gleichung und der Konstruktion spezieller Lösungen hiervon. Insbesondere



fanden wir Zustände ohne Volumen, aber auch solche, die eine verschwindende Wirkung

des euklidischen Teils des physikalischen Hamiltonians aufweisen. Bezüglich der Wirkung

des lorentzschen Teils wiederum analysierten wir die auftretente Entartung. All dies sind

erste Schritt, um einen Überblick über verschiedene Aspekte der Wirkung des physikalis-

chen Hamiltonians eines solchen T3 Gwody Modells zu gewinnen.

Um die Vermeidung von Singularitäten in der (vollen) Schleifenquantengravitation zu

untersuchen, führten wir eine neue Methode ein, die auf Kummers konfluenten hyperge-

ometrischen Funktionen basiert. Diese besitzen einige äußerst praktische Eigenschaften,

wie zum Beispiel ihre asymptotische Entwicklung für große Argumente, dank derer bes-

timmte semiklassische Erwartungswerte exakt als Potenzreihe im semiklassischen Param-

eter berechnet werden können. Diese Erwartungswerte wurden bezüglich sogenannter

Komplexifizierer-kohärenter Zustände berechnet und von einer speziellen Klasse von Op-

eratoren, welche für die Dynamik der Theorie von zentraler Bedeutung sind. Mit Hilfe

dieser neuen Methode konnten wir sodann bereits existierende Ergebnisse erweitern und

generalisieren, sodass wir beispielsweise nicht mehr notwendigerweise auf Abschätzungen

zurückgreifen mussten und somit prinzipiell auch die anfänglichen Exponenten des Im-

pulses während der Berechnungen beibehalten konnten. Letzteres zeigten wir exemplar-

isch auch am Beispiel der Quantenmechanik, wo wir Erwartungswerte von gebrochenen

Potenzen des Impulsoperators berechneten und als Ergebnis eine Potenzreihe in ~ erhiel-

ten.

Auf fundamentalerer Ebene benutzten wir die Zak Transformation, um eine Beziehung

zwischen kohärenten Zuständen auf dem Kreis und solchen des harmonischen Oszillators

aufzuzeigen. Eine Verbindung zwischen semiklassischen Matrixlementen in L2(R) und

L2(S1) ermöglicht es insbesondere, semklassische Matrixelemente effizienter berechnen

zu können. Darüber hinaus ermöglichen auch Kummers konfluente hypergeometrische

Funktionen neue Einblicke auf fundamentaler Ebene: Wir zeigten einen Zusammenhang

zwischen Kummers Differentialgleichung und der Wärmeleitungsgleichung, woduch Kum-

mers konfluente hypergeometrische Funktionen als Lösungen der Wärmeleitungsgleichung

verstanden werden können.
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Introduction

Modern physics foots with the realms of quantum theory and general relativity on two

columns that are for themselves very profound, but it is still not clear on which common

theoretical foundation they stand. Their mathematical backgrounds are very different

indeed, and yet we know they must — ultimately — be thought together, do we not

only since the spectacular observations of the Event Horizon Telescope [5–10] know that

objects exist that we assume to be situated in the realms of both these two branches.

Finding a theory of quantum gravity is therefore unsurprisingly one of the main concerns

of modern theoretical physics. Over the last decades, some ansätze arose, of which string

theory certainly got the most attention so far.1 The framework this thesis relies on, in

turn, is called loop quantum gravity and follows a very different route. With string theory

having its roots in particle physics, it replaces the point-like particles of the standard

model with one-dimensional strings that — depending on the excitation of the string,

much like a vibrating guitar string — carry the physical properties of one or the other

elementary particle. For what is more, “supersymmetric” partners of the already known

particles arise from the theory, where each bosonic elementary particle has a fermionic

“superpartner” – and vice versa —, as well as a “graviton” that carries the gravitational

force and thereby provides the link to gravity. In contrast, loop quantum gravity aims at

directly quantising general relativity as is. While the details are outlined in Part I, we may

give here a brief historical overview of how the field emerged, restricted to those findings

that are most relevant for the work at hand.2 The formulation of general relativity that

constitutes the starting point of quantisation endeavours of gravity was first published in

1959 by Richard Arnowitt, Stanley Deser & Charles W. Misner [15], now known as the so-

called “ADM formalism” after their initials. It offers a Hamiltonian description of gravity

1Please refer to [11, Introduction and Sec. 4.1 & 5.1 ] or [12, App. B] for a broader overview.
2There are of course many more publications and people that were important for the development of

the field. For more comprehensive overviews, see references of 1 as well as [13], with its chapter on the
history of loop quantum gravity being available online, too [14].
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Chapter 0. Introduction

by introducing a 3-1 split of spacetime into three spatial and one temporal dimension.

While this split is essential for a quantum theory relying on canonical quantisation, it

also respects the fundamental principles of general relativity by keeping the split arbitrary

without preferring the one or the other frame of reference. In contrast, the covariant

description of loop quantum gravity, so-called spin foam models, does not need such a

split [16–18].

Based on work from the early 1980s by Amitabha Sen [19, 20], who introduced using

connections as field variables, Abhay Ashtekar [21, 22] in the mid- to late 1980s realised

that this allows to describe general relativity by means of a new set of canonical variables

in Yang–Mills style, which also casts the Hamiltonian constraint — one of the fundamen-

tal quantities — into polynomial form. These new variables are now referred to as the

Ashtekar–Barbero variables, honouring also the work of Fernando Barbero who proceeded

the formalism towards real-valued connections [23, 24]. It was then Ted Jacobson, Carlo

Rovelli and Lee Smolin [25, 26] who realised that these new variables can be used to apply

a canonical quantisation prescription relying on Wilson loops to quantum gravity, which

was introduced already in 1980 for Yang–Mills theories by Rodolfo Gambini & Antoni

Trias [27]. It then followed a fruitful phase of many important works on this loop repre-

sentation and we suggest the interested read to consult the book of Rodolfo Gambini &

Jorge Pullin [28] for a broad overview. From this point on — having a well understood

loop representation for quantum gravity at hand —, many progress was possible, culmi-

nating i.a. in the construction of the kinematical Hilbert space and essential proofs of its

properties by Abhay Ashtekar, Christopher Isham, Jerzy Lewandowski, Donald Marolf,

José Mourão and Thomas Thiemann in [29–34] as well as a well-defined Hamiltonian

constraint operator constructed by Thomas Thiemann in 1996 [35].

A theory of quantum gravity, as mentioned above, is expected to shed a new light on

extreme objects like black holes, but new insights are also expected concerning the Big

Bang. To proceed into this direction, Martin Bojowald and Hans Kastrup introduced

loop quantum cosmology in 1999 / 2000 [36–40]. Within this framework, it was possible

to indeed resolve the Big Bang singularity [41–45]. However, this result should only be

regarded as a first step towards singularity avoidance in full (loop) quantum gravity. Loop

quantum cosmology is based on a quantisation of symmetry reduced general relativity

with finitely many degrees of freedom, so it is not a priori clear whether its results also

transfer to the whole theory. Work by i.a. Norbert Bodendorfer, Johannes Brunnemann,

Jonathan Engle, Christian Fleischhack, Maximilian Hanusch, Tim Koslowski and Thomas

xxii



Thiemann discuss how loop quantum cosmology may be embedded into loop quantum

gravity [46–52].

Such a resolution of the Big Bang singularity was also observed by Daniele Oriti, Lorenzo

Sindoni & Edward Wilson-Ewing [53] in a framework called group field theory — to learn

more about it, we refer to beautiful publications by Laurent Freidel [54] and Daniele

Oriti [55]. Concerning the singularity resolution in group field theory, [56, Footnote

14 & context] notes that it is wholly different to that within loop quantum cosmology:

In group field theory, the continuous shrinking is prohibited by a “sort of ‘quantum

pressure’”, which “can be traced back to a never-vanishing number density [...], rather

than to the discreteness of volume spectrum or absence of zero eigenvalues from it” [56]

as it is the case in loop quantum cosmology. Very much contrary to loop quantum

cosmology, the singularity resolution also exists in group field theories with continuous

volume spectrum [57].

In (full) loop quantum gravity, in turn, addressing these questions is a lot harder. It

is this tension between working in the full theory — where calculations quickly become

very involved — and working in a toy model — where one may have chosen too drastic

simplifications — where the work of the thesis at hand aims to take a grip and offer new

insights as well as new techniques for how to tackle some of the obstacles that come up.

Goal of the thesis

The goal of the thesis at hand is twofold. On the one hand, Part II covers so-called Gowdy

models. These are cosmological models, but their properties are not linked to those of

the observable universe. They are instead of interest as they still yield a field theory

upon quantisation while also allowing for conducting computations too complex in the

full theory. This makes them a good toy model or playground for new methods to develop

or test. One such framework that we will apply to Gowdy models is so-called algebraic

quantum gravity, published by Kristina Giesel and Thomas Thiemann in 2006 [58–61].

Within this framework, we then aim at implementing first applications like finding zero

volume states or solutions to a Schrödinger-like equation.

Part III, on the other hand, then focuses on addressing singularity avoidance via the

semiclassical sector. This approach is based on a class of coherent states introduced

xxiii



Chapter 0. Introduction

in loop quantum gravity by Thomas Thiemann in 20023 [62]. Together with Hanno

Sahlmann [63, 64], first results on calculating specific semiclassical expectation values that

play a pivotal role in the quantum dynamics were published. Johannes Brunnemann and

Thomas Thiemann [65, 66], in turn, analysed singularity avoidance using these coherent

states and utilising chains of estimates in order to be able to solve these computations

at the analytical level. We want to look at these seminal works from a different angle

by applying a new semiclassical technique relying on Kummer’s confluent hypergeometric

functions.

This thesis therefore aims at adding new insights to both these branches: assessing

singularity avoidance via semiclassical computations as well as further developing the

treatment of Gowdy models within loop quantum gravity in order to be able to construct

and better understand novel (cosmological or semiclassical) techniques. All the afore-

mentioned steps, frameworks and techniques will be introduced in more detail within the

respective parts and chapters.

Results

When it comes to the treatment of Gowdy models in loop quantum gravity, the existing

literature mainly consists of hybrid quantisation techniques — a mixture of a quantisa-

tion à la loop quantum gravity for the homogeneous modes and a Fock quantisation for

the inhomogeneous ones. The latter part makes it then hard to compare these models

to ones that do not use a Fock quantisation. The literature also offers a few non-hybrid

quantisation ansätze for Gowdy models, using a Dirac quantisation instead. However, the

resulting quantum dynamics obtained via Dirac quantisation is so complex that the respec-

tive physical Hilbert space has not yet been constructed for these models. In contrast,

the reduced quantisation performed in this thesis offers a direct access to the physical

Hilbert space for such Gowdy models. The regularisation within the quantisation proce-

dure introduced in the work presented here also allows for a graph-preserving action in

both the loop quantum gravity as well as the algebraic quantum gravity framework. The

dynamics can then be implemented via a Schrödinger-like equation within the algebraic

quantum gravity approach. Due to the graph-preserving quantisation, the construction

of solutions of the dynamics is technically simpler than in a model with graph-modifying

3The publication year of the online preprint https://arxiv.org/abs/gr-qc/0206037
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operators. As a first step, we construct very specific solutions of the Schrödering-like

equation. Their purpose is mainly to show how one can work with the involved operators,

understand their actions and to outline techniques that help constructing more general

solutions in future work.

The results on semiclassical computations are twofold itself. On the one hand, we en

route extended results from the literature on coherent states on the circle, linking semi-

classical matrix elements of L2(S1) and L2(R) via the Zak transformation. This allows for

a more efficient computation of these expressions. The main result especially for the loop

quantum gravity framework, meanwhile, is the introduction of a new semiclassical tech-

nique relying on Kummer’s confluent hypergeometric functions. This procedure allowed

us to calculate semiclassical expectation values with respect to certain coherent states for

an important class of dynamical operators that include fractional powers of momentum-

like operators. While existing approaches into this direction had to rely on estimates or

consider cubic graphs only, the new technique offers more freedom. Limitations enter

when, for example, singularity avoidance should be analysed, enforcing the usage of esti-

mates. However, even then the new approach offers improvements as information on the

fractional power included in these operators is not lost. In standard quantum mechanics,

Kummer’s confluent hypergeometric functions enable the computation of semiclassical

expectation values of fractional powers of the momentum operator in terms of a power

series in ~.

Note that there are longer elaborations on the motivation, goals and results of the top-

ics at the beginning and ending of their respective parts. We refer the reader interested

in those summaries to Chapter 3 on page 49 for Gowdy models and Chapter 9 p. 121 for

the semiclassical considerations. The conclusions of the two parts are found in Chap-

ter 8 p. 115 and, respectively, in Chapter 17 p. 231 for the semiclassical part. We also

provide a final conclusion in Chapter 18 p. 239.

Structure of the thesis

The work at hand is divided into three parts. Part I first of all offers an introduction

into loop quantum gravity. It also covers techniques that will be later used in the inves-

tigations of Part II and Part III, like algebraic quantum gravity in Section 2.6 p. 38 and

(complexifier) coherent states in Section 2.7 p. 39.
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Chapter 0. Introduction

As already mentioned, the following two parts on Gowdy models and semiclassical

considerations each include their own introductory chapters on motivation and goals as

well as concluding summaries.

Part II continues with the discussion of T3 Gowdy models. After an introductory

chapter on the motivation of the work, Chapter 4 p. 53 introduces the classical setup,

where the symmetry reduction to the T3 Gowdy model is outlined in Section 4.2 p. 55.

Chapter 5 p. 59 and Chapter 6 p. 79 are then similar in structure and concept: They

present the quantisation of the T3 Gowdy model in the reduced loop quantum gravity

setup and the algebraic quantum gravity framework, respectively. The respective first

sections set the mathematical background, followed by the quantisation of the Euclidean

and Lorentzian parts in the subsections of Section 5.2 p. 64 and Section 6.2 p. 83, respec-

tively. The first applications performed in the algebraic quantum gravity setting of the

T3 Gowdy model are then presented in Chapter 7 p. 89: A Schrödinger-like equation is

set up in Section 7.1 p. 89, where we first investigate the action of the main components

of the physical Hamiltonian on the basis states in Subsection 7.1.1 p. 92, then introduce

an ansatz for Gowdy states in Subsection 7.1.2 p. 93 and analyse the action of the phys-

ical Hamiltonian thereon in Subsection 7.1.3 p. 97. Afterwards, in Section 7.2 p. 102,

we discuss specific solutions of the Schrödinger-like equation, starting with zero-volume

eigenstates in Subsection 7.2.1 p. 103. We also outline a generalisable procedure for find-

ing specific solutions therein. Continuing, in Subsection 7.2.2 p. 104, we construct Gowdy

states that experience a vanishing action of the Euclidean part of the Hamiltonian. The

Lorentzian part of the Hamiltonian is then examined in Subsection 7.2.3 p. 110, where we

analyse degeneracies of its action on the Gowdy states.

Part III then covers the semiclassical investigations. The overall setup, the operators of

interest and some special methods like the Poisson resummation formula are introduced in

Chapter 10 p. 129. Chapter 11 p. 135 covers Kummer’s confluent hypergeometric functions

and some of their (for our purpose) most important properties. Using standard quantum

mechanics, we furthermore show in Section 11.3 p. 139 how these functions can be used to

calculate semiclassical expectation values of fractional powers of the momentum operator,

but also of more complex operators that mimic the one later used in the loop quantum

gravity scenario. The chapter concludes in Section 11.4 p. 144 with a comparison of the

new method with one from the literature, introduced in the algebraic quantum gravity

framework. We continue by considering Kummer’s confluent hypergeometric functions

in the context of coherent states on the circle in Chapter 12 p. 147. These allow to
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compute semiclassical expectation values, as presented in Subsection 12.2.1 p. 154. Sub-

section 12.2.2 p. 157 then revisits the Zak transformation for linking semiclassical matrix

elements of L2(S1) and L2(R). Another aspect where Kummer’s confluent hypergeometric

functions can be used to gain new insights is discussed in this chapter’s last section, Sec-

tion 12.4 p. 165, where we present a connection between Kummer’s differential equation

and the heat equation. Chapter 13 p. 169 then carries over this new procedure to the loop

quantum gravity scenario. We start the new computations within loop quantum gravity

in Chapter 14 p. 173 with focusing on cubic graphs. Therein, Section 14.2 p. 175 presents

the analytical computation of the basic building block of the expectation values of inter-

est and Section 14.3 p. 184 offers a first remark on (cosmological) singularity avoidance.

In the last section of this chapter, Section 14.4 p. 186, we show that Kummer’s confluent

hypergeometric functions allow for retrieving the correct semiclassical continuum limit for

cubic graphs. Graphs with higher valent vertices are then covered in Chapter 15 p. 189

and Chapter 16 p. 203. First, Chapter 15 p. 189 generalises an analytic procedure from

the literature, which was introduced for cubic graphs, and compares it to the technique

using Kummer’s confluent hypergeometric functions. Then, Chapter 16 p. 203 addresses

more general configurations of the operators within the semiclassical expectation values,

making it necessary to introduce estimates. Accordingly, we first of all recap estimative

procedures from the literature in Section 16.1 p. 204 and adapt them to the approach via

Kummer’s confluent hypergeometric functions. Finally, in Section 16.2 p. 213, we elabo-

rate on finding new estimates that potentially refine the previously obtained results and

which conditions they have to fulfil — guided by new insights gained from the procedure

via Kummer’s confluent hypergeometric functions.
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Part I

Loop Quantum Gravity
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Chapter 1

Introductory remarks

This first part shall provide an introduction into loop quantum gravity — the basis of

all the considerations of this thesis. Loop quantum gravity aims at providing a quantum

theory of gravity. It does so by quantising general relativity without adding any further

structure and without understanding quantum gravity as a perturbative phenomenon.

Loop quantum gravity is therefore a background-independent theory. While it is not

necessary to introduce new structure to the theory, describing loop quantum gravity in

higher dimensions and with supersymmetry in order to find a connection to string theory

was indeed approached in a series of papers by Norbert Bodendorfer, Thomas Thiemann

& Andreas Thurn [67–75]. This indicates that loop quantum gravity can be extended to

loop quantum supergravity.

What will be introduced in the following chapter is the canonical framework of loop

quantum gravity. There also exists the covariant framework — a treatment of loop quan-

tum gravity motivated by the Feynman path integral formalism — whose main subject

are so-called spin foams. However, as the considerations of this thesis will not touch this

area and an additional introduction into this approach would nevertheless need much

space, we refrain from doing so and refer the interested reader to a review by Alejandro

Perez and introductions by John Baez [16–18]. For literature also covering the further

development of this theory, please consider the books by Carlo Rovelli and Carlo Rovelli

& Francesca Vidotto [12, 76] or the recent review by Sebastian Steinhaus [77].
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Chapter 2

Framework

2.1 Hamiltonian general relativity and the ADM for-

malism

The ADM formalism — named after Richard Arnowitt, Stanley Deser & Charles W.

Misner [15] — is the natural starting point of this thesis as it is the underlying Hamilto-

nian description of general relativity (GR) behind all subsequent considerations and for

building a quantum theory of GR in particular. Its quintessence is a 3+1 split of the

four-dimensional spacetime in order to be able to obtain a Hamiltonian formalism — that

at the very heart of it needs an entity, regarded as “time”, along which the system will

evolve. Note that this naming is only due to the fact that this variable is used to describe

the evolution of the system, while all further physical interpretations one associates with

“time” are not necessarily satisfied as well. While [15] initially considered (3)gab := gab as

the spatial metric,1 it has become standard [11] to choose the more general induced metric

qab on a three-dimensional space-like submanifold Σ: We understand the four-dimensional

spacetime manifold M as a direct product M∼= R× Σ that is globally hyperbolic. The

latter is important as it ensures a unique solution for the initial value problem. Using Xµ

as coordinates on M and xa on Σ, we can define this embedding via

∀t ∈ R, Xt : Σ→M : Xt(~x) := X(~x, t), (2.1)

1Note that we use Greek indices µ, ν, . . . = 0, 1, 2, 3 for the whole spacetime and Latin indices a, b, . . . =
1, 2, 3 for spatial coordinates. The (3) denotes a quantity defined on a 3-dimensional manifold.
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Chapter 2. Framework

where the Xµ are collected in X and the xa in ~x. This leads to a foliation of spacetime

into spatial slices Σt := Xt(Σ) of constant time, see Figure 2.1.

Σt3

Σt2

Σt1

M

Figure 2.1: Foliation of M into space-like slices Σt

Note that changing from one foliation to another can be achieved by applying a diffeo-

morphism — just concatenate the new foliation with the current one’s inverse, which is

a diffeomorphism. Accordingly, acting with a diffeomorphism can also be understood as

just changing the foliation.

On these hypersurfaces Σt, we can define the precursors of the desired spatial metric

qab and the extrinsic curvature Kab of Σ: the first and the second fundamental form

qµν := gµν + nµnν and (2.2)

Kµν := qρµq
σ
ν∇ρnσ (2.3)

respectively, where we used the standard covariant derivative of gµν , ∇µ, and qµν = gµρq
ρ
ν ,

i.e. raising and lowering of indices is still performed via gµν — except for solely spatial

objects, where we can of course also use qµν . n
µ is a normalised vector perpendicular to

Σt, arising via the definition of the deformation vector field

T µ(X) :=
∂Xµ(~x, t)

∂t
=: N(X)nµ(X) +Nµ(X). (2.4)

Nµ then is tangential to Σt and we have a decomposition of T µ into a part normal to

Σt and one tangential to it. To word these quantities meaningfully, N is called the lapse

function and Nµ the shift vector field .

6



2.1. Hamiltonian general relativity and the ADM formalism

We can now already start to calculate all the important geometrical quantities in their

spatial projection. For example, the Gauß–Codazzi equation applied to this scenario tells

us the Riemann curvature on Σt, as described via the four-dimensional one of M:

(3)Rµνρσ = qαµq
β
ν q

γ
ρq

δ
σ

(4)Rαβγδ − 2Kρ[µKν]σ. (2.5)

This yields directly

(3)R := qµρqνσ(3)Rµνρσ = qµρqνσ(4)Rµνρσ −K2 +KµνK
µν (2.6)

for the spatial Ricci scalar (3)R, where K := qµνKµν . With this, we see that we can almost

describe the classical Einstein–Hilbert action

SEH :=
1

κ

∫
M

d4X
√
|det g| (4)R (2.7)

in terms of the 3+1 decomposition, i.e. separate spacetime and formulate (4)R in terms

of 3+1 quantities only. In the equation above, we defined κ := 16πG with Newton’s

constant G. What is now left is to replace the spacetime Riemann curvature tensor by

the corresponding spacetime Ricci scalar by means of

(4)R = gµρgνσ(4)Rµνρσ = qµρqνσ(4)Rµνρσ − 2nν [∇µ,∇ν ]n
µ, (2.8)

via the split according to (2.2), and finally pull everything back to Σ. Yet again, we first

of all perform further modifications before treating the pullback and replace the last term,

via expanding the commutator, by

2nν [∇µ,∇ν ]n
µ = −2KµνK

µν + 2K2 + 2∇µ(nν∇νn
µ − nµ∇νn

ν). (2.9)

Plugging (2.9) into (2.8) and the result into (2.6), we obtain this scenario’s version of the

Codazzi relation:

(4)R = (3)R−K2 +KµνK
µν − 2∇µ(nν∇νn

µ − nµ∇νn
ν). (2.10)

If we now think about inserting this into the Einstein–Hilbert action, we recognise the

last term to be a boundary term that we can neglect from now on (for a more detailed

elaboration on this, see Subsection 1.5.1 in [11] and the bountiful references therein). We

7



Chapter 2. Framework

then proceed with the last step: As we ultimately want to have a description on R × Σ

at hand, i.e. in coordinates (~x, t), we can now define the already mentioned spatial metric

qab together with the pulled back extrinsic curvature Kab. They are described by means

of the initial spacetime metric gµν according to

qab(~x, t) := (Xµ
aX

ν
b qµν)(X(~x, t)) = (Xµ

aX
ν
b gµν)(X(~x, t)) and (2.11)

Kab(~x, t) := (Xµ
aX

ν
bKµν)(X(~x, t)) = (Xµ

aX
ν
b∇µnν)(X(~x, t)), (2.12)

where we defined

Xµ
a := Xµ

,a :=
∂Xµ

∂xa
, (2.13)

i.e. a set of three tangential vectors that together with nµ build a frame.

B = C

※ As a side note: Looking at (2.11), we can now understand the initial usage of
(3)gab = gab in [15]: If we want qab ≡ (3)gab = gab, we need Xµ

a = δµa . We get this by

simply taking over the orientation of the spatial part of the spacetime basis for

the new spatial hypersurfaces, see Figure 2.2.2 Generally, one obtains an angle

between associated pairs of axes, depicted by the grey areas. However, one can

make them overlap via rotations to get the intrinsic convention of the original

ADM work.

Σt

nµ

Figure 2.2: Orientation of the bases of the spatial part of spacetime
(dashed lines) and the spatial hypersurface (solid lines)

C = B

2There, only two spatial dimensions are considered. The last and all in all fourth dimension is left to
the advanced reader’s imagination.
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2.1. Hamiltonian general relativity and the ADM formalism

Let’s go back to describing the necessary quantities pulled back to Σ. For the lapse

function N and the shift vector ~N , we have

N(~x, t) := N(X(~x, t)) and (2.14)

Na(~x, t) := qab(~x, t)(Xµ
b gµνN

ν)(X(~x, t)), (2.15)

respectively, and for the contracted extrinsic curvature and the spatial Ricci scalar

K(~x, t) =
(
qabKab

)
(~x, t) and (2.16)

R(~x, t) := (3)R(~x, t)

= qab(~x, t)qcd(~x, t)
(
Xµ
aX

ν
bX

ρ
cX

σ
d

(3)Rµρνσ

)
(X(~x, t)). (2.17)

Note that we may now raise and lower these purely spatial indices via the spatial qab.

Combining all the previous results, we may now rewrite the Einstein–Hilbert action in

3+1 form, called the ADM action:

SEH =
1

κ

∫
M

d4X
√
|det g| (4)R (2.18)

=
1

κ

∫
R

dt

∫
Σ

d3x
√
|det q| |N |

(
R +KabK

ab −K2
)

=: SADM. (2.19)

The consequent next step is to proceed with the Hamiltonian description of GR in terms

of the just introduced ADM formalism. In order to perform the initial Legendre transfor-

mation, we make use of

Kab =
1

2N

(
q̇ab − (L ~Nq)ab

)
, (2.20)

linking Kab with both the temporal and the Lie derivative L ~N of q, what allows us to

determine the set

P ab(~x, t) :=
δSADM

δq̇ab
(~x, t) =

|N |
Nκ

√
|det q|

(
Kab − qabK

)
(2.21)

Π(~x, t) :=
δSADM

δṄ
(~x, t) = 0 (2.22)

Πa(~x, t) :=
δSADM

δṄa
(~x, t) = 0 (2.23)

of canonically conjugate momenta of the variables qab, N and Na. The last two equations

9



Chapter 2. Framework

tell us that we face a constrained Hamiltonian system with the primary constraints

C(~x, t) := Π(~x, t) = 0 and (2.24)

Ca(~x, t) := Πa(~x, t) = 0. (2.25)

With these primary constraints entering our setup, we are forced to proceed via Dirac’s

algorithm for constrained systems [78], telling us to include these constraints with asso-

ciated Lagrange multipliers λ(~x, t) and λa(~x, t) in the primary Hamiltonian density. This

leads us to

S =

∫
R

dt

∫
Σ

d3x
(
q̇abP

ab + ṄΠ + ṄaΠa − λC − λaC −NH −NaDa

)
, (2.26)

along finding the so-called Hamiltonian constraint H and the spatial diffeomorphism con-

straints Da:

H :=
κ√
|det q|

(
qacqbd −

1

2
qabqcd

)
P abP cd −

√
|det q|
κ

R and (2.27)

Da := −2qacDb P bc. (2.28)

They arise by enforcing the stability condition on the primary constraints, i.e. that their

temporal derivatives vanish, too. In the above, Da is the covariant derivative metric

compatible with q via

Da qbc = 0 (2.29)

and defined by

Da vb := ∂av
b + Γbacv

c, (2.30)

where Γbac are the (spatial) Christoffel symbols.

We can now also state the Hamiltonian of the system,

H :=
1

κ

∫
Σ

d3x(λC + λaCa + |N |H +NaDa), (2.31)

which turns out to be composed of constraints only. This gives rise to the so-called problem

of time, which we will discuss in more detail in Section 2.5.
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2.1. Hamiltonian general relativity and the ADM formalism

For now, with this Hamiltonian at hand, the next step of Dirac’s algorithm is to check

the stability of the primary constraints: As we demand them to be fulfilled at any instant

of time, their vanishing alone is not sufficient. We also need their temporal derivative to

vanish, and hence their evolution to be trivial:

Ċ := {C,H} ≈ 0 and Ċa := {Ca,H} ≈ 0. (2.32)

Before continuing with the stability analysis of the constraints, we may introduce the

notion of first class and second class constraints . First of all, the sign ≈ symbolises the

notion of being fulfilled weakly : The corresponding equation holds with an = only on

the constraint hypersurface — the hypersurface on which all constraints are fulfilled. A

first class constraint then is one that has a weakly vanishing Poisson bracket with all

other constraints of the theory, i.e. it is vanishing on the constraint hypersurface. We will

see that all Poisson brackets between constraints are again proportional to constraints:

{H(|N ′|),H} ≈ 0. Hence, in our case, we have at hand a set of first class constraints. A

second class constraint then is one that has a non-vanishing (not even weakly) Poisson

bracket with at least one of the remaining constraints.

Now, at this point of the stability analysis, one typically goes over to use the so-called

smeared constraints

C(N ′) :=

∫
Σ

d3xN ′(~x, t)C(~x, t) and (2.33)

~C
(
~N ′
)

:=

∫
Σ

d3x ~N ′(~x, t)~C(~x, t) =

∫
Σ

d3xN ′a(~x, t)Ca(~x, t), (2.34)

which can also be generalised with arbitrary smearing functions f(~x, t) and fa(~x, t) instead

of lapse and shift. Their advantage is that using them avoids singular Poisson brackets

and we get as stability conditions the set

{C(N ′),H} = H(|N ′|) (2.35){
~C
(
~N ′
)
,H
}

= ~D
(
~N ′
)
. (2.36)

11
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Consequently, we understand the Hamiltonian and (spatial) diffeomorphism constraints

as secondary constraints — enforcing the stability of the primary constraints —, hence

demanding

H ≈ 0 and Da ≈ 0 (2.37)

to ensure the stability of the primary constraints. Yet again, we have to check their

stability by calculating the set [11, (1.2.14)]

{H(|N ′|),H} = H(L ~N |N
′|)− ~D

(
~M(|N ′|, |N |, q)

)
(2.38){

~D
(
~N ′
)
,H
}

= −H(L ~N ′ |N |)− ~D
(
L ~N ′

~N
)
, (2.39)

where we used the abbreviation Ma(|N ′|, |N |, q) := qab(|N ′|∂b|N | − |N |∂b|N ′|). Noticing

that the right hand sides are composed of constraints only, we do not need to impose

tertiary constraints and their stability is ensured from this point onwards.

B = C

※ As a side note: The above set of Poisson brackets is an immediate consequence

of the more general Dirac algebra [78], also referred to as the hypersurface de-

formation algebra [11].3 There, one uses the more general ansatz of smearing

the constraints with arbitrary test functions f and fa instead of lapse and shift.

The three possible combinations of the two smeared constraints put into Poisson

brackets then reveal

{H(f), H(f ′)} = −κ~D
(
~M(f, f ′, q)

)
, (2.40){

~D
(
~f
)
, ~D
(
~f ′
)}

= −κ~D
(
L~f ~f

′
)

and (2.41){
H(f), ~D

(
~f
)}

= κH
(
L~ff

)
. (2.42)

C = B

These two sets of Poisson brackets show an important aspect, that is the algebras tell

us the constraint hypersurface is invariant under the action of the constraints.

3Note, however, that it is in fact not a genuine Lie algebra as it does not contain structure constants
but structure functions.
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2.2. Ashtekar variables and the birth of loop quantum
gravity

Summarising the procedure so far, we performed a 3+1 split of spacetime into a three-

dimensional manifold Σ and the one-dimensional R — the first we regard as the spatial

realm and the latter serves as the “time” line. Since we keep this split completely arbi-

trary by not further specifying N or Nµ, we do not break general covariance. For globally

hyperbolic manifolds, we can always choose a foliation Σt of the four-dimensional space-

time (cf. fig. 2.1) and changing from one foliation to another is equivalent to applying a

diffeomorphism. The aim was then to rewrite the Einstein–Hilbert action in quantities

that reflect this 3+1 split. We pulled back the relevant geometrical quantities to Σ, like

the Ricci scalar, and found the ADM action of GR, (2.19). With this formal introduc-

tion of (a notion of) time, we proceeded with performing the Legendre transformation

in order to find the Hamiltonian description. It turned out that GR is in fact a fully

constrained Hamiltonian system and we had to include the primary constraints C and Ca

in the Hamiltonian (2.31).

2.2 Ashtekar variables and the birth of loop quantum

gravity

In a paper published in 1986, Ashtekar introduced “new variables for classical and quan-

tum gravity” [21]. With their help, he achieved to tackle several issues of the framework

up to this point, but also managed to link GR to Yang–Mills theory. The footing of the

new variables is the so-called tetrad formalism [79]. By choosing four vector fields as

a basis — hence “tetrads” —, one can reformulate gµν and any other tensors in terms

of them. We explain this adopted to the ADM framework. There, we face the three-

dimensional sub-manifold Σ, asking for three “triads” ei. We introduce the new notation

via the identities

eiae
b
i = δba and eiae

a
j = δij. (2.43)

The indices a and b are the usual spatial indices ranging from 1 to 3. The range of the

indices i and j is also from 1 to 3, but they are abstract SO(3)-indices, referred to as

“internal” ones.4 They are called that way as they do not posses any “real” or physical

interpretation in the sense that the other sets of indices (of spacetime M or the spatial

4From now on, Latin characters from i onwards denote internal SU(2)-indices and Latin characters
from the beginning of the alphabet mark spatial indices on Σ.
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sub-manifold Σ) do and are merely relevant for actions within their symmetry group.

Describing the spatial metric in terms of the co-dreibein,5

qab := δije
i
ae
j
b, (2.44)

we can now understand the underlying SU(2)-symmetry. While qab is fixed, we have the

freedom of changing/rotating the triads in SU(2)-space. This opposition is resolved by

introducing a new constraint, but we will come to that later.

Due to the introduction of this additional structure, the new configuration space is

obviously larger, which gives rise to the so-called extended phase space. Thereon, the

conjugate variable for the triad is

Ki
a := Kabe

b
i . (2.45)

Note that the correct index notation would be eb i, but since we raise and lower internal

indices via the SU(2) Cartan metric δij, we might as well use the more pleasing ebi and

omit the delta for brevity. We will henceforth ignore stringent positions of internal indices

when necessary regarding this aspect.

In order to obtain simpler expressions in what follows, one proceeds with

Ea
i :=

√
det q eai (2.46)

as the densitised representative of the triad. We then indeed have

{
Ea
i (x), Kj

b (y)
}

=
κ

2
δab δ

j
i δ(x, y) and{

Ea
i (x), Eb

j (y)
}

= 0 =
{
Ki
a(x), Kj

b (y)
}
, (2.47)

with the Hamiltonian and the diffeomorphism constraints reading

H =
1√

det q

(
Ki
aK

j
b −K

j
aK

i
B

)
Ea
jE

b
i −

√
det q R and (2.48)

Da = 2Da
(
Ki
cE

c
i

)
− 2Db

(
Ki
aE

b
i

)
, (2.49)

respectively. Note that the covariant derivative above is symbolised by an upright D, in

5“Dreibein” is just another frequently used name for the triads, derived from the German word for
tripod.
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2.2. Ashtekar variables and the birth of loop quantum
gravity

contrast to the italic D of the diffeomorphism constraint. The appearance of a new kind

of indices now asks for a generalised form of this covariant derivative that not only acts

on the spatial but also sees these abstract indices — as in (2.49) above, if Da acts on

the single factors of the two products. We use the same symbol Da and just extend its

method of operation on objects with both kinds of indices:

Da T bi :=
(
Da T b

)
i
+ (Da Ti)b :=

(
∂aT

b + ΓbacT
c
)
i
+
(
∂aTi + Γai

jTj
)b
. (2.50)

Note that the spatial covariant derivative, i.e. the first term in parentheses, equals (2.30).

In addition to the Christoffel symbol Γbac, there is now a new object Γai
j. We notice it

contains both spatial and internal indices and due to the latter it is called spin connection.

The new adapted “metric” compatibility then reads

Da eib = 0 (2.51)

and

DaEa
i = ∂aE

a
i + εij

kΓjaE
a
k = 0 (2.52)

for the densitised triad. From (2.51), we can directly derive the elements of the spin

connection via (2.50),

Γai
j = −

(
∂ae

b
i + Γbace

c
i

)
ejb, (2.53)

and then use these to introduce

Γia := εijkΓajk. (2.54)

In terms of the densitised triad, its components read [11]

Γia =
1

2
εij

kEb
k

(
Ej
a,b − E

j
b,a + Ec

jE
l
aE

l
c,b

)
+

1

4
εij

kEb
k

2Ej
a(detE),b − E

j
b (detE),a

detE
. (2.55)

Additional to the two familiar constraints above, there is now a new one — answering

the unphysical degrees of freedom of rotating the triads regarding their internal indices.

We can infer from (2.45) that due to the symmetry of Kab, there needs to be an equivalent

condition for Ki
a — the rotational constraint

Gij := Ka[iE
a
j] = 0. (2.56)

We will already entitle this constraint as Gauß constraint , though the origin of this naming
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Chapter 2. Framework

will become clear only later — where we will also reformulate it in a more appropriate

one-index fashion in (2.71).

All the above results in describing the status quo via the action

S =
1

κ

∫
R

dt

∫
Σ

d3x
(

2Ea
i K̇

i
a −

(
NH +NaDa − ΛijGij

))
, (2.57)

where we had to include the new Gauß constraint with an appropriate antisymmetric

smearing matrix Λ such that

{G(Λ), G(Λ′)} =
κ

2
G([Λ,Λ′]) (2.58)

holds for the smeared Gauß constraint G(Λ) =
∫

Σ
d3xΛijGij.

B = C

※ Before we proceed, we would like to check whether we still describe the same

physics. Going back to (2.44), we see that we can express qab in terms of the triad

(and hence the densitised triad) and obtain the conjugate variables

qab = |detE|Ei
aE

i
b and (2.59)

P ab =
2

|detE|
Ea
i E

c
iE

d
jK

j
[cδ

b
d]. (2.60)

While the Gauß constraint commutes with qab due to rotational invariance in the

abstract SO(2) indices, its fulfilment (2.56) reduces the second equation above

to (2.21) and we recover the familiar pair of variables from the ADM formalism.

We can then also check their Poisson brackets:

{qab(x), qcd(y)} = 0, (2.61){
P ab(x), P cd(y)

}
= −κGabcd(x)δ(x, y) ≈ 0 and (2.62){

P ab(x), qcd(y)
}

) = κδa(cδ
b
d)δ(x, y). (2.63)

Therein, we collected all appearances of the Gauß constraint in the function G.

Hence, the corresponding Poisson bracket between two P is only weakly vanishing,

i.e. on the constraint hypersurface defined by the Gauß constraint being fulfilled.
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2.2. Ashtekar variables and the birth of loop quantum
gravity

This tells us that working with the extended phase space and performing a

symplectic reduction with respect to the Gauß constraint is equivalent to the

description by means of the ADM variables.

C = B

Up to now, we constructed the new canonical conjugate pair (Ea
i , K

i
a), being subject to

the additional Gauß constraint via their internal indices i. With (2.54) and a rescaling à

la

(βBI)Ki
a := βBIK

i
a (2.64)

(βBI)Ea
i :=

1

βBI

Ea
i , (2.65)

we arrive at the Ashtekar variables
(

(βBI)Aia,
(βBI)Ea

i

)
, with the Sen–Ashtekar–Immirzi–

Barbero connection [20, 21, 80, 81]

(βBI)Aia := Γia + (βBI)Ki
a. (2.66)

The rescaling coefficient βBI is referred to as the Barbero–Immirzi parameter [24, 80]

and is kept arbitrary; βBI ∈ C \ 0.6 With the new connection Γia containing triads and

co-triads to the same degree, it is not affected by the rescaling via βBI and therefore does

not need to carry the preceding superscript (βBI). These Ashtekar variables then form a

pair of canonically conjugate variables:

{
(βBI)Aia(x), (βBI)Ajb(y)

}
= 0 =

{
(βBI)Ea

i (x), (βBI)Eb
j (y)

}
(2.67){

(βBI)Ea
i (x), (βBI)Ajb(y)

}
=
κ

2
δab δ

j
i δ

(3)(x− y). (2.68)

While the previous pair of canonically conjugate variables (Ki
a, E

a
i ) obeyed the desired

Poisson bracket relations already (cf. (2.47)) the Hamiltonian and diffeomorphism con-

straints (2.48) & (2.49) take a better accessible form in the new Ashtekar variables: We

formulated general relativity as an SU(2) gauge Yang–Mills theory, as we will discuss

below. The Gauß constraint, on the other side, can be cast into a form that motivates

that naming. We will now address the formulation of the constraints in the new variables.

6Note that there are preferred choices for the value βBI takes. [82], e.g., showed that βBI = ln 2
π

√
3

reproduces the Bekenstein–Hawking entropy for black holes.

17
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2.2.1 The constraints

We first turn towards the Gauß constraint. Its current form (2.56) can be rewritten as

Gij := Ka[iE
a
j] = 0 ⇔ Gi = εij

kKj
aE

a
k = 0. (2.69)

We can then transfer the metric compatibility of (2.52) from Ei
b to (βBI)Ei

b and obtain

Da (βBI)Ea
i = ∂a

(βBI)Ea
i + εij

kΓja
(βBI)Ea

k = 0. (2.70)

Adding this expression to the Gauß constraint, we notice that the term on the right hand

side of (2.69) together with the second term of (2.70) combine for an expression ∼ (βBI)Aja

and we can reformulate the Gauß constraint as

Gi = ∂a
(βBI)Ea

i + εijk
(βBI)Aja

(βBI)Ea
k =: (βBI)Da (βBI)Ea

i = 0. (2.71)

This form now justifies the titling Gauß constraint. Proceeding with the remaining Hamil-

tonian and diffeomorphism constraint, we first of all define the curvature, or field strength

tensor of Yang–Mills type, (βBI)F i
ab as follows:

(βBI)F i
ab := ∂a

(βBI)Aib − ∂b(βBI)Aia + εijk
(βBI)Aja

(βBI)Akb . (2.72)

By means of the curvature, we then find more compact forms of the Hamiltonian and

diffeomorphism constraints [11]:

H =
[
β2

BI
(βBI)F i

ab −
(
β2

BI + 1
)
εijk

(βBI)Kj
a

(βBI)Kk
b

]εilm (βBI)Ea
l

(βBI)Eb
m√

|β3
BI det (βBI)E|

= 0 (2.73)

Da = (βBI)F i
ab

(βBI)Eb
i = 0. (2.74)

Note that, as an intermediate step, one arrives at descriptions of these constraints that also

include terms proportional to the Gauß constraint. However, with the Gauß constraint

forming a subalgebra within the constraint algebra, we can drop these contributions [11].

With all the above, we can rewrite the Einstein–Hilbert action à la

S =
1

κ

∫
R

dt

∫
Σ

d3x
(

2 (βBI)Ea
i

(βBI)Ȧia −
(
NH +NaDa − ΛiGi

))
. (2.75)
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2.2. Ashtekar variables and the birth of loop quantum
gravity

2.2.2 The holonomy–flux algebra

We notice that the appearance of delta distributions in the Poisson bracket structure

(2.67) & (2.68) of the canonically conjugate pair of variables
(

(βBI)Aia,
(βBI)Ea

i

)
makes them

singular. To avoid this, it is a natural choice to proceed with smeared analogues. As we

want the basic variables to reflect the SU(2) gauge transformations caused by the Gauß

constraint, their algebra to close and additionally do not want them to rely on the metric

as a background field — what, in turn, is often used for other Yang–Mills theories but

is clearly inapplicable when the metric is one of the central dynamical quantities as it is

for a theory of quantum gravity —, it turns out that the only solution are holonomies or

so-called Wilson loops [11].

With the notation becoming more and more evolved, we may from now on omit the

superscripts (βBI) of (βBI)A and (βBI)E.

Having a curve c : [0, 1]→ Σ lying in the spatial part Σ of the manifoldM, a holonomy

hc(A) of a connection A along that curve reads

hc(A) := P exp

(∫
c

A

)
= 1SU(2) +

∞∑
n=1

1∫
0

dt1

1∫
t1

dt2 . . .

1∫
tn−1

dtnA(c(t1)) · · ·A(c(tn))

(2.76)

and is uniquely defined by the differential equation

d

dη
hcη(A) = hcη(A)Aia(c(η))

τi
2
ċa(η) (2.77)

with the initial condition

hc0(A) = 1SU(2). (2.78)

Therein, we used τi = −iσi as a basis of su(2) with the well-known Pauli matrices σi.

With cη(t) := c(ηt), for η ∈ [0, 1], it follows hc1(A) =: hc(A). The conjugate variable then

is the flux

En(S) :=

∫
S

niεabcE
a
i dxb ∧ dxc, (2.79)

where we integrate over an oriented two-dimensional surface S ∈ M and n is a (Lie

algebra valued) smearing field.
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Chapter 2. Framework

The Poisson bracket of the two variables

{En(S), hc(A)} =
βκ

2
niτihc(A) (2.80)

then is indeed not singular anymore and closes. Note that the above only holds if the

normal of S shows in the same direction as the tangent of c does, whereas we get an

additional minus sign if they show in opposite directions. If c does not intersect S at all,

the Poisson bracket vanishes.

To complete the algebra of the constraints, which we already touched on for the Hamil-

ton and diffeomorphism constraints (the hypersurface deformation algebra), i.e. to include

the Gauß constraint as well, we first define the smeared constraints:

H(N) :=

∫
Σ

H(x)N(x) d3x, (2.81)

D
(
~N
)

:=

∫
Σ

Da(x)Na(x) d3x and (2.82)

G(Λ) :=

∫
Σ

Gi(x)Λi(x) d3x, (2.83)

where Ma(N,N ′, q) := qab(N∂bN
′ −N ′∂bN) as before. We then get the full algebra of

the constraints:

{H(N), H(N ′)} =
κ2β2

BI

4
~D
(
~M(N,N ′, q)

)
, (2.84){

D
(
~N
)
, H(N)

}
= −H(L ~NN), (2.85){

D
(
~N
)
, D
(
~N ′
)}

= −D
(
L ~N ′

~N
)
, (2.86)

{G(Λ), G(Λ′)} =
κ

2
G([Λ,Λ′]), (2.87)

{G(Λ), H(N)} = 0 and (2.88){
G(Λ), D

(
~N
)}

= −G(L ~NΛ). (2.89)

This is the formulation of GR that we want to quantise. However, there is not the one

way to quantise a system, especially when it comes to constraints involved in the theory.
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2.3. The two paths of quantisation

2.3 The two paths of quantisation

Let us now approach the quantisation of the constraints Gi (2.71), Da (2.74) and H

(2.73), obeying the Dirac algebra (2.84) – (2.89). When quantising a system subject to

constraints, there is a decision one has to make right at the beginning: Should one first

solve the constraints in the classical theory and subsequently quantise the reduced theory,

or, the other way around, first quantise the whole theory and then solve the constraints on

the operator level. The first approach is known as reduced phase space quantisation, while

the latter is referred to as Dirac quantisation. Figure 2.3 illustrates the different steps one

has to carry out for these two very distinct paths. Details will become more clear during

the treatment of the next sections, but this figure already motivates that these two routes

are indeed quite different. As for the Dirac quantisation, one of the hardest tasks surely

is finding the joint kernel of the quantised constraint operators — and thereby proceed

from the kinematical to the physical Hilbert space. When it comes to the reduced phase

space quantisation, it is the search for appropriate reference fields and a representation

of the then obtained observable algebra that is responsible for the most effort. So there

really is no universally preferred choice between the two of them — the conservation of

difficulty — and for some scenarios it may even be best practice to mix them: Solve some

of the constraints classically and then proceed with a Dirac quantisation of the remaining

ones (see, e.g., the models outlined in [83]).

Since quantising first feels like the more canonical way to proceed, we start with this

approach and then, in Section 2.5, delve into the reduced phase space quantisation, which

the treatment of Chapter II relies on.

2.4 Dirac quantisation

We will start with introducing the notion of the basis states and the representation of

the kinematical Hilbert space. The quantisation procedure will then be outlined for the

Hamiltonian constraint and, before, for the volume operator, where we also include a

small discussion on its importance as it will be on the heart of many considerations in the

course of this work.
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Figure 2.3: Basic steps of the Dirac and reduced phase space quantisation procedure
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2.4. Dirac quantisation

2.4.1 Spin network functions and the Ashtekar–Lewandowski

representation

The functions that serve as basis states for the theory are the so-called spin network

functions Tγ(A) [84–86]. They are cylindrical functions of the holonomies hc(A) defined

on an underlying graph γ that is embedded in the spatial manifold. The curves c the

connection A is integrated along then are the graph’s edges eI and we denote by E(γ) the

set of all edges of a graph γ. Being a cylindrical function defined on a graph constituted of

M = |E(γ)| many edges means that the structure of the associated spin network function

is edge-wise and reads

Tγ(A) = Tγ(he1(A), he2(A), . . . , heM (A)). (2.90)

On the level of the holonomies, we can therefore define the map

Tγ : SU(2)M → C, (2.91)

for which we use the same notation. The kinematical Hilbert space of the theory then is

Hkin = L2
(
A, dµAL

)
, (2.92)

where A is the space of generalised connections and dµAL the Ashtekar–Lewandowski

measure. This Hilbert space is equipped with the inner product

〈Tγ|T ′γ〉 =

∫
SU(2)M

Tγ(he1 , . . . , heM )T ′γ(he1 , . . . , heM ) dµH(he1) · · · dµH(heM ), (2.93)

where dµH denotes the SU(2) Haar measure. In the above, we assumed both spin network

functions to be defined on the same graph. This, of course, is not necessarily true in general

and if one in fact faces two different graphs γ1 and γ2, one proceeds with the union graph

γ = γ1 ∪ γ2. Last but not least, a point of a graph is called vertex vI when at least

two edges — which are not trivial extensions of each other — meet there. We collect all

vertices of a graph in the set V (γ).

The spin network functions then carry one irreducible representation of SU(2) on each

edge, labelled by je ∀e ∈ E(γ). We may collect those in the vector ~j. On the vertices,

in turn, so-called intertwiners Iv sit. These tensors knit the representations of all ingoing

23



Chapter 2. Framework

edges together with the ones of all outgoing edges and are collected in the vector ~I. Hence,

besides γ, spin network functions also carry the labels ~j and ~I. In the literature, those are

then often combined into a set, say s =
{
γ,~j, ~I

}
, used as a labelling of the states. The

notation Tγ at hand only considers the label γ for illustrating the graph structure of the

spin network functions while omitting ~j and ~I, but the difference between Tγ and T ′γ in

(2.93) is precisely that of different ~j, ~I and ~j′, ~I ′ — we just use a more concise notation.

For a more detailed introduction of spin network states see e.g. [17, 84] or Chapter 32

of [11].

Acting on these basis states are the fundamental operators of the holonomy and the

flux:

(πAL(he)Tγ)(A) = ĥe(A)Tγ(A) = he(A) · Tγ(A) and (2.94)

(πAL(En(S))Tγ)(A) = Ên(S)Tγ(A) = −i~∆̂Tγ(A) (2.95)

= −`P
2βBI

4

∑
v∈V (γ)

ni(v)
∑
e3v

ε(e, S)Ĵ
(v,e)
i Tγ(A). (2.96)

This representation πAL is called the Ashtekar–Lewandowski representation and from the

equations above it looks quite similar to the action of the familiar Schrödinger represen-

tation. However, the Ĵ
(v,e)
i above is not just the right-invariant vector field on SU(2), i.e.

a differential operator, but instead — due to the cyclic composition of the spin network

functions —

Ĵ
(v,e)
i = 1SU(2) ⊗ 1SU(2) ⊗ · · · ⊗

{
X̂

(e)
i

(L)X̂
(e)
i

}
⊗ 1SU(2) ⊗ · · · , (2.97)

where now X̂
(e)
i and (L)X̂

(e)
i indeed are the right- and left-invariant vector fields

(
X̂

(e)
i f

)
(he) :=

(
d

dt

)
t=0

f
(
etτjhe

)
and (2.98)(

(L)X̂
(e)
i f

)
(he) :=

(
d

dt

)
t=0

f
(
hee

tτj
)
. (2.99)

The right-invariant vector field acts on the spin network functions as(
X̂

(e)
i Tγ

)(
h{e}

)
= tr

(
(τihe)

T ∂

∂he

)
Tγ
(
h{e}

)
(2.100)
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2.4. Dirac quantisation

and is replaced by the left-invariant vector field (L)X̂
(e)

i in (2.97) if the edge e is ingoing at

v. In the above, tr denotes the SU(2)-trace. Lastly, the function ε(e, S) in (2.96) accounts

for the orientation of the edge with respect to the (oriented) surface S:

ε(e, S) =


−1 if e is below S,

0 if e ∩ S = {} or ė(e ∩ S) ∈ S,

1 if e is above S.

(2.101)

Note that any arbitrary edge can be understood as a concatenation of edges of these

types.

With this, we face the familiar situation of one multiplicatively and one differentially

acting operator associated with the basic quantities. When it comes to the action of

some physically intuitive operators built from these basic ones, however, the obtained

consequences turn out to be not as familiar anymore — as the next section shows.

2.4.2 Geometrical Operators: The volume operator

One of those operators that are implemented on Hkin is the volume operator and one can

rather directly see that it will turn out to be a function of the basic operators introduced

right before: Starting with the classical volume of a region R,

V (R) =

∫
R

d3x
√
|det q| =

∫
R

d3x
√
|detE|, (2.102)

we see that it depends on the electric fields E. Proceeding towards the operator equivalent,

there exist two versions in the literature: one by Rovelli & Smolin [87] and one by Ashtekar

& Lewandowski [88]. What they do share is the vertex-wise composition

V̂ :=
∑

v∈V (R)

V̂v, (2.103)

where the sum considers all vertices v that lie in the region R. The vertex-wise evaluation

of the volume then differs in three aspects that turn out to make a difference. While
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Rovelli–Smolin [87] constructed

V̂RS := κV,RS

∑
eI∩eJ∩eK=v

√∣∣∣εijkĴ (v,eI)
i Ĵ

(v,eJ )
j Ĵ

(v,eK)
k

∣∣∣, (2.104)

Ashtekar–Lewandowski [88] obtained

V̂AL := κV,AL

√√√√∣∣∣∣∣ ∑
eI∩eJ∩eK=v

εijkε(eI , eJ , eK)Ĵ
(v,eI)
i Ĵ

(v,eJ )
j Ĵ

(v,eK)
k

∣∣∣∣∣. (2.105)

First, they rely on two different but equally justified regularisation constants κV,RS and

κV,AL. Secondly, while the Rovelli–Smolin volume adds up the square roots of triples of the

Ĵ
(v,e)
i operator, the Ashtekar–Lewandowski volume considers the square root of the sum of

these triples. And lastly, Ashtekar–Lewandowski included ε(eI , eJ , eK), which takes into

account how the three edges are oriented. This inclusion of the edges’ orientation yields

different results when it comes, for example, to the question of zero-volume-states: When

all three edges lie in one plane, the resulting contribution of that triple within the sum is

zero — and so does the contribution for arbitrarily valent vertices if all edges are planar.

It was then [89, 90] who considered the dynamics of the theory as a consistency check,

using a reformulation of the Hamiltonian constraint by means of Thiemann’s identity

(confer (2.73) & (2.115) in the next Subsection 2.4.4). They then found that the Ashtekar–

Lewandowski volume is to be preferred and we will henceforth use

V̂ = `P
3
∑

v∈V (R)

√√√√∣∣∣∣∣ 1

48

∑
eI∩eJ∩eK=v

εijkε(eI , eJ , eK)Ĵ
(v,eI)
i Ĵ

(v,eJ )
j Ĵ

(v,eK)
k

∣∣∣∣∣ (2.106)

=: `P
3
∑

v∈V (R)

√∣∣∣Q̂v

∣∣∣ (2.107)

for the volume operator. There are a number of reasons why this operator — describing an

allegedly intuitive geometrical observable — is in fact not as trivial as one would assume

and, what is more, of wide-ranging importance too:

※ First of all, despite the volume being a very much graspable quantity, the calculation

of its spectrum turns out to be everything but palpable. While it is straightforward to

calculate matrix elements of the operator Q̂v — it is just the successive action of three

different right-invariant vector fields —, the square root of it that is the volume operator
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makes the analytical determination of the spectrum of the volume unfeasible so far. Yet,

much progress was made by Brunnemann & Thiemann [91] and Brunnemann & Rideout

[92–94]. First, [91] simplified the closed formula for matrix elements of the volume operator

derived by Thiemann in [95]. This then allowed [92–94] to tackle numerical computations

of matrix elements of the volume operator for vertices of valence up to 7 (the 4-vertex

was already covered in [91]).

※ Another interesting and counter-intuitive, or at least nonclassical aspect of the volume

operator is its spectrum being purely discrete [95–98]. We note that discreteness of the

spectrum was also shown for the Rovelli–Smolin volume operator by De Pietri & Rovelli

in [99]. This discreteness, however, is in multiples of the Planck volume `P
3 and therefore

experimentally out of reach by state-of-the-art methods.

※ The volume operator and its spectrum also provides a starting point for asking

the question of singularity avoidance. As this is one of the main aspects of the work

at hand, only a little spoiler will be presented here. Seminal work in the field of loop

quantum cosmology (more details on this to follow, too) motivate that the initial Big

Bang singularity may in fact have to be replaced by a so-called Big Bounce [41–45]. It

is of no surprise that the analogue of the volume operator in loop quantum cosmology

plays a crucial role in these kind of considerations and hence, the class of operators one

faces during these examinations does indeed include this volume operator. That this is

via fractional powers of it makes the computations even more evolved.

※ And lastly, the importance of the volume operator is not just the fact that the

volume is a physically intuitive and widely used observable. It is furthermore of uttermost

importance for the theoretical footing of loop quantum gravity itself: The quantisation

of the Hamiltonian constraint (2.73) was snookered for a long time due to the involved

factor 1/
√
|det (βBI)E|. It is only for a novel identity Thomas Thiemann introduced in [35]

that progress was possible. This identity, as we will see in Subsection 2.4.4, links the

inverse volume 1/
√
|det (βBI)E| with the Poisson bracket of the connection and the volume

functional — leading upon quantisation to a commutator including the volume operator.

This is how the volume operator becomes a crucial ingredient for the whole quantisation

process and for progressing towards the dynamics of the theory.
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2.4.3 The Gauß and diffeomorphism constraints

Before elaborating on the quantisation of the Hamiltonian constraint, we briefly cover the

Gauß and the diffeomorphism constraints, whose smeared versions read

G(Λ) =

∫
Σ

(DaEa
i )Λi d3x and (2.108)

D
(
~N
)

=

∫
Σ

F i
abE

b
iN

a d3x. (2.109)

We keep the discussion of their quantisation rather short and refer to [83] for a more

detailed introduction as well as [11, Chapter 9] for a comprehensive discourse.

When it comes to the Gauß constraint, one can also spare oneself its quantisation and

solve it classically, proceeding then with gauge-invariant states. However, if one wishes

to quantise it nevertheless, the procedure is quite straightforward (cf. e.g. [83, Subsection

3.3.1]) and one ultimately arrives at

Ĝ(Λ)Tγ(A) =
iβ`P

2

2

∑
v∈V (γ)

Λi(v)

 ∑
e∈E(γ) : s(e)=v

X̂
(e)
i −

∑
e∈E(γ) : f(e)=v

(L)X̂
(e)
i

Tγ(A),

(2.110)

where s(e) and f(e) denote the starting and ending (final) point of the edge e, respectively.

The space HG of solutions to the Gauß constraint is then composed of all those cylindrical

functions that result in a vanishing action of Ĝ — i.e. those states for which the combined

overall angular momentum of all ingoing edges (f(e) = v) equals that of all outgoing

edges (s(e) = v) on all vertices v of the graph γ.

