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Abstract: Quantum arithmetic logic units (QALUs) perform essential arithmetic operations within a

quantum framework, serving as the building blocks for more complex computations and algorithms in

quantum computing. In this paper, we present an approach to prepare linear probability distributions

with quantum full adders. There are three main steps. Firstly, Hadamard gates are applied to the

two input terms, preparing them at quantum states corresponding to uniform distribution. Next,

the two input terms are summed up by applying quantum full adder, and the output sum is treated

as a signed integer under two’s complement representation. By the end, additional phase −1 is

introduced to the negative components. Additionally, we can discard either the positive or negative

components with the assistance of the Repeat-Until-Success process. Our work demonstrates a viable

approach to prepare linear probability distributions with quantum adders. The resulting state can

serve as an intermediate step for subsequent quantum operations.

Keywords: quantum computing; quantum adders; quantum arithmetic logic units (QALUs)

1. Introduction

Quantum computing signifies a transformative shift in the landscape of computational
capabilities, which introduces a level of computational power that enables the efficient
resolution of problems deemed intractable by classical computing paradigms [1–13]. Quan-
tum arithmetic logic units (QALUs) constitute the centerstone of quantum computing. In
classical computing, the elementary arithmetic logic units (ALUs) are designed to execute
basic arithmetic operations. Similarly, a variety of QALUs, such as quantum adders, sub-
tractors, and multipliers, serve as the building blocks for more complicated algorithms
in quantum computing. The best known example is Shor’s algorithm [14,15], where the
quantum modular arithmetic plays a vital role.

Among various QALUs, the quantum adder plays a pivotal role, representing a
fundamental operation integral to the execution of all algorithms that are constructed upon
it. The first quantum adder was proposed in 1996, when Vedral and coworkers explicitly
constructed the first quantum ripple carry adder [16], which is a significant landmark in
the development of QALUs. Since then, a variety of quantum adders has been developed,
including ripple carry [16–18], carry lookahead [19,20], carry save [21], and hybrid [22,23]
structures. On the other hand, quantum adders can also be implemented based on quantum
Fourier transform (QFT) [24,25]. QFT-based quantum adders [26,27] typically commence
with a QFT block that converts the input state to the frequency domain, performs addition
using controlled phase gates, and then reverts the state to the original domain through
an inverse Fourier transform [28,29]. Moreover, recently, a novel approach was proposed
to prepare arbitrary normal distributions in quantum registers, utilizing the QFT-based
quantum adders [30].

In this paper, we revisit the fundamental quantum binary adders and propose a practi-
cal method for generating a linear probability distribution utilizing quantum adders. The
following sections are organized as follows. In Section 2, we revisit the simple implemen-
tation of quantum binary adders, and demonstrate the outputs of iterative additions that
sum up several standalone uniform superposition states. Next, in Section 3, we present
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how to prepare the linear probability distribution with quantum full adders in the two’s
complement representation. By the end, the discussions and conclusions are present in
Section 4.

2. Materials and Methods

Like classical binary adders, quantum binary adders add up two given terms, and
return the output sum. In Figure 1, we depict the diagram of a typical quantum binary
adder. The box colored in blue represents a quantum binary adder, and the inputs are given
on the left side, whereas the outputs on the right side. There are 2N qubits initialized at
state |aN−1 · · · a0⟩ and |bN−1 · · · b0⟩, representing the input binary numbers (aN−1 · · · a0)bin

and (bN−1 · · · b0)bin. One qubit is initialized at state |0⟩, representing the input carry (in
general, the input carry is set as 0). There are N qubits all initialized at state |0⟩ to store
the output sum. Generally, the quantum binary adders do not change the state of the
inputs, and the output sum, a N + 1 digit binary number, is stored in the other N + 1
qubits (including the qubit that represents the input carry). As depicted in Figure 1a, the
N + 1 qubits, which are prepared at |0⟩ at the beginning, are converted to state |sN · · · s0⟩
after applying the quantum binary adder. The output state represents the output sum
(sN · · · s0)bin, and we have

(sN · · · s0)bin = (aN−1 · · · a0)bin + (bN−1 · · · b0)bin (1)

For clarity, here, subscript bin indicates that the number is binary.
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Figure 1. (a) Schematic diagram of quantum adder supporting multiple bits. The box colored in blue

represents a quantum binary adder, and the inputs are given on the left side, whereas the outputs

are on the right side. (b) Schematic diagram of summing up three input terms with two quantum

adders. At the beginning, all qubits are initialized at state |0⟩, and the inputs are prepared at uniform

superposition by applying Hadamard gates. Qubits denoted as qA, qB, qC, qS are involved in the first

addition. The output sum is then sent to the succeeding addition, along with qubits QB, QC, and QS.