The quantisation of the diffeomorphism constraints turns out to be more evolved and

one typically draws on the so-called refined algebraic quantisation, first applied to the

diffeomorphism constraints by Ashtekar, Lewandowski, Marolf, Mourão and Thiemann

in [34] and further examined by Giulini and Marolf in [100, 101]. The reason for this

extra effort is that if you want to quantise the diffeomorphism constraint, it turns out

that the result will not live in Hkin and finite diffeomorphisms do not even act in a

weakly continuous fashion [83]. However, this situation is surely not too special as also in

standard quantum mechanics situations like these exist [102]: Having a particle subject

to the constraint of vanishing momentum, e.g., yields non-normalisable solutions that
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2.4. Dirac quantisation

therefore are not element of H(QM)
kin = L2(R3). The procedure one can then make use of

in this case are the so-called rigged Hilbert spaces and that mechanism is also used for

finding solutions to the diffeomorphism constraint here. The rigged Hilbert spaces in the

quantum mechanical framework read S ⊂ H(QM)
kin ⊂ S∗, where S is the Schwartz space of

smooth (Schwartz) functions with its dual S∗ being the space of (tempered) distributions,

and solutions to the constraint of vanishing momentum live in S∗. For what we face

in loop quantum gravity, the rigged Hilbert spaces are Cyl ⊂ Hkin ⊂ Cyl∗, where Cyl

is the space of (smooth) cylindrical functions. Finding solutions to the diffeomorphism

constraint is then done by so-called group averaging — see, e.g., [103] for an overview.

Following [102],7 this can be performed in two steps, starting by averaging with respect to

symmetries ϕ ∈ Sym(γ) of the underlying graph γ. This results in the projection P̂Sym(γ)

onto the graph-symmetry-invariant subspace:

P̂Sym(γ)Ψγ :=
1

Nγ

∑
ϕ∈Sym(γ)

ϕ∗Ψγ, (2.111)

where Nγ is the size of Sym(γ). However, the follow-up second step consists of averaging

over all those diffeomorphisms that translate the underlying graph and this will now not

lead to a mere projection, but a map η : Cyl → Cyl∗,Ψ 7→ (η(Ψ)| instead. Via the inner

product 〈 . , .〉 onHkin, the diffeomorphism invariant action on elements of Cyl is obtained:

(η(Ψγ)|Φγ′〉 =
∑

ϕ∈Diff/Sym(γ)

〈ϕ∗P̂Sym(γ)Ψγ,Φγ′〉 with (2.112)

(η(Ψγ)|ϕ∗Φγ′〉 = (η(Ψγ)|Φγ′〉 ∀ diffeomorphisms ϕ. (2.113)

If we now only consider those elements of Cyl as input of η that are also solutions to the

Gauß constraint (i.e. lie in HG), we end up with

Cyl∗inv := η
(
Cyl ∩HG

)
(2.114)

as the space of solutions to both kinematical constraints — the Gauß and the diffeomor-

phism constraints.

7We also refer to this reference for all the details.
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2.4.4 The Hamiltonian constraint

The quantisation of the Hamiltonian constraint will directly affirm the importance of

the volume operator discussed in the pre-previous subsection and is therefore the next

step. However, with even a nearly comprehensive treatment of this topic being beyond

the scope of this introduction into loop quantum gravity, only a condensed overview will

be presented that, hopefully, still manages to get the main ideas and important parts

across. The interested reader will find an exhaustive treatise in [11, Chapter 10] and a

more concise introduction in [83].

While the Hamiltonian constraint is of most importance when it comes to the dynamics

of the theory, it is also the constraint that needs the most effort to quantise. With its

current form8

H =
[
β2

BI F
i
ab −

(
β2

BI + 1
)
εijkK

j
aK

k
b

]εilmEa
l E

b
m√

det q
= 0 (2.73)

containing the inverse of the root of the determinant of the electric fields, i.e. a non-

polynomial dependency on a canonical variable, there was not much progress in quantising

this expression for some time. A novel quantisation procedure by Thiemann [35, 104–

106] then introduced two crucial formulae that allowed for drastic simplifications of the

expression above. These two identities read

εilmEa
l E

b
m√

det q
=

4

κ
εabc
{
V,Aic

}
and (2.115)

Ki
a =

2

κ

{
K,Aia

}
. (2.116)

Therein, besides the volume V of a region R, we used

K :=

∫
Σ

d3xEa
iK

i
a. (2.117)

At this stage, it is a common practice to split up the Hamiltonian constraint after a

previous reformulation that also reflects the correct dimensionality via κ:

H(x) =
4

κ
√

det q
tr
(
[Ka, Kb]

[
Ea, Eb

])
− 2

κ
√

det q
tr
(
Fab
[
Ea, Eb

])
(2.118)

8Note that we dropped the prefix (βBI) for the variables and then used |detE| = det q.
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=: Hlor(x)−Heucl(x) (2.119)

where Heucl is referred to as the Euclidean part and Hlor as the Lorentzian part (this

terminology will be used frequently when discussing the Gowdy model in Part II). Reca-

pitulate that we used the convention τi = −iσi. With the two Thiemann identities (2.115)

and (2.116), the smeared parts of the Hamiltonian constraint can be rewritten according

to

Hlor(N) = −8

(
2

κ

)4 ∫
Σ

N tr
({
A,K

}
∧
{
A,K

}
∧ {A, V }

)
and (2.120)

Heucl(N) = −2

(
2

κ

)2 ∫
Σ

N tr(F ∧ {A, V }), (2.121)

which is a suitable starting point for their quantisation.

For this, we introduce a decomposition Tε(Σ) of Σ into tetrahedra , such that⋃
Tε(Σ) = Σ. This is done including a parameter ε that corresponds to the size of the

tetrahedra in such a way that the volume of the tetrahedra vanishes for ε → 0. Placing

a vertex v( ) at the apex of a tetrahedron (or any corner really), the tetrahedron itself

can be defined by three edges eI( ) starting at that vertex. For the edges of the base, we

introduce arcs aIJ( ) that go from the endpoint of eI( ) to that of eJ( ). With those, we

can define loops αIJ( ) around the lateral faces of the tetrahedron (defined by one edge

of the base and the vertex on the apex): αIJ( ) := eI( ) ◦ aIJ( ) ◦ eJ( )−1. Figure 2.4

illustrates these geometrical quantities exemplarily. Using the positive parameter ε < 1

for a rescaling of the edges according to e(t) 7→ e(ε · t), we can expand the holonomies

along edges and loops,

he(ε) = 1SU(2) + εėa(0)Aia(v)
τi
2

+O
(
ε2
)

and (2.122)

hαe,e′ (ε) = 1SU(2) + ε2ėa(0)ė′b(0)F i
ab(v)

τi
2

+O
(
ε3
)
, (2.123)

and then use these to replace the Lorentzian and Euclidean parts of the integrated Hamil-

tonian constraint by Riemann sum equivalents [11]:

Hε
lor(N) =

8

3

(
2

κ

)4 ∑
∈Tε(Σ)

εIJKN(v( )) tr
(
h
eI( )

{
h
eI( )

−1, K
}
·
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· h
eJ( )

{
h
eJ( )

−1, K
}
h
eK( )

{
h
eK( )

−1, V
(
R
v( )

)})
and (2.124)

Hε
eucl(N) =

2

3

(
2

κ

)2 ∑
∈Tε(Σ)

N(v( ))εIJK tr
(
h
αIJ( )heK( )

{
h
eK( )

−1, V
(
R
v( )

)})
.

(2.125)

Therein, V
(
R
v( )

)
describes the volume of a region R

v( ) that stands for the proximity

of the vertex v( ). Equation (2.125) therefore is in a form that we can already quantise via

multiplication operators for the holonomies, (2.94), and the volume operator of (2.106).

Lastly, Poisson brackets are replaced by commutators divided by i~: {., .} 7→ 1
i~ [., .]. For

the Lorentzian part Hlor, however, we still need a way to quantise K. Via another classical

identity, namely

K = −{Heucl(N = 1), V }, (2.126)

we can use the previously obtained quantised version of the Euclidean part of the Hamil-

tonian constraint, together with the volume operator, to obtain the quantised version of

the Lorentzian part of the Hamiltonian constraint.

a12

a 23

v

α12

e 1 e
2

e
3

e4

e6

e
5

Figure 2.4: A “triangulation” tetrahedron defined by the three edges e1,2,3 that leave
vertex v and which also define the arcs a12 and a23 as well as the loop α12 around

the face set by a12 and v
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2.5. Reduced phase space quantisation

Ultimately, the action of these operators is understood to have the regularised operator

act first, have then the regularisation parameter sent to zero,

ĤTγ = lim
ε→0

HεTγ, (2.127)

and lastly ensure that the obtained expression is well-defined.

This shows how a quantisation of the Hamiltonian constraint can be achieved. The pro-

cedure above, however, yields a Hamiltonian constraint operator that is graph-changing :

While the three edges leaving the apex of the tetrahedron are per definition (parts of)

edges of the underlying graph, the arcs aIJ connecting such edges along the base of the

tetrahedron consequently are indeed not. Therefore, every time a holonomy operator

along such an arc acts on the graph, this arc is attached to the graph and thereby the

graph is changed. In (2.125) above, this happens for the operator representing h
αIJ( ), as

the loop αIJ( ) along eI( ) and eJ( )−1 is closed via the arc aIJ( ) — confer Figure 2.4.

This behaviour of altering the graph was a crucial aspect of the Hamiltonian constraint

operator when Thiemann showed in [104] that it is anomaly free in the sense that the

commutator of two Hamiltonian constraints vanishes for diffeomorphism-invariant states.

To avoid this addition of new edges, so-called minimal loops [107] can be used during the

quantisation. These minimal loops — leaving and entering a vertex of the graph — are

exclusively defined via existing edges and of minimal length by means of the number of

edges that constitute the loop and hence, a quantisation based on these loops will yield a

graph-preserving action.

2.5 Reduced phase space quantisation

The treatment of the Gowdy model in Chapter II will be based on the reduced phase

space quantisation, which will be outlined in this section. As introduced before, the name

has its origin in the different order of quantising and considering constraints: (some)

constraints will be solved already on the classical level and then, on this partially reduced

phase space, the theory is quantised. We will see that this approach, if applicable to the

setup of interest, has the advantage that one obtains a physical Hamiltonian en passant

and therefore circumvents the inherent problem of time of general relativity.
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A key framework within the reduced phase space quantisation (and obtaining a phys-

ical time evolution in general relativity) is the so-called relational formalism that was

introduced by Rovelli in a series of publications [108–111] and later extended by Dit-

trich [112, 113] and Thiemann [114, 115]. For an introduction, see for example [116] and

for an exhaustive treatment [11], while we follow closely [61].

The problem the relational formalism aims to tackle is referred to as the problem of

time in general relativity: The canonical Hamiltonian of general relativity is built entirely

from constraints — cf. (2.31) —, so using this Hamiltonian, which vanishes when all the

constraint are fulfilled, for describing the dynamics of observables or states yields a static

theory in the quantum theory without any temporal evolution. Experiencing that this

is in fact not the case in reality, it is necessary to find out how the dynamics can be

described instead.

As we will see, it turns out that in certain models this can be done in a way that looks

quite familiar:

∂Of (τ, σ)

∂τ
= {Of (τ, σ), Hphys}. (2.128)

The only difference being the new quantities Of (τ, σ) and some — to be further specified

— physical Hamiltonian Hphys. Now, the reason why it is called the relational formalism is

due to reference fields T I that are introduced, to wit: one per constraint. The observable

Of (τ, σ) of a phase space function f then tells the value f takes when these clocks T I

take the values τ I . To use the intuitive split of space and time, the clock T 0 linked to the

Hamiltonian constraint C0 is usually referred to as T := T 0, taking the value τ := τ 0 at

evaluation. The remaining reference fields T I 6=0 are then relabelled as SI := T I 6=0, taking

values σi := τ i 6=0, and the set σ of all σi can be used to coordinatise the so-called dust

manifold S.

We now introduce the procedure for the general case and then return to the special

scenario of general relativity as announced above. Facing a system with a set of constraints

CI , the first step of the construction of the observable Of consists of weakly abelianising

the constraints [112]: The constraints CI do not necessarily commute,
{
CI , C

J
}
6= 0, but

we can proceed to a new set of constraints that indeed does. With the introduction of

MJ
I :=

{
CI , T

J
}
, (2.129)
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we define a new set of constraints via

C ′I :=
(
M−1

)J
I
CJ . (2.130)

This, of course, implies that we need to use such T J for which MJ
I is invertible. The new

set of constraints now has the advantage that

{
C ′I , T

J
}
≈ δJI . (2.131)

Therein, ≈ symbolises that the equation holds at least on the constraint hypersurface

M, i.e. when all constraints are fulfilled: M = {m ∈M : CI(m) = 0 ∀CI}. We can then

state the Hamiltonian vector field of the linear combination

Cβ := βIC ′I , βI ∈ R, (2.132)

of the constraints C ′I as

Xβ = βIXI , (2.133)

where the Hamiltonian vector field XI of a single constraint C ′I reads

XI := {C ′I , · }. (2.134)

With Xβ, we can as a next step define the gauge flow αβ(f) of a phase space function f

[112, 117]:

αβ(f) := exp(Xβ)f. (2.135)

This allows us to move f along the flow of the linear combination Cβ of the abelianised

constraints C ′I . But, of course, we want to do this in a controlled way, in particular

in a way which we can associate with a temporal evolution. This can be achieved by

considering the gauge flow of the reference fields T I simultaneously. As it was already

stated above, the relational framework describes the evolution of observables with respect

to those reference fields. Accordingly, we evaluate the gauge flow of the respective phase

space function with respect to the gauge flow of the reference fields and get

Of (τ) := αβ(f)
∣∣
αβ({T I})={τI} (2.136)

as the value f takes when the reference fields T I take the values τ I .
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There are now some remarks to be made, where the last one also specifies the scenario

this work is about and motivates the structure of the initial evolution equation (2.128):

※ First, equation (2.135) contains the exponential and hence products of Xβ, which

in turn is a linear combination of the XI . Therefore, the order of the respective factors

XI in (2.135) matters — in general. This is the reason why the new abelianised set of

constraints C ′I was used as these lead to weakly commuting Hamiltonian vector fields XI .

Similar to before, the property of two variables weakly commuting means that they do

commute when restricted to the constraint hypersurface M.

※ Furthermore, the observables Of are weak Dirac observables , which means that they

weakly commute with the constraints:

{Of (τ), CI} ≈ 0 ∀CI . (2.137)

So they really are gauge invariant extensions of gauge variant phase space functions and

qualify for physically observable quantities.

※ When working with the observables Of , there are a couple of identities that make

calculations much easier. The most important ones are

Of (τ) +Of ′(τ) = Of+f ′(τ), (2.138)

Of (τ) · Of ′(τ) ≈ Of ·f ′(τ), (2.139)

{Of (τ),Of ′(τ)} ≈ O{f,f ′}∗(τ) and (2.140)

Of(A,E,T I ,PI)(τ) ≈ f
(
OA(τ),OE(τ),OT I (τ) = τ I ,OPI (τ)

)
. (2.141)

In the second last equation, { · , · }∗ denotes the Dirac bracket, which is an extension of

the Poisson bracket and necessary when facing a system with second class constraints. For

the present case of having both a set of gauge fixing conditions GI := T I − τ I =: C2I and

one of second class constraints CI =: C1I , all collected in Cµ, the Dirac bracket reads [114]

{f, f ′}∗ = {f, f ′} − {f, Cµ}Mµν{Cν , f ′}, (2.142)

with the coupling Mµν := {Cµ, Cν}.

※ Last but not least, going back to the case of general relativity, the physical Hamilto-

nian Hphys that enters equation (2.128) and creates the evolution of the observables needs

to be defined. The steps to perform from this point onwards depend heavily on the kind of
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reference fields one introduces and on the general model considered. For a broad overview

over the different kinds of reference fields and their treatment, see for example [118]. We

will now exemplarily sketch the path similar to the upcoming investigations of Chapter

II. There, introducing Gaussian dust [119] as the reference fields T I allows for a simplified

description of the constraints. For the total Hamiltonian constraint H = C0 consisting of

all degrees of freedom, including those of the reference fields, this new form reads

H = C0 = P + h(A,E), (2.143)

where P is the canonically conjugate of T = T 0. This form is referred to as a de-

parametrised form due to the fact that we can write the Hamiltonian constraint in a form

that is linear in P and where h does not depend on T . The part h(A,E) independent

of the reference field variables (T, P ) can then be used to define the time-independent9

physical Hamiltonian that describes the temporal evolution of the observables according

to (2.128) [115]:

Hphys :=

∫
S

Oh dσ. (2.144)

Having a system in deparametrised form also simplifies several formulae we stated before.

By definition, MJ
I =

{
CI , T

J
}

= δJI holds, which implies C ′I = CI . Note that the

diffeomorphism constraints can not be deparametrised as the Hamiltonian constraint.

However, one can achieve getting

CI 6=0 = PI + hI
(
A,E, SI

)
(2.145)

and the fact that it still only depends linearly on PI suffices for MJ
I = δJI . Addition-

ally, many of the weak equations become strong ones for deparametrised systems — like

{CI , CJ} = 0 and therefore [XI , XJ ] = 0, too. Hence, performing the weak abelianisation

is not necessary when working with a deparametrised theory.

Finally, when it comes to the follow-up quantisation, deparametrised theories share the

feature that the observable algebra turns out to be isomorphic to a subset of the kinemat-

ical algebra. With that, the representation used for the kinematical Hilbert space in the

case of the Dirac quantisation procedure becomes a representation directly accessing the

physical Hilbert space. Thus, we can implement the Ashtekar–Lewandowski representa-

9If h still depends on T , the resulting physical Hamiltonian is in general time-dependent.
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tion here, Hphys = L2
(
A, dµAL

)
, and choose the spin network functions Tγ as a suitable

basis. Note that we did respect the classical symmetries of the system during the reduced

phase space quantisation and, accordingly, so should the resulting Hphys. However, [34]

showed that diffeomorphism invariant operators whose actions alter the underlying graph

can not be densely defined on Hkin — which is why we need to implement the physical

Hamiltonian in a graph-preserving manner.

2.6 Algebraic quantum gravity

The last framework we want to outline is the so-called algebraic quantum gravity . In-

troduced in a series of papers by Giesel and Thiemann in [58–61], the name reflects the

fact that algebraic quantum gravity considers only one abstract and countably infinite

algebraic graph α. This graph is still adapted to the model one studies, so it might be

of cubic topology or, as we see later on in Chapter II for a symmetry reduced model,

just a one-dimensional line. However, the important part is that this graph will not be

changed in its structure by the action of any operator and only the charges on the edges

and vertices will be modified. As before, representations of SU(2) are associated with all

of the graph’s edges, but for algebraic quantum gravity also trivial representations can

be assigned. So no edges will be removed or added, but trivially ‘charged’ edges can be

charged and, vice versa, previously charged edges may turn into trivially charged ones,

thus mimicking the graph-changing behaviour of loop quantum gravity operators. The

naming abstract graph furthermore does indeed mean that the graph, its edges and ver-

tices, do have no geometrical or even physical meaning — at least until an embedding into

a manifold may be chosen. The Hilbert space structure then is the infinite tensor product

of the edges’ Hilbert spaces L2(SU(2), dµH), where the holonomy and flux operators act

as edge-wise multiplication and differentiation operators, respectively, and also the inner

product is just the edge-wise product of the respective inner products per edge. This

infinite tensor product of Hilbert spaces was introduced by von Neumann in [120] and

first implemented in the framework of loop quantum gravity by Thiemann and Winkler

in [121].

Now, one of the reasons why algebraic quantum gravity was introduced has to do with

the semiclassical realm of quantised general relativity, where it is important to be able to

retrieve classical general relativity in some limit. It turns out that this framework allows
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to introduce such a semiclassical analysis [59], even including computable semiclassical

perturbation theory with error control [60].

This finishes the introduction of theoretical frameworks in the realm of quantum gravity

that are important for the upcoming chapters. The next section treats the last tool that

we need for our considerations of Part III: semiclassical states, also referred to as coherent

states.

2.7 Coherent states

The concept of quantum mechanical states that are as close to classical states as pos-

sible is well-known from quantum mechanics, where they are typically called coherent

states . They also go by the name semiclassical states , stemming from their defining

property. Semiclassical states were first constructed by Schrödinger in 1926, when he

was looking for those states of the quantum mechanical harmonic oscillator that behave

like states of the classical one in order to find the “stetige Übergang von der Mikro- zur

Makromechanik” [122] — i.e. the steady transition from micro- to macro-mechanics. That

coherent states then became mostly known for their application in quantum optics and

quantum electrodynamics is of no surprise, are these fields working on the link between

the classical and the quantum world. Most progress in the theoretical direction is among

others due to Klauder, Sudarshan and Glauber (see [123–125], to state the main articles

for all three of them). From the experimental side, the work of Hanbury Brown and Twiss

[126, 127] was a starting point to investigate different types of light regarding coherence,

followed by many important contributions from others, too. They thereby opened the

door for a new kind of (astronomical) interferometry by using it to measure the angular

diameter of Sirius [128].

We already motivated why the semiclassical realm is important for quantum gravity

— it should recover classical relativity as a limit. For having a tool at hand which can

provide the link between quantum and general relativity, coherent states were studied also

in this field. Based on work of Ashtekar, Lewandowski, Marolf, Mourão and Thiemann in

[129] — who in turn drew upon work of Hall [130], Segal [131] and Bargmann [132] — so-

called complexifier coherent states were introduced by Thiemann in [133]. This approach

has constantly been further developed [62, 121, 134–137] and became the state-of-the-

art framework for coherent states in loop quantum gravity. We note that [62] showed
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that other coherent states constructed for quantum gravity, Varadarajan’s “polymer-like”

coherent states [138–140], are in fact also part of the class of complexifier coherent states

and so are the coherent states of the quantum mechanical oscillator [11, Subsection 11.2.2].

Now, what are the requirements in order to classify a state as a semiclassical or coherent

one? Thiemann uses a two-fold definition in [11]: While one collects three properties that

specify what “semiclassical” is supposed to mean (Definition 11.2.1. therein), the other

one contains four more mathematically necessary ones (Definition 11.2.2.). We loosely

recite them in the following list, where the first three specify “semiclassicality” and the

remaining four are the aforementioned mathematical necessities:

1. The expectation value 〈Ψ|Ô|Ψ〉 of operators in the semiclassical limit are close to

the classical expectation value O of the associated classical observable:∣∣∣∣∣〈Ψ, ÔΨ〉
O

− 1

∣∣∣∣∣� 1 (2.146)

2. The expectation value of the commutator of two operators in the semiclassical limit

are close to the classical expectation value of the Poisson bracket of the associated

classical observables times i~:∣∣∣∣∣∣
〈Ψ,

[
Ô, Ô′

]
Ψ〉

i~{O,O′}
− 1

∣∣∣∣∣∣� 1 (2.147)

3. The fluctuations of the expectation value of operators in the semiclassical limit are

small: ∣∣∣∣∣〈Ψ, Ô2Ψ〉
〈Ψ, ÔΨ〉2

− 1

∣∣∣∣∣� 1 (2.148)

4. Overcompleteness: The coherent states allow for a resolution of unity:

1 =

∫
dµΨ〈Ψ, ·〉 (2.149)

5. The coherent states are eigenstates of an operator â, typically referred to as the

annihilation operator:

âΨ = aΨ (2.150)
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6. Minimal uncertainty: The coherent states fulfil the Heisenberg uncertainty relation

exactly, i.e. with the equal sign:

〈Ψ, (x̂− 〈Ψ, x̂Ψ〉)2Ψ〉 =
1

2
|〈Ψ, [x̂, p̂]Ψ〉| = 〈Ψ, (p̂− 〈Ψ, p̂Ψ〉)2Ψ〉 (2.151)

7. Peakedness: The coherent states, or rather their overlap functions |〈Ψ,Ψ′〉|, are

concentrated in a small cell of phase space

It makes a lot of sense to say that the first three do indeed characterise a “semiclassical”

state: Expectation values should be as close to the classical ones as possible and fluctu-

ations better be small. It is already noted in [11] that these properties are not entirely

independent of each other, as for example (5) leads to (6). Also, one could understand

(7) as a semiclassicality-property, too. Nevertheless, this list is certainly appropriate as

an overview of necessary characteristics for coherent states.

Now, complexifier coherent states get their name by the so-called complexifier that is

crucial for their construction. For the quantum harmonic oscillator coherent states, the

complexifier (operator) reads [11]

Cho :=
p2

2mω
, Ĉho :=

p̂2

2mω
(2.152)

and it can be used to construct the eigenvalue a of the annihilation operator â as well as

â itself:

a =

√
mωx− i√

mω
p

√
2

(2.153)

≡ mω

2

∞∑
n=0

(−i)n

n!
{Cho, x}n and (2.154)

â =
mω

2

∞∑
n=0

(−i)n

n!

[
Ĉho, x̂

]
n

(i~)n
(2.155)

=
mω

2
e−

Ĉho
~ x̂ e

Ĉho
~ =

mω

2
e
t
2

∆ x̂ e−
t
2

∆ (2.156)

Therein, the iterated Poisson bracket {C, x}n is defined via {C, x}0 = x and {C, x}n ={
C, {C, x}n−1

}
and likewise for the iterated commutator [., .]n. Additionally, note that

41



Chapter 2. Framework

p̂2 = −~2∆ and we defined

t :=
~
mω

(2.157)

as the classicality parameter of the quantum harmonic oscillator. For a state ψx(x
′) =

e−
t
~2 Ĉhoδx(x

′), the following eigenvalue equation is at least formally fulfilled, when we

regard the δ-distribution as an eigendistribution of x̂:

âψx(x
′) =

√
mω

2
xψx(x

′). (2.158)

However, we do not yet have âψx = aψx. To achieve this, we analytically extend the state

to the complex plane via x 7→ z = x− i
mω
p and then have indeed âψz = aψz for the new

states ψz that in fact equal the well-known harmonic oscillator coherent states up to a

phase.

The construction of the complexifier coherent states for quantum gravity can now be

carried over quite straightforwardly. However, note that we just stated the complexifier

for the quantum harmonic oscillator — there is no rigorous way of constructing one.

Definition 2.1 of [62] specifies a complexifier as a

• positive definite,

• almost everywhere smooth function with

• dimension of an action, whose

• Hamiltonian vector field does not vanish anywhere and which

• is at least linear in the momentum variable.

Having chosen a complexifier C, one can continue with the construction procedure. While

(x, p) represented position and momentum for the quantum harmonic oscillator before,

we now use (q, p), representing the generalised configuration and conjugate momentum

variable.10 We collect them in the tuple m := (q, p) and then build the complex coordinate

via

Z(m) :=
∞∑
n=0

(−i)n

n!
{C, q}n(m). (2.159)

10Note that we understand these quantities to be smeared appropriately with test functions, thus
allowing us to omit any labels.
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Note that the requirements for the complexifier above guarantee that we can re-obtain q

and p from Z and its complex conjugate Z. Also, with C being required to be positive

definite, we quantise it as a positive, self-adjoint operator Ĉ. With this, the generalised

annihilation operator can be constructed:

Ẑ :=
∞∑
n=0

(−i)n

n!

[
Ĉ, q

]
n

(i~)n
= e−

Ĉ
~ q̂ e

Ĉ
~ , (2.160)

where now the fact that the complexifier is of the dimension of an action makes the

exponential well-defined. We can now proceed towards the state via the intermediate

step

ψq(q
′) := e−

Ĉ
~ δq(q

′), (2.161)

which we now need to analytically continue to the complex plane. For this, the property

of the complexifier to be growing more than linearly in p plays a crucial role as it ensures

a hyper-exponential damping necessary for ψq to be analytic. We finally obtain

Ψm(q′) := ψq(q
′)
∣∣∣
q 7→Z(m)

=
(

e−
Ĉ
~ δq

)
(q′)
∣∣∣
q 7→Z(m)

(2.162)

for the general version of the complexifier coherent states.

For adapting these states to the case of quantum gravity, we refer to [66, Appendix C],

as we will work with their form and notation of the coherent states throughout Chapter III.

Using connections and fluxes, the coherent states read in general

Ψm(A′) =
(

e−
Ĉ
~ δA

)
(A′)

∣∣∣
A 7→Z(m)

. (2.163)

Again, m = (A(x), E(x)) denotes the point in phase space the state is peaked around

and the complexified connection Z(m) is constructed analogously via (2.159). Now,

the δ-distribution we use, δA(A′), is the one of the kinematical Hilbert space Hkin =

L2
(
A, dµAL

)
with support at A.

During our computations of Chapter III, we will use these kind of states for the gauge

group U(1)3. This is an ansatz widely used in the literature (cf. i.a. [63–66, 134, 135]) and

is motivated due to the fact that replacing the actual gauge group SU(2) by U(1)3 does

not change the outcome qualitatively, but simplifies the calculations drastically for U(1)3
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being abelian — and thus making the U(1)3 coherent states eigenstates of the volume

operator [134, 135]. In the notation of [66], the U(1)3 coherent state peaked around

m =
(
A(0)(x), E(0)(x)

)
reads

Ψm(A) =
∏

eI∈E(γ)

i=1,2,3

∑
{niI}∈Z

e−
t
2(niI)

2
+niIp

i
I(m)
[
eiθiI(m)e−iθiI(A)

]niI
. (2.164)

We will describe the U(1)3 framework more detailed in Chapter III and only briefly explain

the above quantities at this stage. Introducing U(1)3 means equipping all edges eI of the

graph γ with three copies of U(1). These are labelled by the three charges niI ∈ Z,

i = 1, 2, 3. The U(1)-holonomy — whose inverse we find as the above square bracket’s

second exponential function — reads

hiI(A) = e
i
∫
eI
Aia(eI(t)) ėaI (t) dt

=: eiθiI(A), (2.165)

and its complexified extension is

hiI(Z(m)) = ep
i
I(m)hiI(A|m) =: ep

i
I(m)eiθiI(A|m). (2.166)

This complexified holonomy contributes the first exponential in the square bracket of the

coherent state. The quantity piI(m) therein constitutes the canonically conjugate variable

to the holonomy hiI(A). Lastly, we note that in contrast to [66], we do not consider the

classicality parameter t to be different for the graph’s edges, but rather use one t for all

of them. This is not a necessary substitution, but keeps the formulae more concise.

We close this introduction of the coherent states with some notes on their limitations.

※ First, these coherent states are kinematical ones, i.e. the action of the constraint

operators does not necessarily vanish. But this indeed makes sense: Recapitulating that

we want to use these semiclassical states to check whether, e.g., the Hamiltonian has the

correct classical limit, such an investigation can not be performed would the action of the

Hamiltonian annihilate the coherent state.

※ Second, their dynamical stability is not guaranteed, meaning that an initial coherent

state does not automatically evolve in time such that it remains a coherent state. This can

be easily motivated if one thinks about the two ways the temporal evolution manifests

for coherent states. On the one hand, we can simply evolve a just created coherent

44



2.7. Coherent states

state. On the other hand, having started with a coherent state peaked around some

m0 =
(
A(0), E(0)

)
, we can use the classical evolution of the system to determine the

phase space point m(t) =
(
A(t), E(t)

)
around which the state should be peaked later on.

Constructing the coherent state according to the complexifier procedure for this future

m(t) does not necessarily result in the same state. However, there is new progress in this

direction [141].

※ Third, the coherent states are only suitable for determining the semiclassical expec-

tation value of phase space functions whose corresponding operators preserve the under-

lying graph. When an operator adds a new edge, there is now way the coherent state can

‘know’ how to approximate the contribution of this edge if it was not already included

in its construction. This is one of the reasons why algebraic quantum gravity seems to

be a suitable framework for semiclassical investigations as all operators act in a graph

preserving manner there.
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Part II

Gowdy models
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Chapter 3

Motivation

Note that the content of this part, Part II, was already published in [1]. The text of this

article has been reused.

Loop quantum gravity provides a framework in which an analogue of the classical

Einstein’s equations can be formulated in the quantum theory. In the canonical approach,

one either considers solving the constraints in the quantum theory in the context of a Dirac

quantisation [78] or one solves the constraints already at the classical level by means of

constructing suitable Dirac observables and subsequently quantises the physical phase

space only. In full loop quantum gravity, both approaches yield quantum Einstein’s

equations that are very complex and whose general solutions are not known [11–13, 142].

This is not too surprising because already at the classical level the Einstein’s equations

without further assumptions are highly complex and constructing exact solutions is a very

non-trivial task. However, exact solutions can be constructed in simpler setups where

additional symmetry assumptions are implemented such as for instance in the context of

cosmology or black holes. If we consider symmetry reduction in the context of a quantum

gravity theory, one can either symmetry reduce already at the classical level and then

quantise or one can quantise full general relativity and afterwards access the symmetry

reduced sector in the quantum theory. While the latter strategy is presumably the one

that is able to capture more of the quantum nature of the symmetry reduced models

[47, 143–145], it is also technically more involved than first symmetry reducing at the

classical level and quantising only afterwards.
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Chapter 3. Motivation

For this reason, we follow the first approach in this part and consider a symmetry re-

duction of classical models that experience a Gowdy symmetry [146]. We furthermore

specialise to the polarised case where the two commuting Killing vectors are orthogonal.

Compared to other symmetry reduced homogeneous models in cosmology, such models

similar to spherically symmetric models have the property that they are still a field theory

with a non-trivial spatial diffeomorphism constraint and thus are closer to the situation

we face in full general relativity. Hence, understanding these models allows to investi-

gate properties of these models that might be absent in the homogeneous cosmological

models in general. As we still have to deal with a constrained theory after symmetry

reduction, we have again the option to either apply a Dirac or reduced quantisation of

the symmetry reduced model where we follow the latter in this work. The quantisation of

Gowdy models has been extensively discussed in the existing literature [147–151] starting

after Gowdy’s seminal paper [146]. Further work in terms of (complex) Ashtekar vari-

ables can be found in [152–155]. The quantisation programme could be completed in

the context of a gravitational wave quantisation in geometrodynamics in [156], see also

[157] for a further extension of this model. A modified quantisation of the model in [156]

was later considered in order to ensure that the dynamics is unitary [158–162]. All these

models have in common that even if some of them start with Ashtekar variables the final

quantum model does not involve a quantisation inspired from loop quantum gravity but

considers techniques from geometrodynamics instead after gauge fixing the models. As a

consequence, these models fail to resolve the singularity present in the classical Gowdy

model. In [163, 164], a loop quantisation of the polarised T3 Gowdy has been introduced

in the framework of a Dirac quantisation. However, due to the complicated form of the

constraint operators, the quantisation programme could not be completed for that model.

Progress in this directions was obtained using a hybrid quantisation procedure where the

polymetric quantisation is applied to the homogeneous sector and a Fock quantisation to

the inhomogeneous one [165–167]. A uniqueness result for the chosen Fock quantisation

exists [168] if one demands unitary implementation of the dynamics as well as invariance

under the group of constant translations on the circle. This approach has turned out to

be also useful in the context of cosmological perturbations, see for instance [169–171] and

[172] for a recent review on the hybrid quantisation approach.

Because we will apply a reduced phase space quantisation for which we choose Gaussian

dust as the reference matter [118, 119], we cannot consider the usual Gowdy solution that

is a vacuum solution of Einstein’s equations. Spacetimes with Gowdy symmetry coupled
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to matter have been considered in the literature, see for instance [173] for a coupling

to a massless scalar field. For a corresponding quantum model see [174] and [175] for

work on Einstein–Vlaslov spacetimes with Gowdy symmetry extending former results

for the vacuum case [176, 177]. An introduction to the Einstein–Vlasov system can be

found in [178] and references therein. As discussed in [179], dust can be understood as

a distributional solution of the Vlasov equation and in this sense can be embedded in

these systems. However, the specific characteristic properties of the matter component

matter as for instance the results in [180] show where the properties of the spacetimes are

different if we couple generic Vlasov matter or dust respectively in the context of finding

a global foliation of the spacetime. For the purpose of this work, we consider general

relativity coupled to Gaussian dust and then impose a Gowdy symmetry on the total

system including the geometric as well as the matter degrees of freedom.

This setup allows us to construct Dirac observables associated with the geometric de-

grees of freedom in the framework of the relational formalism along the lines of [109, 111–

114, 181–183] that play the role of the elementary phase space variables in the reduced

phase space. Their dynamics is generated by a so-called physical Hamiltonian whose

Hamiltonian density in the Gaussian dust model is just given by the geometric contribu-

tion to the Hamiltonian constraint that is itself a Dirac observables and non-vanishing

in the physical sector of the model [118, 119]. Further reference matter models as well

as their applications in the classical theory can for instance be found in [184–188] and

applications in the quantum theory are for example discussed in [44, 61, 118, 189–193].

Dirac observables for vacuum Gowdy spacetimes have for instance also been discussed

in [194]. In the context of the relational framework, this approach can be understood

as choosing so-called geometrical clocks (or reference fields) constructed from purely ge-

ometric degrees of freedom. In contrast, we choose matter clocks in this work instead.

As a consequence, we start with additional degrees of freedom compared to [194], where

in the end one independent Dirac observables exists, while here we end up with three

independent ones. Furthermore, the construction of [194] is based on ADM variables,

whereas here we will work with Ashtekar–Barbero variables in order to be able to apply

a loop quantisation to the model later on.

Loop quantisations that do not apply a hybrid approach of vacuum polarised T3 Gowdy

spacetimes in the context of a Dirac quantisation have been considered in [164, 195], where

the latter model assumes a further rotational symmetry that simplifies the setup com-

pared to [164]. The difference to the work here is that we consider a reduced phase space
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quantisation in the context of loop quantum gravity (LQG) as well as the algebraic quan-

tum gravity (AQG) framework for the Gaussian dust model. In both cases the physical

Hamiltonian needs to be quantised in a graph-preserving manner in order to respect the

classical symmetries of the physical Hamiltonian. This yields a different regularisation

of the operator compared to the one presented in [164], with in general different proper-

ties accordingly. Possible graph-preserving quantisations have been discussed in [196] in

the context of spherically symmetric models and have also been mentioned in the final

discussion of [164] as possible alternative regularisations. However, since in both works

one uses Dirac quantisation with the corresponding constraint algebra in these models, a

graph-modifying quantisation is motivated for the same reason we have in full LQG.

Because we quantise the physical Hamiltonian in the AQG framework, a detailed discus-

sion on how Gowdy states can be represented in the AQG framework is needed, allowing

to implemented the action of the physical Hamiltonian operator on this class of states

properly. The dynamics of the physical states is encoded in a Schrödinger-like equation

and finding its generic solution is beyond the scope of this part. Nevertheless, the quan-

tisation programme can be completed in this model here in the sense that the quantum

dynamics is formulated at the level of the physical Hilbert space. The purpose of this

work is to present how spacetimes with a Gowdy symmetry can be formulated in the

AQG framework. The results presented here can be taken as the starting point for de-

riving effective models directly from the quantum theory because the graph-preserving

regularisation chosen here is advantageous if semiclassical computations are to be per-

formed as already existing semiclassical techniques can be directly used and need not be

adapted to graph-modifying operators — which is still an open and difficult questions in

full generality. As first steps towards applying the model, we compute the explicit form

of the Schrödinger-like equation in the AQG framework and discuss a possible ansatz for

the solution that can be considered for graph-preserving operators but will not work for

graph-modifying ones as used in [164]. We further discuss how such an ansatz can be

used to obtain zero volume eigenstates.
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Chapter 4

Classical Setup: formulation of the

model with polarised T3 Gowdy

symmetry

In this chapter, we briefly review the Gaussian dust model as well as its symmetry reduc-

tion to a model having a T3 Gowdy symmetry.

4.1 Brief review of the classical reduced phase space

using Gaussian dust

We aim at quantising the reduced phase space of general relativity formulated in terms

of Ashtekar variables and symmetry reduced to the polarised Gowdy model. For this

purpose, we choose as a first step some reference matter that we dynamically couple to

gravity and that allows us to construct the corresponding elementary Dirac observables in

the reduced phase space. For the reference matter we choose the Gaussian dust model [119]

that was for instance considered in [118] in the context of loop quantum gravity. Within

the Gaussian dust model, one couples eight additional scalar fields to general relativity,

leading to a system that involves second class constraints. As shown in [118, 119], after

a reduction with respect to the second class constraints one obtains a first class system

and next to gravity four additional dust fields — denoted by T and Sj with j = 1, 2, 3

— that can be used as reference fields for the Hamiltonian and spatial diffeomorphism
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constraints respectively. In this model, these constraints take the form

Ctot = C +
P − Eaj E

b
kδ
jk

det(E)
T,aCb√

1 +
Eaj E

b
kδ
jk

det(E)
T,aT,b

, Ctot
a = Ca + PT,a + PjS

j
,a.

Here, C and Ca denote the gravitational contribution to the total Hamiltonian and spatial

diffeomorphism constraints1 in terms of the Ashtekar variables Aja, E
a
j , while P, Pj are the

momenta conjugate to T, Sj. Following [118], one solves Ctot for P and Ctot
a for Pj and

then writes down an equivalent set of constraints that now is Abelian. The latter allows

to directly apply the known observable map [112, 113, 181] in the framework of the

relational formalism [109, 111] and construct the corresponding Dirac observables for the

gravitational degrees of freedom denoted as OAja and OEaj . The algebra of the observables

is given by

{OAja(τ, σ),OEbk(τ, σ
′)} =

κ

2
δbaδ

j
kδ

(3)(σ − σ′), (4.1)

where we use κ := 16πGNewton.

Using the properties of the observable map as shown in [114], for a phase space function

f(A,E) we further have

Of(A,E)(τ,σ) ≈ f(OA(τ, σ), . . . ,OE(τ, σ)), (4.2)

where in general only a weak equality holds — i.e. one that only holds on the so-called

constraint surface, the hypersurface on which all constraints are fulfilled. Hence, it is suf-

ficient to construct Dirac observables for the elementary geometric phase space variables.

To obtain their explicit form, one chooses T as the temporal reference field for the Hamil-

tonian constraint and Sj as spatial reference fields for the diffeomorphism constraint.

These observables depend on physical temporal and spatial coordinates τ and σj respec-

tively and Of (τ, σj) has the interpretation that it returns the values of the phase space

function f when the reference fields T, Sj take the values τ, σj underlying the relational

formulation of the model.

1Note that we use different letters for these constraints during the treatment of the Gowdy model. This
is done to be in line with the literature we want to compare our results to. Like introduced in Section 2.5,
one typically uses C... for the constraints in the framework of reduced phase space quantisation and the
index 0 or no index for the Hamiltonian constraint specifically.
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Because all Dirac observables Of by construction commute with the canonical Hamil-

tonian, their dynamics in τ is generated by a so-called physical Hamiltonian Hphys via

∂Of (τ, σ)

∂τ
= {Of (τ, σ), Hphys}, (4.3)

where for the Gaussian dust model the physical Hamiltonian reads

Hphys =

∫
S

d3σOC (4.4)

and the integral is taken over the manifold coordinatised by the spatial dust reference

fields, also called the dust space S. This setup will be our starting point for the symmetry

reduction in Section 4.2. In order to keep a more compact notation, we continue using

(A, X, Y, E , Ex, Ey), (Cθ, C) and (θ, x, y) instead of (OA,OX , . . . ,OEy), (OCθ ,OC) and(
σθ, σx, σy

)
in the remaining part of this work.

4.2 Brief review of the symmetry reduction to a mo-

del with polarised T3 Gowdy symmetry

We start by introducing the basic elementary observables of the Gowdy model in loop

quantum gravity along the seminal work of [152, 155, 197] carried over to the reduced phase

space considered here, while we follow [163, 164, 198] the closest concerning notation.

Denoting the two Killing vector fields by ∂
∂x

and ∂
∂y

and the remaining cyclic variable

by θ, we decompose the connection and its conjugate momentum accordingly:

A = Aiθ(θ)τi dθ + Aiρτidx
ρ, (4.5)

E = Eθ
i (θ)τi∂θ + Eρ

i (θ)τi∂ρ. (4.6)

Therein, we sum over x and y via ρ and xx := x, xy := y, while i takes the values 1, 2

and 3. Additionally, τi = − i
2
σi are the generators of su(2), with the Pauli matrices σi.

The unpolarised Gowdy model, where the Killing vector fields are not demanded to be

orthogonal, is then obtained via the choice

Eθ
I = Eρ

3 = 0 and
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AIθ = A3
ρ = 0, (4.7)

where the capital I is now representing 1 and 2. With this set of variables, the Gauß con-

straints G1 and G2 are trivially satisfied. The same holds for the geometric contributions

to the spatial diffeomorphism constraints Cx and Cy. Within the relational formalism

this is taken into account by the fact that we couple only two additional dust fields T, Sθ

in the symmetry reduced sector, both depending on the θ coordinate only and thus there

is no contribution from Px, Py in the total diffeomorphism constraints. The remaining

geometric contributions to the total constraints involving gravity and dust at this stage

read

G3 =
4π2

κβBI

(
∂θE

θ
3 + ε3J

KAJρE
ρ
K

)
=:

1

κ′βBI

(
∂θE

θ
3 + ε3J

KAJρE
ρ
K

)
, (4.8)

Cθ =
1

κ′βBI

(
Eρ
I

(
∂θA

I
ρ

)
+ ε3J

KAJρE
ρ
KA

3
θ − κβBIA

3
θG3

)
, (4.9)

C =
1

2κ′
√

detE

(
2A3

θE
θ
3A

J
ρE

ρ
J + AJρE

ρ
JA

K
σ E

σ
K − AKρ E

ρ
JA

J
σE

σ
K − 2ε3J

K
(
∂θA

J
ρ

)
Eρ
KE

θ
3

−
(
1 + β2

BI

)(
2K3

θE
θ
3K

J
ρE

ρ
J +KJ

ρE
ρ
JK

K
σ E

σ
K −KK

ρ E
ρ
JK

J
σK

J
σE

σ
K

))
,

(4.10)

where we have introduced detE := Eθ
3(Ex

1E
y
2 − Ex

2E
y
1 ) and κ′ := κ

4π2
. The latter absorbs

an additional factor of 4π2 that stems from smearing over the two variables x and y the

model does not depend on anymore. In that sense, we solved already two of the integrals

in (4.4).

We then proceed towards our final description via two canonical transformations. For

the first one, we perform a polar decomposition of the AIρ and Eρ
I according to

A1
x =: Ax cos(α + β), A1

y =: −Ay sin
(
ᾱ + β̄

)
, Ex

1 =: Ex cos β, Ey
1 =: −Ey sin β̄,

A2
x =: Ax sin(α + β), A2

y =: Ay cos
(
ᾱ + β̄

)
, Ex

2 =: Ex sin β, Ey
2 =: Ey cos β̄, (4.11)

and as a result define

X := Ax cosα, P β := −ExAx sinα,

Y := Ay cos ᾱ, P̄ β := −EyAy sin ᾱ,

A :=
1

βBI

A3
θ, E := Eθ

3 . (4.12)
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Then, the second canonical transformation reads

ξ := β − β̄, P ξ :=
P β − P̄ β

2
,

η := β + β̄, P η :=
P β + P̄ β

2
, (4.13)

resulting in the five pairs of canonically conjugate variables (A, E), (X,Ex), (Y,Ey),

(η, P η) and (ξ, P ξ). Since the remaining diffeomorphism constraint Ctot
θ and the Hamil-

tonian constraint Ctot are reduced at the classical level by means of constructing Dirac

observables, the only left first class constraint is the Gauss constraint G3. The latter re-

duced two degrees of freedom in phase space such that for the unpolarised Gowdy model

we end up with four physical degrees of freedom.

The polarised T3 Gowdy model can now be constructed by taking a look at the line

element up to this point,

ds2 =
ExEy

Eθ
3

cos ξ dθ2 +
Eθ

3E
y

Ex cos ξ
dx2 +

Eθ
3E

x

Ey cos ξ
dy2 − 2Eθ

3

sin ξ

cos ξ
dxdy, (4.14)

and demanding the dxdy-term to vanish. This can be realised by imposing the constraints

ξ(θ) ≈ 0 and (4.15)

ξ̇(θ) ≈ 0, (4.16)

where the latter guarantees the stability of the former. We get

χ(θ) := ξ̇(θ) = 2P ξ + Eθ
3 ∂θ ln

Ey

Ex
, (4.17)

which fixes the conjugate momentum P ξ and also results in χ̇(θ) ≈ 0 with no further

ado. These polarisation constraints together with the Gauß constraint

G3 =
1

κ′βBI

(∂θE + P η) (4.18)

complete the set of constraints. The symmetry reduced physical Hamiltonian then has

the form

Hphys =

∫
S1

dθ C(θ), (4.19)
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where S1 denotes the symmetry reduced dust space. The geometric contributions to the

Hamilton constraint in terms of the Dirac observables now read

C =− 1

κ′
√

detE

(
1

β2
BI

(XExY Ey +AE(XEx + Y Ey) + E∂θη(XEx + Y Ey))

+
1

4
∂θE −

1

4

(
E∂θ ln

Ey

Ex

)2
)

+

+
1

κ′
∂θ

(
E∂θE√
detE

)
− κ′

4

G3
2

√
detE

− βBI

2
∂θ

G3√
detE

, (4.20)

where detE = EExEy. Note that the other two integrations were already dealt with

before, in (4.10). For completeness, we also present the geometric contribution to the

diffeomorphism constraint in the symmetry reduced Gowdy model that takes the form

Cθ =
1

κ′βBI

(
Eρ
I

(
∂θA

I
ρ

)
+ ε3J

KAJρE
ρ
KA

3
θ − κβBIA

3
θG3

)
(4.21)

but does not contribute to the physical Hamiltonian in the case of the Gaussian dust

model.

When it comes to the Gauß constraint, we may solve it already at this (classical) level.

Noticing that η is just translated via the action of the Gauß constraint, we can impose

η ≈ 0. With the Gauß constraint G3 and η being second class, we proceed with the Dirac

bracket and make the two constraints vanish strongly. For all other quantities that do

not depend on η, the Dirac bracket reduces to the Poisson bracket and nothing more has

to be done.2 Following this route, we end up with three independent pairs of elementary

Dirac observables: (A, E), (X,Ex) and (Y,Ey). Alternatively, as shown in [196, 197], the

Gauß constraint can also easily be solved at the quantum level. In this case, operators

associated with (η, P η) will be involved in the kinematical Hilbert space and after solving

the Gauß constraint the subspace of the kinematical Hilbert space no longer contains

these quantum degrees of freedom.

2Note that G3 = 0 allows to solve P η for variables independent of η and P η.
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Chapter 5

Quantisation of the reduced LQG

model with polarised T3 Gowdy

symmetry

5.1 The physical Hilbert space in reduced LQG

As discussed in the former chapter, the physical phase space of the polarised Gowdy model

involves three independent pairs of canonically conjugate Dirac observables after solving

the Gauß constraint: (A, E), (X,Ex) and (Y,Ey). Imposing the polarisation condition

eliminated (ξ, P ξ) and, accordingly, fulfilling the Gauß constraint made (η, P η) vanish.

Since the algebra of these Dirac observables is given by the standard Poisson bracket we

can use the same representations that was used in [164, 196] for the kinematical Hilbert

space for the physical Hilbert space:

Hphys = L2(AS1×T 2 , µ0),

where AS1×T 2 denotes the space of generalised connections on T 3 ' S1 × T 2 and µ0 is

the analogue of the Ashtekar–Lewandowski measure in full LQG. AS1×T 2 is constructed

as follows: We consider AS1 and its projective limit over graphs Γ in S1, which are just

non-intersecting unions of edges en that correspond to arcs here. A graph Γ is then given

by Γ = ∪iei. We denote by V (Γ) the graph’s set of vertices, which is just the union of all

end points of the ei, and by E(Γ) its set of edges. For a given graph Γ we can understand
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the space AΓ
S1 as a set of maps from E(Γ) to U(1)|E(Γ)|, that is one copy of U(1) for each

edge of the graph. For a fixed edge we have

AS1 : Γ→ U(1), e 7→ h(ke)
e (A) := exp

(
i
ke
2

∫
e

A
)
, (5.1)

where the U(1) charges ke ∈ Z and, for later convenience, a factor 1
2

is introduced. Using

that the set of graphs is a partially ordered directed set and introducing the projections

PΓΓ′ : AΓ
S1 → AΓ′

S1 ,A 7→ PΓΓ′(AΓ) := AΓ
∣∣
Γ′

for Γ′ ≤ Γ one can derive the set of generalised

connections AS1 as the projective limit over graphs in S1, that is

AS1 = lim←−
Γ⊂S1

AΓ
S1 .

X and Y , in turn, are scalar fields and in order to still obtain a similar description, we

follow [164, 197] and define so-called point holonomies [199]

h(µv)
v (X) := exp

(
i
µv
2
X(v)

)
and (5.2)

h(νv)
v (Y ) := exp

(
i
νv
2
Y (v)

)
(5.3)

sitting on the graph’s vertices v with corresponding charges µv, νv ∈ R and with

X(v), Y (v) ∈ R. For each fixed vertex v, the space C(RBohr) of continuous almost periodic

functions on the Bohr compactification of the real line is used. The space of generalised

connections AT 2 can be obtained again as a projective limit, this time over the vertex set

V (Γ). For a fixed graph Γ, the space AΓ
T 2 involves maps from V (Γ) to (RBohr×RBohr)

|V (Γ)|.

For a fixed vertex v, we have AT 2 : V (Γ)→ RBohr × RBohr with v 7→ (X(v), Y (v)). Then

we have AS1×T 2 = lim←−
Γ⊂S1

AΓ
S1 ⊗AΓ

T 2 .

The basis states of Hphys are then labelled by a graph Γ — defining the sets of the

vertices V (Γ) and the edges E(Γ) —, the U(1)-charges ke (collected in k) as well as the

point holonomies’ charges µv and νv (collected in µ and ν respectively) [164]:

|Γ, k, µ, ν〉 :=
∏

e∈E(Γ)

exp

(
i
ke
2

∫
e

A
) ∏
v∈V (Γ)

exp
(

i
µv
2
X(v)

)
exp
(

i
νv
2
Y (v)

)
. (5.4)

We now use Figure 5.1 — showing exemplarily a five-valent Gowdy state in reduced

LQG where we work with embedded graphs — to introduce the states’ composition and
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5.1. The physical Hilbert space in reduced LQG

notation. The dashed miniature lines in Figure 5.1 visualise the fact that the point

holonomies are actually not along edges.

v1

k1
e1

µ1

ν1

v2

k2

e2

µ2
ν2

v3

k3 e3

µ3

ν3

v4

k4

e4

µ4

ν4 v5

k5

e5

µ5
ν5

Figure 5.1: An embedded five-valent graph with charges ke on the edges and point
holonomies labelled by µv, νv on the vertices, serving as a basis element for Gowdy

states. To keep the notation more compact, we used kevI =: kI , µvI =: µI and νvI =: νI .

The physical Hilbert space Hphys can also be written as a direct sum of the Hilbert

spaces HΓ associated to each graph Γ ∈ S1:

Hphys =
⊕

Γ

HΓ. (5.5)

The holonomy operators act on the basis states (5.4) via multiplication:

ĥ(k0)
eI

(A)|Γ, k, µ, ν〉 = exp

(
i
k0

2

∫
eI

A
)
|Γ, k, µ, ν〉 = |Γ, keI + k0, µ, ν〉, (5.6)

ĥ(µ0)
vI

(X)|Γ, k, µ, ν〉 = exp
(

i
µ0

2
X(vI)

)
|Γ, k, µ, ν〉 = |Γ, k, µvI + µ0, ν〉, (5.7)

ĥ(ν0)
vI

(Y )|Γ, k, µ, ν〉 = exp
(

i
ν0

2
Y (vI)

)
|Γ, k, µ, ν〉 = |Γ, k, µ, νvI + ν0〉. (5.8)

Therein, we used the abbreviation keI + k0 =: k|keI=keI+k0 within the state and likewise

for µ and ν.
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The according flux operators are implemented as follows. First, we have [164]

Ê(θ)|Γ, k, µ, ν〉 = −iβBI`P
2 δ

δA(θ)
|Γ, k, µ, ν〉 =

βBI`P
2

2

ke+(θ) + ke−(θ)

2
|Γ, k, µ, ν〉, (5.9)

where ke+(θ) is the U(1)-charge of the edge that is outgoing at θ and ke−(θ) the one of the

incoming edge. If θ does not coincide with a vertex, the two are the same and the factor
1
2

vanishes.

For the x- and y-flux, we first of all smear them over intervals I,

F̂x,I :=

∫
I
Êx and (5.10)

F̂y,I :=

∫
I
Êy, (5.11)

to finally obtain [164]

F̂x,I |Γ, k, µ, ν〉 =
βBI`P

2

2

∑
v∈V (Γ∩I)

µv|Γ, k, µ, ν〉 and (5.12)

F̂y,I |Γ, k, µ, ν〉 =
βBI`P

2

2

∑
v∈V (Γ∩I)

νv|Γ, k, µ, ν〉. (5.13)

Therein, we collected all contributions of vertices that lie in the union of I and Γ. We

get a factor 1
2

if an endpoint of I coincides with a vertex. We will later, however, use

intervals that contain one vertex at most, as this simplifies the transition towards the

AQG framework presented in Chapter 6.

Before approaching the dynamics and the Hamiltonian constraint, we shortly illustrate

how to deal with the Gauß constraint had it not been solved on the classical level already.

Then, the pair (η, P η) would still be part of the set of variables. Similar to the other

variables, the point holonomy

h(λv)
v (η) := exp(iλvη(v)) , λv ∈ Z , (5.14)

as well as the flux

Fη,I :=

∫
I
P η (5.15)
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are defined. The corresponding holonomy operator ĥ
(λv)
v (η) acts multiplicatively on the

basis states, whose composition (5.4) is now additionally enriched with the holonomies

exp(iλvη(v)) — denoted as |Γ, k, µ, ν, λ〉. Accordingly, the corresponding flux operator

F̂η,I acts via differentiation:

F̂η,I |Γ, k, µ, ν, λ〉 = βBI`P
2
∑

v∈V (Γ∩I)

λv|Γ, k, µ, ν, λ〉. (5.16)

We can then use these quantities to quantise the Gauß constraint (4.18) by means of

choosing a suitable partition P(ε) of S1 in terms of intervals In such that S1 = ∪nIn with

In : [θn− ε
2
, θn + ε

2
]. We can then obtain a regularisation of the Gauß constraint à la [164]

Gε
3 =

1

κ′βBI

∑
In∈P(ε)

∫
In

(∂θE + P η) dθ (5.17)

=
1

κ′βBI

∑
In∈P(ε)

(
E
(
θn +

ε

2

)
− E

(
θn −

ε

2

)
+ Fη,In

)
(5.18)

(5.19)

and in the limit when we send the regulator to zero we rediscover the classical Gauß

constraint, that is

G3 =
1

κ′βBI

∫
S1

(∂θE + P η) dθ = lim
ε→0

Gε
3. (5.20)

The corresponding Gauß constraint operator is then obtained as

Ĝ3 := lim
ε→0

1

κ′βBI

∑
In∈P(ε)

(
Ê
(
θn +

ε

2

)
− Ê

(
θn −

ε

2

)
+ F̂η,In

)
. (5.21)

Note that this Gauß operator agrees in its symmetric definition with the one used in [197],

while it differs in this aspect to the one used in [164].

In the limit where we send the regulator to zero, also known as the infinite refinement

limit, we can choose the partition fine enough such that at most one vertex is contained

in In. Then, the action of this Gauß constraint operator on the basis states reads [164]

Ĝ3|Γ, k, µ, ν, λ〉 =
`P

2

κ′

∑
v∈V (Γ)

(
kev − kev−

2
+ λv

)
|Γ, k, µ, ν, λ〉. (5.22)
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Therein and from now on, we use as convention for the notation of the k-labels that we

always work with outgoing edges and therefore run through the vertices with respective

superscripts. This means that the k-label of the ingoing edge at vertex v is the same as

that of the outgoing edge at the left-neighbouring vertex v−.

We can now solve the above Gauß constraint by imposing the following vertex-wise

condition:

λv = −
kev − kev−

2
, ∀ v ∈ V (Γ). (5.23)

As λv ∈ Z, the difference of the k-charges has to fulfil kev − kev− ∈ 2Z.

Note that from choosing an infinitely fine partition as above follows that if there is

indeed a vertex within interval In, there will be none in any of the two neighbouring

intervals. Hence, in the action of the flux Ê shown in (5.9), the two terms add up the

same charge as it is just one edge that gets split up by θn − ε
2
, or θn + ε

2
respectively,

and not two different ones from one in- and one outgoing edge. This then leads to (5.22).

We will later also show the implementation of a Gauß constraint operator in the AQG

framework in Chapter 6, but nevertheless also there stick to the strategy of solving the

Gauß constraint already on the classical level. This is foremost due to the fact that it can

be solved straightforwardly, eliminating also one pair of canonically conjugate variables

(η, P η). So there really is no need to carry them along any further from this point onwards.

5.2 Quantum dynamics in the reduced LQG model

While the quantisation of Heucl and Hlor is performed along the lines of [164], the transition

to the AQG formalism for the Brown–Kuchar model and the master constraint respectively

can be found in [200, 201]. Again, in terms of notation, we stay close to [163, 164] also used

in [198]. As before, we first regularise the classical expression for the physical Hamiltonian

Hphys in order to be able to define the corresponding operator on Hphys.

First of all and following [164, 196], we start with introducing the SU(2)-valued holonomies,

which we can later use to reformulate Heucl and Hlor:

hθ(I) := exp

(
τ3k0

∫
I
A
)

= cos

(
k0

2

∫
I
A
)

+ 2τ3 sin

(
k0

2

∫
I
A
)
, (5.24)
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hx(θ) := exp(µ0τxX) = cos
(µ0

2
X
)

+ 2τx sin
(µ0

2
X
)

and (5.25)

hy(θ) := exp(ν0τyY ) = cos
(ν0

2
Y
)

+ 2τy sin
(ν0

2
Y
)
. (5.26)

Therein, we used

τx(θ) := cos β(θ)τ1 + sin β(θ)τ2 and

τy(θ) := − sin β(θ)τ1 + cos β(θ)τ2, (5.27)

where the su(2) basis τi = − i
2
σi, i = 1, 2, 3, with the Pauli matrices σi satisfies

tr τi = 0 and

τiτj = −1

4
δij1SU(2) +

1

2
εijkτk. (5.28)

One can show the equality of the holonomies’ splits into sine and cosine by using the

easily verifiable identities

τx
2 = τy

2 = −1

4
1SU(2). (5.29)

Having the action of the basic operators at hand, we can proceed towards the quantisation

of the physical Hamiltonian operator. But not before we address the volume operator,

which will serve as a crucial ingredient of the Hamiltonian constraint operator. We follow

again closely [164, 198]. As starting point, the volume of an arc I is classically given by

the volume functional

V (I) := 4π2

∫
I

dθ
√
|detE| = 4π2

∫
I

dθ
√
|EExEy|. (5.30)

Now, similar to the discussion of the Gauß constraint above, we choose a partition P(ε)I

of I into intervals In such that we have I = ∪nIn. This allows us to rewrite the volume

functional as

V (I) = 4π2 lim
ε→0

∑
In∈P(ε)I

∫
In

dθ
√
|EExEy|(θ) = 4π2 lim

ε→0

∑
In∈P(ε)I

∫ θn+ ε
2

θn− ε2

dθ̃

√
|EExEy|(θ̃),

(5.31)

where we choose the intervals In sufficiently small, that is In = [θn − ε
2
, θn + ε

2
]. The
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integral can then be replaced by a Riemann sum involving ε
√
|EExEy|(θn), yielding for

the regularised volume functional V ε(I)

V ε(I) = 4π2
∑

In∈P(ε)I

√
|E||εEx||εEy|(θn)

= 4π2
∑

In∈P(ε)I

√√√√|E(θn)|

∣∣∣∣∣
∫ θn+ ε

2

θn− ε2

Ex

∣∣∣∣∣
∣∣∣∣∣
∫ θn+ ε

2

θn− ε2

Ey

∣∣∣∣∣
= 4π2

∑
In∈P(ε)I

√
|E(θn)||Fx,In||Fy,In|. (5.32)

From the first to the second line, we interpreted the two products including ε as approx-

imations of infinitesimal integrals and then reintroduced the smeared fluxes Fx,In ,Fy,In
— now with intervals labelled by n.

We then define the corresponding volume operator as

V̂(I) = 4π2 lim
ε→0

∑
In∈P(ε)I

√∣∣∣Ê(θn)
∣∣∣∣∣∣F̂x,In∣∣∣∣∣∣F̂y,In∣∣∣. (5.33)

In the infinite refinement limit, we have at most one θn in each interval In and hence

the action of V̂(I) on the basic states states (5.4) in the physical Hilbert space is given

by [164]

V̂(I)|Γ, k, µ, ν〉 =
∑

v∈V (Γ∩I)

V̂v |Γ, k, µ, ν〉, (5.34)

where the sum involves all vertices of the graph Γ that lie in the interval I and we have

V̂v |Γ, k, µ, ν〉 =
4π2

√
2

(
βBI`P

2

2

) 3
2√∣∣kev + kev−

∣∣|µv||νv| |Γ, k, µ, ν〉. (5.35)

We can now turn to the regularisation and quantisation of the physical Hamiltonian

Hphys. For this, we construct the Hamilton constraint by first integrating C over the dust

manifold S:

Hphys :=

∫
S1

dθC(θ) =

∫
S1

dθ(Ceucl + Clor) =: Heucl + Hlor. (5.36)
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We thereby introduced the convenient split into a so-called Euclidean and Lorentzian

part:

Ceucl := C
(1)
eucl + C

(2)
eucl + C

(3)
eucl

C
(1)
eucl := − 1

κ′β2
BI

1√
detE

(XExY Ey) (5.37)

C
(2)
eucl := − 1

κ′β2
BI

1√
detE

(AEXEx) (5.38)

C
(3)
eucl := − 1

κ′β2
BI

1√
detE

(AEY Ey) (5.39)

Clor := C
(1)
lor + C

(2)
lor + C

(3)
lor

C
(1)
lor := − 1

4κ′
(∂θE)2

√
detE

(5.40)

C
(2)
lor :=

1

4κ′
E2

√
detE

(
∂θE

x

Ex
− ∂θE

y

Ey

)2

(5.41)

C
(3)
lor :=

1

κ′
∂θ

(
E∂θE√
detE

)
. (5.42)

We will now quantise Hphys, starting with the Euclidean part and continuing with the

Lorentzian one. The final physical Hamiltonian operator will then be taken to be the

symmetric combination that is Ĥphys = 1
2

(
Ĥeucl +(Ĥeucl)

† + Ĥlor +(Ĥlor)
†
)

as can be seen

in (5.78).

Note that the τx, τy can also be used to reformulate

Exτx = Ex
1 τ1 + Ex

2 τ2 and Eyτy = Ey
1τ1 + Ey

2τ2 (5.43)

of the x and y part of E(θ) = E(θ)τ3∂θ + Ex(θ)τx(θ)∂x + Ey(θ)τy(θ)∂y and as they just

result from a rotation of τ2 and τ3 in the 2-3-plane — which also explains (5.29) —, it

furthermore still holds that

[τx, τy] = τ3, [τy, τ3] = τx and [τy, τ3] = −τx. (5.44)

A difference to the already existing quantisations of the Hamiltonian constraint in

[164, 195] is that here we consider the physical Hamiltonian that at the classical level is

invariant under spatial diffeomorphisms. If we aim at carrying over these symmetries also

to the corresponding physical Hamiltonian operator, then, as pointed out in [58, 118] for
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the usual embedded LQG framework, we need to quantise Hphys in a graph-preserving

way. Going back to the decomposition of the physical Hilbert space Hphys in terms of

a direct sum of the individual graph Hilbert spaces HΓ shown in (5.5), this means that

the physical Hamiltonian operator Ĥphys will preserve each HΓ separately, similar to the

situation in full reduced LQG [61]. This can be achieved by using the notion of minimal

loops originally introduced in [63, 64] that we will adapt to the symmetry reduced case of

the polarised Gowdy model here. As discussed in [61], this has the consequence that the

quantum theory involves infinitely many conserved charges that are absent in the classical

theory and furthermore the physical Hilbert space is still non-separable in this model.

5.2.1 Quantisation of the Euclidean part of the physical Hamil-

tonian

We notice that Ceucl = C
(1)
eucl + C

(2)
eucl + C

(3)
eucl consists of three similarly structured terms.

Hence, we illustrate the regularisation procedure and the quantisation in detail for the

first contribution C
(1)
eucl of (5.37) only and then are more brief for the remaining two C

(2)
eucl

and C
(3)
eucl since they can be obtained in a similar manner. As discussed in detail below, the

regularisation chosen here is different from the one in [164] to ensure the graph-preserving

property of the physical Hamiltonian operator Ĥphys. Such a choice of regularisation is,

however, closer to the way how Hphys will be quantised in the AQG framework discussed

in Chapter 6.

We start with choosing a partition of S1 and replacing the integral over S by a cor-

responding Riemann sum of intervals In = [θn − ε
2
, θn + ε

2
] with S1 = ∪nIn according

to

H
(1)
eucl =

∫
S1

dθ C
(1)
eucl = − 1

κ′β2
BI

∫
S1

dθ
X(θ)Ex(θ)Y (θ)Ey(θ)√

detE(θ)

= − 1

κ′β2
BI

lim
ε→0

∑
In∈P(ε)

∫
In

dθ
X(θ)Ex(θ)Y (θ)Ey(θ)√

detE(θ)

= − 1

κ′β2
BI

lim
ε→0

∑
In∈P(ε)

ε
X(θn)Ex(θn)Y (θn)Ey(θn)√

detE(θn)
,

(5.45)

where we used in the last step that the intervals of the partition have length ε and can be
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chosen to be sufficiently small. Note that we could restrain ourselves to the integral of θ

over S1 since all quantities only depend on θ. Also, we want to point out again our abuse

of notation that is using σθ = θ for the (cyclic) dust coordinate σθ on the dust manifold

S1.

As the next step and following [164], we use that we can regularise the summand on

the RHS of (5.45) à la

1

4π2
tr
((
hxhyhx

−1hy
−1 − hyhxhy−1hx

−1
)
hθ
{
hθ
−1, V (In)

})
(5.46)

=
κ′βBI

2
k0µ0ν0ε ·

XY ExEy

√
detE

(θn) +O(ε2, µ2
0, ν

2
0),

where O(ε2, µ2
0, ν

2
0) denotes all terms that involve at least second powers of either ε, µ0

or ν0 respectively. The expression in (5.46) transforms the term we started with into a

straightforwardly quantisable expression of holonomies and the volume functional. This

replacement neglects terms of second and higher orders in ε and holds for small X, Y,
∫
I A

as we will see, where the smallness of the latter quantity corresponds to small intervals

I. Furthermore, tr denotes the SU(2) trace and the LHS depends of course on θ as well

— we just refrain from writing down this dependency when the formulae become more

elongate. Along the path after (5.30), restricting ourselves to infinitesimal intervals In
around θn of length ε involved in the partition P(ε) allows us to use the following form

for the volume functional:

V (In) := 4π2

∫
In

dθ
√
|EExEy|(θ) = 4π2ε

√
|EExEy|(θn)

= 4π2
√
|E||εEx||εEy|(θn) = 4π2

√
|E|
∣∣∣∣∫
In
Ex

∣∣∣∣∣∣∣∣∫
In
Ey

∣∣∣∣. (5.47)

Then, we can compute the Poisson bracket of the θ-holonomy and the (infinitesimal)

volume functional, which implies the Thiemann identity:

hθ
{
hθ
−1, V (In)

}
= −κ

′βBI

2
k0τ3

√∣∣∣∫In Ex

∣∣∣∣∣∣∫In Ex

∣∣∣√
|E|

= −κ
′βBI

2
k0τ3

∣∣∣∫In Ex
∣∣∣∣∣∣∫In Ex

∣∣∣
1

4π2
V (In)

= −κβBI

2
k0τ3ε

|Ex||Ex|√
detE

(θn) +O(ε2). (5.48)

Note that we differ here from [164] by a factor of 4π2, while it is in line with [196].
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The formula above already provides Ex and Ey for the RHS of (5.46). Next, we apply

the approximation of small X, Y and
∫
In A to the sine and cosine formulation of the

holonomies (5.24), (5.25) and (5.26):

hθ(In) = 1 + τ3k0

∫
In
A+O(ε2) = 1 + τ3k0εA(θn) +O(ε2), (5.49)

hx(θn) = 1 + τx(θn)µ0X(θn) +O(µ2
0) and (5.50)

hy(θn) = 1 + τy(θn)ν0Y (θn) +O(ν2
0). (5.51)

With this, we get

hxhyhx
−1hy

−1 − hyhxhy−1hx
−1 = 2τ3µ0ν0X(θn)Y (θn) +O(µ2

0, ν
2
0), (5.52)

where O(µ2
0, ν

2
0) means terms that involve at least second powers of either µ0 and/or ν0

and taking the SU(2)-trace of this expression multiplied by (5.48) yields the result of

(5.46). Note that it sufficed to expand the holonomies’ trigonometric functions up to

first order due to the multiplicative and subtractive structure of (5.52)’s LHS. Proceeding

to the second order in the cosines only yields precisely these terms multiplied by the

remaining holonomies’ zeroth order terms as second order contribution. But these are

then cancelled by the difference of the two products and hence there is no second order

contribution other than the one above. Hence, the regularised expression for the first

contribution denoted by H
(1),ε
eucl is given by

H
(1),ε
eucl = − 8π2

κ2β3
BIk0µ0ν0

∑
In∈P(ε)

tr
((
hxhyhx

−1hy
−1 − hyhxhy−1hx

−1
)
hθ
{
hθ
−1, V (In)

})
.

(5.53)

The corresponding operator Ĥ
(1)
eucl is obtained in the limit where the regulator is removed

and where we also take into account that we can define the operator separately for each

graph Hilbert space HΓ, yielding

Ĥ
(1)
eucl = lim

ε→0
Ĥ

(1),ε
eucl = lim

ε→0

⊕
Γ

Ĥ
(1),ε
eucl,Γ =

⊕
Γ

Ĥ
(1)
eucl,Γ, (5.54)
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with

Ĥ
(1)
eucl,Γ :=

8π2i

`P
2κk0µ0ν0β3

BI

∑
v∈V (Γ)

tr
((
ĥxĥyĥx

−1ĥy
−1 − ĥyĥxĥy−1ĥx

−1
)
ĥθ

[
ĥθ
−1, V̂v

])
,

(5.55)

where the operator only acts on vertices due to the fact that the volume operator is

involved — V̂v denotes the volume operator at vertex v as given in (5.35).

Continuing with the remaining two terms of C
(2)
eucl and C

(3)
eucl in (5.38) and (5.39) respec-

tively, we first of all state the corresponding Thiemann identities

hx
{
hx
−1, V (In)

}
= −κβBI

2
µ0τx(θn)

E|Ey|√
detE

(θn) +O(µ2
0) and (5.56)

hy
{
hy
−1, V (In)

}
= −κβBI

2
ν0τy(θn)

E|Ex|√
detE

(θn) +O(ν2
0), (5.57)

which again constitute one part of the terms’ regularisation. In analogy to (5.52), we then

find

hθhxhθ
−1hx

−1 − hxhθhx−1hθ
−1 = 2k0µ0ετy(θn)A(θn)X(θn) +O(ε2, µ2

0) and (5.58)

hyhθhy
−1hθ

−1 − hθhyhθ−1hy
−1 = 2k0ν0ετx(θn)A)θnY (θn0) +O(ε2, ν2

0). (5.59)

Combining (5.56) with (5.59) and (5.57) with (5.58), we obtain

1

4π2
tr
((
hyhθhy

−1hθ
−1 − hθhyhθ−1hy

−1
)
hx
{
hx
−1, V (In)

})
=
κ′βBI

2
k0µ0ν0ε ·

AY EEy

√
detE

(θn) +O(ε2, µ2
0, ν

2
0) and (5.60)

1

4π2
tr
((
hθhxhθ

−1hx
−1 − hxhθhx−1hθ

−1
)
hy
{
hy
−1, V (In)

})
=
κ′βBI

2
k0µ0ν0ε ·

AXEEx

√
detE

(θn) +O(ε2, µ2
0, ν

2
0). (5.61)

However, to stick closer to [164, 198, 200, 201], we will use slightly different expressions.

This is due to our choice of η ≈ 0, which is not considered amongst the literature. Without

fixing η, (5.38) and (5.39) are modified according to A 7→ A + ∂θη and in order to be

able to regularise the involved derivatives of η one has to work with shifted holonomies of
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the form hx,ε = hx(θn + ε).1 However, the latter create new vertices in a given graph and

thus cannot be used if we require the final physical Hamiltonian operator to be graph-

preserving. As discussed above, in the Gaussian dust model this requirement is dictated

by the classical symmetries of the physical Hamiltonian that we would like to implement

also in the quantum model. Hence, if we aim at regularising in terms of shifted holonomies

as well, then we need to consider a shift to the next vertex, that is hx,ξ = hx(θn+ξ) where

ξ can be chosen to be ξ = ±1 depending on whether the shift goes into the left or right

direction from θn. That we only involve the next-neighbouring vertices corresponds to an

analogue choice of a minimal loop that carries over to the choice of a minimal shift here.

Now, in the former case where the shift involved the regularisation parameter ε, it was

ensured that in the limit where we send the regulator to zero the size of the shift can

be assumed to be very tiny. This is no longer given if we associated the shift with the

two neighbouring points that will be identified with the corresponding vertices of a given

graph in the quantum theory. Then only for those graphs where the edge length between

two neighbouring vertices can be assumed to be tiny will the regularised expression yield

a good approximation of the corresponding classical expression. Note that this causes no

severe issue here because we will follow the same strategy as used in the AQG framework

[58], although in a slightly different context. For the quantisation of the Euclidean part of

the physical Hamiltonian part we do not require that the regularised expression reproduces

the classical expression directly when we send the regulator to zero. Instead, we call an

operator suitably quantised if for a chosen set of semiclassical states the corresponding

expectation values reproduce in lowest order the correct classical expression. To judge

this in detail, one needs to perform a semiclassical analysis of the relevant operators.

However, even if we do not perform a detailed semiclassical computation here, using the

existing results in [133–135] as well as [2, 3] we can already draw some conclusions here if

we restrict our discussions to the lowest order only. A suitable choice of coherent states

that we can consider here for each classical canonical pair are U(1) complexifier coherent

states that were introduced in [133]. Their expectation values as well as their peakedness

property have been analysed in [134, 135]. From these results we know that in the lowest

order of the semiclassical parameter, corresponding to the classical limit where ~ is sent to

zero, the expectation value of the holonomy operator agrees with the classical holonomy

and the same holds also for point holonomies. Furthermore, using the results of [2, 3],

1Note that the formulae involving shifted holonomies are furthermore geometrically motivated. They
approximate the corresponding curvature within the loops described by the holonomies. Hence the
evaluation on θ or θ + ε — depending on whether one travelled in θ-direction before or not.
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we also know that the expectation values of the operator ĥ[ĥ−1, V̂ ] agrees in the lowest

non-vanishing order of the semiclassical parameter with its classical counterpart. This

motivates to define for the two remaining parts of the Euclidean physical Hamiltonian

the following operators:

Ĥ
(2)
eucl =

⊕
Γ

Ĥ
(2)
eucl,Γ and Ĥ

(3)
eucl =

⊕
Γ

Ĥ
(3)
eucl,Γ, (5.62)

with

Ĥ
(2)
eucl,Γ =

8π2i

`P
2κk0µ0ν0β3

BI

1

2

∑
v∈V (Γ)
ξ=±1

tr
((
ĥyĥθĥy,ξ

−1ĥθ
−1 − ĥθĥy,ξĥθ−1ĥy

−1
)
ĥx

[
ĥx
−1, V̂v

])
(5.63)

and

Ĥ
(3)
eucl,Γ =

8π2i

`P
2κk0µ0ν0β3

BI

1

2

∑
v∈V (Γ)
ξ=±1

tr
((
ĥθĥx,ξĥθ

−1ĥx
−1 − ĥxĥθĥx,ξ−1ĥθ

−1
)
ĥy

[
ĥy
−1, V̂v

])
,

(5.64)

where again the sum runs over all vertices v, we used κ′~ = `P
2 and we included an addi-

tional factor of 1
2

because we considered ξ = ±1. Further, ĥx,ξ = ĥx(vξ) and ĥy,ξ = ĥy(vξ)

where v+ and v− denote the neighbouring vertices of v to the right and left, respectively.

Taking into account that these coherent states satisfy a resolution of identity together with

their peakedness property [134, 135] as well as the results of semiclassical expectation val-

ues for U(1) coherent states of square root operators in terms of Kummer functions [2, 3],

we can conclude that in the lowest order of the semiclassical parameter the operators Ĥ
(2)
eucl

and Ĥ
(3)
eucl will reproduce the correct classical limit, that is

〈Ψt
(A,E,X,Ex,Y,Ey) | Ĥ

(I=2,3)
eucl |Ψt

(A,E,X,Ex,Y,Ey)〉 =

= 4π2

∫
S1

dθ C
(I)
eucl(A(θ), E(θ), X(θ), Ex(θ), Y (θ), Ey(θ)) +O(t, ε, µ0, ν0),

where one needs to choose a suitable set of coherent states such that the associated

embedded graphs Γ in S1 involved in the definition of Ψt
(A,E,X,Ex,Y,Ey) approximate S1

well enough when the sum over all vertices of the graphs is considered. We would like

to emphasise that we can use former results on semiclassical computations here only
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because we quantised the physical Hamiltonian in a graph-preserving manner — suitable

semiclassical states for graph-modifying operators in LQG are still an open and difficult

question. Note that because we do not perform a detailed semiclassical computation here,

we cannot make any statement about the terms involved in higher orders than the lowest

order one. These can only be determined by computing the semiclassical expectation

value in detail which, however, will not be part of this work. As discussed above, working

with shifted holonomies is motivated by the fact that one needs to regularise the derivative

of η being involved when the Gauß constraint is not solved at the classical level already.

Since these formulae are still correct for η ≈ 0, we will use these from now on, too, and

thus enabling an easier transition between the two approaches. Note that for η ≈ 0 we

have τx(θ) = τ1 and τy(θ) = τ2 because the θ-dependent coefficients in (5.27) are either

zero or one. Furthermore, this choice ensures that the operator obtained from following

a Dirac quantisation procedure for the Gauß constraint and the one from the reduced

quantisation considered here have the same regularisation. Because in the reduced case

we could also choose a regularisation where the holonomy is located at the same vertices

for all involved holonomies, we realise that such a choice is another example where Dirac

and reduced quantisation would not yield the same final form of the operator similar to

the situation discussed in [202], although the latter shows a stronger difference between

the two cases.

Altogether, this results in

Ĥeucl,Γ =
8π2i

`P
2κk0µ0ν0β3

BI

∑
v∈V (Γ)

PΓ tr
((
ĥxĥyĥx

−1ĥy
−1 − ĥyĥxĥy−1ĥx

−1
)
ĥθ

[
ĥθ
−1, V̂v

]
+

1

2

∑
ξ=±1

(
ĥyĥθĥy,ξ

−1ĥθ
−1 − ĥθĥy,ξĥθ−1ĥy

−1
)
ĥx

[
ĥx
−1, V̂v

]
+

1

2

∑
ξ=±1

(
ĥθĥx,ξĥθ

−1ĥx
−1 − ĥxĥθĥx,ξ−1ĥθ

−1
)
ĥy

[
ĥy
−1, V̂v

])
PΓ,

(5.65)

where we introduced in addition PΓ : Hphys → HΓ, which are orthogonal projections that

ensure that the operator is indeed graph-preserving if for instance two holonomies along a

given edge combine to the identity. As before, V̂v denotes the volume operator at vertex v,

(5.35). This finishes our discussion on the graph-preserving quantisation of the Euclidean

part of the physical Hamiltonian.
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5.2.2 Quantisation of the Lorentzian part of the physical Hamil-

tonian

Turning our attention to the quantisation of Hlor, we start again with the first part.

According to (5.40) and choosing again a partition of S1 such that S1 = ∪nIn with

In : [θn − ε
2
, θn + ε

2
], we have

H
(1)
lor = − 1

4κ′

∫
S1

dθ
(∂θE)2

√
detE

(θ)

= − 1

4κ′
lim
ε→0

∑
In∈P(ε)

∫
In

dθ
(∂θE)2

√
detE

(θ)

= − 1

4κ′
lim
ε→0

∑
In∈P(ε)

(ε∂θE(θn))2

ε
√

detE(θn)

= − 1

4κ′
lim
ε→0

∑
In∈P(ε)

(E(θn + ε)− E(θn))2

1
4π2
V (In)

. (5.66)

The last step then also used (5.47) for the volume of a tiny interval In around θn and

E(θn + ε) = E(θn) + ε∂θE(θn) +O(ε2) for the derivative expression.

The remaining task consists in dealing with the inverse volume involved in (5.66). For

this purpose, we consider the Thiemann identity in (5.48) as well as the two analogue

expressions in (5.56) and (5.57) and use the quantity Z(I) introduced already in [164] to

obtain

Z(In) := εabc tr
(
ha
{
ha
−1, V (In)

}
hb
{
hb
−1, V (In)

}
hc
{
hc
−1, V (In)

})
=

3

2

(
κβBI

2

)3

k0µ0ν0V (In) +O(µ2
0, ν

2
0 , ε

2). (5.67)

Following [164], we can then derive

Zr(In) := εabc tr
(
ha
{
ha
−1, V r(In)

}
hb
{
hb
−1, V r(In)

}
hc
{
hc
−1, V r(I)

})
=

3

2

(
κβBI

2

)3

r3k0µ0ν0V
3r−2(In) +O(µ2

0, ν
2
0 , ε

2)

= r3V 3r−3(In)Z(In) +O(µ2
0, ν

2
0 , ε

2), (5.68)
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which allows us to introduce the following decomposition of unity:

(1)l =

(
16

3(κβBI)
3k0µ0ν0

Z(In)

V (In)

)l
=

(
16

3(κβBI)
3k0µ0ν0

)l(
Zr(I)

r3V 3r−2(In)

)l
, (5.69)

with l ∈ R. We can now use this identity to eliminate the inverse volume in (5.66).

Setting

(3r − 2)l = −1 ⇒ r =
2

3
− 1

3l
(5.70)

results in an inverse volume on the LHS of (5.69), which we then insert into (5.66) to

obtain a regularised expression H
(1),ε
lor of the form:

H
(1),ε
lor := −4π2

4κ′

(
16

3(κβBI)
3r3k0µ0ν0

)l ∑
In∈P(ε)

(E(θn + ε)− E(θn))2Zr
l(In)

∣∣
r= 2

3
− 1

3l

. (5.71)

As for the Euclidean part, the corresponding operator Ĥ
(1)
lor is obtained in the limit where

the regulator is removed. We take again the infinite refinement limit where at most on

vertex is in each In and where we also take into account that we can define the operator

separately for each graph Hilbert space HΓ, yielding

Ĥ
(1)
lor = lim

ε→0
Ĥ

(1),ε
lor = lim

ε→0

⊕
Γ

Ĥ
(1),ε
lor,Γ =

⊕
Γ

Ĥ
(1)
lor,Γ (5.72)

with

Ĥ
(1)
lor,Γ|Γ, k, µ, ν〉 =− 4π2

4κ′

(
−i

~

)3l(
16

3(κβBI)
3r3k0µ0ν0

)l
·

·
∑

v∈V (Γ)

((
kev+ − kev−

))2
Ẑr,v

l
∣∣∣
r= 2

3
− 1

3l

|Γ, k, µ, ν〉, (5.73)

where kev+ is the label attached to the outgoing edge of the vertex v+ and kev− is the

label attached to the edge incoming at the vertex v — i.e. outgoing from vertex v−.

Furthermore, we used that the operator Ẑr,v [164] given by

Ẑr,v := εabc tr
(
ĥa

[
ĥa
−1, V̂

r

v

]
ĥb

[
ĥb
−1, V̂

r

v

]
ĥc

[
ĥc
−1, V̂

r

v

])
(5.74)

does not change the labels of the state |Γ, k, µ, ν〉 that it acts on.

76



5.2. Quantum dynamics in the reduced LQG model

In similar ways, we obtain the respective expressions for the second and third Lorentzian

part:

Ĥ
(2)
lor,Γ|Γ, k, µ, ν〉 =

4π2

4κ′

(
−i

~

)3l(
16

3(κβBI)
3r2

3k0µ0ν0

)l
∑

v∈V (Γ)

(
kev + kev−

)4(
µvνv+ − νvµv+

)2
Ẑr2,v

l
∣∣∣
r2= 2

3
− 5

3l

|Γ, k, µ, ν〉 (5.75)

Ĥ
(3)
lor,Γ|Γ, k, µ, ν〉 =

4π2

κ′

(
−i

~

)3l(
16

3(κβBI)
3r3k0µ0ν0

)l
∑

v∈V (Γ)

((
kev+ + kev

)(
kev++ − kev

)
Ẑr,v+

l
∣∣∣
r= 2

3
− 1

3l

−

−
(
kev + kev−

)(
kev+ − kev−

)
Ẑr,v

l
∣∣∣
r= 2

3
− 1

3l

)
|Γ, k, µ, ν〉 (5.76)

where v++ denotes the subsequent vertex after v+. Note that we evaluate Ẑ within the

second contribution Ĥ
(2)
lor,Γ on a different value of r2 = 2

3
− 5

3l
.

With that, the Lorentzian contribution to Ĥphys reads

Ĥlor =
⊕

Γ

Ĥlor,Γ =
⊕

Γ

Ĥ
(1)
lor,Γ + Ĥ

(2)
lor,Γ + Ĥ

(3)
lor,Γ (5.77)

and the physical Hamiltonian in the reduced loop quantum gravity Gowdy model finally

takes the following form:

Ĥphys =
⊕

Γ

Ĥphys,Γ =
1

2

⊕
Γ

(
Ĥeucl,Γ +(Ĥeucl,Γ)† + Ĥlor,Γ + (Ĥlor,Γ)†

)
. (5.78)

This finishes the discussion on the quantisation of the physical Hamiltonian of the Gowdy

model in the reduced LQG framework.
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Chapter 6

Quantisation of the model with

polarised T3 Gowdy symmetry

within Algebraic Quantum Gravity

As discussed in the previous Chapter 5, we needed to quantise the physical Hamiltonian

in a graph-preserving way in order to carry over its classical symmetries to the quantum

theory. In the case of reduced LQG, this corresponds to a quantisation that preserves

each graph Hilbert space Hγ separately, yielding infinitely many conserved charges in the

quantum theory that are absent in the classical theory. An alternative framework for the

quantisation of these kind of operators where the graph-preserving feature of operators

are implemented in a slightly different context is the algebraic quantum gravity (AQG)

approach introduced in [58] and combined with a reduced phase space quantisation for

full LQG in [61].

6.1 The physical Hilbert space in AQG

Here, we want to follow this quantisation approach in the symmetry reduced case of Gowdy

models. One of the main difference is that AQG considers only one abstract infinite graph

α, whereas we had to include infinitely many finite embedded graphs Γ for reduced LQG.

The underlying Hilbert space in AQG is von-Neumann’s infinite tensor product Hilbert

space denoted by HITP so that the physical Hilbert space in the AQG framework is
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Gowdy symmetry within Algebraic Quantum Gravity

Hphys = HITP. The topology of the abstract graph is chosen to define the corresponding

AQG model and here this means that for the analogue of a Gowdy state’s LQG-graph

like the one of Figure 5.1, we need to rearrange it to a line with the same number of

charged vertices vI , see Figure 6.1. To the right of every vertex v, the outgoing edge ev is

attached and hence, the respective incoming edge at vertex v is ev− . The charges kev , µv

and νv are then assigned correspondingly, with the only non-straightforward assignment

being the one of edge ev0 , incoming at v1, which we have to charge with kevN , the charge

at the edge evN , in order to preserve the cyclic structure (cf. Fig. 5.1). All other edges

and vertices are trivially charged and therefore do not contribute when operators such as

the fluxes act on them. Note that Figure 6.1 shows again dashed miniature loops at the

charged vertices representing the point holonomies in order to emphasise that they are

not in fact holonomies along edges.

k5
v1

k1

e1

µ1ν1

v2

k2

e2

µ2ν2

v3

k3

e3

µ3ν3

v4

k4

e4

µ4ν4

v5

k5

e5

µ5ν5

Figure 6.1: An abstract infinite AQG-graph, corresponding to the embedded one of
Figure 5.1, with five vertices on which two point holonomies sit and six charged edges,
where the most leftward one — the copy of k5 — ensures the state’s periodicity. Here,

to keep the notation more compact, we used kevI =: kI , µvI =: µI and νvI =: νI .

In general, dynamical operators can be carried over from the embedded LQG frame-

work to AQG if they are spatially diffeomorphism invariant. In the case of the Gowdy

model, this corresponds to operators that involve integrals over the dust manifold S1. All

operators — including the physical Hamiltonian — will be implemented graph-preserving

by construction, but one of the differences to the reduced LQG case is that in AQG we

allow trivial representations on the edges of the infinite abstract graph α.

Following the approach in [58], the holonomies, states and fluxes are introduced as

follows. To each edge of the abstract infinite graph α we associate an U(1) element

similar to the holonomy in (5.1) for reduced LQG, but with the difference that here we

do not express the U(1) element in terms of an integral along the edges but we associate

to a given edge e of the abstract graph α the U(1) element

h(ke)
e (A) := exp

(
i
ke
2
Ae
)
, with Ae ∈ R. (6.1)
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Given this, we can define the analogue of the basis state in LQG shown in (5.4) now in

the AQG framework as

|α, k, µ, ν〉 :=
∏

e∈E(α)

exp

(
i
ke
2
Ae
) ∏
v∈V (α)

exp
(

i
µv
2
Xv

)
exp
(

i
νv
2
Yv

)
, (6.2)

where for the point holonomies we introduced the notation Xv := X(v), Yv := Y (v). The

holonomy operators act on the AQG basis states |α, k, µ, ν〉 in the following way:

ĥ(k0)
eI

(A)|α, k, µ, ν〉 = exp

(
i
k0

2
AeI
)
|α, k, µ, ν〉 = |keI + k0, µ, ν〉, k0 ∈ Z (6.3)

ĥ(µ0)
vI

(X)|α, k, µ, ν〉 = exp
(

i
µ0

2
XvI

)
|α, k, µ, ν〉 = |α, k, µvI + µ0, ν〉, µ0 ∈ R (6.4)

ĥ(ν0)
vI

(Y )|α, k, µ, ν〉 = exp
(

i
ν0

2
YvI

)
|α, k, µ, ν〉 = |α, k, µ, νvI + ν0〉, ν0 ∈ R. (6.5)

Because in the AQG model there is only one abstract graph α, we will from now on

neglect the label for the graph and denote the basis states just by |k, µ, νv〉. Note that

we can recover the classical expression for the U(1) holonomy from the operator ĥ
(k0)
eI (A)

by considering semiclassical states that encode in addition to their classical labels in the

AQG framework also information about how the abstract graph α is embedded into a

given spatial manifold from which an integral along the embedded edges involved in the

classical holonomy can be rediscovered, see the results in [59, 60] for the case of the master

constraint operator.

The main difference for the fluxes, in turn, is that they can now only act on vertices as

there are no embedded edges at hand anymore. Therefore, the elementary flux operator

within AQG read

Êv|k, µ, ν〉 =
βBI`P

2

2

kev + kev−
2

|k, µ, ν〉, (6.6)

F̂x,Iv |k, µ, ν〉 =
βBI`P

2

2
µv|k, µ, ν〉 and (6.7)

F̂y,Iv |k, µ, ν〉 =
βBI`P

2

2
νv|k, µ, ν〉, (6.8)

where kev is the at vertex v outgoing edge’s U(1)-charge and kev− the incoming one’s. Note

that this trivial continuation from LQG to AQG is possible by choosing the occurring

smearing intervals in such a way that they contain one vertex at most: the interval Iv
of (6.7) and (6.8) includes solely vertex v.
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The volume operator can be transferred to AQG as straightforwardly as for the basic

operators themselves and we get

V̂ :=
∑

v∈V (α)

V̂v := 4π2
∑

v∈V (α)

√∣∣∣Êv∣∣∣∣∣∣F̂x,Iv ∣∣∣∣∣∣F̂y,Iv ∣∣∣, (6.9)

with its action on the AQG states (6.2)

V̂v |k, µ, ν〉 =
4π2

√
2

(
βBI`P

2

2

) 3
2√∣∣kev + kev−

∣∣|µv||νv|∣∣k, µ, ν〉. (6.10)

To complete the discussion on the Gauß constraint, we also briefly present how to

implement a Gauß constraint operator in AQG. This can be done quite directly as well

by considering the LQG Gauß constraint (5.21) that had the form

Ĝ3 =
1

κ′βBI

lim
ε→0

∑
In∈P(ε)

(
Ê
(
θn +

ε

2

)
− Ê

(
θn −

ε

2

)
+ F̂η,In

)
, with θn ∈ In. (5.21)

In AQG, we need to implement the operator such that it acts on the vertices of the

abstract graph α only and thus we associate θn − ε
2

with vertex v−, the left neighbouring

vertex of v, and, accordingly, θn + ε
2

with vertex v+, the right neighbouring vertex of the

vertex v. This way, we obtain the following AQG version of the Gauß constraint operator:

Ĝ3|k, µ, ν〉 =
1

κ′βBI

∑
v∈V (α)

(
Êv+ − Êv− + F̂η,Iv

)
|k, µ, ν〉

=
`P

2

κ′

∑
v∈V (α)

(
kev+ + kev − kev− − kev−−

4
+ λv

)
|k, µ, ν〉, (6.11)

where v−− denotes the second vertex to the left of v and we also had to insert the AQG

version of the flux conjugate to η:

Fη,ev |k, µ, ν, λ〉 = βBI`P
2λv|k, µ, ν, λ〉. (6.12)

In contrast to the interval In in LQG before, the edge ev in AQG can only contain one

vertex at most, so there is only one contribution within the action of Fη,ev . The action of

the Gauß constraint on the basis states |k, µ, ν, λ〉, in turn, does differ more from its LQG

counterpart because for the part involving the flux operators Ê here the two neighbouring
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vertices of v are involved. The solution of the AQG Gauss constraint being the equivalent

to (5.23) in LQG then reads

λv = −
kev+ + kev − kev− − kev−−

4
, ∀ v. (6.13)

We see that solving λv to obtain solutions to the Gauß constraint does also constrain kev .

In contrast to the LQG case where only the charges of the neighbouring edges of v were

involved, we now have a condition depending on the two after next neighbouring ones as

well. And without contributions from same edges adding up, as it was the case in LQG,

the denominator remains to be 4. This finishes the considerations on the Gauß constraint

and we close with the remark that for the work at hand, the Gauß constraint will be

solved on the classical level.

6.2 Dynamics of the model with polarised T3 Gowdy

symmetry in AQG

In the following subsection, we will briefly discuss how the physical Hamiltonian operator

that was so far quantised in reduced LQG can be implemented in the AQG Gowdy

quantum model.

6.2.1 Quantisation of the Euclidean part of the physical Hamil-

tonian within AQG

We can now straightforwardly transfer the Euclidean part of the physical Hamiltonian

operator in (5.65) to AQG by means of the previously stated AQG holonomy operators

(6.3), (6.4) and (6.5) as well as the volume operator (6.9). For this purpose, we define the

following class of operators Ô
θ/x/y

r,v for r ∈ R, v ∈ V (α) according to

Ô
θ

r,v := cos
Aev
2

V̂
r

v sin
Aev
2
− sin

Aev
2

V̂
r

v cos
Aev
2
, (6.14)

Ô
x

r,v := cos
Xv

2
V̂
r

v sin
Xv

2
− sin

Xv

2
V̂
r

v cos
Xv

2
and (6.15)

Ô
y

r,v := cos
Yv
2

V̂
r

v sin
Yv
2
− sin

Yv
2

V̂
r

v cos
Yv
2
, (6.16)
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where we used the decomposition of the holonomies into sines and cosines (equations

(5.24), (5.25) and (5.26)) offering an alternative, more concise description of the final

operator. Now we can substitute the LQG expression involved in the first part of the

Euclidean part in (5.55) by the following AQG analogue:

tr
((
ĥxĥyĥx

−1ĥy
−1 − ĥyĥxĥy−1ĥx

−1
)
ĥθ

[
ĥθ
−1, V̂v

])
AQG7−→ −2 sinXv sinYvÔ

θ

1,v. (6.17)

The second and third part of the Euclidean part of the physical Hamiltonian shown

in (5.63) and (5.64) entail similar terms with shifted holonomies. Hence, their AQG

expressions are of the following form

tr
((
ĥyĥθĥy,ξ

−1ĥθ
−1 − ĥθĥy,ξĥθ−1ĥy

−1
)
ĥx

[
ĥx
−1, V̂v

])
AQG7−→ −4 sin

Yvξ
2

cos
Yv
2

sinAevÔ
x

1,v

(6.18)

tr
((
ĥθĥx,ξĥθ

−1ĥx
−1 − ĥxĥθĥx,ξ−1ĥθ

−1
)
ĥy

[
ĥy
−1, V̂v

])
AQG7−→ −4 sin

Xvξ

2
cos

Xv

2
sinAevÔ

y

1,v

(6.19)

Therein, Xvξ = X(vξ) and Yvξ = Y (vξ), where vξ is v+ for ξ = 1 and v− for ξ = −1

denoting the two neighbouring vertices of v to the right and left respectively.

With this, we can write the Euclidean part of the Hamilton operator in AQG in a form

that is more concise and allows for a more compact evaluation of the corresponding action

on the Gowdy states later:

Ĥeucl =
∑

v∈V (α)

Ĥeucl,v, (6.20)

with

Ĥeucl,v := − 4i

κ′`P
2k0µ0ν0β3

BI

[
sinXv sinYvÔ

θ

1,v+ (6.21)

+
1

2

∑
ξ=±1

(
2 sin

Yvξ
2

cos
Yv
2

sinAevÔ
x

1,v + 2 sin
Xvξ

2
cos

Xv

2
sinAevÔ

y

1,v

)]
.
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6.2.2 Quantisation of the Lorentzian part of the physical Hamil-

tonian within AQG

With all the contained quantities depending on holonomies, fluxes or the volume, we can

quantise the Lorentzian part of the physical Hamiltonian that was discussed for the case

of reduced LQG in 5.2.2 straightforwardly and also directly in the AQG framework. We

then obtain for the first part the following expression

Ĥ
(1)

lor =
∑

v∈V (α)

Ĥ
(1)

lor,v, (6.22)

with

Ĥ
(1)

lor,v =: −4π2

4κ′

(
−i

~

)3l(
16

3(κβBI)
3r3k0µ0ν0

)l(
Êv+ − Êv

)2

Ẑr,v
l
∣∣∣
r= 2

3
− 1

3l

,

(6.23)

where we introduced

Ẑr,v := εabc tr
(
ĥa

[
ĥa
−1, V̂v

]
ĥb

[
ĥb
−1, V̂v

]
ĥc

[
ĥc
−1, V̂v

])
= −12Ô

x

r,vÔ
y

r,vÔ
θ

r,v (6.24)

as the equivalent of (5.74). In the semiclassical limit here the intervals corresponding to

In in the reduced LQG case will be vertex-labelled intervals Iv.

This procedure can now be applied to the second and third part of the Lorentzian part

of the Hamiltonian, (5.41) and (5.42), that also act on the vertices only and thus we just

present the operators for the individual vertices v. As the second part contains derivatives

of Ex and Ey, the according fluxes F̂x,I and F̂y,I will appear. Ultimately, the results read

Ĥ
(2)

lor,v = 4π2

4κ′

(−i
~

)3l
(

16
3(κβBIr2)3k0µ0ν0

)l
Êv4
(
F̂x,IvF̂y,Iv+ − F̂y,IvF̂x,Iv+

)2

Ẑr2,v
l
∣∣∣
r2= 2

3
− 5

3l

and

(6.25)

Ĥ
(3)

lor,v = 4π2

κ′

(−i
~

)3l
(

16
3(κβBIr)

3k0µ0ν0

)l(
Êv+

(
Êv++ − Êv+

)
Ẑr,v+

l − Êv
(
Êv+ − Êv

)
Ẑr,v

l
)∣∣∣

r= 2
3
− 1

3l

.

(6.26)

In accordance with [198, 200, 201], the second part was quantised in a different manner

than in [164]. While the latter introduced the inverse flux to cope with the denominators
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Ex and Ey appearing in (5.41), the alternative route leading to the quantisation above

uses

1

Ex
=

EyE(√
detE

)2 and
1

Ey
=

ExE(√
detE

)2 , (6.27)

leading to the volume squared as denominator. Therefore, we can insert a new (1)l for

which

r2 =
2

3
− 5

3l
(6.28)

holds and resolve the inverse volume squared in the same manner as for the inverse volume

before. Lastly, we set µ0 = 1 = ν0.

Finally, the physical Hamiltonian operator now reads altogether

Ĥphys =
∑

v∈V (α)

Ĥphys,v =
1

2

∑
v∈V (α)

(
Ĥeucl,v +(Ĥeucl,v)

† + Ĥlor,v +(Ĥlor,v)
†
)
, (6.29)

with

Ĥeucl + Ĥlor = Ĥeucl + Ĥ
(1)

lor + Ĥ
(2)

lor + Ĥ
(3)

lor =
∑

v∈V (α)

(
Ĥeucl,v + Ĥ

(1)

lor,v + Ĥ
(2)

lor,v + Ĥ
(3)

lor,v

)

=
∑

v∈V (α)

{
− 4i

κ′`P
2k0µ0ν0β3

BI

[
sinXv sinYvÔ

θ

1,v+

+
1

2

∑
ξ=±1

(
2 sin

Yvξ
2

cos Yv
2

sinAevÔ
x

1,v + 2 sin
Xvξ

2
cos Xv

2
sinAevÔ

y

1,v

)]
− 4π2

4κ′

(
16i

3`P6β3
BIr

3k0µ0ν0

)l(
Êv+ − Êv

)2

Ẑr,v
l
∣∣∣
r= 2

3
− 1

3l

+ 4π2

4κ′

(
16i

3`P6β3
BIr

3
2k0µ0ν0

)l
Êv4
(
F̂x,IvF̂y,Iv+ − F̂y,IvF̂x,Iv+

)2

Ẑr2,I
l
∣∣∣
r2= 2

3
− 5

3l

+ 4π2

κ′

(
16i

3`P6β3
BIr

3k0µ0ν0

)l(
Êv+

(
Êv++ − Êv+

)
Ẑr,v+

l − Êv
(
Êv+ − Êv

)
Ẑr,v

l
)∣∣∣

r= 2
3
− 1

3l

}
.

(6.30)

Comparing the results for the final physical Hamiltonian operator in reduced LQG in

(5.78) and for AQG in (6.29), they reflect again the underlying difference of the way

graph-preserving operators are implemented. For reduced LQG, these involve a sum over
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all possible embedded finite graphs Γ and the operator preserves each graph Hilbert space

HΓ separately, whereas in AQG the operator involves a sum over the vertices of the

abstract infinite graph α. This finishes the discussion on the quantisation of the physical

Hamiltonian of the Gowdy model in the AQG framework.
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Chapter 7

First steps in applying the AQG

Gowdy model

In this chapter, we present first steps in applying the AQG Gowdy model derived in

the former chapters of this part. In particular, we want to discuss the Schrödinger-like

equation that encodes the dynamics of the quantum model. For this purpose, we compute

the action of the physical Hamiltonian Ĥphys on the basis states and due to its complexity

we will discuss the individual parts of the Euclidean and Lorentzian contributions to Ĥphys

separately.

7.1 The Schrödinger-like equation for the AQG

Gowdy model

Given the physical Hamiltonian operator in the AQG Gowdy model Ĥphys in (6.29), we

can take it as the starting point to derive the corresponding Schrödinger-like equation

encoding the dynamics of the model. For simplicity, we will restrict our discussion to the

case where we choose ξ = 1 only and neglect the contribution coming from ξ = −1 in the

sum in (6.30) in the Euclidean part because such a restriction will not be very relevant

for the applications discussed in this section but simplifies the individual formulae. To

ensure that the semiclassical limit is still correct, we need to add an additional factor of

2 here that cancels the factor of 1
2

in front of the sum over ξ in (6.30). Carried over to

the reduced LQG case, such a restriction can also be understood as a slightly different
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regularisation of the operator where the shifted holonomies involved act only to the right

hand side of the vertex v but not to the left. As discussed above, in the definition of Ĥphys

we choose the symmetric combination of the individual parts, i.e. we have

Ĥphys =
1

2

(
Ĥeucl + Ĥeucl

†)
+ Ĥlor, (7.1)

where we already used that Ĥlor will turn out to be symmetric and thus we only need

to consider the symmetric combination of Ĥeucl. We can directly see this by calculating

the adjoint version of Ĥeucl. While the contained trigonometric functions sinXv, cosXv,

sinYv etc. are self-adjoint due to

(sinXv)
† =

(
1

2i

(
eiXv − e−iXv

))†
= − 1

2i

(
e−iXv − eiXv

)
= sinXv, (7.2)

the class of operators Ô
θ/x/y

r,v is indeed not. Rewriting (6.15) as

Ô
x

r,v = cos
Xv

2
V̂
r

v sin
Xv

2
− sin

Xv

2
V̂
r

v cos
Xv

2
=

1

2i

(
e−

i
2
Xv V̂

r

v e
i
2
Xv − e

i
2
Xv V̂

r

v e−
i
2
Xv
)
,

(7.3)

which we will also later use to compute the action of the physical Hamilton operator on

the basis states, we obtain(
Ô
x

r,v

)†
= − 1

2i

(
e−

i
2
Xv V̂

r

v e
i
2
Xv − e

i
2
Xv V̂

r

v e−
i
2
Xv
)

= −Ô
x

r,v. (7.4)

Altogether, this results in

(Ĥeucl,v)
† = − 4i

κ′`P
2k0µ0ν0β3

BI

(
Ô
θ

1,v sinXv sinYv + 2Ô
x

1,v sin
Yv+

2
cos

Yv
2

sinAev+

+ 2Ô
y

1,v sin
Xv+

2
cos

Xv

2
sinAev

)
. (7.5)

It is then straightforward to see that this acts differently on the states |k, µ, ν〉 than

Ĥeucl,v does (cf. (6.22)): The trigonometric functions, which act first in the adjoint version,

increase or decrease the charges (cf. (7.2)) and the volume operator within the class of

operators Ô
θ/x/y

1,v then reads out different charges than the non-adjoint Ĥeucl,v does.
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The increasingly long expression for Ĥphys can, however, also be reduced by one of its

contributions. Namely, via the action1 of Ĥ
(3)

lor on the basis states |k, µ, ν〉

Ĥ
(3)

lor |k, µ, ν〉 =
∑

v∈V (α)

Ĥ
(3)

lor,v |k, µ, ν〉 =
∑

v∈V (α)

4π2`P

√
βBI

4κ′

(
1

2r3k0µ0ν0

)l∣∣∣
r= 2

3
− 1

3l

·

·

{(
kev+ + kev

)(
kev++ − kev

)
·
[(
|µv+ + 1|

r
2 − |µv+ − 1|

r
2

)(
|νv+ + 1|

r
2 − |νv+ − 1|

r
2

)
·
(∣∣kev+ + kev + 1

∣∣ r2 − ∣∣kev+ + kev − 1
∣∣ r2)|µv+ |r|νv+|r

∣∣kev+ + kev
∣∣r]l−

−
(
kev + kev−

)(
kev+ − kev−

)
·
[(
|µv + 1|

r
2 − |µv − 1|

r
2

)(
|νv + 1|

r
2 − |νv − 1|

r
2

)
·
(∣∣kev + kev− + 1

∣∣ r2 − ∣∣kev + kev− − 1
∣∣ r2)|µv|r|νv|r∣∣kev + kev−

∣∣r]l}|k, µ, ν〉, (7.6)

we conclude that this expression vanishes: The minuend and the subtrahend of the differ-

ence within the curly brackets are structurally the same and only differ by the contained

charges’ indices via v++ 7→ v+, v+ 7→ v and v 7→ v−, meaning that each vertex is mapped

to its left neighbouring one. By taking the sum over all v ∈ V (α), i.e. the sum over all

vertices of the graph α, this becomes a telescope series. Reminding ourselves that we

implemented boundary conditions such that we mimic also in the AQG case the situation

to sum along a closed circle as it is done in the reduced LQG model, we realise that the

first and last contribution of the series then are the same which means as a result that

the telescope series sums up to zero. Putting it into formulae, let us write this in compact

form as

(7.6) =:
∑

v∈V (α)

(
h

(3)

lor,v+ − h(3)
lor,v

)
|k, µ, ν〉, (7.7)

where h
(3)

lor,v+ represents the respective minuends within the curly bracket of (7.6) and h
(3)
lor,v

the corresponding subtrahends. Now, assuming the abstract graph has N edges with non-

trivial representations on the edges then via the difference within the summands of the

series in (7.7), all contributions but the ones for the first vertex v1 and the last one vN+1

appear twice and in particular with different signs. Hence,

(7.7) = h
(3)
lor,vN+1

− h(3)
lor,v1

(7.8)

1We describe the action of the main components on the basis states in more detail within the next
subsection.
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and as the definition of the abstract Gowdy graph involved periodic boundary conditions

such that the vertices vN+1 and v1 are identified, this results in the contribution of Ĥ
(3)

lor

to vanish. This means that the final physical Hamiltonian reads

Ĥphys =
1

2

(
Ĥeucl +(Ĥeucl)

†
)

+ Ĥ
(1)

lor + Ĥ
(2)

lor . (7.9)

7.1.1 Action of Ĥphys’s main components on the basis states

|k, µ, ν〉

In order to make future calculations easier and provide a concise overview, we will now

state how the main components of Ĥphys act on the basis states |k, µ, ν〉. We start with

the trigonometric functions

sinAeI |k, µ, ν〉 =
1

2i
(|kev + 2, µ, ν〉 − |kev − 2, µ, ν〉), (7.10)

cosAeI |k, µ, ν〉 =
1

2
(|kev + 2, µ, ν〉+ |kev − 2, µ, ν〉), (7.11)

sinXv|k, µ, ν〉 =
1

2i
(|k, µv + 2, ν〉 − |k, µv − 2, ν〉), (7.12)

cosXv|k, µ, ν〉 =
1

2
(|k, µv + 2, ν〉+ |k, µv − 2, ν〉), (7.13)

sinYv|k, µ, ν〉 =
1

2i
(|k, µ, νv + 2〉 − |k, µ, νv − 2〉) and (7.14)

cosYv|k, µ, ν〉 =
1

2
(|k, µ, νv + 2〉+ |k, µ, νv − 2〉) (7.15)

that we used instead of the actual holonomies. To have a complete list, we also recap the

fluxes’ actions

Êv|k, µ, ν〉 =
βBI`P

2

2

kev − kev−
2

|k, µ, ν〉 (6.6)

F̂x,Iv |k, µ, ν〉 =
βBI`P

2

2
µv|k, µ, ν〉 and (6.7)

F̂y,Iv |k, µ, ν〉 =
βBI`P

2

2
νv|k, µ, ν〉. (6.8)
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Then, for the class of the Ô
θ/x/y

r,v operators, we get

Ô
θ

r,v|k, µ, ν〉 =
1

2i

(
`P

3β
3
2
BI

4

)r(∣∣kev + 1 + kev−
∣∣ r2 − ∣∣kev − 1 + kev−

∣∣ r2)|µv| r2 |νv| r2 |k, µ, ν〉,
(7.16)

Ô
x

r,v|k, µ, ν〉 =
1

2i

(
`P

3β
3
2
BI

4

)r∣∣kev + kev−
∣∣ r2(|µv + 1|

r
2 − |µv − 1|

r
2

)
|νv|

r
2 |k, µ, ν〉 and

(7.17)

Ô
y

r,v|k, µ, ν〉 =
1

2i

(
`P

3β
3
2
BI

4

)r∣∣kev + kev−
∣∣ r2 |µv| r2(|νv + 1|

r
2 − |νv − 1|

r
2

)
|k, µ, ν〉, (7.18)

where we used the action of the volume operator according to (6.10). And lastly,

Ẑr,v
l|k, µ, ν〉 = (−12)l

(
1

2i

(
`P

3β
3/2
BI

4

)r)3l[(∣∣kev + 1 + kev−
∣∣ r2 − ∣∣kev − 1 + kev−

∣∣ r2)·
·
(
|µv + 1|

r
2 − |µv − 1|

r
2

)(
|νv + 1|

r
2 − |νv − 1|

r
2

)∣∣kev + kev−
∣∣r|µv|r|νv|r]l|k, µ, ν〉.

(7.19)

The individual action of these operators will be used in the next subsection where we

discuss Gowdy states in the AQG framwork in more detail.

7.1.2 Gowdy states in the AQG model

We briefly discussed at the beginning of Chapter 6 how the symmetry reduced Gowdy

model can be carried over to the AQG framework. Because the physical Hamiltonian

operator Ĥphys also involves the adjoint (Ĥeucl)
†, we need to discuss in more detail how we

can perform an adaption of the AQG-graph we consider. Due to the appearance of (Ĥeucl)
†

within Ĥphys and its action on |k, µ, ν〉, we allow only those states in the model that have

only a finite number of the infinite number of edges with non-trivial U(1)-charges kev , the

remaining one carry trivial representations. The action of the physical Hamilton operator

Ĥphys of (6.30) on trivially charged vertices vanishes as there is always an operator of the

class Ô
θ/x/y

r,v acting first. Taking a look at their action on the basis states ((7.16), (7.17)

and (7.18)), we see that they vanish on trivially charged vertices — cf. (6.10) to see that

it suffices that one of kev = −kev− , µv = 0 or νv = 0 holds.
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Chapter 7. First steps in applying the AQG Gowdy model

This changes for the action of the adjoint operator (Ĥeucl)
†, (7.5). Its first term acts with

sinXv sinYv before Ô
θ

1,v, thereby charging the two previously neutral charges µv and νv.

Hence, Ô
θ

1,v returns a non-zero value that is, i.a., ∼
∣∣kev + 1 + kev−

∣∣ r2 − ∣∣kev − 1 + kev−
∣∣ r2 .

This still vanishes for vertices v with trivially charged neighbouring edges evI−1
and evI .

But taking a look at Figure 6.1, we see that vertex vN+1 — which is trivially charged by

means of kevN+1
= 0, µvN+1

= 0 and νvN+1
= 0 — has also evN as neighbouring edge for

which, i.a., kevN 6= 0 holds. Therefore, (Ĥeucl,v)
†|k, µ, ν〉 does not vanish for vI = vN+1.

However, we can fix this by fulfilling the condition kev = −kev− to obtain a zero eigenvalue

and set kevN+1
= −kevN . Consequently, to have all the following trivially charged vertices

to have vanishing contributions as well, we need to set kevN+2
= −kevN+1

= kevN and

so forth, i.e. all edges eI , I > N, are charged with kev · (−1)I−N . Figure 7.1 illustrates

these new states and Figure 7.2 does so for an embedded graph. The embedding is done

by creating two additional, trivially charged vertices v′ and v′′ between vN and v1 and

mapping all edges that are charged with −kN to the edge between v′ and v′′, while all

edges that are charged with kevN are mapped to the edge between v′′ and v1. Note that

the latter take over the role of the previously kevN -charged edge e0 to the left of v1 (cf.

Fig. 7.1).

Note that all the above is not the case for the other two contributions of (Ĥeucl)
†:

Besides sinAevI , only trigonometric functions of either Xv or Yv act before Ô
y

1,v or Ô
x

1,v

respectively. Hence, via their action according to (7.18) and (7.17), Ô
y

1,v contributes with

a value ∼ |νv + 1|
r
2 − |νv − 1|

r
2 , where the charge νv = 0 is still the initial neutral one.

The same holds for Ô
x

1,v and µv = 0 and we do not need to perform further adaptions.

−k5 −k5 k5k5
v1

k1

e1

µ1ν1

v2

k2

e2

µ2ν2

v3

k3

e3

µ3ν3

v4

k4

e4

µ4ν4

v5

k5

e5

µ5ν5

Figure 7.1: The abstract infinite AQG-graph of Figure 6.1, now also ensuring trivially
charged vertices not to contribute via the action of (Ĥeucl)

† — as guaranteed by
alternating charges ±k5 on the previously uncharged edges eI , I > 5. To keep the

notation more compact, we used kevI =: kI , µvI =: µI and νvI =: νI .
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v1

k1e1

µ1

ν1

v2

k2

e2 µ2

ν2
v3k3

e3

µ3ν3

v4

k4 e4

µ4

ν4

v5

k5

e5

µ5

ν5

v′ −k5

v′′

k5

Figure 7.2: An embedding of the abstract infinite AQG-graph of Figure 7.1, which also
ensures trivially charged vertices not to contribute via the action of (Ĥeucl)

† — as
guaranteed by the new uncharged vertices v′ and v′′ and the new k5- and −k5-charged
edges around them, compared to Fig. 5.1. To keep the notation more compact we used

kevI =: kI , µvI =: µI and νvI =: νI .

Having found a suitable form for the basis states |k, µ, ν〉, we can now address the states

|Ψ〉(τ) that we will use for writing down an ansatz for the solution of the Schrödinger-like

equation of the Gowdy model given by

i~
∂

∂τ
|Ψ(τ)〉 = Ĥphys |Ψ(τ)〉 (7.20)

later on in Section 7.2. For the state |Ψ(τ)〉 we use the following separation ansatz:

|Ψ〉(τ) = |ϕ(k, µ, ν)〉|χ(τ)〉, (7.21)

where we put the dependence on the physical time τ completely into χ(τ), while that

quantity, in turn, does not depend on kev , µv or νv and solely |ϕ〉 does. Our ansatz for

|ϕ〉 then reads

|ϕ〉 :=
∑
k∈ZN

∑
µv∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉, (7.22)

whose structure we illustrate in the following in more detail along the lines of [198].
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Chapter 7. First steps in applying the AQG Gowdy model

In the above, N is the number of vertices and k, µ and ν are multi-labels: k :=

(kev1 , ..., kevN ), µ := (µv1 , ..., µvN ) and ν := (νv1 , ..., νvN ). Lastly,

Ck,µ,ν := Ckev1 ,...,kevN ,µv1 ,...,µvN ,νv1 ,...,νvN (7.23)

are coefficients that depend on all k-, µ- and ν-labels. While k takes values in ZN , the

sets m := m1 × ...×mN and n := n1 × ...× nN allow slightly more flexibility:

mvj := {µ̃vj + p | p ∈ Z} and nvj := {ν̃vj + p | p ∈ Z} with µ̃vj , ν̃vj ∈ R ∀j ∈ {1, ..., N}
(7.24)

To motivate this choice, we have a closer look at the point holonomies and take the

one of X as an example. Within its expression exp ( i
2
µvjXvj), µvj ∈ R labels the specific

irreducible representation of the Bohr compactification RBohr for each vertex vj. The cor-

responding Hilbert space HX
vj

:= L2(RBohr, dµBohr) consists of square integrable functions

f over RBohr with respect to its Haar measure dµBohr. The inner product in this Hilbert

space reads

〈f | g〉 := lim
R→∞

1

2R

+R∫
−R

dxf(x)∗g(x), (7.25)

wherein f ∗ is the complex conjugate of f . Now, using 〈x|µvj〉 := exp ( i
2
µvjx), we find the

inner product of two basis states to be

〈µvj |µ′vj〉 := lim
R→∞

1

2R

+R∫
−R

dx e
i
2

(µ′vj−µvj )
= δµvj ,µ′vj , (7.26)

with the Kronecker delta δµvj ,µ′vj , and also deduce the completeness relation

∑
µvj∈mj

|µvj〉〈µvj〉 = 1HXvj
. (7.27)

Therein, µvj ∈ mj, which is a finite subset of R. And it has to be a finite subset in order

for a state

HX
vj
3 |φ〉 =

∑
µvj∈mj

cµvj |µvj〉, (7.28)

with arbitrary coefficients cµvj , to be normalisable — i.e. allowing it to be an element

of the Hilbert space after all. When it comes to our applications of the Gowdy model,
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however, we need to fall back on formal states, whose labels can take values in infinite

sets. The reason being that some of the operators we have to deal with will map out

of an otherwise finite set: While the Lorentzian part of the physical Hamiltonian acts

diagonally, we notice the Euclidean part (6.22) to contain the operators

sin
(
Xvj

)
=

1

2i

(
ei
µvj

2
·2Xvj − e−i

µvj
2
·2Xvj

)
and sin

(
Yvj
)

=
1

2i

(
ei
νvj
2
·2Yvj − e−i

νvj
2
·2Yvj

)
.