The superscripts indicate that the qubits represent the input terms (A, B), the input carry (C), or the

output sum (S).

In classical electronics, a cascade of one-bit full adders constitutes the simplest adder
supporting multiple bits. The one-bit full adder adds three inputs [31]: two binary digits
denoted as a and b, along with an input carry denoted as cin. Then, the one-bit full adder
produces two outputs: the sum s and output carry cout. The one-bit full adder performs
binary addition as

s = a ⊕ b ⊕ cin (2)

cout = (a · b) + (cin · (a ⊕ b)) (3)

where a, b, cin, cout, s = 0, 1, and a + b + cin = s + 2cout. Similarly, the quantum one-bit full
adder, denoted as U+, performs binary addition as
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U+|a, b, cin, 0⟩ = |a, b, s, cout⟩ (4)

where the outputs s, cout are as given in Equations (2) and (3). In Figure 2b, we present
the circuit of a typical quantum one-bit full adder, which is formed by two Toffoli gates
along with three CNOT gates. There are four qubits involved in operation U+, two qubits
represent the input terms a and b, one qubit represents the input carry cin and stores the
output sum s, and the last qubit initialized at state |0⟩ stores the output carry cout.
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Figure 2. (a) Schematic diagram of summing up three input terms with two quantum adders. (b) A

typical implementation of quantum one-bit full adder. There are in total three CNOT gates and

two Toffoli gates. (c–n) The theoretical prediction of the output sum, where the input terms are M

standalone uniform superpositions prepared by Hadamard gates. Each input term represents a N

digit unsigned binary number. Pr(x) is the probability of obtaining result x, where we denote the

sum as an integer x, and the standard quantum state of the output sum corresponds to the binary

form of x.

The simplest quantum adder that supports multiple bits can be formed by cascading
multiple one-bit full adders. Figure 2a is a schematic diagram of three cascade quantum
one-bit full adders, where the blue boxes indicate operation U+, with inputs on the left side
and outputs on the right side. The addition starts from the least significant bits (LSBs) a0

and b0, and the first operation U+ is applied on the corresponding qubits. The output sum
s0 of the LSB addition is also the LSB of the output sum, whereas the output carry is sent to
the addition of the next digit, a1 and b1. In brief, the output carry performs as the input
carry in the addition of the next digit, and the output carry of the most significant bit (MSB)
is just the MSB of the output sum.

In general, we can sum up M standalone input terms by applying M − 1 quantum
adders that support multiple bits. Figure 1a is a schematic diagram of summing up three
input terms with two quantum adders. At the beginning, all qubits are initialized at state
|0⟩, and the inputs are prepared at uniform superposition by applying Hadamard gates.
Qubits denoted as qA, qB, qC, and qS are involved in the first addition. The output sum is
then sent to the succeeding addition, along with qubits QB, QC, and QS. The superscripts
indicate that the qubits represent the input terms (A, B), the input carry (C), or the output
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sum (S). After adding up M standalone input terms, the output quantum state, denoted as
ΦM, can be given as

ΦM =
1√

2NM

M
⊗

m=1

(

2N−1

∑
am=0

|am⟩
)

⊗ |
M

∑
m=1

am⟩ (5)

The M input terms are denoted as am, m = 1, 2, · · · , M. As all inputs are N bit binary
unsigned integers, am ranges from 0 to 2N − 1. Then, we measure the qubits that represent
the output sum, and denote the probability of obtaining result x as Pr(x), where for
simplicity, we denote the sum as an integer x, and the standard quantum state of the output
sum corresponds to the binary form of x. The theoretical prediction of Pr(x) for various M
and N are as depicted in Figure 2c–n, where there are in total M input terms, and each input
is a N bit binary number. As N and M increase, the distribution Pr(x) begins to resemble
a normal distribution. Thus, it is a feasible approach to prepare normal distribution with
quantum adders! [30] (In Ref. [30], Rattew and coworkers proposed a quantum algorithm
for the efficient preparation of arbitrary normal distributions, utilizing the quantum random
work, and quantum Fourier Transformations or quantum adders, along with Mid-Circuit
Measurement and Reuse (MCMR) techniques. The quantum algorithm can be implemented
with a polynomial-depth circuit. Later, in Section 3, we show that our approach can prepare
normal distributions also with polynomial-depth quantum circuits.).

3. Results

Here, we concentrate on the case M = 2, where there are only two input terms. As
both the inputs are N digit unsigned integers, the output sum is a N + 1 digit binary
number. Recalling Equation (5), the overall quantum state after the addition (the input
carry cin = 0) can be written as

ΦM=2 =
1

2N

2N−1

∑
a=0

2N−1

∑
b=0

(|a⟩ ⊗ |b⟩ ⊗ |a + b⟩) (6)

where the two input terms are denoted as a and b, and we have a, b ≤ 2N − 1, whereas the
output sum, for simplicity denoted as x, ranges from 0 to 2N+1 − 2. Then, we measure the
qubits corresponding to the sum after the addition, and denote Pr(x) as the probability
of obtaining result x. For 0 ≤ x ≤ 2N − 1, there are in total x + 1 pairs of inputs a, b that
lead to output sum x: a = 0, b = x; a = 1, b = x − 1; · · · and a = x, b = 0. Similarly, for
2N ≤ x ≤ 2N+1 − 2, there are 2N+1 − x − 1 pairs of inputs a, b that lead to output sum x:
a = 2N − 1, b = x − 2N + 1; a = 2N − 2, b = x − 2N + 2; · · · and a = x − 2N + 1, b = 2N − 1.
Therefore, the probability of obtaining result x can be given as

Pr(x|cin = 0) =











1

4N
(x + 1), 0 ≤ x ≤ 2N − 1

1

4N
(2N+1 − x − 1), 2N ≤ x ≤ 2N+1 − 2

(7)

Pr(x) reaches to the peak at x = 2N − 1, and Pr(2N − 1) = 1
2N . The theoretical predictions

of Pr(x) with M = 2 are as depicted in Figure 2c,g,k, where the distribution Pr(x) is shaped
like an isosceles triangle.

Till now, the output sum has been treated as a N + 1 digit unsigned integer. Hereafter,
we will demonstrate that the distribution Pr(x) can be converted to a linear distribution
with two’s complement representation. Two’s complement is the most common method of
representing signed integers in classical computers [31,32]. In two’s complement represen-
tation, the value χ of a N + 1 bit integer (xN , xN−1 · · · x0)bin is given as

χ = −2N xN +
N−1

∑
j=0

2jxj (8)
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where xN is the sign bit indicating the sign, xN = 0 for non-negative integers, and xN = 1
for negative integers. The two’s complement representation of a non-negative number is
just its ordinary binary representation, with sign bit 0.

In two’s complement representation, the N + 1 digit binary number (xN xN−1 · · · x0)
is treated as a signed integer. For 0 ≤ x ≤ 2N − 1, we have xN = 0, and the readout χ is
still x. On the other hand, for 2N ≤ x ≤ 2N+1 − 2, we have xN = 1, and the readout χ is
negative. Recalling that x = ∑

N
j=0 2N xj, where x is the value of the unsigned binary integer

(xN · · · x0)bin, we have

χ = x − 2N+1, 2N ≤ x ≤ 2N+1 − 2 (9)

Thus, we can rewrite Equation (7) in two’s complement representation,

Pr(χ|cin = 0) =
1

4N
|χ + 1|, −2N ≤ χ ≤ 2N − 1 (10)

Consider a simple example, the addition of two 3-digit unsigned binary numbers. In
Table 1, we present the output sums for all possible inputs. For each input pairs, there are
four components in Table 1. The first component (from top) is the output quantum state,
where the input carry cin is 0, and the second component is the corresponding readout of the
sum (unsigned/signed). The other two components correspond to the case where cin = 1,
and will be discussed later. For example, consider the addition of |100⟩ and |101⟩. With
input carry cin = 0, the output quantum state is |1001⟩. If we treat the 4-digit binary number
(1001)bin as an unsigned integer, then the readout is 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = 9.
However, if we treat (1001)bin as a signed integer in two’s complement representation, then
the readout will be −1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = −7.