(7.29)

Clearly, those do not act diagonally and with the following operator Ô
θ

1,v in (6.22) acting

again diagonally, we do have an overall non-diagonal action. If we now choose the labels

of the point holonomies to take values from a finite subset, say m′ = n′ = u × ... × u

with u := {8, 27, 2022}, the above operators of (7.29) will map a value 16 of one of the

labels of a state i.a. to the new label 27 + 2 = 29 /∈ u. This problem clearly exists for

any choice of finite u. Therefore, we have to choose infinite sets for the labels’ values,

where the individual elements are separated by steps of ±1 — note that the physical

Hamiltonian (6.22) also contains the above operators with their arguments divided by

2. Without having any constraint on “where” this sequence starts, we can choose an

arbitrary value µ̃vj ∈ R to construct the set mvj := {µ̃vj + p | p ∈ Z} 3 µvj and similarly

for all other vertices. For symmetry reasons, we get the same for the Y point holonomy

and its labels νvj , while for the k-label we have to choose full Z itself. This leads us to

the initially stated definition (7.22) with (7.24). However, this infinite linear combination

of the basis states is a rather formal ansatz as its norm

〈ϕ |ϕ〉 = ||ϕ||2 =
∑
k∈ZN

∑
µ∈m

∑
ν∈n

∑
k′∈ZN

∑
µ′∈m

∑
ν′∈n

(Ck,µ,ν)
∗ · Ck′,µ′,ν′〈k, µ, ν|k′, µ′, ν ′〉 (7.30)

=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

|Ck,µ,ν |2 (7.31)

diverges. We will need these extensive states for the beginning, but when it comes to zero

volume eigenstates, e.g., we will also find states with finite norm (cf. Subsec. 7.2.1).

7.1.3 Action of the physical Hamiltonian Ĥphys on the ansatz

states

We will now state the action of Ĥphys on the state |ϕ〉 given in (7.22). As the final result

(7.39) will be rather long, we start with presenting the actions of Ĥeucl and (Ĥeucl)
† as well.
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This is furthermore convenient since we will later also use them individually. According

to the action of the operators on the basis states as listed in Subsection 7.1.1, we obtain

Ĥeucl |ϕ〉 =
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ĥeucl,v

∣∣k, µ, ν〉
=
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

κeuclCk,µ,ν

{(√∣∣kev + kev− + 1
∣∣−√∣∣kev + kev− − 1

∣∣)√|µv||νv|·
·
[∣∣k, µv + 2, νv + 2

〉
−
∣∣k, µv + 2, νv − 2

〉
−
∣∣k, µv − 2, νv + 2

〉
+
∣∣k, µv − 2, νv − 2

〉]
+

+
√∣∣kev + kev−

∣∣|νv|(√|µv + 1| −
√
|µv − 1|

)
·

·
[∣∣kev + 2, µ, νv + 1, νv+ + 1

〉
−
∣∣kev + 2, µ, νv + 1, νv+ − 1

〉
+

+
∣∣kev + 2, µ, νv − 1, νv+ + 1

〉
−
∣∣kev + 2, µ, νv − 1, νv+ − 1

〉
−

−
∣∣kev − 2, µ, νv + 1, νv+ + 1

〉
+
∣∣kev − 2, µ, νv + 1, νv+ − 1

〉
−

−
∣∣kev − 2, µ, νv − 1, νv+ + 1

〉
+
∣∣kev − 2, µ, νv − 1, νv+ − 1

〉]
+

+
√∣∣kev + kev−

∣∣|µv|(√|νv + 1| −
√
|νv − 1|

)
·

·
[∣∣kev + 2, µv + 1, µv+ + 1, ν

〉
−
∣∣kev + 2, µv + 1, µv+ − 1, ν

〉
+

+
∣∣kev + 2, µv − 1, µv+ + 1, ν

〉
−
∣∣kev + 2, µv − 1, µv+ − 1, ν

〉
−

−
∣∣kev − 2, µv + 1, µv+ + 1, ν

〉
+
∣∣kev − 2, µv + 1, µv+ − 1, ν

〉
−

−
∣∣kev − 2, µv − 1, µv+ + 1, ν

〉
+
∣∣kev − 2, µv − 1, µv+ − 1, ν

〉]}
(7.32)

and likewise

(Ĥeucl)
†|ϕ〉 =

∑
v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν(Ĥeucl,v)
†∣∣k, µ, ν〉

=
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

κeuclCk,µ,ν

{(√∣∣kev + kev− + 1
∣∣−√∣∣kev + kev− − 1

∣∣)·
·
[√
|µv + 2||νv + 2|

∣∣k, µv + 2, νv + 2
〉
−
√
|µv + 2||νv − 2|

∣∣k, µv + 2, νv − 2
〉
−

−
√
|µv − 2||νv + 2|

∣∣k, µv − 2, νv + 2
〉

+
√
|µv − 2||νv − 2|

∣∣k, µv − 2, νv − 2
〉]

+

+
(√
|µv + 1| −

√
|µv − 1|

)[√∣∣kev + kev− + 2
∣∣|νv + 1|

∣∣kev + 2, µ, νv + 1, νv+ + 1
〉
−

−
√∣∣kev + kev− + 2

∣∣|νv + 1|
∣∣kev + 2, µ, νv + 1, νv+ − 1

〉
+
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+
√∣∣kev + kev− + 2

∣∣|νv − 1|
∣∣kev + 2, µ, νv − 1, νv+ + 1

〉
−

−
√∣∣kev + kev− + 2

∣∣|νv − 1|
∣∣kev + 2, µ, νv − 1, νv+ − 1

〉
−

−
√∣∣kev + kev− − 2

∣∣|νv + 1|
∣∣kev − 2, µ, νv + 1, νv+ + 1

〉
+

+
√∣∣kev + kev− − 2

∣∣|νv + 1|
∣∣kev − 2, µ, νv + 1, νv+ − 1

〉
−

−
√∣∣kev + kev− − 2

∣∣|νv + 1|
∣∣kev − 2, µ, νv − 1, νv+ + 1

〉
+

+
√∣∣kev + kev− − 2

∣∣|νv + 1|
∣∣kev − 2, µ, νv − 1, νv+ − 1

〉]
+

+
(√
|νv + 1| −

√
|νv − 1|

)[√∣∣kev + kev− + 2
∣∣|µv + 1|

∣∣kev + 2, µv + 1, µv+ + 1, ν
〉
−

−
√∣∣kev + kev− + 2

∣∣|µv + 1|
∣∣kev + 2, µv + 1, µv+ − 1, ν

〉
+

+
√∣∣kev + kev− + 2

∣∣|µv − 1|
∣∣kev + 2, µv − 1, µv+ + 1, ν

〉
−

−
√∣∣kev + kev− + 2

∣∣|µv − 1|
∣∣kev + 2, µv − 1, µv+ − 1, ν

〉
−

−
√∣∣kev + kev− − 2

∣∣|µv + 1|
∣∣kev − 2, µv + 1, µv+ + 1, ν

〉
+

+
√∣∣kev + kev− − 2

∣∣|µv + 1|
∣∣kev − 2, µv + 1, µv+ − 1, ν

〉
−

−
√∣∣kev + kev− − 2

∣∣|µv + 1|
∣∣kev − 2, µv − 1, µv+ + 1, ν

〉
+

+
√∣∣kev + kev− − 2

∣∣|µv + 1|
∣∣kev − 2, µv − 1, µv+ − 1, ν

〉]}
(7.33)

Therein, we defined

κeucl :=
`P

8κ′βBI
3/2k0µ0ν0

. (7.34)

Note that we always collected the generated states in squared brackets [. . .] to provide

some clarity within the long formulae. Also, we could have structured the formula above

differently and especially combined terms with the same charge-dependent prefactors —

like every pair within the series of eight states in (7.33). We refrained from doing so as the

structure, as it is, offers an easier overview of the created recharged states. Lastly, we want

to point out the first collection of newly created states in (7.33) that all have prefactors

∼
√
|µv ± 2||νv ± 2|. These are precisely the states that do not vanish if acting on trivially

charged vertices and thus forced us to redefine the basis states by setting kev = −kev−
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for those in order to have their mutual prefactor
√∣∣kev + kev− + 1

∣∣ −√∣∣kev + kev− − 1
∣∣

vanish (confer Figure 7.1 and Figure 7.2 and their discussions). The corresponding actions

of Ĥ
(1)

lor and Ĥ
(2)

lor are more compact and read

Ĥ
(1)

lor |ϕ〉 =
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ĥ
(1)

lor,v

∣∣k, µ, ν〉
=
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

κlor,1Ck,µ,ν

{
−
(
kev+ − kev−

)2
[∣∣kev + kev−

∣∣r|µv|r|νv|r·
·
(∣∣kev + kev− + 1

∣∣ r2 − ∣∣kev + kev− − 1
∣∣ r2)(|µv + 1|

r
2 − |µv − 1|

r
2

)
·

·
(
|νv + 1|

r
2 − |νv − 1|

r
2

)]l}∣∣∣∣
r= 2

3
− 1

3l

∣∣k, µ, ν〉 (7.35)

and

Ĥ
(2)

lor |ϕ〉 =
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ĥ
(2)

lor,v

∣∣k, µ, ν〉
=
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

κlor,2Ck,µ,ν

{(
kev + kev−

)4
(µvνv+ − µv+νv)

2[∣∣kev + kev−
∣∣r2|µv|r2·

· |νv|r2
(∣∣kev + kev− + 1

∣∣ r22 − ∣∣kev + kev− − 1
∣∣ r22 )(|µv + 1|

r2
2 − |µv − 1|

r2
2

)
·

·
(
|νv + 1|

r2
2 − |νv − 1|

r2
2

)]l}∣∣∣∣
r2= 2

3
− 5

3l

∣∣k, µ, ν〉, (7.36)

where we collected all constants in

κlor,1 :=
4π2`P

√
βBI

16κ′

(
1

2r3k0µ0ν0

)l∣∣∣∣∣
r= 2

3
− 1

3l

and

κlor,2 :=
4π2`P

√
βBI

16κ′

(
1

2r2
3k0µ0ν0

)l∣∣∣∣∣
r2= 2

3
− 5

3l

.

(7.37)

We can now combine all these contributions to state the full action of Ĥphys:

Ĥphys |ϕ〉 =

=
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

{
1

2
Ĥeucl,v +

1

2
(Ĥeucl,v)

† + Ĥ
(1)

lor,v + Ĥ
(2)

lor,v

}
|k, µ, ν〉 (7.38)
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model

=
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

{
κeucl

2

(√∣∣kev + kev− + 1
∣∣−√∣∣kev + kev− − 1

∣∣)·
·
[(√

|µv + 2||νv + 2|+
√
|µv||νv|

)
|k, µv + 2, νv + 2〉−

−
(√
|µv + 2||νv − 2|+

√
|µv||νv|

)
|k, µv + 2, νv − 2〉−

−
(√
|µv − 2||νv + 2|+

√
|µv||νv|

)
|k, µv − 2, νv + 2〉+

+
(√
|µ− + 2||νv − 2|+

√
|µv||νv|

)
|k, µv − 2, νv − 2〉|k, µv − 2, νv − 2〉

]
+

+ κeucl

(√
|µv + 1| −

√
|µv − 1|

)
·

·
[(√∣∣kev + kev− + 2

∣∣|νv + 1|+
√∣∣kev + kev−

∣∣|νv|)|kev + 2, µ, νv + 1, νv+ + 1〉−

−
(√∣∣kev + kev− + 2

∣∣|νv + 1|+
√∣∣kev + kev−

∣∣|νv|)|kev + 2, µ, νv + 1, νv+ − 1〉+

+

(√∣∣kev + kev− + 2
∣∣|νv − 1|+

√∣∣kev + kev−
∣∣|νv|)|kev + 2, µ, νv − 1, νv+ + 1〉−

−
(√∣∣kev + kev− + 2

∣∣|νv − 1|+
√∣∣kev + kev−

∣∣|νv|)|kev + 2, µ, νv − 1, νv+ − 1〉−

−
(√∣∣kev + kev− − 2

∣∣|νv + 1|+
√∣∣kev + kev−

∣∣|νv|)|kev − 2, µ, νv + 1, νv+ + 1〉+

+

(√∣∣kev + kev− − 2
∣∣|νv + 1|+

√∣∣kev + kev−
∣∣|νv|)|kev − 2, µ, νv + 1, νv+ − 1〉−

−
(√∣∣kev + kev− − 2

∣∣|νv − 1|+
√∣∣kev + kev−

∣∣|νv|)|kev − 2, µ, νv − 1, νv+ + 1〉+

+

(√∣∣kev + kev− − 2
∣∣|νv − 1|+

√∣∣kev + kev−
∣∣|νv|)|kev − 2, µ, νv − 1, νv+ − 1〉

]
+

+ κeucl

(√
|νv + 1| −

√
|νv − 1|

)
·

·
[(√∣∣kev + kev− + 2

∣∣|µv + 1|+
√∣∣kev + kev−

∣∣|µv|)|kev + 2, µv + 1, µv+ + 1, ν〉−

−
(√∣∣kev + kev− + 2

∣∣|µv + 1|+
√∣∣kev + kev−

∣∣|µv|)|kev + 2, µv + 1, µv+ − 1, ν〉+

+

(√∣∣kev + kev− + 2
∣∣|µv − 1|+

√∣∣kev + kev−
∣∣|µv|)|kev + 2, µv − 1, µv+ + 1, ν〉−

−
(√∣∣kev + kev− + 2

∣∣|µv − 1|+
√∣∣kev + kev−

∣∣|µv|)|kev + 2, µv − 1, µv+ − 1, ν〉−

−
(√∣∣kev + kev− − 2

∣∣|µv + 1|+
√∣∣kev + kev−

∣∣|µv|)|kev − 2, µv + 1, µv+ + 1, ν〉+
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+

(√∣∣kev + kev− − 2
∣∣|µv + 1|+

√∣∣kev + kev−
∣∣|µv|)|kev − 2, µv + 1, µv+ − 1, ν〉−

−
(√∣∣kev + kev− − 2

∣∣|µv − 1|+
√∣∣kev + kev−

∣∣|µv|)|kev − 2, µv − 1, µv+ + 1, ν〉+

+

(√∣∣kev + kev− − 2
∣∣|µv − 1|+

√∣∣kev + kev−
∣∣|µv|)|kev − 2, µv − 1, µv+ − 1, ν〉

]
−

− κlor,1

(
kev+ − kev−

)2
[∣∣kev + kev−

∣∣r|µv|r|νv|r(∣∣kev + kev− + 1
∣∣ r2 − ∣∣kev + kev− − 1

∣∣ r2)·
·
(
|µv + 1|

r
2 − |µv − 1|

r
2

)(
|νv + 1|

r
2 − |νv − 1|

r
2

)]l
|k, µ, ν〉+

+ κlor,2

(
kev + kev−

)4
(µvνv+ − µv+νv)

2[∣∣kev + kev−
∣∣r2|µv|r2|νv|r2

·
(∣∣kev + kev− + 1

∣∣ r22 − ∣∣kev + kev− − 1
∣∣ r22 )(|µv + 1|

r2
2 − |µv − 1|

r2
2

)
·

·
(
|νv + 1|

r2
2 − |νv − 1|

r2
2

)]l
|k, µ, ν〉

}∣∣∣∣
r= 2

3
− 1

3l
∧ r2= 2

3
− 5

3l

(7.39)

Note that some contributions from Ĥeucl and (Ĥeucl)
† were combined, while some identical

numerical charge-dependent prefactors were not factored out in order to keep a form that

allows for an easy read-out of the newly created states.

7.2 On specific solutions of the Schrödinger-like

equation

Having found an appropriate physical Hamiltonian (7.9) and states (7.21), we can ap-

proach solving the Schrödinger-like equation

i~ ∂τ |Ψ(τ)〉 = Ĥphys |Ψ(τ)〉. (7.40)

We already introduced the well-known separation ansatz

|Ψ(τ)〉 = |ϕ(k, µ, ν)〉|χ(τ)〉 (7.21)

for the states and we will later see that additional ansätze of this kind allow us to better

understand the action of the physical Hamiltonian.
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7.2. On specific solutions of the Schrödinger-like equation

With this partitioning of the state, we can proceed to the time-independent version of

the Schrödinger-like equation just like in standard quantum mechanics and obtain

Ĥphys |ϕ〉 = E|ϕ〉, (7.41)

where we used E as the constant that arises due to the separation of the variables.

This eigenvalue equation is now easier to solve, yet the involved action of the physical

Hamiltonian makes it still very complicated to find general solutions. For this reason, we

will first search for zero-volume eigenstates in the next subsection, as all terms of Ĥphys

do indeed contain the volume operator this corresponds to the case E = 0. This is also

an illustrative introduction in how to handle the action of operators on Gowdy states

because determining the spectrum of Ĥphys is beyond the scope of this part. Furthermore,

the special case of choosing E = 0 corresponds at the classical level to the limiting case

where the dust energy density vanishes and thus should in some formal sense make contact

to the vacuum Gowdy case. A more rigorous understanding of taking this limit in the

quantum theory will be necessary in future work as well as analysing the question whether

zero is involved in the spectrum of Ĥphys at all; both questions will not be addressed in this

work. Here, considering this specific choice should rather be understood as an illustrative

example in which we can obtain some first intuition about the action of the physical

Hamiltonian operator on Gowdy states.

7.2.1 Zero-volume eigenstates

This subsection is about finding states |ϕ〉 for which the volume vanishes. While this

certainly holds for trivially charged states kev = µv = νv = 0, ∀v ∈ V (α), there are

also ones with less rigid restrictions. We will use this subsection about finding those

zero-volume states also as an introduction for what comes afterwards, as the technique of

finding constraints for the coefficients Ck,µ,ν such that the corresponding state |ϕ〉 features

a desired property is the basis of our treatment of the Schrödinger-like equation, too.

We can derive the action of the volume operator on the states |ϕ〉 from (6.10):

V̂ |ϕ〉 =
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν V̂v

∣∣k, µ, ν〉
=
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν
1√
2

(
βBI`P

2

2

) 3
2√∣∣kev + kev−

∣∣|µv||νv|∣∣k, µ, ν〉. (7.42)
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If we now want to find solutions for which the above eigenvalue vanishes, we deduce the

condition √∣∣kev + kev−
∣∣|µv||νv| = 0 ∀v ∈ V (α). (7.43)

Note that contributions from different vertices can not sum up to zero as there are no

negative eigenvalues, i.e. no negative volume contribution. This leads to the following

basic conditions:

1. kev = 0 = kev− and µv, νv arbitrary

2. kev = −kev− and µv, νv arbitrary

3. µv = 0 and kev , νv arbitrary

4. νv = 0 and kev , µv arbitrary

The charges kev play a special role as neighbouring kev are coupled via
√∣∣kev + kev−

∣∣. This

is the reason why setting kev = 0 is not sufficient for fulfilling (7.43), but instead at least

kev− = 0 has to be chosen, too. Now, for having the total volume of |ϕ〉 to vanish, one

may combine vertex-wise any of the above conditions. However, if one wants to construct

zero-volume states, one rather works with the coefficients Ck,µ,ν . The above conditions

for the charges then translate into conditions for the coefficients by assigning only to all

those Ck,µ,ν a non-zero value such that the thereby non-suppressed states
∣∣k, µ, ν〉 fulfil,

as a set, for all vertices at least one of the above conditions. As an example, if we wish

to have a state that has zero volume through µv = 0 ∀v ∈ V (α), we set all those Ck,µ,ν to

zero whose set µ contains at least one µv 6= 0:

µv = 0 ∀v ∈ V (α)⇐⇒ Ck,µ,ν = 0 if ∃v ∈ V (α) : 0 6= µv ∈ µ. (7.44)

This way, by assigning specific values to certain coefficients Ck,µ,ν , we can construct states

that fulfil a desired property such as having zero volume.

7.2.2 Vanishing action states for Ĥeucl

The procedure of carrying over to conditions the coefficients Ck,µ,ν have to satisfy can also

be used to construct states that cause a vanishing action of Ĥeucl. We exemplarily show

this for the three-vertex graph — with basis states denoted by |ϕ3〉 =
∣∣k, µ, ν〉

3
— as it
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7.2. On specific solutions of the Schrödinger-like equation

allows for clearer formulae. To keep our notation more compact, we use the abbreviations

vI =: I, (7.45)

kevI =: kI , ke
v−
I

=: kI−1, ke
v+
I

=: kI+1,

µvI =: µI , µv− =: µI−1, µv+ =: µI+1,

νvI =: νI , νv− =: νI−1, νv+ =: νI+1. (7.46)

With this notation, we deduce from (7.32) the following form of the action of Ĥeucl on

|ϕ3〉 after having performed substitutions of the charges so there is no shift in the basis

states anymore:

Ĥeucl |ϕ3〉 =
3∑
I=1

∑
k∈Z3

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ĥeucl,v

∣∣k, µ, ν〉
3

=
3∑
I=1

∑
k∈Z3

∑
µ∈m

∑
ν∈n

κeucl

{(√
|kI + kI−1 + 1| −

√
|kI + kI−1 − 1|

)
·

·
(
Ck,µI−2,νI−2

√
|µI − 2||νI − 2|+ Ck,µI+2,νI+2

√
|µI + 2||νI + 2|−

−Ck,µI+2,νI−2

√
|µI + 2||νI − 2| − Ck,µI−2,νI+2

√
|µI − 2||νI + 2|

)
+

+
(√
|µI + 1| −

√
|µI − 1|

)
·

·
[(
CkI+2,µ,νI+1,νI+1+1 − CkI+2,µ,νI+1,νI+1−1

)√
|kI + kI−1 + 2||νI + 1|+

+
(
CkI+2,µ,νI−1,νI+1+1 − CkI+2,µ,νI−1,νI+1−1

)√
|kI + kI−1 + 2||νI − 1|+

+
(
CkI−2,µ,νI+1,νI+1−1 − CkI−2,µ,νI+1,νI+1+1

)√
|kI + kI−1 − 2||νI + 1|+

+
(
CkI−2,µ,νI−1,νI+1−1 − CkI−2,µ,νI−1,νI+1+1

)√
|kI + kI−1 − 2||νI − 1|

]
]
+

+
(√
|νI + 1| −

√
|νI − 1|

)
·
[
. . . (µ←→ ν) . . .

]
]

}∣∣k, µ, ν〉
3
. (7.47)

Therein, �
[
. . . (µ←→ ν) . . .

]
]
� stands for the square bracket with subscript ] of the four

lines before just with the roles of µ and ν interchanged. The notation for the coefficients

Ck,µ,ν is similar to the one of the states that we already used: Only the charges that were

de- or increased are specifically denoted. The above formula is, of course, only possible

since we sum over all charges from −∞ to ∞ and the substitution therefore does not

change the solution space.
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Noticing that there is no mixing of the three classes of charges k, µ and ν, we introduce

the separation ansatz

Ck,µ,ν = Ck · Cµ · Cν . (7.48)

With this, the above action becomes

Ĥeucl |ϕ3〉 =
3∑
I=1

∑
k∈Z3

∑
µ∈m

∑
ν∈n

κeucl

{
Ck

(√
|kI + kI−1 + 1| −

√
|kI + kI−1 − 1|

)
·

·
(
CµI+2

√
|µI + 2| − CµI−2

√
|µI − 2|

)
·
(
CνI+2

√
|νI + 2| − CνI−2

√
|νI − 2|

)
+

+
(
CkI+2

√
|kI + kI−1 + 2| − CkI−2

√
|kI + kI−1 − 2|

)
·

·
[
Cµ

(√
|µI + 1| −

√
|µI − 1|

)((
Cν +

+ 1 − Cν +
−1

)√
|νI + 1|+

(
Cν−+ 1 − Cν−−1

)√
|νI − 1|

)
+ —–"—–

(µ←→ν)

]}∣∣k, µ, ν〉
3
, (7.49)

where the last line’s � —–"—–
(µ←→ν)

� denotes the ditto mark of the line before with the

roles of µ and ν interchanged. As before, while Ck stands for the coefficient representing

all unshifted k-charges, CkI+2 means that all but kI are unshifted and kI is increased

by two. We then introduced a new abbreviation for coefficients that feature shifts in

the charges of both vI and vI+1: Cν +
+ 1 := CνI+1,νI+1+1, Cν +

−1 := CνI+1,νI+1−1, Cν−+ 1 :=

CνI−1,νI+1+1 and Cν−−1 := CνI−1,νI+1−1.

To get an intuition of the formula above, we may consider graphs for which the action

vanishes. We can then state two basic principles to achieve this — or, in fact, any other

degeneracy, too:

1. The sum over the vertices causes the individual contributions to cancel each other

/ equal the desired value, or

2. each individual contribution vanishes / amounts for the same contribution to the

desired value.

While for the last one we can ignore the sum over the vertices and just need to find

coefficients that make up for 1/](vertices)-th of the final result’s value, the first one is more

complicated and we may not find general solutions that reflect, e.g., the symmetries of

the Gowdy models. For that reason, we concentrate on solutions that fulfil the chosen

constraint vertex-wise.
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7.2. On specific solutions of the Schrödinger-like equation

If we want (7.49) to vanish, we first of all notice that we face a sum of two contributions

within the curly brackets. As the two are products and sums/differences of square roots,

we may conclude that it is unlikely for the two to annihilate, although that can be achieved

for specific choices. Hence, we want both summands to vanish on their own, which can

be fulfilled, e.g., by

1. CµI+2

√
|µI + 2| = CµI−2

√
|µI − 2|

2. CkI+2

√
|kI + kI−1 + 2| = CkI−2

√
|kI + kI−1 − 2|.

The first choice is, of course, equivalently replaceable by the corresponding condition with

µI 7→ νI due to the multiplicative structure of the first summand within (7.49). Likewise,

one could replace the above second condition with one that makes the second summand of

(7.49) vanish via a zero contribution from the square brackets. Considering this bracket’s

additive structure, in turn, more than one such condition would be required. Therefore,

the above conditions can be considered as the most basic ones. The chart in Figure 7.3

illustrates what this condition means in terms of the three kI-charges, after having gone

over to the equivalent form

CkI+4 =

√
|kI + kI−1|
|kI + kI−1 + 4|

Ck : (7.50)

Starting with a specific value for C111, we can determine the value of, say, C115 afterwards.

This means that there are two paths leading to the new value of C155: Either via C111 →
C115 → C155 or C111 → C151 → C155. Doing so, we get contradictory results for the two

paths (confer Figure 7.3). This is due to the condition depending also on kI−1. During

the path via C151, this charge was increased by four before being evaluated, while it was

increased only after being evaluated during the other path — which is also why there the

prefactor
√

2/6 appears in both steps. Lastly, note that the trivial solution is of course

not excluded and marks the only scenario where the above contradiction does not apply.

Even though this condition turned out to be inapplicable, it showed the general strategy

we pursue — and where one has to be cautious. Proceeding to the condition for µ (or

ν), we first of all notice that there is no link between the respective charges of different

vertices. Therefore, we may separate the coefficients once more into

Cµ = cµ1 · cµ2 · cµ3 and (7.51)

Cν = cν1 · cν2 · cν3 . (7.52)
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C111

← E→

√
2
6
C111 = C115

√
2
6
C115 = C155

C155 =
√

1
9
C111

C151 =
√

2
6
C111

C155 =
√

6
10
C151

C155 =
√

1
5
C111

k3 ↑

k2 ↑

i.e.

k2 ↑

k3 ↑

i.e.

Figure 7.3: On the condition (7.50) on k

With this and moving the shift again into one of the coefficients only, the condition now

reads

CµI+2

√
|µI + 2| = CµI−2

√
|µI − 2| ⇒ cµI+4 =

√
|µI |
|µI + 4|

cµI . (7.53)

This condition is, e.g., fulfilled by

cµI =


arbitrary, for µI = 0

0, ∀µI ∈ 4Z√
1
|µI |

, rest

. (7.54)

Due to the denominator diverging for µI = −4, the first two cases of the solution above

are rather formal. As the condition (7.53) is a recurrence relation of order 4, we chose

the remaining three initial conditions as c1 = 1, c2 =
√

1
2
, c3 =

√
1
3

to obtain the intuitive

solution (7.54). With this, we can now set the first part of the action to zero for all vertices.

However, as shown before, we need a different procedure than the initially discussed one

for the second part. Starting with the relevant part after the last separation, the square

brackets of (7.49)[
. . .
](

(7.49)
)

=

= Cµ
(√
|µI + 1| −

√
|µI − 1|

)
cνI+2

(
cνI+1+1 − cνI+1−1

)(
cνI+1

√
|νI + 1|+ cνI−1

√
|νI − 1|

)
+ —–"—–

(µ←→ν)
, (7.55)
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we realise we can choose any of the following four options for making this expression

vanish:

cνI+1+1 − cνI+1−1 = 0 or (7.56a)

cνI+1

√
|νI + 1|+ cνI−1

√
|νI − 1| = 0 (7.56b)

and

cµI+1+1 − cµI+1−1 = 0 or (7.57a)

cµI+1

√
|µI + 1|+ cµI−1

√
|µI − 1| = 0. (7.57b)

With the second line representing conditions on the cµI , we have to guarantee compati-

bility with the previously obtained solution (7.54), or rather the constraint (7.53) behind

it. However, it is easy to show that solutions of (7.57b) automatically fulfil (7.53):

(7.57b)⇒

cµI+2

√
|µI + 2| = −cµI

√
|µI | ↘

cµI
√
|µI | = −cµI−2

√
|µI − 2| ↗

�⇒ cµI+2

√
|µI + 2| =

= cµI−2

√
|µI − 2| = (7.53). (7.58)

Note that the inverse does not hold — solutions to (7.53) do not automatically also solve

(7.57b). The proof thereof is analogous to (7.58).

In contrast to the condition (7.53) that we solved before, we now have its equivalent

difference equation of second order and with alternating sign at hand. Hence, the solution

to (7.57b) can be derived from (7.54):

cµI

∣∣∣
(7.57b)

=


arbitrary, for µI = 0

0, ∀µI ∈ 2Z

(−1)
µI−1

2

√
1
|µI |

, rest

. (7.59)

I.e., while it remains structurally the same, it considers the alternating minus sign and the

necessity of setting every second coefficient zero — compared to every fourth one before.

With (7.59) and the adapted form for νI , we can achieve a vanishing action according to

(7.49). Alternatively, we can replace one of the two by (7.57a) or (7.56a), whose solutions
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are obtained straightforwardly as

cµI

∣∣∣
(7.57a)

=


arbitrary, for µI ∈ {0, 1}

c0, ∀µI ∈ 2Z \ {0}

c1, ∀µI ∈ 2Z+ 1 \ {1}

(7.60)

and the corresponding expression for νI . Note that (7.56a) and (7.57a) are conditions for

vertices vI+1, but as we sum over all vertices and try to find conditions that hold already

vertex-wise, we can neglect that shift.

Summarising, we can make the action of Ĥeucl vanish by

(7.59)
∣∣∣
µI
∧
(

(7.60)
∣∣∣
ν
∨ (7.59)

∣∣∣
ν

)
(S1)

or, equivalently, with µ and ν interchanged. Note that these turn out to be the only two

combinations of the solutions stated above: (7.55) showed that we need one condition for µ

and one for ν as the solutions to (7.56a) and (7.56b) are not compatible (and likewise those

to (7.57a) and (7.57b)). Furthermore, the solution (7.54) for either µ or ν, which makes

the first part of the Euclidean action vanish, does not so for any contribution of the second

part, (7.55). In turn, the condition (7.53) behind that solution is automatically fulfilled by

solutions to (7.57b) (and, again, the same holds for the respective ν equivalents). Hence,

we have to choose (7.59) for at least one of the charges µ and ν, which then makes one

part of the Euclidean action’s second contribution vanish as well as the first contribution.

The remaining contribution then vanishes by setting (7.59) or (7.60) for the respective

other set of charges.

We therefore found states |ϕ〉 :=
∑

k∈ZN
∑

µ∈m
∑

ν∈nCk,µ,ν |k, µ, ν〉 that experience a

vanishing action of Ĥeucl by fulfilling constraints for the separated coefficients Ck,µ,ν =

Ck
∏

I cµIcνI . The solution we stated above, however, poses restrictions for the µ and ν

coefficients only.

7.2.3 Degeneracies of the action of the Lorentzian part Ĥlor

While the diagonal action (7.61) of Ĥlor makes a discussion as the one of the previous

subsection irrelevant — note that a diagonal action includes that there are no shifted

coefficients —, it in turn allows for a discussion of degeneracies.
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7.2. On specific solutions of the Schrödinger-like equation

Recall the action of Ĥlor on the state |ϕ〉 via (7.35) and (7.36)

Ĥlor |ϕ〉 =
∑

v∈V (α)

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

{{
− κlor,1

(
kev − kev−

)2
[∣∣kev + kev−

∣∣r|µv|r|νv|r·
·
(∣∣kev + kev− + 1

∣∣ r2 − ∣∣kev + kev− − 1
∣∣ r2)(|µv + 1|

r
2 − |µv − 1|

r
2

)
·

·
(
|νv + 1|

r
2 − |νv − 1|

r
2

)]l}∣∣∣∣
r= 2

3
− 1

3l

+

+

{
κlor,2

(
kev + kev−

)4
(µvνv+ − µv+νv)

2[∣∣kev + kev−
∣∣r2|µv|r2·

· |νv|r2
(∣∣kev + kev− + 1

∣∣ r22 − ∣∣kev + kev− − 1
∣∣ r22 )(|µv + 1|

r2
2 − |µv − 1|

r2
2

)
·

·
(
|νv + 1|

r2
2 − |νv − 1|

r2
2

)]l}∣∣∣∣
r2= 2

3
− 5

3l

}∣∣k, µ, ν〉. (7.61)

We notice that i.a. due to the appearance of r and r2 as different exponents in the

two contributions (and in κlor,1 and κlor,2, confer (7.37)), it is very unlikely for the two

contributions to result in the same value or annihilate each other. Therefore, we consider

both summands alone.

From the vertex-wise composition follow immediately two of the most basic degen-

eracies, namely rotations and flips of the graph and its vertices. Rotations and their

corresponding rearrangement of the vertices are described by

∀vI ∈ V (α) : vI 7→ vI+n, for some n ∈ N, (S2)

while flips of a graph α with N = |V (α)| many vertices can be represented as

∀vI ∈ V (α) : vI 7→ vN+1−I+n, for some n ∈ N. (S3)

With this, all charges µv and νv change their indices the same way. Hence, these two

mappings do not change the value of (7.61) when the summation over all vertices is

considered.

The other basic degeneracy is the interchange of all µ and ν charges,

∀v ∈ V (α) : µv 7→ ν ′v ∧ νv 7→ µ′v. (S4)
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As for all considerations before, µ and ν play the same role in (7.61). The only factor

that does not reflect this behaviour immediately is (µvνv+ − µv+νv)
2, but due to the even

exponent, the minus within the bracket that arises via the interchange of the µ and ν

charges does not change its value as well.

After having specified these three basic degeneracies, an aspect of interest may be

whether shifts created by the action of Ĥeucl result in a new degenerate state with the

same eigenvalue of Ĥlor. Addressing this question, we recapitulate that Ĥeucl acts only

vertex-wise. Changing only the contribution of one vertex in (7.61), however, is in general

not preserving its value, but we can indeed find configurations that do fulfil this connection

of Ĥeucl and Ĥlor. From (7.32), we recapitulate that Ĥeucl

∣∣k, µ, ν〉 generates the shifted

states

∣∣k, µ, ν〉 Ĥeucl7→
∣∣kev ± 2, µv ± 1, µv+ ± 1, ν

〉
,
∣∣kev ± 2, µ, νv ± 1, νv+ ± 1

〉
,
∣∣k, µv ± 2, νv ± 2

〉
.

(7.62)

We then see that individual states of the set above do preserve some factors’ values within

(7.61) for specific values of the charges, but not the whole expression. It is in particular the

link between the k-charges of different vertices that causes trouble:
(
kev + kev+

)4
can not

be preserved when only kev is de- or increased by two. The only way that’s possible is for

kev = 0 and kev = ±1. But as we would have to fulfil it for every vertex, this choice leads

to a contradiction. While this excludes the first two sets of states of (7.62), we can indeed

find states of the third set that have the same Lorentz energy2 as the initial
∣∣k, µ, ν〉.

They are shown in Figure 7.4 and represent states where, at one vertex v, the charges µv

and νv happen to be ±1. Acting with Ĥeucl on such a state produces i.a. states of the

third set of states of (7.62) that only change the signs of these charges µv and νv: from

-1 to +1 or vice versa. This clearly preserves all factors |µv, νv|r,r2 of the Lorentz action

(7.61) and also the products
(
|µv + 1|

r
2
,
r2
2 − |µv − 1|

r
2
,
r2
2

)(
|νv + 1|

r
2
,
r2
2 − |νv − 1|

r
2
,
r2
2

)
due

to the double change of the sign. Lastly, (µvνv+ − µv+νv)
2 experiences a change of the sign

in both its subtrahend and its minuend, hence preserves its value because of the square.

Note that this factor has to be preserved for the vertex vI−1 as well, due to the mixture

of the charges of the current and the next vertex. All other µ- and ν-charges as well as all

kev can, however, be chosen arbitrary as the symmetry of -1 and +1 suffices to conserve

the Lorentz energy.

2We call the eigenvalues of Ĥlor “Lorentz energies”, even though they are, of course, not necessarily
one part/summand of the (proper) energy eigenvalues of Ĥphys.
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ke− kevv

vI−1 vI+1

µv = −1
νv = −1

µv−
νv−

µv+

νv+

µv ± 2
⇐⇒
νv ± 2

kev− kevv

vI−1 vI+1

µv = 1
νv = 1

µv−
νv−

µv+

νv+

(a) parallel degeneracy

kev− kevv

vI−1 vI+1

µv = −1
νv = 1

µv−
νv−

µv+

νv+

µv ± 2
⇐⇒
νv ∓ 2

kev− kevv

vI−1 vI+1

µv = 1
νv = −1

µv−
νv−

µv+

νv+

(b) cross degeneracy

Figure 7.4: Specific degeneracies of states linked by the action of Ĥeucl. As before in the
figures also here to keep the notation more compact we used kevI := kI , µvI := µI and

νvI := νI etc.

To give a further example of a more special degeneracy, we deduce from (7.61) that the

charges kev always appear in the combination kev + kev+ or kev+ − kev− . This allows to set

kevI 7→

kevI ± a for I ∈ 2Z, a ∈ R

kevI ∓ a for I ∈ 2Z+ 1, a ∈ R
(S5)

for graphs with an even number of vertices and yet get the same Lorentz energy.
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Chapter 8

Conclusion

In this part, we considered a reduced model with a polarised T3 Gowdy symmetry result-

ing from Gaussian dust coupled to general relativity and afterwards applying the symme-

try reduction. The corresponding physical phase space has three independent canonical

pairs consisting of Dirac observables associated with the connection and triad variables

and describe an unconstrained U(1) gauge field theory. The evolution of these Dirac ob-

servables is generated by a physical Hamiltonian that itself is a Dirac observable. This

classical model was taken as a starting point and quantised in the reduced LQG as well

as the AQG framework in this work. In both cases, due to the symmetry of the classical

physical Hamiltonian a graph-preserving quantisation was chosen in order to implement

these symmetries also at the quantum level. The results presented here extend the ones

in the literature in the following aspects: On the one hand, the models existing so far that

use a loop but not hybrid quantisation [164, 195] have all applied a Dirac quantisation

where a kinematical Hilbert space is chosen as an intermediate step on which the Hamilto-

nian, spatial diffeomorphism and Gauß constraints of the Gowdy model are implemented

as operators. The physical Hilbert space then involves those physical states that are an-

nihilated by all constraint operators. The model discussed in [165–167] considers a hybrid

quantisation where the homogeneous modes are quantised using loop quantum gravity

techniques whereas for the quantisation of the inhomogeneous modes a Fock quantisation

has been chosen. They are thus not easy to relate to those models where no Fock quanti-

sation has been used such as, e.g., full LQG. The model in [195] derives the full physical

Hilbert space in a simpler setup where vacuum Gowdy spacetimes have been considered

with an additional rotational symmetry. The model that comes most closely to the one
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discussed here is the one in [164] where similarities but also differences exist. The main

difference is that [164] also follows a Dirac quantisation for the individual constraints with

partly a different regularisation. Since also for their chosen regularisation the structure of

the constraint operators is similarly complicated as the Schrödinger-like equation we ob-

tain here, the physical Hilbert space of that model has not yet been derived. Furthermore,

because one works with the Hamiltonian constraint instead of a physical Hamiltonian, the

properties of the constraint algebra, as in the full theory, favour a graph-modifying quan-

tisation of the Hamiltonian constraints. This yields a setup where the construction of

semiclassical states as well as solutions of the constraint operator equations become more

complicated compared to the model presented in this work due to the fact that operators

modify the underlying graph they are acting on. In contrast, in the models presented here,

the graph-preserving property comes in accordance with the requirement to implement

classical symmetries also at the quantum level in the case of the reduced LQG model

where the usual Ashtekar-Lewandowski representation is chosen for the physical Hilbert

space. We further discussed the differences in the implementation of graph-preserving

operators in the reduced LQG and AQG framework. Furthermore, because we couple

Gaussian dust to gravity, the number of physical degrees of freedom differ in the two

models. The one of [164] has just one independent degree of freedom, whereas here we

have three. This is reflected in the fact that all geometric degrees of freedom encoded

in the Dirac observables of the model presented here are unconstrained, while for the

corresponding quantities on the kinematical Hilbert space described in [164] constraints

still exist. We also derived the explicit form of the Schrödinger-like equation of the model

in the AQG framework. This result provides an option for future work in which one can

analyse this Schrödinger-like equation numerically or perform a semiclassical analysis of

this equation in order to derive the corresponding effective model. As far as these future

computations are considered, the model with polarised T3 Gowdy symmetry introduced

here has — due to its symmetry reduction — the advantage that the volume operator acts

diagonally on the basis states and hence the spectrum of the volume operator is known

in the quantum theory. For semiclassical computations we therefore do not need to apply

semiclassical perturbation theory along the lines of [60], as it is necessary for full LQG.

As we do not analyse the Schrödinger-like equation in full detail here but just derive it

for the model and then discuss some very specific zero volume solutions in order to obtain

a first intuition on how the physical Hamiltonian operator acts, it will be an interesting

question for future work to better understand whether the model in [164] can in some

sense be embedded in the model presented here at the quantum level, when we extend
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our model by additional constraints that reduce the dust degrees of freedom and allow

to go back to the vacuum case — and how this might be reflected in the solutions of the

Schrödinger-like equation we obtain in this work.

Another scenario where we can get a notion of how the physical Hamiltonian and

especially its Euclidean and Lorentzian parts (inter-)act is degenerate perturbation theory.

First steps were already performed in [203], where the action of the symmetrised Euclidean

part 1
2

(
Ĥeucl +(Ĥeucl)

†
)

is treated as a perturbation on top of the action of the Lorentzian

part. However, as the complete set of degeneracies of Ĥlor is not known, a comprehensive

treatment of that ansatz is not possible. The special cases considered in [203] still illustrate

nicely the interplay of the actions of the two parts of the physical Hamiltonian and how

one can in general approach degenerate perturbation theory for Gowdy models like the

one considered herein.
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Part III

Semiclassical matrix elements and

singularity avoidance
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Chapter 9

Motivation

Note that the content of this part, Part III, was already published in [2, 3].

Sections of text within this part have been reused from an article published in Classical

and Quantum Gravity. IOP Publishing Ltd is not responsible for any errors or omissions

in the text included within this thesis. The Accepted Manuscript of the to be published

article is available online at https: // doi. org/ 10. 1088/ 1361-6382/ acc0c7 .

Part III of the work at hand is in particular about the question of singularity avoidance

in loop quantum gravity and a new procedure for computing semiclassical expectation

values in general. We start with introducing the loop quantum gravity setup in Chapter 10

and continue with Kummer’s confluent hypergeometric functions in Chapter 11. They are

the key part of the new mechanism that allows i.a. to compute semiclassical expectation

values of operators like the momentum operator to the power of a rational number. At

the beginning of Chapter 11, we present the basic properties of Kummer’s functions

that will be used throughout this part of the work at hand. As a warm up example, we

discuss in Section 11.3 fractional powers of momentum operators in the standard quantum

mechanical case and compute their semiclassical expectation values analytically by means

of Kummer’s functions and their Fourier transforms, respectively. We then also compute

the semiclassical expectation value of an operator that mimics the operator of interest in

the loop quantum gravity part. As a comparison with this result via Kummer’s functions,

we apply in Section 11.4 a different technique of computing fractional powers of operators

in a more general context, called the AQG-III algorithm [60].
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The applications of the new procedure are then two-fold: We first consider coherent

states on the circle in Chapter 12 and then cover the realm of loop quantum gravity in

the remainder of Part III.

9.1 Kummer’s functions and coherent states on the

circle

In Chapter 12, we discuss coherent states for a particle on a circle, which have for instance

been discussed in earlier work in [204–208] and references therein. In [204–207], coherent

states in the Hilbert space L2(S1) were constructed by means of the so-called Zak trans-

formation [209], whereas in [208] complexifier coherent states [133] for the group U(1)

were used, leading finally to the same kind of coherent states. These complexifier coher-

ent states have been introduced in the framework of loop quantum gravity for the group

SU(2) and analyses of their properties can be found in [121, 134, 135], while we refer to

[59, 60, 63–66] for further applications. Expectation values for elementary operators like

(integer powers) of the holonomy as well as the momentum operator with respect to co-

herent states in L2(S1), also called semiclassical expectation values, have been computed

in [204–208]. These semiclassical expectation values can be understood as an expansion in

a classicality parameter, denoted by t in our work. For the standard harmonic oscillator

coherent states, this classicality parameter can be identified with ~/(mω). One is then

interested in the classical limit of the expectation values, that is when t is sent to zero.

If a set of coherent states provides an appropriate description of the semiclassical sector

of the given quantum theory, we expect that at least for the elementary operators the

quantum theory is built from, the classical limit (zeroth order in the semiclassical param-

eter t) agrees with the corresponding classical theory. Such an analysis allows to check

whether, for a given operator in the quantum theory, the considered coherent states are

suitable. In [205–207], expectation values with respect to coherent states in L2(S1) were

expressed in terms of Jacobi’s theta function and its derivatives, which naturally occurs

once one applies the Zak transform onto a Gaussian — the theta function is the image of

the Gaussian under the Zak transformation.

In the course of Chapter 12, we extend these former results in two directions. On the

one hand, we generalise the computation of semiclassical expectation values from integers

powers of momentum operators to fractional powers. The motivation for this comes from
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loop quantum gravity and loop quantum cosmology respectively where operators like the

square root of the determinant of momentum operators play a pivotal role when the

dynamics is quantised. This generalisation can be done by using Kummer’s confluent

hypergeometric functions of the first and second kind. A basic result [210] we will rely on

is the fact that the Kummer functions of the first and second kind are mapped onto each

other under Fourier transformations if their parameters are adjusted accordingly. This

allows to compute those expectation values completely analytically without the need to

use estimates or approximations for the integrals involved. In a further step, one can

use the well-known asymptotic expansions of Kummer’s functions in order to obtain an

expansion in terms of ~ or any other classicality parameter. This also allows to compute

the classical limit, the lowest order of that expansion, for this kind of expectation values.

The second direction we will explore is to consider the Zak transformation not only

for obtaining coherent states in L2(S1), as it has been done in [205–207], but also in the

context of computing semiclassical expectation values. By using the basic properties of

the Zak transformation, we can show that there exists a very simple relation between the

semiclassical matrix elements in L2(R) and L2(S1). For a given operator on L2(S1) (or a

suitable domain thereof), the semiclassical matrix elements can be understood as a Fourier

series with Fourier coefficients made from the corresponding matrix elements in L2(R),

which involve the counterpart of the operator on L2(R) as well as a translation operator.

In particular, this means that any semiclassical matrix element in L2(S1) is completely

determined by these corresponding matrix elements in L2(R). Interestingly, the leading

order term, that is the limit in which the semiclassical parameter vanishes, exactly agrees

with the semiclassical result obtained in L2(R). The latter is just a consequence of the

unitarity of the Zak transformation. This relation, obtained in Subsection 12.2.2, provides

an alternative way for computing semiclassical matrix elements and expectation values,

respectively. It might also allow to reconsider those techniques from a different angle that

have been used in the context of U(1) complexifier coherent states in [63, 64, 134, 135, 208]

in order to estimate semiclassical expectation values and to obtain the classical limit.

Although we will restrict to the one-dimensional case here, the Zak transformation, and

thus also the results presented here, can be easily generalised to higher finite dimensional

systems. As a more complex application of these techniques, we will apply them to U(1)3

coherent states, which are often used as a toy model for loop quantum gravity, in the

follow-up chapters. There, we will be mainly interested in computing the semiclassical

expectation values of dynamical operators as it has for instance been done in [63–66]. The
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usage of Kummer’s functions in this context allows to analytically compute some parts

that have been only estimated in earlier work.

This first part on applications of Kummer’s confluent hypergeometric functions other

than in quantum mechanics is structured as follows: Since, as in [208], we come from

the complexifier coherent states, after a brief introduction to the Zak transformation, we

apply it to the heat kernel. This is more convenient in this context, in contrast to using the

harmonic oscillator coherent states directly. For this purpose, we use former work from

[211] and as expected we end up with the same coherent states for L2(S1). Given this

set of coherent states, we compute semiclassical expectation values of operators involving

fractional powers of the momentum operators in Subsection 12.2.1. The relation between

semiclassical matrix elements in L2(R) and L2(S1) is derived and discussed in Subsection

12.2.2. As an application of this relation, we recompute a couple of semiclassical matrix

elements and expectation values respectively and show that we obtain the correct results.

Section 12.3 briefly covers the connection between the Zak transformation and the Poisson

resummation formula, which is an integral tool in the context of complexifier coherent

states. Lastly, we discuss in Section 12.4 — based on results obtained in [212] — that

the heat equation can be transformed into Kummer’s differential equation for a specific

choice of the parameters of Kummer’s functions and thus Kummer’s functions can be

understood as solutions of the heat equation for certain choices of boundary data.

9.2 Kummer’s functions in loop quantum gravity

Motivated by results in loop quantum cosmology (LQC) on the cosmological singularity

avoidance, it is of big interest to find out whether singularities — and especially the Big

Bang singularity — are resolved in the framework of full loop quantum gravity, too. Loop

quantum cosmology is a quantum mechanical toy model of loop quantum gravity with a

finite amount of degrees of freedom as it quantises general relativity not as a whole but

only its symmetry reduced, cosmological sector. It was introduced by Bojowald in a series

of papers [37–40] based on former work with Kastrup [213] and evolved quickly into an

active field of research; see for instance [214–216] for reviews and the references therein.

While the results of [41–45] are indeed very promising concerning the avoidance of the Big

Bang singularity and replacing it by a big bounce accordingly, there is a lot of discussion on

how LQC is embedded into full LQG [46–52]. Hence, it is of importance to also approach
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the possibility of singularity avoidance from the side of full LQG — guided by the seminal

results of LQC where possible. In order to proceed into this direction, an analysis of the

operators describing the quantum dynamics in LQG is necessary. One approach that

addresses this question follows the strategy to obtain cosmological models from full LQG

as for instance in [144, 217], where the latter relies on semiclassical techniques in order to

obtain cosmological models from LQG. In general, the semiclassical sector of the theory

provides a framework where this question is of interest. Entering this realm, in turn,

requires that we have appropriate semiclassical states for the theory, which we can use for

computing expectation values of the relevant operators such as for instance the inverse

scale factor in this sector. For loop quantum gravity, SU(2) complexifier coherent states

were constructed in [62], based on a complexification method introduced in [130, 218],

which was later generalised to diffeomorphism invariant gauge theories [129]. In a series

of papers [121, 133–135], it was shown that these complexifier coherent states fulfil the

desired properties such as peakedness in the configuration, momentum and phase space

representation or the Ehrenfest theorems, i.e. that they do reflect the behaviour of classical

physics in zeroth order in ~, and that the commutator of two operators (divided by i~)

resembles the Poisson bracket of the corresponding classical functions. Accordingly, those

states are also referred to as semiclassical states and one can use them to perform a

semiclassical analysis. One class of dynamical operators relevant in this context, denoted

as q̂je(r), constitutes the main ingredient of many quantum operators that are important

for describing the theory’s dynamics. As the inverse scale factor can be constructed from

it as well, it is furthermore the main object of investigation when looking into singularity

avoidance in cosmology. One of the reasons why this class of operators, however, is not

easy to handle is that they contain the volume operator to the power of r ∈ Q, making

many analytical calculations impossible since the full spectrum of the volume operator

is not known. This is the reason why we are forced to use estimates, approximations

or simplified models if we want to proceed. As far as semiclassical investigations are

concerned, so-called semiclassical perturbation theory was introduced in [60] that allows

to replace the volume operator by a power series expansion in terms of operators that

involve only integer powers of the flux operators. For those, semiclassical expectation

values can be analytically computed if one uses the SU(2) complexifier coherent states as

has been shown in [121, 133–135]. Another possibility is to replace the SU(2) coherent

states by U(1)3 coherent states, which have the advantage that they diagonalise the volume

operator.
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In previous work [63, 64], Sahlmann and Thiemann presented i.a. a procedure for calcu-

lating expectation values with respect to U(1)3 complexifier coherent states of the opera-

tors that constitute the Hamiltonians of various fields being coupled to gravity, including

the operator q̂je(r). They were able to perform their calculations without the usage of

estimates to solve the occurring integrals in the expectation value as they restricted their

analysis to cubic graphs. However, their approach involves a Taylor expansion of quan-

tities with fractional powers, which was crucial for obtaining analytical expressions as

final results. Later, Brunnemann and Thiemann [65, 66] analysed the question of singu-

larity avoidance in loop quantum gravity. In their work, they showed that the analogue

of the inverse scale factor operator in LQG is unbounded from above on zero volume

states. However, they found indeed an upper bound for the expectation value of the

inverse scale factor operator with respect to U(1)3 coherent states at the Big Bang. In

order to obtain this result, they applied a chain of estimates that allowed them to cir-

cumvent the evaluation of the initial integrals and instead replace them by ones that can

be integrated analytically with the methods they used. The details will be discussed in

Subsection 16.1.1. They conclude that singularity avoidance in LQG, if existing, has to

be addressed differently than in LQC, but the existence of an upper bound of the in-

verse scale factor’s expectation value with respect to coherent states at the Big Bang can

be seen as a strong indication for the respective singularity’s resolution at least in the

semiclassical sector of the theory.

This part of the work at hand aims at revisiting the semiclassical analysis of the inverse

scale factor operator by applying the new technique introduced before: Kummer’s con-

fluent hypergeometric functions can be used to analytically compute expectation values

of fractional powers of the momentum operator with respect to U(1) coherent states or

the well-known quantum mechanical coherent states. This technique also applies to U(1)3

coherent states frequently used in the earlier analysis of LQG. The reason why Kummer’s

functions fit well into this framework is that Kummer’s functions of first and second kind

are in some sense dual to each other under the Fourier transform, which was shown in [210]

and heavily used and discussed in detail in [2]. The integrals at hand for the semiclassical

expectation values result essentially in Kummer’s confluent hypergeometric function of

the first kind. If being interested in the semiclassical limit, one can subsequently make

use of the asymptotic expansion for large arguments of Kummer’s functions to obtain in

zeroth order the result one would expect from the classical calculation. This expansion

is performed in terms of the classicality parameter encoded in the coherent states, which
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9.2. Kummer’s functions in loop quantum gravity

is ~ in the case of the quantum mechanical coherent states. The aim of this part of the

present work now is to apply this new procedure in the LQG-framework and calculate

semiclassical expectation values there. An advantage of this method compared to the

former analysis in [63–66] is that we are able to avoid estimates at certain stages of the

computation since we can integrate fractional powers against Gaussians, whereas in the

former work either Taylor expansions or estimates were necessary to substitute the in-

volved fractional powers. In our analysis here, depending on the scenario we consider, we

can perform our computations either even without the additional usage of estimates or

with ones that are slightly better adapted to the fractional power of the operator. The

scenarios we consider differ by the choice of the underlying graph, particularly its valence,

or by the power of the operator q̂je(r). We will show that we can on the one hand extend

the method used by Sahlmann and Thiemann also to more general graphs than cubic ones

and on the other hand adapt the procedure of Brunnemann and Thiemann with the use

of Kummer’s functions and compare their results to ours. The latter allows us further to

discuss limitations and generalisations of existing estimates in this context.

These considerations are structured as follows: First, we use this new procedure to

compute the expectation value of fractional powers of the momentum operator with re-

spect to coherent states in Chapter 13 as an illustrating example.

In Chapter 14, we apply this method to the volume operator and perform semiclassical

computations without the additional usage of estimates. Starting with graphs of cubic

topology, we first calculate the basic building block of their semiclassical expectation

value of q̂i0I0(r) with respect to U(1)3 coherent states in Section 14.2. We only illustrate

the general procedure, which we summarise in a note on page 181, while the details of this

calculation are moved to Appendix B. The final result can be found in (14.27) on page

183. Its specialisation to the case p = 0, which corresponds classically to the cosmological

singularity, is shown in (14.31) on page 185. Afterwards, we discuss the semiclassical limit

in Section 14.4, where the detailed derivation is presented in Appendix D.

In our next step in Chapter 15, we then proceed to higher valent vertices and, after a

general introduction, apply the procedure of Sahlmann and Thiemann to these not nec-

essarily cubic graphs in Section 15.1. The final result for the semiclassical expectation

values of
∏N

k=1 q̂
jk
Jk

(r) via a generalised form of the procedure of Sahlmann and Thiemann

can be found on page 198 in (15.20) and we close this chapter with a comparison of the

two approaches in Section 15.2.

For more complicated and general scenarios, the relevant integrals cannot be solved by
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the methods discussed in the former chapter and therefore, in Chapter 16, we discuss

semiclassical computations for the volume operator that also rely on estimates. The first

calculation of Subsection 16.1.1 follows the route of Brunnemann and Thiemann and —

likewise to their result — also yields an upper bound for the inverse scale factor, but in

our case is adopted in such a way that we use different estimates as we can then evaluate

the integrals at hand by means of Kummer’s functions. The semiclassical expectation

values of q̂i0I0(r) using a generalised form of the estimates of Brunnemann and Thiemann

is shown in (16.15) on page 208. The case p = 0 is separately discussed and can be

found in (16.19) on page 209. A generalisation of the above procedure for
∏N

k=1 q̂
jk
Jk

(r) is

given in (16.27) on page 211 and for the specific case p = 0 in (16.31) on page 212. The

comparison of the way different estimates enter into the final result allows us to discuss

the limitations of such estimates as well as finding new estimates that potentially improve

the results, or at least let us understand the problems that arise due to the utilisation of

them. These are illustrated in Section 16.2, which concludes in a comparison with the

initial Brunnemann and Thiemann approach in Subsection 16.2.3. The final result for

the semiclassical expectation values of q̂i0I0(r) using a new kind of estimate is presented in

(16.41) on page 216 and in (16.42) on page 217 for the case p = 0. Considering a further

new kind of estimate, the semiclassical expectation value of q̂i0I0(r) has been recalculated

in (16.63) on page 222. Subsection 16.2.2 presents a brief overview over conditions we

may impose on possible new estimates.
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Chapter 10

The setup — U(1)3, the operator

q̂
i0
I0
(r) and coherent states

Investigating these kind of questions, it is common practice [63–66] to replace the gauge

group SU(2) by U(1)3. While the qualitative meaning of the obtained results is not

altered by this substitution [60, 134, 135], working with the Abelian U(1)3 renders many

calculations more palpable. This is why U(1)3 is gladly used for approaching new problems

or testing novel techniques.