Table 1. Table of the output sums, where both the input terms are 3-bit binary unsigned integers,

and the input carry is set either 0 or 1. There are four components in each entry. From top to bottom,

the first one is the output sum with input carry 0, and the second one is the corresponding readout

(unsigned/signed), whereas the third component is the output sum with input carry 1, and the last

one is the corresponding readout (unsigned/signed).

Inputs |000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

|000⟩
|0000⟩ |0001⟩ |0010⟩ |0011⟩ |0100⟩ |0101⟩ |0110⟩ |0111⟩

0/0 1/1 2/2 3/3 4/4 5/5 6/6 7/7
|0001⟩ |0010⟩ |0011⟩ |0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩

1/1 2/2 3/3 4/4 5/5 6/6 7/7 8/−8

|001⟩
|0001⟩ |0010⟩ |0011⟩ |0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩

1/1 2/2 3/3 4/4 5/5 6/6 7/7 8/−8
|0010⟩ |0011⟩ |0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩

2/2 3/3 4/4 5/5 6/6 7/7 8/−8 9/−7

|010⟩
|0010⟩ |0011⟩ |0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩

2/2 3/3 4/4 5/5 6/6 7/7 8/−8 9/−7
|0011⟩ |0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩

3/3 4/4 5/5 6/6 7/7 8/−8 9/−7 10/−6

|011⟩
|0011⟩ |0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩

3/3 4/4 5/5 6/6 7/7 8/−8 9/−7 10/−6
|0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩

4/4 5/5 6/6 7/7 8/−8 9/−7 10/−6 11/−5

|100⟩
|0100⟩ |0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩

4/4 5/5 6/6 7/7 8/−8 9/−7 10/−6 11/−5
|0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩ |1100⟩

5/5 6/6 7/7 8/−8 9/−7 10/−6 11/−5 12/−4
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Table 1. Cont.

Inputs |000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

|101⟩
|0101⟩ |0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩ |1100⟩

5/5 6/6 7/7 8/−8 9/−7 10/−6 11/−5 12/−4
|0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩ |1100⟩ |1101⟩

6/6 7/7 8/−8 9/−7 10/−6 11/−5 12/−4 13/−3

|110⟩
|0110⟩ |0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩ |1100⟩ |1101⟩

6/6 7/7 8/−8 9/−7 10/−6 11/−5 12/−4 13/−3
|0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩ |1100⟩ |1101⟩ |1110⟩

7/7 8/−8 9/−7 10/−6 11/−5 12/−4 13/−3 14/−2

|111⟩
|0111⟩ |1000⟩ |1001⟩ |1010⟩ |1011⟩ |1100⟩ |1101⟩ |1110⟩

7/7 8/−8 9/−7 10/−6 11/−5 12/−4 13/−3 14/−2
|1000⟩ |1001⟩ |1010⟩ |1011⟩ |1100⟩ |1101⟩ |1110⟩ |1111⟩
8/−8 9/−7 10/−6 11/−5 12/−4 13/−3 14/−2 15/−1

In Figure 3, a straightforward demonstration of the addition is present. The quantum
circuit is as depicted in Figure 3a, where qA and qB represent the input terms, qC represents
the input carry, and the output sum is stored in qS. Initially, all qubits are prepared at state
|0⟩. Hadamard gates are then applied on qubits qA and qB, preparing them at uniform
superpositions as depicted in Figure 3c,d. Here, in cin = 0, the operations in the dashed
boxes are not applied. Then, the standard quantum adder is applied, summing the input
terms, and the qubits qS are measured. If we treat the output sum as an unsigned integer,
then the distribution Pr(x) is as depicted in Figure 3e, which is shaped as an isosceles
triangle, similar to Figure 2c,g,k. On the other side, if we treat the output sum as a signed
integer in two’s complement representation, then we will obtain the distribution as shown
in Figure 3g, which is a linear distribution according to Equation (10).
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Figure 3. (a) Schematic diagram of the quantum circuit that sums up the two uniform superpositions,

where qA and qB represent the input terms, qC is the input carry, and the output sum is stored

in qS. The operations in dashed boxes are applied for cin = 1. (b) To introduce phase −1 to the

negative components, we can apply a Pauli-Z gate on qS
N , which represents the sign bit of the output.

(c,d) Visualization of the uniform superpositions after applying Hadamard gates. (e,f) Distribution

of the probability of obtaining various results after measuring the output sums, which is treated as

unsigned integers. (g,h) Distribution of the probability of obtaining various results after measuring

the output sums, which is treated as signed integers in two’s complement representation. In (e,g) we

set the input carry cin = 0, whereas in (f,h) cin = 1.

Notice that in Figure 3g, the probability of obtaining result −1 is zero. Sometimes, we
prefer to have the zero probability at 0, in other words, setting Pr(χ = 0) = 0. For this case,
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we can set the input carry cin = 1. In this context, the sum is a + b + 1, where 1 is the input
carry. Equation (7) can then be rewritten as

Pr(x|cin = 0) =











1

4N
x, 1 ≤ x ≤ 2N − 1

1

4N
(2N+1 − x), 2N ≤ x ≤ 2N+1 − 1

(11)

The corresponding probability distribution is depicted in Figure 2f. If we treat the output
as a signed integer in two’s complement representation, we have

Pr(χ|cin = 0) =
1

4N
|χ|, −2N ≤ χ ≤ 2N − 1 (12)

The output sums for cin = 1 are also given in Table 1, where the third component is
the output sum with input carry 1, and the last one is the corresponding readout (un-
signed/signed). In Figure 2h, the distribution of the probability of obtaining various results
after measuring the output sums is depicted, where the output sum is treated as signed
integers in two’s complement representation. By this mean, the probability of obtaining
result 0 is zero as shown in Figure 2h.

Although the probability is always non-negative, we can also introduce an additional
phase to the negative components. As shown in Figure 2b, we can apply a Pauli-Z operation
on the qubit qS

N after applying the quantum adder. The qubit qS
N represents the MSB of the

output sum and is the sign bit if we treat the sum as a signed integer in two’s complement
representation. Recalling Equation (8), for negative components, the sign bit is 1; otherwise,
the sign bit is 0. Thus, the Pauli-Z operation can introduce an additional phase −1 to the
negative components.

Furthermore, we can also discard either the positive or negative components with the
assistance of the Repeat-Until-Success process [33–35]. After applying the quantum adder,
we can measure the qubit qS

N . If we obtain result |1⟩, then the distribution probability is
(cin = 1)

Pr−(χ|cin = 1) = − 1

(1 + 2N)2N−1
χ, −2N ≤ χ ≤ 0 (13)

Otherwise, if we obtain result |0⟩, the distribution probability is

Pr+(χ|cin = 1) =
1

(2N − 1)2N−1
χ, 0 ≤ χ ≤ 2N − 1 (14)

where the subscripts ± indicate the measurement results. If we want to obtain a linear
probability distribution for the negative range as shown in Equation (13), then we need to
repeat the whole process until we obtain result |1⟩ when measuring the qubit qS

N . On the
contrary, if we prefer to obtain the probability distribution for the positive range as shown
in Equation (14), then we need to repeat until we obtain result |0⟩.

The time complexity of the proposed approach is mainly determined by the quantum
adder. Generally, the time complexity of a typical N bit binary quantum adder, as depicted
in Figure 2b, is of the O(N) order, where there are 2N Toffoli gates along with 3N CNOT
gates. However, due to the limited connectivity, it can be challenging to implement large
quantities of Toffoli gates on the quantum computers in NISQ era. To address this issue, we
propose an alternative design of quantum binary adders in our recent work [36], utilizing
only Pauli-X gates, CNOT gates, and C

√
X (CSX) gates, and all two-qubit gates are operated

between nearest neighbor qubits. The time complexity of the quantum adder is still of
the O(N) order. Therefore, to prepare the linear distribution as shown in Equation (12),
the time complexity is O(N). Furthermore, the proposed approach can be extended to
prepare normal distributions as depicted in Figure 2c–n. Theoretically, the time complexity
of summing up M independent uniform superposition states is O((M − 1)N). In other
words, the proposed approach can be implementable with a polynomial-depth circuit.
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4. Discussion

In this paper, we revisit the elementary quantum binary adders, and propose a viable
approach to prepare linear probability distribution with the quantum adders. There are
three main steps to obtain the linear probability distribution. Initially, Hadamard gates
are applied to the input qubits, transforming them into uniform superposition states.
Following this, the input qubits are processed through a quantum full adder, where their
sum is computed, and the resulting output is interpreted as a signed integer in two’s
complement representation. At a subsequent stage, a phase shift of −1 is introduced
to the components representing negative values. Furthermore, the positive or negative
components may be selectively discarded using a Repeat-Until-Success protocol. The
resulting output can serve as an intermediate state for succeeding quantum operations.
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