Going over to U(1)3 requires some changes, of course. However, the underlying graph

γ will not be changed and we still collect all edges e in E(γ) and all vertices v in V (γ).

Each of those edges e is now equipped with the Hilbert space He = L2(U(1)3, dµH), with

the Haar measure dµH , and the holonomy flux algebra reads

[
ĥje, p̂

k
e′

]
= −i

`P
2

a2
δee′δ

jkĥke′ ,
[
ĥje, ĥ

k
e′

]
= 0 and

[
p̂je, p̂

k
e′

]
= 0. (10.1)

Therein, a length scale a was introduced that allows us to work with dimensionless fluxes

for later convenience. It originates from the construction of the coherent states and is used

there to have at hand a dimensionless complexifier. Note that it also links the classicality

parameter t with the Planck length `P: t = `P
2/a2.

Concerning the basis states, the previously introduced spin network functions Tγ are

replaced by so-called charge network functions T c
γ for U(1)3. The name derives from the

fact that all edges eI are now “charged” with three U(1)-charges niI , i ∈ {1, 2, 3}. The
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coherent states

holonomy operator ĥiI acts on these states via multiplication and increases the corre-

sponding charge niI of the U(1)-copy i of the edge eI by 1. The flux operator then acts

via differentiation: p̂je = i
a2h

j
e
∂

∂hje
.

The main operator of interest, or rather class of operators, is the previously mentioned

q̂je(r) := tr

(
τjĥe

[(
ĥe

)−1

, V̂
r
])
. (10.2)

Its components are a basis τj of su(2), the holonomy operator ĥe acting on edge e and the

volume operator V̂ to the power of r ∈ Q. We already stated the latter in Subsection 2.4.2

as

V̂ = `P
3
∑

v∈V (R)

√√√√∣∣∣∣∣ 1

48

∑
eI∩eJ∩eK=v

εijkε(eI , eJ , eK)Ĵ
(v,eI)
i Ĵ

(v,eJ )
j Ĵ

(v,eK)
k

∣∣∣∣∣ (10.3)

= `P
3
∑

v∈V (R)

√∣∣∣Q̂v

∣∣∣. (10.4)

The great importance of this class of operators in the framework of loop quantum gravity

now stems from their appearance in various (matter) Hamiltonian operators [63, 64] via

products of the form
N∏
k=1

q̂jkek .

Yet, they also are indeed crucial when tackling the question of singularity avoidance as

the inverse scale factor can be obtained by setting r = 1
2
, N = 6 and multiplying by an

additional 1/`P12 in order to get the dimensions right.

The U(1)3-equivalent we will work with reads

q̂i0I0(r) :=
1

a3r
ĥi0I0

[(
ĥi0I0

)−1

, V̂ r

]
, (10.5)

where we again considered the length scale a in order to work with dimensionless quanti-

ties. We adopted from [66] the marker 0 to highlight the specific U(1)-copy and edge the

holonomies act on. The benefit of this will become clear soon.

130



For the action of q̂i0I0(r) on charge network functions, we first state the action of the

volume operator on a charge network state:

V̂ T c
γ =: λ

({
niI
})
T c
γ =

∑
v

`P
3

√√√√∣∣∣∣∣Z ∑
I,J,K

εijkε(IJK)niIn
j
Jn

k
K

∣∣∣∣∣T c
γ , (10.6)

where we chose Z := β3

48
[89]. The notation is in accordance with the literature [66], in

particularly with regard to naming the eigenvalues λ({niI}). Therein, {niI} highlights that

λ depends on the whole set of the charges niI . We see that the charge network functions

diagonalise the volume operator — another key advantage of U(1)3. The structure of

the eigenvalues, accordingly, follows closely that of the volume operator itself: First, the

action is vertex-wise and we sum over all vertices v ∈ V (γ). Then, the square root collects

in its argument all combinations of configurations of three edges eI , eJ , eK that meet at v

(note that we abbreviated
∑

eI∩eJ∩eK=v by
∑

I,J,K), covering their respective orientation

via ε(IJK). The quantity this sum collects is what we may call the determinant of the

“charge matrix”: εijkn
i
In

j
Jn

k
K , where one dimension of the matrix is spanned by the three

edges eI , eJ , eK and the other one by the three copies of U(1), labelled by i, j, k.

With this, we can now state the action of q̂i0I0(r) on charge network states T c
γ [66]:

a3r · q̂i0I0(r)T c
γ =

(
V̂
r
− ĥi0I0V̂

r
(
ĥi0I0

)−1
)
T c
γ

=
(
λr
({
niI
})
− λr

({
niI − δii0δII0

}))
T c
γ . (10.7)

We see that the eigenvalue of the volume operator changes for the contribution in which the

(inverse) holonomy acting on edge eI0 and U(1)-copy i0 is involved. The inverse holonomy

decreases the charge ni0I0 by 1 and hence, the volume operator sees only this reduced value

when acting on
(
ĥi0I0

)−1

T c
γ . The following non-inverse holonomy then reproduces T c

γ and

we obtain the above difference of the “normal” volume eigenvalue and one experiencing

a shift.

Much of the obstacles we will be facing during the upcoming investigations stems from

the involved structure of (10.6). Computing semiclassical expectation values means to

integrate these eigenvalues against Gaussian functions, which is not per se possible. This

means that one either has to turn towards simplified configurations, where one can indeed

perform the integration(s). Or, alternatively, one pursues the approximative part and tries
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coherent states

to deduce estimates that allow finding upper bounds for the expression of interest. Over

the next sections, we will delve into both branches.

The last ingredient of our setup are the complexifier coherent states for U(1)3. We

already introduced them in Subsection 2.7, (2.164):

Ψm(A) =
∏

eI∈E(γ)

i=1,2,3

∑
{niI}∈Z

e−
t
2(niI)

2
+niIp

i
I(m)
[
eiθiI(m)e−iθiI(A)

]niI
. (10.8)

As a brief recap, m =
(
A(0)(x), E(0)(x)

)
is the point the coherent state is peaked around

and the quantity t is called the classicality parameter as the limit t→ 0 reflects entering

the classical realm of the theory. In one exponent, we find piI — the canonical conjugate

of the holonomy, entering via the complexified holonomy. The whole expression shows

clearly the edge- and U(1)-copy-wise structure of the coherent states. What is more, the

coherent state is built up by the inverse holonomy, as one can infer from the minus sign

in the square bracket’s term e−iθiI(A). Accordingly, the coherent states are in fact linear

combinations of the conjugate charge network functions T
c

γ. With this minus sign, the

action of an additional inverse holonomy
(
ĥi0I0

)−1

, as happening in the second part of the

operator of interest q̂i0I0(r), will not decrease the corresponding charge niI by 1 but instead

increase it. Having this in mind, we can now state the expectation value of q̂i0I0(r) with

respect to the coherent states:

〈q̂i0I0(r)〉Ψm =
1

||Ψm||2a3r

∑
{niI}∈Z

e
∑
i,I

(
−t(niI)

2
+2piIn

i
I

)
λr
({
ni0I0
})

:=
1

||Ψm||2a3r

∑
{niI}∈Z

e
∑
i,I

(
−t(niI)

2
+2piIn

i
I

)(
λr
({
niI
})
− λr

({
niI + δii0II0

}))

=
1

||Ψm||2a3r

∑
{niI}∈Z

e
∑
i,I

(
−t(niI)

2
+2piIn

i
I

)
`P

3r|Z|
r
2

∣∣∣∣∣∑
IJK

ε(IJK)εijkn
i
In

j
Jn

k
K

∣∣∣∣∣
r
2

−

−

∣∣∣∣∣∑
IJK

ε(IJK)εijk
(
niI + δii0δII0

)(
njJ + δji0δJI0

)(
nkK + δki0δKI0

)∣∣∣∣∣
r
2

.
(10.9)

We first of all defined the eigenvalue as λr
({
ni0I0
})

, where the indices tell the specific

charge the (inverse) holonomy acts on and we kept the curly brackets to indicate that it
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still depends on all the charges of the state. The last line now reflects the aforementioned

fact that acting on the conjugate charge network functions, the inverse holonomy will act

by adding 1 to the shifted charge ni0I0 . We also introduced in the second line δii0II0 as a

shorthand notation for δii0δII0 .

When it comes to the computation of expressions like (10.9) in the light of a semiclassical

analysis, sending the classicality parameter t towards zero causes calculatory difficulty:

With t becoming smaller and smaller, the Gaussian functions with t(niI)
2

as their argument

become wider and wider — forcing us to consider more and more contributions of the sum

over all charges. What one would instead prefer to have at hand is an expression that

converges quickly for t → 0. The typical tool to achieve this is the so-called Poisson

resummation formula [65, 66, 121, 130, 133–135, 218] and, in fact, after applying it we

will ultimately only have to consider one contribution, which is even the trivial one.

Poisson resummation formula [134, Theorem 4.1]: For functions f ∈ L1(R, dx) for

which

F (x) :=
∞∑

n=−∞

f(x+ nT ) , T > 0, (10.10)

is absolutely and uniformly convergent for x ∈ [0, T ], the (re-)summation formula

∞∑
n=−∞

f(nT ) =
2π

T

∞∑
N=−∞

f̃

(
2πN

T

)
(10.11)

with the Fourier transform f̃(k) =
∞∫
−∞

dx e−ikxf(x) of f(x) holds.

To apply the Poisson resummation formula close to literature [66] in matters of notation,

we first define

T :=
√
t (10.12)

xiI := TniI (10.13)

and then get

〈q̂i0I0(r)〉Ψm =
|Z|

r
2T 3r

||Ψm||2
∑
{N i

I}∈Z

(
2π

T

)3M
∞∫

−∞

d9xiI e
∑
i,I

(
−(xiI)

2
+2

piI−πiN
i
I

T
xiI

)
1

T 3r

133



Chapter 10. The setup — U(1)3, the operator q̂i0I0(r) and

coherent states

·

∣∣∣∣∣∑
IJK

ε(IJK)εijkx
i
Ix

j
Jx

k
K

∣∣∣∣∣
r
2

−

−

∣∣∣∣∣∑
IJK

ε(IJK)εijk
(
xiI + Tδii0δII0

)(
xjJ + Tδji0δJI0

)(
xkK + Tδki0δKI0

)∣∣∣∣∣
r
2

.
(10.14)

Now, there are remarks to be made. First, we used the fact that we can associate the clas-

sicality parameter t with the Planck length `P and the length scale a via T =
√
t = `P

a
.

Second, the new “pseudo-charges” N i
I that enter our formulae via the Poisson resum-

mation formula are, in fact, not linked in any way to the previous U(1)-charges niI . So

whenever we talk about values of N i
I , this does not transfer to the same information about

niI . This will become especially important when we consider solutions {N i
I} = 0 only.

Similarly to above and following again the notation of [66], applying the Poisson re-

summation formula to the norm of the coherent states results in

||Ψm||2 =
∏

eI∈E(γ)
i∈1,2,3

∑
N i
I∈Z

2π

√
π

t
e
(piI)

2

t e−
π
2(NiI)

2
+2πiNiIp

i
I

t =:
∏

eI∈E(γ)
i∈1,2,3

2π

√
π

t
e
(piI)

2

t (1 +Kt),

(10.15)

where Kt is of order O(t∞), meaning we can neglect it when considering the limit t→ 0.

This is a crucial point that we will heavily make us of: An increasingly smaller classicality

parameter t will steadily squeeze the Gaussian functions more and more until, effectively,

only terms with N i
I = 0 contribute.

A straightforward analytical computation of expectation values like (10.14) is, however,

still not feasible and we are in need further techniques. We already mentioned that there

are two branches: Proceeding with estimates and obtain approximative results, or choose

special scenarios that then indeed allow an analytical calculation.
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Kummer’s confluent hypergeometric

functions

This is the key ingredient we will work with in both the analytic branch as well as during

the approximative approach — at least for some ansätze there. We start with describing

the origin and definition of these special functions and then introduce those properties

that we will use during our investigations. Afterwards, we explain the general integration

procedure via Kummer’s confluent hypergeometric functions by taking the example of

quantum mechanics.

Kummer’s confluent hypergeometric functions — which we will abbreviate as KCHFs

— originate as solutions to Kummer’s differential equation [219]

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0. (11.1)

This equation has two independent solutions, which are straightforwardly referred to as

Kummer functions of the first and of the second kind, respectively. Denoting the Kummer

function of the first kind by 1F1(a, b, z) and that of the second kind by U(a, b, z), they

read

1F1(a, b, z) :=
∞∑
n=0

(a)n
(b)nn!

zn and (11.2)

U(a, b, z) :=
Γ(1− b)

Γ(1 + a− b)1F1(a, b, z) +
Γ(b− 1)

Γ(a)
z1−b

1F1(1 + a− b, 2− b, z). (11.3)
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We will call z the argument of 1F1(a, b, z), while referring to a and b as its parameters.

The quantities (a)n therein are the Pochhammer symbol , also named the rising factorial:

(a)0 = 1,

(a)1 = a and

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1). (11.4)

When it comes to the naming of special functions and accompanied notations, however,

the literature offers a vast amount of different choices. We use those that became —

to our best knowledge — the established standard over time, but the interested reader

may find other ones, too: Initially, Kummer used ϕ(α, β, x) instead of 1F1(a, b, z) in [219,

cf. e.g. eq. 1.], while it is nowadays often symbolised by M(a, b, z). This should not be

confused with the regularised KCHF M(a, b, z) Γ(b) := M(a, b, z), denoted by an upright

M, which is often used due its advantageous avoidance of the KCHFs’ singularities when

b is 0 or a negative integer. The Kummer functions of the second kind, U(a, b, z), are

in turn sometimes also referred to as Tricomi’s functions, named after Francesco Tricomi

who introduced them in [220]. Lastly, also the Pochhammer symbol offers a similar variety

of labellings: You may find it in the literature as a(n) or an, while Pochhammer himself

denoted it by [a]+n , confer [221, p. 80-81]. Therein, you will also find (a)n, which he,

however, used for the binomial coefficient
(
a
n

)
. Note that (a)n is sometimes even used not

for the rising but the falling factorial — one really has to pay attention to the context

when seeing any of those symbols. When we later use the falling factorial, we will use

(a)−n to stick to the logics of the Pochhammer symbol, while you will mostly find an in

the literature.

Kummer’s functions 1F1(a, b, z) are entire functions in a and z, while they are mero-

morphic functions in b: they experience the aforementioned poles in b = −n ∀ n ∈ N0.

Note that M(a, b, z) is therefore an entire function of all a, z and b. Kummer’s function

of the second kind has a branch point at z = 0 and is otherwise entire in a and b. KCHFs

include numerous elementary functions via particular choices of their parameters, like

1F1(0, b, z) = 1, (11.5)

1F1(a, a, z) = ez, (11.6)

U
(
−r

2
,−r

2
, x2
)

=
(
x2
) r

2 = |x|r, (11.7)
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U

(
−n

2
,
1

2
, z2

)
= 2nHn(z) with the Hermite polynomials Hn(z) (11.8)

and many further ones, including links to Bateman’s function, Bessel functions, Laguerre

polynomials etc. [222, 223]. Kummer’s confluent hypergeometric function for its part can

be seen as a special limit of the (ordinary) Gaussian hypergeometric function 2F1(a, c; b; z):

1F1(a, b, z) = lim
c→∞ 2F1

(
a, c; b;

z

c

)
, where (11.9)

2F1(a, c; b; z) :=
∞∑
n=0

(a)n(c)n
(b)nn!

zn. (11.10)

We end the general introduction of Kummer’s functions with an an important property,

the so-called Kummer’s transformations

1F1(a, b, z) = ez 1F1(b− a, b,−z) and (11.11)

U(a, b, z) = z1−bU(a− b− 1, 2− b, z), (11.12)

which we will use quite frequently during our calculations. The upcoming two subsections

introduce two further properties in some more detail as they are key techniques for the

subsequent computations.

In Appendix A, we also offer a brief biographical overview over the influential life and

work of Ernst Eduard Kummer.

11.1 The Fourier transformation

The first of those properties is about the Fourier transformation. It turns out that the

Kummer functions of the first and second kind can be transferred from one to the other

via Fourier transformations including Gaussian functions. So to some extend, the two

Kummer functions are dual to each other. This result was published by Pichler in [210,

Theorem 3] and its proof relies on another theorem therein, [210, Theorem 1], namely the

“Expansion of Kummer’s functions in terms of Laguerre polynomials”. Adopted to our

notation, the relevant part of [210, Theorem 3] for our purpose reads:
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Theorem 1 (Pichler) (Fourier transform of Kummer’s functions). Kummer’s func-

tions are symmetric with respect to Fourier transformation. Let x, k ∈ R, we have for

Re(b− a) > 0

F
(

e−x
2

U
(
a, b, x2

))
=

1√
2

Γ
(

3
2
− b
)

Γ
(
a− b+ 3

2

) e−
k2

4 1F1

(
a, a+

3

2
− b, k

2

4

)
and (11.13)

F
(

e−x
2

1F1

(
a, b, x2

))
=

1√
2

Γ(b)

Γ(b− a)
e−

k2

4 U

(
a, a+

3

2
− b, k

2

4

)
. (11.14)

Therein, we used

F [f ](k) := f̂(k) =
1√
2π

∫
R

dx f(x) e−ikx and F−1[ĝ](x) := g(x) =
1√
2π

∫
R

dk ĝ(k) eikx

for the one-dimensional Fourier transformation F [f ], or f̂ , and its inverse F−1[f̂ ]. How-

ever, for our purpose, we work with a slightly modified version of this theorem, which was

introduced in [2]:

Lemma 1 Let x, k ∈ R,Re(b− a) > 0 and α ∈ C. Then, we have

F
(

e−x
2

U
(
a, b, x2

)
eiαx
)

=
1√
2

Γ
(

3
2
− b
)

Γ
(
a− b+ 3

2

) e−
(k−α)2

4 1F1

(
a, a+

3

2
− b, (k − α)2

4

)
and

(11.15)

F
(

e−x
2

1F1

(
a, b, x2

)
eiαx
)

=
1√
2

Γ(b)

Γ(b− a)
e−

(k−α)2

4 U

(
a, a+

3

2
− b, (k − α)2

4

)
. (11.16)

It essentially follows from the modulation property of the Fourier transformation itself:

F(eik0xf(x)) = f̂(k − k0). (11.17)

11.2 The asymptotic expansion for large arguments

The second property will be of paramount importance during our semiclassical consid-

erations: the asymptotic expansion for large arguments of the KCHF . For |z| → ∞, we
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have [222]

1F1(a, b, z)
|z|→∞
≈ Γ(b)

[
e±πiaz−a

Γ(b− a)

∞∑
n=0

(a)n(1 + a− b)n
n!

(−z)−n+

+
ezza−b

Γ(a)

∞∑
n=0

(b− a)n(1− a)n
n!

z−n

]
, (11.18)

where we need to choose the minus sign in exp(±πia) if z lies in the right half plane [222].

A similar expansion is also available for the Kummer function of the second kind, reading

U(a, b, z)
|z|→∞
≈ z−a

∞∑
n=0

(a)n(1 + a− b)n
n!

(−z)−n. (11.19)

Note that we now use the symbol ≈ to highlight approximations like applying one of

the asymptotic expansion formulae.

11.3 The procedure — exemplified by quantum me-

chanics

In this section, we will use familiar quantum mechanics and its coherent states to introduce

the general idea of the procedure that we will later use in the U(1)3-scenario. We start

by computing semiclassical expectation values of fractional powers of the momentum

operator, |p̂|r, and then proceed to an operator that we can use to mimic the q̂i0I0(r)-

operator of loop quantum gravity.

The way KCHFs will enter our calculations most times is via one of the two integrals∫ ∞
−∞

e−ρ
2(x−µ)2 |x|rdx = |ρ|−1−r Γ

(
r + 1

2

)
1F1

(
−r

2
,
1

2
,−ρ2µ2

)
or (11.20)∫ ∞

−∞
e−ρ

2x2+2ρ2µx |x|rdx = |ρ|−1−rΓ

(
r + 1

2

)
1F1

(
r + 1

2
,
1

2
, ρ2µ2

)
, (11.21)

where Re(r) > −1 and Re(ρ2) > 0. First of all, these two identities are, of course, related.
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Via the Kummer transformation (11.11), we can rewrite

1F1

(
−r

2
,
1

2
,−ρ2µ2

)
= e−ρ

2µ2

1F1

(
1 + r

2
,
1

2
, ρ2µ2

)
(11.22)

and obtain a link between the respective right hand sides of (11.20) and (11.21). The ad-

ditional Gaussian can now be used to complete the square on the left hand side of (11.21)

and we see the two identities do indeed describe the same integration procedure.

We can also understand these two formulae via the generalised Lemma 1 we introduced

in Section 11.1. Using (11.7),

|x|r =
(
x2
) r

2 = U
(
−r

2
,−r

2
, x2
)
, (11.23)

gives rise to the Kummer function of the second kind within the integrand of both (11.20)

and (11.21) and we can indeed apply Lemma 1 to both.

Now, when it comes to classical quantum mechanics, the coherent states take the well-

known form

Ψcoh = Ψ~
q,p =

1
4
√
π
√
σ

e−
(x−q)2

2σ2 e
i
~px (11.24)

in the position representation. Therein, the subscript q, p highlights that the state is

peaked around (q, p) in phase space, while the superscript ~ labels the state as being a

quantum mechanical one — as opposed to the coherent states of SU(2) or U(1)3. We

collect all constants in σ :=
√

~
mω

, which also corresponds to the width of the coherent

state in phase space. As already stated, we start with computing the expectation value

of fractional powers of the momentum operator, i.e.

〈|p̂|r〉Ψ~
q,p

= 〈Ψ~
q,p | |p̂|r |Ψ~

q,p〉 =

∞∫
−∞

dkF [Ψ~
q,p](k) |k|r F [Ψ~

q,p](k) (11.25)

with r ∈ Q ∧ r > −1

2
.

While the integral above is well-defined for r > −1 already, we further constrain r > −1
2

as

this additionally implies that |p̂|rΨ~
q,p is normalisable. For the last identity above, we used

that the momentum operator acts diagonally on the (generalised) momentum eigenstates

of quantum mechanics, which we put into the expression via a resolution of identity. We

can now use the already mentioned modulation property of the Fourier transform as well
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as the the self-reciprocity of Gaussian functions under Fourier transformations and obtain

〈|p̂|r〉Ψ~
q,p

=
σ

~
√
π

∞∫
−∞

dk
(
k2
) r

2 e−
σ2

~2 (k−p)2

=
σ√
π~

e(σ~ p)
2

∞∫
−∞

dk
(
k2
) r

2 e−(σ~ k)
2

ei(−2iσ~ p)
σ
~ k.

(11.26)

The last identity therein was introduced as a preparation for applying Lemma 1. We

already have the exponential function and what is left is replacing |k|r by a KCHF. Using

(11.23) we find

〈|p̂|r〉Ψ~
q,p

=
σ

~
√
π

e(σ~ p)
2
(
~
σ

)r ∞∫
−∞

dk U

(
−r

2
,−r

2
+ 1,

(σ
~
k
)2
)

e−(σ~ k)
2

ei(−2iσ~ p)
σ
~ k. (11.27)

Therefore, we can now indeed apply Lemma 1:

√
2Γ
(
r+1

2

)
Γ
(

1
2

) ~
2σ
F

(
e−( ~x

2σ )
2

1F1

(
−r

2
,
1

2
,

(
~x
2σ

)2
))

= U

(
−r

2
,−r

2
+ 1,

(σ
~
k
)2
)

e−(σ~ k)
2

.

(11.28)

Putting all those ingredients together, we get

〈Ψ~
q,p | |p̂|r |Ψ~

q,p〉 =
Γ
(
r+1

2

)
Γ
(

1
2

) (~
σ

)r
e
σ2

~2 p
2

F−1

[
F

[
e−( ~x

2σ )
2

1F1

(
−r

2
,
1

2
,

(
~x
2σ

)2
)]]

=
Γ
(
r+1

2

)
Γ
(

1
2

) (~
σ

)r
e
σ2

~2 p
2

e−(σp~ )
2

1F1

(
−r

2
,
1

2
,−
(σp
~

)2
)

=
Γ
(
r+1

2

)
√
π

(
~
σ

)r
1F1

(
−r

2
,
1

2
,−
(σp
~

)2
)

(11.29)

and see that we reproduced (11.20) to obtain the expectation value of |p̂|r with respect

to coherent states — namely a Kummer function of the first kind. A quick check for

r = 0 recovers the normalisation of the coherent states via 1F1

(
0, 1

2
,−
(
σp
~

)2
)

= 1. Also,

when it comes to the applicability of Lemma 1, we need to ensure Re(b− a) > 0 for the

involved KCHFs. With constraining r > −1
2
, this is fulfilled for both 1F1

(
− r

2
, 1

2
, .
)

and

U
(
− r

2
, r

2
+ 1, .

)
.

Note that this was a completely analytical computation, without the need of estimates

or performing a Taylor expansion. However, as a final result, (11.29) is still a bit unsatisfy-

ing and this is where the previously introduced asymptotic expansion for large arguments

of the KCHF, (11.18), comes into play. Working in quantum mechanics, we have with ~
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a parameter at hand that can be used to tell whether a quantity can be considered as

being small or, via inverse powers of it, in fact large. In the final result of (11.29) above,

the argument of the KCHF reads z = −
(
σp
~

)2
= − p2

~mω and we can therefore indeed apply

the expansion for large arguments:

〈Ψ~
q,p | |p̂|r |Ψ~

q,p〉 ≈
Γ
(
r+1

2

)
√
π

(
~
σ

)r
Γ
(

1
2

)e∓πi
r
2

(
− p2

~mω

) r
2

Γ
(
r+1

2

) ∞∑
n=0

(− r
2
)n
(

1−r
2

)
n

n!

(
~mω
p2

)n
+

+
e−

p2

~mω

(
− p2

~mω

)− 1+r
2

Γ(− r
2
)

∞∑
n=0

(
1+r

2

)
n
(1 + r

2
)n

n!

(
−~mω

p2

)n
≈ |p|r

∞∑
n=0

(
− r

2

)
n

(
1−r

2

)
n

n!

(
~mω
p2

)n
≈ |p|r

(
1− r(1− r)

4

~mω
p2

+O
(
~2
))
. (11.30)

Therein, a computationally advantageous feature of the asymptotic expansion was used

that we will always face in our considerations: Out of the two sums of the asymptotic

expansions, one generically vanishes due to a remaining Gaussian prefactor that damps

that contribution to O(~∞). In the above, this is the case for the second sum, which is

preceded by the Gaussian function e−
p2

~mω . Next, we have a minus sign in the exponential

function within the first sum as the argument of the KCHF is negative and a = − r
2
.

Together with the fractional power of -1 within the prefactor
(
− p2

~mω

) r
2
, this completes

to e−πi
r
2 (−1)

r
2 = (−1)−

r
2 (−1)

r
2 = 1 and there is no imaginary part left — as it should be.

Thereby, we end up with a series expansion that is calculable up to any desired order and

which also reproduces the expected zeroth order result |p|r.

We now proceed to an operator that we use to mimic the class of U(1)3-operators q̂i0I0(r)

in quantum mechanics:

q̂qm(r) = eiαx̂
[
e−iαx̂, |p̂|r

]
= |p̂|r − eiαx̂|p̂|re−iαx̂. (11.31)

With the volume operator depending on the fluxes, recap (2.106), it is a straightforward

choice to choose the momentum operator as representative in the quantum mechanical

toy model. The exponent r is then used to get the correct power. As equivalent of the

holonomy operator, we introduced eiαx̂. If we single out the last e-function e
i
~px within
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the definition of the quantum mechanical coherent states, (11.24), we can combine it with

eiαx, the action of the holonomy-like quantum mechanical operator, to obtain a shifted

momentum p 7→ p − ~α. This is also how the holonomy operator acts in U(1), so the

choice does indeed make sense.

We will now perform the calculations for the choice of r that, in U(1)3, reflects the sce-

nario where q̂i0I0(r) contains the square root of the volume operator — which is a frequently

appearing quantity in loop quantum gravity. Recap that the volume operator (2.106) is

essentially the square root of the operator Q̂v, (2.107), which in turn is proportional to the

product of three fluxes. Interpreting the momentum operator as the quantum mechanical

equivalent of the fluxes in loop quantum gravity, we are therefore left with the association√
V̂
∣∣∣
lqg
7→ |p|

3
4

∣∣∣
qm

and the expectation value of interest reads

〈|q̂qm(r)|r〉Ψ~
q,p

= 〈Ψ~
q,p|eiαx̂

[
e−iαx̂,

4

√
|p̂|3
]
|Ψ~

q,p〉. (11.32)

We can compute this in two steps, referring to our previous result for 〈|p̂|r〉Ψ~
q,p

, (11.29).

With one of the two contributions being precisely the result of (11.29) for r = 3
4
, we have

〈 4

√
|p̂|3〉Ψ~

q,p
=

1√
π

(
~
σ

)3
4

Γ
(

7
8

)
1F1

(
−3

8
,
1

2
,−σ

2

~2
p2

)
. (11.33)

As we already associated the action of the holonomy-like operator as a shift in the mo-

mentum only, we can also directly deduce

〈 4

√
|p̂|3〉e−iαx̂Ψ~

q,p
=

1√
π

(
~
σ

)3
4

Γ
(

7
8

)
1F1

(
−3

8
,
1

2
,−σ

2

~2
(p− ~α)2

)
. (11.34)

The arguments of the KCHFs in both contributions go with −σ2

~2 p
2 = − p2

mω~ , i.e. with 1
~

in at least one of their terms. We can therefore apply the asymptotic expansion for large

arguments, (11.18), and get

〈Ψ~
q,p|eiαx̂

[
e−iαx̂,

4

√
|p̂|3
]
|Ψ~

q,p〉 ≈
3

4

α|p|
3
4

p
~ +

(
3

32

α2|p|
3
4

p2
+

15

256

αmω|p|
3
4

p3

)
~2

+

(
5

128

α3|p|
3
4

p3
+

135

2048

α2mω|p|
3
4

p4
+

1755

32768

αm2ω2|p|
3
4

p5

)
~3 +O

(
~4
)
. (11.35)
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Just like before, we were able to drop one sum per expansion due to damping Gaussian

prefactors.1 The lowest order contribution divided by ~ matches the result one obtains

for the Poisson bracket of the classical counterparts of the involved operators. In the next

section, we will try to replicate this result by means of a different approach to semiclassical

analyses from the literature.

Before, we also want to address the case p = 0 as we notice that the result above would

diverge did we take that limit. Setting p = 0 in (11.33) & (11.34), we immediately see

that we have to proceed differently from thereon anyway. With p = 0, the argument

of the KCHF within (11.33) vanishes, yielding 1F1(a, b, 0) = 1. For (11.34) with p = 0,

in turn, we can use the non-approximative series expansion of the KCHF, (11.2), and

directly obtain a power series in ~:

〈Ψ~
q,p|eiαx̂

[
e−iαx̂,

4

√
|p̂|3
]
|Ψ~

q,p〉
p=0
=

1√
π

(~mω)
3
8 Γ
(

7
8

)(
1−

∞∑
n=0

(
−3

8

)
n(

1
2

)
n
n!

(
− α~
mω

)n)

= −
3Γ
(

7
8

)
4
√
π

α2

(mω)
5
8

~
11
8 +O

(
~

19
8

)
. (11.36)

So we do in fact not end up with a diverging expression for the limit p = 0 after all.

11.4 Comparison with the algebraic quantum gravity

approach

We now want to compare the previously obtained analytical result for the semiclassical

expectation value with an approximative method from the literature. This procedure

originates from the previously introduced framework called algebraic quantum gravity,

introduced by Giesel and Thiemann in [58–61]. In the third paper of this series, [60],

they show that one can replace the operator of interest, i.e. which one aims to compute

semiclassical expectation values of, by a power series in the classicality parameter that

only contains integer powers of operators one can in turn compute expectation values of.

So starting with an operator to the power of r ∈ Q, one ends up with a power series in

expectation values of that operator to the power of n ∈ N. In our case, this operator

is Q̂v: If we want to compute semiclassical expectation values of q̂i0I0(r) in loop quantum

1Note that we could have used just as well the final result after performing the expansion, (11.30).
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gravity, which include V̂
r
, it ultimately means to compute semiclassical expectation values

of
(

Q̂v

) r
2
. We motivated that this is not analytically possible in full generality, but via

the method of [60], we end up with computing integer powers
(

Q̂v

)n
, n ∈ N, only. The

actual replacement of the volume operator to the power of a rational number within the

semiclassical expectation value with respect to Ψ by a power series then looks like [60]

V̂
4q

v 7→
(
〈Q̂v〉Ψ

)2q
(

1 +
2k+1∑
n=1

(−1)n+1 q(1− q) · · · (n− 1− q)
n!

(
Q̂

2

v

〈Q̂v〉2Ψ
− 1

)n)
, (11.37)

which is correct up to the order ~k+1.

We now apply this technique to the toy model of semiclassical expectation values of

(11.31) within quantum mechanics. As before, we consider the square root of the volume

operator, meaning r = 1
2
, and for the power series above we choose k = 1, i.e. we include

correction terms up to ∼ ~2. With k = 1, we have to compute expectation values of

powers of p̂ up to p̂18. However, for integer powers we can use the standard techniques

and end up with

〈eiαx̂

[
e−iαx̂,

4

√
|p̂|3
]
〉Ψ~

q,p
≈ 3

4

α|p|
3
4

p
~ +

(
3

32

α2|p|
3
4

p2
+

15

256

αmω|p|
3
4

p3

)
~2 +O

(
~3
)
. (11.38)

Comparing this result with the previously obtained one via KCHFs, (11.35), we realise

that they do indeed agree.
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Chapter 12

Kummer’s functions and coherent

states on the circle

Before we delve into the computation of semiclassical expectation values via Kummer’s

confluent hypergeometric functions in loop quantum gravity, we use this chapter to inves-

tigate coherent states on the circle in the light of Kummer’s functions. In the literature,

coherent states on the circle were investigated so far either via the complexifier method

[208] or using the so-called Zak transform [204–207]. This chapter now aims at combining

these two approaches and Kummer’s confluent hypergeometric functions help computing

semiclassical expectation values.

12.1 The Zak transformation

We start with some short remarks along the lines of [224]: The Zak transformation is

named after Joshua Zak who introduced it in [209] as the “k-q representation” for de-

scribing Bloch electrons in electromagnetic fields. Isräıl Gel’fand discovered it already

earlier in [225], but it is only rarely found as the “Gel’fand mapping” as it was Zak who

started to investigate it in more detail. There exists also a different variety of the Zak

transform, named the “Weil–Brezin map” after André Weil1 [228] and Jonathan Brezin

[229]. For this particular map, [230] argues that Carl Friedrich Gauß was already aware

of it.

1As a side note, it was also André Weil who published the collected work of Ernst Eduard Kummer
[226, 227].
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With the Zak transformation, we can map functions from R to the torus T2:

Za : L2(R)→ L2(R2/Z2), f 7→ Za[f ](x, ζ) :=
√
a

∞∑
n=−∞

f(x+ 2πna)e−2πinaζ . (12.1)

Therein, ζ ∈ [0, 1/a] and — in abuse of notation — we use the same x ∈ [0, 2πa] for

both the old and new variable. Note that while we work in one dimension only, the

Zak transform can also be extended to L2(Rn). The corresponding inverse mapping

Z−1
a : L2(R2/Z2)→ L2(R) now reads

Z−1
a [g](x) :=

√
a

1
a∫

0

dζ g(x, ζ), (12.2)

with a 6= 0 ∈ R. After applying the Zak transformation, we obtain with Za[f ] a periodic

function in ζ that is furthermore quasiperiodic in x:

g
(
x, ζ + `

a

)
= g(x, ζ) and g(x+ 2πam, ζ) = e2πimaζg(x, ζ) for g = Za[f ], `,m ∈ Z.

(12.3)

Accordingly, the choice of its values in [0, 2πa]× [0, 1
a
] fully defines Za[f ].

As a short example, we compute the Zak transformation of a Gaussian fG : R→ R, x 7→
fG(x) := e−

x2

4b . To keep the formulae short, we use a = 1 and Z1 =: Z:

Z[fG](x, ζ) =
∞∑

n=−∞

e−
1
4b

(x+2πn)2

e−2iπnζ

= e−
x2

4b

∞∑
n=−∞

e2in(−πζ+i2π x
4b)e−

(2π)2n2

4b

= e−
x2

4b Θ

(
−πζ +

2iπx

4b
,
iπ

b

)
. (12.4)

In the last step, we introduced Jacobi’s third theta function Θ(z, eiπτ ) =: Θ(z, τ) :=∑∞
n=−∞ e2inzeiπτn2

with Im(τ) > 0.

We will later also use the combination of the Zak transform of a function and the

dilation Dγ of its argument defined as Dγf(x) :=
√
γf(γx) for γ > 0. Using a result of
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[231], the Zak transform of a dilated function reads

Z[Dγf ](x, ζ) = Zγ[f ](γx, ζ/γ), (12.5)

where again Z := Z1. Associating the two parameters γ = a, the Zak transformation

above becomes

Za[f ](ax, ζ/a) =
√
a

∞∑
n=−∞

f(ax+ 2πna)e−2πinζ (12.6)

and we will from now on consider the special case of a = 1.

As a further example and to get more familiar with the Zak transformation, we show

its unitarity following [211]. For f ∈ L1(R) ∩ L2(R),

∫
R

dx|f(x)|2 =
1

2π

∞∑
k=−∞

∫
2πk+[0,2π]

dx|f(x)|2 =
1

2π

2π∫
0

dx
∞∑

k=−∞

|f(x+ 2πk)|2 <∞ (12.7)

holds. The first step consists of a partition of R into intervals of [0, 2π]. We then applied

Fubini’s theorem and lastly used that f ∈ L2(R). Hence,
∑∞

k=−∞ |f(x + 2πk)|2 < ∞
for a.e. x ∈ R and the Fourier series

∑∞
k=−∞ f(x + 2πk) e−2iπkζ is well-defined for f ∈

L1(R) ∩ L2(R). We also have

1∫
0

dζ|Z(x, ζ)|2 =
∞∑

k=−∞

|f(x+ 2πk)|2 (12.8)

and with an additional integration over x combined with Fubini’s theorem, we end up

with

||Z[f ]||2L2(R2/Z2) =
1

2π

2π∫
0

dx

1∫
0

dζ|Z(x, ζ)|2 (12.9)

=
1

2π

2π∫
0

dx
∞∑

k=−∞

|f(x+ 2πk)|2 =

∫
R

dx|f(x)|2 = ||f ||2L2(R), (12.10)

from which we can now deduce the unitarity of the Zak transform as L1(R) ∩ L2(R) is

dense in L2(R).
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We previously saw that the image of a Gaussian function under the Zak transformation

is a theta function. The Zak transform can, however, also be generalised to be applicable

to distributions [211]. This results in a bijection between S ′(R) and Q′(R2) — the dual

of the Schwartz space and the dual of the space of all quasiperiodic (as in (12.3)) smooth

functions.

We now turn towards the complexifier procedure for constructing coherent states, which

we already discussed in Section 2.7. Viewed from a different angle, this mechanism con-

structs coherent states like (11.24) by analytically continuing the heat kernel

ρt(x, y) = Cnorm
1√
t

e
− (x−y)2

4kdt . (12.11)

We label the diffusion constant by kd and the normalisation constant by Cnorm. To face

normalised states, the latter should of course be Cnorm = 1√
4kdπ

. Note that Section 12.4

will present more details about the heat equation and self similar solutions thereof. In

general, a solution u(x, t) to the heat equation reads

u(x, t) =

∞∫
−∞

dy ρt(x, y)f(y) =: Bρt [f ](x, t), (12.12)

where f(x) describes the boundary conditions and we introduced the so-called Gaussian

integral operator Bρ : S(R)→ S(R) (borrowing the notation of [211]).

The quantum mechanical coherent states can then be obtained via

Ψ~
q,p(x) = [ρ~(x, y)]y→q+ip = Cq,p,~ e−

(x−q)2
2~ e

i
~px, (12.13)

where Cq,p,~ := Cnorm exp
(

1
2~(−2iqp+ p2)

)
and kd = 1

2
,m = 1, ω = 1, yielding σ =

√
~.

As before, we choose a = 1 and obtain [211]

ZBρtZ−1[g](x, ζ1) :=

2π∫
0

1∫
0

Kρt(x, ζ1, y, ζ2)g(y, ζ2) dy dζ2 (12.14)

for the Zak transformation ZBρtZ−1 : Q(R2)→ Q(R2) of Bρt . For the kernel

Kρt(x, ζ1, y, ζ2), [211] then showed the following link to the Zak transform of the heat
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kernel:

Kρt(x, ζ1, y, ζ2) = Z[ρt](x, ζ1, y,−ζ2), (x, ζ1), (y, ζ2) ∈ R2. (12.15)

Note that the minus sign in the fourth argument stems directly from the kernel being a

function in x− y. With that, we have

Kρt(x, ζ1, y, ζ2) = Cnorm
1√
t

∞∑
n,m=−∞

e
− (x+2πn−y−2πm)2

4kdt e−2iπnζ1e2iπmζ2

= Cnorm
1√
t

∞∑
n,m=−∞

e
− (x−y+2π(n+m))2

4kdt e−2iπnζ1e−2iπmζ2 , (12.16)

which we now reformulate by means of theta functions. For doing so, we need ñ := n+m

and m̃ := n−m and then get

Kρt(x,ζ1, y, ζ2) =
Cnorm√

t

∞∑
ñ,m̃=−∞

e
−(x−y+2πñ)2

4kdt e−2iπζ1
1
2

(ñ+m̃)e−2iπζ2
1
2

(ñ−m̃)

=
Cnorm e

− (x−y)2

4kdt

√
t

∞∑
ñ,m̃=−∞

e
− 2πñ

2kdt
(x−y)

e
− (2π)2

4kdt
ñ2

e−2iπñ 1
2

(ζ1+ζ2)e−2iπm̃ 1
2

(ζ1−ζ2)

=
Cnorm e

− (x−y)2

4kdt

√
t

Θ

(
−π

2
(ζ1 + ζ2) +

2iπ(x− y)

4kdt
,

iπ

kdt

) ∞∑
m̃=−∞

e−2iπm̃ 1
2

(ζ1−ζ2). (12.17)

The remaining, non-converging sum above can be cast into

δ(ζ2 − ζ1) = lim
n→∞

δn(ζ1 − ζ2) =
∞∑

m̃=−∞

eim̃π(ζ2−ζ1), (12.18)

where

δn(ζ2 − ζ1) :=
n∑

m̃=−n

eim̃π(ζ2−ζ1). (12.19)

This leads us to

ZBρtZ−1[g](x, ζ1) =

= lim
n→∞

Cnorm√
t

∫
T 2

dy dζ2 e
− (x−y)2

4kdt Θ

(
−π

2
(ζ1 + ζ2) +

iπ(x− y)

2kdt
,

iπ

4kdt

)
δn(ζ2 − ζ1)g(y, ζ2).

(12.20)
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Integrating over ζ2 and taking the limit n→∞, we find

u(x, t, ζ1) := ZBρtZ−1[g](x, ζ1)

=
Cnorm√

t

∫
T 2

dy e
− (x−y)2

4kdt Θ

(
−πζ1 +

iπ(x− y)

2kdt
,

iπ

kdt

)
g(y, ζ1). (12.21)

Therefore, we have with u(x, t, ζ1) := ZBρtZ−1[g](x, ζ1) a solution of the pushforward of

the heat equation by the Zak transform, subject to the quasiperiodic boundary condition

u(x, 0, ζ1) =
∑
n

e−2inπζ1 g̃(x, ζ1). The new g̃(x, ζ) includes the normalisation constant Cnorm.

As a check, we may now directly look at the pushforward of the heat equation by the Zak

transformation. For the differential ∂
∂xj

, [211] found the pushforward Z∗ ∂
∂xj

= ∂
∂xj

— where

we again used x for both the old and new coordinates. Accordingly, the pushforwarded

heat equation then reads (
∂

∂t
− kd

∂2

∂x2

)
u(x, t, ζ1) = 0. (12.22)

From this form — with the differential operator part being independent of ζ1 —, we

deduce that u(x, t, ζ1) of (12.21) is a solution for any value of ζ1 and we may as well set

ζ1 = 0. Lastly, we note that ζ1 corresponds to δ in [205, 207, 208] and k in [206].

This is furthermore in accordance with the convolution property of the Zak transform,

shown i.a. in [231]:

∀f1, f2 ∈ L2(R), f1 ∗ f2 ∈ L1(R) : Z[f1 ∗ f2] = Z[f1] ∗y Z[f2], (12.23)

where

(f1∗f2)(x) :=

∫
R

dy f1(x−y)f2(y), Z[f1]∗yZ[f2](x, ζ) :=

1∫
0

dyZ[f1](x−y, ζ)Z[f2](y, ζ).

(12.24)

We can confirm this consistency check by setting f1 = ρt and f2 = g, with the Zak

transformation of ρt reading

Z[ρt](x− y, ζ) =
Cnorme

− (x−y)2

4kdt

√
t

Θ

(
−πζ +

iπ(x− y)

2kdt
,

iπ

kdt

)
. (12.25)
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We may now rewrite the theta kernel in a more concise way, using that the theta

function scales according to

Θ(z, τ) = (−iτ)−
1
2 exp

(
z2

iπτ

)
Θ

(
z

τ
,−1

τ

)
. (12.26)

Choosing τ = iπ
kdt

and z = −πζ + τ
2
(x− y), we find

Θ

(
−πζ +

iπ(x− y)

2kdt
,

iπ

kdt

)
= Θ

(
−πζ +

τ

2
(x− y),

iπ

kdt

)
= Θ(z, τ). (12.27)

With z2/(iπτ) = −ζ2kdt+ (x−y)2

4kdt
+ iζ(x− y), we can then reformulate the Zak transform

of ρt as

Z[ρt](x− y, ζ) =
Cnorm√

t

√
kdt√
π

e−ζ
2kdteiζ(x−y)Θ

(
−πζ
τ

+
1

2
(x− y),−1

τ

)
= Cnorm

√
kd√
π

e−ζ
2kdteiζ(x−y)Θ

(
iζkdt+

1

2
(x− y),−kdt

iπ

)
=

Cnorm

√
kd√
π

∑
n∈Z

e−(n+ζ)2kdtei(n+ζ)(x−y), (12.28)

using the very definition of the theta function during the last step.

We now have everything at hand that is needed to construct coherent states on the circle.

Using again t for the classicality parameter and considering the analytic continuation of

the image of the heat kernel, the not yet normalised coherent states on the circle read

Ψt
θ0,p

(φ; ζ) = [Z[ρt](φ− y, ζ)]y=θ0+ip (12.29)

=
Cnorm

√
kd√
π

e−ζ
2kdteiζ(φ−(θ0+ip)) Θ

(
iζkdt+

1

2
(x− (θ0 + ip)),−kdt

iπ

)
=

Cnorm

√
kd√
π

∑
n∈Z

e−(n+ζ)2kdtei(n+ζ)φe−i(n+ζ)θ0e(n+ζ)p. (12.30)

Therein, we used φ ∈ S1 for the coordinate, emphasising the states are defined on a

circle for each fixed value of ζ — confer [206] for a proof. Note that we regain the U(1)
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complexifier coherent states of [208]2,

Ψt
θ0,p

(φ; ζ) =
∞∑

n=−∞

e−(n+ζ)2 t
2 e(n+ζ)pe−i(n+ζ)θ0ei(n+ζ)φ, (12.31)

if we choose Cnorm =
√
π

kd
and a diffusion constant of kd = 1

2
, leading to Cnorm =

√
2π.

Comparing our result to the U(1) coherent states of [63, 64, 121, 133–135], we find different

signs of θ0 and φ for ζ = 0. The origin of this discrepancy is their usage of the convention

{p, q} = 1, leading to a complexified q of z = q − ip. However, this is not problematic as

the contribution of θ0 is just a phase and concerning e.g. expectation values, the integral

including φ is invariant under φ 7→ −φ.

In what follows, we set kd = 1
2

to be able to easier compare our results with the ones

of [121, 133–135, 208]. ζ, however, will be kept arbitrary, allowing for a straightforward

mapping between the U(1) scenario and the one of standard L2(R) via the Zak transfor-

mation at any time.

12.2 Semiclassical matrix elements

In this section, we first compute semiclassical expectation values with respect to coher-

ent states on the circle of the dynamical operators discussed already in the quantum

mechanical case during Section 11.3. We then continue with introducing a link between

semiclassical matrix elements of L2(S1) and L2(R) in Subsection 12.2.2.

12.2.1 Semiclassical expectation values via Kummer’s functions

We use the previously constructed non-normalised U(1) coherent states on the circle in

the form

Ψt
θ0,p

(φ; ζ) =
∞∑

n=−∞

e−
t
2

(n+ζ)2

ei(n+ζ)(φ−(θ0+ip)) (12.32)

2As stated above, the δ in [208] corresponds to our ζ.
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and start with computing semiclassical expectation values of |p̂|r. The corresponding

momentum operator of U(1) acts on these coherent states in the following way:

p̂Ψt
θ0,p

(φ; ζ) = −it
d

dφ
Ψt
θ0,p

(φ; ζ) =
∞∑

n=−∞

(n+ ζ)t e−
t
2

(n+ζ)2

ei(n+ζ)(φ−(θ0+ip)). (12.33)

The expectation value that we are interested in then reads

〈Ψt
θ0,p

(ζ) | |p̂|r |Ψt
θ0,p

(ζ)〉 =
∣∣∣∣Ψt

θ0,p

∣∣∣∣−2
∑
n∈Z

|(n+ ζ)t|re−t(n+ζ)2

e2(n+ζ)p. (12.34)

Compared to the usual case where ζ is fixed to be zero, we realise that the way the

non-vanishing ζ enters into the expectation value is as a kind of shift of n. Therefore,

if we apply the Poisson resummation formula now and use the modulation property of

the Fourier transform, the result is the same as in the standard case up to an additional

exponential of the form e2iNπζ , where N denotes the summation index after the Poisson

resummation has been performed. Thus, we obtain

〈Ψt
θ0,p

(ζ) | |p̂|r |Ψt
θ0,p

(ζ)〉 =
∣∣∣∣ψtg(ζ)

∣∣∣∣−2

√
2π

T
T r

∞∑
N=−∞

e2iπNζ

∫ ∞
−∞

dx√
2π
|x|re−x2+ 2p

T
x− 2πiN

T
x,

(12.35)

where we defined x := n+ ζ, T :=
√
t and used the translation invariance of dx. Now, we

can proceed as in the quantum mechanical case. We rewrite |x|r in terms of the Kummer

function of the second kind and afterwards write the integrand above as a product of the

Fourier transform of the Kummer function, a Gaussian and a complex exponential. This

yields

〈Ψt
θ0,p

(ζ) | |p̂|r |Ψt
θ0,p

(ζ)〉

=
∣∣∣∣ψtg(ζ)

∣∣∣∣−2

√
2π

T
T r

∞∑
N=−∞

e2iπNζ

∫ ∞
−∞

dx√
2π
U
(
−r

2
,−r

2
+ 1, x2

)
e−x

2

eix(−2ip
T )e−

2πiN
T

x

=
∣∣∣∣ψtg(ζ)

∣∣∣∣−2

√
2π

T
T r

∞∑
N=−∞

e2iπNζF
(
U
(
−r

2
,−r

2
+ 1, x2

)
e−x

2

eix(−2ip
T )
)(

2πN
T

)
=
∣∣∣∣ψtg(ζ)

∣∣∣∣−2

√
2π

T
T r

1√
2

Γ
(
r+1

2

)
Γ
(

1
2

) ∞∑
N=−∞

e2iπNζe−

(
2πN
T

+
2ip
T

)2

4 1F1

(
−r

2
,
1

2
,

(
2πN
T

+ 2ip
T

)2

4

)
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=
∣∣∣∣ψtg(ζ)

∣∣∣∣−2T r

T
Γ
(
r+1

2

) ∞∑
N=−∞

e2iπNζe−
(πN+ip)2

T2
1F1

(
−r

2
,
1

2
,

(
πN

T
+

ip

T

)2
)
, (12.36)

where we applied Lemma 1 in the second step and also used Γ
(

1
2

)
=
√
π. Using the

Kummer transformation for 1F1(a, b, z) shown in (11.11), we finally obtain

〈Ψt
θ0,p

(ζ) | |p̂|r |Ψt
θ0,p

(ζ)〉

=
∣∣∣∣ψtg(ζ)

∣∣∣∣−2T r

T
Γ
(
r+1

2

) ∞∑
N=−∞

e2iπNζ
1F1

(
r + 1

2
,
1

2
,

(
p− πiN

T

)2
)
. (12.37)

To complete this calculation, let us compute the norm of the coherent states that is

involved in the result above. After the Poisson resummation, we get

∣∣∣∣ψtg(ζ)
∣∣∣∣2 =

∞∑
n=−∞

e−t(n+ζ)2

e2(n+ζ)p =

√
π

T 2

∞∑
N=−∞

e2πiNζ e−
(iπp+Nπ)2

T2 . (12.38)

Being now interested in the asymptotics of small t, and hence T accordingly, we can

apply the asymptotic expansion for large arguments of the KCHF, (11.18), on (12.37).

This follows closely the procedure of the quantum mechanical scenario of (11.30). With

the norm (12.38), a Gaussian in p2/t enters the expectation value. Hence, out of the two

series of the KCHF’s asymptotic expansion, only the one with the inverse Gaussian in p2/t

remains, while the other one is damped to O(t∞). In the end, we obtain

〈Ψt
θ0,p

(ζ) | |p̂|r |Ψt
θ0,p

(ζ)〉 = |p|r
∞∑
n=0

(
− r

2

)
n

(
1−r

2

)
n

n!

(
t

p2

)n
= |p|r

(
1− r(1− r)

4

t

p2
+O

(
t2
))
, (12.39)

which resembles perfectly the quantum mechanical result of (11.30). That this is expected

will be discussed in detail in Subsection 12.2.2, where the relation between semiclassical

expectation values of quantum mechanics and U(1) is analysed by means of the Zak

transform and its properties.

Before this, we now compute semiclassical expectation values of the class of operators

q̂(r), which as already stated are of great importance in loop quantum gravity. With the

previously obtained results of (12.37) and (12.38), we may now also rigorously compute

expectation values of them in U(1). From (12.37), we can directly derive the expectation
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value of |p̂|r w.r.t. the coherent state the inverse holonomy acted on:

〈ĥ−1Ψt
θ0,p

(ζ) | |p̂|r | ĥ−1Ψt
θ0,p

(ζ)〉

=
∣∣∣∣ψtg(ζ)

∣∣∣∣−2T r

T
Γ
(
r+1

2

) ∞∑
N=−∞

e2iπNζ
1F1

(
r + 1

2
,
1

2
,

(
p− T 2 − πiN

T

)2
)
. (12.40)

Like in the standard quantum mechanical case of Section 11.3, the inverse holonomy

acting on the coherent state causes an (infinitesimal) shift in the momentum. With the

holonomy being h = eiφ, the momentum operator’s φ-derivative now not only sees e−i(n+ζ)φ

as in (12.33), but acts on ei(n+ζ)φe−iφ = ei(n+ζ−1)φ instead. Hence, |p̂|r acting on the shifted

coherent state evaluates now |(n+ ζ − 1)t|r and we can cast that shift into p 7→ p− t in

the state’s exponentials via a redefinition of n 7→ n − 1. Having these two expectation

values of |p̂|r, we can combine them to the commutator’s expectation value and proceed as

before in the quantum mechanical case, namely by performing the asymptotic expansion

for large arguments of the KCHFs, as both of them grow with 1
t

for small t. In the end,

we obtain

〈q̂r〉Ψtθ0,p ≈
r|p|r

p
t+ |p|r

(
r(1− r)

2p2
+
r(2− 3r + r2)

4p3

)
t2 +O

(
t3
)
. (12.41)

We see again that the series’ first term corresponds one-to-one to the derivative’s result.

For the next order, we got two contributions: one that resembles the second derivative

but also a further one. If we compare the result above to the quantum mechanic’s result

of (11.35), we notice that the ~2-contribution there also comprised two terms. While one

included α2, namely the one with the numerical prefactors and powers of p in accordance

to the second derivative, the second one was proportional to α.

12.2.2 Linking semiclassical matrix elements of L2(S
1) and L2(R)

As discussed in Section 12.1, the Zak transformation provides a unitary map between

the Hilbert spaces L2(R) and L2(R2/Z2). Therefore, the expectation values of the usual

quantum mechanical operators and their corresponding Zak-transformed counterparts are

identical. However, if we compute matrix elements or semiclassical expectation values with

respect to U(1) coherent states for fixed ζ, as one does for coherent states on a circle,

we only perform one of the integrals, namely the one over θ, out of the two integrations
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involved in the inner product of L2(R2/Z2). Nevertheless, as we will show below, the

expectation value with respect to U(1) coherent states is completely determined if we know

the matrix elements of the corresponding operator with respect to the harmonic oscillator

coherent states in L2(R). As shown above, the U(1) coherent states can be written by

means of the Zak transform as ψtg(φ, ζ) = Z[Ψ~
q,p](φ, ζ), and accordingly operators ÔQM

transform under Z as ZÔQMZ−1. Hence, the integrand of an L2(S1) expectation value

with respect to U(1) coherent states is given by

Z[Ψ~
q,p](φ, ζ)ZÔQMZ−1Z[Ψ~

q,p](φ, ζ) = Z[Ψ~
q,p](φ, ζ)Z[ÔQMΨ~

q,p](φ, ζ). (12.42)

In the following considerations, we want to examine the relation between∫ 2π

0

dφ

2π
Z[Ψ~

q,p](φ, ζ)Z[ÔQMΨ~
q,p](φ, ζ)

and matrix elements 〈Ψ~
q′,p′ | ÔQM |Ψ~

q,p〉L2(R). We will follow [231], where some of the for-

mulae are presented but partly without proofs3. With f, g ∈ L2(R), Z[f ](φ, ζ)Z[g](φ, ζ)

is periodic in ζ, which follows directly from the definition of the Zak transform. Further-

more, it is also 2π-periodic in φ: We have

Z[f ](φ+ 2π, ζ)Z[g](φ+ 2π, ζ) =
∞∑

m,n=−∞

f(φ+ 2π+ 2πm) ei2πmζg(φ+ 2π+ 2πn) e−i2πnζ

(12.43)

r:=m+1
s:=n+1

=
∞∑

r,s=−∞

f(φ+ 2πr) ei2π(r−1)ζg(φ+ 2πs) e−i2π(s−1)ζ

(12.44)

=
∞∑

r,s=−∞

f(φ+ 2πr) ei2πrζg(φ+ 2πs) e−i2πsζ (12.45)

= Z[f ](φ, ζ)Z[g](φ, ζ). (12.46)

As a consequence, we can expand Z[f ]Z[g] into a Fourier series given by

(Z[f ]Z[g])(φ, ζ) =
∞∑

m,n=−∞

Fmn eixm e2πinζ , (12.47)

3Note that in [231], some definitions might differ by factors of π because we adopted the operators to
the case needed for our work.
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where Fmn denote the Fourier coefficients that have the form

Fmn =

2π∫
0

dφ

2π

1∫
0

dζ
(
Z[f ]Z[g]

)
(φ, ζ) e−imx e−2πinζ . (12.48)

Next, we introduce the translation and scaling operators defined by

(Taf)(x) := f(x+ a) and (Rbf)(x) := e−ibxf(x), a, b ∈ R. (12.49)

The Fourier coefficients Fmn can be easily computed as already discussed in [231] and in

more detail in [232]:

Lemma 2 The Fourier coefficients Fmn in

(Z[f ]Z[g])(φ, ζ) =
∞∑

m,n=−∞

Fmn eixm e2πinζ (12.50)

are given by

Fmn = 〈R−mT2πnf , g〉L2(R). (12.51)

In order to proof the lemma above, we just have to compute the Zak transform of

R−mT2πnf . We obtain

Z[R−mT2πnf ](φ, ζ) =
∞∑

k=−∞

(R−mT2πnf)(φ+ 2πk) e−2iπkζ

=
∞∑

k=−∞

f(φ+ 2π(k + n)) e−2iπkζ ei(φ+2π(k+n))m

=
∞∑

k=−∞

f(φ+ 2πk) e2iπnζ e−2iπkζ eiφm

= Z[f ](φ, ζ) eiφm e2πiζn, (12.52)

where we used the quasi-periodicity of Z in the second last step. Given this, the complex

conjugate reads

Z[R−mT2πnf ](φ, ζ) = Z[f ](φ, ζ)e−iφme−2πiζn. (12.53)
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Reinserting this back into the Fourier coefficients Fmn, we get

Fmn =

2π∫
0

dφ

2π

1∫
0

dζZ[R−mT2πnf ]Z[g](φ, ζ)

= 〈Z[R−mT2πnf ] , Z[g]〉L2(S1×(S1)∗)

= 〈R−mT2πnf , g〉L2(R), (12.54)

where we used the unitarity of the Zak transform in the last step. Therefore, the Fourier

series associated with 〈Z[f ](ζ) , Z[g](ζ)〉L2(S1) reads

〈Z[f ](ζ) , Z[g](ζ)〉L2(S1) =

2π∫
0

dφ

2π

∞∑
m,n=−∞

〈R−mT2πnf , g〉L2(R) eimφ e2iπnζ

=
∞∑

n=−∞

〈T2πnf , g〉L2(R) e2iπnζ . (12.55)

If we apply the result in (12.55) on the harmonic oscillator coherent states, we obtain the

following relation between semiclassical matrix elements in L2(S1) and L2(R):

Lemma 3 For a linear operator Ô on (a suitable domain of) L2(S1) that is obtained from

the corresponding operator ÔQM on (a suitable domain of) L2(R) by Ô = ZÔQMZ−1 we

have the following relation between the matrix elements in L2(S1) and L2(R):

〈Ψt
θ′0,p

′(ζ) | Ô |Ψt
θ0,p

(ζ)〉L2(S1) =
∞∑

n=−∞

e2iπnζ〈T2πnΨ~
q′,p′ | ÔQM |Ψ~

q,p〉L2(R)

∣∣
t=~
θ0=q mod 2π
θ′0=q′ mod 2π

.

(12.56)

We realise the semiclassical matrix elements in L2(S1) can be understood as a Fourier

series in ζ with Fourier coefficients cn := 〈T2πnf, g〉L2(R). This means that the matrix

elements in L2(S1) are completely determined by the corresponding matrix elements in

the ordinary quantum mechanics case in L2(R). In particular, an additional integration

over
∫ 1

0
dζ just projects onto the n = 0 coefficient and this yields, as expected from the

unitarity of Z, the semiclassical matrix element in L2(R).

Expectation values of U(1) coherent states for integer powers of holonomy and momen-

tum operators have been computed in [134, 135, 208] using complexifier coherent states.

In [134, 135], these were computed for the special case of ζ = 0, whereas in [208] an
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arbitrary ζ was considered. In both works, they show that it is justified to only consider

the n = 0 term if we are interested in the classical limit t→ 0. Given this, we know from

the lemma above that in this limit the result for L2(S1) and L2(R) exactly coincide and

the value of ζ is irrelevant. In [205–207], these kind of expectation values were computed

and higher n terms were rewritten in terms of Jacobi’s theta function and its derivative

respectively. We believe that the relation shown in the lemma above yields a simpler

formulation of the higher order terms in n and easily allows to extract the semiclassical

limit t→ 0.

To demonstrate that Lemma 3 may indeed simplify computations of semiclassical matrix

elements and expectations values, we apply it to a couple of examples. First, we consider

the overlap of two coherent states and thus choose f = Ψ~
q′,p′ and g = Ψ~

q,p. The matrix

element of interest in L2(R) is then

〈T2πnΨ~
q′,p′ |Ψ~

q,p〉L2(R) =

√
π

~
e
− 1

~

(
q−q′+i(p+p′)

2
+nπ

)2

. (12.57)

Given this, the corresponding overlap for L2(S1) reads

〈Ψt
θ′0,p

′(ζ) |Ψt
θ0,p

(ζ)〉L2(S1) =

√
π

t

∞∑
n=−∞

e
− 1

~

(
q−q′+i(p+p′)

2
+nπ

)2

e2πinζ
∣∣
t=~
θ0=q mod 2π
θ′0=q′ mod 2π

, (12.58)

which exactly agrees with the result in [208] and reproduces also the correct result for the

norm, for instance computed in [133, 135, 208], as a special case:

〈Ψt
θ0,p

(ζ) |Ψt
θ0,p

(ζ)〉L2(S1) =
∣∣∣∣Ψt

θ0,p

∣∣∣∣2 =

√
π

t

∞∑
n=−∞

e−
1
t
(ip+nπ)2

e2πinζ . (12.59)

In our further discussion, we will consider semiclassical expectation values of the basic

operators as well as matrix elements for fractional powers of the momentum operator. We

start with integer powers of holonomy operators, that is ĥm = eimx̂. For this operator, we

get

〈T2πnΨ~
q,p | eimx̂ |Ψ~

q,p〉L2(R) =

√
π

~
e−

1
~ (ip+nπ)2

eim(q−m~
4

)e−iπnm, (12.60)

and therefore the corresponding semiclassical expectation value for U(1) coherent states
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yields

〈Ψt
θ0,p

(ζ) | eimφ̂ |Ψt
θ0,p

(ζ)〉L2(S1) =

√
π

t
eim(q−mt

4
)

∞∑
n=−∞

e−
1
t
(ip+nπ)2

e−iπnme2πinζ
∣∣
t=~
θ0=q mod 2π
θ′0=q′ mod 2π

,

which agrees for m = 1 and up to a different normalisation with the results in [205, 207].

We cannot directly compare it to the results in [135], since they only considered the limit

t→ 0 and thus some terms were neglected during the computation.

Let us briefly discuss the matrix elements in L2(R) that enter the Fourier expansion

of semiclassical expectation values in L2(S1). For an operator of the form Ô = f(x̂), the

Fourier coefficients have the following form:

〈T2πnΨ~
q,p | f(x̂) |Ψ~

q,p〉L2(R) =
1

~
e−

1
t
(ip+nπ)2

∫
R

dxf(x) e−
1
~ (x−q+πn)2

.

We realise that the only difference to the case n = 0, when the translation operator

becomes the identity operator, is that (some) q and p labels get shifted by nπ or −nπ
respectively. Note that this cannot be carried over to a shift in the q, p labels for the

entire state Ψ~
q,p since also the normalisation constant Cq,p,~ depends on these labels and

no shift occurs there. Likewise, considering the Fourier transform of the states Ψ~
q,p, we

can write down a smilar result for operators Ô = f(p̂) given by

〈T2πnΨ~
q,p | f(p̂) |Ψ~

q,p〉L2(R) =
1

~

∫
R

dk e−
1
~k

2

e
i
~k(−ip+nπ)f(k).

Now, if we choose as an example f(p̂) = |p̂|r, we can easily show that the result in (12.37)

is consistent with Lemma 3. This also explains the additional shift by nπ in the argument

of the Kummer function compared to the result for the quantum mechanical expectation

value of (11.29), yielding a consistency check of our computations in the former sections.

Moreover, for n = 0 the results of (12.36) and (11.29) agree as required if the normalisation

is taken correctly.

Finally, we present the computation of matrix elements for fractional powers of the

momentum operator, that is we are aiming at computing 〈Ψt
θ′0,p

′(ζ) | |p̂|r |ψtg(ζ)〉L2(S1) by
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applying Lemma 3. For this purpose we need the explicit form of

〈T2πnΨ~
q′p′ | |p̂|r |Ψ~

q,p〉L2(R) =

∫
dkF(Ψ~

q′p′)(k)|k|rF(Ψ~
q,p)(k)e−

i
~2πnk. (12.61)

Reinserting the Fourier transform F(Ψ~
q,p)(k) = Cq,p,~e

− 1
2~ (k−p)2

e−
i
~ (k−p)q together with

Cq,p,~e
− 1

2~p
2+ i

~pq = 1√
~ and Cq′,p′,~e

− 1
2~ (p′)2− i

~p
′q′ = 1√

~ , we obtain

〈T2πnΨ~
q′p′ | |p̂|r |Ψ~

q,p〉L2(R) = ~
r
2
−1

∫
dk

∣∣∣∣ k√~
∣∣∣∣re− 1

~k
2

e
i√
~
k
(
q′−ip′√

~
− q+ip√

~
− 2πn√

~

)
. (12.62)

Next, we rewrite the absolute value in terms of the Kummer function of the first kind,

that is
∣∣∣ k√~ ∣∣∣r = U(− r

2
,− r

2
+ 1, k

2

~ ). Further, we introduce the new variable k̃ := k√
~ and

perform the integration by using the duality of Kummer’s function of the first and second

kind under Fourier transformations, as discussed in Section 11.1. This yields

〈T2πnΨ~
q′p′ | |p̂|r |Ψ~

q,p〉L2(R) = (12.63)

=

√
π

~
Γ( r+1

2
)

Γ(1
2
)
~
r
2 e
− 1

~

(
q−q′+i(p+p′)

2
+nπ

)2

1F1

(
− r

2
, 1

2
, 1
~

(
q−q′+i(p+p′)

2
+ nπ

)2
)
.

If we specialise the above result to the case r = 0 and consider that 1F1

(
0, 1

2
, z
)

= 1 for

all z, then the result exactly agrees with the overlap shown in (12.57). Given the result

for the matrix element in L2(R) by means of Lemma 3, we immediately get the analogue

for L2(S1), which finally takes the form

〈Ψt
θ′0,p

′(ζ) | |p̂|r |Ψt
θ0,p

(ζ)〉L2(S1) = (12.64)

=

√
π

t

Γ( r+1
2

)

Γ(1
2
)
t
r
2

∞∑
n=0

ei2πnζe
− 1
t

(
q−q′+i(p+p′)

2
+nπ

)2

1F1

(
− r

2
, 1

2
, 1
t

(
q−q′+i(p+p′)

2
+ nπ

)2
) ∣∣

t=~
θ0=q mod 2π
θ′0=q′ mod 2π

.

Comparing the final result in (12.64) to the result in (12.36), we realise that if we choose

θ′0 = θ0 and p′ = p corresponding to q′ = q and p′ = p in (12.64) as well as take

into account that T =
√
t, then for this special case the results in (12.36) and (12.64)

exactly coincide. As can be seen for all examples discussed in this subsection, Lemma 3

provides a method to compute semiclassical matrix elements for L2(S1) by computing the

corresponding shifted matrix elements in L2(R). In the next section, we will discuss the

relation between the Zak transform and the Poisson resummation formula.
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12.3 The Zak transformation and the Poisson resum-

mation formula

In the framework of complexifier coherent states, the Poisson resummation formula is

heavily used during computations of semiclassical matrix elements. For the benefit of the

reader, we therefore review the relation between the Zak transformation and the Poisson

resummation by following [233]. In order to relate the Zak transformation to the Poisson

resummation formula, we introduces a dual Zak transformation Z̃ defined as

Z̃[f ](x, ζ) =
∞∑

n=−∞

f(ζ + n) einx.

For g(x, ζ) = Z[f ](x, ζ) and g̃(x, ζ) = Z̃[f ](x, ζ), the inverse of Z and Z̃ are given by

Z−1[g](x) =

1∫
0

dζg(x, ζ) and Z̃−1[g̃](ζ) =

2π∫
0

dx

2π
g̃(x, ζ).

Defining the operator U [g](x, ζ) := e−ixζg(x, ζ), it is easy to show that Z̃−1UZ[f ] =√
2πF [f ] and hence related to the Fourier transformation. Likewise, one can also show

that Z−1U−1Z̃ =
√

2πF−1(f). We just consider the case of the Fourier transform here,

for which we have

Z̃−1UZ[f ] =

2π∫
0

dx

2π

∞∑
k=−∞

f(x+ 2πk) e−2iπkζ e−ixζ

=
∞∑

k=−∞

2π∫
0

dx

2π
f(x+ 2πk) e−i(x+2πk)ζ

=
1

2π

∫
R

dxf(x) e−ixζ =
√

2πF [f ](ζ). (12.65)

With this, we equivalently have

UZ[f ] =
√

2πZ̃[F [f ]]. (12.66)

Considering the explicit forms of Z and Z̃, we finally obtain

∞∑
n=−∞

f(x+ 2πn) e−2πinζ e−ixζ =
√

2π
∞∑

n=−∞

F [f ](ζ + n) einx. (12.67)
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If we now choose ζ = x = 0, we obtain the standard Poisson resummation formula. As far

as the application on complexifier coherent states is considered, we can choose f := g ◦St,
where St is a scaling by the classicality parameter t defined as Stx := x√

t
, and we obtain

the form of the Poisson resummation formula used in this context.

12.4 Kummer’s functions and the heat equation

In this section, we briefly discuss the physical interpretation of Kummer functions in the

context of self-similar solutions of the heat equation following closely the ideas of [212]

and slightly generalising some aspects of their work. We start with the heat equation

∂u

∂t
(x, t) = kd

∂2

∂x2
u(x, t). (12.68)

Along the lines of [212], we introduce self-similar coordinates (ξ, τ) given by

τ := τ(t) and ξ :=
x√

kdL(τ)
, (12.69)

where the explicit form of the functions L and τ still needs to be determined. As an

ansatz for a self-similar solution of the heat equation, we consider

u(x, t) = A(τ(t))w(ξ(x, t), τ(t)), (12.70)

which leads to the following differential equation:

τ̇

((
A′

A

)
w +

∂w

∂τ
−
(
L′

L

)
∂w

∂ξ

)
=

kd

kdL2(τ)

∂2

∂ξ2
w, (12.71)

where the dot denotes a derivative with respect to t and a prime one with respect to

τ . Now, the requirements made in [212] are that the self-similar solution is static in

the (ξ, τ)-frame, and hence there cannot be any explicit time-dependence. This yields a

relation between τ and L(τ) of the form τ̇
!

= 1
L2(τ)

. Furthermore, we are only interested

in solutions for which L′

L
=: G = const > 0 and A′

A
=: β = const.4 As can be seen directly

from (12.71), the first condition corresponds to a constant expansion rate and the second

condition determines the scaling of the amplitude A(τ(t)) with t parametrised by b. As

4Note that our β is equal to b in the notation of [212].
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shown in [212], these conditions yield the following expressions for the functions L and A:

L(τ) = L0eGτ ⇔ L(t) =
√

2G(t− t0)
1
2 and

A(τ) = A0eβτ ⇔ A(t) = A0

(
2G

L2
0

(t− t0)

) β
2G

. (12.72)

We realise that the scaling of L(t) is always with t1/2, whereas the one of A(t) can be

different from t−1/2, which holds for the heat kernel solution, for appropriate choices of
β
G

— as emphasised by the authors in [212]. With the above assumptions at hand, the

differential equation that w has to satisfy for a static self-similar solution of the heat

equation in the (ξ, τ)-frame reads

∂2

∂ξ2
w +Gξ

∂

∂ξ
w − βw = 0. (12.73)

Introducing the following scaling of the ξ-coordinate as well as the variable W

ξ̃ :=

√
G

2
ξ, W := e

˜
ξ2

2 w, (12.74)

the differential equation for w in (12.73) can be transformed into a generalised Hermite

differential equation for W given by

∂2

∂ξ̃2
W − 2ξ̃

∂

∂ξ̃
W + 2ν̃W = 0, ν̃ = −

(
β

G
+ 1

)
. (12.75)

In contrast to the standard Hermite differential equation, ν̃ does not necessarily have to

be a natural number. If we go a little beyond the discussion in [212] and perform a further

final substitution of the variables according to z := ξ̃2 with F (z) = F (ξ̃2), then we can

easily show that the differential equation in (12.75) transforms into Kummer’s differential

equation with the special choice of b = 1
2

and a = − ν̃
2

= β
G

+ 1:

z
d2F

dz2
+

(
1

2
− z
)

dF

dz
+
ν̃

2
F = 0. (12.76)

The two linearly independent solutions are given by 1F1

(
− ν̃

2
, 1

2
, z
)

and U
(
− ν̃

2
, 1

2
, z
)
. This

allows to express the self-similar solution of the heat equation u(x, t) in terms of Kummer
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functions of the first and second kind as

u(x, t) = A(t; ν̃;G) e−
ξ2G

2

(
c1(ν̃)U

(
− ν̃

2
,
1

2
,
ξ2G

2

)
+ c2(ν̃)1F1

(
− ν̃

2
,
1

2
,
ξ2G

2

))
, (12.77)

with

ν̃ := −
(
β

G
+ 1

)
, A(t; ν̃;G) := A0

(
2G

L2
0

(t− t0)

)− 1
2( ν̃2 +1)

and ξ =
x√

2kd(t− t0)
.

(12.78)

In [212], they do not perform the last transformation into the Kummer differential equa-

tion and this is probably the reason why they do not relate the first independent solution

to the Kummer function of the first kind, which automatically occurs in our discussion

here. As discussed in [212], in the special case where ν̃ is an even integer, the two Kummer

functions are multiples of each other and can be identified with the Hermite polynomials —

they are no longer independent functions. In this case, next to the solution U
(
− ν̃

2
, 1

2
, ξ

2

2

)
we can use ξ1F1

(
1
2
− ν̃

2
, 3

2
, ξ

2

2

)
as a second independent solution.

Interestingly, as far as e−
ξ2G

2 1F1

(
− ν̃

2
, 1

2
, ξ

2G
2

)
is concerned, this is exactly the expression

that we obtain in the computation of the semiclassical expectation values in Section 11.3

and Subsection 12.2.1, respectively. Hence, the result of the Fourier transform involved

in these computations corresponds to a self-similar solution of the 1+1-dimensional heat

equation. The fractional power r of the momentum operator in these semiclassical ex-

pectation values determines the scaling behaviour of the time dependent amplitude of

the self-similar solution. As can be easily seen and has been already discussed in [212],

for ν̃ 6= 0 we obtain a scaling behaviour of the amplitude that differs from the standard

t−
1
2 . Carried over to the expectation values of fractional powers of the momentum oper-

ator, the case ν̃ = 0 corresponds to the scenario where the operator becomes the identity

operator and the expectation value the squared norm of the coherent states. For com-

plexifier coherent states based on the analytic continuation of the heat kernel, this is the

expected scaling behaviour of the norm with respect to the classicality parameter that

can be identified with the temporal coordinate of the heat equation in this context.
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Chapter 13

Kummer’s functions and loop

quantum gravity — basics

We want to use this chapter to carry over the procedure of computing semiclassical expec-

tation values via Kummer’s confluent hypergeometric functions to loop quantum gravity

and thereby also recall the respective quantities and nomenclature.

Starting with U(1), we can reduce the coherent states for U(1)3, (2.164), to obtain as

coherent states for U(1)

ψtg =
∑
n∈Z

e−
t
2
n2+pn

(
eiθ(m)e−iθ

)n
. (13.1)

We again follow the notation of [134]: m denotes the point in phase space the coherent

state is peaked around. The subscript g represents the complexified holonomy g = ep+iθ(m),

where p is the canonically conjugate of the holonomy h(A) = e−iθ(A). Lastly, the coherent

state is labelled by the superscript t, which corresponds to the classicality parameter

t. The condensed, basic steps of how we compute semiclassical expectation values of

fractional powers of, e.g., the momentum operator then are

〈|p̂|r〉ψtg =
∣∣∣∣ψtg∣∣∣∣−2

∞∑
n=−∞

|tn|re−tn2+2np

=
∣∣∣∣ψtg∣∣∣∣−2 2π

T
T r

∞∑
N=−∞

∞∫
−∞

dx|x|re−x2+ 2p
T
x− 2πiN

T
x
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=
∣∣∣∣ψtg∣∣∣∣−2 2π

T 1−r

∞∑
N=−∞

Γ
(
r+1

2

)
1F1

(
r + 1

2
,
1

2
,

(
p− πiN

T

)2
)

(13.2)

t→0
≈ |p|r

(
1− r(1− r)

4

t

p2
− r(1− r)(2− r)(3− r)

32

t2

p4
+O

(
t3
))
. (13.3)

From the first to the second line, we apply the Poisson resummation formula (10.11) by

setting x :=
√
tn =: Tn. We then obtain the integral of a Gaussian function against the

r-th root of the absolute value. Using (11.21) we can solve this integral, resulting in a

KCHF in the third line. The last step then is obtaining a power series in the classicality

parameter t via the asymptotic expansion for large arguments of the KCHF, (11.18). We

thereby also inserted the norm of the coherent states,∣∣∣∣ψtg∣∣∣∣2 = 2π

√
π

t

∞∑
n=−∞

e
p2

t e−
−π2n2

t e2πin p
t =: 2π

√
π

t
π e

p2

t (1 + Kt), (13.4)

with Kt
t→0
= 0+O(t∞) — i.e. Kt can be neglected when considering the semiclassical limit

t→ 0. The intermediate step between (13.2) and (13.3) reads in some more detail

(13.2) =
e−

p2

t

2π
√
π

t
(1 + Kt)

2π

T 1−r

∞∑
N=−∞

Γ
(

1+r
2

)
Γ
(

1
2

)
·

·

e±πi
r+1

2

Γ
(
− r

2

)((p− πiN
T

)2
)− r+1

2 ∞∑
n=0

(
r+1

2

)
n

(
1 + r

2

)
n

n!

(
−
(
p− πiN

T

)2
)−n

+

+
1

Γ
(
r+1

2

)e( p−πiNT )
2

((
p− πiN

T

)2
) r

2 ∞∑
n=0

(
− r

2

)
n

(
1−r

2

)
n

n!

((
p− πiN

T

)2
)−n.

(13.5)

To go from here to (13.3), we first of all notice that the norm of the coherent state adds

another Gaussian to the expression: exp (−p2/t). While this Gaussian makes the first series

within the square brackets above vanish for t→ 0, the second one is already scaled by the

inverse of a Gaussian in p−πiN
T

. The remaining Gaussian exp (−π2N2/t) implies that only

the term with N = 0 contributes for t→ 0. This does not only simplify the calculations

but also eliminates the imaginary part of
(
(p−πiN/T)2)r/2, which reduces to the prefactor

and zeroth order contribution |p/T |r. We thereby arrived at (13.3) and notice that the steps

as well as the reduction to only one series and N = 0 resembles the quantum mechanical

case of Section 11.3, confer (11.30).

170



The last aspect of this note on the basics of the procedure shall be the transition to

U(1)3. Computing the expectation value of the momentum operator now means consid-

ering p̂iI , for a specific edge eI of the graph and a specific choice i for the corresponding

copy of U(1). With the coherent states for U(1)3 being just the edge- and U(1)-copy-

wise product of the coherent states of U(1), confer (2.164), the expectation value can be

deduced from the respective result of U(1) in a rather straightforward manner:

〈
∣∣p̂i0I0∣∣r〉Ψm = ||Ψm||−2

∑
{niI}∈Z

∣∣tni0I0∣∣re∑i,I

(
−t(niI)

2
+2niIp

i
I

)

= ||Ψm||−2

(
2π

T

)3M

T r
∑
{N i

I}∈Z

∞∫
−∞

d3MxiI |x
i0
I0
|r e

∑
i,I

(
−(xiI)

2
+

2piI
T
x− 2πiNiI

T
xiI

)

t→0
≈
∣∣pi0I0∣∣r

(
1− r(1− r)

4

t(
pi0I0
)2 −

r(1− r)(2− r)(3− r)
32

t2(
pi0I0
)4 +O

(
t3
))
.

(13.6)

We noticed in the second line that only the integral over xi0I0 is not of standard Gaussian

type. Hence, 3M−1 many integrals can be easily solved, obtaining
√
π exp

(
−(piI−πiN i

I/T)
2
)

a time. For the remaining integral, the steps are the same as the ones leading to (13.3) for

U(1). Accordingly, the result looks the same and we only need to consider the labelling

of the momentum, i.e. i0 for the chosen copy of U(1) the momentum should be evaluated

on as well as the edge eI .

This should suffice as an overview on the basics for computing semiclassical expectation

values in loop quantum gravity with the help of Kummer’s confluent hypergeometric

functions. This mechanism offers i.a. a concise way of computing expectation values of

rational powers of the momentum operator that results in the classical limit for zeroth

order in t. Last but not least, we want to note that [135] were in fact also able to reproduce

this zeroth order, making use of the Hamburger momentum problem, but had to constrain

r to r = n
2
, n ∈ N, and did not further examine the higher order correction terms.
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Chapter 14

Kummer’s functions and loop

quantum gravity — cubic graphs

We introduced in the last chapter a tool for computing semiclassical expectation values in

loop quantum gravity that can also be applied to operators like the momentum operator

to the power of a rational number. This chapter now covers the application of that

procedure to the computation of semiclassical expectation values of the class of operators

q̂i0I0(r), (10.14), while focusing on the case of cubic graphs. First of all, we will notice that

determining the expectation value for cubic graphs corresponds to the computation of the

basic building block of the general expectation value, so it is the next logical step to do.

We will also be able to perform the computations analytically for this simplified scenario

— at least for t → 0 without also considering p → 0. When simultaneously addressing

the limit p→ 0, it will turn out that we are indeed forced to use estimates.

14.1 The setup

During our treatment of cubic graphs, we will have in mind the work of [64] where also

semiclassical expectation values of the class of operators q̂i0I0(r) were considered for cubic

graphs. However, they did use a slightly different notation and we will also highlight these

difference in the course of this section about the setup.

173



Chapter 14. Kummer’s functions and loop quantum gravity —
cubic graphs

For cubic graphs, the volume operator evaluated on a vertex v reads

V̂γ,v = `P
3

√√√√√
∣∣∣∣∣∣εjkl

X̂j

v,e+1
− X̂j

v,e−1

2
·
X̂k
v,e+2
− X̂k

v,e−2

2
·
X̂ l
v,e+3
− X̂ l

v,e−3

2

∣∣∣∣∣∣, (14.1)

where we mainly adopted the notation of [64] and only replaced their notation Ŷ e
j for the

right-invariant vector fields of U(1) with our already previously used X̂j
v,e. We note that

the three factors 1
2

combine to one part of the numerical prefactor 1
48

that is included in

the volume operator according to (2.106). Considering also a factor of 1
6
, which comes

from fixing the order of the edges for cubic graphs, we ultimately obtain the full 1
48

.

Most notably, (14.1) does not include a sum over edges anymore. Due to the regular

structure of cubic graphs, we can explicitly write down the combination of all edges that

we combined to three pairs of one ingoing and one outgoing edge each: e±I=1,2,3. This

results directly in the eigenvalue

λr
(
{xjJ}

)
= t

3r
2

√√√√∣∣∣∣∣εjklx
j
+,1 − x

j
−,1

2
·
xk+,2 − xk−,2

2
·
xl+,3 − xl−,3

2

∣∣∣∣∣
r

, (14.2)

of 1
a3r V̂

r, where we factored out the arbitrary length scale a to only work with the clas-

sicality parameter t[64, cf. eq. (4.6) therein]. Up to now, in the semiclassical expectation

value including the eigenvalues above, we have all 18 charges — 6 edges and 3 copies of

U(1) — in both Gaussian functions as well as the absolute value within λr. We can reduce

the number of charges within λr by a factor of one half by substituting

x−Jj :=
xj+,J − x

j
−,J

2
and (14.3)

x+
Jj :=

xj+,J + xj−,J
2

. (14.4)

For the Gaussian functions stemming from the coherent states, this means that those six

of them that contain the x+
Jj can be easily integrated as they are of normal Gaussian form.

The remaining nine integrals over x−Jj then contain

λr
(
{x−Jj}

)
= t

3r
2

√
det(x−Jj)

r

(14.5)
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additionally to the Gaussian functions. With all this as well as the norm of the coherent

states, we can state the form of the expectation values of interest by comparing (10.14)

with equation (4.20) of [64]:

2N

tN
〈
N∏
k=1

q̂jkJk(r)〉Ψm = (1±Kt)
√

2

π

9 ∞∫
−∞

d9x e−2
∑
Jj(x

j
J)

2
N∏
k=1

λrJkjk

({
xjJ +

pjJ
T

})
, (14.6)

with the eigenvalues λrJkjk reading

λrJkjk

({
xjJ +

pjJ
T

})
:= 2

λr
({
xjJ +

pjJ
T

})
− λr

({
xjJ +

pjJ
T

+ T
2
δjjkJJk

})
t

. (14.7)

Note that we will not use the superscript label − within x−Jj and p−Jj anymore in order to

have a more concise notation. We furthermore used the previously introduced (1±Kt)
instead of the prefactor of [64]. Another difference in notation compared to [64] is that we

do not include the label σ in λr that specifies the orientation of an edge. For cubic graphs,

as [64] states as well, the orientation has no influence anymore. Last, the prefactor 2
t

stems

from an additional factor of 2 due to the regularisation of the Poisson bracket [234] and

the substitution of τi by i during the replacement of SU(2) by U(1)3 and the quantisation

that implies a division by ~. In [64], this prefactor is part of an alternative definition of

the class of operators q̂i0I0(r), as can be seen in equation (4.2) of that reference.1

If we now set N = 1 in (14.6), we call the resulting expression the basic building block

of the kind of semiclassical expectation values (10.14) as it describes the most simple

configuration: The difference of two determinants of two charge matrices, where the

charge matrix of the subtrahend experiences a shift +T
2
δiikJJk in its element (jk, JK). This

is the setup for the next section where we will perform the analytical computation of this

semiclassical expectation value.

14.2 Analytical computation of 〈q〉

We now want to perform the computation of the previously introduced semiclassical

expectation values. For not overcomplicating the notation, we get rid of one pair of

1We note that the 2 is supposed to be in the nominator there and when it comes to the regularisation
of the Poisson bracket, the additional factor of 2 was not used.
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variables: (i0, I0), which specify the holonomy included in q̂i0I0(r). Instead, we fix this

holonomy to be in i0 = 1 and I0 = 1. This is not a special case at all as we will soon see.

The starting point for computing the semiclassical expectation value of q̂1
1(r) then reads

2

t
〈q̂1

1(r)〉Ψm =

=
2

t

`P
6r

a6r||Ψm||2
∑
{N i

I}∈Z

(
2π
√

2
T

)9
∞∫

−∞

d9xiI e
2
∑
Ii

(
−(xiI)

2
+2

piI−πiN
i
I

T
xiI

)(| detX|r − | det X̃|r
)

T 3r

=
2

t

(
2π
√

2
T

)9

T 3r

||Ψm||2
∑
{Ni}∈Z

e
∑
i 2( pi−πiNiT )

2
∞∫

−∞

d9xi e−2
∑
i(xi−

pi−πiNi
T )

2(
| detX|r − | det X̃|r

)
,

(14.8)

where

X :=

x
1
1 x2

1 x3
1

x1
2 x2

2 x3
2

x1
3 x2

3 x3
3

 =:

x1 x2 x3

x4 x5 x6

x7 x8 x9

 and X̃ :=

x1 + T
2

x2 x3

x4 x5 x6

x7 x8 x9

. (14.9)

We can now clearly see what happens had we not started with q̂1
1(r) but any other choice

of (i0, I0): X̃ would have the shift not in its (1, 1)-component but the one corresponding to

the choice of (i0, I0). However, we can of course rearrange the matrix elements accordingly,

ending up again with the shift in the (1, 1)-component. Alternatively, all the upcoming

steps can also be performed for any other matrix element than the (1, 1) one. Our final

result will also be of a form that it is straightforwardly transferable to the general case.

In (14.8), we used
∫∞
−∞ d9xiI as an abbreviation for

∫∞
−∞ · · ·

∫∞
−∞ dx1

1dx2
1 · · · dx3

3 and
∑

Ii

for
∑

i=1,2,3

I=1,2,3
. Note that from the second line onwards, we do no longer use i as a label

for the U(1)-copy, but as an index for the matrix elements xi, pi and Ni — which are

just the x−Jj, p
−
Jj and n−Jj of [64]. As another point of reducing the complexity of our

upcoming expressions, we use plain r as the exponent of |detX|r. To account for the

correct dimensions, we accordingly changed `P
3r and a3r to `P

6r and a6r, respectively.

In general, our starting point is just right after having performed the Poisson resumma-

tion formula. We did this via the introduction of xi := Tni, with T 2 := t, just as before.
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To start with the integration procedure, we first tackle the x1-integration:

∞∫
−∞

dx1 e−2(x1− p1−πiN1
T )

2

|detX|r =

=

∞∫
−∞

dx1 e−2(x1− p1−πiN1
T )

2

|x1x5x9 + x2x6x7 + x3x4x8 − x1x6x8 − x2x4x9 − x3x5x7|r.

(14.10)

We want to have an expression at hand that is of the form (11.20) and notice that we can

achieve this via the substitution

x′1 := detX, (14.11)

x′2,...,9 := x2,...,9, (14.12)

where

det

(
dx′

dx

)
= det


x5x9 − x6x8 x6x7 − x4x9 x4x8 − x5x7 . . .

0 1 0 . . .

0 0 1 . . .
...

...
...

. . .

 = x5x9 − x6x8.

(14.13)

With this, we can express the x1-integration as

∞∫
−∞

dx1 e−2(x1− p1−πiN1
T )

2

|detX|r =

=

∞∫
−∞

dx′1 e
−2

(
x′1

x′5x
′
9−x
′
6x
′
8

+
x′3x
′
5x
′
7+x′2x

′
4x
′
9−x
′
2x
′
6x
′
7−x
′
3x
′
4x
′
8

x′5x
′
9−x
′
6x
′
8

− p1−πiN1
T

)2

|x′1|
r

|x′5x′9 − x′6x′8|

=:

∞∫
−∞

dx′1 e
−2

(
x′1

x′5x
′
9−x
′
6x
′
8

+x0

)2

|x′1|
r

|x′5x′9 − x′6x′8|
. (14.14)

Therein, we obtained the rather long offset x0 that results from inserting the inversion

x1 = x1(x′1, . . . , x
′
9) of (14.11). During our treatment of the remaining integrals, confer

Appendix B, we obtain similar expressions that we abbreviate straight away by a, b, σ, σ̃,

177



Chapter 14. Kummer’s functions and loop quantum gravity —
cubic graphs

etc. Through the substitution, also the term |x′5x′9 − x′6x′8| entered our formulae. With

this difference being found in the denominator, we could in principle run into problems

when it approaches, or equals, 0. However, we notice that the preceding Gaussian is

also in 1/(x′5x′9−x′6x′8) and therefore suppresses those points and regions. Even during the

upcoming integrations of x′5-, x′9-, x′6- & x′8 we will not have trouble with this expression

as the result of the x′1-integration will neatly merge with it into a once again integrable

expression.

We can now combine (11.20) and (11.22) to obtain our basic integration rule

∞∫
−∞

dx e−2(xs−x0)
2

|x|r = (
√

2)−1−r|s|1+rΓ
(

1+r
2

)
e−2(x0)2

1F1

(
1 + r

2
,
1

2
, 2(x0)2

)
, (14.15)

which applied to the x1-integration results in

∞∫
−∞

dx1 e−2(x1− p1−πiN1
T )

2

|detX|r =

∞∫
−∞

dx′1 e
−2

(
x′1

x′5x
′
9−x
′
6x
′
8

+x0

)2

|x′1|
r

|x′5x′9 − x′6x′8|

=
|x′5x′9 − x′6x′8|

1+r

|x′5x′9 − x′6x′8|
(
√

2)−1−rΓ
(

1+r
2

)
e−2(x0)2

1F1

(
1 + r

2
,
1

2
, 2(x0)2

)
. (14.16)

As expected, there is no dependency on x1
(′) left, but instead p1 entered our formulae. It is

contained in the offset x0, together with all the remaining integration variables x′2, . . . , x
′
9.

For those, we additionally have the Gaussian functions, which we just ignored during the

isolated treatment of the x1
(′)-integration. We now continue in a similar fashion with the

integral over x′5, where we combine the result of the first integration, (14.16), with the

Gaussian in x′5:

∞∫
−∞

dx′5 e−2(x′5−
p5−πiN5

T )
2

|x′5x′9 − x′6x′8|
r
(
√

2)−1−rΓ
(

1+r
2

)
e−2(x0)2

1F1

(
1 + r

2
,
1

2
, 2(x0)2

)
.

When it comes to the first two factors of the integrand, it looks as if we could apply the

same integration rule as before. However, via x0 enter two additional factors that contain

x′5 and with one being the KCHF resulting from the x′1-integration, this thwarts any

analytical integration. We are therefore forced to proceed differently and first examine

x0,

x0 = f
({
x′i\1
})
− p1 − πiN1

T
, (14.17)
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realising that it can be understood as being built up by two different parts: While

f
({
x′i\1
})

collects all dependencies on the remaining integration variables, the second

part is the offset p1−πiN1

T
of the initial Gaussian in x1. Having in mind that we are ulti-

mately interested in the semiclassical limit of the expectation value, i.e. consider small t

and small T accordingly, we can apply the asymptotic expansion for large arguments of

the KCHF, (11.18), as at least the part p1−πiN1

T
of the argument of the KCHF will indeed

be large. Doing so results in

∞∫
−∞

dx1 e−2(x1− p1−πiN1
T )

2

|detX|r =

= |x′5x′9 − x′6x′8|
r
(
√

2)−1−rΓ
(

1+r
2

)
e−2(x0)2

1F1

(
1 + r

2
,
1

2
, 2(x0)2

)
t→0
≈ 1√

2
|x′5x′9 − x′6x′8|

r
Γ
(

1
2

)(
(x0)2) r2(1− r(1− r)

4

(x0)−2

2
+O

(
(x0)−4)), (14.18)

where as before only one series of the expansion hat to be considered due to a damping

Gaussian prefactor — here in x0. We see that we obtain a power series in integer powers

but also keep track of the initial exponent r. In the literature [64–66], Taylor expansions

or the application of estimates leads to results that are also, but there indeed exclusively

power series with integer powers and the non-integer exponent of the initial operator is

lost, i.e. the exponent r of V r within q̂i0I0(r). So if we manage to preserve this rational

exponent in the integration variables, we will likely end up with a final result that also

features the initial exponent in the pi. However, the expression above is still not integrable

in this form as the expressions including x0 are too involved. Taking a look at (14.8), we

see that we still have an additional Gaussian in p1−πiN1

T
that originates from completing

the square in x1 of the initial Gaussian function. This Gaussian will also cause a damping

in the semiclassical limit, but via dividing by the norm of the state, we will ultimately

eliminate the part in p1 — and all other pi —, confer (B.51). Hence, the Gaussian in

N1 is left and as we already performed the integration over x1
(′), another factor that

eliminates this function cannot come up. This leads us to the conclusion that only the

contribution N1 = 0 will not be suppressed when taking the limit of t→ 0. This reduction

to Ni = 0, as already mentioned earlier, is a recurring feature also in the literature (cf.

[64, 66, 134, 135]) and the very reason for applying the Poisson resummation formula.
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With N1 = 0, we have x0

∣∣
N1=0

∈ R and therefore

(
(x0)2) r2 ∣∣∣

N1=0
= |x0|r. (14.19)

As we also face another absolute value to the power of r, we may combine those:

|x′5x′9 − x′6x′8|
r|x0|r =

∣∣∣x′3x′5x′7 + x′2x
′
4x
′
9 − x′2x′6x′7 − x′3x′4x′8 − (x′5x

′
9 − x′6x′8)

p1

T

∣∣∣r
=:
∣∣∣x′5(x′3x′7 − x′9p1

T

)
+ x̃0

∣∣∣r. (14.20)

From the first line we infer that we actually face a similar situation as right at the

beginning — the only difference being the replacement of x1 by p1

T
, while the structure

itself is very much like a determinant. However, additionally to this familiar expressions,

we also face a power series that contains another term ∼ (x0)−2. Concerning this term,

we realise that it is a power series in x0 where we are actually interested in a power series

directly in t or T , respectively:

1− r(1− r)
4

(x0)−2

2
≈ 1− r(1− r)

4

T 2

2p1
2

+O
(
T 3
)

=: S. (14.21)

Proceeding to a power series in T therefore results in xi-independent correction terms up

to T 2 and we can therefore continue with the remaining integrations: The integral over

x′5 can now be solved by the same steps as the ones we performed for the integral over

x′1. We want to point out that in the Taylor expansion (14.21), the higher order terms

O(T 3) do indeed contain the remaining integration variables. So if we are interested in

higher order correction terms, we will have to deal with those in a different way than the

previously applied one (the first choice would be to try a new kind of substitution). For

the scope of this work, we will only concentrate on the first correction terms and therefore

leave this question open.

Continuing with the integral over x′5, we take along some of the arisen prefactors and

face solving

Γ
(

1
2

)
S

∞∫
−∞

dx′5 e−2(x′5−
p5−πiN5

T )
2∣∣∣x′5(x′3x′7 − x′9p1

T

)
+ x̃0

∣∣∣r.
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With this integral resembling the one for x′1, (14.10), we start in a similar way by

substituting

x′′5 := x′5

(
x′3x

′
7 − x′9

p1

T

)
+ x̃0, (14.22)

x′′2,3,4,6,7,8,9 := x′2,3,4,6,7,8,9, (14.23)

det

(
dx′′

dx′

)
= x′3x

′
7 − x′9

p1

T
. (14.24)

We thereby end up with integrating the Gaussian function against

|x′′5|r

|x′3x′7 − x′9
p1

T
|

and realise that this is also equivalent to the corresponding expression during the x′1-

integration. With this we refer to Appendix B for the treatment of the remaining integrals.

Even though some integrals, or rather results of them, have to be dealt with slightly

different, the main procedure will remain the same.

B = C

※ We recap the procedure: First of all, the determinant-like expression within

the integrand was substituted as the new integration variable. This gave rise to a

new, oblong offset in the corresponding Gaussian function. Yet, this integral was

feasible via (11.20) & (11.22) and we end up with a KCHF. Proceeding straight-

away with one of the remaining integrals, in turn, was then indeed not possible

as the integrand at this point was too intricate due to the KCHF containing all

left over integration variables in its argument (amongst other obstacles). How-

ever, the argument of the KCHF was also ∼ p1/T and as we are interested in the

semiclassical limit T → 0, we can therefore make use of the asymptotic expan-

sion for large arguments of the KCHF, (11.18). This resulted in a power series

in the inverse of the argument of the KCHF and, consequently, we converted it

into a power series in T itself, whose two lowest order contributions were then

independent of the remaining integration variables. The last hurdle that had to

be overcome was a new factor that entered our formulae in the course of the

asymptotic expansion: The argument of the KCHF to the power of r/2. One issue

is that it is a complex number but, as we started with a semiclassical expectation

181



Chapter 14. Kummer’s functions and loop quantum gravity —
cubic graphs

value, the overall expression should still be real. This can be solved by observing

the Gaussian prefactors. Realising there is a Gaussian in (p1−πiN1)/T , we argued

that all contributions N1 6= 0 are suppressed for T → 0 and only the solution

N1 = 0 makes up the final result. This also causes the imaginary part of the

argument of the KCHF to vanish, turning it into an absolute value to the power

of r. With a follow-up combination of this factor with one that came up during

the substitution, we end up with an expression quite similar to our starting point,

where only x1 is replaced by p1/T .

C = B

Having illustrated the procedure for the first term of the commutator q̂i0I0(r), we now

consider the shifted contribution, i.e. the part of (14.8) that contains | det X̃|r. We defined

X̃ in (14.9) as the matrix of all the integration variables but with x1 being replaced by

x1 + T
2
. We can then rewrite that part as

∞∫
−∞

dx1| det X̃|r e−2(x1− p1−πiN1
T )

2

=

∞∫
−∞

dx̃1| detX|r e
−2

(
x̃1−

p1+T2

2 −πiN1
T

)2

(14.25)

by substituting x̃1 := x1 + T
2
. Hence, for the shifted contribution, not much changes

except for p1 7→ p1 + T
2

2
. Accordingly, we can perform the same integration procedure.

For the subsequent treatment of the KCHF, i.e. applying the asymptotic expansion for

large arguments, we have to be careful due to the additional part being dependent on T .

However, we quickly realise that there is no issue with the new term as the important part

was that the argument becomes large for t→ 0 — and this still holds for p1

T
+ T

2
. In fact,

T
2

will not even contribute in this limit, at least for this part of the expression. It does

nevertheless still change the overall result compared to that of the unshifted expression.

Within the absolute value of the offset — (14.19) for the unshifted part — the shift will

still be present and the difference of the shifted and unshifted part will therefore not cancel

each other.2 With all remaining integrations being shown in Appendix B, we now only

state the final result here. For a graph of cubic topology, the semiclassical expectation

value of the operator 2
t
q̂1

1(r) reads

2〈q̂1
1(r)〉Ψm
t

≈ −r | det p|r∆1
1(p)

det p
+ F({pi}) t+O

(
t

3
2

)
. (14.26)

2All details behind this are explained in more detail in Appendix B.
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All the new variables therein emerge peu à peu during the integration procedure covered

in Appendix B. First of all, det p denotes the determinant of the matrix of all momenta piI .

We already saw during the x1-integration that the obtained result corresponds to replacing

x1 7→ p1 in the initial expression, so it is of no surprise that the final result accordingly

contains detX|xiI 7→piI . Furthermore, we have ∆1
1(p) := p2

2p
3
3 − p2

3p
3
2 ≡ p5p9 − p6p8 — the

minor of the matrix of all momenta with respect to p1
1 ≡ p1. Note that this index is

precisely the one of the holonomy that acts within 2
t
q̂1

1(r). The last expression, F({pi}),
collects all first order contributions in t. It is a rather evolved function, defined in (B.56)

of Appendix B. We note that this order actually contributes with T 4 before dividing the

whole expression by t. This may sound suspicious, considering that we only included terms

up to ∼ T 2 in S. However, the final result (B.53) is of such a multiplicative structure

that causes all of the terms ∼ T 3 of S to ultimately contribute with at least O(T 5) and

we were able to collect all terms up to T 4.

When it comes to the structure of the lowest order contribution within (14.26), we find

that it corresponds to the expected result, having mind the expression of the respective

classical Poisson bracket. Differentiating a determinant to the power of r with respect to

one of its elements, we will obtain that determinant to the power of r− 1 along the term

resulting from the chain rule — which is just the minor of the initial matrix with respect

to that element the differentiation considers.

As promised at the beginning of the integration procedure, we can straightforwardly

deduce the general result from (14.26) for the holonomy acting on an arbitrary edge I0

and U(1)-copy i0:

2〈q̂i0I0(r)〉Ψm
t

≈ −r
| det p|r∆i0

I0
(p)

det p
+ F̃({pi}) t+O

(
t

3
2

)
. (14.27)

We already argued that the initial fixing of I0 = 1, i0 = 1 was of no mathematical

importance whatsoever and indeed, for any other choice of (I0, i0) the calculatory steps

are just the same, leading to an equivalent result. Of course, det p will build up as well

and only the element of the matrix with respect to which the minor of the matrix is

considered will change. The function F̃({pi}) then is of similar shape F({pi}) was for

the specific choice I0 = 1, i0 = 1 and only the order of how the individual pi enter the

formula, (B.56), changes.
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Up to now, we did not need to use any estimates. For cubic graphs, this was also

achieved in [64] but via intermediate Taylor expansions that replaced fractional powers

by integer ones. In contrast, during the procedure presented here, the powers of the in-

tegration variables remain the same up to the considered order in T and the performed

Taylor expansions did not change these — compare (14.21) and the remarks following

(B.33) and (B.40) within Appendix B. Taking a look at the final result of [64], Theorem

4.2 therein, we consider N = 1 and compare this with (14.27) above. The notable differ-

ence between the two stems from the fact that [64] already included the influence of the

lattice parameter on the fluxes, i.e. lattice fluctuations, while (14.27) contains the fluxes

themselves. More details on this will be covered during both Subsection 14.4 and Section

15. The next section focuses on the cosmological singularity, where we can continue with

expressions including the fluxes [65, 66].

14.3 The cosmological singularity

Being interested in investigating the cosmological singularity means to consider the limit

pi = 0. However, taking a look at (14.26) or (14.27) we notice that this limit is not

applicable for those results. This is not surprising, did we perform calculatory steps at

earlier stages that were already not applicable for pi = 0: The asymptotic expansion for

large arguments of the KCHF, as the name says, requires the KCHF’s argument to be

large. The important part of the KCHF’s argument for this point was pi−πiNi
T

. With

pi = 0 — and the subsequent realisation that only Ni = 0 contributes — this does not

hold anymore and we need to deviate from our integration procedure right from the start.

For the non-Gaussian part of the integrand of (14.8), we therefore perform estimates to

cast it into an expression that is integrable against Gaussian functions:

|detX|r −
∣∣∣det X̃

∣∣∣r = |detX|r −
∣∣∣∣detX +

T

2
∆1

1(X)

∣∣∣∣r
(16.3)

≤ T r

2r
∣∣∆1

1(X)
∣∣r =

T r

2r
|x5x9 − x6x8|r

(16.4)

≤ T r

2r
(|x5x9|r + |x6x8|r)

(16.5)

≤ T r

22r

((
|x5|2 + |x9|2

)r
+
(
|x6|2 + |x8|2

)r)
(16.4)

≤ T r

22r

(
|x5|2r + |x9|2r + |x6|2r + |x8|2r

)
. (14.28)
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The estimates we used here will be explained in more detail later, when they are of key

importance for our investigation of the general U(1)3 scenario in Chapter 16. The result

we obtained in (14.28) is indeed integrable against Gaussians and we even face four similar

integrals of the form

∞∫
−∞

dx e−2x2 |x|2r =
Γ
(
r + 1

2

)
2r+

1
2

. (14.29)

The five remaining integrals are of pure Gaussian form but can also be derived from

(14.29) for r = 0. As before, we can reduce the Ni to the contributions Ni = 0. In this

scenario, the Ni appear exclusively as arguments of Gaussian functions and therefore all

terms with Ni 6= 0 are exponentially damped. The final result for pi = 0 according to the

procedure of (14.28) then is

2〈q̂1
1(r)〉Ψm
t

pi=0
=

2

t

(
2π
√

2
T

)9

T 3r

||Ψm||2

∞∫
−∞

d9xi e−2
∑
i(xi)

2
(
| detX|r − | det X̃|r

)

≤ 2

t

(
2π
√

2
T

)9

T 4r

||Ψm||2 22r

∞∫
−∞

d9xi e−2
∑
i(xi)

2(
|x5|2r + |x9|2r + |x6|2r + |x8|2r

)
=

8√
π23r

Γ
(
r + 1

2

)
t2r−1,

(14.30)

which we can straightforwardly generalise to

2〈q̂i0I0(r)〉Ψm
t

pi=0

≤ 8√
π23r

Γ
(
r + 1

2

)
t2r−1. (14.31)

This was of course possible because a change in the choice of (I0, i0) only leads to different

xi being present in (14.28). There are still four integration variables left at the end and

the result of the subsequent integrations was independent of the indices of the integration

variables.

In general, we therefore do not have a zeroth order contribution — only for r = 1
2
, i.e.

when the volume operator is contained within q̂1
1(r). It is, however, of no surprise that

there is no fundamental t0-term as we did not even obtain one in the quantum mechanical

analogue of (11.36). We even get a negative exponent in t if r < 1
2
, so i.a. when we consider
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V̂ — a quite important case in loop quantum gravity. As a result, the limit t→ 0 is not

well-defined for those scenarios. To compare our result with the literature, we find that the

final result (4.7) of [65] divided by t features a t0 contribution for r = 4
3
, corresponding

to V̂
4
3 considering their usage of r. As they performed a different procedure based on

different estimates, this is already a hint that the final result will drastically depend on

the estimates one chooses to apply — even concerning the exponents of the basic variables.

14.4 The semiclassical continuum limit

So far, we considered the semiclassical limit of expectation values of 2
t
〈q̂i0I0(r)〉Ψm . With

t→ 0, we expected them to equal 1
a6r {

∫
eI0
Ai0(x), V 2r

Rx
}, with VRx as the volume of a region

Rx around x. To also access the continuum limit, we now additionally take the limit of a

vanishing regularisation parameter a. This combination of the two limits, however, will

only be possible for the leading zeroth order in t, while the lattice corrections can in fact

cause higher order terms in t to grow tremendously when also considering a vanishing

regularisation parameter. In [64], a lattice regularisation parameter ε = `P
αa1−α, with

0 < α < 1
2
, was introduced that allows to differ on whether higher order terms do in fact

still contribute less than the zeroth order even for small but non-zero t. The authors of

[64] then chose α = 1
6

for the operators they considered. We will now show that as far

as the leading order is concerned, we do indeed obtain the correct semiclassical limit via

the integration procedure of the previous subsections. More details on lattice fluctuations

and an adapted power counting will be presented later in Section 15.1, after (15.17).

We will then be able to verify that our final result (14.27), which was obtained within a

setup of a discretised cubic graph, still leads to the expected expression when we addition-

ally take the continuum limit. Note that all higher order contributions can be neglected

in this limit as they vanish anyhow. To investigate this question, we have to fall back on

the (integration) variables that were the difference of the initial ones, as defined in (14.3).

The final result that we derive in more detail in Appendix D then reads

lim
t→0

2〈q̂i0I0(r)〉Ψm
t

= −r
|det p−|r∆i0

I0
(p−)

det p−
= 2ihi0I0

{(
hi0I0
)−1

, V 2r(R�ε)
}

(14.32)
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and

lim
ε→0

lim
t→0

2〈q̂i0I0(r)〉Ψm
t

= lim
ε→0

(
2ihi0I0

{(
hi0I0
)−1

, V 2r(R�ε)
})

=
1

a6r

{∫
eI0

Ai0 , V 2r(Rx)

}
.

(14.33)

So indeed, we do end up with the right classical limit at least for cubic graphs when

performing the integration procedure with the help of Kummer’s confluent hypergeomet-

ric functions and their properties such as the asymptotic expansion for large arguments.

During the treatment of Appendix D, two aspects are of great importance: the choice

Z := Creg = 1
48

for the regularisation constant and an additional factor of 2 after us-

ing the Thiemann identity and the regularisation of the Poisson bracket. As we already

mentioned, the regularisation constant Creg = 1
48

was first introduced in [88] and then val-

idated by an independent consistency check in [89, 90]. The extra factor of 2, meanwhile,

is examined in more detail in [234]. As a final note, we point out that these considera-

tions are only valid for graphs of cubic topology. More complex setups, with graphs of

higher valence, are not covered by what we just discussed as the regularisation constant

Z = Creg to the power of some rational number r′ will still be present in the final result.

Only for graphs of cubic topology does 1
48

match precisely the combinatorics of the U(1)3

configuration of the edges. We will soon see a counter-example in (15.17).
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Chapter 15

Graphs with higher valent vertices

We now turn towards graphs of higher valence — i.e. of more complex structure than

the cubic topology we considered previously. For those cubic graphs, the integration

procedure based on KCHFs was possible as we had to integrate only the so-called basic

building block of the eigenvalue of the operator q̂i0I0(r), which consisted of one single

determinant that we were able to tackle via appropriate substitutions. For the general

setup, we have to consider the whole expression (10.14), which is much more evolved as it

is the root of the absolute value of a sum of determinants. Singling out the delicate part

of the integrand, i.e. neglecting the Gaussian functions for a start, we face∣∣∣∣∣∑
IJK

ε(IJK)εijkx
i
Ix

j
Jx

k
K

∣∣∣∣∣
r
2

−

∣∣∣∣∣∑
IJK

ε(IJK)εijk
(
xiI + Tδii0II0

)(
xjJ + Tδji0JI0

)(
xkK + Tδki0KI0

)∣∣∣∣∣
r
2

.

We can now apply Laplace’s formula on the individual sums in the following way:∣∣∣∣∣∑
IJK

ε(IJK)εijkx
i
Ix

j
Jx

k
K

∣∣∣∣∣
r
2

=

=

∣∣∣∣∣xi0I0 ∑
JK

∆i0
I0

(xJK)− xi0+1
I0

∑
JK

∆i0+1
I0

(xJK) + xi0+2
I0

∑
JK

∆i0+2
I0

(xJK) + detX\i0,I0

∣∣∣∣∣
r
2

(15.1)
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and ∣∣∣∣∣∑
IJK

ε(IJK)εijk
(
xiI + Tδii0II0

)(
xjJ + Tδji0JI0

)(
xkK + Tδki0KI0

)∣∣∣∣∣
r
2

=

=

∣∣∣∣∣(xi0I0 + T
)∑
JK

∆i0
I0

(xJK)− xi0+1
I0

∑
JK

∆i0+1
I0

(xJK) + xi0+2
I0

∑
JK

∆i0+2
I0

(xJK)+

+ detX\i0,I0

∣∣∣∣∣
r
2

, (15.2)

where we first of all need to make some remarks on the notation: First, we abbreviated∑
I,J,K : eI∩eJ∩eK=v as

∑
IJK , denoting the sum over all edges eI , eJ , eK such that eI ∩ eJ ∩

eK = v and where no edges of a chosen combination of three edges are the same — which

is so far also guaranteed by ε(IJK). In the same spirit, we use
∑

JK for the sum over

all edges eJ , eK such that eI0 ∩ eJ ∩ eK = v ∧ J,K 6= I0 ∧ J 6= K. The specific way of

applying Laplace’s formula was on purpose: The respective first sums within the absolute

values on the right hand sides of the two equations above are precisely where the shift

caused by the (inverse) holonomy within q̂i0I0(r) leaves its trace. As it acts on the element

corresponding to the combination of the edge I0 and U(1)-copy i0, we have a shift +T

in the contribution of xi0I0 within the second term of the eigenvalue of q̂i0I0(r). According

to Laplace’s formula, the (shifted) matrix element xi0I0(+T ) is multiplied by the minor of

the matrix with respect to xi0I0 , which we call ∆i0
I0

(xJK) — and in the present scenario, we

additionally have a sum over all occurring minors that we label by the two involved edges

eJ and eK . The next two contributions then correspond to the remaining summands of

Laplace’s formula, where the shorthand notation i0 + 1 and i0 + 2 of the superscripts is

understood to fulfil periodicity in the indices according to 4 7→ 1 and 5 7→ 2. Finally, the

last term detX\i0,I0 stands for the collection of all determinants that do not contain the

matrix element xi0I0 .

Due to this elaborate structure of the integrand, where we have many contributions

that do contain the (shifted) xi0I0 and many that do not, finding a suitable substitution

and proceeding in the same way as we did for cubic graphs seems impossible. Even if

we did this for the first integration variable, we would still need to compute all further

integrals one by one, too. Accordingly, we had to solve 3M integrals for M many edges.

What is more, the substitution would have to consider the whole sum and hence, inserting

the inversion of the substitution will produce increasingly intricate expressions that we
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then have to further integrate. This will ultimately lead us to drawing on estimates that

allow us to simplify the integrand. Before doing so, there is one further setup where we do

in fact not need to rely on estimates — not even on our integration procedure via KCHFs

—, but where we in turn can not access the limit p→ 0 of the cosmological singularity.

15.1 The Sahlmann–Thiemann approach

We already introduced the work of Sahlmann and Thiemann, who in [64] i.a. developed

a mechanism to calculate semiclassical expectation values of the class of operators q̂i0I0(r)

for graphs of cubic topology. The computation of semiclassical expectation values via

Kummer’s confluent hypergeometric functions introduced in the previous chapters then

was also applicable for this case and hence two questions arise: Can we find a link between

the two paths, at least when restricted to cubic graphs? Is it — the other way around —

also possible to carry over the method specifically designed to investigate cubic graphs to

(more) general scenarios?

While we elaborate on the first question in Section 15.2, the following considerations

tackle the possibility of applying the Sahlmann–Thiemann approach on more general

graphs than cubic ones. However, we illustrate their procedure using the example of

cubic graphs and start with

〈
N∏
k=1

q̂jkJk(r)〉Ψm =
`P

6rN |Zγ|rN

a6rN ||Ψm||2
∑
{N i

I}∈Z

(
2π

T

)9
∞∫

−∞

d9xiI
1

T 3rN
e
∑
Ii

(
piI−πiN

i
I

T

)2

e−
∑
Ii(xiI)

2

·
N∏
k=1

(
|det(X + P )|r −

∣∣∣det
(
X̃k + P

)∣∣∣r), (15.3)

where we again used r instead of r
2

to spare us unnecessary complexity in the notation

at least in this part. For the matrices in (15.3), we introduced the notation X + P =(
(x+ p)iI

)
with matrix elements (x+ p)iI = xiI +

piI−πiN
i
I

T
. The matrix including the

shift reads accordingly X̃k = X +
(
δjkjδJkJ

T
mγ

)
, where

(
δjkjδJkJ

T
mγ

)
is a matrix of eight

zeroes and T
mγ

in entry (jk, Jk). The variable mγ allows to cover the general case as well

as the special case of cubic graphs simultaneously: We see that mγ = 2 reproduces the

setup for graphs of cubic topology while we have to stay with mγ = 1 in the general case

where it is not possible to work with the integration variables x±. Finally, we introduced
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Zγ = Zcomb(γ) · Creg = Zcomb(γ) · 1
48

that takes over the role of Z before. The reason

is that the new Zγ casts the upcoming formulae into forms that are easier to compare

with those from the literature as well as the previous ones for graphs of cubic topology

in Subsection 14.2. We still use Creg = 1
48

and when it comes to the general case of

arbitrary graphs, there is nothing further to do. Hence, we can then set Zγ = Z = Creg,

which is just equivalent to Zcomb(γ) = 1 above. When, in turn, it comes to graphs of

cubic topology, the combinatorics of the configuration of the edges allow to factor out

48 := Zcomb(γ)
∣∣
γ is cubic

, which is why we did not have any Z or combinatorical prefactors

back then — and this was vitally important for being able to recover the semiclassical

continuum limit in Section 14.4. For the new Zγ above, this translates to Zγ
∣∣
γ is cubic

= 1.

Beginning with adopting equation (4.21) of [64] to our notation, we face

|det(X + P )|r −
∣∣∣det

(
X̃k + P

)∣∣∣r = |detP |r
(∣∣det

(
P−1X + 1

)∣∣r − ∣∣∣det
(
P−1X̃k + 1

)∣∣∣r).
(15.4)

as the starting point. The inverse P−1 of the matrix P of all piI that we introduced above

is built up according to

(
P−1

)i
I =

1

detP
∆i
I

(
PT
)
, (15.5)

where we again use the letter ∆ for the minor ∆i
I

(
PT
)

of PT with respect to entry (i, I):

∆i
I

(
PT
)

:=
(
PT
)i+1

I+1 ·
(
PT
)i+2

I+2 −
(
PT
)i+2

I+1 ·
(
PT
)i+1

I+2. (15.6)

Note that the shorthand notation of the sub- and superscripts again uses periodicity of

the indices.

We can already state two observations at this point: First, the fact that we had to

include P−1 is the very reason why we will not be able to address the cosmological

singularity as setting all piI to zero will not be possible. Second, the minor of the matrix

of all the piI right at the start is a promising signal that we will indeed end up with an

expression that resembles the classical, differentiation-like result.

When it comes to the T -dependency of the derived quantities of P above, we have

detP ∼ T−3 and ∆i
I

(
PT
)
∼ T−2 as a direct consequence of its elements (P )iI =

piI−πiN
i
I

T
.

Via (15.5), we can then verify the expected (P−1)
i
I ∼ T . Having these dependencies at
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hand, we can expand the determinants on the right hand side of (15.4) around the point

1. In doing so and following the argument of [64], we directly neglect all contributions

N i
I 6= 0 due to the fact that they contribute with O(T∞) as (15.3) also contains Gaussian

functions in
N i
I

T
. Since up to now there were still imaginary parts ∼ iN i

I present, we also

managed to cast all expressions real. We then follow [64] and proceed by applying the

decomposition

det(1 + A) = 1 + trA+
1

2

(
(trA)2 − trA2

)
+ detA (15.7)

to the difference of the two determinants on the right hand side of (15.4),

(
det
(
P−1X + 1

)2
) r

2 −
(

det
(
P−1X̃k + 1

)2
) r

2

.

Hence, we in fact need the square of (15.7), which we may as well already at this stage

truncate to fourth order in T to obtain

det(1 + A)2 = 1 + 2 trA+ 2(trA)2 − trA2 + (trA)3 − trA · trA2+

+ detA+ trA · detA+
1

4
(trA)4 − 1

2
(trA)2 · trA2 +O

(
T 5
)

=: 1 + zA +O
(
T 5
)

(15.8)

⇒
(
det(1 + A)2) r2 ≈ 5∑

k=0

(
r
2

k

)
(zA)k +O

(
T 5
)
. (15.9)

Now, A does not only contain terms ∼ T , coming from the P−1. For A = P−1X̃k, there

are also terms ∼ T 2 due to the shift within X̃k. For this reason as well as for zA being

multiplied with itself, (15.9) contains terms of higher order in T than we in fact want

to consider. However, to have clearer formulae, we keep it this way and discard these

higher order terms later. We can now insert this decomposition into (15.3), with the

result reading

〈
N∏
k=1

q̂jkJk(r)〉Ψm =
T 6rN |Zγ|rN

||Ψm||2

(
2π

T

)9
∞∫

−∞

d9xiI
1

T 3rN
e
∑
Ii

(
piI
T

)2

e−
∑
Ii(xiI)

2

|detP |rN ·

·
N∏
k=1

[
r tr
(
P−1X

)
− r tr

(
P−1X̃k

)
+
r

2

(
r
(
tr
(
P−1X

))2 − tr
(
P−1X

)2
)
−
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− r

2

(
r
(

tr
(
P−1X̃k

))2

− tr
(
P−1X̃k

)2
)

+ r(r − 1) tr
(
P−1X

)
tr
(
P−1XP−1

(
δjkjδJkJT

))
−

− r2(r − 1)

2

(
tr
(
P−1X

))2 · tr
(
P−1

(
δjkjδJkJT

))
+O

(
T 5
)]
. (15.10)

Therein, we already used the fact that X and X̃k differ only in one entry — X̃k =

X +
(
δjkjδJkJ

T
mγ

)
— to have more concise expressions for the last two terms. We can

similarly obtain further simplifications via

tr
(
P−1X

)
− tr

(
P−1X̃k

)
= − tr

(
P−1

(
δjkjδJkJ

T
mγ

))
= − T

mγ

((
P−1

)
T
)jk

Jk (15.11)

and

tr
(
P−1X

)2− tr
(
P−1X̃k

)2

=

= −2 tr
((
P−1X

)(
P−1

(
δjkjδJkJ

T
mγ

)))
− tr

(
P−1

(
δjkjδJkJ

T
mγ

))2

= −2 tr
((
P−1X

)(
P−1

(
δjkjδJkJ

T
mγ

)))
− T 2

m2
γ

(((
P−1

)
T
)jk

Jk

)2

, (15.12)

where we also used

tr
(
P−1

(
δjkjδJkJ

T
mγ

))
= T

mγ

(
P−1

)a
b δ

bjkδaJk = T
mγ

(
P−1

)
Jk

jk = T
mγ

((
P−1

)
T
)jk

Jk . (15.13)

With also considering the norm of the state, we therefore now have

〈
N∏
k=1

q̂jkJk(r)〉Ψm =
T 6rN |Zγ|rN√
π

9
T 3rN

|detP |rN
∞∫

−∞

d9xiI e−
∑
Ii(xiI)

2

·

·
N∏
k=1

[
− r T

mγ

((
P−1

)
T
)jk

Jk +
r(1− r)

2

T 2

m2
γ

(((
P−1

)
T
)jk

Jk

)2

−

− r2 T

mγ

((
P−1

)
T
)jk

Jk tr
(
P−1X

)
+ r tr

((
P−1X

)(
P−1

(
δjkjδJkJ

T
mγ

)))
+

+ r(r − 1)
T

mγ

∑
j,J

((
P−1

)
T
)jk

J

((
P−1

)
T
)j
J

((
P−1

)
T
)j
Jk

(
Xj
J

)2−

− r2(r − 1)

2

T

mγ

((
P−1

)
T
)jk

Jk

∑
j,J

(((
P−1

)
T
)j
J

)2(
Xj
J

)2
+O

(
T 5
)]
. (15.14)
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We notice that the integration of all terms in the second line of the square bracket against

the preceding Gaussians will yield zero as they are linear in one of the integration variables

xiI .
1 The remaining integrals are then either

∞∫
−∞

dx e−x
2

x2 =

√
π

2
(15.15)

or of pure Gaussian form — yielding
√
π. We will therefore get an overall factor of

√
π

9

which eliminates the corresponding factor in the denominator, stemming from the norm

of the state.

As a last ingredient, we need

P i
I =

piI
T
⇒ detP =

det p

T 3
⇒
((
P−1

)
T
)jk

Jk = T
∆jk
Jk

(p)

det p
(15.16)

for the respective factors in (15.14). We can now state our final result, where we have to

consider the factor 2N

tN
as we now face an N -fold product of the operators q̂jkJk(r):

2N〈
∏N

k=1 q̂
jk
Jk

(r)〉Ψm
tN

=

=
2N

tN
|Zγ|rN |det p|rN

N∏
k=1

[
−r t

mγ

∆jk
Jk

(p)

det p
+
r(1− r)

2

t2

m2
γ

(
∆jk
Jk

(p)
)2

(det p)2 +

+
r(r − 1)

2

t2

mγ

∑
j,J

∆jk
J (p)∆j

J(p)∆j
Jk

(p)

(det p)3 − r2(r − 1)

4

t2

mγ

∆jk
Jk

(p)

(det p)3

∑
j,J

(
∆j
J(p)

)2
+O

(
t

5
2

)]

= (−2r)N |Zγ|rN
1

mN
γ

(
|det p|r

det p

)N N∏
k=1

[
∆jk
Jk

(p)
]

+O
(
t

1
2

)
.

(15.17)

With mγ = 2 and Zγ = 1, we retrieve the same lowest order contribution as we did for

cubic graphs — confer (14.26) —, just that we now also cover the more general case of

an N -fold product. Therefore, as already mentioned in Section 14.4, it is only for cubic

graphs that we can reproduce the semiclassical continuum limit, while for arbitrary graphs

we will still have Zγ in our formulae.

If we now compare (15.17) with the respective result of [64, Theorem 4.2 or (4.45)],

we see that the two are expressed differently: While [64] explicitly considers the lattice

1We also directly neglected linear contributions from the terms of the third and fourth line.
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fluctuations, (15.17) above has those still encoded in the fluxes piI . As we already pointed

out during the discussion at the end of Appendix B, Sahlmann and Thiemann [64] in-

troduced s = t
1
2
−α, with 0 < α < 1

2
, for also considering the lattice fluctuations. Their

resulting power series [64, (4.39)] was then truncated to contributions ∼ s3T , with the

first order they neglected being (sT )2. This is the reason why [64, (4.45)] does not contain

all the terms that are ∼ t2 in the square bracket of (15.17) above (i.e. make up the first

higher-order correction terms): the t2-contribution in the first line of (15.17) corresponds

to the (sT )2-term of [64] and is therefore neglected in [64, (4.45)]. While these lattice

fluctuations will be present regardless of the choice of α, we kept these higher order terms

to be able to compare the results à la Sahlmann–Thiemann with the U(1) and quantum

mechanical scenario. There, these two different kind of correction terms share the same

order in t or ~, respectively: Taking a look at (11.30), we see that the expectation value

of |p̂|r in standard quantum mechanics already features fluctuations — and this is not due

to a rational exponent but already true for |p̂|3 and higher powers. Proceeding to (11.35),

we saw that we obtain two terms that contribute with next-to-leading order ~2. Of these,

the second one can be found to be the derivative of the fluctuation contribution of (11.30).

The first one, in turn, corresponds to the second derivative of the initial expression just

like the ~-contribution corresponds to the first derivative. For the U(1)-case, the same

behaviour can be observed if we compare the fluctuations of the expectation value of |p̂|r

in U(1), (12.39), with the second t-contribution of the final result for the expectation

value of q̂r, (12.41). We find this also in [64, Theorem 4.3 / eq. (4.48)]: If we differentiate

the fluctuation correction of the expectation value of the volume operator as stated there,

we get terms ∼ q
3r
2
−3. This does indeed fit the correction terms ∼ s2 of [64, (4.45)] for

N = 1.

As a last comment on the general procedure of Sahlmann–Thiemann [64], we note that

it can happen that there are additional terms in the power series [64, (4.39)], contribut-

ing with a power in t between the term (sx)2 and the omitted contributions O(sT ) —

depending on the choice of α. Terms ∼ sT ∼ t1−α will, of course, always be of higher

order in t than those ∼ (sx)2 ∼ t1−2α — as 0 < α < 1
2

—, but for terms ∼ (sx)n this is

not as straightforward: Their t-dependence is t
n
2
−nα, meaning that for a fixed value of α,

we have to consider all contributions (sx)n with n < 1−α
1/2−α . For the case [64] considers,

everything is fine: They chose α ≈ 1
6

(confer [64, comment after (3.12)]), demanding to

include all terms (sx)n with n < 2.5. However, if α were approaching 1
2
, we would have

to consider all (sx)n with n ∈ 2N and only the contributions with odd n can be neglected

for their integral against the preceding Gaussian functions vanishes.
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15.1. The Sahlmann–Thiemann approach

Having introduced the procedure of Sahlmann–Thiemann to compute semiclassical ex-

pectation values of (products of) q̂i0I0(r) for cubic graphs, we try to extend it to more

general scenarios in what follows. Note that this implies mγ = 1 and we may therefore as

well omit it. The delicate part of the integrand of our starting point now is

N∏
k=1

(∣∣∣∣∣∑
i

det(Xi + Pi)

∣∣∣∣∣
r

−

∣∣∣∣∣∑
i

det
(
X̃i,k + Pi

)∣∣∣∣∣
r)
,

where the sum over i is shorthand for summing over the contributions of all triples of edges

as in (10.6). As before, we now try to perform a Taylor expansion on this expression. For

being able to do so, we first factor out detP1 and apply the decomposition (15.7). This

yields∣∣∣∣∣∑
i

det(Xi + Pi)

∣∣∣∣∣
r

= |detP1|r ·

∣∣∣∣∣1 + tr
(
P1
−1X1

)
+

1

2

((
tr
(
P1
−1X1

))2 − tr
(
P1
−1X1

)2
)

+

+ det
(
P1
−1X1

)
+
∑
i 6=1

detPi
detP1

(
1 + tr

(
Pi
−1Xi

)
+

1

2

((
tr
(
Pi
−1Xi

))2 − tr
(
Pi
−1Xi

)2
)

+

+ det
(
Pi
−1Xi

))∣∣∣∣∣
r

(15.18)

for the unshifted part. We see that we can now indeed perform a Taylor expansion on this

expression — just around 1 +
∑

i 6=1
detPi
detP1

this time. We can also infer from the structure

of (15.18) that this contribution will then be eliminated by the equivalent part that one

gets for the second contribution of the commutator, the one containing the shift. Hence,

we only get terms of higher order than T 1. With an increasing amount of terms per order

in T as well as their more and more complex compositions, we consider only the lowest

order contributions from now on. In its lowest order, only one term will contribute: the

one corresponding to trA in (15.7), which became r trA after the Taylor expansion (15.9)

of the root. We now have to collect this contribution of all possible combinations of three

edges, which we ultimately find as

N∏
k=1

(∣∣∣∣∣∑
i

det(Xi + Pi)

∣∣∣∣∣
r

−

∣∣∣∣∣∑
i

det
(
X̃i,k + Pi

)∣∣∣∣∣
r)

= |detP1|rN
N∏
k=1

[
r tr
(
P1
−1X1

)
−

− r tr
(
P1
−1X̃1,k

)
+ r

∑
i 6=1

detPi
detP1

tr
(
Pi
−1Xi

)
− r

∑
i 6=1

detPi
detP1

tr
(
Pi
−1X̃i,k

)
+O

(
T 3
)]
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= (−r)NT−3rN+2N

N∏
k=1

(∑
i

|det pi|r

det pi
∆jk
Jk

(pi)

)
+O

(
T−3rN+2N+1

)
. (15.19)

If we now want to compare this with the classical Poisson bracket, we have to multiply

the result above by 2N

tN
and get

2N〈
∏N

k=1 q̂
jk
Jk

(r)〉Ψm
tN

= (−2r)N |Zγ|rN
N∏
k=1

(∑
i

|det pi|r

det pi
∆jk
Jk

(pi)

)
+O

(
t

1
2

)
, (15.20)

having in mind that we again used r instead of the initial r
2
. As expected, we can not

fully reproduce the classical result of the Poisson bracket with Zγ = 1
48

still being part of

the expression above. Furthermore, we already noted at the beginning that the entering

of P−1 into our formulae will likely lead to the limit p → 0 not being accessible — and

we see that this turned out to be indeed true.

We close this part on non-estimative approaches for determining semiclassical expecta-

tion values of the class of operators q̂i0I0(r) with a short recap. First, we used Kummer’s

confluent hypergeometric functions to develop a computation procedure for the basic

building block of these expectation values and were able to apply it to graphs of cubic

topology. Second, the procedure Sahlmann and Thiemann introduced in [64] was gener-

alised to applying it to graphs of not necessarily cubic topology. All these investigations

where possible without having to rely on estimates — at least unless the cosmological

limit of p = 0 was considered. Just like the work of Brunnemann and Thiemann, [65, 66],

we then had to use estimates as well and obtained a diverging expression when considering

both p → 0 and t → 0. The next section will cover a short comparison of the KCHF

procedure and the one of Sahlmann and Thiemann, before we delve into estimative ap-

proaches in the next chapter, which then is in closer relation to the work of Brunnemann

and Thiemann [65, 66].
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15.2 Comparison of the KCHF procedure and the

one of Sahlmann and Thiemann

Seeing that the two paths — the one of Sahlmann–Thiemann [64] and the one via KCHFs

— share scenarios they can be applied to and then yield the same result, the question

arises whether there may in fact be a link between the two. For this, we start with the

U(1)-case and the integral

I = ||Ψ||−2T re
p2

T2

∞∫
−∞

dx e−x
2
∣∣∣x+

p

T

∣∣∣r, (15.21)

reflecting the basic structure of the integrals we investigate. Note that we directly con-

sidered only the contribution of N = 0 and the norm of the state then is ||Ψ||2 =
√
π e

p2

T2 .

Adapting the procedure of Sahlmann–Thiemann [64], we perform a power series expan-

sion of the non-Gaussian part of the integrand as follows:∣∣∣x+
p

T

∣∣∣r =
∣∣∣ p
T

∣∣∣r · ∣∣1 + p−1Tx
∣∣r ≈ ∣∣∣ p

T

∣∣∣r(1 + rp−1Tx+
r(r − 1)

2

(
p−1Tx

)2
+O

(
T 3
))
.

(15.22)

Having in mind that the integral of the term linear in x against the preceding Gaussian

vanishes, we get

I = |p|r
1 +

1√
π

r(r − 1)

2

T 2

p2

∞∫
−∞

dx e−x
2

x2 +O
(
T 3
) (15.23)

= |p|r
(

1 +
r(r − 1)

4

T 2

p2
+O

(
T 3
))
. (15.24)

For the KCHF-procedure, we already presented the general steps several times and

applied to (15.21), they read

I = ||Ψ||−2T re
p2

T2

∞∫
−∞

dx e−(x− p
T )

2

|x|r (15.25)

=
T r√
π

Γ
(
r+1

2

)
1F1

(
−r

2
,
1

2
,−
( p
T

)2
)

(15.26)

199



Chapter 15. Graphs with higher valent vertices

=
T r√
π

Γ
(
r+1

2

)
e−

p2

T2
1F1

(
r + 1

2
,
1

2
,
( p
T

)2
)

(15.27)

' |p|r
∞∑
n=0

(
− r

2

)
n

(
− r

2
+ 1

2

)
n

n!

(
p−1T

)2n
(15.28)

= |p|r
(

1 +
r(r − 1)

4

T 2

p2
+O

(
T 3
))
. (15.29)

These are the Kummer transformation (11.11), which we used from the second to the

third line, and the asymptotic expansion for large arguments of the KCHF (11.18) from

the third to the fourth line. For the latter, we noticed that we have to consider only one

of the resulting series — as usual by now.

So we see that the two paths do indeed yield the same result and we now try to better

understand how the two may be linked. For this, we examine the Taylor series (15.22)

and, as stated above, neglect all contributions with odd powers in x. We can do so by

modifying the Taylor series to sum over 2n instead of n. This allows us to associate the

respective numerical prefactors of (15.23) and (15.28), where the ones of the Taylor series

are just the generalised binomial coefficients
(
r
n

)
. We reformulate these in terms of the

falling factorial

(a)−0 = 1,

(a)−1 = a and

(a)−n = a(a− 1)(a− 2) · · · (a− n+ 1) (15.30)

as (
r

n

)
=

(r)−n
n!

(15.31)

and then have to verify

1√
π

(r)−2n
(2n)!

∞∫
−∞

dx e−x
2

x2n =

(
− r

2

)
n

(
− r

2
+ 1

2

)
n

n!
. (15.32)

This identity is straightforwardly validated via

∞∫
−∞

dx e−x
2

x2n = Γ
(
n+ 1

2

)
=

(2n)!

n!4n
√
π (15.33)
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and we can therefore rewrite the asymptotic expansion for large arguments of the KCHF

using the contributions of the Taylor expansion of Sahlmann–Thiemann:

T re−
p2

T2
1F1

(
−r + 1

2
,
1

2
,
p2

T 2

)
' |p|r ·

∞∑
n=0

1√
π

(r)2n

(2n)!

(
p−1T

)2n

∞∫
−∞

dx e−x
2

x2n. (15.34)

So we can say that in this scenario, the two paths are just two sides of the same medal.

This immediately does not hold anymore if we were interested in taking the limit p→ 0.

Then, introducing p−1 during the Sahlmann–Thiemann procedure causes trouble, while

using KCHFs would still be feasible with the very definition of the KCHFs, (11.2), directly

resulting in a power series in t. For the U(1)3-scenario, we can not maintain this link

between the two procedures. The Sahlmann–Thiemann way still tackles the integrals

that one faces after the power series expansion all at once, but the KCHF procedure

forced us to perform them iteratively, confer Appendix B.
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Chapter 16

Kummer’s functions and loop

quantum gravity — estimative

approaches

In the previous chapter, we were able to determine semiclassical expectation values of the

class of operators q̂i0I0(r) without the help of estimates. However, if we wanted to consider

the limit of the cosmological singularity, i.e. p → 0, we in fact had to rely on estimates.

A different procedure by Sahlmann–Thiemann [64] allows to compute similar expectation

values for cubic graphs and we saw that also this one can not handle the cosmological

singularity as its mechanism relies on the introduction of P−1. As a consequence, we infer

that we need to use estimates once we are interested in investigating the initial singularity.

As we will see, the choice of which estimates to use is by far not a simple one and it heavily

affects the outcome.

We start this part with revisiting an estimative approach introduced by Brunnemann

and Thiemann in a pair of two papers [65, 66], which we will directly slightly modify

by using KCHFs. While we start with the simple case of one q̂i0I0(r), we will then also

consider the N -fold product 〈
∏N

k=1 q̂
jk
Jk

(r)〉Ψm . The remainder of this chapter then focuses

on developing a notion of how to find suitable estimates that allow to improve the obtained

result such that the power of both the classicality parameter and the fluxes is conserved.
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16.1 Revisiting the approach of Brunnemann and

Thiemann

16.1.1 Estimative computation of 〈q̂i0I0(r)〉

Brunnemann–Thiemann established in [65, 66] i.a. a procedure of how to utilise estimates

to cast the intertwined integrals one faces when computing semiclassical expectation values

of q̂i0I0(r) (and products thereof) into ones that then can be solved. We now introduce their

procedure using the example of (10.9), which reads

〈q̂i0I0(r)〉Ψm =
1

||Ψm||2a3r

∑
{niI}∈Z

e
∑
i,I

(
−t(niI)

2
+2piIn

i
I

)
`P

3r|Z|
r
2

∣∣∣∣∣∑
IJK

ε(IJK)εijkn
i
In

j
Jn

k
K

∣∣∣∣∣
r
2

−

−

∣∣∣∣∣∑
IJK

ε(IJK)εijk
(
niI + δii0δII0

)(
njJ + δji0δJI0

)(
nkK + δki0δKI0

)∣∣∣∣∣
r
2

.
(16.1)

First, note that we went back to naming the regularisation constant Z. We do not consider

special graphs anymore, like cubic ones, so we can as well use Zcomb(γ) = 1⇒ Zγ = Creg =
1
48

=: Z. An important aspect of our starting point above is that it is before the Poisson

resummation, meaning that we still work with the actual U(1)3-charges niI . For the work

of Brunnemann–Thiemann, this was important with their crucial estimate

|a|r − |b|r ≤ ||a| − |b|| (16.2)

only applying to integer values of a, b ∈ Z, where r ∈ Q[0,1]. With the help of this

estimate, they obtained an integrand that no longer contains roots or rational powers of

the integration variables but instead integer powers, which they then integrated against

the preceding Gaussian functions. Having the KCHF procedure at hand, allowing us to

integrate at least basic integrands including rational powers of the integration variable,

we do not have to eliminate the rational exponent completely. Hence, while we follow the

main route of the Brunnemann–Thiemann path, we do divert from it when it comes to

retaining the exponent r. The new estimates that we will use in addition to or instead of
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the ones of Brunnemann–Thiemann, respectively, are

|a|r − |b|r ≤ |a− b|r (16.3)

|a+ b|r ≤ |a|r + |b|r (16.4)

2|ab| ≤ |a|2 + |b|2 and (16.5)

|a|2 + |b|2 ≤ (|a|+ |b|)2, (16.6)

where we can now allow a, b, r ∈ R with 0 ≤ r ≤ 1. Additionally, we will later use

|a+ C|r − |(a− 1) + C|r ≤ |a|r − |a− 1|r + 2, (16.7)

where a, C, r ∈ R and 0 ≤ r ≤ 1. A short summary of those estimates is also provided in

Appendix C for future reference.

In what follows, we often only work with the part of the integrand we perform the esti-

mates on, which allows us to have more concise formulae. For the part of the expectation

value of q̂i0I0(r) that contains the difference of the shifted and unshifted eigenvalues of the

volume operator only, we have in the notation of [65, 66]

∆λr := λr
({
niI
})
− λr

({
niI + δii0δII0

})
= `P

3r|Z|
r
2

∣∣∣∣∣∑
IJK

ε(IJK)εijkn
i
In

j
Jn

k
K

∣∣∣∣∣
r
2

−

−

∣∣∣∣∣∑
IJK

ε(IJK)εijkn
i
In

j
Jn

k
K + 3

∑
JK

ε(I0JK)εi0jkn
j
Jn

k
K

∣∣∣∣∣
r
2

. (16.8)

As before, we used the shorthand notation
∑

IJK for summing over all combinations of

distinct edges eI , eJ and eK that meet at the vertex v. Likewise,
∑

JK collects all edges

eJ 6= eK that meet at v with I0. We already know that integrating this expression against

Gaussian functions is a cul-de-sac and we now want to proceed with using estimates.

However, we saw that also with the help of KCHFs we could only integrate rather basic

functions of the integration variables and rational exponents, so the estimates we use

should try to simplify the structure of the terms above. We currently face rational powers

of absolute values of sums of determinants and we need to get expressions that are, at

best, just sums of monomials in the charges — where we would allow the exponents to
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still be rational. Using the estimates stated above, we obtain the chain of estimates

∆λr
(16.3)

≤ `P
3r|Z|

r
2 3

r
2

∣∣∣∣∣∑
JK

ε(I0JK)εi0jkn
j
Jn

k
K

∣∣∣∣∣
r
2

(16.4)

≤ `P
3r|Z|

r
2 3

r
2

(∑
JKjk

∣∣ε(I0JK)εi0jkn
j
Jn

k
K

∣∣) r
2

≤ `P
3r|Z|

r
2 3

r
2

(∑
JKjk

∣∣njJnkK∣∣
) r

2

(16.5)

≤ `P
3r|Z|

r
2 3

r
2

(
1

2

∑
JKjk

(∣∣njJ ∣∣2 +
∣∣nkK∣∣2)

) r
2

≤ `P
3r|Z|

r
2 3

r
2

(
1

2
3M

(∑
Jj

∣∣njJ ∣∣2 +
∑
Kk

∣∣nkK∣∣2
)) r

2

(16.6)

≤ `P
3r|Z|

r
2 (9M)

r
2

(∑
Jj

∣∣njJ ∣∣
)r

(16.4)

≤ `P
3r|Z|

r
2 (9M)

r
2

∑
Jj

∣∣njJ ∣∣r. (16.9)

Note some subtlety of the notation used above: As we applied estimate (16.4), we do no

longer have a summation over j, k inside the absolute value of the second line et seq. —

both indices appearing twice is not understood as summing over them here. We instead

sum multiple absolute values with different j, k inserted. Continuing, all ε were estimated

as 1 and we obtained a combinatorical prefactor 3M . It originates in the empty sum we

face after having applied (16.5). In the fourth line, the first term niJ that is summed over

all J,K, j, k does not contain K or k and vice versa for the second term. While of course

not all M edges necessarily meet at v — and, in fact, with two edges being fixed it would

be M − 2 maximum —, we still estimate the overall amount by M for reasons of brevity

and to be able to compare our result with [66], who used M as well. The same holds for

the 3 of the empty sum over the remaining (in fact one) U(1)-charge.

This expression, (16.9), is what we now need to integrate against Gaussians in the njJ . The

equivalent part of the integrand of Brunnemann–Thiemann reads [66, eq. (C.39) therein]

|∆λr|
B.–T.

≤ `P
3r|Z|

r
2 9M

∑
Jj

∣∣njJ ∣∣2 (16.10)
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and we see that we obtained a quite similar expression. However, as we already argued,

Brunnemann–Thiemann wanted to replace the rational exponent r by integer ones, while

we still have r. Having in mind that 0 ≤ r < 1, we can deduce the new estimate to be less

rough due to r < 2 and M,
∣∣njJ ∣∣ ∈ N0. Still, we were not able to preserve the initial power

in the charges, |n|
3r
2 . As we will later see and one may expect, this affects the final result

and is the very reason why we will try to find more suitable estimates in Section 16.2

Continuing with the integration of (16.9), we have

〈q̂i0I0(r)〉Ψm ≤
`P

3r|Z| r2 (9M)
r
2

a3r||Ψm||2
∑
{niI}∈Z

e
∑
Ii

(
−t(niI)

2
+2piIn

i
I

)∑
Jj

∣∣njJ ∣∣r

=
ξ

||Ψm||2
∑
{N i

I}∈Z

∞∫
−∞

d3MxiI

(
2π

T

)3M

e
∑
Ii

(
−(xiI)

2
+

2piI
T
xiI−

2πiNiI
T

xiI

)∑
Jj

∣∣xjJ ∣∣r
T r

=
ξ

||Ψm||2
(2π)3M

√
π

3M−1

T 3M+r

∑
{N i

I}∈Z

∑
Jj

e
∑
Ii\Jj

(
piI
T
− πiN

i
I

T

)2

Γ
(
r+1

2

)
·

· 1F1

r + 1

2
,
1

2
,

(
pjJ
T
− πiN

j
J

T

)2
, (16.11)

where we combined all prefactors in ξ := T 3r|Z|
r
2 (9M)

r
2 . In the second line, we also

realised that we integrate only one xjJ over a Gaussian multiplied by the absolute value

to the power of r, while all remaining ones are just of standard Gaussian form:

∞∫
−∞

dxiI e
−(xiI)

2
+

(
2piI
T
− 2πiNiI

T

)
xiI

=
√
π e

(
piI
T
− πiN

i
I

T

)2

. (16.12)

The ones including the absolute value to the power of r result in a KCHF, just as before:

∞∫
−∞

dxjJ e
(xjJ)

2
+

(
2p
j
J
T
−

2πiN
j
J

T

)
xjJ ∣∣xjJ ∣∣r = Γ

(
r+1

2

)
1F1

r + 1

2
,
1

2
,

(
pjJ
T
− πiN

j
J

T

)2
. (16.13)

This is the reason why in the third line of (16.11), the product of the Gaussians does

not include the one for (j, J) — symbolised by
∑

Ii\Jj — as for that we instead have the

factor corresponding to the right hand side of (16.13). With this, we can perform the by
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now familiar follow-up steps of inserting the norm of the states,

||Ψm||2 =

(
2π
√
π

T

)3M

e
∑
Ii

(
piI
T

)2 ∏
Ii

(
1 +Ki

t(I)

)
, (16.14)

applying the asymptotic expansion for large arguments of the KCHF and discarding all

terms N i
I 6= 0, to obtain

〈q̂i0I0(r)〉Ψm
t

≤ (16.11)
t→0
= T 3r|Z|

r
2 (9M)

r
2

∑
Jj

∞∑
n=0

(
− r

2

)
n

(
1−r

2

)
n

n!

∣∣pjJ ∣∣r−2n
tn−r−1. (16.15)

We directly state the corresponding result for the important case of r = 1
2
, i.e. where the

root of the volume operator is contained in q̂i0I0(r):

〈q̂i0I0
(

1
2

)
〉Ψm

t

t→0

. T
3
2 |Z|

1
4 (9M)

1
4

∑
Jj


√∣∣pjJ ∣∣
√
t
3 −

1

16

1
√
t
√∣∣pjJ ∣∣3 −

15

256

√
t√∣∣pjJ ∣∣7 +O

(
t

3
2

),
(16.16)

with the leading order

〈q̂i0I0
(

1
2

)
〉Ψm

t

t→0

. |Z|
1
4 (9M)

1
4

∑
Jj

√∣∣pjJ ∣∣
t

3
4

+O
(
t

1
4

)
. (16.17)

We may now want to investigate the cosmological singularity, i.e. consider the limit p→ 0.

As before, this forces us to deviate from how we proceeded from (16.11) onwards as we can

no longer argue that the argument of the KCHF is large, which allowed us to apply the

asymptotic expansion.1 However, we can instead first perform a Kummer transformation

according to (11.11) and then insert the definition of the KCHF in terms of a power series,

(11.2), leading to

〈q̂i0I0(r)〉Ψm
t

piI=0

≤ |Z|
r
2 (9M)

r
2

√
π

Γ
(
r+1

2

)
tr−1

∑
{N i

I}∈Z

∑
Jj

e−
∑
Ii\Jj

π
2

t (N i
I)

2

·

· 1F1

(
r + 1

2
,
1

2
,−π

2

t

(
N j
J

)2
)

1Note that we will ultimately only consider contributions with N i
I = 0.
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(11.11)
=
|Z|

r
2 (9M)

r
2

√
π

Γ
(
r+1

2

)
tr−1

∑
{N i

I}∈Z

∑
Jj

e−
∑
Ii
π
2

t (N i
I)

2

·

· 1F1

(
−r

2
,
1

2
,
π

2

t

(
N j
J

)2
)

(11.2)
=
|Z|

r
2 (9M)

r
2

√
π

Γ
(
r+1

2

)
tr−1

∑
{N i

I}∈Z

∑
Jj

e−
∑
Ii
π
2

t (N i
I)

2

·

·
∞∑
n=0

(
− r

2

)
n(

1
2

)
n
n!

(
π

2

t

(
N j
J

)2
)n

=
|Z|

r
2 (9M)

r
2

√
π

Γ
(
r+1

2

)
tr−1

∑
{N i

I}∈Z

∑
Jj

e−
∑
Ii
π
2

t (N i
I)

2

·

·
(

1− rπ
2

t

(
N j
J

)2
+

2− r
6

π
4

t2
(
N j
J

)4
+O

(
t−3
))
. (16.18)

With there still being Gaussians in the N i
I present, we can again consider the terms with

N i
I = 0 only and finally get the upper bound of the semiclassical expectation value of

q̂i0I0(r) divided by t in both limits p→ 0 and t→ 0:

〈q̂i0I0(r)〉Ψm
t

piI=0

≤ |Z|
r
2 (9M)1+ r

2

√
π

Γ
(
r+1

2

)
tr−1. (16.19)

Choosing the volume operator itself to be contained in q̂i0I0(r), i.e. r = 1, yields a first

order contributing with t0. Still, it is not a problem at all that we do not obtain a t0

contribution as lowest order in general — remember that this was not even the case in

standard quantum mechanics, confer (11.36).

As a final remark on this first application of an estimative approach using KCHFs, we

note that all the results (16.15), (16.16) and (16.19) did not reflect the initial exponents of

the momenta. Having started with the volume operator to the power of r, i.e. ∼ n
3r
2 , using

the estimates leading to (16.9) resulted in an expression ∼ nr — which ultimately yielded

pr. The t-dependency, meanwhile, ended up being t
r
2
−1 for the lowest order contribution

in (16.15), changing to tr−1 for the limit p → 0 in (16.19). This change, however, was

not caused by applying additional estimates — both results come from (16.11) with only

identities or (asymptotic) expansions being applied thereafter.
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16.1.2 Generalisation to products of q̂ikIk

Having introduced the estimative approach à la Brunnemann–Thiemann with KCHFs

in the previous subsection, we now generalise it to products
∏N

k=1 q̂
ik
Ik

, where k labels

the specific choice of the U(1)-copy and the edge on which the holonomy acts for each

operator of the product. We can then use the estimate we found for a single q̂i0I0(r), (16.9),

to deduce the semiclassical expectation value of a product of these operators:

〈
N∏
k=1

q̂ikIk(r)〉Ψm ≤
`P

3rN |Z|
rN
2 (9M)

rN
2

a3rN ||Ψm||2
∑
{niI}∈Z

e
∑
Ii

(
−t(niI)

2
+2piIn

i
I

)(∑
Jj

∣∣njJ ∣∣r
)N

≤ T 3rN |Z|
rN
2 (9M)

rN
2

√
π

3M

∑
{N i

I}∈Z
e−
∑
Ii

π
2(NiI)

2

t

∞∫
−∞

d3MxiI e
−
∑
Ii

(
xiI−

piI−πiN
i
I

T

)2(∑
Ii

|xiI |
r

T r

)N

.

(16.20)

In contrast to the single q̂i0I0(r), we now face the sum over all the absolute values to the

power of r being taken to the power of N . Hence, we have to add some more structure

to tackle the remaining integrations:(∑
Ii

|xiI |
r

T r

)N

=
1

T rN

∑
{nk}

cnk
∏
Ii

∣∣xiI∣∣rniI,k , (16.21)

with

cnk :=
N !∏
Ii n

i
I,k!

=

(
N

n1
1,k, n

2
1,k, . . . , n

3
M,k

)
. (16.22)

Via the sum
∑
{nk}, we consider all distributions of N into non-negative integers niI,k ∈ N+,

i.e. with
∑

Ii n
i
I,k = N . The combinatorical prefactors are then just the multinomial

coefficients cnk .

With this, all integrals that are not just of standard Gaussian type read

IniI,k :=

∞∫
−∞

dxiI e
−
(
xiI−

piI−πiN
i
I

T

)2∣∣xiI∣∣rniI,k
= Γ
(

1+rniI,k
2

)
e
−
(
piI−πiN

i
I

T

)2

1F1

(
1+rniI,k

2
, 1

2
,
(
piI−πiN

i
I

T

)2
)

(16.23)
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and we can proceed as usual — i.e. first consider the general case of p 6= 0 and proceed

with the asymptotic expansion for large arguments of the KCHF. Note that our notation

also allows to cover all the integrals of standard Gaussian type as well, just set niI,k = 0.

Performing all further steps such as neglecting contributions with N i
I 6= 0 yields

IniI,k
t→0
= Γ

(
1
2

) |piI |rniI,k
T rn

i
I,k

(
1− rniI,k(1−rniI,k)

4
t

(piI)
2 +O

(
t2
))

(16.24)

and altogether we obtain

〈
N∏
k=1

q̂ikIk(r)〉Ψm
t→0

≤

t→0

≤ T 3rN |Z|
rN
2 (9M)

rN
2

∑
{nk}

cnk
T rN

∏
Ii

|piI |
rniI,k

T rn
i
I,k

(
1− rniI,k(1−rniI,k)

4
t

(piI)
2 +O

(
t2
))

≤ t
rN
2 |Z|

rN
2 (9M)

rN
2 (3M)N |pmax|rN +O

(
t
rN
2

+1
)
, (16.25)

where we additionally estimated all piI by pmax := maxIi{piI}. This allowed us to combine∏
Ii|piI |

rniI,k to prNmax as an upper bound and to use∑
{nk}

cnk = (3M)N (16.26)

as there were no other dependencies of nk left. With additionally dividing by tN to account

for the N -fold product of the operators, the final result reads

〈
∏N

k=1 q̂
ik
Ik

(r)〉Ψm
tN

t→0

≤ t(
r
2
−1)N |Z|

rN
2 (9M)

rN
2 (3M)N |pmax|rN +O

(
t(

r
2
−1)N+1

)
. (16.27)

Turning towards the cosmological singularity, we have to change our tactics from (16.23)

onwards, just like before. With a Kummer transformation according to (11.11), we have

IniI,k
p=0
= e

π
2(NiI)

2

t Γ
(

1+rniI,k
2

)
1F1

(
1+rniI,k

2
, 1

2
,−π

2(N i
I)

2

t

)
= Γ

(
1+niI,k

2

)
1F1

(
− rniI,k

2
, 1

2
,
π

2(N i
I)

2

t

)
(16.28)

and the preceding Gaussian in (16.20) tells us we can again neglect all contributions
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N i
I 6= 0. With inserting the defining power series (11.2) of the KCHF, we get

e−
π
2(NiI)

2

t · IniI,k
p=0
= Γ

(
1+rniI,k

2

)
e−

π
2(NiI)

2

t

(
1− rniI,k

π
2(N i

I)
2

t
+O

(
t−2
))

= Γ
(

1+rniI,k
2

)
.

(16.29)

We can then combine these parts for all the factors of the product to obtain

〈
N∏
k=1

q̂ikIk(r)〉Ψm
p=0

≤ trN(9M)
rN
2 |Z|

rN
2

∑
{nk}

cnk√
π

3M

∏
Ii

Γ
(

1+rniI,k
2

)
(16.30)

as an intermediate step towards the final result, which ultimately also considers the divi-

sion by tN :

〈
∏N

k=1 q̂
ik
Ik

(r)

tN
〉Ψm

p=0

≤ t(r−1)N(9M)
rN
2 |Z|

rN
2

∑
{nk}

cnk√
π

3M

∏
Ii

Γ
(

1+rniI,k
2

)
. (16.31)

With a factor
√
π

3M
still being present in the denominator, it may now look as if some

normalisation did not work out as expected. However, this factor is (partially) compen-

sated by all Γ
(
(1+rniI,k)/2

)
for which niI,k = 0. What remains is a factor

√
π
](niI,k)

, where

we denote by ](niI,k) the number of non-zero niI,k within the respective decomposition nk.

This corresponds to and stems from the number of integrals that were not just of stan-

dard Gaussian type and therefore resulted in Γ
(
(1+rniI,k)/2

)
instead of Γ

(
1
2

)
=
√
π. What

is more, having a fraction of a gamma function and a square root of π within our final

result is nothing new, have we also seen this behaviour in (14.30) and even in (11.36)

during the quantum mechanical treatment.

The Brunnemann–Thiemann path can therefore be modified by using KCHFs in order

to compute semiclassical expectation values of N -fold products of the operators q̂ikIk . This

allowed us to preserve the initial exponents at least to some extent: We were able to keep

them fractional and did not need to replace them by integer ones, but the estimates still

altered them. Concerning the semiclassical limit t→ 0, we obtained the same divergence

like Brunnemann–Thiemann. In what follows, we aim at improving the estimates à la

Brunnemann–Thiemann we used so far and try to understand how this choice affects the

final dependence on the classicality parameter and the momenta.
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16.2 New estimates

From what we saw up to now, we are led to think that an improved estimate, which will

turn out to recreate the correct dependency on t and p, should still be one featuring a

difference in two terms — where one somehow contains the shift and the other does not.

We already realised that breaking the expression down to one contribution destroys not

only the exponent of the integration variables but also causes the lowest order term of the

resulting power series to survive — there is no counterpart that could compensate it in

the way it happened during our analytical computations of Chapter 14. Simultaneously,

we have to simplify the expressions with the KCHF procedure not allowing too complex

functions of the integration variables as integrand.

To recap, our starting point is

λr
({
niI
})
−λr

({
niI + δii0δII0

})
= `P

3r|Z|
r
2

∣∣∣∣∣∑
IJK

det
(
niIn

j
Jn

k
K

)∣∣∣∣∣
r
2

−

−

∣∣∣∣∣∑
IJK

det
((
niI + δii0δII0

)(
njJ + δji0δJI0

)(
nkK + δki0δKI0

))∣∣∣∣∣
r
2

. (16.32)

One possible path now is to factor out one charge after the other. For this, we can use

Laplace’s rule once more. To introduce the principle, we apply it to a difference of two

matrices which should mimic a charge matrix and its shifted counterpart:

∣∣∣∣∣∣∣det

a b c

d e f

g h i


∣∣∣∣∣∣∣
r
2

−

∣∣∣∣∣∣∣det

(a− 1) b c

d e f

g h i


∣∣∣∣∣∣∣
r
2

=
∣∣∣a det(a−) + C̃

∣∣∣ r2−∣∣∣(a− 1) det(a−) + C̃
∣∣∣ r2 .

(16.33)

Therein, we used det(a−) for the minor of the matrix with respect to the element a, while

C̃ := −b det(b−) + c det(c−) collects all contributions that do not contain that a.

If we now think about how an estimate of the expression above should look like such

that we can not only integrate it but also in a way that it still is a difference in two

terms — therefore leading to a difference in two KCHFs and an elimination of the zeroth

order contribution —, we realise that getting rid of C̃ would yield precisely such an

expression: After factoring out det(a−), integrating over a results in a difference in two

KCHFs and the remaining integration over the variables in det(a−) can be handled via
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suitable substitutions. To start into this direction, we first of all rewrite∣∣∣a det(a−) + C̃
∣∣∣ r2 − ∣∣∣(a− 1) det(a−) + C̃

∣∣∣ r2 =: (det(a−))
r
2

(
|a+ C|

r
2 − |(a− 1) + C|

r
2

)
,

(16.34)

as this provides an expression with isolated a. Applying now our new estimate (16.7),

|a+ C|
r
2 − |(a− 1) + C|

r
2 ≤ |a|

r
2 − |a− 1|

r
2 + 2 , (16.7)

on (16.32) including the previous reformulations, we obtain

∆λr ≤ `P
3r|Z|

r
2

∣∣∣∣∣∑
JK

ε(I0JK)εi0jkn
j
Jn

k
K

∣∣∣∣∣
r
2 [∣∣ni0I0∣∣ r2 − ∣∣ni0I0 + 1

∣∣ r2 + 2
]
. (16.35)

First, we note that our new estimate (16.7) indeed dropped the collection C of all ad-

ditional contributions, but that came at a price: We had to include an additional offset

+2, as can be quickly motivated by setting a = 0 ∧ C = 1 in (16.7). See Appendix C

for a proof of that inequality. As before,
∑

JK stands for the sum over all edges eJ and

eK with eI0 ∩ eJ ∩ eK = v ∧ J,K 6= I0 ∧ J 6= K, i.e. it collects all minors of the charge

matrices containing ni0I0 with respect to this charge. In that sense, the det(a−) from before

became a sum over those terms. Accordingly, the offset C collects all remaining terms of

the Laplace expansions and those determinants of charge matrices that are independent

of ni0I0 .

With (16.35) above, we now do have an expression at hand that is integrable against

the Gaussian prefactor after a previous Poisson resummation. Performing the latter after

having inserted the estimate (16.35) into (16.1), the follow-up integration over xi0I0 results

in

〈q̂i0I0(r)〉Ψm ≤

≤ T 3r|Z|
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e
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·

·

∣∣∣∣∣∑
JK

ε(I0JK)εi0jkx
j
Jx

k
K

∣∣∣∣∣
r
2

T−r

T− r2 Γ
(
r+2

4

)
1F1

−r
4
,
1

2
,−

(
pi0I0 − πiN

i0
I0

T

)2
−

−T−
r
2 Γ
(
r+2

4

)
1F1

−r
4
,
1

2
,−

(
pi0I0 + T 2 − πiN i0

I0

T

)2
+ 2

√
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. (16.36)
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We kept the basic structure of the previous inequality (16.35) so the terms in the respec-

tive square brackets correspond to each other. Continuing with the remaining integrals,

we notice that the sum over all minors with respect to xi0I0 makes further integrations

unfeasible so far. We therefore use the previously introduced inequality

|a+ b|r ≤ |a|r + |b|r (where a, b, r ∈ R and 0 ≤ r ≤ 1) (16.4)

to further estimate the expression above via∣∣∣∣∣∑
JK

ε(I0JK)εi0jkx
j
Jx

k
K

∣∣∣∣∣
r
2

≤
∑
JKjk

∣∣ε(I0JK)εi0jkx
j
Jx

k
K

∣∣ r2
=
∑
JKjk

∣∣xjJ ∣∣ r2 ∣∣xkK∣∣ r2 . (16.37)

Note that the estimate caused the sum over J,K to happen outside the absolute value

and, accordingly, there is no additional summation over J,K inside the absolute value

— regardless of their double appearance therein. However, we still consider only distinct

J,K 6= I0 and the same holds for j, k, i0. With that, we have

∞∫
−∞

d3M−1x
i\i0
I\I0 e

−
∑
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=
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)

(16.38)

for the remaining integrals. The exponent 3M − 3 of the square root of π is due to two

of the 3M − 1 many integrations resulting in a KCHF, which — in some sense — include

those normalisation terms. The two Gamma functions, of course, also stem from these

two integrations.

Combining all estimates and integrations, we face

〈q̂i0I0(r)〉Ψm ≤

≤ T 3r|Z|
r
2T−

3r
2

√
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3
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e
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−
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− 1F1
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on which we may now perform the asymptotic expansion for large arguments of (all) the

KCHFs. As usual, only the contributions N i
I = 0 will not vanish for T → 0 and only

one series per asymptotic expansion is not damped by a preceding Gaussian function.

Including also the division by t in order to compare the result with the classical Poisson

bracket, we find the upper bound

〈q̂i0I0(r)〉Ψm
t
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(16.40)

for an arbitrary graph consisting of M edges. For the lowest order contributions up to

s = 1, we realise that the zeroth order contributions of the sums inside the square bracket

annul each other and with defining the maximum p as |pmax| = maxi 6=i0,I 6=I0({|piI |}), we

have

〈q̂i0I0(r)〉Ψm
t

. |Z|
r
2T
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2
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2
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2

)
+O

(
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)
.

(16.41)

Note that the introduction of pmax requires pmax to increase no faster than t approaches

0 as otherwise the order of the contributions would change. As a last step, we used 2M

as an estimate of the sum over the remaining edges and U(1)-copies.
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Taking a closer look at the new results above, we see that also these diverge for t→ 0 —

the reason being the offset +2T
r
2 from our new estimate (16.35). We aimed to obtain an

estimate that in the end leads to an expression that is still a difference in two KCHFs —

which causes the zeroth order contributions to vanish. However, we could not entirely get

this but had to include the bespoke offset +2. The lowest order contribution then indeed

is the contribution of this offset, 2T
r
2 , multiplied with the lowest order contribution of

the second line of (16.41). Otherwise, had we not to include this offset, the lowest order

contribution would indeed be the t0-term that on top of that also features the expected

p-dependency: Having in mind the differentiation-like action of the Poisson bracket, we

expect the exponent r
2

of the momentum pi0I0 to get decreased by one while also causing

the numerical prefactor r
2
. The other two momenta are not affected and combine to an

overall pr-dependency. This is precisely what the t0-term above looks like.

If we now consider the limit p→ 0, we can again not use the asymptotic expansion for

large arguments of the KCHF and have to deviate from our previous path from (16.39)

onwards. As before, we first of all set p = 0 in (16.39). Due to the Gaussian prefactors, we

can again only consider the contributions with N i
I = 0. With that, most KCHFs reduce

to 1F1(a, b, 0) ≡ 1, while the one that contains the shift directly yields a power series in t.

We can then estimate the empty sum via
∑

JKjk 1 ≤ (3M)2 to obtain the upper bound

in the limit p→ 0:

〈q̂i0I0(r)〉Ψm
t

piI=0

≤ |Z|
r
2 (3M)2

√
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3 Γ3
(
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)( 2
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Γ
(
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4

)tr−1 +
r

2
t

3r
4 +O

(
t1+

3r
4

))
. (16.42)

The lowest order contribution can again be linked to the offset +2 of our new estimate

(16.35). With that, we realise that we ended up having the same t-dependencies as in

Subsection 16.1.1 for both the general case and when considering p = 0. Accordingly, we

also obtain a diverging expression when additionally taking the semiclassical limit t→ 0.

16.2.1 Finding them

All the estimates we used up to now made us end up with results of undesired dependencies

in p or t — or both. They allowed us to integrate the thereby obtained expressions as

these were simply Gaussians multiplied by absolute values of the integration variables to

the power of r. However, we saw that we can in fact also compute integrals were the

integrand are Gaussians and the absolute value of a determinant to the power of r — we
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do not actually need to reduce it to isolated xiI in the absolute values. So all we need to

get rid of is the sum of determinants within the absolute value, which we can achieve via

estimates as well. For this, we assume there are N charge matrices Nn that include the

charge niI , to which we assign the shift:2∣∣∣∣∣
N∑
n=1

detNn + C

∣∣∣∣∣
r
2

−

∣∣∣∣∣
N∑
n=1

det Ñn + C
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r
2

≤
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r
2

. (16.43)

The charge matrices Ñn correspond to the normal charge matrices Nn but include the

shift in the element n1
1. C then collects all remaining determinants and vanishes via the

application of (16.3). We continue with a Laplace expansion along the three charges ni1

of edge 1:∣∣∣∣∣
N∑
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(
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(16.44)

Note that we again abbreviated the sum over all edges eI 6= eJ that meet e1 at v with∑
IJ and the minor of the charge matrix Nn with respect to niI as ∆i

i(Nn):

detNn = det


n1

1 n2
1 n3

1

n1
I n2

I n3
I

n1
J n2

J n3
J

 ∆1
1(Nn) . (16.45)

The most important aspect now is that we estimated the difference of two terms that

are fractional powers by the fractional power of a difference of two terms. As many

contributions of these two terms were the same, we are left with only the sum over all

minors of the charge matrices with respect to the shifted charge. To get an integrable

expression, we then applied (16.4) to cast the fractional power of a sum into the sum of

2As before, this can be done without loss of generality as we work with determinants, allowing us to
reshuffle the matrix accordingly.
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fractional powers. We now need to integrate these against the Gaussian functions. Out

of these 3M many integrals, 3M − 4 many are not over integration variables that are

also contained in the minor of the determinant. These integrals therefore are of standard

Gaussian type, resulting in
√
π. Recap that during our analytical integration of the basic

building block, we had to compute all 3M = 9 many non-Gaussian-type integrals, as

we did not just face the minor of the charge matrix but the whole determinant (confer

Section 14.2 and Appendix B).

Applying now the Poisson resummation formula, we have with s := r
2
:
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The determinant-like part of the integrand can then be substituted along the line of our

rigorous treatment of the basic building blocks in Section 14.2:

x̃2
I := x2

Ix
3
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Ix
2
J (16.47)
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This leads us to
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via (11.20) & (11.18) for the x̃2
I-integration. Therein, we again only considered the con-

tribution N2
I = 0, with all non-zero contributions being exponentially damped by the

preceding Gaussian. Next, we substitute

x̃3
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T
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We may then proceed with the x̃3
J -integration, where we first substitute

x̃3
I := x3

Ix
2
J −
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(16.53)
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I (16.54)
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and subsequently find
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Now, the last integration will be different as the first non-constant term of the Taylor

series in T is not independent of the remaining integration variable. We faced a similar

situation during our integration of the basic building block and we therefore continue

analogously by first setting
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(16.56)
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1(p)

p3
IT

)2
))]

≈ Γ
(

1
2

)4
TT′

∣∣∣∣∆1
1(p)

T 2

∣∣∣∣s
(

1− s(1− s)
4

(
p3
I

∆1
1(p)

)2

T 2 − s(1− s)
4

(
p2
J

p2
Ip

3
J

)2

T 2 +O
(
T 3
))

.

(16.58)

In accordance with the minor of the charge matrices, we defined the minors of the mo-

mentum matrix with respect to p1
1 as

∆1
1(p) := p2

Ip
3
J − p3

Ip
2
J . (16.59)

Note that we refrained from including the indices I, J due to reasons of clearer formulae

and we just keep in mind that there is not just one such minor. As the penultimate step,

we insert all the previous results into (16.46), multiply the expansion with both T and

T′ while keeping terms of the order T 2 and obtain

〈q̂1
1(r)〉Ψm ≤

T 4s|Z|s∏
i(1 +Ki)

∑
IJ

∣∣∣∣∆1
1(p)

T 2

∣∣∣∣s(1− s(1− s)
4

PIJT
2 +O

(
T 3
))

=
|Z|s∏

i(1 +Ki)

∑
IJ

∣∣∆1
1(p)

∣∣sT 2s

(
1− s(1− s)

4
PIJT

2 +O
(
T 3
))
. (16.60)

Therein, we collected all p-dependent parts of the T 2-contribution of the series in

PIJ :=
(p2
Ip

3
Ip

3
J)

2
+ (∆1

1(p))
2
(

(p2
I)

2
+ (p2

J)
2

+ (p3
J)

2
)

(∆1
1(p) p2

Ip
3
J)

2 . (16.61)

We finally divide by t to get the lowest order contribution

〈q̂1
1(r)〉Ψm
t

. |Z|
r
2

∑
IJ

∣∣∆1
1(p)

∣∣ r2 t r2−1 +O
(
t
r
2

)
, (16.62)

which for the general case of the shift happening in entry (i0, I0) reads

〈q̂i0I0(r)〉Ψm
t

. |Z|
r
2

∑
IJ

∣∣∆i0
I0

(p)
∣∣ r2 t r2−1 +O

(
t
r
2

)
. (16.63)

Analysing the p-dependency, we first recap that our starting point was an expression

∼ p3s = p3r/2, while we ultimately arrived at one that is ∼ ∆i0
I0

(p)
r
2 , i.e. ∼ pr. From the
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derivative-like action of the Poisson bracket, we expected the lowest order to contribute

with ∼ p3r/2−1. However, this lowest order term is also expected to be ∼ t0, which is not

per se true for the result above — and we can even face a negative exponent of t, for

example if we consider the important case of r = 1
2

when the square root of the volume

operator is part of q̂i0I0(r).

Like during our previous calculation of semiclassical expectation values of q̂i0I0(r), we have

to proceed differently if being interested in the cosmological singularity p = 0 as we notice

that the asymptotic expansion for large arguments of the KCHF during (16.52) is not

applicable in this case. We therefore need to apply further estimates on the determinant-

like part of the integrand in (16.46) and we can deduce that doing so will lead us to a

similar expression as (14.31) or (16.19) up to numerical factors.

16.2.2 Conditions for new estimates

We now summarise which different estimative routes we took so far. In Subsection 16.1.1,

we presented a chain of estimates that is similar to the one Brunnemann and Thiemann

chose in [66], just that we did not perform the step of replacing the fractional powers

with integer ones. Next, in Section 16.2, we aimed at keeping the difference in the two

absolute values when applying estimates. While we found a respective estimate that also

made the expression integrable, we had to include a t-independent offset which then also

altered the p- and t-dependency. Subsection 16.2.1 then was about estimates that do not

yield absolute values of the plain charges but only let us replace the absolute value of a

sum of determinants by a sum of the absolute values of determinants: From our rigorous

integration of the basic building block in Section 14.2 and Appendix B, we know that we

can in fact integrate single determinants within an absolute value to the power of r. Yet,

the estimate went too far as it automatically reduced the expression to the minor of the

determinant — and resulted in a single KCHF only.

We can now state some observations on properties of estimates as we analysed different

approaches in the previous subsections. Our first attempts, along the line of Brunnemann

and Thiemann [66], lead us to the conclusion that any estimate(s) we use should still

result in

1. having a difference in two fractional powers

as only this guarantees that the zeroth order terms of the resulting power series in T
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cancel each other.3 We later saw that the additional introduction of a zeroth-order term

via (16.35) likewise yields undesired powers in p and t. Continuing with using estimates

that did not go as far and meant we sill had to integrate determinants, we realised that

it is similarly important to

2. conserve the initial exponents of the charges niI ,

as these estimates led us to integrate only the minor of the charge matrix — i.e. with the

overall exponent of the charges decreased by 1. This also resulted in an expression with

altered powers in p and t.

While it seems that the first point above is important for the correct power in t and

the second one for the correct power in p, there may be in fact more to it. First of all,

changing the exponent of the charges niI will of course result in an analogously different

power in the piI . At least when it comes to the t-dependency, both points may play a

role. During our analytical computation of the basic building block in Section 14.2 and

Appendix B, it was crucial that we did not just have a final Taylor series starting with

a constant zeroth-order contribution. Instead, we faced the difference of two fractional

powers with similar arguments, where the second one had an additional contribution ∼ T 2

due to the shift — confer (B.54). With the lowest orders annulling each other via the

difference, it was this additional T 2-term that caused the lowest order contribution to be

∼ t2. However, the second point above, about the power of the charges, can also affect the

t-dependency. During the integration over the xiI , these integration variables are replaced

by
piI
T

and, accordingly, modifying the exponent of the niI results in altered powers in the

integration variables xiI and therefore
piI
T

, too.

So what we need is an estimate that only restructures the sum and the absolute values

while keeping the difference in two terms that are ∼ n
3r
2 — of which one also considers

the shift. If we once more take a look at our estimate (16.35), we see that it looks quite

promising if we neglect the +2,∣∣∣∣∣
N∑
n=1

detNn + C

∣∣∣∣∣
r
2

−

∣∣∣∣∣
N∑
n=1

det Ñn + C

∣∣∣∣∣
r
2

?

≤
[∣∣n1

1

∣∣ r2 − ∣∣n1
1 + 1

∣∣ r2 ]∣∣∣∣∣
N∑
n=1

∆1
1(Nn)

∣∣∣∣∣
r
2

, (16.64)

3Therefore, this also holds for estimates that result in an even number of terms with one half con-
tributing with a plus sign and the other half with a minus sign.
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and then estimate this expression by an integrable one:

(16.64) ≤
[∣∣n1

1

∣∣ r2 − ∣∣n1
1 + 1

∣∣ r2 ] N∑
n=1

∣∣∆1
1(Nn)

∣∣ r2 . (16.65)

We already mentioned that we do indeed need this offset +2, but just to affirm our premise

that an estimate of this kind would yield a desired result, we may still quickly check the

final outcome. For this purpose, we can reuse our previous result of (16.46), where we

just have to replace one
√
π of the standard Gaussian-type integral over x1

1 according to

√
π 7→

∞∫
−∞

dx1
1

1

T s
e
−
(
x1

1−
p11−πiN

1
1

T

)2(∣∣x1
1

∣∣s − ∣∣x1
1 + T

∣∣s) ≈
≈

Γ
(

1
2

)
T 2s

(
1− s(1− s)

4

T 2

(p1
1)
s

)(
−s |p

1
1|
s

p1
1

T 2 +
2(1− s)

2

|p1
1|
s

(p1
1)

2T
4 +O

(
T 6
))
, (16.66)

coming from the Poisson resummation result of the square bracket in (16.65). Combining

this with the remaining steps after (16.46), the lowest order contribution stemming from

the incorrect estimate reads

〈q̂1
1(r)〉Ψm
t

×
≤ −r

2
|Z|

r
2

∑
IJ

|p1
1∆1

1(p)|
r
2

p1
1

+O(t). (16.67)

Indeed, this expression features the desired dependency in both p and t: t0 for the lowest

order term as well as ∼ p
3r
2
−1, in accordance with the derivative-like action of the Poisson

bracket. The composition is also a visible consequence of the estimates applied. We

replaced the rational root of the absolute value of the sum of determinants by the difference

of the rational root of the absolute value of the shifted and unshifted x1
1, multiplied by the

sum over all minors of the matrices of the xiI with respect to x1
1. With all determinants

that do not contain x1
1 vanishing via the estimate, the remaining part of (16.67) resembles

precisely this structure.

16.2.3 Comparison with the approach of Brunnemann and Thie-

mann

In this subsection, we aim at giving a comparison of the work of Brunnemann and Thie-

mann [65, 66] on calculating semiclassical expectation values of (products of) the class of
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operators q̂i0I0(r) and the new approaches that we presented in the work at hand. First of

all, our analytical calculations of Section 14.2 only considered the monomial case N = 1

of one q̂i0I0(r). In Chapter 15, we then investigated general products
∏N

k=1 q̂
jk
Jk

(r) but

were not able to access the cosmological singularity p = 0. Another difference is that

Brunnemann–Thiemann obtain a diverging expression for the semiclassical limit t→ 0 —

confer, e.g., the important choice of r = 1
2

for their general case [65, (4.6)]∼ t(
3r
2
−2)N and

[65, (4.7)]∼ t(
3r
2
−1)N for p = 0. In the present work, at least the rigorous computations

of Section 14.2 featured the expected t-dependency.

We are therefore led to conclude that if we can access p = 0, then t → 0 yields a

diverging expression; and if we consider t → 0, we can not as well investigate p = 0.

Thinking about possible reasons for this, it seems that it is due to using estimates — at

least for the first reasoning, with accessing p = 0 without estimates seems not possible

so far. We already motivated that estimates may cause changes in the exponent of the

charges and thereby of the integration variables and the final momenta, too. For a better

understanding on how that comes about, we consider the t-dependency of the volume

operator to the power of r:

〈V̂
r
〉Ψm ∼ `P

3r
∑∣∣n3

∣∣ r2 . (16.68)

If we now recap the steps from (16.9) to (16.15), we find that the integration of
∑
|n|r

against a Gaussian function results in an expression ∼ t−r. Therefore, we get with `P/a =

T =
√
t the desired t0-dependency

〈V̂
r
〉Ψm ∼ `P

3r
∑∣∣n3

∣∣ r2 7→ `P
3rt−

3r
2 = a3r · t0. (16.69)

However, applying estimates so far means that there are at least some terms with a

different exponent of the charges. This alters the above procedure of the “t-conversion”

as the preceding factor `P
3r remains as it is — it stems from looking at V̂

r
and sets the

right dimension. Applying an estimate on the charges that changes their exponent then

results in, e.g.,

〈V̂
r
〉Ψm ∼ `P

3r
∑∣∣n3

∣∣ r2 ≤ `P
3r
∑
|n|2r 7→ `P

3rt−2r = a3r · t−
r
2 . (16.70)

The unaffected prefactor `P
3r can not fully compensate the new decreased exponent of t.

We see this also happening in the p = 0 limit, where [65, (4.7)]∼ t
3r
2
−2 (for N = 1 and
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including the additional division by t) and (16.19)∼ tr−1 at the end of our similar but

slightly different chain of estimates.

As a last remark on the Brunnemann–Thiemann approach, we discuss what seems to be

one of the key quantities within their integration procedure. Between equations (5.3) and

(5.7) in [66], Brunnemann–Thiemann introduce the variable AiI in a series of additional

estimates and it is this quantity’s constant contribution that ultimately constitutes the

non-vanishing part in the limit p → 0. With the integration procedure by means of

KCHFs at hand, we can now investigate the importance of this new variable by explicitly

computing the status of their calculations right before and after this step. We first adopt

[66, (5.3)] to our notation:

[66, (5.3)] =

=
`P

3rN(9M)N |Z|
rN
2

√
π

3M
tN

∑
{N i

I}∈Z
e−
∑
Ii

π
2(NiI)

2

t

∞∫
−∞

d3MxiI e
−
∑
Ii

(
xiI−

piI−πiN
i
I

T

)2(∑
Ii

(
xiI
)2

)N

,

(16.71)

where we directly included the norm of the state and completed the square within the

Gaussian functions.4 We can quite clearly integrate this expression with the methods

introduced in Subsection 16.1.2, seeing that the above (16.71) is quite similar to (16.20)

with r = 2 and xiI ∈ R⇒ |xiI |
2

= (xiI)
2
. The prefactors `P and |Z| are not affected by the

estimates but (9M)
rN
2 indeed is — it originates from the sequence of estimates (16.9). If

we set r = 2 therein, we can reproduce the estimate [66, (C.39)]. The calculatory steps

then are the same as in Subsection 16.1.2 and we therefore just state the finale result

[66, (5.3)]
t→0

≤
(
27M2

)N |Z| rN2 (pmax)2N t

(
3r
2
−2
)
N

+O
(
t

(
3r
2
−2
)
N+1

)
. (16.72)

Therein, to be able to find an overall upper bound, we again used pmax := maxIi{piI}. In

the same way, we get for the limit of the cosmological singularity

[66, (5.3)]
p=0
= (9M)N |Z|

rN
2 t(

3r
2
−1)N

∑
{nk}

cnk√
π

3M

∏
Ii

Γ
(
niI,k + 1

2

)
. (16.73)

Hence, like before, we face incompletely cancelled normalisation constants
√
π. The over-

4We note that [66, (5.6) et seq.] lack the minus sign in the Gaussian functions in π
2(Ni

I)
2

/t, which
returns on page 30.
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all factor
√
π

3M
first of all is reduced by all those Γ(niI,k + 1

2
) with niI,k = 0. What is left

is
√
π
](niI,k)

, where we denote by ](niI,k) the number of nk 6= 0 within the particular de-

composition nk. This corresponds to the number of non-standard-Gaussian type integrals

resulting in Γ(niI,k + 1
2
) instead of Γ(1

2
) =
√
π.

With this, we can now turn towards the integrals Brunnemann–Thiemann face directly

after their introduction of AiI :

[66, (5.7)] =
`P

3rN(9M)N |Z|
rN
2

√
π

3M
tN

∑
{N i

I}∈Z
e−
∑
Ii

π
2(NiI)

2

t

∞∫
−∞

d3MX i
I e−

∑
Ii(Xi

I)
2

·

·

(∑
Ii

(
AiI
(
X i
I

)2 − |p
i
I |AiI
2T

+
π

2(N i
I)

2

T 2

))N

. (16.74)

Before expanding the sum to the power of N , we may already now neglect all contributions

with N i
I 6= 0 — this is, of course, possible due to the preceding Gaussian in N i

I . The much

shorter expansion then reads(∑
Ii

(
AiI
(
X i
I

)2 − |p
i
I |AiI
2T

))N

=
∑
{nk}

dnk
∏
Ii

(
AiI
(
X i
I

)2
)niI,k(−|piI |AiI

2T

)miI,k

. (16.75)

Therein, we had to introduce a second kind of non-negative integer, mi
I,k, as we did not

have a sum of single terms to the power of N as before. The new pair niI,k,m
i
I,k of the

decomposition nk of N into non-negative integers then follows
∑

Ii

(
niI,k + mi

I,k

)
= N and

dnk :=
N !∏

Ii n
i
I,k! · mi

I,k!
=

(
N

n1
1,k, n

2
2,k, . . . , n

3
M,k,m

1
1,k,m

2
2,k, . . . ,m

3
M,k

)
. (16.76)

So what is the same as before is that we face the integration of Gaussian functions against

the integration variable to the power of some even, non-negative integer. In contrast to

before, we now do not have any offsets ∼ piI or ∼ N i
I in either parts of the integrand.

Accordingly, the integrations can be solved via

∞∫
−∞

dX i
I e−(Xi

I)
2(
X i
I

)2niI,k = Γ
(
niI,k + 1

2

)
(16.77)

and there is nothing further to do — especially no asymptotic expansions. Combining
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the formulae above, we have

[66, (5.7)] =
t(

3r
2
−1)N(9M)N |Z|

rN
2

√
π

3M

∑
{nk}

dnk
∏
Ii

(
AiI
)niI,kΓ(niI,k + 1

2

)√
π
miI,k

(
−|p

i
I |AiI
2T

)miI,k

.

(16.78)

This also means that we can directly tackle the case of p = 0: Having |piI |
miI,k , we can say

that the overall result will not vanish as for some of the decompositions nk of N it does

indeed hold mi
I,k = 0∀i, I. The expression for p = 0 then reads

[66, (5.7)]
p=0
=

t(
3r
2
−1)N(9M)N |Z|

rN
2

√
π

3M

∑
{nk} s.t.

miI,k=0∀ i,I

dnk
∏
Ii

Γ
(
niI,k + 1

2

)
. (16.79)

With these results, we can now deduce the effect of the introduction of AiI in [66]. Starting

with the case of p = 0, we can say that both (16.73) and (16.79) are ∼ t(
3r
2
−1)N — and this

also holds for the final result of Brunnemann–Thiemann [66, (5.10) with p = 0]. For the

general case, however, we found a t-dependence of ∼ t(
3r
2
−2)N before their introduction

of AiI , as (16.72) shows, while we obtained ∼ t
3
2

(r−1)N for the expression right after the

introduction of AiI , as (16.78) indicates when considering
∑

Iim
i
I,k = N to obtain the

lowest order. Therefore, the introduction of AiI based on additional estimates does not

play an important role concerning the initial singularity p = 0 and only causes a change

in the combinatorical prefactors. When it comes to the introduction of AiI itself, it is not

clear how this was done. Applying the binomial formula estimate within the sequence of

steps from [66, (5.6] to [66, (5.7)] is in fact not possible due to Xj
J ∈ C and a similar

question arises for the first line of that chain. Accordingly, the integration over X i
I should

in fact be complex. We point out that if one considers only the contributions N i
I = 0

already from [66, (5.3)] onwards and does not introduce the absolute values, analogous

computations can indeed be performed.
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Chapter 17

Conclusion and outlook

17.1 Kummer’s functions and coherent states on the

circle

In the first part about Kummer’s functions, we extended former results of [204–208] on

coherent states on the circle in two different directions. We showed that we can compute

semiclassical expectation values of fractional powers of the momentum operator by means

of Kummer’s confluent hypergeometric functions, which we have demonstrated in Section

11.3 and Subsection 12.2.1 for L2(R) and L2(S1), respectively. For all operators considered

in this part, the involved integrals were computed analytically without the need to perform

any estimates during the calculations, as it has been done i.a. in [135] for fractional powers.

Furthermore, since the asymptotic behaviour of Kummer’s functions is well-known in this

context, we can perform an expansion of these semiclassical expectation values in terms

of the semiclassical parameter. It turns out that we automatically end up with the correct

fractional power in the classical limit due to the fact that we do not need to estimate the

integrals.

As a further result, we also discussed the computation of generic semiclassical matrix

elements in the context of the Zak transformation and we were able to show that there

exists a simple relation between semiclassical expectation values in L2(R) and L2(S1) —

as discussed in Subsection 12.2.2. Given an operator ÔQM that is well-defined on the set

of coherent states, we can compute the associated matrix element 〈T2πnΨ~
q′,p′ | ÔQM |Ψ~

q,p〉
in L2(R), where T2πn denotes a translation operator that translates by 2πn with n ∈
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N. The matrix element for L2(S1) can be expanded into a Fourier series whose Fourier

coefficients cn are then exactly given by cn = 〈T2πnΨ~
q′,p′ | ÔQM |Ψ~

q,p〉. This shows that the

semiclassical matrix elements in L2(S1) are completely determined by the corresponding

“translated” matrix elements in L2(R). The variable in which the Fourier transform is

evaluated is exactly the parameter δ used in [207, 208] that naturally enters the definition

of the coherent states because it is the second argument of the Zak transform and for

coherent states on the circle it can be understood as an additional fixed parameter in

the interval 0 to 1. For a more detailed discussion on the physical properties of this

parameter, see for instance [207]. Given this relation, semiclassical matrix elements like for

instance in [135, 205, 206, 208, 208] can be computed in an alternative and possibly simpler

manner. If we have an operator on L2(S1) of which we want to compute semiclassical

matrix elements, we just compute its Fourier coefficients, which in turn are simply matrix

elements with respect to standard harmonic oscillator coherent states. Given these matrix

elements, we can without any further computation directly write down the corresponding

result for the matrix element in L2(S1). We thereby avoid explicitly performing the

Poisson resummation formula because that step is automatically taken care of by the

procedure via the Zak transformation. This might likely reduce the actual effort of these

semiclassical computations. Compared to the results of the expectation values in terms

of Jacobi’s theta functions and its derivatives as done in [205–207], we believe that the

relation from Lemma 3 in equation (12.56) provides a more convenient alternative as far

as the extraction of the classical limit is concerned.

Having restricted our considerations to coherent states on the circle, a natural ques-

tion is whether the techniques introduced here can be generalised to more complicated

situations. As already mentioned before, if we consider the Zak transform as a map from

L2(Rn) to L2(R2n/Z2n), the relation of the matrix elements discussed in Subsection 12.2.2

carries over to the higher but finite dimensional case. As far as operators with fractional

powers are concerned in a higher dimensional model, the operators can become more com-

plicated functions of fractional powers than we considered here and thus it can happen

that the integrals involved can no longer be solved by just using Kummer’s functions.

However, as we later discussed in Chapter 13 et seq., similar techniques can be used for

U(1)3 coherent states and a certain class of dynamical operators — generalisations of

the operator considered at the end of Subsection 12.2.1 and also considered in [65, 66]

—, which improve the final semiclassical expansion in certain aspects. In the context

of loop quantum gravity, a generalisation from U(1)3 to SU(2) of this procedure would
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be beneficial to have at hand, in particular also because the semiclassical computations

for SU(2) coherent states are much more involved in this case, so any simplification in

this direction is welcome. Since the theta function can also be defined for SU(2) [235],

we have a starting point for analysing in more detail whether a Zak transformation or a

generalisation thereof can be used for SU(2) coherent states in a similar way.

17.2 Kummer’s functions in loop quantum gravity

In the remainder of the work at hand, we extended the previously introduced method

to analytically compute semiclassical expectation values based on Kummer’s confluent

hypergeometric functions to the case of U(1)3 coherent states and the dynamical opera-

tors relevant in loop quantum gravity. We discussed this new procedure for computing

semiclassical expectation values in addition to already existing ones in the loop quantum

gravity literature. In particular, we investigated the question of singularity avoidance and

compared our method to results by Brunnemann and Thiemann [65, 66]. The utilisation

of Kummer’s confluent hypergeometric functions allows to analytically evaluate integrals

involving products of roots and Gaussians. Concerning the evaluation of these semiclas-

sical expectation values, we differed between two main paths: The first one — covered in

Chapter 14 and Chapter 15 — involves semiclassical computations that can be performed

without estimates, whereas for the second path in Chapter 16 the calculations do rely on

estimates. As a first scenario in the framework of loop quantum gravity, we considered

graphs of cubic topology in Section 14.2, similar to the work of Sahlmann and Thiemann

[63, 64], and aimed at computing semiclassical expectation values of the crucial dynamical

operators q̂i0I0(r), products of which include for instance the analogue of the inverse scale

factor in loop quantum gravity. Moreover, these operators are also involved in more com-

plicated dynamical operators such as matter Hamiltonians or the Hamiltonian constraint

of loop quantum gravity. We showed that for cubic graphs and linear power of q̂i0I0(r)

our technique allows to compute the semiclassical expectation value of q̂i0I0(r) analytically

without using estimates, as opposed to [65, 66], thereby extending results from the litera-

ture in the sense that the final outcomes still contain a stronger fingerprint of the initially

involved fractional power r. The final expression for all semiclassical expectation values

considered here can be written as a power series in the classicality parameter t and one

expects to get the classical result in the limit where t is sent to zero. In the case of a

graph of cubic topology and for non-vanishing classical triad labels of the complexifier
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coherent states, we were able to show that we obtain the correct classical limit in zeroth

order of the classicality parameter without using estimates and, moreover, perform the

continuum limit in which the regulator is removed as well. In the latter step, we were

able to confirm in Section 14.4 that the regularisation constant of the volume operator for

the U(1)3 case needs to be 1
48

in order to obtain the correct classical limit as was already

pointed out in [64, 89, 90]. How this is related to the different result found in [236] —

where the SU(2) case is considered using the graphical calculus — will be discussed in

[234]. To analyse the singularity avoidance, we need to investigate the case in which the

triad label of the coherent states vanishes, i.e. p→ 0. Then, the asymptotic expansion of

Kummer’s functions cannot be used in a similar manner as before; therefore, the compu-

tation of the semiclassical expectation value becomes more involved. As a consequence,

we needed to introduce estimates in this specific case, which are however different to the

ones used in [65, 66]. In accordance with their result, we also obtain a finite upper bound

for the semiclassical value of q̂i0I0(r) for a graph of cubic topology and obtain singularity

avoidance. However, the way how the fractional power enters into the final result differs

and, as discussed in Section 14.3, therefore also for which values of the fractional power

a finite expression in the t→ 0 limit exists. In our results, this happens if q̂i0I0(r) involves

the volume operator linearly in the commutator, whereas for [65, 66] this is the case for a

fractional power of the volume operator of r = 4
3
, showing, as rather expected, that such

properties do highly depend on the kind of estimates used during the computations. The

results discussed so far are restricted to linear powers of the operator q̂i0I0(r) and cubic

graphs. The next, more involved case was considered in Chapter 15, where we recapitu-

lated the procedure introduced by Sahlmann and Thiemann in [63, 64], which there was

applied to cubic graphs. We extended this method to more general graphs and obtained,

again up to some expected rescaling caused by the regularisation constant, the expected

classical expression in the zeroth order of the classicality parameter. The case of p = 0,

however, was not treatable with this procedure because it requires that the matrix built

from the classical triad labels of the complexifier coherent states is invertible, which is no

longer given in the limit p→ 0.

Concerning the second path covered in Chapter 16, we analysed whether our method

based on Kummer’s confluent hypergeometric functions can be used to improve the re-

sults for the upper bound regarding the singularity avoidance, that is the case p = 0.

As discussed in the applications in Chapter 16, introducing estimates usually has the

consequence that one estimates the original fractional powers by different powers in the
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classical label p, the classicality parameter t — or both. Compared to the estimates used

in [65, 66], in some steps of our work we could keep fractional powers and did not need to

estimate those by integer powers. Therefore, we aimed at trying to understand in more

detail how the aforementioned modification of the order in t and p respectively arises

when one uses estimates. As a first step, we carried out a computation that followed

the path of [65, 66], where it was shown i.a. that there exists an upper bound for the

semiclassical expectation value of the operator-analogue of the inverse scale factor even

when approaching the initial singularity via p = 0. We modified the approach of [65, 66]

in two ways: First, we did not need to get rid of the non-integer exponent of the charges

as we could rely on the KCHF procedure. And secondly, the integration by means of

KCHFs also allowed us to refrain from using additional estimates in order to evaluate the

resulting integral. We discussed the case of one single q̂i0I0(r) and N -multiple ones sepa-

rately in order to better demonstrate the differences and similarities of the two methods.

Our result then features the same property when we want to consider t→ 0 additionally

to p = 0 — or vice versa —, namely that the expression is not well defined if both limits

are taken. We were able to find two aspects of estimates that cause this issue: One is

changing the initial exponent of the charges via an estimate, causing ultimately a modified

exponent of t as well. The other one is to apply estimates such that the initial difference

due to the commutator is replaced by one single expression, whose integration then gives

rise to one single KCHF and its power series. We saw during the analytical computation

for graphs of cubic topology (cf. Section 14.2 and the last steps of Appendix B) that in

the end, the zeroth order of the commutator’s two KCHFs cancel each other — and this

is of course not possible anymore when having only one function after using an estimate.

Maybe one finds an estimate that changes the overall exponent in t, i.e. as a prefactor

of the series, in such a way that this series’ lowest order contribution turns out to carry

the correct order in t, but the authors are not too positive about this possibility; and for

such complicated operators this might also not be expected. Having these two reasons in

mind, we continued to test new estimates that respect the “rules” of having a difference

in KCHFs and not altering the U(1)-charges’ exponents involved in the eigenvalue of the

volume operator. However, for the analysed modified estimates in Section 16.2 there was

always some issue occurring such that we ultimately had to break with one of the condi-

tions — but our analysis gives a more detailed picture of where this exactly comes from

in the application of the estimate. This can help to perform a future analysis on improved

estimates in a more focused manner. For instance, one could use the ansatz for a new

estimate that we stated at the end of Section 16.2 — where we showed that an intuitive,
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yet inapplicable estimate would yield the expected classical result — in order to reverse

engineer a similar and indeed applicable estimate.

Another follow up question is whether there exists a link between the approaches via

KCHFs and the Sahlmann and Thiemann one based on a Taylor expansion. Section

15.2 shows such a connection for the U(1) case, where one can associate the asymptotic

expansion of the KCHF with the power series expansion of [64]. For higher-dimensional

scenarios, however, this is not deducible in a similar straightforward manner as the KCHF

way then means to successively perform the interwoven integrals. In contrast to this,

the procedure Sahlmann and Thiemann used in [64] allows for tackling all integrations

simultaneously after a disentanglement via a power series expansion.

A further and interesting generalisation of the methods presented in our work would

be to extend the KCHF procedure for computing semiclassical expectation values and

matrix elements to the case of SU(2) complexifier coherent states and understand how

the techniques and results are related to the ones that one obtains via the semiclassical

perturbation theory introduced in [60]. Besides that, there exists also work on matrix-

valued KCHFs [237, 238, and references therein] that one may use in order to evaluate

the integrals of the determinants. The authors looked into this but could not find a way

to handle the calculations properly so far. However, the authors are also aware that this

is still an active field of research and with investing more time, there might be ways to

tackle it.
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Chapter 18

Summary

We started this thesis with an introduction to loop quantum gravity in Part I p. 3, where

we aimed at motivating the importance of the theory, its main ideas and concepts as well

as specific frameworks that are relevant for what would follow — like coherent states.

Part II then covered the analysis of Gowdy models. We first introduced these models

and motivated why they are of interest in Chapter 3 p. 49. The classical Gowdy model

was then quantised in both reduced loop quantum gravity and algebraic quantum gravity.

We chose for the first time a graph-preserving quantisation prescription for respecting the

symmetries of the model also at the quantum level. Ultimately, we were interested in also

finding first solutions to the Schrödinger-like equation of the Gowdy model quantised in

algebraic quantum gravity. We started by constructing zero-volume eigenstates, which we

used to outline the general procedure of how we can construct Gowdy states with specific,

desired properties — namely by finding appropriate conditions for the coefficients within

the linear combination of basis states such that the resulting state features that prop-

erty. This allowed us to find also more complex states like ones that feature a vanishing

action of the Euclidean part of the Hamiltonian. What is more, we could also discuss

degeneracies of the action of the Lorentzian part. As possible next steps, we assume a

perturbation theory approach can be of interest, where the symmetrised Euclidean part

acts as a perturbation of the Lorentzian part [203]. Another direction would be to ap-

proach solutions to the evolved equations by means of numerical methods.

The more detailed conclusion on the Gowdy model investigations can be found in Chap-

ter 8 p. 115.
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Part III continued with semiclassical aspects of loop quantum gravity, while also lay-

ing the mathematical foundations of new procedures and illustratively applying them in

standard quantum mechanics or for coherent states on a circle. We again started with

an introduction and motivation, confer Chapter 9 p. 121. The main target of this part

was to shed new light on the singularity avoidance in loop quantum gravity. For this, we

introduced a new procedure that relies on Kummer’s confluent hypergeometric functions

and which allows us to compute semiclassical matrix elements and expectation values that

can otherwise only be estimated. Carried over to standard quantum mechanics, the new

procedure allows, e.g., to compute the semiclassical expectation value of fractional powers

of the momentum operator. In loop quantum gravity, we can compute semiclassical ma-

trix elements of a certain class of dynamical operators that can also be used to build the

inverse scale factor. This allowed us to generalise and improve results from the literature

concerning singularity avoidance. These new insights also allowed us to see Kummer’s

confluent hypergeometric functions themselves from a different angle — they are solutions

to the heat equation — and find that the Zak transform can be used to map semiclassical

matrix elements of coherent states on the circle to those of harmonic oscillator ones. As

all these calculations were performed in Abelian scenarios, the consequential next step

would be to analyse how we can extend the new procedures to SU(2).

The more detailed conclusion on the semiclassical considerations can be found in Chap-

ter 17 p. 231.
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Appendix A

Ernst Eduard Kummer

Figure A.1: Ernst Eduard Kummer [239]

Despite his achievements and his outstand-

ing influence on the development of mod-

ern mathematics, Ernst Eduard Kummer

is a name you hardly hear or read (at least

the authors did not recognise him when

they first encountered his confluent hyper-

geometric functions). We want to use this

appendix to briefly motivate why this cir-

cumstance is very much unjustified and

thereby pay tribute to this brilliant math-

ematician and influential teacher. We refer

the interested reader to the more detailed

biography by Hans–Joachim Girlich [240]

as well as [241–244], which served as

sources for this appendix.1

One of the reasons why one barely encounters Ernst Eduard Kummer could be that

he did not see too much value in writing books and instead only published scientific

treatises. It is not even half a century ago that these were collectively published under

the editorship of André Weil [226, 227]. However, this circumstance does not mean that

he had no pedagogical abilities. Quite contrary, he enjoyed the reputation of being an

1We note that this appendix is supposed to be only a supplement to the thesis. It collects publicly
available information on the life of Ernst Eduard Kummer, as the authors thought it may interest the
reader as well. If so, we warmly recommend reading the references, too.
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excellent teacher — with sometimes 250 students following his lectures — and being able

to spark his students’ interest on mathematical problems, while also offering personal

and material support. When he was a school teacher in Legnica (then Liegnitz), two of

his students were Leopold Kronecker and Ferdinand Joachimsthal — both of whom he

could convince to pursue their mathematical talents. While Joachimsthal later took over

Kummer’s chair in Wroc law (then Breslau), he enjoyed a lifelong friendship with Leopold

Kronecker, who later also became his student and whom he brought to Berlin when he was

professor there. In Berlin, he took over the chair of Peter Gustav Lejeune Dirichlet, who

moved to Göttingen. Together with Leopold Kronecker and Karl Weierstraß — whom he

also got a professorship in Berlin —, he made Berlin the centre for mathematics. Notable

doctoral students of his are Georg Cantor, Elwin Bruno Christoffel, Georg Frobenius,

Wilhelm Killing, Leo August Pochhammer, Carl Runge, Arthur Schoenflies, Friedrich

Schur and Hermann Amandus Schwarz [245], while he also supported Alfred Clebsch and

Lazarus Fuchs — many names we already encountered in the main part of this thesis.

His mathematical achievements include work on hypergeometric functions — where we

encountered his name — and laying the foundation for all future work on Fermat’s Last

Theorem by, i.a., introducing ideal numbers. For the latter, he was awarded the Grand

prix des sciences mathématiques by the Académie des sciences, Paris, in 1857. The

price was originally denoted for providing a solution to Fermat’s Last Theorem, but with

Kummer’s work showing that all the current approaches have to fail and setting a new

path for finding a solution, it was decided that this is an equally honourable achievement.

With the help of these ideal numbers, he was able to show that Fermat’s Last Theorem

holds for all exponents that are multiples of regular primes. Further work of his was, i.a.,

on ray systems — a more geometrical topic — and ballistic problems.

In 1860, he was also elected as a member of the Académie des sciences, Paris, and in

1863 likewise for the Royal Society, London, while he was a member of the Preußische

Akademie der Wissenschaften, Berlin, already from 1839 on. He retired in 1890 as he —

and only he himself — noticed a diminishing capability of his memory. Three years later,

he died in Berlin aged 83.
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Appendix B

The 9 integrations

This appendix provides the integration of all the remaining integrals of Section 14.2. We

directly start with

2

t
〈q̂1

1(r)〉Ψm = (B.1)

=
2

t

`P
6r
(

2π
√

2
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)9
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∑
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e
2
∑
i
( pi−πiNiT )

2
∞∫

−∞

d9xi e
−2
∑
i
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2(
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)
,

where as before
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1
1 x2

1 x3
1

x1
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2 x3
2

x1
3 x2

3 x3
3

 =:

x1 x2 x3

x4 x5 x6

x7 x8 x9

 and X̃ :=

x1 + T
2

x2 x3

x4 x5 x6

x7 x8 x9

. (B.2)

As mentioned during the introduction of Section 14.1, the integration variables xi that

we use correspond to the integration variables x−Jj of [64], while the remaining x+
Jj can be

easily integrated over — they are of pure Gaussian type. In (B.2), we directly cancelled

those contributions with one part of the norm of the coherent state, ||Ψ||2+:

||Ψm||2 =

(
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(B.3)

= ||Ψm||2+ ||Ψm||2−. (B.4)

245



Appendix B. The 9 integrations

We absorbed both expansions
∏

i

(
1 +K

(i)
t

)
into ||Ψm||2− to have more concise formulae

at hand

Now, (B.2) is not integrable via our integration procedure by means of KCHFs and we

therefore start with the substitution

x′1 := detX, (B.5)

x′2,...,9 := x2,...,9, (B.6)

with

det

(
dx′

dx

)
= det


x5x9 − x6x8 x6x7 − x4x9 x4x8 − x5x7 . . .

0 1 0 . . .

0 0 1 . . .
...

...
...

. . .

 = x5x9 − x6x8. (B.7)

We therefore have to integrate
|x′1|r

|x′5x′9 − x′6x′8|
against the Gaussian functions. At this point, we slightly deviate from the procedure

started in Section 14.2 by also performing a second substitution right now:

x′′5 := x′5x
′
9 − x′6x′8, (B.8)

x′′1,2,3,4,6,7,8,9 := x′1,2,3,4,6,7,8,9, (B.9)

det

(
dx′′

dx′

)
= x′9. (B.10)

This leads us to integrating
|x′′1|r

|x′′5||x′′9|
against the Gaussians and we got rid off the difference in the denominator. Note that

this is the same substitution we announced in Section 14.2 after having performed the

integration over x′1, and with x′1 7→ x′′1 ≡ x′1 integrating over x′′1 is just equivalent to

integrating over x′1 first. This integration over x′′1 now reads

∞∫
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r
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a :=
x′′2x

′′
4x
′′
9 +
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which originates from considering x′1 = x′1(x1, . . . , x9) and x′′1 = x′′1(x′1, . . . , x
′
9). The

subsequent integration over x′′5 then has to also comprise all terms ∼ a = a(x′′5, . . .):
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Just like during the treatment of Section 14.2, we now need to apply the asymptotic

expansion for large arguments of the KCHF as integrals including a KCHF as well as an

absolute value to the power of r are not feasible. With a ∼ 1
T

, we can indeed perform the

expansion, yielding
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where — as usual — one of the expansion’s series was damped by a preceding Gaussian

function and can therefore be neglected. We now define a =: c
x′′5

+ d to make the depen-

dency on x′′5 palpable. Therein, c represents the numerator of that fraction of the definition

of a, (B.12), that has x′′5 as its denominator and d collects the remaining contributions

independent of x′′5. The integration over x′′5 up to now then is

∞∫
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8
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]
.

At this point, we may first consider the shifted contribution. We already introduced

the integration over x1 of this part in Section 14.2:

∞∫
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=
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247



Appendix B. The 9 integrations

with x̃1 := x1 + T
2

and X as X|x1 7→x̃1 in abuse of notation. As mentioned earlier, this

expression is just the one for the unshifted part with the only difference being p1 7→ p1+ T 2

2
.

However, be aware that within the (inverse) Gaussian functions including p1 “outside”

the integral, p1 is not shifted.

We then perform the same steps as for the unshifted part and obtain

∞∫
−∞

dx′′1|x′′1|
r
e−2(x′′1/x′′5 +ã)
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where ã := a|
p1 7→p1+T2

2

. The subsequent asymptotic expansion for large arguments of the

KCHF therein yields
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ã−2

2
+O

((
ã2
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resulting in the integration over x′′5 of the contribution experiencing the shift as
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From this form, we infer that the lowest order terms of the square brackets of the shifted

and unshifted versions of the x′′5-integration do not just cancel each other for the shift

being also present in the preceding factor to the power of r
2
. Hence, we have to continue

with performing the remaining integrations one after the other.

The next step was also already motivated in Section 14.2 and consists of performing a

Taylor expansion of the square brackets. As we are ultimately interested in a power series

in T , or in fact t = T 2, this is also just consequent. We then end up with the power series

S := 1− r(1− r)
8

T 2

p1
2

+O(T 3) (B.18)

for indeed both square brackets — the one within the shifted as well as the unshifted part.

Noticing that this expression does not include terms depending on x′′5 up to contributions

∼ T 2, we managed to cast the square brackets into expressions that do not hinder the

248



integration over x′′5 anymore. The reason why there is no N1 within S leads to the last

modification we have to undertake. The last part of the integrand that has to be modified

now are the factors that are squared and taken to the power of r
2
. Going back to our

starting point, (B.2), we notice that there are still Gaussian prefactors in Ni
T

. Therefore,

we can discard all contributions N1 6= 0 — and will do so for all upcoming Ni, too —,

as all those terms will be damped to zero for t → 0. This means that now1 d ∈ R
and the squares to the power of r

2
become just the absolute value to the power of r:(

(. . .)2) r2 7→ | . . . |r.2
With all this, we can now state the current status of our semiclassical expectation value:
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(B.20)

It now seems natural to continue with the integration over x′′9. The situation is very much

like before: The integrand contains a KCHF that needs to transformed via the asymptotic

expansion for large arguments — possible via b ∼ 1
T

—, where again only one of the sums

will contribute and we directly apply a Taylor expansion afterwards, in order to have a

1For reasons of brevity and due to the limits of the alphabet, we continue using the letter d also for
the quantity d|N1=0.

2Also for reasons of brevity, we do not modify the expression
∑

{Ni}∈Z e2
∑

i(
pi−πiNi

T )
2

each time one
of the Ni is set to zero.
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power series in T . In the end, this leads to

S′ := 1− r(1− r)
8

T 2

p5
2

+O(T 3), (B.21)

setting already N5 = 0. This is again justified by considering the Gaussian prefactor in
N5

T
that makes all contributions N5 6= 0 (exponentially) vanish. Just as before, it also

transforms the square of the KCHF’s argument to the power of r
2

into the absolute value

of the KCHF’s argument to the power of r. Hence, we are now facing

(B.20) ≈ 2

t

T 3r
(

2π
√

2
T

)9

Γ
(

1
2

)2
SS′

||Ψm||2−
√

2
2

∑
{Ni}∈Z

e
2
∑
i
( pi−πiNiT )

2
∞∫

−∞

d6x′′i\1,5,9 e
−2
∑

i\1,5,9
(x′′i −

pi−πiNi
T )

2

·

·
∞∫

−∞

dx′′9 e−2(x′′9−
p9−πiN9

T )
2
[∣∣∣x′′9(x′′2x′′4 − p1p5

T 2

)
+
p5

T
x′′3x

′′
7 +

p1

T
x′′6x

′′
8 − x′′2x′′6x′′7 − x′′3x′′4x′′8

∣∣∣r−
−

∣∣∣∣∣x′′9
(
x′′2x

′′
4 −

(p1 + T 2

2
)p5

T 2

)
+
p5

T
x′′3x

′′
7 +

p1 + T 2

2

T
x′′6x

′′
8 − x′′2x′′6x′′7 − x′′3x′′4x′′8

∣∣∣∣∣
r]

(B.22)

=
2

t

T 3r
(

2π
√

2
T

)9

Γ
(

1
2

)2
SS′

||Ψm||2−
√

2
2

∑
{Ni}∈Z

e
2
∑
i
( pi−πiNiT )

2
∞∫

−∞

d6x′′i\1,5,9 e
−2
∑

i\1,5,9
(x′′i −

pi−πiNi
T )

2

·

·
√

2
−1−r

Γ
(

1+r
2

)[∣∣∣x′′2x′′4 − p1p5

T 2

∣∣∣r e−2σ2

1F1

(
1 + r

2
,
1

2
, 2σ2

)
−

−

∣∣∣∣∣∣x′′2x′′4 −
(
p1 + T 2

2

)
T 2

∣∣∣∣∣∣
r

e−2σ̃2

1F1

(
1 + r

2
,
1

2
, 2σ̃2

). (B.23)

Therein, we abbreviated the peaks of the Gaussians as they are after a substitution making

x′′9 the only argument of the absolute value according to

σ :=
−p5

T
x′′3x

′′
7 −

p1

T
x′′6x

′′
8 + x′′2x

′′
6x
′′
7 + x′′3x

′′
4x
′′
8

x′′2x
′′
4 −

p1p5

T 2

− p9 − πiN9

T
, (B.24)

σ̃ :=
−p5

T
x′′3x

′′
7 −

p1+T2/2
T

x′′6x
′′
8 + x′′2x

′′
6x
′′
7 + x′′3x

′′
4x
′′
8

x′′2x
′′
4 −

(p1+T2/2)p5

T 2

− p9 − πiN9

T
. (B.25)

One feature of the procedure can already be noticed now: The numerator in (B.22) and

(B.23) contains the numerical prefactor
√

2
9
, stemming from the factor of 2 within the
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Gaussians, which in turn entered our formulae via the substitution following (14.2). The

successive integrations now build up a numerical prefactor
√

2
n

in the denominator that

ultimately compensates the respective factor in the numerator.

From (B.23), we proceed as before and perform the asymptotic expansion of the two

KCHFs — guaranteed as both σ and σ̃ are ∼ 1
T

. The follow-up Taylor expansion (setting

already N9 = 0) then yields

S′′ := 1− r(1− r)
8

T 2

p9
2

+O(T 3). (B.26)

Therefore, we now have

(B.23) ≈

≈ 2

t

T 3r
(

2π
√

2
T

)9

Γ
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1
2

)3
SS′S′′

||Ψm||2−
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e
2
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2
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−∞

d5x′′i\1,3,5,9 e
−2
∑

i\1,3,5,9
(x′′i −
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T )

2

·

·
∞∫

−∞

dx′′3 e−2(x′′3−
p3−πiN3

T )
2[∣∣∣x′′3(x′′4x′′8 − p5

T
x′′7

)
+ τ
∣∣∣r − ∣∣∣x′′3(x′′4x′′8 − p5

T
x′′7

)
+ τ̃
∣∣∣r]

=
2

t

T 3r
(

2π
√

2
T

)9

Γ
(

1
2

)3
SS′S′′

||Ψm||2−
√

2
3

∑
{Ni}∈Z

e
2
∑
i
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2
∞∫

−∞
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∑
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(x′′i −

pi−πiNi
T )

2

·

·
Γ
(

1+r
2

)
√

2
1+r

∣∣x′′4x′′8 − p5

T
x′′7
∣∣r[e

−2

(
τ

x′′4x
′′
8−

p5
T
x′′7
− p3−πiN3

T

)2

1F1

(
1+r

2
, 1

2
, 2

(
τ

x′′4x
′′
8−

p5

T
x′′7
− p3−πiN3

T

)2
)
−

− e
−2

(
τ̃

x′′4x
′′
8−

p5
T
x′′7
− p3−πiN3

T

)2

1F1

(
1+r

2
, 1

2
, 2

(
τ̃

x′′4x
′′
8−

p5

T
x′′7
− p3−πiN3

T

)2
)]

,

(B.27)

with

τ := x′′2x
′′
6x
′′
7 −

p1

T
x′′6x

′′
8 −

p9

T
x′′2x

′′
4 +

p1p5p9

T 3
, (B.28)

τ̃ := x′′2x
′′
6x
′′
7 −

p1 + T 2

2

T
x′′6x

′′
8 −

p9

T
x′′2x

′′
4 +

(
p1 + T 2

2

)
p5p9

T 3
. (B.29)

We see that we can again apply the asymptotic expansion for large arguments of the

251



Appendix B. The 9 integrations

KCHF on both KCHFs and with also performing the subsequent Taylor expansion we get

(B.27) ≈

≈ 2

t

T 3r
(

2π
√

2
T

)9

Γ
(

1
2

)4
SS′S′′

||Ψm||2−
√

2
4

∑
{Ni}∈Z

e
2
∑
i
( pi−πiNiT )

2
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−∞

d4x′′i=2,4,6,8 e
−2
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i=2,4,6,8
(x′′i −

pi−πiNi
T )

2

·

·
∞∫

−∞

dx′′7 e−2(x′′7−
p7−πiN7

T )
2
(

1− r(1− r)
8

x′′7
2 T 4

p1
2p9

2

)[∣∣∣x′′7(x′′2x′′6 − p3p5

T 2

)
+ ω

∣∣∣r−
−
∣∣∣x′′7(x′′2x′′6 − p3p5

T 2

)
+ ω̃

∣∣∣r]. (B.30)

As usual, only the N3 = 0 contribution was considered and we abbreviated

ω := x′′8

(p3

T
x′′4 −

p1

T
x′′6

)
− p9

T
x′′2x

′′
4 +

p1p5p9

T 3
, (B.31)

ω̃ := x′′8

p3

T
x′′4 −

(
p1 + T 2

2

)
T

x′′6

− p9

T
x′′2x

′′
4 +

(
p1 + T 2

2

)
p5p9

T 3
. (B.32)

This time, we do indeed face a different situation with the Taylor expansion’s first non-

constant contribution 1 − r(1−r)
8

(x′′7
2 T 4)

(p1
2 p9

2)
being still dependent on the (next) integration

variable x′′7. Even though it looks as if this term were contributing with T 4, it turns out

to contribute with T 2 after the integration, just like the higher order contributions of all

the Taylor expansions before. The important point now is that x′′7 is contained in the

integrand with an integer power (and not within a KCHF, for example), allowing us to

continue with the integration procedure via

∞∫
−∞

dx e−(xc+b)
2

|x|r(x+ d)2 = |c|1+r e−b
2

Γ
(

1+r
2

)[
d2

1F1

(
1 + r

2
,
1

2
, b2

)
+

+
1 + r

2
1F1

(
3 + r

2
,
1

2
, b2

)
− 4

1 + r

2
bcd 1F1

(
3 + r

2
,
3

2
, b2

)]
. (B.33)

Also note that the Taylor expansion that caused this additional appearance of x′′7 did

again not change the exponent of the integration variable, at least up to the first order in

T . The asymptotic expansion for large arguments of the KCHF generates a series z−n in

the argument z of the KCHF. For both KCHFs in (B.27), the argument is ∼ (x′′7)−2 and

therefore, the asymptotic expansion will contain a first order term ∼ (x′′7)2. Hence, the
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following Taylor expansion did not change the power of the integration variable x′′7.

Combining (B.33) & (B.30) and applying the asymptotic expansion on all six KCHFs,

we obtain

(B.30) ≈

≈ 2
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T )
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, (B.34)

where we defined

P :=
p7

2

p1
2 p9

2
+

p3
2

(p1p9 − p3p7)2 , (B.35)

χ := x′′2

(p7

T
x′′6 −

p9

T
x′′4

)
+
p1p5p9 − p3p5p7

T 3
=: x′′2

(p7

T
x′′6 −

p9

T
x′′4

)
+
P
T 3
, (B.36)

χ̃ := x′′2

(p7

T
x′′6 −

p9

T
x′′4

)
+
P
T 3

+
p5p9

2T
. (B.37)

Continuing, we get

(B.34) ≈

≈ 2
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r, (B.38)
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with

ϑ := x′′4

(p3p8

T 2
− p9

T
x′′2

)
+
P
T 3
, (B.39)

ϑ̃ := x′′4

(p3p8

T 2
− p9

T
x′′2

)
+
P
T 3

+
p5p9

2T
(B.40)

and we face again a prefactor that is not independent of the remaining integration vari-

ables. However, we can still perform the integration à la (B.33) even though there are

now two integration variables involved. A rather long evaluation of all the usual steps

then reveals

(B.38) ≈
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2

·
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(
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8
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+
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x′′2 +

P̃
T 3
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1(p)

2T
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r]
, (B.41)

where

P̃ := P − p1p6p8 = p1p5p9 − p3p5p7 − p1p6p8 (B.42)

continues to build up the determinant of the matrix of the pi. Also, we defined

∆1
1(p) := p5p9 − p6p8 (B.43)

as the minor of that determinant with respect to p1 ≡ p1
1 where the shift happens: p1 + T 2

2
p2 p3

p4 p5 p6

p7 p8 p9

 . (B.44)

Having resulted in an integration variable independent prefactor S′′′′, we can integrate
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over x′′4 in the by now well-known manner:

(B.41) ≈ 2
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r]
, (B.45)

with

P̂ := P̃ + p3p4p8 (B.46)

S′′′′′ := 1− r(1− r)
8

p3
2p8

2

P̂2
T 2. (B.47)

Before the final integration over x′′2, we can already see that the integrand of (B.45)

looks very promising. First, with P̂ we have an expression that has nearly built up the

determinant of the matrix of the pi and the last missing terms are the ones including

p2. Knowing how the integration replaces the integration variable by the corresponding pi

divided by T , we see that these last contributions should be provided after the integration

over x′′2: Within the absolute value to the power of r, x′′2 is multiplied by p6p7−p4p9 which

is just the minor of the matrix of the pi with respect to p2. Combined with P̂ , this would

sum up to det p. Furthermore, the shifted contribution contains as an additional term

compared to the unshifted part the minor of the matrix of the pi with respect to p1, ∆1
1(p).

This term is also of higher order in T , just as anticipated for the final result.

Now, the ultimate integration over x′′2 is of no unknown structure and we can analogously

to the ones before perform the necessary steps, yielding

(B.45) ≈ 2
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with

S′′′′′′ := 1− r(1− r)
8

(p6p7 − p4p9)2

(det p)2 T 2 (B.49)
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and — finally — the determinant of the matrix of the pi:

det p := P̂ + p2p6p7 − p2p4p9. (B.50)

As a last step, we include the remaining part of the norm of the coherent state,

||Ψm||2− =
∏
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1 +K

(i)
t

)(2π
√
π
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)9

e
2
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i
( piT )
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i

(
1 +K

(i)
t

)
, (B.51)

multiply the expansion-series-like prefactors and combine the contributions of the shifted

and unshifted parts. Recap that in (B.51), K
(i)
t = O(t∞), i.e. limt→0

K
(i)
t /tn = 0 ∀n ∈

N [66]. The reason for this is again that for

∏
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e
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π
2Ni

2

T2 +
2πipiNi
T2

)
, (B.52)

only the solution {Ni} = 0 will contribute, while all other are exponentially damped.

The inverse Gaussian factors e2
∑
i(
pi
T )

2

within the norm of the coherent state compensate

e2
∑
i(
pi−πiNi

T )
2

of (B.45), having in mind that {Ni} = 0. As an intermediate result, we

therefore now have
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First, we can say that the normalisation prefactors cancel as Γ
(

1
2

)
=
√
π. The rest of the

expression is just as expected: We face a difference in the absolute value to the power

of r of a unshifted and shifted contribution, multiplied by power-series-like prefactors

(1 − r(1−r)
8

f({pi})T 2). We can now use the remaining T 3r to reformulate the difference

of the unshifted an shifted part as

T 3r

[∣∣∣∣det p

T 3
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)
. (B.54)
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For the very last step, we insert this into (B.53) and multiply all S(′...′) to obtain

2

t
〈q̂1

1(r)〉Ψm ≈ −
2

t
r
| det p|r∆1

1(p)

det p

T 2

2
+

2

t
FT 4 +

2

t
O
(
T 5
)
. (B.55)

The zeroth order contribution

r
| det p|r∆1

1(p)

det p

then perfectly resembles the result of the Poisson bracket of the corresponding classical

expressions. During the last step, this contribution was the result of the term ∼ T 2 of

(B.54) multiplied by all 1s from the S(′...′). Due to all these factors being series à la

1− . . . T 2 +O(T 3) and (B.54) being of the form . . . T 2 + . . . T 4 +O(T 6), we were able to

also state the next higher order term ∼ T 4: All final terms ∼ T 4 are either the term ∼ T 4

of (B.54) multiplied by all the 1s of the S(′...′), or the term ∼ T 2 of (B.54) multiplied by

the sum of all terms ∼ T 2 of the S(′...′). Note that had we included also terms ∼ T 3 within

the S(′...′), those would be multiplied at least with the term ∼ T 2 of (B.54), therefore

resulting in an overall term ∼ T 5. We then collected all those terms ∼ T 4 in

F :=− r(r − 1)

8

|det p|r(∆1
1(p))

2

|det p|2
− r2(r − 1)

16

|det p|r∆1
1(p)

det p

[
1

p1
2

+
1

p5
2

+
1

p9
2

+ P+

+
p1

2p6
2P̃2 + p1

2p8
2P2

P̃2P2
+
p3

2p8
2

P̂2
+

(p6p7 − p4p9)2

(det p)2

]
. (B.56)

Checking the overall powers in the pi for all terms of (B.56), we need to have in mind that

P
(B.35)

= p7
2

p1
2 p9

2 + p3
2

(p1p9−p3p7)2 , i.e. P ∼ p−2, while all of P , P̃ , P̂ are ∼ p3. Therefore, the first

term does indeed have a different overall power in the pi than the remaining ones: p3r−2

vs. p3r−3. This feature of the next-to-leading order term containing two contributions

with different powers in the fluxes/momenta can also be seen in the quantum mechanical

case, confer (11.35) and (11.38). However, in (4.45) of [64], this behaviour is not observed

as all terms there are ∼ p3 r
2
−3 for N = 1. We assume the reason for this is the power

counting performed in (4.39) of [64]: There, the point is made that one could neglect

terms ∼ sT compared to terms ∼ s2, where s = t
1
2
−α. α was defined via p 7→ q := pt−α

in order to have a quantity “of order unity”. This s is always paired with q−1 as there

should be no trace of α in the final result. Therefore, sT = t1−α is of higher order in

t than s2 = t1−2α, as α > 0. However, all terms ∼ sT are combined with q−1, causing

them to be ∼ t — just like all terms ∼ s2, which are paired with q−2. Now, this term

∼ sT that was not considered anymore contains one less inverse q compared to the term
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s2, making it of higher order in p than the one included in the final result. With the

final result of [64] containing terms ∼ p3 r
2
−3 in the contribution ∼ t, this is in accordance

with the observation that (B.56) also contains a part ∼ p3r−2 — note that we used r,

where [64] used r
2
. Accordingly, the correction terms [64] considers should be the same

as the ones of the second part of (B.56) above. This can even be motivated by both

the quantum mechanical and the U(1) case, confer the discussion following (15.17), as

they should be the derivative of the fluctuations of the expectation value of the volume

operator. However, finding a stringent link between the two procedures was not possible

so far. For the U(1) case, Section 15.2 offers a connection but for the higher dimensional

case, the procedures deviate too much. For the correction term ∼ sT that was neglected

in [64, cf. eq. (4.39)], it is in turn quite straightforward to check that it corresponds to

the first part of (B.56).
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Appendix C

Estimates

This is a list of the fundamental estimates that we use during our considerations on

semiclassical expectation values of the class of operators q̂i0I0(r).

• Brunnemann and Thiemann [66] used the estimate

|a|r − |b|r ≤ ||a| − |b|| (where a, b ∈ Z and r ∈ Q[0,1]) (C.1)

to get rid of the roots.

• With the help of

|a|r − |b|r ≤ |a− b|r (where a, b, r ∈ R and 0 ≤ r ≤ 1), (C.2)

we replace the difference in roots by a single root. We can then perform further

modifications of the term corresponding to (a−b), allowing us in the end to integrate

the expression against Gaussians by means of KCHFs.

• For the root of a sum, the — to some extend — equivalent but reverse estimate

reads

|a+ b|r ≤ |a|r + |b|r (where a, b, r ∈ R and 0 ≤ r ≤ 1), (C.3)

which we will also need.

• We will use

|a+C|r−|(a−1)+C|r ≤ |a|r−|a−1|r+2 (where a, C, r ∈ R and 0 ≤ r ≤ 1) (C.4)
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during our search for a “good” estimate for the case of U(1)3.

Using (C.2), we can straightforwardly proof this estimate:

|a+ C|r − |a+ δ + C|r + |a+ δ|r − |a|r ≤ |a+ C − (a+ δ + C)|r + |a+ δ − a|r

= 2|δ|r. (C.5)

The important part of the estimates (C.2), (C.3) and (C.4) is that they still contain

| . . . |r, i.e. the initial exponent r, while (C.1) does not.
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Appendix D

The semiclassical continuum limit

for graphs of cubic topology

This appendix covers the derivation of the result we already presented in Section 14.4

concerning the semiclassical continuum limit for graphs of cubic topology. We stated

that in this scenario, taking both limits t → 0 and ε → 0 — i.e. having the classicality

parameter and the lattice regularisation parameter vanish — reproduces the classical

Poisson bracket:

lim
t→0

2〈q̂i0I0(r)〉Ψm
t

= −r
|det p−|r∆i0

I0
(p−)

det p−
= 2ihi0I0

{(
hi0I0
)−1

, V 2r(R�ε)
}

(D.1)

lim
ε→0

(
2ihi0I0

{(
hi0I0
)−1

, V 2r(R�ε)
})

=
1

a6r

{∫
eI0

Ai0 , V 2r(Rx)

}
. (D.2)

Therein, i entered the formulae as we work with U(1)3 instead of SU(2), the quantisation

is performed by additionally dividing by 1
i~ and 1

a6r is considered in order to work with a

dimensionless volume — confer (10.5). We already mentioned in Section 14.4 that we have

to include an extra factor of 2 for getting the correct semiclassical limit of the Thiemann

identity (see [234]).

We start by showing that the classical identity

hi0I0

{(
hi0I0
)−1

, V 2r(R�ε)
}

= −i
κ

2a2
r
∣∣det p−

∣∣r∆i0
I0

(p−)

det p−
≡ −i

κ

2a2
r
∣∣det p−

∣∣r((p−)−1
)
I0i0

(D.3)
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holds for cubic graphs in the U(1)3 setup. For the Poisson bracket, we have

hi0I0

{(
hi0I0
)−1

, V 2r(R�ε)
}

= κhi0I0

∫
d3z

(
δ(hi0I0)−1

δAkb (z)

)(
δV 2r(p−)

δEb
k(z)

)
, (D.4)

where we can rephrase the two factors of the integrand as

hi0I0

(
δ(hi0I0)−1

δAkb (z)

)
= −i

1∫
0

dt ėaI0(t)δki0δab δ(t, z) (D.5)

and (
δV 2r(p−)

δEb
k(z)

)
= r
∣∣det p−

∣∣r−1
sgn(p−)

(
δ det p−

δEb
k(z)

)
, (D.6)

respectively. For determining the functional derivative of the last identity, we need to

reintroduce the pI0σ0i0 as in [64]. Recap that the subscripts denote the edges I0 = 1, 2, 3,

the U(1)-copy i0 = 1, 2, 3 as well as the sign σ0 = ± that tells whether the edge is in- or

outgoing. With a follow-up insertion of the fluxes

EJ
jσ :=

∫
Seσ
J

Ea
j n

Seσ
J

a , (D.7)

we have

p−I0i0 =
1

2
(pI0+i0 − pI0−i0) =

1

2a2

(
EI0
i0+ − E

I0
i0−
)
, (D.8)

p+
I0i0

=
1

2
(pI0+i0 + pI0−i0) =

1

2a2

(
EI0
i0+ + EI0

i0−
)
. (D.9)

In (D.7), SeσJ denotes the surface that is dual to the edge eσJ and n
Seσ
J

a then is the respective

conormal of that surface. For the latter, we use the shorthand notation nJσa := n
Seσ
J

a . This

yields

(
δ det p−

δEb
k(z)

)
=

det p−

2a2

(
(p−)−1

)
Jj

∫
S
e+
J

d2unJ+
a δkj δ

a
b δ(x(u), z)−

∫
S
e−
J

d2unJ−a δkj δ
a
b δ(x(u), z)

.
(D.10)
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Combining (D.5) and (D.10) with (D.4), we reproduce (D.3) via

hi0I0

{(
hi0I0
)−1

, V 2r(R�ε)
}

= − iκ

2a2
r
∣∣det p−

∣∣r−1∣∣det p−
∣∣((p−)−1

)
I0i0

= − iκ

2a2
r
∣∣det p−

∣∣r∆i0
I0

(p−)

det p−
. (D.11)

Note that we also used ∆i0
I0

(p−) = 1
2
εi0k`εI0KLp

−
Kkp

−
L` in the last step.

Having in mind

pI0+i0 = p+
I0i0

+ p−I0i0 ∧ pI0−i0 = p+
I0i0
− p−I0i0 ⇐⇒ pI0σ0i0 = p+

I0i0
+ sgn(σ0)p−I0i0 ,

we can reformulate ((p−)−1)I0i0 =: (p−I0i0)−1 as

sgn(σ0)(p−I0i0)−1 = (1− p−1
I0σ0i0

(p+
I0i0

))−1p−1
I0σ0i0

. (D.12)

Therein, we used the superscript −1 to mark the inverse of the corresponding matrix and

the subscripts then specify the matrix element one currently considers. For p−1
I0σ0i0

, we

then get

p−1
I0σ0i0

=
1

2
εi0mnεI0MN pMσ0mpNσ0n

det pσ0

=
a2

2
εi0mnεI0MNE

M
mσ0

EN
nσ0

detEσ0

,

with the already used notational convention detEσ0 ≡ det
(
EJ
jσ0

)
. Being interested in

expanding both the fluxes and their just mentioned determinant in powers of the lattice

regularisation parameter, we introduce the embedding

Xa
v :
[
− ε

2
,
ε

2

]
→ σ, (t1, t2, t3) 7→ Xa

v (t1, t2, t3), Xa
v (0, 0, 0) = v.

We can then perform the two expansions as

EJ
jσ = ε2Ea

j (v)nJσa (v) +O
(
ε3
)

and (D.13)

detEσ ≡ det
(
EJ
jσ

)
= det

(
ε2Ea

j (v)nJσa (v) +O
(
ε3
))

= ε6 det
(
Ea
j (v)

)
det
(
nJσa (v)

)
+O

(
ε7
)

= ε6 detE(v) · detnσ(v) +O
(
ε7
)
. (D.14)

We now have detE(v) ≡ det
(
Ea
j (v)

)
, where the Ea

j are linked to the EJ
jσ0

by means of

(D.7), and detnσ(v) ≡ det
(
nJσj (v)

)
. Having in mind that nJ+

a (v) = −nJ−a (v) and with
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p+
I0i0

formulated as in (D.9), we conclude that the leading order vanishes. With that,

the contribution ∼ p−1
I0σ0i0

p+
I0i0

in (D.12) is of higher order in the lattice regularisation

parameter ε compared to the part with the unit matrix 1 and can therefore be neglected

when considering ε→ 0. We therefore have for (D.12)

sgn(σ0)(p−I0i0)−1 = sgn(σ0)
a2

2
εi0mnεI0MN Ea

mn
Mσ0
a Eb

nn
Nσ0
b

detE(v)|detnσ(v)|

(
1 +O(ε)

ε2 +O(ε3)

)
, (D.15)

where the sgn accounts for the absolute value we introduced in the denominator.

For the expansion of (D.3), all this yields

hi0I0
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hi0I0
)−1

, V 2r(R�ε)
}

= −i
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2a2
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)
. (D.16)

What is left is taking the limit ε→ 0 that we are ultimately interested in. Starting with

the absolute value within (D.16), we realise

nJσa
∂Xb

v

∂tJ
= δba sgn(σ)

∣∣∣ det

(
∂Xc

v

∂tK

)∣∣∣ and detnσ =
∣∣∣ det

(
∂Xc

v

∂tK

)∣∣∣2, (D.17)

for ∂Xa
v

∂tJ
being tangent vectors. As a consequence, we can formulate the limit ε→ 0 of the

absolute value within (D.16) as

lim
ε→0

∣∣∣ ε3
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based on the fact that ε3
∣∣∣ det

(
∂Xc

v

∂tK

)∣∣∣ =
∫
�v

d3x for ε→ 0.

For the remaining part of (D.16), which corresponds to (p−I0i0)−1, we start by reformu-

lating
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. (D.19)
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Using previous results and multiplying by an additional ε, we obtain

lim
ε→0
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Finally, combining both (D.18) and (D.20) with (D.3), we end up with

2i · lim
ε→0
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= 2
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(D.22)

and have therefore verified the identities (D.1) & (D.2).
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die reine und angewandte Mathematik, 102:76–159, 1888. URL http://www.
digizeitschriften.de/dms/img/?PID=GDZPPN002160536.

[222] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth Dover
printing, tenth GPO printing edition, 1964.

[223] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release
1.0.19 of 2018-06-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[224] Alexander D. Poularikas. Transforms and Applications Handbook. The
Electrical Engineering Handbook Series. CRC Press, 3rd edition, 2010.
doi:10.1201/9781315218915.
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[232] Ahmed I. Zayed and Piotr Mikusiński. On the extension of the Zak transform.
Methods and Applications of Analysis, 2, 1995. doi:10.4310/MAA.1995.v2.n2.a3.
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